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ABSTRACT

In this study we have developed multistate models with censoring for vertical transmis-
sion of HIV, also refered to as mother to child transmission of HIV. We then use the
multistate models developed to derive the forward Kolmogorov differential equations.
Depending on when transmission takes place, whether in-utero, intrapartum or postpar-
tum we introduced the aspect of censoring when estimating the transition intensities
from the transition probabilities. The study is in two parts, multi-state models for a
child born infected where we consider two and three state models and multistate mod-
els for a child born healthy where we have three, four and five state models. In each
part we have solved the respective forward Kolmogorov differential equations using the
generator matrix approach to obtain the transition probabilities which are in form of
transition intensities. Maximum likelihood estimation method is then used to estimate
the transition intensities. From the results we observe that the transition probabilities
are exponentialy distributed and that if the number of infected children are maintained
at a constant number then the transition intensities will approach zero as time increases.
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Chapter 1

GENERAL INTRODUCTION

1.1 Background Information

Diseases can either be infectious or noninfectious. Infectious diseases can be passed
between individuals, whereas noninfectious develop over an individual’s lifespan. The
primary risk factor for catching an infectious disease is the presence of infectious cases in
the local population. Infectous diseases are caused by pathogens such as viruses, bacteria,
protozoa, flukes. HIV/AIDS is an infectious disease caused by a virus known as human
immunodeficiency virus. It is a pandemic that has no cure and was first recognized by
the United States Centre for Disease Control and Prevention in 1981. It is believed that
HIV started to spread in Kenya between late 1970s and early 1980 with the first HIV
case being reported in 1982. Men, women and children are all vulnerable to the disease.
The progression of HIV infecton is shown in Figure 2.1 below.

Exposed AidsInfectives

infected

Susceptible

Figure 1.1: Progression of HIV infection

HIV model classifies the population into susceptibles (S) containing individuals who have
not been infected with the virus, Exposed (E) individuals who are infected but in the
latent stage, Infectives (I) containing individuals who are infected with the virus but
have not yet developed AIDS symtoms and the AIDS cases (A) who are those individuals
that have developed the disease. The boundaries between exposed and infectious (and
infectious and Aids) are somewhat fuzzy because the ability to transmit does not simply
switch on and off. This uncertainity is further complicated by the variability in response
between different individuals and the variability in the virus levels over the infectious
period. It is only with recent advances in molecular techniques that these within-host
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individual-level details are beginning to emerge.

The two major modes of transmission of the virus is through unsafe sex (horizontal trans-
mission) and from infected mother to her child (0− 5)years (vertical transmission)
Mother to child transmission of HIV (MTCT) occurs mainly during the perinatal period
(from the 20th to 28th week of gestation and ends 1st to 4th week after birth) and post-
natally during breastfeeding.

Since HIV pandemic first became visible, enormous mathematical models have been de-
veloped and they have proven to be valuable in umnderstanding the dynamics of the
infection. The first mathematical models were of deterministic nature. Among the first
deterministic models developed for MTCT was by Dunn et al., (1992). The stochastic
models were then later developed. Some of the early stochastic models was by Rouzioux
et.al (1995) who developed a Markov model for estimating timing of mother-to-child
(HIV-1).

1.2 Notations, terminologies and definitions

i) Multi-state models MSM
A multi-state process is a process which can take a finite number of states i.e for
any t the variable X(t) has values in S = {0, 1, ·k}

ii) Censoring
This occurs when an observation is incomplete. An event is known to occur but
the actual time is not known. The most common yypes are right, left and interval
censoring.

iii) Vertical transmission
It refers to the transmission of a disease from a parent to an offspring. The most
common is from mother to her child.

iv) HIV
This stands for Human immunodeficiency syndrome and if left untreated can lead
to the disease AIDS (acquired immunodificiency syndrome)

v) Probability Density function f(t)
This is the equation used to describe a continuous probability and is given as

f(t) = lim∆t→0
Prob [t ≤ T ≤ t+ ∆t]

∆t
(1.1)

and satisfies the following conditions

• f(t) ≥ 0 for all t

2



•
∫∞
−∞ f(t)dt = 1

vi) Survival time (T )
The survival time is a variable which measures the time from a particular starting
point to a certain end point of interest. T denotes the response variable
In most situations, survival data are collected over a finite period of time due to
practical reasons. The observed time-to-event data are always non-negative, T ≥ 0

vii) Survival Function (S(t))
The survival functionis a basic quantity used to model the probability that a sub-
ject will survive beyond a specified time t. We denote by T the random variable
representing survival time, which is the amount of time until the event of interest
occurs.
The statistical expression of the survival function is shown in Equation given as:

S(t) = Prob {T > t} (1.2)

As t ranges from 0 to ∞ the survival function has the following properties:

a) it is non-increasing

b) At t = ∞, S(t) = S(∞) = 0 i.e as time goes to infinity, the survival curve
goes to 0

Since T is a continuous random variable, the survival function can be represented
as in Equation 1.3

S(t) =

∫ t

∞
f(x)dx

= 1− F (t) (1.3)

where F (t) is the cumulative distribution function

viii) Hazard Function (h(t))
The hazard function h(t) is the instantaneous rate at which events occur, given no
previous events.

h(t) = lim∆t→0
Prob {t ≤ T ≤ t+ ∆t|T > t}

∆t
(1.4)

ix) Cumulative Hazard Function (Λ(t))
The cumulative hazard describes the accumulated risk upto time t.

Λ(t) =

∫ t

0

h(u)du (1.5)

It is a useful quantity in survival analysis because of it’s relation with the hazard
function and survival function.

S(t) = exp(−Λ(t)) (1.6)
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S(t), f(t) and h(t) have the following relationships

S(t) = Prob(T > t)

= 1− Prob(T ≤ t)

= 1− F (t) (1.7)

where F (t) is the cummulative function.

Therefore

dS(t)

dt
= −dF (t)

dt
= −f(t)

f(t) = −dS(t)

dt
(1.8)

The quantity f(t)dt might be considered an ”approximate” probability that the event
will occur at time t. Since the derivative of the survival function with respect to t is
negative, then the function f(t) in Equation 1.8 will be non negative. The survival curve
S(t) can be plotted to graphically represent the probability of an individual’s survival at
varying time points.

h(t) = lim∆t→0
Prob {t ≤ T ≤ t+ ∆t|T > t}

∆t

= lim∆t→0
Prob {t ≤ T ≤ t+ ∆t, T > t}

∆tProb(T > t)

= lim∆t→0
Prob {t ≤ T ≤ t+ ∆t, T > t}

∆tS(t)

=
1

S(t)
lim∆t→0

Prob {t ≤ T ≤ t+ ∆t}
∆t

h(t) =
f(t)

S(t)
(1.9)

From (1.8) and (1.9)

h(t) =
1

S(t)

−dS(t)

dt

=
−d
dt

logS(t)∫ x

0

dlogS(t) = −
∫ x

0

h(t)dt

logS(x)− logS(0) = −
∫ x

0

h(t)dt

log
S(x)

S(0)
= −

∫ x

0

h(t)dt

S(x)

S(0)
= e−

∫ x
0 h(t)dt (1.10)
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That is
S(x) = e−

∫ x
0 h(t)dt (1.11)

Hence
S(t) = e−

∫ t
0 h(x)dx (1.12)

or
S(t) = e−Λ(t) (1.13)

From (1.9) the hazard function for an exponential function is

h(t) =
λe−λt

e−λt

= λ (1.14)

The study of Multi-state models often fit under a Markov or semi-Markov assumption.
Given state-space E, states i, j ∈ E, and s ≤ t, a Markov process assumes

Pij(s, t) = Prob(X(t) = j/X(s) = i) (1.15)

so that the transition probability depends on the current state i.
Under the semi-Markov assumption the transition probability depends on both the cur-
rent state i and the time of entry to state i i.e t+ ∆t so that

Pij(s, t) = Prob(X(t) = j/X(s) = i, t+ ∆t). (1.16)

Future events not only depend on the current state but also on the entry time to the
state.
These approaches can either be defined in continous time and/or discrete time context.

• Transition rates are also refered to as transition intensities or forces of transition.
All transition intensities are assumed to be constant as function of time.
The explicit expression for transition probability functions are available when we
assume that µij(t) = µij for all t due to the assumption of time-homogeneous or
stationary so that the transition probability Pij(s, t) depends only on t − s, i-e,
Pij(s, t) = Pij(0, t− s).
To simplify notation, we may use only one argument in time Pij(t−s) = Pij(0, t−s).
Also, the functions Pij(s, s+ t) = Pij(0, t) are the same for all s ≥ 0 and therefore
can be written as Pij(t)

• The assumption of constant forces of transition implies that the time spent in each
state is exponentially distributed.

• For any short time interval of length h the probability of two or more transitions
within that time period is o(h)

A function f(h) is said to be of o(h) if

limh→0
f(h)

h
= 0 (1.17)
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• For all states i and j, Pij(t) is a differentiable function of t

We can express transition probabilities in terms of transition rates

Pij(t) = µijh+ o(h)

Transition rates are also refered to as transition intensities or forces of transition.
Therefore for small values of h, we have the approximation

Pij(t) ≈ µijh

Suppose there are n states, denote the state space by S, then

S = {1, 2, · · · , n} (1.18)

Denote the set of direct transitions by Υ such that

Υ ⊆ (i, j)|i 6= j i, j ∈ S (1.19)

The pair (S,Υ) is called a multi-state model.
Define X(t) as the state occupied by the subject under consideration at time t where
t ≥ 0. {X(t) : t ≥ 0} is said to be a time continuous Markov process if, for each finite set
of times 0 ≤ t0 ≤ t1 ≤ · · · tn and corresponding set of states i0, i1, · · · in, j ∈ S
where

P [X(tn) = in, X(tn−1) = in−1 · · · , X(to) = io] > 0 (1.20)

then the process satisfies the Markov property if

P [X(tn) = in|X(tn−1) = in−1, X(tn−2) = in−2 · · · , X(to)] = P [X(tn) = in|X(tn−1) = in−1]

The Markov property shows that this probability does not depend on the history of the
event but depends only on the immediate past. We say that {X(t) : t ≥ 0} is a time
continuous Markov process since we are dealing with continuous time.
Transition probabilities of the Markov process are denoted by pij(s, t) and defined by

Pij(s, t) = conditional probability that an individual is in state j at time t

given that they were in state i at time s

= P [X(t) = j|X(s) = i]

=
P [X(t) = j,X(s) = i]

P [X(s) = i]
; t ≥ s ≥ 0 i, j ∈ N (1.21)

if P [X(s) = i] > 0, otherwise Pij(s, t) = 0

We also have
Pij(s, s) = δij s ≥ 0 (1.22)

δij is reffered to as the Kronecker delta and is equal to 0 for i 6= j and 1 for i = j
The transition probabilities satisfy the following properties

0 ≤ Pij(s, t) ≤ 1; i, j ∈ N ;∑
j∈N

Pij(s, t) = 1

We assume that transition probabilities for each fixed period of time is fixed and is
therefore time homogeneous.
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1.3 Research Problem

Alioum et al (2002) used data from four randomized trials carried out in Africa between
1995 and 2000 to evaluate the efficacy of interventions aimed at reducing mother to child
transmission risk by first theoretically outlining prefered statistical methods for evaluating
interventions aimed at reducing risk of transmission. The results from trials evaluating
either peripartum antiretroviral therapy or refraining from breastfeeding showed an esti-
mated long term efficacy at 15−24 months of age between 25 and 50 percent. Differences
in statistical methods, duration of follow-up, and age at weaning hindered direct com-
parison between the trials. These results suggested that for estimation of the cumulative
proportion infected at age 6 weeks a standard Kaplan-Meier approach is likely to give
valid results while those infected at age 18 months, more sophisticated methods such as
the extension of the Kaplan-Meier procedure to interval-censored data and competing
risks would be prefered. From the efficancy results the study shows that an appropriate
time for intervention was not identified. Viera et al (2003) developed an operational
model for the MTCT of HIV pregnancy by modelling the progress of infection over time.
They defined suitable states that may be experienced by a particular HIV infected preg-
nant woman through time until she gives birth and the uncertainty in the model captured
by probabilities of transitions through states. A semi-Markov process was considered as a
better description of the biological process that follow pregnancy and HIV infection since
the transitions from state to state were governed by probabilities and random duration
of time on a given state before the transition to the next state.
Brown and Gard (2007) proposed a censored multinomial regression model for analyzing
PMTCT of HIV. In the study in utero transmission rate was estimated by the fraction
of infants testing positive shortly after birth, perinatal transmission rate estimated by
the fraction of infants testing positive by 6 weeks which they extended to 8 weeks for
analysis purposes and intrapartum transmission rate estimated by the fraction of infants
testing positive by the end of the perinatal transmission window given they had a negative
test result at birth. They studied the problem of estimating the effect of treatment on
mother to child transmission of HIV when outcome data are incomplete and demonstrated
through simulation that censored multinomial regression model outperforms standard lo-
gistic models.
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HIV infection has become a persistant problem in the world with MTCT being a sig-
nificant source of HIV infection in children below the age of 15 years. Due to improving
intervention methods most of the infected children survive to adulthood.
MTCT can takes place before or after the child is born which results in left and right
censoring. Intervel censoring can also occur particularly in children born negative but
turn positive during followup visits. Most studies in multistate models for MTCT have
all considered the multistate models and censoring separately.
Among the latest researchers on vertical transmission, Teeple (2013) came up with a good
framework for studying MTCT which as shown below,

HIV-negative infants
Breastfed (1)

HIV-positive (2)

HIV-negative infants

Non-breastfed or
weaned (3)

α34(t)

α14(t)
α13(t)

α24(t)

Death(4)α12(t)

Figure 1.2: Teeple’s Framework for the vertical transmission of HIV

This framework however can be extended to include other stages and types of censoring
for the complete scenario.
We will therefore extend the framework to include before delivery and during birth and
delivery.
Though Teeple (2013) considered the after birth situation, the Aids stage was not in-
cluded.
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The extended framework will therefore include all these situations implying various
states and various types of censoring mainly left, right and interval censoring.

Before

Delivery(1)

During

Birth and
Delivery(2)

β12(t)

β23(t)

β24(t)

HIV-negative infants
Breastfed (3)

HIV-positive (4)

HIV-negative infants

Non-breastfed or
weaned (5)

β57(t)

β37(t)
β35(t)

β47(t)

AIDS(6)

β46(t)

β67(t)

Death(7)β34(t)

1st

Trimester
2nd

Trimester
3rd

Trimester

Figure 1.3: Modified Framework for the vertical transmission of HIV

Focus from researchers have not been in obtaining the transition probabilities or
estimating the transition intensities. In this work we attempt to address this shortcoming
in multistate models with censoring.

1.4 Objectives

1.4.1 General Objective

The main objective is to develop multi-state models transition with censoring for vertical
transmission of HIV for a child born infected and a child born healthy

1.4.2 Specific Objectives

The specific objectives of the study are

(i) Formulate a deterministic model for MTCT and use it to obtain R0

(ii) Develop multistate models for left censored and right censored vertical transmission
of HIV
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(iii) Obtain transition probabilities for the models by using generator matix approach

(iv) Use MLE to get the expressions for the estimators of transition intensities

1.5 Literature Review

1.5.1 Introduction

In this section we review the literature on multistate models in vertical transmission of
HIV using both deterministic and stochastic models. All diseases are subject to stochas-
ticity in terms of the chance nature of transmission and so, in principle, a stochastic
model is always more realistic than a deterministic one. However, the relative magnitude
of stochastic fluctuations reduces as the number of cases increases, therefore, in large
populations with a hgh level of disease incdence, a deterministic model may be a good
approximation. However, when the population is small or the disease is rare (for example,
due to vaccination, other forms of interventions, or early during an epidemic) stochastcity
can have a major role. We therefore start by reviewing some deterministic models and
later stochastic models which are our main interest in this study.

1.5.2 Deterministic Studies in Vertical Transmission of HIV

Mugisha and Luboobi (2003) used a continuous age-structured model of Mckendric-von
Foerster type to derive a two groups HIV/AIDS model in order to identify the most
vulnerable age group to concentrate on when combating the spread. The two age groups
were the children and infected mothers. They started from the continuous age distribu-
tion models and developed the ideas into the ordinary differential equations with interest
being on how HIV/AIDS regulates the size of the population. Since AIDS cases have
full-blown symptoms and are easily noticiable, they were assumed not to be sexually
interacted with. It was also assumed that at the start of the epidemic, the population is
at steady age distribution with exponential growth.
The results showed that the only possible way to ensure a disease free equilibrium is to
bring the force of infection to zero, i.e, all the babies born by infected mothers are HIV
free. This however does not guarantee safety in the adult group as it is only when the rate
of infection in adults is zero that a disease free adult population is assured. The study
showed a high possibility of having the basic reproduction number, R0 > 0 or R0 = 0
meaning that all infected mothers give birth to HIV-free babies. This means that we can
have the epidemic die out if some effort is put on delivering of HIV free babies. Therefore
in order to have a big fraction of HIV-free babies, measures to reduce risks associated
with vertical transmission in the HIV-infected mothers must be intensified.
Waziri et al (2012) examined the dynamics of HIV/AIDS with treatment and vertical
transmission using a nonlinear deterministic mathematical model and applying the sta-
bility theory of differential equations that models the dynamics of transmission in a
varying population. They used the next generation matrix method to calculate R0 and
established the local stability of the disease free equilibrium. They did this by extending
the model by Naresh et al (2006) who studied a mathematical model on the dynamics of
HIV/AIDS epidemic with vertical transmission but without treatment and assumed that
no infants born infected with HIV/AIDS lived long enough to reach the adolescent age.
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This assumption was justified in 1991, since antiretroviral drugs capable of prolonging
lives upto adulthood was unknown or not widely available. They noted that models of
HIV/AIDS dynamic that ignore the impact of vertical transmission particularly during
the current high usage of antiretroviral drugs may fail to capture the actual impact of
HIV/AIDS in a population.
The results of both qualitative and numerical analysis showed that there exist a feasible
region where the model is well posed in which a unique disease free equilibrium point
exits. The disease free equilibrium is found to be locally asymtotically stable if the basic
reproduction number R0 < 1 and for R0 > 1 it is unstable and the infection persists in
the population. In this case the endemic equilibrium which exists only when R0 > 1 is
always locally asymptotically stable. It was found that an increase in the rate of vertical
transmission leads to increase of the population of infectives which in turn increase the
HIV infected and AIDS population. The numerical simulation showed that controlling
the rate of vertical transmission significantly reduced the spread of HIV.

1.5.3 Stochastic Studies in Vertical Transmission of HIV

Rouzioux et al (1995) determined the frequencies of MTCT transmission during preg-
nancy and delivery in order to estimate the timing of MTCT of HIV and compared MTCT
to HT by solving the Chapman-Kolmogorov differential equations for Birth-Illness-Death
process using open population growth model. They carried out comperative analysis to
investigate the rate of spread of HIV epidemic among these two modes and determine
which mode of transmission had the highest rates and therefore enable policies formulated
for government control of the epidemic. The time from infection to detectable antibody
production was divided into three stages: Stage 1 in which the infant was infected, but
was negative in viral culture or PCR and produced no HIV-1 specific antibodies, Stage 2
in which the infant was positive for viral culture or PCR and produced no specific anti-
bodies and Stage 3 in which the infant was positive for viral load or PCR but produced
detectable specific antibodies.
The statistical analysis had to deal with the fact that the different time points or periods
of interest were either interval censored or right censored. The Markov modelling tech-
nique was found to be well suited to the analysis of the ordered clinical process subject
to interval or right censoring.
MLE method was used to estimate the probability of transmission during delivery, the
density of probability of the time of contamination in utero, and the probability of trans-
mission from Stage 1 to Stage 2 and Stage 2 to Stage 3. The estimation of all parame-
ters were obtained simultaneously by maximizing the likelihood using the Pseudo-Gauss-
Newton algorithm in BMP(3R) statistical package and confidence interval obtained using
the lielihood ratio statistics.
From this study we observe that further studies are required to determine whether ma-
ternal factors influence the course of HIV−1 infection through timing of transmission or
it’s mechanism.
Balasubramanian and Lagakos (2001) used time-dependent sensitivity of DNA and RNA
PCR assays and HIV culture diagnostic tests to make nonparametric and semiparametric
inferences about the distribution of the time of perinatal HIV transmission as well as the
cumulative probability of perinatal transmission. They developed regression methods for
the distribution of the timing of perinatal HIV transmission which they used to obtain
expressions for the likelihood contributions for different types of observations that arise
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in a perinatal transmission setting based on homogeneous subjects. The likelihood for
special models for the sensitivity function were developed for identifiability and param-
eter estimations. Data from the AIDS Clinical Trials Group protocol 076 was used to
illustrate these methods. These were then extended to incorporate covariates. It was
observed that the extent to which the distribution of the timing of transmission is identi-
fiable depended on the types of observations available. The estimates obtained suggested
that the majority of perinatal infections occured at or shortly before birth, with very
few occurring more than two weeks prior to birth. In addition to observing results of
diagnostic tests, the database could also contain covariates that might affect the timing of
perinatal transmission and therfore to incorporate covariates, proportional hazard models
were used.
It would however be useful to extend these methods to settings where there is a risk of
HIV infection following birth due to breastfeeding. This would be especially useful for the
assessment of research studies that aim to recruit uninfected infants shortly after birth
based on negative diagnostic tests and then randomize these to different strategies for
preventing transmission from breatfeeding
Frydman and Szarek (2009) derived a nonparametric maximum likelihood maximum like-
lihood estimate of the overall survival distribution in an illness -death model from interval
censored observations with unknown status of HIV-1 infection that corrects both the over-
estimation of the cumulative probability of death prior to infection and underestimation
of the cumulative probability of the infection. This was done by deriving an expression
for the distribution of the survival time T as the sum of the pre- and post natal HIV
infection survival subdistributions which allowed for one to explore HIV free survival as
a surrogate for overall survival.
Data from a randomized clinical trial between November 1992 and July 1998 in Nairobi,
Kenya of HIV positive pregnant women who were randomly assigned to breastfeeding
(BF) or counselled for formula feeding (FF) of their infants and followed for 24 months
for HIV positivity, HIV free survival and overall survival was used to obtain the nonpara-
metric maximum likelihood estimators (NPMLEs) of the cumulative incidence function of
infection, the cumulative probability of death before infection and the discrete intensity
from infection to death.
The distribution or the cumulative intensity of interest was estimated for each subsample
and the estimated variance determined from the collection of 100 estimates. The p values
for each treatment groups were abtained and compared using the statistic based on the
logarithmic transformation of the survival functions. This statistic showed that for right
censored survival data, the tests based on transformed survival functions were superior
(in terms of type 1 error) to the naive test based on the difference in the estimates of
survival. Similarly the test statistics used for testing equality of the cumulative intensi-
ties of death after (or before) HIV-1positivity was obtained and the confidence intervals
at specified timepoints constructed from the subsampling empirical percentilesfor each
estimated distributions
It was noted that while the clinical diagnosis of HIV inspection is usually determined
by a positive test, the sensitivity of the test can depend on the age of an infant and
the time since infection. We also observe that these methods can be further developed
to incoporate left and right censoring. We can also incorporate covariates and therefore
involve semi-parametric or parametric modelling of transition intensities.
Brown and Chen (2012) developed an imputation method (MI) to analyze the censored
MTCT timing in presence of auxiliary information. The interest was in the estimation of

12



late postnatal transmission rate at 12 months and the effects of covariates on the hazard
of late postnatal infection. The Kaplan-Meier (KP) approach was used to estimate the
cumulative infection rate among those uninfected at 6 weeks and the proportional hazards
models used to estimate the association between timing of MTCT and covariates. MI
performed better in terms of bias for both the KM and PH estimates which had twice the
bias in most of the MI analyses. The goal was to find a flexible MI model that could easily
be implemented in available software such as R and OpenBugs and allows the inclusion of
those infants whose timing could not be previously categorized. Using MI the estimates
of postnatal transmission was found to be 0.2. An approach to take into account the im-
perfect sensitivity in imputation step and censoring to account for weaning was also used.
This was done by first presenting a mixture model that allows a proportion of infants
born with detectable HIV infection from in utero and another significant proportion that
never experience MTCT of HIV. In addition mixtures of Weibull models that allows for
a flexible estimate in the distribution of time to detectable infection after birth was used.
Interest now is in estimating the distribution of timing of MTCT among those infants
who experience MTCT for use in planning HIV testing schedules. Also there could be
need to assess how baseline covariates predict transmission during the three exposure
periods and not only late postnatal transmission.
Teeple (2013) developed a model for estimating baseline risk and associated covariates of
time to postnatal infection, time to death, and time to weaning. This they did by first
jointly modelling time to postnatal infection and time to death as two outcomes of an
illness-death model by using an exponential random variable to incorporate sensitivity.
The illness-death model was then expanded to include time to weaning as an additional
outcome of the model. Bayesian MCMC algorithm was then implemented to estimate the
parameters and the likelihood of the model formulated to account for imperfect sensitiv-
ity and interval censoring in the measurement of the time to illness ,and right censoring
in the measurement of time to death.
Numerical optimization algorithms led to non-positive definite estimated variance-covariance
matrices in approximately 5% of the models fit whereby the negative variance estimates
occurred primarily in the spline coefficients of the healthy-death intensity for a period
where there were few events probably as a result of lack of information.
It was observed that the choice of sensitivity function did not affect the illness-mortality
rate although adjusting for sensitivity increased the duration in the illness state prior
to death. In infected infants mortality peaked at 4 months after infection followed by a
steady decline.
The model also indicated that the antibiotics had a harmful effect on both HIV infection
and risk of mortality in HIV-uninfected infants with point estimates of log proportional
hazard coefficient of 0.2 and 0.5 respectively since infants who benefited from an in utero
treatment became more susceptible to harmfull events after birth when the treatment
was no longer given.
We have observed that this model can still be extended to include more states, in patic-
ular the prenatal stage. Also, instead of the exponential distribution, the more flexible
Weibull distribution can be used.

1.5.4 Multistate Modelling MTCT

Teeple (2013) introduced new methods that incorporate time-dependent sensitivity in
MSMs by considering HIV infection and disease progression in infants who acquire HIV
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from their mother by regarding the fact that most infants born to HIV-positive mothers
will test positive using an antibody test because of maternal HIV antibodies that circulate
in the infant for the first year resulting in high false positive rates (Wessman et al 2012).
This was done by comparing a proportional harzards survival models of time to postnatal
illness to that of the healthy illness transition model to address the possible source of bias
while focusing on time to postnatal infection basing their approach on MSM framework.
In addition a new random variable was included in the MSM to measure the delay in the
detection that results from imperfect diagnostic testing which accounts for the downward
bias that is caused by using an observed event time that is later than the true onset and
the uncertainty of an infants true status prior to death.

1.6 Summary of the Literature Review

From the literature reviewed, the transition probabilities and transition intensities are
approximated directly from the data available and also noted was the fact that the specific
time at which an infected individual was infected, or the time an individual might get
infected is rarely observed, is not used in obtaining these estimates. This has enabled us
come up with the following guideline for our research

(i) Perform a decomposition of the transition intensities matrices to obtain matrices
of transition probabilities.

(ii) Consider transmission taking place before and after birth resulting in different type
of censoring

(iii) Use expanded and all stages in HIV transmission

(iv) Get estimate of transition intensities using MLEs

1.7 Methodology

In this study we will use the following tools to come up with the model

i) Chapmam-Kolmogorov equation

Pij =
∑
k

Pik(s)Pkj(t) (1.23)

(ii) Kolmogorov forward dfferential equations
We obtain the transition probabilities from these differential equations in terms of
transition rates by use of the Generator matrix method

(iii) Use of Maximum likelihood method in parametric estimation and use of non para-
metric methods to obtain the transiton rates.
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1.8 Significance of the study

In studies of vertical transmission of HIV, the main focus is either on the stages of HIV
or in estimating the time transmission occurs. Several recent examples include adjusting
for misclassified outcomes in a multistate model (Teeple, 2013), an imputation method
for interval censored time-to-event with auxilliary information: analysis of the timing
of mother-to-child transmission of HIV (Brown and Chen, 2012). However, none of the
studies considered both multistate models and censoring together in estimating the time
of transmission. In this work we obtain transition probabilities in terms of transition
intensities and estimate the transition intensities which can then be used to determine
the time of transmission or that of transition from one state to another and therefore
enabling intervention to be introduced at the most appropriate time.
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Chapter 2

DETERMINATION OF R0
THROUGH DETERMINISTIC
MODELLING OF HIV
TRANSMISSION

2.1 Introduction

A deterministic model assumes that its outcome is fixed. No matter how many times one
recalculates, one obtains exactly the same results. It assumes that the vital rates (such
as birth, death) are constant and unchanging over time and every run of the model will
yield the same (fixed) outcome.
Infectious diseases are categorized as either being acute or chronic. In acute infections
the pathogen causes illness for a period of time which is then followed by immunity e.g
influenza, rabies and chickenpox. This scenario is mathematically best described by the
SIR models (Dietz 1967) in which

(i) S(t) which is the number of susceptibe individuals at time t and,

(ii) I(t) which is the number of infected individuals at time t,

(iii) R(t) the number of recovered individuals at time t.

(iv) N is the popuation size.

Chronic infections on the other hand, last for much longer periods (months or years) and
examples include herpes, chlamydia and HIV/AIDS.
The simplest HIV model is the SI (Susceptible Infected) model. In this model there is
no recovery class and once infection takes place are assumed to remain infectious for an
average period of time after which they succumb to the infection.
There are a number of studies that have been done in modelling mother to child trans-
mission of HIV/AIDS with emphasis being on the deterministic models.
Mugisha and Luboobi (2003) modelled the effect of vertical transmission by using a con-
tinuous age structured model of McKendrick-von-Foerster type to derive a two- age group
HIV/AIDS epidemic model and concluded that the epidemic can die out if some effort is
put on delivery of HIV-free babies. By using a deterministic dynamic transmission model,
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Wang et al. (2010) determined the effect of key parameters on the likely long term trends
of the HIV MTCT epidemic in China and concluded that prevention of MTCT should
not only focus on the reduction of HIV transmission rates and incidences among women
but also on the increase of HIV testing for pregnant women.
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The SI model is used to compute the amount of susceptible and infected individuals
in the population under the assumptions presented in the next section.

2.1.1 Assumptions and Notations:

Let

(i) deaths occur from all stages naturally at rate = µ;

(ii) death rate due to infection = λ;

(iii) birth rate into susceptible group be equal to natural death rate and be represented
by b at equilibrium;

(iv) transmission occur only from infected mothers at rate β;

(v) population be fixed and consists of children born free of HIV virus and those who
get infected by their mothers.

A central concept in the theory of infectious disease transmission is the mass action prin-
ciple which states that the net rate at which new cases of infectives arise is proportional
to the number of susceptible individuals (S), times the number of infective individuals
(I) times the probability of transmission from infectious to susceptible individuals (β),
that is βSI. The probability of transmission β is formed from two components, namely
the likelihood of close contact between two individuals such that transmission can occur
plus the probability that transmission will occur as a result of the contact. This principle
is based on the assumption that susceptible and infectious individuals mix in a homo-
geneous (random) manner which in practice rarely occurs but can be modified to take
account of age and space dependent mixing or other forms of heterogeneity that exist in
host or parasites populations (Anderson, Grenfell and May, 1984).
The diagram below represents the transition from susceptible to infected.

S Iβ

b

µ µ λ

Figure 2.1: An illustration of a HIV SI model
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Based on Figure 2.1 we derive the differential equations

dS

dt
= b− βS(t)I(t)− µS(t), (2.1)

dI

dt
= βS(t)I(t)− λI(t)− µI(t), (2.2)

As t → ∞ it is assumed that the system develops an equilibrium and we explore what
happens by setting the system of equations to zero. The equilibrium states for the SI
model is therefore given by

dS

dt
= 0 with it’s solution denoted by S∗ (2.3)

dI

dt
= 0 and it’s solution denoted by I∗ (2.4)

There are two equilibriun solutions

i) The case where none of the individuals are infectious (disease free equilibrium)
S∗ = N I∗ = 0 and therefore S∗ = N ,
This equilibrium can also be due to the fact that the virus has suffered extinction,
and therefore eventually everyone in the population is susceptible.

ii) The case where a fraction of the individuals are infected (endemic equilibrium)

Proposition 1. Let there be a disease free equilibrium, then, the equilibrium solution S∗

is given by

S∗ =
γ + µ

β
(2.5)

Proof.
βS(t)I(t)− γI(t) ≡ µI(t) = 0,

which yields

S∗ =
γ + µ

β
. (2.6)

If the initial fraction of susceptibles is less than
γ + µ

β
then

dI

dt
< 0 and the infection dies

out which is attributed to Kermack and McKendrick (1927). The inverse
β

γ + µ
is the

basic reproductive ratio R0 which will be discussed later
Substituting equation (2.5) in the equation (2.1) and equating it to zero and using the
assumption (iii) gives

0 = µ− β(
γ + µ

β
)I − µ(

γ + µ

β
),

(γ + µ)I = µ(I − γ − µ
β

). (2.7)
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Proposition 2. Let R0 =
β

γ + µ
.

Then from equation (2.7)

I =
µ

γ + µ
(I − 1

R0

),

Therefore,

I = (
µ

γ + µ
)(
γ + µ

β
)(R0 − 1),

=
µ

β
(R0 − 1).

One universal condition on population variables is that they cannot be negative and hence
endemic equlibrium is biologically feasible only if R0 > 1.

2.1.2 Formulation of the MTCT Model

Here we modify Li et al. (1999)
′
s Susceptibe Exposed Infectious Recovery (SEIR) model

into a Suscptible Infected Treatment Aids (SITA) model. The modification involves tak-
ing the exposed and infectious stages as one state and calling it the Infected state and
introducing a new state called the treatment stage. The Aids stage is assumed to be the
removal stage. We consider a population size N with constant inflow of susceptible at
rate bN and various categories of the population designated as S(t), I(t), T (t) and A(t).
It is assumed that susceptible children get infected by their HIV positive mothers either
in-utero, intrapartum or postpartum at the rate β. We also assumed that some of those
infected move to the treatment class at a rate of φ and then proceed to the AIDS class
at a rate α. Those in the AIDS class also join the treated class at the rate ω
The stages, rates and order of the process is shown in the diagram below

Sµ

Iµ

b

β

T µ

φ

A
µ

δ

γ
ω

α

Figure 2.2: HIV Transition model 2.1

The various estimates of the parameter values are given in the Table 2.1 below
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Table 2.1: Parameters of the SITA model
Symbol Description Estimate

b Natural birth rate 0.03

µ Natural mortality rate 0.09

β Rate of newborns infected with HIV 0.15

φ Fraction of infected who get treatment 0.31

γ Rate of movement from infected to AIDS 0.015

ω Rate at which AIDS group get treatment 0.105

α Rate at which treated group develops full blown AIDS 0.07

δ AIDS induced death 0.18

N That total number of children exposed to HIV positive mothers 1000

A non-linear model is proposed and analyzed to study the dynamics of vertical trans-
mission of HIV with and without treatment. In modelling the dynamics, the population
of size N(t) at time t with constant inflow of Susceptible S(t), Infectives I(t), Treated
T (t), and AIDS patients A(t) with natural mortality rate µ in all classes and mortality
due to AIDs as δ. The interaction between the classes is assumed to be that some of
susceptible infants become infected from their HIV positive mothers at the rate of β with
others dying at the natural mortality µ. It is also assumed that some of the infectives
become treated at the rate of φ with the rest eventually developing AIDS at the rate of
γ. Some of those who have developed AIDS are treated at the rate of ω. Within those
who get treated not all respond to treatment and therefore develop full blown AIDS at
the rate at α. It is assumed that those with full blown AIDS will all eventually die due
to the condition at the rate of δ. The model as presented in Figure 2.2 is thus governed
by the following system of differential equations:

dS

dt
= bN − µS − βSI

N
,

dI

dt
=
βSI

N
− γI − µI − ΦI,

dT

dt
= ΦI − αT − µT + ωA,

dA

dt
= γI + αT − ωA− µA− δA.

(2.8)

We assume that mortality rate µ will be a function of the state variables.
The state variables can be normalized by setting:

s =
S

N
, i =

I

N
, e =

T

N
, a =

A

N
(2.9)
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This leads to the normalized system

dS

dt
= b− µs− βsi,

dI

dt
= βsi− γi− µi− Φi,

dT

dt
= Φi− αe− µe+ ωa,

dA

dt
= γi+ αe− ωa− µa− δa.

(2.10)

where

s+ i+ e+ a = 1 (2.11)

and

s(t) > 0, i(t) ≥ 0, e(t) ≥ 0, a(t) ≥ 0 (2.12)

for all t ≥ 0.
The three parameters γ, α and δ are determined by the lifespan of HIV positive

children (from acquisition of HIV to AIDS.) and thus play an important role in their
survival.
The total size N at any time t is given by

N(t) = S(t) + I(t) + T (t) + A(t). (2.13)

From this relation we obtain

dN

dt
=

dS

dt
+
dI

dt
+
dT

dt
+
dA

dt
,

= b− µS − µI − µT − µA− δA,
= b− µN − δA. (2.14)

When the system is in equilibrium with

dS

dt
=
dI

dt
=
dT

dt
=
dA

dt
= 0,

b− µN − δA = 0.

At disease free equilibrium we assume A in (2.14) equals zero.
Therefore,

dN(t)

dt
+ µN(t) = b. (2.15)

Solving

N(t) = e−
∫
µdt

{∫
be
∫
µdtdt+ C

}
,

= eµt
{
b

∫
eµtdt+ C

}
,

= eµt
{
b

µ
eµt + C

}
,

=
b

µ
+ Ce−µt, (2.16)
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where C = N(0) (the initial condition)

N(t) =
b

µ
+N(0)e−µt. (2.17)

As t→∞ (2.17) becomes

N(t) =
b

µ
(2.18)

Parameter estimates, including their uncertainty is important for the spread of infection
To establish the endemic equilibrium for the SITA model we set the equation for the
infectives in (2.10) to zero.

βsi− (γ + µ+ Φ)i = 0. (2.19)

After factoring out i we have

i(βs− (γ + µ+ Φ)) = 0 (2.20)

which is satisfied whenever i∗ = 0 or s∗ =
(γ + µ+ Φ)

β
. i∗ is a disease free equlibrium

(DFE) and is achieved when all infections are zero , i.e i = 0, e = 0, a = 0 and
therefore from (2.8)

s∗(t) =
b

µ
(2.21)

This is true from (2.17) when a = 0 and if s, i, e and a are proportions of the population

The system at DFE is (
b

µ
, 0, 0, 0).

We concentrate on s∗ which is the endemic equilibrium as it determines whether infection
persits or not.

The reciprical of s∗ is the basic reproduction number i.e s∗ =
1

R0

and is characterized by

the fraction of susceptible in the population.
The parameter R0 plays a crucial role in determining the probability of a major outbreak.
Only major outbreaks are of interest since minor outbreaks would rarely be observed.

2.2 Basic Reproduction Number (R0)

This is the average number of new cases of an infection caused by one typical infected
individual during the early stages of the epidemic. It is arguably the most important
quantity in infectious disease epidemiology and among the quantities most urgently esti-
mated for emerging infectious diseases in outbreak situations and possible interventions
procedures. It is conveniently defined as the expected number of infections generated by
one infectious individual in a large susceptible population. It is a dimensionless number
and predicts whether a disease will become endemic or die out. The case when R0 < 1,
implies that each individual produces on average less than one new infected individual
and hence the disease dies out. If R0 > 1 then each individual produces more than one
new infected individual and hence the disease is able to invade the susceptible population
and therefore persists. It’s value provides insight when designing control interventions
for established infections.

One method used in the calculation of R0 is the Next Generation Matrix (NGM). This
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is a square matrix in which the ijth element is the expected number of secondary infec-
tions of type i caused by a single infected individual of type j. This method calculates R0

by using many finitely many different categories of individuals or states of an individual.
These categories are referred to as generations. Infection transmission which results to
a new infection is regarded as a birth hence leading to the viewing of the infection pro-
cess in terms of consecutive generations of infected individuals. Subsequent generations
growing in size indicate a growing generation i.e an epidemic, and the growth factor per
generation indicates the potential for growth. The growth factor is the mathematical
characterization of R0.
Diekman et al. (1990) introduced the NGM for deriving R0 in such cases, encompassing
any situation in which the population is divided into disjoint cases.
In order to compute R0, it is important to distinguish new infections from all other
changes in population.
At infection-free steady state we form matrix J of the different states of the infection
described by a system of ordinary diferential equations (2.10) which is then partitioned
into a nonnegative new infection sub-matrix F and another sub-matrix V of rates of
death, improved status and other transitions, such that

J = F − V , (2.22)

F =

 βSI
0
0

 V =

 γi+ µi+ Φi
−Φiαe+ µe− ωa

−γi− αt+ (ω + µ+ δ)a


We then get the partial derivatives for both F and V with respect to I, T and A which
are the states with infection resulting in 3× 3 matrices F and V.
Hefferman et al. 2005 provided the formala for calculating NGM as

K = FV −1 (2.23)

where

F =

[
∂F
∂xj

]
(2.24)

and

V =

[
∂V
∂xj

]
(2.25)

for xj = I, T, A The values of K gives the number of new infections in the next genera-
tion.
R0 is the eigenvalue with the largest magnitude of the matrix K.

F =

 βs 0 0
0 0 0
0 0 0

 and V =

 γ + µ+ Φ 0 0
−Φ α + µ −ω
−γ −α (ω + µ+ δ)


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and therefore from equation (2.23)

FV −1 =


βs

(γ + µ+ Φ)
0 0

0 0 0

0 0 0

 .

Replacing s with (2.21) we have

K =


βb

µ(γ + µ+ Φ)
0 0

0 0 0

0 0 0

 .

The reproduction number R0 is given as

R0 =
βb

µ(γ + µ+ Φ)
. (2.26)

The disease free equilibrium is locally asymtotically stable when R0 < 1 and unstable
when R0 > 1. To calculate the value of R0 in (2.26) we use Table 2.2 which has the
required parameters and is obtained from Table 2.1.

Table 2.2: Parameters estimates for R0

Symbol
b µ β Φ γ

Estimate 0.4 0.08 0.15 0.31 0.3

Using equation (2.26) we obtain the basic reproduction number given as R0 = 1.087
i.e R0 > 1 which implies the need for more emphasis on intervention and preventive
mechanisms to control vertical transmission.
Since R0 > 1 we can conclude that an infected mother will infect one child or more.
With higher values of b the reproduction number, R0, increases faster than it does for
β. Also the effect of γ and φ is the same and an increase on both results in a decrease in
R0 with the rate of decrease reducing as both increase.
The graph also shows that initial increase in µ results in a sharp decrease in R0 which
then stabilize when R0 = 0
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Figure 2.3: Effect of β, b, µ γ and φ on R0.
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Chapter 3

KOLMOGOROV DIFFERENTIAL
EQUATIONS, CENSORING
TECHNIQUES AND SOME
PROBABILITY DISTRIBUTIONS

3.1 Introduction

In this chapter we describe the various mathematical tools used to achieve our objectives
which include a description of the general setup of a Markov multi-state models from
which we develop the Kolmogorov forward differential equations.
We introduce the aspect of censoring and give examples of some distribution commonly
used.

3.2 Multi-state Models

In the study of diseases the ultimate outcome of interest is recovery or death. In addition
a number of intermediate (transient) states exists. For these reasons, multi-state models
(MSM) are extremely useful in understanding this process by taking into consideration
the health condition and causes of death as criteria for defining states.
A multi-state model is defined as a model for a (continuous time) stochastic process (X(t),
t∈ T) in which the subject of interest at any time occupies one of a number of finite state
space S= {1, 2 · · ·N} and describe random movements of a subject among various states.
In multistate process T=[0, τ ] , τ < ∞ is a time interval and the value of the process at
time t is the state occupied at that time.
Multi-state models are often fit under a Markov or semi-Markov assumption.
Given state-space E, states i, j ∈ E, and s ≤ t, a Markov process assumes

Pij(s, t) = Prob(X(t) = j|X(s) = i) (3.1)

so that the transition probability depends on the current state i.
Under the semi-Markov assumption the transition probability depends on both the cur-
rent state i and the time of entry to state i i.e t+ ∆t so that

Pij(s, t) = Prob(X(t) = j|X(s) = i, t+ ∆t). (3.2)
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Future events not only depend on the current state but also on the entry time to the
state.
Both these approaches can either be defined in continous time and — or discrete time
context.
Suppose there are n states, then we denote the state space by E where E is a countable
finite set such that

E = {1, 2, · · ·n} (3.3)

Graphically, multi-state models may be illustrated using diagrams such as boxes or circles
to represent the states and by the arrows between the states representing the possible
transitions which are the the non zero transition intensities.
Transition intensities are also refered to as transition rates or forces of transition.

The transition intensity denoted by µij(t) is defined as the transition intensity between
two states i and j and is the rate of change of the probability Pij(s, t) in a very small
time interval h.

µij(t) = limh→0
Pij(t, t+ h)

h
(3.4)

for any given time {t : 0 < t < T} and interval length h > 0

3.2.1 Assumptions

i) Multi-state models are often fit under the Markov assumption.
The Markov property holds if P [X(s+ t) = j|X(s) = i,X(τ) = k, 0 ≤ τ < s]

= P [X(s+ t) = j|X(s) = i]

ii) All transition intensities are assumed to be constant over time in that µij(t) = µij
for all t. Such a Markov process is referred to as time-homogeneous or stationary.
Some transition intensities may be 0 for all t.
This can be shown using the Chapman-Kolmogorov formula given in equation (3.11)
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from where we deduce that

Pij(s, t+ h) =
∑
k

Pik(s, t)Pkj(t, t+ h) + Pij(s, t)Pjj(t, t+ h)

Pij(s, t+ h)− Pij(s, t) =
∑
k

Pik(s, t)Pkj(t, t+ h) + Pij(s, t)Pjj(t, t+ h)− Pij(s, t)

=
∑
k

Pik(s, t)Pkj(t, t+ h)− [1− Pjj(t.t+ h)]Pij(s, t)

limh→0
Pij(s, t+ h)− Pij(s, t)

h
= limh→0

∑
k Pik(s, t)Pkj(t, t+ h)− [1− Pjj(t, t+ h)]Pij(s, t)

h

∂

∂t
Pij(s, t) =

∑
k

Pik(s, t)limh→0
Pkj(t, t+ h)

h

−Pij(s, t)limh→0
1− Pjj(t, t+ h)

h

=
∑
k

Pik(s, t)µkj − Pij(s, t)µjj (3.5)

where

limh→0
Pkj(t, t+ h)

h
= µkj (3.6)

and

limh→0
1− Pjj(t, t+ h)

h
= µjj (3.7)

for k 6= j
Moreover a process is time homogeneous if for any s ≤ t and any state i, j ∈ E

P (X(t) = j|X(s) = i) = P (X(t− s) = j|X(0) = i) (3.8)

The dependence on time is only through the length of time elapsed between events.
The time homogeneous property means that whenever state i is entered at time s,
the way the process evolves is equivalent to having started in state i at time 0.
Each transition probability Pij(s, t) therefore depends only on t− s, i.e, Pij(s, t) =
Pij(0, t− s).
We may use only one argument in time Pij(0, t−s) = Pij(t−s) to simplify notation.
Also, the functions Pij(s, s+ t) = Pij(0, t) are the same for all s ≥ 0 and therefore
can be written as Pij(t).

iii) For all states i and j, Pij(t) is a differentiable function of t

We can then express transition probabilities in terms of transition rates as

Pij(t) = µijh+ o(h)

iv) For any short time interval of length h the probability of two or more transitions
within that time period is o(h)
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A function f(h) is said to be of o(h) if

limh→0
f(h)

h
= 0 (3.9)

and so
Pij(t) ≈ µijh

v) The assumption of constant forces of transition implies that the time spent in each
state is exponentially distributed. This can be expressed as

Theorem 1. For a time homogeneous continuous time Markov process, Ti (the
sojourn time in state i) is exponentially distributed

Proof. The proof is based on the memoryless property which is unique for the
exponential distribution. By time homogeneity we assume that the process starts
in time i

P (Ti > s+ t|Ti > s) = P (X(τ) = i for 0 ≤ τ ≤ s+ t|X(τ) = i, 0 ≤ τ ≤ s)

= P (X(τ) = i for s < τ ≤ s+ t|X(τ) = i, 0 ≤ τ ≤ s)

= P (X(τ) = i for 0 < τ ≤ t|X(0) = i)

= P (Ti > t) (3.10)

This indicates the memoryless property which is unique to an exponentially dis-
tributed random variable, therefore Ti must be exponentially distributed.

In addition, the transition probabilities are solutions of the Chapman-Kolmogorov
equation.
Chapman-Kolmogorov equation has a strong interpretation that can be split according
to intermediate times and states, i.e

Pij(s, t+ h) =
∑
k

Pik(s, t)Pkj(t, t+ h) (3.11)

The probability that there is a transition from state i to some other state in the time
interval [0, t] equals one and hence the matrix of transition probabilities P (s, t) is a
stochastic matrix for all s, t ≥ 0.
Transition probability of the Markov process are denoted by Pij(s, t) and defined by

Pij(s, t) = Conditional probability that an individual is in state j at time t given that they

were in state i at time s

= Prob [X(t) = j|X(s) = i] (3.12)

=
Prob [X(t) = j,X(s) = i]

Prob [X(s) = i]
, 0 ≤ s ≤ t, i, j ∈ N (3.13)
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on condition that Prob [X(s) = i] > 0, otherwise Pij(s, t) = 0

Pij(s, s) =

0 for i 6= j

1 for i = j

The transition probabilities satisfy the following properties

i) 0 ≤ Pij(s, t) ≤ 1; i, j ∈ N

ii)
∑

j∈N Pij = 1; 0 ≤ s ≤ t

The transition intensity denoted by µij(t) is defined as the transition between two states
i and j and is the rate of change of the probability Pij(s, t) in a very small time interval
h.

µij(t) = limh→0
Pij(t, t+ h)

h
(3.14)

for any given time {t : 0 < t < T} and interval length h > 0 and with µij(t) = µij i.e con-
stant over time for all t as the process is time-homogeneous. Some transition intensities
may be 0 for all t.
In our study we will use the definition of the transition probabilities and transition in-
tensities interchangably as
Pij(s, t) = Pij(t) to be the transition probability of an individual from a medical state i
at time s to state j at time t

and µij(t) = µij to be the transition intensity rate from state i to state j at time t.
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3.3 Kolmogorov Differential Equations

The Chapman-Kolmogorov equations provide a method for computing n−step transition
probabilities. These equations are of the form

P n+m
ij =

∞∑
k=0

P n
ikP

m
kj (3.15)

and are most easily understood by noting that P n
ikP

m
kj represent the probability that

starting in state i, the process will go to state j in n+m transition through a path which
takes it into state k at the nth transition.
For time s < t, where s is the time it takes to be in state Ek and t, the time it takes to
be in state Ej and therefore s + t, the time it takes to be in state Ej and for one step
transition, we have

Pij(s, t) =
∑
k

PikPkj (3.16)

as shown in Figure 3.1 below

Time

State

0

Ei

s

Ek

t

Ej

Figure 3.1: A time dependent derivation of forward Kolmogorov equations

where the states Ei, Ej and Ek are experienced at time s, t and t+ h respectively.
For any continuous time Markov process, the Kolmogorov differential equation is given
by

dPij(s, t)

dt
=
∑
k∈S

Pik(s, t)Pkj (3.17)

We want therefore to develop a differential equation based on Chapman-Kolmogorov
equations of which the difference-differential equation is a special case and for time s < t
where the primary application is to calculate the transition probabilities Pij(s, t) based
on the transition intensities µij(s, t).

We have
Lemma 1:

Pij(s, t) =
∑
k

Pik(s)Pkj(t) (3.18)

where

• Pij(s, t) is the probability of moving from state i at time s to j at time t

and

• Pik(s)Pkj(t) the probability of moving from state i to state j through state k
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Proof
Consider Figure 3.1
Pij(s, t)=the probability of moving from state Ei at time zero to state Ej
at time s+ t, passing via some state Ek at time s

Pij(s, t) =
∑
k

Prob {X(s, t) = j,X(s) = k/X(0) = i}

=
∑
k

Prob {X(s+ t) = j,X(s) = k,X(0) = i}
Prob {X(0) = i}

=
∑
k

Prob {X(s+ t) = j/X(s) = k,X(0) = i}Prob {X(s) = k,X(0) = i}
Prob {X(0) = i}

=
∑
k

Prob {X(s+ t) = j/X(s) = k,X(0) = i}Prob {X(s) = k/X(0) = i}Prob {X(0) = i}
Prob {X(0) = i}

=
∑
k

Prob {X(s+ t) = j/X(s) = k,X(0) = i}Prob {X(s) = k/X(0) = i}

Therefore,

Pij(s, t) =
∑
k

Prob {X(s+ t) = j/X(s) = k}Prob {X(s) = k/X(0) = i}

(because of Markov property)

=
∑
k

Pkj(t)Pki(s)

=
∑
k

Pik(s)Pkj(t) (3.19)

Using the Chapman-Kolmogorov formula given in (3.18) we deduce that

Pij(s, t+ h) =
∑
k 6=j

Pik(s, t)Pkj(t, t+ h)

=
∑
k 6=j

Pik(s, t)Pkj(t, t+ h) + Pij(s, t)Pjj(t, t+ h)
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Thus,

Pij(s, t+ h)− Pij(s, t) =
∑
k 6=j

Pik(s, t)Pkj(t, t+ h) + Pij(s, t)Pjj(t+ t+ h)− Pij(s, t)

=
∑
k 6=j

Pik(s, t)Pkj(t, t+ h)− [1− Pjj(t, t+ h)]Pij(s, t)

limh→0
Pij(s, t+ h)− Pij(s, t)

h
= limh→0

∑
i 6=j Pkj(t, t+ h)− [1− Pjj(t, t+ h)]Pij(s, t)

h

∂

∂t
Pij(s, t) =

∑
k 6=j

Pik(s, t)limh→0Pkj
(t, t+ h)

h
− Pij(s, t)limh→0

[1− Pjj(t, t+ h)]

h

=
∑
k 6=j

Pik(s, t)µkj − Pij(s, t)µj (3.20)

where

limh→0
Pkj(t, t+ h)

h
= µkj

limh→0
[1− Pjj(t, t+ h)]

h
= µj , k 6= j

The Kolmogorov Forward equation is thus

∂

∂t
Pij(s, t) =

∑
k 6=j

Pik(s, t)µkj − Pij(s, t)µj (3.21)

where µij(t) is defined as the transition intensity between two states i and j i.e µij(t) is
the rate of change of the probability pij in a very small time interval h

µij(t) = limh→0
Pij(t, t+ h)

h
, i 6= j (3.22)

for any given time {t : 0 < t < T} and interval length h > 0
In our study therefore

Pij(s, t) = The probability that a child in state j at time t

was in state i at time s

µij(s, t) = The transition intensity/rate from state i at time s to state j at time t

Assuming the homogeneous property

µij(s, t) = µij(t) (3.23)

3.4 The Maximum Likelihood Estimation

Maximum likelihood estimation is a method of estimating unknown parameters of a sta-
tistical model whereby the parameters are obtained by maximizing the likelihood function
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of the model. The likelihood function is the probability density function of the joint dis-
tribution of the data of a sample or a continuous/disrete random variable and contains
the parameters of a statistical model.
The likelihood of a set of parameter values θ, given some observed outcomes t, is equal
to the probability of those observed outcomes given the parameter values;

L (θ|t) =
n∏
i=1

f(ti, θ) (3.24)

The logarithm is taken of the likelihood function, which is practical as the logarithm is a
monotonically increasing function.
Studying the logarithm of the likelihood function has the advantage of giving a linear
model. To obtain the expressions for the parameters, the partial derivatives of the log
likelihood with respect to the parameters are set equal to zero.
To obtain the Maximum likelihood (ML) estimators we use log L and solve the equation

∂lnL

∂θ
= 0 (3.25)

Let the probability density function of the time T to an event be f(t), t ≥ 0 and Ti be
the time when an ith individual is censored i.e the last time an ith individual is observed
then censored.
Also let ti be the time an ith individual experiences the event of interest,
then

0 ≤ Ti ≤ ti

3.5 Censoring

Survival analysis is a branch of statistics that deals with time to event e.g time to infection,
time to recovery or time to death. In cases where we have complete information about
an individual/patient then we have uncensored information. However if the information
is incomplete we have censored information.
If a study comes to an end after a certain period of time we have Type I censoring and
if the study stops when a certain number of events has been achieved we have Type II
censoring.
Our interest in this study is on Type I censored information.

3.5.1 Left Censoring

For a model with parameter θ, the probability for a left censored observation is given as

P (Ti < ti) = F (ti; θ) (3.26)

where the cumulative distribution function is

F (ti; θ) = 1− S(ti; θ). (3.27)

When n individuals are considered, and among them r have not experienced the event
at the censoring limit Cl while n− r have, then the lifetime and censoring times can be
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expressed as

Yi =

Ti δi = 1, for uncensored data

max(Ti, Cl) δi = 0, for left censored data

where Cl is the left censoring time.
The contribution to the maximum likelihood with left censored data is the product of
those who experienced the event and those who failed to. If an individual is observed to
experienced the event at yi, the contribution to the likelihood function is the cumulative
distribution of that time interval, Li = F (yi; θ). If the event is experienced by yi meaning
that the event is observed, then the contribution is the density of the time interval
Li = f(yi).
The likelihood can then be written as

L(θ) =
n∏
i=1

Li(θ) =
∏
δi=1

f(ti; θ)
∏
δi=0

F (ti; θ)

=
n∏
i=1

f(ti; θ)
δiF (ti; θ)

1−δi (3.28)

3.5.2 Right Censoring

Let the density function be f(ti; θ), the distribution function be F (ti; θ) and the survival
function be S(ti; θ). The probability of a child being born healthy at a specific time ti is
defined by

S(ti; θ) = P (T > ti) =

∫ ∞
ti

f(u; θ) = F (∞; θ)− F (ti; θ)

= 1− F (ti; θ) (3.29)

Suppose we have n individuals, where r individuals are infected and n − r are negative
at the time of birth, Cr.
Then the lifetime and censoring can be expressed as

Yi =

Ti δi = 1, for uncensored data

min(Ti, Cr) δi = 0, for right censored data

where Cr is the time limit, the right censoring time. The contribution to the likelihood
with right censoring observations is the product of the individuals who are negative and
those who are born already infected. The contribution of an individual infected at yi is the
density of that time interval, Li = f(yi; θ). Similarly for an individual still not infected
at yi, it means the lifetime of the individual exceeds yi and therefore the contribution to
the likelihood is Li = S(yi).
Thus, the likelihood for a child born healthy can be expressed as

L(θ) =
n∏
i=1

Li(θ) =
∏
δi=1

f(ti; θ)
∏
δi=0

S(ti; θ)

=
n∏
i=1

(f(ti; θ))
δi (S(ti; θ))

1−δi (3.30)
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3.5.3 Interval Censoring

The likelihood function is given by

L(θ) =
n∏
i=1

[
f(ti; θ)

δi (F (ti1; θ)− F (tio; θ))
1−δi
]

(3.31)

Then the lifetime and censoring can be expressed as

Yi =

Ti δi = 1, for uncensored data

(t0i < Ti < t1i) δi = 0, for interval censored data

where Ti is the event time and t0i and t1i are the observed times.

3.5.4 Combined Censoring

Let the time an individual is observed be xi and the censoring time be ti.
Also let

tLi = Left censoring time

tRi = Right censoring time

Further let

δEi = 1 if event is observed at exactly(ti = xi), 0 otherwise

δRi = 1 if right censoring has occured(xi < ti), 0 otherwise

δLi = 1 if left censoring has occured (xi > ti), 0 otherwise

δIi = 1 if interval censoring has occured(tLi < xi < tRi), 0 otherwise

We have four possibilities of occurrences with the following probabilities

i) Prob(T = ti) = f(ti)

ii) Prob(T ≤ tLi) = F (tLi)

iii) Prob(T > tRi) = 1− F (tRi)

iv) Prob(tLi < T < tRi) = F (tRi)− F (tLi)

Therefore under the assumption of independent censoring, the likelihood function for a
sample of n indepedent observations is

L =
n∏
i=1

[f(ti)]
δEi [F (tLi)]

δLi [1− F (tRi)]
δRi [(F (tRi)− F (tLi))]

δIi (3.32)
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3.6 Distributions

3.6.1 Exponential Distribution

A continuous random variable X is said to have an Exponential (λ) distribution if it has
the probability density function

f(x) =

λe
−λx, for x > 0

0, for x ≤ 0

where λ > 0 is called the rate of the distribution. The exponential distribution is one
of the widely used continuous distribution. It is often used to model the time that has
elapsed between events and is the only continuous distribution with the memoryless prop-
erty in that P (X > a+ b|X > a) = P (X > b)

Theorem 2. For a time homogeneous continuous time Markov process, Ti (the sojourn
time in state i) is exponentially distributed

Proof. The proof is based on the memoryless property which is unique for the exponential
distribution. By time homogeneity we assume that the process starts in time i

P (Ti > s+ t|Ti > s) = P (X(τ) = i for 0 ≤ τ ≤ s+ t|X(τ) = i, 0 ≤ τ ≤ s)

= P (X(τ) = i for s < τ ≤ s+ t|X(τ) = i, 0 ≤ τ ≤ s)

= P (X(τ) = i for s < τ ≤ s+ t|X(τ) = i),

= P (X(τ) = i for 0 < τ ≤ t|X(0) = i)

= P (Ti > t) (3.33)

This indicates the memoryless property which is unique to an exponentially distributed
random variable, therefore Ti must be exponentially distributed.

In the study of continuous-time stochastic process, the exponential distribution is
usually used to model the time until something happens in the process.
The mean and the standard deviation are equal, i.e

E(X) =
1

λ
(3.34)

and √
Var(X) =

1

λ
(3.35)

3.6.2 Gamma Distribution

In probability theory and statistics, the gamma distribution is a two parameter family of
continuous probability distributions.
Let us take two parameters α > 0 and β > 0. Gamma function Γ(α) is defined by

Γ(α) =

∫ α

0

xα−1e−xdx (3.36)
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If we devide both sides by Γ(α) we get

1 =

∫ ∞
0

1

Γ(α)
xα−1e−xdx

=

∫ ∞
0

βα

Γ(α)
yα−1e−βydy (3.37)

where we made a change of variable x = βy
Therefore, if we define

f(x|α, β) =


βα

Γ(α)
xα−1e−βx, for x ≥ 0

0, for x < 0

then f(x|α, β) will be the probability density since it is nonnegative and it integrates to
one.
The distribution with probability density function f(x|α, β) is called Gamma distribution
with parameters α and β and it is denoted as Γ(α, β)
The mean is given by

E(X) =
α

β
(3.38)

and the variance
V ar(X) =

α

β2
(3.39)

One major disadvantage of the gamma distribution is that the distribution function or
survival function cannot be expressed in a closed form if the shape parameter is not an
integer. Also, since it is in terms of an incomplete gamma function, one needs to obtain
the distribution function, survival function or the failure rate by numerical integration.
This makes gamma distribution less popular compared to the Weibull distribution.

3.6.3 Lognormal Distribution

The lognormal distribution is widely used in many areas of application, including engi-
neering, medicine and finance.
The probability density function is given as

f(t;µ, δ) =
1

δt
ϕnor

[
log(t)− µ

σ

]
, t > 0 (3.40)

and the corresponding cumulative density function is

F (t;µ, δ) = Φ

[
log(t)− µ

σ

]
, t > 0 (3.41)

where

ϕnor(z) =

(
1√
2π

)
exp

(
−z2

2

)
Φnor(z) =

∫ z

∞
ϕnor(w)dw

39



for a standardized normal (µ = 0, σ = 1).
The natural logarithms of a lognormal random variable follows the well known normal
distribution with mean and standard deviation µ and σ respectively.
Following from the central limit theorem, the lognormal distribution can be motivated
as the distribution of the product of a large number of similarly distributed positive
quantities.

3.6.4 Weibull Distribution

The Weibull distribution is a continuous probability distribution widely applicable in
probability theory and statistics. It was first identified by Frechet in 1927, and first
applied by Rosin and Rammler in 1933 but Waloddi Weibull was the first to study and
describe the distribution in detail in 1951
The Weibull distribution has many applications because of it’s flexibility and is widely
used in problems of reliability and survival analysis. It is in many ways (including the
general shape of cdf and pdf) similar to the lognormal distribution. It is very popular
in analysing lifetime data mainly because in the presence of censoring it is much easier
to handle, at least numerically, compared to gamma distribution. Also the domain of a
Weibull distributed variable ranges from 0 to ∞ making it the most used distribution in
survival analysis.
The Weibull distribution also has increasing and decreasing failure rates depending on
the shape parameter. The probability density function of a Weibull random variable, X,
is defined as

f(x : θ, α) =


α

θ

α−1

e
(−
x

θ
)α
, for x ≥ 0

0, for x < 0

where α > 0 is the shape parameter and θ > 0 is the scale parameter of the distribution.
When α = 1, the Weibull distribution becomes an exponential distribution
If the quatity, X, is the time to the event of interest, then the Weibull distribution gives
a distribution for which the event rate is proportional to the power of time interpreted
as follows:

α < 1 : The rate of the event of interest decreases over time

α = 1 : The rate of the event is constant over time

α > 1 : The event rate increases over time

The cumulative distribution function for the Weibull distribution is

F (x : θ, α) =

1− e
−(
x

θ
)α

, for x ≥ 0

0, for x < 0

The mean and the variance of the Weibull distribution are expressed as

E(X) = θΓ

(
1 +

1

α

)
(3.42)
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and

Var(X) = θ2

[
Γ

(
1 +

2

α

)
−
(

Γ(1 +
1

α
)

)2
]

(3.43)

where Γ(·) is a gamma function.

3.6.5 Exponentiated Exponential Distribution

The probability density function of the exponentiated exponential (EE) distribution is
defined by

f(x, α, λ) = αλ(1− e−λx)α−1e−λx α, λ, x > 0 (3.44)

with a distribution function

F (x, α, λ) = (1− e−λx)α

a survival function
S(x, α, λ) = 1− (1− e−λx)α

and a hazard function

h(x, α, λ) =
αλ
(
1− e−λx

)α−1
e−λx

1− (1− e−λx)α

The two parameters of an exponentiated exponential distribution are α which is the shape
parameter and λ which is the scale parameter. It also has the increasing or decreasing
failure rate depending on the shape parameter. The density function varies significantly
depending on the shape parameter.
The EE distribution has a lot of properties which are quite similar to those of a gamma
distribution but with an explicit expression of the distribution function or the survival
function like a Weibull distribution.
Gupta and Kundu (2001) observed that EE family of distribution are quite similar in
nature to the other two parameter family like Weibull family and gamma family. They
observed that most of the properties are similar to those of a gamma distribution but
computationally it is quite similar to a Weibull distribution and can therefore be used as
an alternative to a Weibull or gamma distribution.

3.7 Non Paramatric Estimation Methods for Cen-

sored Data

3.7.1 Kaplan-Meier Method

Let
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i) N be the sample size under investigation

ii) m be the total number that experienced the event

iii) t(1) < t(2) < t(3) · · · < t(k) be the ordered times of events

iv) dj be the number of events experienced at time tj

therefore d1 + d2 + · · ·+ dk = m

v) cj be the number of individuals censored between time tj and tj+1

vi) nj be the number of persons at risk (susceptibles) just before time tj

Then the Kaplan-Meier estimator, also called Product Limit estimator is given by

ˆS(t) =
∏
tj≤t

(
nj − dj
nj

)
(3.45)

and the variance as

Var ˆS(t) ≈
[

ˆS(t)
]2∑

tj<t

dj
nj(nj − dj)

(3.46)

Therefore
(1− α)% confidence interval for ˆS(t) is given by

CI = ˆS(t)± Zα
2

√
Var ˆS(t) (3.47)

3.7.2 Aalen-Nelson Estimator

From (3.45)

ˆS(t) =
∏
tj≤t

(
1− dj

nj

)

log ˆS(t) =
∑
tj≤t

log

(
1− dj

nj

)

≈ −
∑
tj≤

dj
nj

Let ˆH(t) =
∑
tj≤

dj
nj

ˆS(t) ≈ e−
ˆH(t) (3.48)

is the Aalen-Nelson estimator
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3.7.3 The Delta Method

If θ̂ follows N(θ, σ2
θ)

then
f(θ̂)followsN

[
f(θ̂), σ2

f

]
(3.49)

where

σ2
θ =

∣∣∣∣dfdθ
∣∣∣∣2 σ2

f (3.50)

Let X be a random variable with a bernoulli property then

X =

1 with probability p

0 with probability 1− p

Therefore
Px = Prob(X = x) = px(1− p)1−x ;x = 0, 1 (3.51)

likelihood function is

L =
n∏
i=1

f(xi)

=
n∏
i=1

pxi(1− p)1−xi

= p
∑
xi(1− p)n−

∑
xi (3.52)

Taking the logarithm and derivative

logL =
∑

xilogp+ (n−
∑

xi)log(1− p)

∂

∂p
LogL =

∑
xi
p
− (n−

∑
xi)

1− p
(3.53)

Getting the maximum ∑
xi
p
− n−

∑
xi

(1− p)
= 0∑

xi
p

=
n−

∑
xi

1− p

p̂ =

∑
xi
n

= X (3.54)

43



Also

E(p̂) = E

[∑
Xi

n

]

=
n∑
i=1

E(Xi)

n

=
n∑
i=1

1

n
[1× p+ 0(1− p)]

=
n∑
i=1

p

n

=
np

n

∴ E(p̂) = p (3.55)

and

Var(p̂) = Var
n∑
i=1

Xi

n

=
n∑
i=1

Var

(
Xi

n

)

=
n∑
i=1

1

n2
VarXi

=
n∑
i=1

1

n2

[
E(X2

i )− [E(Xi)]
2
]

=
n∑
i=1

1

n2

{
E(Xi)− p2

}
=

n∑
i=1

1

n2

[
p− p2

]
=

n

n2
p(1− p)

=
p(1− p)

n
(3.56)

3.7.4 Interval Censoring

Peto (1973) was the first to propose a non-parametric method for estimating the survival
distribution based on interval censored data. Later Turnbull (1976) derived the same
estimator using a different approach in estimation. He considered survival times Ti(i =
1 · · ·n) for n patients that were not directly observed but were known to lie in the interval
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[Li, Ri] then the likelihood for the n observations is

L =
n∏
i

{
S(Li)− S(R+

i )
}

(3.57)

where
By S(t+) means lim∆→0+S(t + ∆) Some authors, among them Rucher and Messerer
(1988), Odel et al. (1992) and Dorey et al. (1993) state that assuming interval times as
exact times can lead to biased estimates as well as results and conclusions that are not
fully reliable.
A non parametric estimate of the survival function in such interval censored situations can
be found by the iterative procedure proposed by Turnbull (1976). He proposed that since
the event of interest is not observed for all individuals, an indicator variable for censoring
should be defined. For each individual the upper and lower limits of the intervals within
which the event of interest has occurred together with the censoring indicator has to be
known.
To construct the estimator, let 0 = τ1 < τ2 < · · · < τm be a grid of time which includes
all the points Li and Ui for i = 1, 2, · · ·n.
For the ith observation, define an event φij to be 1 if the interval (τj−1, τj) is contained
in the interval (Li, Ui] and 0 otherwise.
Whether the event φij which occurs in the interval (Li, Ui] could have occured at τj is
determined with an initial guess at S(τj) using the Turnbull’s algorithm as follows:

1) Compute the probability of an event occuring at time τj by

Pj = S(τj−1)− S(τj) j = 1, · · · ,m (3.58)

2) Estimate the number of events which occurred at τj by

dj =
n∑
i=1

φijpj∑m
k=1 φijpk

j = 1, · · · ,m (3.59)

3) Compute the expected number at risk at time τj by

Yj =
m∑
k=j

dk (3.60)

4) Compute the updated Product Limit estimator using the values found in steps 2
and 3. If the updated estimate of S is close to the old version of S for all τ ′js stop
the iterative process, otherwise repeat steps 1 to 3 using the updated estimate of
S.

The initial S(τj) estimates can be obtained from Kaplan-Meir estimator, Nelson Aalen
or the delta method

45



Chapter 4

A TWO STATE MODEL FOR A
CHILD BORN INFECTED

4.1 Introduction

A two state model is the simplest multistate model and forms an essential building block
for other models. Observation for any given event will here be in the most simple form.
In this chapter we shall apply a two state model to a child born infected and derive the
forward Kolmogorov-differential equation which we will then solve using the Generator
Matrix method to obtain the transition probabilities. We then solve the transition prob-
abilities which are in form of transition intensities using maximum likelihood estimation
approach

State 1:

Infected

State 2:

Dead

µ12

Figure 4.1: Infected-Death two-state model

Figure 4.1 shows a two states consisting of the infected and dead states with only transi-
tion intensity given as µ12. Since it is unidirectional, there is no possibility of reversibility
and therefore µ21 = 0.
Once an individual leaves a state they can not return to it.

4.2 Derivation of Forward Kolmogorov-Differential

Equations

By the Chapman-Kolmogorov equation the probability function for the model in Figure
4.1 is given as

Pij(s, t+ h) =
2∑

k=1

Pik(s, t)Pkj(t, t+ h), i, j = 1, 2 (4.1)
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The probabilities are given by a set of differential equations. These probabilities satisfy
equation (4.1) whenever s ≤ t ≤ t+ h.
The differential equations for Pij(s, t) are obtained by considering two continuous time
intervals (s, t) and (t, t+ h) and the probabilities Pij(s, t+ h).
We obtatin the probability of being in state 1 and remaining there from time s to time
t+ h as follows:

P11(s, t+ h) =
2∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h)

= P11(s, t)((1− (µ12h+ o(h)) + P12(s, t) · 0
P11(s, t+ h)− P11(s, t) = (−µ12h+ o(h))P11(s, t) + P12(s, t) · 0 (4.2)

Dividing (4.2) by h expresses it as a probability of transition in unit time.
Taking limits as h→ 0 leads to the concept of transition rates.

∂

∂t
P11(s, t) = limh→0

P11(s, t+ h)− P11(s, t)

h
= −µ12P11(s, t) + 0 · P12(s, t)

P
′

11(s, t) = −µ12P11(s, t) + 0 · P12(s, t) (4.3)

This can be solved by separating variables to give

P11(s, t) = e−µ12t (4.4)

The equation (4.3) represents the transition rate of being in the infected state and re-
maining infected and equation (4.4) represents the corresponding transition probability.
Transition rates are also refered to as transition intensities or forces of transition.
Similarly the transition probability of moving from state 1 at time s to state 2 at time
t+ h is given as follows:

P12(s, t+ h) =
2∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h)

= P11(s, t)(µ12h+ o(h)) + P12(s, t)((1− (µ21h+ o(h))

∂

∂t
P12(s, t) = limh→0

P11(s, t+ h)− P12(s, t)

h
= −µ12P11(s, t) + 0 · P12(s, t)

= µ12P11(s, t) + 0 · P12(s, t)

P
′

12(s, t) = µ12P11(s, t) + 0 · P12(s, t) (4.5)

The solution to (4.5) gives the transition probability

P12(s, t) = 1− e−µ12t (4.6)

Equation (4.5) gives the transition probability from alive state to dead state.
The Kolmogorov forward differential equations for the two state model are therefore given
by

P
′

11(s, t) = −µ12P11(s, t) + 0 · P12(s, t) (4.7)

P
′

12(s, t) = µ12P11(s, t) + 0 · P12(s, t) (4.8)
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4.3 Solution of Forward Kolmogorov Differential Equa-

tions by Generator Matrix Approach

The Kolmogorov differential equations has an explicit solution using the decomposition
of the intensity matrix into eigen vectors (see for example Cox and Miller(1965)).
It is therefore convenient to express the forces of transition and transition probability in
(4.8) in matrix form.
We have [

P
′
11(s, t) P

′
12(s, t)

]′

=
[
P11(s, t) P12(s, t)

] [ −µ12 µ12

0 0

]

Let Q be the 2× 2 matrix with (i, j) entry µij and P (s, t) be the 2× 2 matrix with (ij)
entry Pij(s, t)
Then in compact form we have

P
′
(s, t) = P (s, t)Q, (4.9)

Our interest is to solve the above matrix equation (4.9) using the generator matrix ap-
proach

P
′
(s, t)

P (s, t)
= Q (4.10)

lnP (s, t) = Qt+ c, (4.11)

P (s, t) = eQt+c = ketQ (4.12)

To calculate k we use the boundary condition which is obtained by letting t = s as s is
the initial time.
Therefore,

P (s, s) = I(identity matrix) (4.13)

and together with equation (4.12)

P (s, s) = ketQ (4.14)

This implies that

I = ketQ

= k

[
I +

∞∑
k=1

tk
Qk

k!

]

= kI + k
∞∑
k=1

tk
Qk

k!
(4.15)

Comparing we have

I = kI ⇒ I = k

0 = k

∞∑
k=1

tk
Qk

k!
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With initial conditions P11(s, s) = 1 and P12(s, s) = 0 Therefore

P (s, t) = etQ (4.16)

= I +
Qt

1!
+

(Qt)2

2!
+

(Qt)3

3!
+ · · ·

= I +
∞∑
k=1

(Qt)k

k!
(4.17)

As noted by Cox and Miller (1965), if Q has distinct eigen values, then Q = ADC
where

A = the matrix of right eigen vectors of Q

D = the diagonal matrix whose elements are the eigen values of Q

C = A−1exist

Therefore, the problem of finding the transition probability functions is reduced to a
problem of determining the eigen values and eigen vectors.
Futhermore

Q = ADA−1

Thus

Qk = (ADA−1)k

= (ADA−1)(ADA−1)(ADA−1) · · · (ADA−1)(ADA−1)

= ADA−1ADA−1ADA−1 · · ·ADA−1ADA−1

= ADIDID · · ·DIDA−1

= ADDD · · ·DDDA−1

Qk = ADkA−1 (4.18)

Substituting (4.18) in (4.17)

P (s, t) = I +
∞∑
k=1

tk

k!
ADkA−1

= I + A

(
∞∑
k=1

tkDk

k!

)
A−1

= I + A

(
∞∑
k=1

(tD)k

k!

)
A−1 (4.19)

We now wish to determine D and A i.e to determine the eigen values and eigen vectors
for the matrix Q which will then simplifies the process of solving Qk.
To find the eigen values we solve the equation

|Q− λI| = 0 (4.20)

Substituting the value of Q and solving gives
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∣∣∣∣ −µ12 − λ µ12

0 −λ

∣∣∣∣ = 0

λ1 = −µ12 and λ2 = 0 (4.21)

The corresponding eigen vectors are obtained as follows:(
−µ12 µ12

0 0

)(
x1

x2

)
= λ1

(
x1

x2

)

−µ12x1 + µ12x2 = λ1x1

Substituting λ1 gives

−µ12x1 + µ12x2 = −µ12x1

x2 = 0 · x1(
x1

x2

)
=

(
x1

0 · x1

)
= x1

(
1
0

)
For λ2 = 0 we have (

−µ12 µ12

0 0

)(
x1

x2

)
= λ2

(
x1

x2

)

−µ12x1 + µ12x2 = 0

x1 = x2(
x1

x2

)
=

(
x2

x2

)
= x2

(
1
1

)
Therefore the eigen vectors for λ1 = µ12 and λ2 = 0 are

λ1 =

(
1

0

)
and λ2 =

(
1

1

)

Since we have distinct eigen values Q = ADA−1

where

A =

(
1 1
0 1

)
and D =

(
λ1 0
0 λ2

)
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Also
∞∑
k=1

(tD)k

k!
=

∞∑
k=1

tk

k!

(
λ1 0
0 λ2

)k
(4.22)

=
∞∑
k=1

tk

k!

(
λ1

k 0

0 λ2
k

)
(4.23)

Equation (4.23) becomes  ∑∞
k=1

(λ1t)
k

k!
0

0
∑∞

k=1

(λ2t)
k

k!


The diagonals are exponentially distributed without the first term and therefore we have(

eλ1t − 1 0
0 eλ2t − 1

)
From (4.19)

P (s, t) = I +

 1 1

0 1


 ∑∞

k=1

(λ1t)
k

k!
0

0
∑∞

k=1

(λ2t)
k

k!


 1 −1

0 1


= I +

(
eλ1t − 1 eλ2t − 1

0 eλ2t − 1

)(
1 −1
0 1

)

= I +

(
eλ1t − 1 1− eλ1t + eλ2t − 1

0 eλ2t − 1

)

= I +

(
eλ1t − 1 eλ2t − eλ1t

0 eλ2t − 1

)
(4.24)

Subtituting λ1 = µ12 and λ2 = 0 then equation 4.24 becomes

P (s, t) = I +

(
e−µ12t − 1 e0 − e−µ12t

0 0

)
=

(
1 0
0 1

)
+

(
e−µ12t − 1 e0 − e−µ12t

0 0

)
(
P11(s, t) P12(s, t)
P21(s, t) P22(s, t)

)
=

(
e−µ12t 1− e−µ12t

0 1

)
= Q (4.25)

It follows that:

The probability of being infected and remaining infected is P11(s, t) = e−µ12t

The probability from infected to dead isP12(s, t) = 1− e−µ12t

The probability from dead to infected is P21(s, t) = 0

The probability of being dead and remaining dead is P22(s, t) = 1
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4.4 Estimation for Left Censoring

Using multistate models for a child born infected we have using (4.25) that

P12(s, t) = 1− e−µ12t (4.26)

and

F12(s, t) = t+
e−µ12t

µ12

(4.27)

Therefore

L =
n∏
i=1

(P12(s, t))δi (F12(s, t))1−δi

=
n∏
i=1

(
1− e−µ12ti

)δi (ti +
e−µ12ti

µ12

)1−δi

Getting the natural logarithm of (4.28) results in

l =
n∑
i=1

δiln
(
1− e−µ12ti

)
+

n∑
i=1

(1− δi)ln
(
ti +

e−µ12ti

µ12

)
(4.28)

Since censored, then δi = 0 and therefore

l =
n∑
i=1

ln

(
ti +

e−µ12ti

µ12

)
(4.29)

Differentiating (4.29) with respect to µ12 we get

∂l

∂µ12

=
n∑
i=1

−tie−µ12ti

µ12

− e−µ12ti

µ2
12

ti +
e−µ12ti

µ12

=
n∑
i=1

e−µ12ti

µ12

(
−ti −

1

µ12

)
ti +

eµ12ti

µ12

(4.30)

Equating (4.30) to zero

−
n∑
i=1

ti −
1

µ12

= 0

µ̂12 = − 1∑n
i=1 ti

(4.31)
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Chapter 5

A THREE STATE MODEL FOR A
CHILD BORN INFECTED

5.1 Introduction

This three state model is a unidirectional model without the possibility of returning back
to the previous condition. It is an extention of model in Figure 4.1. Here the first state
is the infected state, the second state is the Aids state and the third is the Death state.
Our interest is to obtain the transition intensities from the states of Infected to Aids,
Infected to Death and Aids to Death.

State 1:

Infected

State 2:

Aids

µ12

State 3:

Death

µ13 µ23

Figure 5.1: Infected-Aids-Death Model

5.2 Derivation of Forward Kolmogorov Differential

Equations

Now by the Chapman-Kolmogorov equation

Pij(s, t+ h) =
3∑

k=1

Pik(s, t)Pkj(t, t+ h), i, j = 1, 2, 3 (5.1)
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P11(s, t+ h) =
3∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h) + P13(s, t)P31(t, t+ h)

= P11(s, t)((1− (µ12 + µ13))h+ o(h)) + P12(s, t)(µ21h+ o(h)) + P13(s, t) · 0

P
′

11(s, t) = −P11(s, t)(µ12 + µ13) + P12(s, t)µ21 (5.2)

P12(s, t+ h) =
3∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h) + P13(s, t)P32(t, t+ h)

= P11(s, t)((µ12h+ o(h)) + P12(s, t)(1− (µ21 + µ23)h+ o(h)) + P13(s, t) · 0

P
′

12(s, t) = P11(s, t)µ12 − P12(s, t)(µ21 + µ23) (5.3)

P13(s, t+ h) =
3∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P13(t, t+ h) + P12(s, t)P23(t, t+ h) + P13(s, t)P33(t, t+ h)

= P11(s, t)(µ13h+ o(h)) + P12(s, t)(µ23h+ o(h)) + P13(s, t)(1 + o(h))

P
′

13(s, t) = P11(s, t)µ13 + P12(s, t)µ23 (5.4)

Equations (5.2),(5.3) and (5.4) are the respective Kolmogorov Forward equations.

Representing these equations in matrix form we have
P

′
11(s, t) P

′
12(s, t) P

′
13(s, t)

P
′
21(s, t) P

′
22(s, t) P

′
23(s, t)

P
′
31(s, t) P

′
32(s, t) P

′
33(s, t)

 =


P11(s, t) P12(s, t) P13(s, t)

P21(s, t) P22(s, t) P23(s, t)

P31(s, t) P32(s, t) P33(s, t)



−(µ12 + µ13) µ12 µ13

µ21 −µ23 µ23

0 0 0



where the transition rates matrix is given by

Q =


−(µ12 + µ13) µ12 µ13

µ21 −µ23 µ23

0 0 0

 (5.5)

The eigen values for matrix in (5.5) are

λ1 = −(µ12 + µ13),

λ2 = −µ23,

λ3 = 0.
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We then obtain the corresponding eigen vectors as follows:
For λ = λ3 = 0

 −(µ12 + µ13) µ12 µ13

0 −µ23 µ23

0 0 0


 x1

x2

x3

 =

 0

0

0

 ,

where x3 can be any number.
Taking x3 = 1 (as we are interested in any non zero vector)

−µ23x2 + µ23x3 = 0,

x2 =
µ23

µ23

= 1.

Similarly

−µ12x1 − µ13x1 + µ12x2 + µ13x3 = 0,

−µ12x1 − µ13x1 + µ12 + µ13 = 0,

x1 =
µ12 + µ13

µ12 + µ13

= 1.,

The eigen vector for λ = 0 is  1

1

1


Forλ = λ2 = −µ23 −µ12 − µ13 + µ23 µ12 µ13

0 0 µ23

0 0 µ23


 x1

x2

x3

 =

 0

0

0


This leads to  −µ12 − µ13 + µ23 µ12 µ13

0 0 µ23

0 0 0


 x1

x2

x3

 =

 0

0

0


x3 can take any value, we take x2 = 1
µ23x3 = 0 and since µ23 6= 0 as this is the probability of death once infected
⇒ x3 = 0

−µ12x1 − µ13x1 + µ23x1 + µ12x2 + µ13x3 = 0

x1 =
µ12

µ12 + µ13 − µ23

55



The eigen vector for λ = −µ23 is 
µ12

µ12 + µ13 − µ23

1

0


For λ = λ1 = −µ12 − µ13 0 µ12 µ13

0 µ12 + µ13 − µ23 µ23

0 0 µ12 + µ13


 x1

x2

x3

 =

 0

0

0



µ12x3 + µ13x3 = 0

(µ12 + µ13)x3 = 0

but (µ12 + µ13) 6= 0

⇒ x3 = 0

Similarly

(µ12 + µ13 − µ23)x2 + µ23x3 = 0

(µ12 + µ13 − µ23)x2 = 0

⇒ x2 = 0 (since µ12 + µ13 − µ23 6= 0)

0x1 = 0⇒ x1 can take any value and therefore we take x1 = 1
The eigen vector corresponding to λ = λ1 is therefore given as(

1 0 0
)′

The matrix based on the eigen vectors is

U =


1

µ12

µ12 + µ13 − µ23

1

0 1 1

0 0 1


Since the eigen values are distinct, we have

Q = UDU−1
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where

U−1 =


1

−µ12

µ12 + µ13 − µ23

µ23 − µ13

µ12 + µ13 − µ23

0 1 −1

0 0 1


From (4.17)

P (s, t) = etQ = 1 +
tQ

1!
+

(tQ)2

2!
+ · · ·

=
∞∑
k=0

Qk t
k

k!

= 1 +
∞∑
k=1

tk

k!
UDkU−1

= 1 + U

[
∞∑
k=1

(tD)k

k!

]
U−1

where

D =


λ1 0 0

0 λ2 0

0 0 λ3

 =


λ1 0 0

0 λ2 0

0 0 0


which implies that

(tD)k =


(λ1t)

k 0 0

0 (λ2t)
k 0

0 0 0

 (5.6)

Summing up elements (5.6) and dividing by k! we get

∞∑
k=1

(tD)k

k!
=


∑∞

k=1

(λ1t)
k

k!
0 0

0
∑∞

k=1

(λ2t)
k

k!
0

0 0 0

 (5.7)

The non zero elements in matrix (5.7) represents exponential distribution without the
first term and can therefore be presented as

=


eλ1t − 1 0 0

0 eλ2t − 1 0

0 0 0

 (5.8)
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We deduce that

U
∞∑
k=1

(tD)k

k!
U−1 =


eλ1t − 1

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t − 1 1− eλ2t

0 0 0


Now

P (s, t) =


1 0 0

0 1 0

0 0 1

+


eλ1t − 1

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t − 1 1− eλ2t

0 0 0



=


eλ1t

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t 1− eλ2t

0 0 1

 (5.9)

It therefore follows that

The probability of being infected and remaining infected is eλ1t

The probability of developing Aids after being infected
µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

The probability of dying after being infected
(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

The probability condition improving after developing Aids is zero

The probability of remaining in the Aids state eλ2t

The probability of dying from Aids is 1− eλ2t

Since death is an absorbing state once reached it can not be reversed.

5.3 Estimation for Left Censoring

Using probability of remaining in the infected state given in (5.9) it follows that

P11(s, t) = e−t(µ12+µ13) (5.10)

F11(s, t) = −e
−t(µ12+µ13)

µ12 + µ13

(5.11)
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Therefore likelihood function is given as

L = −
n∏
i=1

(
e−(µ12+µ13)ti

)δi (e−ti(µ12+µ13)

µ12 + µ13

)1−δi

and the log likelihood is

l = −
n∑
i=1

δiln
(
e−(µ12+µ13)ti

)
−

n∑
i=1

(1− δi)ln
(
e−ti(µ12+µ13)

µ12 + µ13

)
(5.12)

To obtain estimate for µ12 we differentiate (5.12) with respect to µ12 and get

∂l

∂µ12

= −
n∑
i=1

δilne
−(µ12+µ13)ti +

nµ12

(µ12 + µ13)2
+

nµ13

(µ12 + µ13)2

−

(
n∑
i=1

(
δitiµ13

µ12 + µ13

))
(5.13)

+

(
n∑
i=1

(
δitiµ12

µ12 + µ13

+
δiµ13

(µ12 + µ13)2
+

δiµ12

(µ12 + µ13)2
− tµ13

µ12 + µ13

− tiµ12

µ12 + µ13

))
(5.14)

Simplifying results in (5.14) gives

∂l

∂µ12

= − 1

µ12 + µ13

(
ln

n∑
i=1

δitie
−(µ12+µ13)ti

)
µ12 + ln

(
n∑
i=1

δitie
−(µ12+µ13)ti

)
µ13

−n+

(
n∑
i=1

(−tiµ12 + tiµ12δi + tiµ13δi + δi − tiµ13)

)
(5.15)

Since censoring has occured δi = 0 and (5.15) becomes

∂l

∂µ12

= − 1

µ12 + µ13

(
−n+

(
n∑
i=1

(−tiµ12 − tiµ13)

))
(5.16)

Equating (5.16) to zero

0 = n+
n∑
i=1

tiµ12 +
n∑
i=1

tiµ13

−
n∑
i=1

tiµ12 −
n∑
i=1

tiµ13 = n

−µ12

n∑
i=1

ti = n+ µ13

n∑
i=1

ti

µ̂12 = −
(
n+ µ13

∑n
i=1 ti∑n

i=1 ti

)
(5.17)
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If we assume that all are born infected and that there are no deaths then µ13 = 0 and
therefore

µ̂12 = − n∑n
i=1 ti

(5.18)

Similarly differentiating (5.12) with respect to µ13 results in

∂l

∂µ13

= −
n∑
i=1

δilntie
−(µ12+µ13)ti +

nµ12

(µ12 + µ13)2
+

nµ13

(µ12 + µ13)2

−
n∑
i=1

(
δitiµ13

µ12 + µ13

+
δitiµ12

µ12 + µ13

+
δiµ13

(µ12 + µ13)2
+

δiµ12

(µ12 + µ13)2
− tiµ13

µ12 + µ13

− tiµ12

µ12 + µ13

)

= − 1

µ12 + µ13

((
ln

n∑
i=1

δitie
−(µ12+µ13)ti

)
µ12 + ln

(
n∑
i=1

δitie
−(µ12+µ13)ti

)
µ13

)

−n+
n∑
i=1

(tiµ12δi − tiµ12 + tiµ13δi + δi − tiµ13)

Since censored δi = 0 and

∂l

∂µ13

= − 1

µ12 + µ13

(
−n−

n∑
i=1

tiµ12 +
n∑
i=1

tiµ13

)
(5.19)

Equating (5.19) to zero

−
n∑
i=1

tiµ13 −
n∑
i=1

tiµ12 = n

−µ13

n∑
i=1

ti = n+ µ12

n∑
i=1

ti

µ̂13 = −
(
n+ µ12

∑n
i=1 ti∑n

i=1 ti

)
(5.20)

Assuming that no individual survived after infection then µ12 = 0 and we have

µ̂13 = − n∑n
i=1 ti

(5.21)

To estimate µ23 we use

P22(s, t) = eλ2t = e−µ23t

F22(s, t) =
−e−µ23t

µ23
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Therefore

L = −
n∏
i=1

(e−µ23ti)δi
(
e−µ23ti

µ23

)1−δi

l =
n∑
i=1

δiln(e−µ23ti)−
n∑
i=1

(1− δi)ln(
e−µ23ti

µ23

)

∂l

∂µ23

= −

(
n∑
i=1

(δiti)

)
+

n

µ23

−
n∑
i=1

(δiti − ti +
δi
µ23

)

= −(
n∑
i=1

δiti)µ23 − n+
n∑
i=1

(δiµ23ti − µ23ti + δi)

= −n− µ23

n∑
i=1

ti +
n∑
i=1

δi (5.22)

Equating (5.22) to zero and making µ23 the subject

µ23 =

∑n
i=1 δi − n∑n

i=1 ti

Since there is censoring then

µ̂23 = − n∑n
i=1 ti

(5.23)

5.3.1 Situations when Born Infected

We use transition probability matrix (5.9) to obtain all the possibilities which we then
use to estimate the transition intensities

P12(s, t) = P11P12 + P12P22

P13(s, t) = P12P23 + P13P33

P23(s, t) = P22P23 + P23P33

Using the matrix of transition probabilities we have

P12 = eλ1t
µ12(eλ2t − eλ1t)

µ12 + µ12 − µ23

+
µ12(eλ2t − eλ1t)eλ2t

µ12 + µ13 − µ23

eλ2t

=
µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(
eλ1t + eλ2t

)
=

µ12

µ12 + µ13 − µ23

(eλ2t − eλ1t)(eλ2t + eλ1t)

=
µ12

µ12 + µ13 − µ23

(
e2λ2t − e2λ1t

)
(5.24)

but

λ1 = −µ12 − µ13

λ2 = −µ23
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Therefore

P12(s, t) =
µ12

µ12 + µ13 − µ23

(
e−2µ23t − e−2(µ12+µ13)t

)
(5.25)

F12(s, t) = − µ12

µ12 + µ13 − µ23

(
e−2tµ23

2µ23

+
e−2(µ12+µ23)t

−2µ12 − 2µ13

)
(5.26)

The likeihood is therefore given as

L =
n∏
i=1

(Φ)δi (Ω)1−δi (5.27)

where

Φ =
µ12

µ12 + µ13 − µ23

(e−2µ23ti − e−2(µ12+µ13)ti)

Ω =
µ12

µ12 + µ13 − µ23

(
−e−2µ23ti

2µ23

− e−2(µ12+µ23)ti

−2µ12 − 2µ13

)
and the log likelihood as

l =
n∑
i=1

δilnµ12(e−2µ23ti − e−2(µ12+µ13)ti)

µ12 + µ13 − µ23

+
n∑
i=1

(1− δi)lnµ12

(
−e−2µ23ti

µ23

− e−2(µ12+µ13)ti

−2µ12 − 2µ13

)
µ12 + µ13 − µ23

(5.28)
Differentiating (5.28) with respect to µ12 we obtain

∂l

∂µ12

=
n∑
i=1

(
δiln(e−2µ23ti − e−2(µ12+µ13)ti)

µ12 + µ13 − µ23

)

+
n∑
i=1

(
2δilnµ12tie

−2(µ12+µ13)ti

µ12 + µ13 − µ23

− δilnµ12(e−2µ23ti − e−2(µ12+µ13)ti)

(µ12 + µ13 − µ23)2

)

+
n∑
i=1


(1− δi)ln

(
−e−2µ23ti

2µ23

− e−2(µ12+µ13)ti

−2µ12 − 2µ13

)
µ12 + µ13 − µ23



+
n∑
i=1


(1− δi)lnµ12

(
2tie

−2(µ12+µ13)ti

−2µ12 − 2µ13

− −2e−2(µ12+µ13)ti

(−2µ12 − 2µ13)2

)
µ12 + µ13 − µ23



−
n∑
i=1


(1− δi)lnµ12

(
−e−2µ23ti

2µ23

− e−2(µ12+µ13)ti

−2µ12 − 2µ13

)
(µ12 + µ13 − µ23)2


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Since censoring has occured then δi = 0 and therefore

∂l

∂µ12

=

ln
∑n

i=1

(
−e
−2µ23ti

2µ23

− e−2(µ12+µ13)ti

−2µ12 − 2µ13

)
µ12 + µ13 − µ23

+lnµ12

∑n
i=1

(
2tie

−2(µ12+µ13)ti

−2µ12 − 2µ13

− 2e−2(µ12+µ13)ti

(−2µ12 − 2µ13)2

)
µ12 + µ13 − µ23

−lnµ12

∑n
i=1

(
−e−2µ23ti

2µ23

− e−2(µ12+µ13)ti

−2µ12 − 2µ13

)
(µ12 + µ13 − µ23)2

(5.29)

If we assume that there are no deaths then µ13 and µ23 equals zero and (5.29) simplifies
to

∂l

∂µ12

=

∑n
i=1 lne−2µ12ti

2µ12

−
n∑
i=1

lnµ12

(
tie
−2µ12ti

µ12

− e−2µ12ti

2µ2
12

)

−
n∑
i=1

lnµ12

e−2µ12ti

2µ12

µ12

(5.30)

simplifying (5.30) we get

∂l

∂µ12

=
n∑
i=1

ln

(
−tie

−2tiµ12

µ12

− e−2tiµ12

µ2
12

)
(5.31)

Equating (5.31) to zero

ln
n∑
i−1

tie
−2tiµ12

µ12

= ln
1

2

n∑
i=1

e−2tiµ12

µ2
12

n∑
i=1

tie
−2tiµ12

µ12

=
1

2

n∑
i=1

e−2tiµ12

µ2
12

µ̂12 = −
∑n

i=1 e
−2tiµ12∑n

i=1 tie
−2tiµ12

(5.32)

Let e−2tµ12 = f(t)
then

µ̂12 = −
∑n

i=1 f(ti)

E(T )

= − 1

E(T )
(5.33)
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Therefore from (5.33) as t→∞, µ12=0 implying that in the long run those infected will
not develop AIDS.

To estimate µ13 we use
P12(s, t) = P11P12 + P12P22 (5.34)

Substituting from the transition matrix we get

f(t) = P12(s, t) = eλ1t
µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

+
µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(1− eλ2t)

=

(
µ12(eλ2t − eλ1t)

µ12µ13 − µ23

)
(eλ1t + 1− eλ2t)

=
µ12

µ12 + µ13 − µ23

(
e(λ1+λ2)t + eλ2t − e2λ2t − e2λ1t − eλ1t + e(λ1+λ2)t

)
Differentiating we get

F (t) = F12(s, t) =
µ12

µ12 + µ13 − µ23

(
e(λ1+λ2)t

λ1 + λ2

eλ2t

λ2

− e2λ2t

2λ2

− e2λ1t

2λ1

− eλ1t

λ1

+
eλ1+λ2t

λ1 + λ2

)
Assuming that there are no deaths due to AIDS then µ23 = 0 and therefore

f(t) = − µ12

µ12 + µ13

(
e2λ1t + eλ1t

)
F (t) = − µ12

µ12 + µ13

(
eλ1t

λ1

+
e2λ1t

2λ1

)
(5.35)

The likelihood function is given as

L =

(
µ12

µ12 + µ13

(e2λ1t + eλ1t)

)δi ( µ12

µ12 + µ13

(
eλ1t

λ1

+
e2λ1t

2λ1

)

)1−δi
(5.36)

Substituting the values of λ1 in (5.36) and taking the logs results in

l =
n∑
i=1

δiln
µ12

µ12 + µ13

(
e−2(µ12+µ13)ti + e−(µ12+µ13)ti

)

+
n∑
i=1

(1− δi)ln
µ12

µ12 + µ13

(
e−(µ12+µ13)ti

−(µ12 + µ13)
− e−2(µ12+µ13)

2(µ12 + µ13)

)
(5.37)

Since censored δi = 0 and therefore (5.37) simplifies to

l = −
∑n

i=1 lnµ12(
e−(µ12+µ13)ti

µ12 + µ13

+
e−2(µ12+µ13)ti

2(µ12 + µ13)

)µ12 + µ13 (5.38)
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Equating (5.38) to zero results in

n∑
i=1

e−2(µ12+µ13)ti

2(µ12 + µ13)
= −

n∑
i=1

e−(µ12+µ13)ti

µ12 + µ13

∑n
i=1 e

−2(µ12µ13)ti∑n
i=1 e

−(µ12+µ13)ti
=

2(µ12 + µ13)

µ12 + µ13

∑n
i=1 e

(µ12µ13)ti∑n
i=1 e

2(µ12+µ13)ti
=

µ12 + µ13

2(µ12 + µ13)

1∑n
i=1 e

(µ12+µ13)ti
=

1

2

1

e(µ12+µ13)
∑n
i=1 ti

=
1

2

e(µ12+µ13)
∑n
i=1 ti = 2

(µ12 + µ13)
n∑
i=1

ti = ln2

µ12 + µ13 =
ln2∑n
i=1 ti

µ̂12 =
ln2∑n
i=1 ti

− µ13 (5.39)

Substituting (5.33) for µ12 gives

µ̂13 =
ln2∑n
i=1 ti

− 1

E(T )
(5.40)

To estimate µ23 we use

P23(s, t) = P22(s, t)P23(s, t) + P23(s, t)P33(s, t) (5.41)

Substituting gives

P23(s, t) = eλ2t(1− eλ2t) + 1− eλ2t

= 1− e2λ2t

Therefore

f(t) = 1− e2λ2t

F (t) = t− e2λ2t

2λ2
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Substituting the values gives

n∏
i=1

(
1− e−2µ23ti

)δi (t+
e−2µ23ti

2µ23

)1−δi
(5.42)

Taking the logs of (5.42) we get

l =
n∑
i=1

δiln
(
1− e−2µ23ti

)
+

n∑
i=1

(1− δi)ln
(
t+

e−2µ23

2µ23

)
(5.43)

Since censored then δi = 0 and (5.43) becomes

l =
n∑
i=1

ln

(
ti +

e−2µ23ti

2µ23

)
(5.44)

Differentiating (5.44) with respect to µ23

∂l

µ23

= −
n∑
i=1

(
tie
−2µ23ti

µ23

+
e−2µ23ti

2µ2
23

)
ti +

e−2µ23ti

µ23

(5.45)

Equating (5.45) to zero

n∑
i=1

tie
−2µ23ti

µ23

= −
∑n

i=1 e
−2µ23ti∑n

i=1 tie
−2µ23ti

If we let
e−2µ23ti = f(t) (5.46)

then
n∑
i=1

tie
−2µ23ti = E(T ) (5.47)

Therefore

µ̂23 = −
∑∞

i=1 f(t)

E [(T )]

= − 1

E2(T )
(5.48)

Therefore we observe that the maximum likelihood estimators of µ12, µ13 and µ23 exits
and are all in terms of E(T ).
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Chapter 6

A THREE STATE MODEL FOR A
CHILD BORN HEALTHY

6.1 Introduction

This is a three state model with no possibility of recovery. An individual can only enter a
state once with there being no ability to go back to a state that they had visited before.
The three states are Healthy, Infected and Death and are represented by S = 1, 2, 3 where
1 is HIV-negative, 2 is HIV positive and 3 is Death as given in Figure 6.1
For state-space S, the probability of being in state j by time t given an initial state i at
time s is the transition probability defined as Pij(s, t) = Prob(X(t) = j/X(s) = i)
The instantaneous risk or hazard of transitioning from state i to state j is the transition
intensity

µij(t) = limh→0
Pij(t, t+ h)

h
(6.1)

We denote the cumulative intensity as

Aij(t) =

∫ t

0

µij(s)ds (6.2)

State 1:
Healthy

(HIV-)

State 2:
Infected

(HIV+)

µ12

State 3:

Death

µ13 µ23

Figure 6.1: Illness-Death model for MTCT of HIV
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6.2 Derivation of Forward Kolmogorov Differential

Equations

From the model in Figure 6.1 we use the Chapman- Kolmogorov equations to derive the
following differential equations for transition probabilities

P11(s, t+ h) =
3∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h) + P13(s, t)P31(t, t+ h)

= P11(s, t)((1− (µ12 + µ13))h+ o(h)) + P12(s, t) · 0 + P13(s, t) · 0

P
′

11(s, t) = −P11(s, t)(µ12 + µ13) (6.3)

P12(s, t+ h) =
3∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h) + P13(s, t)P32(t, t+ h)

= P11(s, t)((µ12h+ o(h)) + P12(s, t)(1− (µ23)h+ o(h)) + P13(s, t) · 0

P
′

12(s, t) = P11(s, t)µ12 − P12(s, t)µ23 (6.4)

P13(s, t+ h) =
3∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P13(t, t+ h) + P12(s, t)P23(t, t+ h) + P13(s, t)P33(t, t+ h)

= P11(s, t)(µ13h+ o(h)) + P12(s, t)(µ23h+ o(h)) + P13(s, t)(1 + o(h))

P
′

13(s, t) = P11(s, t)µ13 + P12(s, t)µ23 (6.5)

Equations (6.3),(6.4) and (6.5) are the respective Kolmogorov Forward equations.
P

′
11(s, t) P

′
12(s, t) P

′
13(s, t)

P
′
21(s, t) P

′
22(s, t) P

′
23(s, t)

P
′
31(s, t) P

′
32(s, t) P

′
33(s, t)

 =


P11(s, t) P12(s, t) P13(s, t)

P21(s, t) P22(s, t) P23(s, t)

P31(s, t) P32(s, t) P33(s, t)



−(µ12 + µ13) µ12 µ13

0 −µ23 µ23

0 0 0



where the transition rates matrix is given by

Q =


−(µ12 + µ13) µ12 µ13

0 −µ23 µ23

0 0 0

 (6.6)
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The Kolmogorov differential equations in (6.3), (6.4) and (6.5) results in the transition
matrix (6.6) whose eigen values are

λ1 = −(µ12 + µ13),

λ2 = −µ23,

λ3 = 0.

We then obtain the corresponding eigen vectors as follows:
For λ = λ3 = 0


−(µ12 + µ13) µ12 µ13

0 −µ23 µ23

0 0 0




x1

x2

x3

 =


0

0

0

 ,

where x3 can be any number.
Taking x3 = 1 (as we are interested in any non zero vector)

−µ23x2 + µ23x3 = 0,

x2 =
µ23

µ23

= 1.

Similarly

−µ12x1 − µ13x1 + µ12x2 + µ13x3 = 0,

−µ12x1 − µ13x1 + µ12 + µ13 = 0,

x1 =
µ12 + µ13

µ12 + µ13

= 1.,

The eigen vector for λ = 0 is  1

1

1


Forλ = λ2 = −µ23 −µ12 − µ13 + µ23 µ12 µ13

0 0 µ23

0 0 µ23


 x1

x2

x3

 =

 0

0

0


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This leads to  −µ12 − µ13 + µ23 µ12 µ13

0 0 µ23

0 0 0


 x1

x2

x3

 =

 0

0

0


x3 can take any value, we take x2 = 1
µ23x3 = 0 and since µ23 6= 0 as this is the probability of death once infected
⇒ x3 = 0

−µ12x1 − µ13x1 + µ23x1 + µ12x2 + µ13x3 = 0

x1 =
µ12

µ12 + µ13 − µ23

The eigen vector for λ = −µ23 is 
µ12

µ12 + µ13 − µ23

1

0


For λ = λ1 = −µ12 − µ13 0 µ12 µ13

0 µ12 + µ13 − µ23 µ23

0 0 µ12 + µ13


 x1

x2

x3

 =

 0

0

0



µ12x3 + µ13x3 = 0

(µ12 + µ13)x3 = 0

but (µ12 + µ13) 6= 0

⇒ x3 = 0

Similarly

(µ12 + µ13 − µ23)x2 + µ23x3 = 0

(µ12 + µ13 − µ23)x2 = 0

⇒ x2 = 0 (since µ12 + µ13 − µ23 6= 0)

0x1 = 0⇒ x1 can take any value and therefore we take x1 = 1
The eigen vector corresponding to λ = λ1 is therefore given as(

1 0 0
)′
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The matrix based on the eigen vectors is

U =


1

µ12

µ12 + µ13 − µ23

1

0 1 1

0 0 1


Since the eigen values are distinct, we have

Q = UDU−1

where

U−1 =


1

−µ12

µ12 + µ13 − µ23

µ23 − µ13

µ12 + µ13 − µ23

0 1 −1

0 0 1


Using the relation

P (s, t) = etQ = 1 +
tQ

1!
+

(tQ)2

2!
+ · · ·

=
∞∑
k=0

Qk t
k

k!

= 1 +
∞∑
k=1

tk

k!
UDkU−1

= 1 + U

[
∞∑
k=1

(tD)k

k!

]
U−1

where

D =


λ1 0 0

0 λ2 0

0 0 λ3

 =


λ1 0 0

0 λ2 0

0 0 0


which implies that

(tD)k =


(λ1t)

k 0 0

0 (λ2t)
k 0

0 0 0

 (6.7)
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Summing up elements (6.7) and dividing by k! we get

∞∑
k=1

(tD)k

k!
=


∑∞

k=1

(λ1t)
k

k!
0 0

0
∑∞

k=1

(λ2t)
k

k!
0

0 0 0

 (6.8)

The non zero elements in matrix (6.8) represents exponential distribution without the
first term and can therefore be presented as

=


eλ1t − 1 0 0

0 eλ2t − 1 0

0 0 0

 (6.9)

We deduce that

U
∞∑
k=1

(tD)k

k!
U−1 =


eλ1t − 1

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t − 1 1− eλ2t

0 0 0


Now

P (s, t) =


1 0 0

0 1 0

0 0 1

+


eλ1t − 1

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t − 1 1− eλ2t

0 0 0



=


eλ1t

µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23

0 eλ2t 1− eλ2t

0 0 1


It therefore follows that

The probability of being healthy and remaining healthy is eλ1t

The probability of being infected is
µ12(eλ2t − eλ1t)

µ12 + µ13 − µ23

The probability of being healthy and dying is
(µ23 − µ13)(eλ1t − 1)− µ12(eλ2t − 1)

µ12 + µ13 − µ23
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The probability of being healthy once infected is zero

The probability of remaining infected once infected is given by eλ2t

The probability of dying from infection is 1− eλ2t

Death being an absorbing state nothing can be reversed from this state once reached.

6.3 Estimation for Right Censoring

Using

P11(s, t) = e−(µ12+µ13)ti

S11(s, t) = 1 +
e−(µ12+µ13)ti

µ12 + µ13

The likelihood function is

L =
n∏
i=1

(
e−(µ12+µ13)ti

)δi (
1 +

e−(µ12+µ13)ti

µ12 + µ13

)1−δi

(6.10)

Taking the log of (6.10) we get

l =
n∑
i=1

δiln
(
e−(µ12+µ13)ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−(µ12+µ13)ti

µ12 + µ13

)
(6.11)

Differentiating (6.11) with respect to µ12

∂l

∂µ12

= −
n∑
i=1

(
δilntie

−(µ12+µ13)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ13)ti

µ12 + µ13

− e−(µ12+µ13)ti

(µ12 + µ13)2

)
1 +

e−(µ12+µ13)ti

µ12 + µ13

(6.12)

Since censored δi = 0 and therefore (6.12) becomes

∂l

∂µ12

=
n∑
i=1

(
−tie−(µ12+µ13)ti

µ12 + µ13

− e(µ12+µ13)ti

(µ12 + µ13)2

)
1 +

e−(µ12+µ13)ti

µ12 + µ13

=
n∑
i=1

−tie(µ12+µ13)ti

µ12 + µ13 + e−(µ12+µ13)ti
−
∑
i=1

e(µ12+µ13)ti

(µ12 + µ13) (µ12 + µ13 + e−(µ12+µ13)ti)

=
n∑
i=1

−e(µ12+µ13)ti

µ12 + µ13 + e−(µ12+µ13)ti

(
n∑
i=1

ti +
1

µ12 + µ13

)
(6.13)
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Equating (6.13) to zero then

n∑
i=1

ti +
1

µ12 + µ13

= 0

1∑n
i=1 ti

= −(µ12 + µ13)

µ12 = µ13 −
1∑n
i=1 ti

(6.14)

If we assume that all get infected and therefore there are no deaths from healthy individ-
uals then µ13 = 0 resulting in

µ̂12 = − 1∑n
i=1 ti

(6.15)

Similarly in order to estimate µ13 we differentiate(6.11) with respect to µ13

∂l

∂µ13

= −
n∑
i=1

(
δilntie

−(µ12+µ13)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ13)ti

µ12 + µ13

− e−(µ12+µ13)ti

(µ12 + µ13)2

)
1 +

e−(µ12+µ13)ti

µ12 + µ13

(6.16)

With censoring δi = 0 and therefore

∂l

∂µ13

=
n∑
i=1

(
−tie−(µ12+µ13)ti

µ12 + µ13

− e−(µ12+µ13)ti

(µ12 + µ13)2

)
1 +

e−(µ12+µ13)ti

µ12 + µ13

=
n∑
i=1

−tie(µ12+µ13)ti

µ12 + µ13 + e−(µ12+µ13)ti
+

n∑
i=1

−e(µ12+µ13)ti

(µ12 + µ13) (µ12 + µ13 + e−(µ12+µ13)ti)

=
n∑
i=1

−e(µ12+µ13)ti

µ12 + µ13 + e−(µ12+µ13)ti

(
n∑
i=1

ti +
1

µ12 + µ13

)
(6.17)

Equating (6.17) to zero then

n∑
i=1

ti +
1

µ12 + µ13

= 0

1∑n
i=1 ti

= −(µ12 + µ13)

µ13 = µ12 −
1∑n
i=1 ti

(6.18)

Assuming everyone dies before being infected then µ12 = 0
and therefore (6.18) becomes

µ̂13 = − 1∑n
i=1 ti

(6.19)

To estimate µ23 we use

P22(s, t) = e−µ23t

S22(s, t) = 1 +
e−µ23t

µ23
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Therefore

L =
n∏
i=1

(
e−µ23ti

)δi (1 +
e−µ23ti

µ23

)1−δi

and therefore

l =
n∑
i=1

δilne
−µ23ti +

n∑
i=1

(1− δi)ln
(

1 +
e−µ23ti

µ23

)
(6.20)

Differentiating (6.20) with respect to µ23

∂l

∂µ23

= −
n∑
i=1

tiδi +
n∑
i=1

(1− δi)
−tie−µ23ti

µ23

− e−µ23ti

µ2
23

1 +
e−µ23ti

µ23

 (6.21)

If censored then δi = 0

∴
∂l

∂µ23

= −
n∑
i=1


−tie−µ23ti

µ23

− e−µ23ti

µ2
23

1 +
e−µ23ti

µ23

 (6.22)

Equating (6.22) to zero

−
n∑
i=1

tie
−µ23ti

µ23

=
n∑
i=1

e−µ23ti

µ2
23

µ̂23 = − 1∑n
i=1 ti

(6.23)

From the expressions obtained for the transition intensities for the three state model for
a child born healthy the estimates are the recipricals of the total infection time.
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Chapter 7

A FOUR STATE MODEL FOR A
CHILD BORN HEALTHY

7.1 Introduction

We now consider the process of HIV infection as a four state model by extending the
three state model in Figure 6.1 to consist of the following state space:
State 1=Healthy

State 2=Infected

State 3=AIDS

State 4=Death

Figure 7.1 shows the model with the combined effect of intervention. Individuals may

State 1:

Healthy

State 2:

Infected

µ12 State 3:

Aids

µ23

µ34

State 4:

Death

µ14 µ24

Figure 7.1: Healthy-Infected-Aids-Death Model

pass from the initial state (Healthy) to the Infected state with a proportion proceeding
to the AIDS state and then to the absorbing state (Death). Individuals are at risk of
death in each transient state (State 1, 2 and 3 )
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7.2 Derivation of Forward Kolmogorov Differential

Equations

This four state model forms the Chapman-Kolmogorov equations;

Pij(s, t+ h) =
4∑

k=1

Pik(s, t)Pkj(t, t+ h)

Thus we may derive the following transition probabilities

P11(s, t+ h) =
4∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h) + P13(s, t)P31(t, t+ h)

+P14(s, t)P41(t, t+ h)

= P11(s, t)((1− (µ12 + µ14))h+ 0(h)) + P12(s, t) · 0 + P13(s, t) · 0 + P14(s, t) · 0

P
′

11(s, t) = −P11(s, t)(µ12 + µ14) (7.1)

P12(s, t+ h) =
4∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h) + P13(s, t)P32(t, t+ h)

+P14(s, t)P42(t, t+ h)

= P11(s, t)((µ12h+ 0(h)) + P12(s, t)(1− (µ23 + µ24)h+ 0(h)) + P13(s, t) · 0

+P14(s, t) · 0

P
′

12(s, t) = P11(s, t)µ12 − P12(s, t)(µ23 + µ24) (7.2)

P13(s, t+ h) =
4∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P13(t, t+ h) + P12(s, t)P23(t, t+ h) + P13(s, t)P33(t, t+ h)

+P14(s, t)P43(t, t+ h)

= P11(s, t) · 0 + P12(s, t)(µ23h+ 0(h)) + P13(s, t)(1− µ34h+ 0(h)) + P14(s, t) · 0

P
′

13(s, t) = P12(s, t)µ23 − P13(s, t) + µ34 (7.3)
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P14(s, t+ h) =
4∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P14(t, t+ h) + P12(s, t)P24(t, t+ h) + P13(s, t)P34(t, t+ h)

+P14(s, t)P44(t, t+ h)

= P11(s, t)(µ14h+ 0(h)) + P12(s, t)(µ24h+ 0(h)) + P13(s, t)(µ34)h+ 0(h))

+P14(s, t)(1 + 0(h))

P
′

14(s, t) = P11(s, t)µ14 + P12(s, t)µ24 + P13(s, t)µ34 (7.4)

From equations given in (7.1), (7.2), (7.3) and (7.4) we get the transition matrix

Q =


−(µ12 + µ14) µ12 0 µ14

0 −(µ23 + µ24) µ23 µ24

0 0 −µ34 µ34

0 0 0 0

 . (7.5)

The eigen values for matrix in (7.5) are

λ1 = −µ34

λ2 = −µ12 − µ14

λ3 = −µ23 − µ24

λ4 = 0

The matrix based on the eigen vectors is

P =



µ12µ23

(−µ34 + µ23 + µ24)(−µ34 + µ12 + µ14)
1

µ12

−µ23 − µ24 + µ12 + µ14

1

µ23

−µ34 + µ23 + µ24

0 1 1

1 0 0 1

0 0 0 1


The inverse of P given as matrix S is
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S =



0 0 1 −1

1
−µ12

ϑ

µ23µ12

ϑΨ
−−µ24µ12 + µ14µ12 + µ34µ24 + µ2

14 − µ34µ14 + µ34µ23 − µ23µ14 − µ24µ14

ϑΨ

0 1
−µ23

Ω
−−µ34 + µ24

Ω

0 0 0 1


where

ϑ = −µ23 − µ24 + µ12 + µ14

Ψ = −µ34 + µ12 + µ14

Ω = −µ34 + µ23 + µ24

Using matrix R where

R =



eλ1t − 1 0 0 0

0 eλ2t − 1 0 0

0 0 eλ3t − 1 0

0 0 0 eλ4t − 1



together with matrix P and S and multiplying them in the form PRS we get the matrix
of transition probabilities. The matrix of transition probabilities is given by

P (s, t) = I + PRS (7.6)

where I is the identity matrix such that

P (s, t) =



P11(s, t) P12(s, t) P13(s, t) P14(s, t)

P21(s, t) P22(s, t) P23(s, t) P24(s, t)

P31(s, t) P32(s, t) P33(s, t) P34(s, t)

P41(s, t) P42(s, t) P43(s, t) P44(st)


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and

P11(s, t) = eλ2t

P12(s, t) =
−(eλ2t − 1)µ12

−µ23 − µ24 + µ12 + µ14

+
µ12(eλ3t − 1)

µ23 − µ24 + µ12 + µ14

P13(s, t) =
µ12µ23(eλ1t− 1)

(−µ23 − µ24 + µ12 + µ14)(−µ34 + µ12 + µ14)

+
(eλ2t − 1)µ23µ12

(−µ23 − µ24 + µ12 + µ14)(−µ34 + µ12 + µ14)

− µ12(eλ3t − 1)µ23

(−µ23 − µ24 + µ12 + µ14)(−µ34 + µ12 + µ14)

P14(s, t) = − µ12µ13)(eλ1t − 1)

(−µ34 + µ23 + µ24)(−µ34 + µ12 + µ14)

−−(eλ2t − 1)(−µ24µ12 + µ23µ34 + µ34µ24 − µ14µ34µ14 − µ23µ14 − µ24µ14 + µ14µ12 + µ2
14)

(−µ23 − µ24 + µ12 + µ14)(−µ34 + µ12 + µ14)

− µ12(eλ3t − 1)(−µ34 + µ24)

(−µ23 − µ24 + µ12 + µ14)(−µ34 + µ23 + µ24)
+ (eλ4t − 1)

P21(s, t) = 0

P22(s, t) = eλ3t

P23(s, t) =
µ23(eλ2t − 1)

(−µ34 + µ23 + µ24)
− (eλ3t − 1)µ23

−µ34 + µ23 + µ24

P24(s, t) = − −µ23(eλ1t − 1)

−µ34 + µ23 + µ24

− 1− (eλ3t − 1)(−µ34 + µ24)

−µ34 + µ23 + µ24

P31(s, t) = 0

P32(s, t) = 0

P33(s, t) = eλ1t

P34(s, t) = −e−λ1t + eλ4t
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P41(s, t) = 0

P42(s, t) = 0

P43(s, t) = 0

P44(s, t) = eλ4t

Simplifying and adding we note that

P11(s, t) + P12(s, t) + P13(s, t) + P14(s, t) = eλ4t = 1

P21(s, t) + P22(s, t) + P23(s, t) + P24(s, t) = eλ4t = 1

P31(s, t) + P32(s, t) + P33(s, t) + P34(s, t) = eλ4t = 1

P41(s, t) + P42(s, t) + P43(s, t) + P44(s, t) = eλ4t = 1

7.3 Estimation for Right Censoring

From Figure 7.1, we estimate µ12, µ14, µ23, µ24, µ34

To estimate µ12 and µ12 we use

P11(s, t) = e−(µ12+µ14)t

∴ S11(s, t) = 1 +
e−(µ12+µ14)t

µ12 + µ14

The likelihood function is

L =
n∏
i=1

(
e−(µ12+µ14)ti

)δi (
1 +

e−(µ12+µ14)ti

µ12 + µ14

)1−δi

(7.7)

Taking the log of (7.7) we get

l =
n∑
i=1

δiln
(
e−(µ12+µ14)ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−(µ12+µ14)ti

µ12 + µ14

)

= −
n∑
i=1

δi(µ12 + µ14)ti +
n∑
i=1

(1− δi)ln
(

1 +
e−(µ12+µ14)ti

µ12 + µ14

)
(7.8)

Since censored δi = 0 and (7.8) simplifies to

l =
n∑
i=1

ln

(
1 +

e−(µ12+µ14)ti

µ12 + µ14

)
(7.9)
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Differentiating (7.9) with respect to µ12

∂l

∂µ12

=
n∑
i=1

(
−tie−(µ12+µ14)ti

µ12 + µ14

− e−(µ12+µ14)ti

(µ12 + µ14)2

)
1 +

e−(µ12+µ14)ti

µ12 + µ14

=
n∑
i=1


 −tie−(µ12+µ14)ti(

1 +
e−(µ12+µ14)ti

µ12 + µ14

)
(µ12 + µ14)

−
 e−(µ12+µ14)ti(

1 +
e−(µ12+µ14)ti

µ12 + µ14

)
(µ12 + µ14)




= −
n∑
i=1

 e−(µ12+µ14)ti(
1 +

e−(µ12+µ14)ti

µ12 + µ14

)
(µ12 + µ14)


(
ti +

1

µ12 + µ14

)
(7.10)

If

(∑n
i=1 ti +

1

µ12 + µ14

)
= 0, then

n∑
i=1

ti = − 1

µ12 + µ14

(7.11)

Assuming everyone gets infected and therefore no deaths occur then µ14 = 0 resulting in

µ̂12 = − 1∑n
i=1 ti

(7.12)

Similarly in order to estimate µ14 we differentiate (7.8) with respect to µ14

∂l

∂µ14

= −
n∑
i=1

(
δilntie

−(µ12+µ14)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ14)ti

µ12 + µ14

− e−(µ12+µ14)ti

(µ12 + µ14)2

)
1 +

e−(µ12+µ14)ti

µ12 + µ14

(7.13)

Due to censoring δi = 0 and therefore

∂l

∂µ14

=
n∑
i=1

(
−tie−(µ12+µ14)ti

µ12 + µ14

− e−(µ12+µ14)ti

(µ12 + µ14)2

)
1 +

e−(µ12+µ14)ti

µ12 + µ14

= −
n∑
i=1

 e−(µ12+µ14)ti(
1 +

e−(µ12+µ14)ti

µ12 + µ14

)
(µ12 + µ14)


(
ti +

1

µ12 + µ14

)
(7.14)
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Since (
n∑
i=1

ti +
1

µ12 + µ14

)
= 0 (7.15)

then
n∑
i=1

ti = − 1

µ12 + µ14

(7.16)

Assuming everyone dies before being infected then µ12 = 0
and therefore

µ̂14 = − 1∑n
i=1 ti

(7.17)

Further, to estimate µ23 and µ24 we use

P11(s, t) = e−(µ23+µ24)t

∴ S11(s, t) = 1 +
e−(µ23+µ24)t

µ23 + µ24

The likelihood function is

L =
n∏
i=1

(
e−(µ23+µ24)ti

)δi (
1 +

e−(µ23+µ24)ti

µ23 + µ24

)1−δi

(7.18)

Taking the log of (7.18) we get

l =
n∑
i=1

δiln
(
e−(µ23+µ24)ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−(µ23+µ24)ti

µ23 + µ24

)
(7.19)

Differentiating (7.19) with respect to µ23

∂l

∂µ23

= −
n∑
i=1

(
δilntie

−(µ23+µ24)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ23+µ24)ti

µ23 + µ24

− e−(µ23+µ24)ti

(µ23 + µ24)2

)
1 +

e−(µ23+µ24)ti

µ23 + µ24

(7.20)

Since censoring has occured (7.24) becomes

∂l

∂µ23

=
n∑
i=1

(
−tie−(µ23+µ24)ti

µ23 + µ24

− e−(µ23+µ24)ti

(µ23 + µ24)2

)
1 +

e−(µ23+µ24)ti

µ23 + µ24

= −
n∑
i=1

e−(µ23+µ24)ti

µ23 + µ24 + e−(µ23+µ23)ti

(
n∑
i=1

ti +
1

µ23 + µ24

)
(7.21)
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Equating to zero
n∑
i=1

ti +
1

µ23 + µ24

= 0

1∑n
i=1 ti

= −(µ23 + µ24)

µ23 = −µ24 −
1∑n
i=1 ti

(7.22)

Assuming everyone who gets infected proceeds to the Aids state and no deaths occur
then µ24 = 0 and therefore

µ̂23 = − 1∑n
i=1 ti

(7.23)

Similarly in order to estimate µ24 we differentiate(7.19) with respect to µ24

∂l

∂µ23

= −
n∑
i=1

(
δilntie

−(µ23+µ24)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ23+µ24)ti

µ23 + µ24

− e−(µ23+µ24)ti

(µ23 + µ24)2

)
1 +

e−(µ23+µ24)ti

µ23 + µ24

(7.24)

Since censoring has occured (7.24) becomes

∂l

∂µ23

=
n∑
i=1

(
−tie−(µ23+µ24)ti

µ23 + µ24

− e−(µ23+µ24)ti

(µ23 + µ24)2

)
1 +

e−(µ23+µ24)ti

µ23 + µ24

= −
n∑
i=1

e−(µ23+µ24)ti

µ23 + µ24 + e−(µ23+µ23)ti

(
n∑
i=1

ti +
1

µ23 + µ24

)
(7.25)

Equating to zero
n∑
i=1

ti +
1

µ23 + µ24

= 0

1∑n
i=1 ti

= −(µ23 + µ24)

µ24 = −µ23 −
1∑n
i=1 ti

(7.26)

Assuming everyone who gets infected dies before proceeding to the Aids state then µ23 = 0
and therefore

µ̂24 = − 1∑n
i=1 ti

(7.27)

In order to estimate µ34 we use

P22(s, t) = e−µ34t

S22(s, t) = 1 +
e−µ34t

µ34
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Therefore

L =
n∏
i=1

(
e−µ34ti

)δi (1 +
e−µ34ti

µ34

)1−δi

and therefore

l =
n∑
i=1

δilne
−µ34ti +

n∑
i=1

(1− δi)ln
(

1 +
e−µ34ti

µ34

)
(7.28)

Differentiating (7.28) with respect to µ34

∂l

∂µ34

= −
n∑
i=1

tiδi +
n∑
i=1

(1− δi)
−tie−µ34ti

µ34

− e−µ34ti

µ2
34

1 +
e−µ34ti

µ34

 (7.29)

If censored then δi = 0

∴
∂l

∂µ34

= −
n∑
i=1


−tie−µ34ti

µ34

− e−µ34ti

µ2
34

1 +
e−µ34ti

µ34


=

n∑
i=1

e−µ34ti(µ34ti + 1)

µ34(µ34 + e−µ34ti)

=
n∑
i=1

(µ34ti + 1)

µ34

(
e−µ34ti

µ34 + e−µ34ti

)
(7.30)

Equating
∑n

i=1

µ34ti + 1

µ34

to zero then

n∑
i=1

ti +
1

µ34

= 0

µ̂34 = − 1∑n
i=1 ti

(7.31)

The expressions of the transition intensities for the n individuals are expressed in the
form of the total time of the individuals observed.
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Chapter 8

A FIVE STATE MODEL FOR A
CHILD BORN HEALTHY

8.1 Introduction

In the mother-to-child transmission (MTCT) of HIV an infant can experience one of these
events: (i) HIV infection, (ii) weaning prior to HIV infection, (iii) death prior to HIV
infection, or (iv) death after HIV infection.

State 1:

Healthy

State 2:

Infected

µ12 State 3:

Aids

µ23

µ35

State 5:

Death

µ15 µ25State 4
Non Breastfed

(Exclusive Breastfed)

µ45

µ14

Figure 8.1: Healthy-Breastfeeding/Nonbreastfeeding-Infected-Aids-Death Model
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Derivation of Forward Kolmogorov Differential Equations

We obtain the following differential equations for Figure 8.1

P11(s, t+ h) =
5∑

k=1

P1k(s, t)Pk1(t, t+ h)

= P11(s, t)P11(t, t+ h) + P12(s, t)P21(t, t+ h) + P13(s, t)P31(t, t+ h)

+P14(s, t)P41(t, t+ h) + P15(s, t)P51

= P11(s, t)(1− (µ12 + µ14 + µ15)h+ o(h)) + P12(s, t) · 0 + P13(s, t) · 0 + P14(s, t) · 0

+P15(s, t) · 0

P
′

11(s, t) = −P11(s, t)(µ12 + µ14 + µ15) (8.1)

P12(s, t+ h) =
5∑

k=1

P1k(s, t)Pk2(t, t+ h)

= P11(s, t)P12(t, t+ h) + P12(s, t)P22(t, t+ h) + P13(s, t)P32(t, t+ h)

+P14(s, t)P42(t, t+ h) + P15(s, t)P52(t, t+ h)

= P11(s, t)((µ12h+ o(h)) + P12(s, t)(1− (µ23 + µ25)h+ o(h)) + P13(s, t) · 0

+P14(s, t) · 0 + P15(s, t) · 0

P
′

12(s, t) = P11(s, t)µ12 − P12(s, t)(µ23 + µ25) (8.2)

P13(s, t+ h) =
5∑

k=1

P1k(s, t)Pk3(t, t+ h)

= P11(s, t)P13(t, t+ h) + P12(s, t)P23(t, t+ h) + P13(s, t)P33(t, t+ h)

+P14(s, t)P43(t, t+ h) + P15(s, t)P53

= P11(s, t) · 0 + P12(s, t)(µ23h+ o(h)) + P13(s, t)(1− µ35)h+ o(h)) + P14(s, t) · 0

+P15(s, t) · 0

P
′

13(s, t) = P12(s, t)µ23 − P13(s, t)µ35 (8.3)
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P14(s, t+ h) =
5∑

k=1

P1k(s, t)Pk4(t, t+ h)

= P11(s, t)P14(t, t+ h) + P12(s, t)P24(t, t+ h) + P13(s, t)P34(t, t+ h)

+P14(s, t)P44(t, t+ h) + P15(s, t)P54(t, t+ h)

= P11(s, t)(µ14h+ o(h)) + P12(s, t) · 0 + P13 · 0

+P14(s, t)(1− µ45h+ o(h)) + P15(s, t) · 0

P
′

14(s, t) = P11(s, t)µ14 − P14(s, t)µ45 (8.4)

P15(s, t+ h) =
5∑

k=1

P1k(s, t)Pk5(t, t+ h)

= P11(s, t)P15(t, t+ h) + P12(s, t)P25(t, t+ h) + P13(s, t)P35(t, t+ h)

+P14(s, t)P45(t, t+ h) + P15(s, t)P55(t, t+ h)

= P11(s, t)(µ15h+ o(h)) + P12(s, t)(µ25h+ o(h)) + P13(µ35h+ o(h))

+P14(s, t)(µ45h+ o(h)) + P15(s, t)(1 + o(h))

P
′

15(s, t) = P11(s, t)µ15 + P12(s, t)µ25 + P13(s, t)µ35 + P14(s, t)µ45 (8.5)

From these differential equations we obtain the transition matrix for the five state

Q =



−(µ12 + µ14 + µ15) µ12 0 µ14 µ15

0 −(µ23 + µ25) µ23 0 µ25

0 0 −µ35 0 µ35

0 0 0 −µ45 µ45

0 0 0 0 0


. (8.6)

which has eigen values

λ1 = −µ35

λ2 = −µ12 − µ14 − µ15

λ3 = −µ23 − µ25

λ4 = −µ45

λ5 = 0

and the matrix of eigen vectors
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P =



µ12µ23

(−µ35 + µ23 + µ25)(−µ35 + µ12 + µ14 + µ15)
1

µ12

µ12 + µ14 + µ15 − µ23 − µ25

µ14

µ12 + µ14 + µ15 − µ45

1

µ23

−µ35 + µ23 + µ25

0 1 0 1

1 0 0 0 1

0 0 0 1 1

0 0 0 0 1


and .

S =



0 0 1 0 −1

1
µ12

φ

µ23µ12

ηφ

−µ14

µ12 + µ14 + µ15 − µ45

−−µ45µ35ρ + µ45τ + µ35κ+ µ12µ14ϕ+ µ15Ψ− µ25µ
2
12 + µ15µ

2
14 + 2µ14µ

2
15 − µ45µ

2
14 + µ15ς

φ(µ12 + µ14 + µ15 − µ45)η
1 0 0 0 1

0 0 0 1 1

0 0 0 0 1

89



where

φ = µ12 + µ14 + µ15 − µ23 − µ25

η = −µ35 + µ12 + µ14 + µ15

ρ = µ23 + µ25 + µ14 + µ15

τ = µ23µ14 + µ23µ15 + µ25µ13 + µ25µ14 + µ25µ15

κ = µ12µ23 + µ23µ15 + µ25µ12 + µ25µ15

ϕ = 2µ14 − µ45 − µ25

Ψ = −2µ25µ12 − 2µ45µ14 + µ2
15 + µ2

12 + 2µ12µ15

ς = −µ35µ15 − µ23µ15 − µ25µ15 − µ35µ12 − µ35µ14 − µ12µ13 − µ14µ23 − µ14µ25 − µ45µ15 − µ45µ12

We multiply the matrices PRS and summing the result obained to the 5 by 5 identity matrix to obtain the matix of transition
probabilities given as

P (s, t) =



eλ2t
$µ12

φ
+
µ12(eλ3t − 1)

φ

νΞ

Ωη
+
$ν

φη
− ν(eλ3t − 1)

φΩ
−$µ14

φ
+
µ14(eλ4t − 1)

φ

−(eλ1t − 1)µ12µ13

(µ23 + µ25 − µ35)(µ12 + µ14 + µ15 − µ35)
+ Θ

0 eλ3t
µ23Ξ

Ω
− (eλ3t − 1)µ23

Ω
0

−µ23Ξ

Ω
− 1− (eλ3t − 1)(−µ35 + µ25)

Ω
+ eλ5t

0 0 eλ1t 0 −eλ1t + eλ5t

0 0 0 eλ4t −eλ4t + eλ5t

0 0 0 0 eλ5t


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where

Ξ = eλ1t−1

$ = eλ2t − 1

ν = µ12µ23

Ω = −µ35 + µ23 + µ25

φ = µ12 + µ14 + µ15 − µ23 − µ25

η = −µ35 + µ12 + µ14 + µ15

ρ = µ23 + µ25 + µ14 + µ15

τ = µ23µ14 + µ23µ15 + µ25µ13 + µ25µ14 + µ25µ15

κ = µ12µ23 + µ23µ15 + µ25µ12 + µ25µ15

ϕ = 2µ14 − µ45 − µ25

Ψ = −2µ25µ12 − 2µ45µ14 + µ2
15 + µ2

12 + 2µ12µ15

ς = −µ35µ15 − µ23µ15 − µ25µ15 − µ35µ12 − µ35µ14 − µ12µ13 − µ14µ23 − µ14µ25 − µ45µ15 − µ45µ12
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8.2 Estimation for Right Censoring

From Figure 8.1, we estimate µ12, µ14, µ15, µ23, µ25, µ35, µ45

To estimate µ12, µ14 and µ15 we use

P11(s, t) = e−(µ12+µ14+µ15)t

∴ S11(s, t) = 1 +
e−(µ12+µ14+µ15)t

µ12 + µ14 + µ15

The likelihood function is

L =
n∏
i=1

(
e−(µ12+µ14+µ15)ti

)δi (
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

)1−δi

(8.7)

Taking the log of (8.7) we get

l =
n∑
i=1

δiln
(
e−(µ12+µ14+µ15)ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

)
(8.8)

Differentiating (8.8) with respect to µ12

∂l

∂µ12

= −
n∑
i=1

(
δilntie

−(µ12+µ14+µ15)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

(8.9)
Since censored δi = 0 and therefore

∂l

∂µ12

=
n∑
i=1

(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

= −
n∑
i=1

 e−(µ12+µ14+µ15)ti(
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

)
(µ12 + µ14 + µ15)


(
ti +

1

µ12 + µ14 + µ15

)
(8.10)

Equating (8.10) to zero and since ex > 0 therefore

n∑
i=1

ti +
1

µ12 + µ14 + µ15

= 0 (8.11)

µ12 + µ14 + µ15 = − 1∑n
i=1 ti

(8.12)

µ̂12 = −
(

1∑n
i=1 ti

+ µ14 + µ15

)
(8.13)

Assuming no deaths then µ14 = 0 and

µ̂12 = −
(

1∑n
i=1 ti

+ µ15

)
(8.14)
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Assuming HIV positive mothers mix feed after giving birth then µ15 = 0 and therefore

µ̂12 = −
(

1∑n
i=1 ti

+ µ14

)
(8.15)

Assuming no deaths occur and infected mothers mix feed leading to postnatal transmis-
sion then µ14 and µ15 = 0 and so

µ̂12 = − 1∑n
i=1 ti

(8.16)

Differentiating (8.8) with respect to µ14

∂l

∂µ14

= −
n∑
i=1

(
δilntie

−(µ12+µ14+µ15)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

Since censoring occurs δi = 0 and therefore

∂l

∂µ14

=
n∑
i=1

(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

= −
n∑
i=1

 e−(µ12+µ14+µ15)ti(
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

)
(µ12 + µ14 + µ15)


(
ti +

1

µ12 + µ14 + µ15

)
(8.17)

Equating (8.17) to zero then

n∑
i=1

ti +
1

µ12 + µ14 + µ15

= 0

µ12 + µ14 + µ15 = − 1∑n
i=1 ti

(8.18)

µ̂14 = −
(

1∑n
i=1 ti

+ µ12 + µ15

)
(8.19)

Assuming no transmission takes place then µ12 = 0 and

µ̂14 = −
(

1∑n
i=1 ti

+ µ15

)
(8.20)

Assuming HIV positive mothers breastfeed after giving birth then µ15 = 0 and therefore

µ̂14 = −
(

1∑n
i=1 ti

+ µ12

)
(8.21)
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Assuming no deaths occur and infected mothers do not breastfeed or exclusively breast-
feed their infants resulting in no postnatal transmission then µ12 and µ15 = 0 and so

µ̂14 = − 1∑n
i=1 ti

(8.22)

Differentiating (8.8) with respect to µ15

∂l

∂µ15

= −
n∑
i=1

(
δilntie

−(µ12+µ14+µ15)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

Since censoring occurs δi = 0 and therefore

∂l

∂µ15

=
n∑
i=1

(
−tie−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

− e−(µ12+µ14+µ15)ti

(µ12 + µ14 + µ15)2

)
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

= −
n∑
i=1

 e−(µ12+µ14+µ15)ti(
1 +

e−(µ12+µ14+µ15)ti

µ12 + µ14 + µ15

)
(µ12 + µ14 + µ15)


(
ti +

1

µ12 + µ14 + µ15

)
(8.23)

Equating (8.23) to zero then

n∑
i=1

ti +
1

µ12 + µ14 + µ15

µ12 + µ14 + µ15 = − 1∑n
i=1 ti

µ̂15 = −
(

1∑n
i=1 ti

+ µ12 + µ14

)
(8.24)

Assuming no deaths occur and infected mothers breastfeed their infants resulting in no
postnatal transmission then µ12 and µ14 = 0 and so

µ̂15 = − 1∑n
i=1 ti

(8.25)

To estimate µ23 and µ25 we use

P22(s, t) = e−(µ23+µ25)t

∴ S22(s, t) = 1 +
e−(µ23+µ25)t

µ23 + µ25

The likelihood function is

L =
n∏
i=1

(
e−(µ23+µ25)ti

)δi (
1 +

e−(µ23+µ25)ti

µ23 + µ25

)1−δi

(8.26)
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Taking the log of (8.26) we get

l =
n∑
i=1

δiln
(
e−(µ23+µ25)ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−(µ23+µ25)ti

µ23 + µ25

)
(8.27)

Differentiating (8.27) with respect to µ23

∂l

∂µ23

= −
n∑
i=1

(
δilntie

−(µ23+µ25)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ23+µ25)ti

µ23 + µ25

− e−(µ23+µ25)ti

(µ23 + µ25)2

)
1 +

e−(µ23+µ25)ti

µ23 + µ25

(8.28)

Due to censoring δi = 0 and (8.29) becomes

∂l

∂µ23

=
n∑
i=1

(
−tie−(µ23+µ25)ti

µ23 + µ25

− e−(µ23+µ25)ti

(µ23 + µ25)2

)
1 +

e−(µ23+µ25)ti

µ23 + µ25

= −
n∑
i=1

 e−(µ23+µ25)ti(
1 +

e−(µ23+µ25)ti

µ23 + µ25

)
(µ23 + µ25)


(
ti +

1

µ23 + µ25

)
(8.29)

Equating (8.29) to zero

n∑
i=1

ti +
1

µ23 + µ25

= 0

µ23 + µ25 =
−1∑n
i=1 ti

µ̂23 = −
(

1∑n
i=1 ti

+ µ25

)
(8.30)

Assuming that none of the infected proceed children proceed to the Aids state then
µ25 = 0
and therefore

µ̂23 =
−1∑n
i=1 ti

(8.31)

Similarly in order to estimate µ25 we differentiate(8.27) with respect to µ25

∂l

∂µ25

= −
n∑
i=1

(
δilntie

−(µ23+µ25)ti
)
+

n∑
i=1

(1− δi)
(
−tie−(µ23+µ25)ti

µ23 + µ25

− e−(µ23+µ25)ti

(µ23 + µ25)2

)
1 +

e−(µ23+µ25)ti

µ23 + µ25

(8.32)
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Due to censoring δi = 0 and (8.32) becomes

∂l

∂µ23

=
n∑
i=1

(
−tie−(µ23+µ25)ti

µ23 + µ25

− e−(µ23+µ25)ti

(µ23 + µ25)2

)
1 +

e−(µ23+µ25)ti

µ23 + µ25

= −
n∑
i=1

 e−(µ23+µ25)ti(
1 +

e−(µ23+µ25)ti

µ23 + µ25

)
(µ23 + µ25)


(
ti +

1

µ23 + µ25

)
(8.33)

Equating (8.33) to zero

n∑
i

ti +
1

µ23 + µ25

µ23 + µ25 =
−1∑n
i=1 ti

µ̂25 = −
(

1∑n
i=1 ti

+ µ23

)
(8.34)

Assuming all infected proceed to the Aids state then µ23 = 0
and therefore

µ̂25 =
−1∑n
i=1 ti

(8.35)

To estimate µ35

P33(s, t) = e−µ35t

S33(s, t) = 1 +
e−µ35t

µ35

Therefore

L =
n∏
i=1

(
e−µ35ti

)δi (1 +
e−µ35ti

µ35

)1−δi

and therefore

l =
n∑
i=1

δilne
−µ35ti +

n∑
i=1

(1− δi)ln
(

1 +
e−µ35ti

µ35

)
(8.36)

Differentiating (8.36) with respect to µ35

∂l

∂µ35

= −
n∑
i=1

tiδi +
n∑
i=1

(1− δi)
−tie−µ35ti

µ35

− e−µ35ti

µ2
35

1 +
e−µ35ti

µ35

 (8.37)
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Since censored δi = 0

∴
∂l

∂µ35

= −
n∑
i=1


−tie−µ35ti

µ35

− e−µ35ti

µ2
35

1 +
e−µ35ti

µ35

 (8.38)

Equating (8.38) to zero

−
n∑
i=1

tie
−µ35ti

µ35

=
n∑
i=1

e−µ35ti

µ2
35

µ̂35 = −
n∑
i=1

1∑n
i=1 ti

(8.39)

To estimate µ45

P44(s, t) = e−µ45t + 1

S44(s, t) = 1 +
e−µ45t

µ45

+ t

Therefore

L =
n∏
i=1

(
1 + e−µ45ti

)δi (1 +
e−µ45ti

µ45

− t
)1−δi

and therefore

l =
n∑
i=1

δiln
(
1 + e−µ45ti

)
+

n∑
i=1

(1− δi)ln
(

1 +
e−µ45ti

µ45

− t
)

(8.40)

Differentiating (8.40) with respect to µ45

∂l

∂µ45

= −
n∑
i=1

−tiδie−µ45ti

1 + e−µ45ti
+

n∑
i=1

(1− δi)
−tie−µ45ti

µ45

− e−µ45ti

µ2
45

1 +
e−µ45ti

µ45

− t

 (8.41)

If censored then δi = 0

∂l

∂µ45

=
n∑
i=1


−tie−µ45ti

µ45

− e−µ45ti

µ2
45

1 +
e−µ45ti

µ45

− t



= −

∑n
i=1

e−µ45ti(µ45ti + 1)

µ45 + e−µ45ti − µ45ti
µ45

=
1

µ45

n∑
i=1

e−µ45ti(µ45ti + 1)

µ45 + e−µ45ti − µ45ti
(8.42)
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Equating (8.42) to zero

0 = −
n∑
i=1

(
e−µ45ti

µ45 + e−µ45ti − µ45ti

)
(µ45ti + 1) (8.43)

Therefore

−µ45

n∑
i

ti + 1 = 0

µ̂45 = − 1∑n
i=1 ti

(8.44)
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Chapter 9

CONCLUSIONS AND
RECOMMENDATIONS

Introduction

This chapter has a summary of accomplishments of the thesis, conclusions from the
findings of the study and recommendations on areas for future research.

Summary

First we used deterministic approach to obtain the basic reproduction number (R0) for
the Susceptible-Infected-Treated-Aids model. We then developed multistate models with
censoring for mother to child transmission of HIV which we then used to obtain the
transition probabilities and estimate transition intensities for a child born infected and a
child born healthy. For a child born infected we have the two state Infected-death model
and three state infected-aids-death model. For a child born healthy we have the three
state healthy-infected-death model, four state healthy-infected-aids-death model and the
five state healthy-non-breastfeed-infected-aids-death model. The transition probabilities
were obtained using the generator matix approach and the transition intensities estimated
using maximum likelihood estimaton.

Conclusion

The R0 obtained showed that an infected mother will infect approximately one child
emphasising the need to apply and monitor the intervention and control measures in use
in order to further reduce and ulimately prevent this mode of transmission
From censored multistate models, the estimates obtained for the transition intensities
were observed to be time dependent.
The time that infection occurs in a child born infected can be estimated by use of left
censoring and the possible time of infection for a child born healthy can be estimated by
applying right censoring in situations when infection occured after the followup period
or by interval censoring if infection occurred between two time intervals.
The expressions for the transition intensities indicates that if the number of HIV infected
children is maintained at a constant number n, then as time increases, the transition
intensities will tend to zero.
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The transition probabilities are all exponentially distributed and this proves the fact that
the transition rates are constant over time, i.e, time homogeneous.

Recomendations

Since we assumed that the transition probabilities and intensities are time homogeneous
further studies it would be interesting to see how estimates are affected if the assumption
is that of non homogeneity.
In this study we used type 1 censoring and there is therefore need to consider also type
2 censoring in the study.
More states such as the treatment stage should also be included in the model.
Use the transition probabilities to obtain quantities such as the expected time spent in
a given state or the expected current condition while in a given state by performing
integration analytically.
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