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Abstract 

 

There is a global push towards green and sustainable energy which has seen several initiatives 

being developed to spearhead and promote development of renewable energy generation sources. 

However, this has not been without challenge. Solar and wind, the most abundant renewable 

energy resources are still expensive to deploy and unreliable as they suffer from intermittency.  

It has long been postulated in open published literature that solar and wind   have complementary 

regimes and that it is possible to make headways in reliability of renewable energy systems by 

hybridization sources that have complementary regimes. A hybrid solution however is only viable 

if optimally sized. This thesis examines the problem of optimally sizing a Hybrid Solar and Wind 

Renewable Energy Power System (HSWREPS). A target location was first identified and 

meteorological data collected. Components of the system were then mathematically modelled from 

which an objective function was developed. A parallel multi-deme implementation of genetic 

algorithms was used to perform the optimization. Multiple scenarios were prepared and simulated 

to obtain an optimal configuration of the HSWREPS. The results obtained were validated against 

openly published results from real word projects. A conclusion was then drawn on the basis of the 

results obtained. The research was successful as all objectives were met. The key findings were 

first and foremost that in deed on some locations wind and solar have complementary regimes and 

can thus be hybridized. To this end an optimal configuration of the system consisting of 16,000 

PV modules, 10 wind turbine units and 23,809 battery units was developed with an attractive 

levelized cost of energy of 17 US cents per kWh. Secondly, the research from the results obtained 

decoupled resource optimal solutions from cost optimal solutions. It was shown that the least cost 

configuration didn’t necessary maximize on utility of the abundant resource. Lastly a clear 

direction for future research was proposed. 

 



 

-1- 

 

Chapter 1 Introduction 

1.1 Background 

With the price of oil and associated conflict resulting therefrom in rapid ascent, the threat of global 

warming and climate change all too apparent, renewable energy technologies are emerging as the 

answer to power our future. However, Geothermal, hydro power and biomass are limited by 

resource availability and are plagued by high development costs. Wind and solar have thus 

emerged as promising technologies for achieving a green powered future, however wind and solar 

are intermittent sources of energy. A robust power system should be able to meet its demand 

wholly and reliably, and this is a challenge for intermittent sources of energy. Hybridization of 

renewable energy sources with complimentary regimes is a new emergent trend being utilized to 

improve reliability. In some locations for example, a strong solar irradiance is experienced in 

summer when wind speeds are poor whereas in winter when solar irradiance is poor, stronger 

winds are recorded. Moreover, on an intra-day basis, wind and solar pick up, and slack at different 

times hence a plant that combines the two in a hybrid system should theoretically provide a better 

utilization factor for the available energy [1]. 

A Hybrid Solar photovoltaic and Wind Renewable Energy Power System (HSWREPS) with 

battery storage is proposed. The battery banks which store energy are a vital part of this as they 

convert the jerky intermittent power produced into a smoother and dispatch-able form by storing 

excess energy when the sun and/ or wind are very strong and releasing this back when there is a 

shortfall in generation, thus providing a ride-through capacity to the systems in cases of generation 

insufficiency. 

For this work, a remote town in the Northern region of Kenya is selected as a case study. It has 

been realized that some of these regions have an abundant untapped potential for wind and solar 

that can be harnessed to power small remote towns and outposts in Kenya. This is thus a promising 

area of application as these remote towns are either powered by diesel generators which are costly 

to operate and maintain due to associated high fuel and fuel transport costs or are without power 

as they are usually cut off from the grid. 
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1.2 Problem Statement  

This research thesis attempts to provide a solution to the problem of optimal size configuration for 

hybrid renewable energy power plants. Since wind and solar have complementary regimes in some 

locations, they particularly lend themselves well to hybridization. The key problem here then is 

that of optimal capacity selection to ensure the total cost of the system is minimized while 

maximizing system reliability. 

However before optimal sizing procedures are carried out, a necessary first step is to 

mathematically model the components to be hybridized. Energy generated from Wind will be 

modelled as well as energy generated from PV cells. The expected inputs to these models will be 

prevailing speed of wind at the desired mast height and solar irradiance for the specific location 

taken as a case study. A model for energy storage will also be necessary to evaluate adequacy of 

proposed energy storage capacity.  

Finally a model of the load to be served will also be made. The load model is necessary as power 

demand varies at different times of the day. These models are then used to evaluate the fitness and 

reliability of a proposed system. 

Simulation of the proposed optimal system is then done. This will be necessary for the system’s 

sensitivity analysis. Various conditions are simulated and the systems response is observed. 

 

1.3 Objectives 

The study’s broad objective is to determine an optimal size configuration for a HSWREPS with 

battery storage intended to supply electricity to a remote town.  Specific objectives to be met 

include 

1) To mathematically model  the hybrid power system components 

Mathematical modelling of the system components will be necessary in order to come 

up with the necessary cost function to be minimized or fitness function to be 

maximized. The researcher is obliged to fully and comprehensively understand the 

modelling method in order to employ it in this work 

2) To develop an appropriate fitness function to evaluate suitability of the proposed systems 

After careful modelling of RE sources, BESS and Load, the researcher then needs to 

develop a proper fitness function for maximization of desirable system attribute, and 
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proper boundary conditions to ensure that resulting systems from the optimization 

procedure meet the set system constraints. 

3) To simulate and perform multiple scenario analysis to arrive at an optimal size 

configuration for the power system developed. 

Multiple scenarios are analysed to arrive at an optimal solution using a parallel genetic 

algorithm implementation.  

 

1.4 Research Questions 

To meet these objectives, the researcher sought to answer the following questions; 

1) Is it possible to design a hybrid wind and solar power system (HSWREPS) for the selected 

location? 

2) Can the components of the HSWREPS be modelled mathematically? 

3) Can an objective function be developed from the models developed of the components  

4) Can the objective function developed be minimized to arrive at an optimal solution? 

Answering these research questions helped the researcher meet the objectives stated above. 

 

1.5 Justification for the Study 

Rapid depletion of fossil fuels, political instability amongst other reasons have kept the price of 

conventional fossil fuels sky high. Moreover, carbon emissions resulting from burning of fossil 

based fuels has led to global warming and resulted in climate change, a major catastrophe that has 

already led to the extinction of some species as well as geographical changes such as rising ocean 

levels.  

The World Bank Report on climate change, “Turn Down the Heat” , highlights the key effects of 

global warming as being, unusual and unprecedented heat extremes, rainfall regime changes and 

decline in water availability, decline in agricultural yields and nutritional quality, threats on 

terrestrial eco systems, sea level rise and damages to marine eco systems [5]. The report further 

states that if current trends continue, a 4°C warmer world will be a reality by the turn of the century 

and further warming will continue in the 22nd century. The report proposes development of cleaner 

energy technologies as a possible mitigant in reducing the GHG emission rates. In fact a key area 
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of focus for the World Bank has been in improving energy efficiency and performance of 

renewable energy technologies. This is a compelling reason to focus research in renewable energy 

generation technologies. 

Separately, the United Nations millennium development goals [6], and goal number 7 in particular 

advocates for ensuring environmental sustainability.  One of the target areas for promoting 

environmental sustainability especially in energy production is through the development of clean 

energy sources [6]. Moreover, the United Nations Development Program (UNDP), has Sustainable 

Energy as one of its key focus areas [7]. One of its three key areas of intervention is the promotion 

of the development of low emission climate resilient technologies such as those that this research 

intends to better understanding on. 

It is my view thus that this research work is justified in view of current knowledge needs of 

mankind. It is focussing on an area of significant potential in terms of benefiting mankind. 

Renewable energy technologies having been accepted as methods for curtailing GHG emission 

and curbing climate change are still expensive and in some cases less efficient than conventional 

fossil fuel based generation methods. By hybridizing wind and solar and capitalizing on the 

complementary nature in their regimes, coupled with optimal sizing using state of the art heuristic 

based computational methods, this research hopes to improve knowledge in the field and to chart 

ways towards more affordable green power generation technologies. 

 

1.6 Scope of work 

This research is on optimal size configuration of components of a hybrid solar PV and wind 

renewable energy power system which incorporates battery energy storage. To see this through, 

the researcher envisions having to properly understand and apply a modelling method to model 

the components of the system to be hybridized. A geospatial resource assessment will then follow, 

the scope of which entails collection of relevant climate data for the selected site. Demand 

modelling will be carried out based on available data for a model metropolis. The researcher 

intends to take great care and effort to improve any of the modelling methods in use in open 

literature and to suitably apply them to this problem. An optimization program will be written in 

Matlab, implementing a parallel multi-deme Genetic Algorithm optimization. Major improvement 

to existing methods is expected as the researcher will implement this algorithm to take advantages 
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of recent advances in parallel programming. Simulation will then be carried out and multiple 

scenario analysis conducted. 

Key milestones in this research will be: Completion of Literature Review, Proposal 

documentation, presentation and defence, model construction for components of the HRES, 

Implementation of GA based parallel optimization software in Matlab®, Presentation of 

Simulation results, thesis documentation, presentation and defence. 

At the end of the research, expected deliverables will be: publications in peer reviewed journals, 

thesis document, optimization software based on a parallel implantation of GA, results of the 

optimal configuration of a HRES  

 

1.7 Organization of Thesis 

This thesis is organized into 5 broad chapters each with a distinct purpose. Chapter 1 provides an 

introduction to the work, the problem statement, objectives and scope of the work. Chapter 2, titled 

literature review, is a review of open published research work in the field. It provides a backdrop 

of method for analysis and results from other researchers that can be drawn from for inspiration or 

comparison. The third chapter, methodology is broken down into 3 sub chapters. The first, 

geospatial resource assessment recognizes that the study has to be based on a specific geographical 

location, based on resource availability and not only pin points such suitable locations but also 

examines the resources at those locations. The second part, component modelling, takes on the 

solution to the problem of mathematically modelling the components of the hybrid power system. 

The final part of chapter 3, addresses the algorithm used to optimally size the power system. 

The fourth chapter presents the results of the work and discussion of those results, and the final 

chapter presents the conclusion, contributions of this work and recommendations for further work. 

 

  



 

-6- 

 

Chapter 2 Literature Review 

The problem of optimal size configuration for hybrid renewable energy systems is very common 

in recent published works. Various authors have proposed various methods to solving the problem. 

In this review of current literature on the topic, the various approaches have been categorized by:  

 Method used for the optimization of the size of the components of the system 

 Generation technologies considered for hybridization,  

 Energy storage system employed,  

 Reliability index used to ascertain reliability of system designed, 

 Modelling method used to represent the individual parts of the system and to develop the 

objective function,  

 Simulation method used to simulate the design concept and validation method used. 

2.1 Classification by optimal sizing methodology. 

Various methods for performing optimization exist in literature. Some methods take a gradient 

based optimization approaches while others follow heuristic approaches. The methods presented 

in the literature reviewed include:  

 Genetic Algorithms 

 Fuzzy genetic algorithms 

 Particle Swarm Optimization 

 Simulated Annealing 

 Dividing Rectangles (DIRECT) Search Algorithm 

 Commercial Software 

 Integer Programming 

 Response Surface Methodology 

 Hybridized Solutions 

 

2.1.1 Dividing Rectangles (DIRECT) 

Focussing on the development of a methodology for determining the optimal size of a stand-alone 

hybrid system, Zhang et al (2011) [8] used DIRECT search algorithm to select the optimal number 
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and type of units from a list of commercially available system devices, for a configuration that 

ensured availability of energy to meet energy demands. Their case study was the French commune 

of Le Havre. In a similar fashion to [8], Yassine et al (2012) [9] also used DIRECT to select the 

optimal number and size of system components in a manner ensuring that the objective cost 

function is minimized from a list of commercially available solutions,. They considered 4 different 

combinations of hybrid systems. Similarly, Belfkira et al (2007) [10] presented a methodology 

for the design of a HSWREPS with Battery Storage. Using DIRECT they determined the optimal 

configuration wind turbine generators, solar PV modules and storage units that ensured the system 

cost was minimized and reliability maximized to guarantee permanent availability. They 

developed their solution using Matlab®. 

2.1.2 Optimal Sizing using Genetic Algorithms 

Genetic Algorithms are metaheuristic search algorithms that mimic nature in particular evolution 

and Natural selection. They usually start with a random generation of an initial population of 

chromosomes with or without domain specific knowledge. The chromosomes are represented as a 

data structure of binary numbers or real numbers depending on the encoding method and are 

parameters of possible solutions to the problem at hand. Encoding is a process of representing the 

solution parameters in terms of a string, just as in a real chromosome .The entire population, with 

all the chromosomes is referred to as the search space and it is from therein that an optimal solution 

is to be located. A problem specific fitness function is used to map the chromosomes into a fitness 

value which is a representation of the quality of the solution [81].  

GA operators are then used to evolve the population from its current generation to the next whose 

average fitness value should ideally be better. The selection operator, which mimics the process of 

selecting a mate to sire the future generation, determines good solutions that are to be preserved in 

the population and bad solutions that are to be pruned from it. The selection operator’s objective 

is to emphasize positive traits in the population and discard negative ones. Some of the selection 

techniques include: Tournament selection, Roulette Wheel Selection, Rank Selection etc. 

After suitable parents are selected, crossover occurs. It mimics the successful mating event 

whereby offspring are created from the suitable parents selected for mating. Gene information is 

exchanged between the solutions in the mating pool. There exists single point and multi point 

crossover, the difference being the amount of gene information exchanged and point of exchange. 

Multipoint crossover is disruptive and appears to encourage the exploration. Exploration is the 
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ability to discover new regions of the solution space whilst trying to locate the optimum. On the 

other hand, exploitation is the ability to converge to the optimum after discovering the region 

containing the optimum. To prevent premature convergence to a sub-optimal solution, exploration 

should always precede exploitation [82]. The probability of occurrence of crossover is dictated by 

the crossover rate 𝑃𝑐. 

After crossover, just as in real life, a random but very rare event mutation occurs. Mutation is a 

shift from norm, it involves the introduction of new features into the solution string of the 

population pool. Mutation encourages exploration in genetic algorithms.  The probability of 

occurrence of mutation is governed by the mutation rate 𝑃𝑚. 

New generations are thus evolved from the knowledge of previous generations and since the fitter 

individuals in the population are the ones selected for mating (crossover), their good genes (good 

solutions) overtime dominate the population and the algorithm converges to an optimum. With 

proper parameter selection (𝑃𝑐 , 𝑃𝑚, 𝑝𝑜𝑝𝑠𝑖𝑧𝑒), GA’s are capable of obtaining a global optimum to 

solution. 

(1) Adaptive Genetic Algorithms 

Use of static control parameters for GA has been a limitation requiring proper tuning of the 

algorithm to find the right value that reaches an optimal solution.  As observed by Skinner et al 

[82], the domain of artificial genetic search, as in the process of evolution is an inherently dynamic 

and adaptive process and the use of static parameters contradicts the evolutionary idea. 

Consequently in order to maintain a balance and precedence between exploration and exploitation 

strategies to dynamically adapt parameters of genetic algorithms have been developed.  

A dynamic deterministic approach involves modification of the parameter values according to 

some decreasing value as the GA evolution proceeds. An example is decreasing the mutation 

probability as the generation count increase to enhance exploitation. 

A dynamic adaptive approach relies on feedback from the GA. This approach would adapt 

mutation rate and crossover rate simultaneously.  For instance, for individuals with a low fitness 

value, to enhance exploration 𝑃𝐶 and 𝑃𝑚 would be kept large whereas they would be kept small 

for individuals with high fitness values to protect good solutions from distortion. 
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Finally, a dynamic self-adaptive technique, encodes parameters into the genotype and evolves 

them together with the chromosomes. It is aimed at exploiting the indirect link between favorable 

control parameters and individual fitness values. This strategy has however met limited success.  

(2) Parallel Genetic Algorithms (PGA)  

GA’s have been used for since their invention in the 80’s for solving nonlinear problems with a 

great number of possible solutions, that are typically very difficult to solve with classical 

mathematical methods [14]. However when applied to very large scale problems, genetic 

algorithms due to increased complexity, exhibit high computational costs and degradation of the 

quality of solutions [81]. To solve this and take advantage of developments in distributed 

computing, research on parallel genetic algorithms has gained quite a footing. What follows below 

is a brief of the categories or parallelization strategies in use today. 

A global parallelization strategy or the global single population master slave PGA, parallelizes GA 

by assigning a fraction of the population to each processor for evaluation. A master process 

performs the genetic operators and distributes the individuals among a set of slave processors that 

evaluate fitness values. It is particularly effective for complicated fitness functions and it can yield 

improvements in computational time with regard to sequential genetic algorithms. [81] It does not 

require additional genetic operators and therefore does not modify the fundamental search 

behavior of GA. [82] 

A single population fine grained PGA or simply fine grained parallelization, assigns exactly one 

individual to a processing node. Only adjacent individuals participate in genetic operators, hence 

the topology of the network is crucial to the performance of the GA. This approach is only practical 

in massively parallel architectures and for solving problems that easily lend themselves to 

parallelism and are designed with low communication overhead. 

The coarse grained parallelization approach partitions the entire population into subpopulations 

called demes [81]. The subpopulations in multi-deme PGA’s are relatively large, a defining 

characteristic. Moreover, when the GA is run, exchange of information between demes is 

performed in a process termed migration. Migration is a very crucial aspect of coarse grained 

PGA’s and is characterized by: period of migration, selection and replacement strategy of 

individuals, and the number of migrants [82]. As in fine grained PGA’s the network topology used 

is important as it determines the cost of migration in terms of communication overhead and the 
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rate at which good solutions are disseminated to other demes. This approach is also referred to as 

island model PGA. 

(3) Coarse Grained Adaptive PGA 

For this research work, a coarse grained adaptive PGA will be implemented for the purpose of 

optimal sizing of the renewable hybrid energy system and its associated energy storage 

requirements. This is advised mainly by the complicated nature of the problem which may render 

traditional GA inefficient and slow. Moreover Adaptive PGA has been shown to converge faster 

than PGA as in [83]. Skinner et al [82] also reported significant improvement on convergence 

velocity and solution quality over ordinary serial Genetic Algorithms when using multi-deme 

“coarse grained” parallel GA on a set of three benchmark problems: Sphere function, Rastrigin’s 

function and Ackley’s path function. 

(4) Applications in reviewed literature 

Using GA for optimization of the size and configuration of a hybrid solar PV and wind system 

with battery storage, Yang et al [11] had 2 main considerations, these being the cost of the 

designed system and its reliability under different  weather conditions. In parallel Bilal et al [12] 

used a multi-objective GA approach to find an optimal size configuration of a HSWREPS with 

battery storage. They selected a remote location in the Northern coast of Senegal as a case study 

for the problem of optimal sizing of a hybrid renewable power system. The problem was 

formulated as a multi-objective optimization problem solved using genetic algorithms. Their twin 

objectives were to minimize system cost and maximize reliability by minimizing the loss of power 

supply probability (LPSP). Their key finding was that the optimal configuration had a strong 

dependence on the load profile, a conclusion arrived at after investigating different load curves 

with similar total energy consumption. Separately, Jemaa et al (2013) [14] using fuzzy adaptive 

GA, developed a technique to optimally configure a HSWREPS. In their technique, a fuzzy logic 

mechanism was used to dynamically change crossover and mutation rates so as to guarantee 

diversity of the population and hence prevent arbotive convergence. Their objective was to 

minimize the cost of the system whilst ensuring an invariable availability of supply to meet 

demand. Components of the system were stochastically modelled using hourly historical data. In 

similar strides a novel technique for determining the optimal unit size for distributed generators in 

a micro-grid was developed by Tafreshi et al [13]. They used GA to optimize the system to 

achieve a desired LPSP at a minimum Cost of Energy (COE). 
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2.1.3 Particle Swarm Optimization 

 Pirhaghshenasvali et al [15] presented a paper in which a hybrid system for a practical standalone 

renewable energy generation system was proposed. They employed Wind, PV, Battery banks and 

Diesel Generators in their hybridization. The Wind PV Battery system was intended as the primary 

system with the diesel generator provided as a backup system. The goal of their optimization was 

to minimize investment cost and fuel cost while ensuring availability of the energy needed by the 

customers and sufficiency to meet peak demand. The design was based on solar radiation data, 

wind speed data and load curves and Particle Swarm Optimization algorithm was used for optimal 

sizing. 

Bashir and Sadeh [16]argued that capacity sizing was important to fully meet demand due 

to uncertainty of wind and solar PV. They proposed a method for determining capacity of hybrid 

wind, PV with battery storage. Their proposed method considered uncertainty in generation of 

wind energy and of solar PV. They formulated the algorithm for determining the capacity of wind, 

PV and battery ESS as an optimization problem with the objective of minimizing the system cost 

whilst constrained to having a given reliability for a given load. This was solved using the PSO 

algorithm. 

Bashir and Sadeh [17] also presented a paper in which they considered a hybrid system of wind, 

PV and tidal energy with battery storage. In this paper they  highlight the benefits of tidal energy 

which is energy harnessed from rising and falling of ocean water levels as being highly predictable 

compared to wind and solar. They consider a 20 year plant life and optimize the design with the 

objective of minimizing the annualized cost of generated energy of the life of the plant, with the 

constraint of having a specific reliability index. They used PSO algorithm for optimization. 

Simulation carried out in Matlab environment and revealed that in comparison to stand alone wind 

and solar systems the new system was more economical. 

Saber and Venayagamoorthy  [18] presented a paper suggesting the introduction of controllable 

loads with intelligent optimization as a necessity for the implementation of smart micro grids 

(SMG). They noted that over or under estimation of resources when considering reliability of the 

smart micro grid would make it not feasible, thus the optimization problem for sizing of SMG 

components was presented as a complex multi-objective optimization problem considering 

minimization of capital cost and operations costs as objectives subject to constraints such as net 

zero emission, historical wind speed and solar irradiation data and load profiles over a long period 
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of time. They used the PSO algorithm to solve the optimization problem, and an intelligent energy 

management system for dispatch of the resources. 

Navaerfad et al [19], presented an optimal sizing approach for Distributed energy resources in a 

micro grid consisting of Wind, solar hybrid system with electrolizer, hydrogen tank, fuel cell and 

batteries. They proposed the uncertainty of wind power alongside a reliability index as constraints 

and used PSO algorithm to obtain the global optimal solution. 

He, Huang and Deng [20] postulated that low carbon power technologies such as Solar - PV, 

Wind etc. are gaining a lot of interest and concern worldwide, and because these technologies are 

mainly adopted in micro grids, they emphasized on the importance of considering the low carbon 

factor in the generation planning of micro grids. In this paper they use the levelized cost of 

electricity (LCOE) analysis method to compare the variation trends of power supplies which use 

different energy sources to generate in the future, and to build the energy price equilibrium point 

analysis model (EPA) of high carbon energy and low carbon energy. Based on the above research, 

the authors develop a full life cycle dynamic model for optimal sizing of components in an 

integrated power generation model. Modified particle Swarm optimization was used to perform 

optimization. Based on the three cases considered, low carbon, high carbon and equilibrium, 

results show that a balanced system is most suitable for clean energy production with an 

equilibrium point of energy consumption and carbon consumption. 

2.1.4 Simulated Annealing 

Ekren and Ekren [21] used simulated annealing method for size optimization of a hybrid PV / 

Wind energy conversion system. Simulated annealing is a heuristic approach that uses stochastic 

gradient search approach for optimization. The objective function to be minimized was the hybrid 

system's total energy cost, with the key parameters being the PV area, wind turbine rotor sweep 

area and battery capacity. Results from simulated annealing were compared with those of RSM 

for an earlier study [22] and it was shown that simulated annealing obtained better results. 

2.1.5 Hybridized Meta-heuristics 

Crăciunescu et al [23] reckoned using Wind and Solar PV technology  with battery ESS in 

optimally sized combination can help overcome the problem of intermittency that each of these 

technologies face. In the review of literature they presented, it was shown that GA and PSO were 

the most popular heuristic methods for optimal sizing of a hybrid wind solar power system with 
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battery storage. In this paper, mathematical models of hybrid wind and solar were developed 

and multi-objective optimization performed using the intelligent search methods GA and PSO. 

Arabali et al [24]  proposed a stochastic framework for optimal sizing and reliability analysis of a 

hybrid power system including renewable energy sources and energy storage. Uncertainties of 

wind and PV power generations were modeled stochastically using Auto Regressive Moving 

Average. A pattern search optimization method was then used in combination with sequential 

Monte Carlo Simulation (SMCS) to minimize system cost and satisfy system reliability 

requirements. SMCS simulates chronological behavior of system and emulates the reliability 

indices from a series of simulated experiments. They then proposed Load shifting strategies to 

provide some flexibility and reduce mismatch between Renewable Energy generation and Heating 

Ventilation and Cooling loads in the hybrid power systems. A compromise solution method was 

then used to arrive at the best compromise between reliability and cost. 

2.1.6 Commercial Software, HOMER 

Roy et al [25] estimated the optimal sizing for a hybrid solar - wind system for distributed 

generation for utilization of resources available at Sagar, a remote off grid Island. They optimized 

the feasibility and size of the generation units and evaluated them using Hybrid Optimization of 

Multiple Energy Resources (HOMER) software. Sensitivity analysis was performed on the optimal 

configuration obtained. A comparison between the different modes of the hybrid system was also 

studied. It was estimated that the solar PV -Wind Hybrid system provided lesser cost per unit of 

electricity. The capital investment cost was also observed to be less when the system ran with wind 

DG compared to solar PV DG. 

El Badawe et al [26] aimed to optimize and model a hybrid wind solar diesel generator power 

system for use on remote microwave repeaters. They noted that microwave repeaters were the 

main energy consumers in the telecommunication industry and are usually powered by diesel 

generators and when these were located on remote sites, then maintenance and operations costs 

were even higher due to the added cost of transportation. They used HOMER software for sizing 

and performed sensitivity analysis to obtain the most feasible configuration, which was then 

modelled in SIMULINK and results presented to demonstrate system performance. 
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2.1.7 Integer Programming 

Chen and Gooi, [27] proposed a new method for optimal sizing of an energy storage system. The 

ESS was to be used for storage of energy at times of surplus and for re-dispatch later when needed. 

They considered the Unit commitment problem with spinning reserve for micro grids. Their total 

cost function took account of the cost of the Energy Storage System (ESS), the cost of output 

power and the cost of spinning reserve. They formulated the main method as a mixed nonlinear 

integer problem (MNIP) which was solved in AMPL (A mathematical programming language). 

Effectiveness of the proposed method was then validated by a case study where optimal ESS rating 

for a micro grid were determined. Results indicated that a properly sized ESS not only stored and 

re-dispatched renewable energy appropriately but also reduced the total cost of the micro grid. 

Bahramirad and Reder’s [28] view on Energy Storage systems was that they are fast response 

devices that add flexibility to the control of micro grids and provide security and economic benefits 

to the micro grid. They thus have a major role in the long term and short term operation of micro 

grids. In the paper, they evaluated the benefits of ESS in islanded operation of micro grids. Long 

term unit commitment was then used to obtain the optimal unit scheduling. A practical model for 

an Energy Storage System was used and probabilistic reliability calculation method used to find 

expected energy not served and accordingly calculate cost of reliability of the micro grid. They 

solved the optimization problem using mixed integer programming method. 

Chen, Gooi and Wang [29] presented a cost benefit analysis based method for optimal sizing of 

an energy storage system in a micro grid. They considered the unit commitment problem with 

spinning reserve for micro grids. Wind speed was modelled using a time series whereas solar 

irradiance is modelled via feed forward neural network techniques with forecasting errors being 

accounted for. They also presented two mathematical models for islanded and grid operation. The 

main problem was formulated as a mixed linear integer problem (MLIP) which is solved in AMPL. 

Effectiveness of the proposed method was then validated via a case study. Quantitative results 

indicated that optimal size for a BESS existed but differed for both grid connected and islanded 

mode of operation. 

2.1.8 Response Surface Methodology 

Ekren and Ekren (2008) [22] presented a paper aimed at showing the use of response surface 

methodology (RSM) in size optimization of an autonomous Wind / PV system with battery storage. 

The response surface output performance measure was the hybrid system cost whilst the design 
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parameters were PV size, wind turbine rotor sweep area and battery capacity. A commercial 

simulation software (ARENA 10.0) was used to simulate the case study of a GSM base station. 

The optimal results obtained by RSM were then confirmed using loss of load probability (LLP) 

and autonomy analysis. In a later paper [21], they compared these results with those obtained using 

simulated annealing method for optimization. 

Ekren, Ekren and Baris [30] presented a paper to show an optimum sizing procedure for an 

autonomous PV/Wind hybrid energy system with battery storage. They presented a break even 

analysis of the system including extension of a transmission line using the net present value (NPV) 

method. They present a case study of a hybrid system powering a mobile communication base 

station. The Hybrid PV Wind system was first optimized using a response surface methodology 

(RSM), which is a collection of statistical and mathematical methods relying on optimization of 

response surface with design parameters. Optimum PV area, wind turbine rotor sweep area and 

battery capacity were optimally obtained using RSM, from which the total system cost was 

obtained. A break even analysis was then carried out to determine the distance at which 

transmission line extension was less economical compared to development of the hybrid power 

supply system. Their results showed that if the distance from the transmission line to the point of 

use was more than 4817m then the hybrid system was more economical than the electricity 

network. 

2.1.9 Other Techniques 

Hearn et al [31], Presented a method for sizing of grid level flywheel energy storage using optimal 

control law. The method allows the loss dynamics of the flywheel to be incorporated into the sizing 

procedure. This permits data driven trade studies which trade peak grid power requirements and 

flywheel storage capacity to be performed. A case study based on home consumption and solar 

generation data from the largest smart grid in Austin Texas was presented. 

Anagnostopoulos and Papantonis [32] advocated the attractiveness of hybrid wind hydro 

generation, in order to increase wind energy penetration and cost effectiveness in autonomous 

electric grid. In this work they developed a numerical method for the optimum sizing of the various 

components of a reversible hydraulic system designed to recover excess electrical energy produced 

by wind farms and not absorbed due to grid limitations. Time variation for rejected wind farm 

power from a number of wind farms in Crete was used as the case study, while the free parameters 

considered for optimization were turbine size, size and number of pumps, penstock diameter and 
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thickness and reservoir capacity. The proposed numerical procedure consisted of an evaluation 

algorithm to simulate plant operation for a 12 month period and automated optimization software 

based on Evolutionary Algorithms. Economic evaluation, constrained optimization, sensitivity 

analysis and various parametric tests were carried out on the case study. The conclusion drawn 

was that a well optimized design was be crucial for technical and economic viability of the system.  

2.2 Classification by generation technologies considered in the 

hybrid system. 

In designing a hybrid renewable energy power system, selection of what is to be hybridized is a 

very important step. It is very important to be able to select the resources that can best be utilized 

for a particular case. Other considerations can also be made before selecting technologies to 

hybridize. In the recent literature reviewed, a trend of hybridizing wind and solar was observed, 

however other sources were also considered on a case by case basis. Below is a review of 

generation technologies that have been hybridized in recent published literature. 

2.2.1 Hybrid of Solar PV with Wind 

A number of Authors have considered hybridization of solar PV with wind. Some cite the 

complementary characteristics of wind and solar, other make this decision based on resources 

available at a particular site. 

 Zhang et al [33] determined that Life-cycle cost and power supply reliability were dependent on 

proper sizing for a hybrid solar, wind power system with battery storage. They proposed an 

improved capacity ratio design method for Wind Solar Battery Hybrid Power System (WSB-HPS) 

that took advantage of the complementary characteristics of wind and solar to greatly improve 

power supply reliability while requiring less battery capacity. Their proposed method also took 

account of and reduced the depth of charge/ discharge cycles of the battery. In a similar fashion, 

Xu et al [34] developed an improved optimal sizing method for Wind Solar hybrid power systems 

with battery storage. They put forward two considerations for standalone operation and for grid 

tied operation, with key objectives under consideration including a high power supply reliability, 

full utilization of complementary characteristics of wind and solar, minimization of the fluctuation 

of power injected to the grid, optimization of battery charge and discharge states and minimization 

of the total cost. They compared their proposed method to traditional methods and revealed that it 

achieved higher power supply reliability while requiring less battery capacity in standalone mode. 
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In grid connected mode it achieved much smaller fluctuation in power injected to the grid. They 

then used an energy filter method to optimize the battery capacity.  

Roy et al [25], specifically pointed out on the economic benefit of hybrid wind and solar 

generation when compared to pure wind or solar PV. Their results when designing a distributed 

hybrid renewable energy power system for Sagar Island indicated that hybrid Wind and Solar PV 

systems with battery storage provided the least cost per unit of electricity compared to pure wind 

or solar systems. 

Yang et al [11] Optimally sized a hybrid combination of wind and solar PV to supply a remote 

telecommunication station. Their key concerns were to maximize power reliability whilst 

minimizing cost hence the need for an optimally sized hybrid system. 

Kamjoo et al [35] Proposed tackling the challenge of uncertainty in maintaining a high quality 

power supply by hybridizing renewable energy sources. 

Other authors who considered hybridizing wind and Solar PV for renewable energy generation 

include [23], [16], [24], [36], [37], [38], [27], [39], [12], [22], [21], [30], [29], [40], [26], [41], 

[14], [10], [42], 

2.2.2 Hybrid of Solar PV, Wind and Biofuels 

Tafreshi et al [13], hybridized wind, solar PV and biogas. They developed models for the various 

components of their micro grid, optimized the sizing using genetic Algorithms, performed 

sensitivity analysis and validated their results using HOMER software. 

2.2.3 Hybrid of Solar, Wind and Diesel Generator 

A more practical emergent approach in literature has been to hybridize renewable energy with 

conventional thermal sources. In literature reviewed, Solar PV with Wind renewable energy 

sources have been hybridized with diesel generators. The diesel generators are mostly intended to 

supply shortfalls in renewable energy generation hence meeting energy needs at peak demand. The 

objective of optimization in this case has mostly been to reduce fuel consumption and minimize 

cost. 

Pirhaghshenasvali and Asaei [15] developed a hybrid renewable energy generation system 

incorporating Wind generation turbines, solar PV, Battery banks and Diesel Generators. The Wind 

PV Battery system was intended as the primary system with the diesel generator provided as a 
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backup system. The goal of their optimization was to minimize investment cost and fuel cost while 

ensuring availability of the energy and sufficiency to meet peak demand 

Zhang, Belfkira and Barakat [8] developed a hybrid renewable energy power system consisting 

of Wind, Solar PV and Diesel Generator for a site in Le Havre, France. Their research focused on 

the optimal number and type of units ensuring availability of energy to meet energy demands. 

Yassine et al [9] for the same site in an earlier study by Zhang et al [8], considered a number of 

different hybrid renewable energy generation systems with different compositions. Their results 

indicated that hybrid PV, Wind, Diesel Generator with Battery Energy storage was the most 

optimum combination for their site. They attributed this finding to good complementary effect 

between solar energy and wind energy.   

Kadda et al [43] presented a mini autonomous hybrid system comprising of wind energy 

generation, solar PV and Diesel generators with Battery banks. They estimated wind and solar 

potential first to obtain the optimal sizing for the components of the system. 

2.2.4 Hybrid of Solar, Wind and Electrolyzer with Fuel Cell 

Navaerfad et al [19]  presented a hybrid distributed renewable energy resources for micro grid 

consisting of Wind, solar hybrid system with electrolizer, hydrogen tank, fuel cell and batteries.  

2.2.5 Hybrid of Solar, wind and Tidal Energy 

Bashir and Sadeh [17] presented a hybrid system of wind, PV and tidal energy with battery 

storage. They stated the benefits of tidal energy as being highly predictable compared to wind and 

solar hence a complementary addition to their hybrid generation solution. 

2.2.6 Hybrid of Wind and Hydroelectric Power 

Scarlatache et al [44] lamented on the volatility and intermittency of wind as an energy source. 

In a bid to balance electricity generation with demand at all times and with regard for compliance 

requirements set forth by system operators, they investigated the influence of coordination of wind 

and hydro plants on power losses in the electric system based on the correlation between the 

electrical energy outputs of these sources.  

Anagnostopoulos and Papantonis [32] also considered hybridization of wind and hydro power. 

They proposed the use of a pumped storage hydroelectric plant for recovery of excess energy 

generated by wind farms on the island of Crete.  
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2.3 Classification by energy storage system employed 

Energy storage solutions are important in a renewable energy power system. They have many uses 

among them being to integrate renewable energy sources within the power system by converting 

them from volatile and intermittent source to smoother dispatch-able forms of energy [45]. They 

also provide ride through capability when distributed generation sources fail to supply required 

energy. Moreover they are useful in managing the amount of power required to supply during peak 

hour demand by storing it during off peak demand hours [46]. Different Energy Storage Systems 

have different applications based on their cost, weight, efficiency, technology, handling, amount 

of energy stored, duration of storage, etc. For application in micro grids and for hybrid renewable 

energy systems, various Energy Storage technologies have appeared in literature. These 

technologies include Battery Energy Storage Systems (BESS), Flywheel Energy Storage (FES), 

Compressed Air Energy Systems (CAES), Pumped Hydro Storage (PHS), Ultra Capacitors (UC), 

Super Magnetic Energy Storage Systems (SMES) and Hydrogen. These storage systems with 

respect to their use in hybrid renewable energy systems are reviewed here. 

2.3.1 Battery Energy Storage 

From reviewed literature, Battery Energy Storage Systems (BESS) or Battery Banks appear to be 

the most popular. Yang et al [11] incorporated battery Energy storage in their case study of a 

hybrid power system supply to a remote telecommunications relay station. Crăciunescu et al [23] 

overcame intermittency and variability of wind and solar by incorporating a battery energy storage 

solution. Zhang et al [33] proposed a method to improve the capacity ratio for Wind and Solar 

generation whilst reducing the size of battery banks installed. Their method also reduced the depth 

of charge / discharge cycles of the battery. 

Other authors who incorporated  BESS as their preferred Energy Storage Solution include  [35] 

,[15],[16],[24],[36],[8],[37],[9],[27],[34],[43],[12],[13],[22],[17],[21],[30],[29],[26],[19],[41], 

[14],[10],[47]. Below is an overview of some of the different battery technologies that are 

available; 

(1) Sodium-Sulphur (NaS) 

NaS batteries belong to a class of rechargeable batteries known as molten salt batteries. It utilizes 

molten Sulphur and metallic sodium for the electrolyte and electrodes respectively. As the 

electrolyte is molten, these batteries require a high operating temperature of between 300 and 
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350℃ [68]. When idling as much as 14% of the batteries stored energy is consumed parasitically 

in maintaining operating conditions. This requirement for high temperature operation is probably 

this battery’s key disadvantage and has resulted in a secondary requirement of proper thermal 

management when designing or installing these batteries. Their other disadvantage is high cost 

and the fact that there’s only one established manufacturer (NGK Insulators) at megawatt scales. 

However NaS batteries have gained significant traction due to their other attractive characteristics 

such as a high charge/discharge efficiency ranging from 75-86% [68]. In addition to efficiency, 

NaS batteries also boast a very high energy density and long life cycle compared to other mature 

technologies such as lead acid batteries.  

NaS batteries have found acceptance in non-mobile large scale applications such as grid energy 

storage and renewables integration. 

(2) Lead-Acid 

These batteries were invented in 1859 by French physicist Gastone Plate. They are technically 

simple and cheap to manufacture. They boast a mature and well understood technology and in 

most cases offer the cheapest cost per kW of installed capacity compared to the other systems. 

They have been successfully modified for both power and energy applications. These batteries 

however suffer from slow charge rates, cannot be fully discharged and have very limited charge/ 

discharge cycles [68]. They also have lower energy to weight ratio and energy to volume ratios 

compared to the other technologies e.g. lithium ion. 

They are the most versatile in terms of applications with various modern and more efficient designs 

available. Two key developments are the Absorbed Glass Mat (AGM) versions and the Gel 

version. Both of these have made significant improvement on the battery’s life and efficiency and 

by reducing need for maintenance. 

(3) Lithium-Ion (Li-Ion) 

Li-ion batteries have in recent years emerged as the most preferred battery option for the consumer 

electronics market due to their high energy density that allows them to be very compact and 

portable. They have also set precedence in hybrid and all electric vehicle space and are slowly 

making inroads in the grid applications space. Recent developments in these batteries are targeted 

towards controllability and safety of these batteries in large applications, lowering of operating 

and maintenance costs. 
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(4) Nickel-Cadmium (NiCad / Ni-Cd) 

These batteries employ Nickel oxide hydroxide and cadmium and metallic cadmium as the 

electrodes. Ni-Cd batteries are among the oldest and most mature battery technologies available. 

They are ideal for mitigating effects of voltage sags and for providing backup power in harsh 

conditions. Their ability to withstand high temperatures has also seen them adopted in solar 

generation applications. They however do not excel in peak shaving and energy management 

solutions [68]. 

(5) Flow Batteries 

In these batteries, the electrolyte which is usually stored externally in tanks, flows through either 

by gravity or pumping, an electrochemical cell in a reactor that converts the chemical energy 

directly to electricity. Flow batteries however have a high self-discharge rate and suffer from low 

energy densities in comparison to other battery types especially Li-Ion. Moreover, flow batteries 

tend to be more complicated as they require pumps, sensors and control units.  

Two categories of flow batteries are considered here,  

 Redox Flow Batteries and 

 Hybrid Flow Batteries 

(a) Vanadium Redox-Flow 

The Vanadium Redox Flow battery is an example of a redox flow battery. A redox (reduction 

oxidation) flow battery is a reversible fuel cell in which all the electro-active components are 

dissolved in the electrolyte. The energy of a redox flow battery is decoupled from power as the 

energy is a function of electrolyte volume which is generally stored in tanks external to the fuel 

cell system. This means it is possible to increase energy storage capacity just by increasing volume 

of electrolyte and storage tanks. Power on the other hand is a function of the fuel cell capacity. 

This means redox flow batteries are very scalable in terms of energy storage capacity. Another 

inherent advantage is the possibility of instant replenishment by topping up with unspent 

electrolyte charged from a different system. Vanadium redox flow batteries can thus in theory have 

unlimited capacity, their other advantage is that they can be left discharged for long periods of 

time without any ill effects, however as stated earlier above they suffer the same flaws as other 

flow batteries.  
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Their main intended application in lieu of their complexity and theoretically unlimited storage 

capacity is in grid energy storage and renewables integration. 

(b) Zinc Bromine Battery 

The Zinc Bromine battery is a hybrid type of flow battery with one battery electrode and one fuel 

cell electrode. The result consequently is that in its operation, one or more electroactive 

components are deposited on the battery electrode [68]. It is noteworthy that energy and power are 

not fully decoupled in a hybrid flow battery as in a redox flow battery. The energy in these batteries 

are limited to the size of the electrode. Structurally, the Zinc Bromine battery is constructed from 

2 tanks, one holding the electrolyte for the positive electrode reactions and the other for the 

negative electrode reactions. Compared to lead acid batteries, the Zinc Bromine battery has some 

critical advantages such as a high energy density, has a higher life cycle of more than 2000 cycles 

and allows to be operated up to 100% depth of discharge. Additionally, Zinc bromine batteries 

have unlimited shelf life and are easily scalable. According to Poulikas [68], they also provide the 

lowest overall energy storage cost when compared to other technologies such as Lead acid, 

Sodium-Sulphur and Lithium ion. 

(6) BESS Installations worldwide 

Saez-de-Ibarra et al, [70] presented an overview of BESS installations across the world in their 

review of BESS technologies for grid applications. Their findings are presented in the table below. 



 

-23- 

 

Table 2-1: BESS installations worldwide for grid applications 

 

 

2.3.2 Other ESS 

Panahandeh et al [39] considered hydrogen energy storage in the development of a hybrid energy 

system. They used the Alternative Power Library (APL) to investigate the integration of a 

hydrogen storage path in hybrid system operation. 

Emori et al [48] Described the proceedings of their research on a Carbon Hydride Energy Storage 

System (CHES). CHES presents a step forward in Hydrogen storage. Since hydrogen is 

notoriously difficult to handle in natural gaseous state they proposed its storage in the form of the 

stable liquid methylcyclohexane thereby making it easy to transport and keep in long term storage 

as an energy medium.  

Navaerfad et al [19], considered a hybrid renewable energy generation system that was tied to an 

electrolyzer – hydrogen-fuel cell energy recovery system that worked in hand with a battery 

storage system. 
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Hearn et al [31], used flywheel energy storage for grid level storage of energy in smart grids. 

They considered a case study of one such smart grid in Austin Texas. 

Scarlatache et al [44] and Anagnostopoulos et al [32] Both used Pumped storage hydro as their 

Energy Storage system for power systems with wind energy generation. 

Wang and Yu [49], presented an optimal sizing procedure for a compressed air storage system in 

a power system with high wind power penetration. 

Pedram et al [50]  listed the desirable attributes that an Energy Storage System should possess as 

high Energy density, high Power Delivery Capacity, low cost per unit of storage capacity, long 

cycle life and low leakage. They realized that of the currently available ESS solutions, none had 

all those attributes in totality. Thus they presented a hybrid ESS comprising heterogeneous ESS 

elements. Their proposed system was built on the concept of computer memory systems 

architecture management in order to achieve the attributes of an ideal ESS system through 

appropriate allocation and organization of various ESS elements. Chouhan and Ferdowsi [46] 

also reviewed different Energy storage solutions noting their special characteristics with regard to 

power systems requirements. They draw the conclusion that no single ESS met all power systems 

requirements in totality. They also proposed a combining ESS with complementary characteristics 

as a good energy storage solution for the design of a self-regulating renewable energy power 

system. 

 

2.4 Reliability Index Used 

In most studies to optimize the sizing components of a hybrid renewable energy power system, 

reliability of the designed system is presented as either a constraint or a goal to be achieved in the 

optimization process. In either case, a method is usually presented for evaluating the reliability of 

the proposed system. Some of the methods that appear in recent published literature that are 

presented here include: 

 Loss of power supply probability (LPSP) 

 Expected Energy Not Served (EENS) 

 Loss of Load Probability (LLP) 

 Equivalent Loss Factor (ELF) 
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 Levelized Cost of Electricity (LCOE) 

2.4.1 Loss of Power Supply Probability (LPSP) 

Yang et al [11] used the Loss of Power Supply probability as a reliability criteria. In designing a 

hybrid power system to supply a remote telecommunications relay station their objective was to 

achieve a required loss of power supply probability (LPSP) at a minimum annualized cost of the 

System (ACS). 

Kamjoo et al [35] recognized the uncertainty in maintaining a high quality of supply as the main 

challenge in standalone hybrid renewable energy systems. They considered the Loss of Power 

Supply Probability as a reliability measure for their optimization. 

Bashir and Sadeh [16] appreciated the importance of capacity sizing in order to fully meet 

demand due to uncertainty of wind and solar PV. As a measure of reliability they also used LPSP. 

Zhang et al [33] postulated that power supply reliability depended on optimum sizing of Solar 

PV, wind and Battery storage in a hybrid renewable energy supply system. They used LPSP as a 

reliability index and designed a system for a case study in Shengyang region. 

Belmilli et al [37] developed a software based on Loss of power supply probability algorithms for 

techno-economic analysis and optimization of hybrid systems. 

Other authors who considered LPSP in their work are quoted in references [43] and [10] 

2.4.2 LPSP with other Indices 

LPSP has also been used alongside other indices in written literature. This usually done as a means 

of ensuring that the proposed system fulfills other criteria other than reliability. Bilal et al [12] 

desired to minimize the cost of their system whilst ensuring it was reliable enough. They used 

LPSP as reliability index alongside the annualized cost of the system which was to be maximized. 

Other authors aimed at reducing the cost of electricity generated by their system whilst meeting 

the required reliability index  Tafreshi et al [13] , Paudel et al [41] and Dial et al [42] all used 

LPSP with levelized cost of electricity (LCE). Testa et al [40] used LPSP alongside loss of power 

produced (LPP). 

2.4.3 Expected Energy Not Served (EENS) 

Arabali et al [24] developed a stochastic framework for optimal sizing and reliability analysis of 

a hybrid power system including renewable energy source and energy storage. They used the 
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Expected Energy Not Served index (EENS) with Energy Index of Reliability (EIR) to measure 

reliability of the system and a compromise solution method to arrive at the best compromise 

between reliability and cost. Bahramirad and Reder [28] also used EENS as a probabilistic 

reliability calculation method to evaluate reliability of micro grids with energy storage systems in 

islanded operation. 

2.4.4 Loss of Load Probability (LLP) 

Ekren and Ekren [22] applied loss of load probability and autonomy analysis to determine the 

validity of their optimal sizing. In a later paper with a different optimization approach [21] they 

again used LLP to validate the reliability of their system. 

2.4.5 Equivalent Loss Factor 

Bashir and Sadeh [17] used the equivalent loss factor (ELF) as a reliability index to evaluate a 

hybrid system they had optimally sized. ELF was also used in [19] 

2.4.6 Levelized Cost of Electricity 

Huang et al [20] used the levelized cost of electricity (LCOE) analysis method to compare the 

variation trends of power supplies which use different energy sources to generate. 

Zhang et al [8] used levelized cost of electricity (LCOE) with Deficiency of Power Supply 

Probability (DPSP) in the development of a methodology for calculation of the sizing and 

optimization of a stand-alone hybrid system. 

2.4.7 Other Indices 

Puri [47] considered the problem of sizing battery storage with renewable energy sources such as 

solar PV and wind using Fractional Load Not Served (FLNS) as a reliability criterion. He went 

ahead to demonstrate the characteristic differences between FLNS and LPSP which is the most 

common reliability index in written literature. He showed that for a fixed FLNS requirement, the 

minimum battery size required was a decreasing convex function of the size of the renewable 

energy source and that for a fixed size of renewable energy source, minimum battery size required 

was a decreasing convex function of FLNS. This is in contrast in his opinion to LPSP which does 

not display any convex relation to battery size. 

Xydis [38] presented Exergetic Capacity Factor (ExCF) as a new parameter that can be used for 

better classification and evaluation of renewable energy sources. He examined both energy and 
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exergy characteristics of wind and solar to determine factors that affect the exergy of a hybrid 

Wind Solar system 

2.5 Modelling Method Used 

A review of modelling methods used in recent literature follows. In solving the optimal sizing 

problem for hybridized renewable energy generation, modelling is an important step as it provides 

the mathematical relation between inputs and expected outputs. Key component usually modelled 

is the output power generation from wind and solar. Specific characteristic of an energy source eg 

the wind speed can be modelled and a correlation to equivalent power generation from wind 

obtained. Below a cross section of methods used in literature read has been presented. 

Kamjoo et al [35]  used Autoregressive Moving Average models to characterize wind speed and 

solar irradiance variations. Arabali et al [24] modelled uncertainties of wind and PV power 

generations stochastically using Auto Regressive Moving Average.  

Separately, Ekren and Ekren [22] used a Box Behnken Regression model to model expected 

output of wind and solar generation which are intermittent. 

Other authors used a combination of various modelling techniques, Chen et al [29] used a 

combination of stochastic time series and feed forward neural networks. They modelled wind 

speed using a time series whereas solar irradiance was modelled using a feed forward neural 

network with forecasting errors accounted for. 

 

2.6 Simulation method used 

Panahandeh et al [39] emphasized the importance of simulation on engineering research and 

development of hybrid systems for rural electrification. They used different simulation models 

from the Alternative Power Library (APL) developed by the Institute for Wind Energy and Energy 

Systems (IWES) for simulation of regenerative power supply systems. They used APL to 

investigate the integration of a hydrogen storage path in hybrid system operation 

Ekren and Ekren [22], [21] used a commercial simulation software (ARENA 10.0) for the 

simulation case study of a GSM base station. In [30] when investigating the break-even analysis 

for hybrid solar PV wind system with consideration for grid extension they used ARENA 
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simulation to demonstrate the break-even distance from the transmission for which the system was 

more economical than connection to the grid. 

Monte Carlo Simulation (MCS) appears frequently in recent literature especially with regard to 

optimal sizing of components of a hybrid solar PV and wind power system. Kamjoo et al [35] 

Evaluated the performance of various design candidates using Monte Carlo simulation method. 

Bashir and Sadeh [16] used the probability density of wind speed and solar radiation to consider 

uncertainty in wind and PV power using Monte Carlo Simulation. Arabali et al [24] Used 

Sequential Monte Carlo to arrive at the best compromise between reliability and cost after optimal 

sizing using a pattern search method. 

2.7 Validation Method 

In optimization of sizing of components of a hybrid renewable energy power system, the 

commercial software Hybrid Optimization of Multiple Energy Resources (HOMER) is the most 

cited in literature. It has been used both for optimization and for validation of optimal designs [51] 

[52]. It is a time-step simulator that uses hourly load and environmental data inputs for renewable 

energy assessment and performs optimization based on Net Present Cost for a given set of 

constraints and sensitivity variables [51]. For this reason and its wide acceptance, a number of 

authors have used it as a tool to validate their optimal design. Dufo-Lopez and Bernal-Augustine 

[53] used HOMER to validate their optimal configuration of diesel generator with solar PV. Zhang 

et al [33] used HOMER to validate the results of their improved capacity ratio selection method 

for their case study of a hybrid Wind-Solar battery system for Shengyang. Belmili et al [37] 

proposed a sizing method for PV wind hybrid systems that was validated by counter designing in 

HOMER and comparing results. Tafreshi et al [13], used HOMER to validate and perform 

sensitivity analysis on a genetic algorithms based system configuration optimizer.  

 

2.8 Summary of Literature Review 

Optimal sizing of hybrid renewable energy generation sources is a study area that has gained a lot 

of traction in recent times. From the literature reviewed clear distinctions can be seen in terms of 

methods used for optimization, generation technologies considered for hybridization, energy 

storage system employed, reliability index used to gauge the result of optimization, modelling 

methods used, simulation approaches and validation methods used. 
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The first clear distinction in the literature reviewed can be seen in the methods used for optimal 

sizing of capacities of key components of the hybrid renewable energy generation system. Search 

algorithms such as the dividing rectangles search algorithm are seen to be popular especially in 

circumstances where an optimal configuration is selected from a pool of possible configurations. 

Metaheuristics, especially GA, PSO and their derivatives are seen to have significantly increased 

utilization from the reviewed works. This is a result of their relative maturity compared to other 

metaheuristics and their suitability to problems with large, non-smooth multimodal search spaces, 

the kind encountered in this research. Consequently for this same reason traditional gradient based 

approaches are not popular as they excel in smooth, small unimodal search spaces. Simulated 

Annealing, a heuristic method based on stochastic gradient search is also used in some works but 

doesn’t seem to have the traction of GA and PSO in the field. A number of authors have also 

resorted to hybridized metaheuristics such as GA-PSO or PS-SMCS with GA initialization, these 

have had some success in reducing the time it takes to converge to an acceptable optimal solution. 

Some studies have also focused purely on optimization using available commercial software 

packages such as using Hybrid Optimization of Multiple Energy Resources (HOMER). Other 

software programs of similar nature that occur in literature as reviewed by Sunanda and Chandel 

[1]  include HYBRID 2, RETScreen, iHOGA, INSEL, TRNSYS, iGRHYSO, HYBRIDS, 

RAPSIM, SOMES, SOLSTOR, HySim, HybSim, IPSYS, HySys, Dymola/Modelica, ARES, 

SOLSIM, and HYBRID DESIGNER. Moreover, a number of authors have used these commercial 

tools to validate their results. Other notable approaches for optimization encountered are Integer 

Programming methods, with both Mixed Nonlinear Integer Programing (MNIP) method and 

Mixed Linear Integer Programing (MLIP) method being encountered. 

The second obvious distinction in the reviewed literature is on the technologies chosen for 

hybridization. The key principle behind the idea of hybridization is to take two intermittent sources 

with complementary characteristics, optimally size them and use them in collaboration, this should 

consequently improve the overall system reliability. A key finding from the literature reviewed is 

that selection of technologies to be reviewed lies squarely on two factors: the available resources 

at the specific location considered and whether those resources have complementary regimes 

hence justify need for hybridization. From the literature reviewed the most popular resources 

considered for hybridization was wind with solar. This was implemented purely as wind and solar 

hybrid or in some cases with diesel generation, or with biofuel based generators, electrolizer with 
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fuel cell and even tidal energy. Interestingly one author hybridized wind and pump storage hydro 

as well as conventional hydro power. The dominance of wind solar hybrids is clearly attributed to 

their widespread availability when compared to other sources. Diesel generation added to the mix 

is usually to reduce system cost by reducing amount of capital spent on energy storage and in most 

cases the renewable components only serve to reduce fuel consumption. This approach is widely 

employed in industry today and in areas where diesel prices are fair. In this work the researcher’s 

intention is to keep a pure renewable energy mix hence only wind and solar are considered. 

The type or nature of energy storage system used is another line of possible classification of past 

works in this area. It was observed that energy storage was essential to converting renewable 

energy sources from their jerky intermittent state to a smoother and more reliable state by storing 

energy during peak production hours to provide ride through capability later on when renewable 

energy generation is insufficient to meet demand. Energy storage schemes from the literature 

reviewed have been seen to be application dependent in that, the suitability of a storage scheme 

depends solely on its intended application. Nonetheless it was observed that battery energy storage 

systems (BESS) were more versatile and found application in most situations in the literature 

reviewed. Other energy storage schemes encountered include: Hydrogen Storage both as gas and 

ingeniously in the form of the more stable methylcyclohexane as proposed in the Carbon Hydride 

Energy Storage System (CHES). Other popular storage schemes include Pumped Hydro Schemes 

which incidentally are the most efficient storage schemes but are only practical at very large scales, 

Flywheel Energy Storage Systems (FESS), Supercapacitors, and Compressed Air Energy Storage 

Systems (CAES). A noteworthy approach of hybridizing energy storage systems based on 

complementary characteristics was also encountered. 

A performance index is necessary to evaluate the performance of the system in meeting its 

objectives. In most literature reviewed, there are two objectives along the lines of technical 

performance or reliability and economic performance. Consequently the indices used can be 

broadly and in very general terms classified into reliability performance indices and cost 

performance indices. Of the reliability indices used, the one with most traction is the loss of power 

supply probability. On the other hand, the common cost index in literature is the Levelized cost of 

electricity.  

Other distinctions though not of significant importance as the above include choice of modelling 

method, simulation method and even validation method. This is because not all literature reviewed 
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included these aspects in their study. Nonetheless, in a nutshell, the literature presented has given 

an overview on the trends, directions and possible inclination of research into optimal sizing of 

hybrid renewable energy systems. It has demonstrated that stand alone renewable energy 

generation is a viable alternative to grid supply or conventional fossil fuel based power generation 

for remote areas world over. Hybridizing two or more sources with complementary characteristics 

has emerged as an important technique for improving reliability and reducing cost of renewable 

energy generation in spite of the intermittency of the individual sources such as wind or solar. 

Additionally incorporation of a suitable energy storage solution has been shown to be key in 

converting the jerky intermittent energy sources to smoother forms that can allow despatch. 

However the design, control and optimization of the hybrid power system is not a trivial task. 

Optimal sizing of the components of a hybrid system is crucial for the feasibility of such a system 

in terms of cost and reliability. 
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Chapter 3 Methodology 

The methodology used is separated into three section each covering the methodology used for each 

facet of the study. These 3 sections are; 

 Geospatial resource assessment section, outlining justification for the choice of location 

and analysing the resource data for that location. 

 Component modelling section, outlining the process of mathematical modelling of the 

components of the hybrid power system and  

 Optimal sizing algorithm section, detailing the algorithm used and its parameters. 

3.1  Geospatial Resource Assessment 

3.1.1 Required Data 

To optimally size a hybrid renewable energy source, as is evident from reviewed literature, a 

sufficient understanding of the underlying resource potential of the target area is necessary. One 

will need to obtain data that quantifies the available resources that are to be hybridized. For this 

study, solar and wind resource quantification is necessary for a target area. At minimum, previous 

studies have relied on solar irradiance data and wind speed data. Additionally ambient temperature 

at the selected site will also be of importance. This is because solar PV performance has a negative 

correlation with ambient temperature. Various energy storage systems also display varying relation 

with ambient temperature. Battery energy storage systems proposed herein for example display 

reduced useful life when operated above rated temperatures. 

 

3.1.2 Solar Resource Data 

Knowledge of irradiance on a collector’s surface is critical for solar resource assessment. Most 

weather station record the total irradiation on a horizontal surface also known as Global Horizontal 

Irradiation (GHI). On some instances, the Direct Normal Irradiance (DNI) is also available.  
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DNI represents the sun’s radiation striking the earth incident on the direction of the sun and is a 

vital parameter for the design of concentrated solar power systems (CSP). GHI on the other hand 

represent the sum of the sun’s 

radiation directly incident on the 

surface of the earth and the diffuse 

horizontal irradiance (DHI). It is 

an important parameter for design 

of panel based photovoltaic 

systems. Diffuse Horizontal 

Irradiance is the sun’s radiation 

that doesn’t strike the earth’s 

surface directly but rather has 

been scattered by clouds, dust or 

other particles in the earth’s 

atmosphere. 

The equation below summarizes the relationship between GHI, DNI and DHI. 

 𝐺𝐻𝐼 = 𝐷𝑁𝐼𝑐𝑜𝑠(𝜃𝑧) + 𝐷𝐻𝐼 (3.1) 

Where 𝜃𝑧, in this expression is known as the solar zenith angle. 

The solar zenith angle is illustrated in Figure 3-1. It is the angle between a skyward vertical from 

the surface and the sun. It is the complementary angle to the elevation and directly determines the 

amount of radiation absorbed or reflected by the earth. The solar zenith angle varies diurnally with 

the maximum elevation angle (minimum zenith angle) occurring at solar noon and coincident with 

peak irradiance over the day. The azimuth angle which is a pointer to which direction the sun is 

shining is also an important parameter that has to be chosen wisely. It determines the panel 

orientation and if not properly chosen could lead to a drop in production. Moreover improper panel 

orientation as in the case of East –West oriented panels would also lead to poor results due to great 

variance in the Zenith angle as the earth rotates. 

GHI data and sometimes DNI data are collected at synoptic weather stations across the globe. In 

Kenya, this data is available for 36 different locations with synoptic stations. A possible way 

forward with this study would have been to visit all the 36 stations to collect this data or perhaps 

to visit the national meteorological department to request for this data. However as with most data 

Figure 3-1: Visualization of  solar angles 
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collected at national level, a lot of inconsistencies and missing data should be expected. The 

approach taken in this study with regard to obtaining solar resource data is explained in detail in 

section 3.1.4 below and involves relying on results obtained from a previous reputable and trusted 

study. 

 

3.1.3 Wind Resource Data 

Just like solar, to quantify wind potential in an area, wind speeds at certain hub heights are required. 

Wind data measurement at meteorological weather stations is usually done at a hub height of 10m 

or less and is intended mainly for weather prediction purposes. For energy prospecting, it is usually 

necessary to have measurement equipment installed at the required hub height to collect data for a 

sufficient duration of time so as to enable resource availability modelling and feasibility studies. 

In addition to wind speed, wind direction is also an important parameter especially in determining 

the alignment of wind turbines so as to minimize on wake losses. 

Two important approaches to assessing 

the wind potential at a given location 

are the use of wind frequency rose 

diagrams to establish frequency of 

wind blowing from a specific direction 

and the use of the Weibull distribution 

function to predict wind speed 

distribution – an important metric in 

estimating the amount of energy that 

will be generated by the wind turbines. 

Figure 3-2 is an example of a wind 

frequency rose diagram. It shows the 

wind speeds in knots divided into speed 

classes distinguished by different colour codes and the directions from which these winds 

originate. 

The Weibull Distribution is a very good approximation for the wind speed distribution that can be 

used to calculate the mean power generated by a wind turbine given wind speeds. The Weibull 

probability distribution function is given in equation (3.2) below. 

Figure 3-2: Typical windrose 

http://aswlive.bm2.polycotassociates.com/sites/default/files/styles/large/public/core-page-inserted-images/windrose_speed-dist.png?itok=m15ExPxf
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𝑓(𝑣) =

𝑘

𝐴
(
𝑣

𝐴
)
𝑘−1

exp (− (
𝑣

𝐴
)
𝑘

) (3.2) 

where 𝐴 , Is the Weibull scale parameter and is a measure of the characteristic wind speed 

distribution. It is proportional to the mean speed and is presented in 𝑚/𝑠. 

𝑘 , Is the Weibull slope parameter or form parameter and determines the overall shape of the 

distribution. It takes on values between 1 and 3. It shows the variability of wind speeds with 

distributions characterised by highly variable wind speeds having smaller values of 𝑘 whereas 

those with constant wind speed having a larger 𝑘. 

For this study, a model that relates wind speed to the power generated by the wind turbines will be 

developed. Wind potential for various areas will be evaluated by fitting available data via a Weibull 

distribution from which input to the model will be obtained. 

3.1.4 SWERA Database 

The SWERA database is a product of the Solar Wind Energy Resource Assessment (SWERA) 

initiative started in 2001 with the objective to advance large scale deployment of solar and wind 

renewable energy technologies by increasing availability and accessibility of high quality solar 

and wind resource information [54]. It was funded by the Global Energy Facility (GEF) and 

managed by the Division of Technology, Industry and Economics (DTIE) of the United Nations 

Environment Program (UNEP). 

The project was a highly collaborative researching and analytical project involving experts from 

different nations who reviewed and validated different available data sets as well as models for the 

determination of parameters such as surface temperature, relative humidity, aerosol optical depth. 

The project’s efforts led to the creation of a highly interactive GIS toolkit for use in geospatial 

resource assessment. Additionally on a country by country basis, additional datasets representing 

wind resources and solar resources were presented. For the 36 synoptic weather stations in Kenya 

in addition to the above, accompanying metadata and data sets for wind and solar including typical 

meteorological years and time series were presented. 

Earlier work did this analysis at a very low resolution level of a 100Km x 100Km, this was not 

very helpful for detailed analysis of technical or financial viability of potential solar and wind 

energy projects let alone hybrid wind and solar projects. The outcome of the SWERA project 

however was ground-breaking for Kenya as it availed high resolution solar radiation assessment 
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based on data of the geostationary satellite Meteosat 7 located at an orbit at 0° latitude and 0° 

longitude and scans a specific area every 30 minutes with a spatial resolution of 5x5 km² [54]. 

The climate data for the 36 synoptic meteorological weather stations are presented in an epw 

format and includes the station number, elevation in masl, location in terms of latitude and 

longitudes. The data collated in this resource file include; average hourly GHI, DNI, and DHI; 

maximum hourly GHI, DHI,  and DNI; average monthly Dry Bulb temperature, Dew point 

temperature, ground temperature and wind speed. Additionally the monthly mode of wind 

direction is also collated in the files. A separate epw file exists for each of the 36 synoptic weather 

stations. Data is exported from epw format to csv for further analysis in excel for the selected 

region. 

3.1.5 Geospatial Resource Assessment 

Technical feasibility of renewable 

energy generation projects are usually 

highly dependent on geographical 

location. This is because different 

locations have different resource 

potentials. 

For this study, a region with strong 

potential for both solar and wind is 

preferable. The SWERA GIS toolkit 

available at 

http://en.openei.org/wiki/SWERA/Data 

is used to zero in on a location with 

promising solar and wind potential. 

The German Aerospace Centre (DLR) 

Global Horizontal Irradiance Layer is first overlaid over the digital map. To locate areas of 

suitable resource, a base map of the country shown in Figure 3-3 is used as as starting point. A 

map showing the distribution of daily normal irradiance (DNI) is then overlaid over the base 

map, this is shown in Figure 3-4. A wind resource distribution map in the form of mean wind 

speeds at 50 meters above ground level is overlaid on the base map as shown in Figure 3-5.  

 

Figure 3-3: Base Map of Kenya 
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Figure 3-4: DNI Map of Kenya 

 

Figure 3-5: Kenya wind atlas at 50 magl 
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Figure 3-6: Geospatial overlay of commercially viable wind and solar potential in Kenya (areas of overlap) 

 

Finally both wind and solar resource are overlaid on to the base map as shown in Figure 3-6, the 

distributions are also filetered to display only resources viable for exploitation. It is clear that a 

suitable location for a pilot project on hybrid renewable wind and solar PV generation would need 

to have great potential for both solar and wind power generation. As already identified in the 

SWERA study for Kenya [54] areas around Lake Turkana, East and North East of Kenya have 

incredible potential for solar PV generation.  The area around Lake Turkana and some areas of the 

Rift Valley and coastal region have significant potential for wind power development. Having 

overlaid both resource maps onto the base map and filtered for only areas with significant wind 

and solar resource potential it emerges that the Lake Turkana area would be suitable for a hybrid 

wind and solar generation project. Coincidentally, a synoptic weather station exists in this region 

at Marsabit and a typical meteorological year (TMY) dataset exist. This data will be used as input 

to the component models used in the sizing procedure. This data is analysed below. 

3.1.1 Data Analysis and Visualization  

The Marsabit Station is located at 2.3° North and 37.9° East at an elevation of 1345 masl. Its World 

Meteorological Organization (WMO) station number is 636410 and is the point of observation for 

data used in this study. A wide range of data is available from this station and this data is 

graphically presented in ANNEX 5: Data visualization. Error! Reference source not found. 

Wind Potential 

DNI 
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shows the dry bulb temperature which is the ambient air temperature, the dew point which is the 

temperature below which moisture condenses out of the air. 
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3.2 Hybrid System Model 

The hybrid power system consists of an array of solar photovoltaic generators, wind turbine 

generators, and a battery bank and associated power regulation and conversion accessories, 

protection and switching equipment. Only the generation components are modelled in this study 

as they represent the key plant components. 

Figure 3-7 shows the system’s simplified single line diagram. Hybridization is carried out at the 

DC bus independent of phase and frequency constraints that would need to be overcome on an AC 

bus. 

DC/DC

Solar PV Generator

DC

Battery Energy Storage System

Wind Turbine Generator

AC

AC/DC

DC/DC

DC/AC AC BusDC Bus

Demand / Load

 

Figure 3-7: Hybrid Power System Model 

3.3 Solar PV Model 

In order to properly size hybrid renewable energy sources involving Photovoltaic (PV) arrays, a 

proper understanding of the PV device is necessary. Villalva et al [55], provides a basic 

introduction to the functioning of PV cells, the mathematical equations involved and the modelling 

and simulation of PV arrays. They state that PV devices display non-linear current voltage 

relationships hence several parameters of a PV model have to be obtained or adjusted from 

experimental data of practical devices. It is for this reason that the analysis below is a necessary 

precursor to the buildup of a PV generator / array model. 
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The most fundamental unit in solar PV generation is the solar cell. Numerous solar cells are 

connected in series parallel configuration to achieve a desired working voltage in what is referred 

to as a solar PV module. A solar PV array may consist of one or more modules in series parallel 

connections to achieve a desired peak power output and or a desired generation DC voltage. 

3.3.1 The Solar Photovoltaic Cell  

In a nutshell, a solar photovoltaic cell is basically a semiconductor diode whose p-n junction is 

exposed to light [55]. Incident light on the cell generates charge carriers that originate an electric 

current when the circuit is completed. The rate of generation of these carriers hence current 

produced by the cell depends on two things; the flux of incident light and the capacity of absorption 

of the semiconductor. 

The semiconductor’s capacity of absorption is mainly determined by the semiconductor material’s 

band gap, the reflectance of the cell surface – determined by treatment and shape of surface, other 

factors such as the recombination rate, electron mobility and temperature. 

On the incident light flux, photons of light with energies lower than the band gap of the PV cell 

do not generate any voltage or electric current. Only photons with energy corresponding to the 

band gap energy of the solar cell are used to generate voltage and current, those exceeding it are 

dissipated as heat. Semiconductors with lower band gaps can take advantage of a larger radiation 

spectrum but will generate lower voltages [55]. 

 

Figure 3-8: Solar photovoltaic cell 

As highlighted by Tsai et al [56] and illustrated on Figure 3-8, a solar cell can be modelled as a 

photo current diode, a parallel resistor to express leakage current and a series resistor to represent 
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the internal resistance of the cell towards current flow. The voltage –current characteristics of this 

solar cell model is given as; 

 
𝐼 = 𝐼𝑝ℎ − 𝐼𝑆 [𝑒

𝑞(𝑉+𝐼𝑅𝑆)
𝑘𝑇𝐶𝐴

 
− 1] −

𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

 (3.3) 

In this case, 𝐼𝑃𝐻 is known as the photocurrent, or current generated as a result of the impact of 

solar radiation on the cell. The cell saturation dark current is expressed as 𝐼𝑆, 𝑇𝐶 is the cell’s 

working temperature which influences the saturation current. A is the ideality factor. 

The constants 𝑞 = 1.6𝑥10−19𝐶 is the electron charge whereas 𝑘 = 1.38𝑥10−23𝐽/𝐾 is the 

Boltzmann’s constant. 

This single diode model however assumes a constant value for the ideality factor, A [57]. The 

ideality factor which is a measure of how closely the diode follows the ideal diode equation 

however is usually a function of the voltage across the device and at high voltage, recombination 

in the device is dominant at the surface and bulk regions, the ideality factor is close to one. 

However at lower voltages, recombination in the junction dominates and the ideality factor 

approaches two. The two exponential diode model as in eq.(3.4), factors in junction recombination 

by adding a second diode in parallel with the first and setting the ideality factor typically to two. 

This results in a more exact mathematical description of a solar cell.  

 
𝐼 = 𝐼𝑝ℎ − 𝐼𝑆1 [𝑒

𝑞(𝑉+𝐼𝑅𝑆)
𝑘𝑇𝐶𝐴1

 
− 1] − 𝐼𝑆2 [𝑒

𝑞(𝑉+𝐼𝑅𝑆)
𝑘𝑇𝐶𝐴2

 
− 1] −

𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

 

 

(3.4) 

However there are limitations to developing expressions of this model’s V-I curve parameters due 

to the implicit and nonlinear nature of the model [56]. Moreover, according to Honsberg and 

Bowden [57], analysis using a single diode, but allowing both the ideality factor and the saturation 

current to vary with voltage provides for more accurate results than a double diode model which 

yields erroneous values due to the recombination components being a complex function of carrier 

concentration in actual silicon devices. This model is thus not used in the development of the 

generalized PV model 

3.3.2 Understanding and Improving the Single Diode Model 

Most literature on solar PV modelling resort to use the single diode model despite the necessary 

compromises [57] [56] [55]. However to improve it an understanding of the various parameters 
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and their implications is necessary.  The series resistance of the model 𝑅𝑠 whose influence is 

stronger when the device operates in the voltage source region is a result of the sum of several 

structural resistances of the device. These include junction and contact resistances found at the 

various material interfaces in the cell [55]. The shunt resistance 𝑅𝑠ℎ dominant in the current source 

region, exists mainly due to the leakage current of the 𝑝 − 𝑛 junction and depends on the 

fabrication method of the PV cell. This value is generally high. 

The light generated current of the PV cell is linearly dependent on solar irradiation but influenced 

by temperature. This dependence is illustrated in equation (3.5) by Villalva et al [55] 

 𝐼𝑝ℎ = (𝐼𝑝ℎ,𝑛 + 𝐾𝐼∆𝑇)𝐺/𝐺𝑛  (3.5) 

𝑎𝑛𝑑  

 ∆𝑇= 𝑇 − 𝑇𝑛 (3.6) 

where, 𝐼𝑝ℎ,𝑛  is the light generated current at standard test conditions (STC), 𝑇 being actual 

temperature in K and 𝑇𝑛 temperature at STC. 𝐺, is the irradiation on the device surface and 𝐺𝑛 

nominal radiation at STC.  

 
𝐼𝑠 = 𝐼𝑠,𝑛  (

𝑇𝑛
𝑇
)
3

exp [
𝑞𝐸𝑔

𝑎𝑘
(
1

𝑇𝑛
−
1

𝑇
)] (3.7) 

𝑎𝑛𝑑  

 
𝐼𝑠,𝑛 =

𝐼𝑠𝑐,𝑛

exp (
𝑉𝑜𝑐,𝑛 
𝑎𝑉𝑡,𝑛

) − 1
 

(3.8) 

The diode saturation current 𝐼𝑆 is also dependent on temperature as per eq.(3.7) but is mainly 

dependent on the current density 𝐽𝑆. 𝐽𝑠 depends on the intrinsic characteristics of the PV cell 

dependent on such factors as the coefficient of diffusion of electrons in the semiconductor, lifetime 

of the minority carriers of electrons in the semiconductor, intrinsic carrier density inter alia . 𝐼𝑠,𝑛 , 

is the nominal saturation current calculated as per equation (3.8) in [55] using experimental data 

and evaluating equation (3.7) at nominal open-circuit conditions with; 

𝑉 = 𝑉𝑂𝐶   ,𝐼 = 0 and 𝐼𝑝ℎ ≈ 𝐼𝑆𝐶,𝑛    

To improve the model, according to [55],  𝐼𝑠 can be evaluated as shown in eq.(3.9) below. The idea 

behind this is to match open circuit voltages of the model with experimental data for a very large 
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range of temperatures achieved by inclusion of current/temperature and voltage/temperature 

coefficients 𝐾𝐼 and 𝐾𝑉 . The result is a simplification of the model and cancellation of errors at the 

vicinities of the open circuit voltages and other regions of the I-V curve 𝐾𝐼 , and 𝐾𝑉 are read from 

manufacturer’s datasheets. 

 
𝐼𝑠 =

𝐼𝑠𝑐,𝑛 + 𝐾𝐼∆𝑇

exp (
𝑉𝑜𝑐,𝑛 + 𝐾𝑉∆𝑇

𝑎𝑉𝑡
) − 1

 

 

(3.9) 

With the assumptions and simplifications made thus far, the only outstanding unknowns are the 

resistance 𝑅𝑠ℎ   and 𝑅𝑠 which are seldom provided by manufacturers.  Other authors have proposed 

methods involving iterative adjustment of the series resistance value of the model until the 

resulting 𝐼 − 𝑉  curve visually fits the experimental data and adjusting the shunt resistance value 

of the model ad modum. Villalva et al however believe that this method results in a poor 𝐼 −

𝑉 model, instead they capitalize on the fact that there only exists one pair of shunt and series 

resistance for which the maximum power evaluated via their mathematical model and that obtained 

experimentally and recorded on the datasheet are equal and equivalent to the peak power at the 

maximum power point (MPP). With this basis they develop the below two equations used to solve 

for 𝑅𝑠ℎ  and 𝑅𝑠 in an iterative fashion. 

 

 

𝑃𝑚𝑎𝑥,𝑚 = 𝑉𝑚𝑝 {𝐼𝑝ℎ − 𝐼𝑠 [exp(

𝑞
𝑘𝑇
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1]

−
𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝

𝑅𝑠ℎ
} = 𝑃𝑚𝑎𝑥,𝑒 

(3.10) 

From which, 

 
𝑅𝑠ℎ =

𝑉𝑚𝑝(𝑉𝑚𝑝 + 𝐼𝑚𝑝𝑅𝑠)

{𝑉𝑚𝑝𝐼𝑝ℎ − 𝑉𝑚𝑝𝐼𝑠 exp [
𝑉𝑚𝑝 + 𝐼𝑚𝑝𝑅𝑠

𝑁𝑠𝑎
×
𝑞
𝑘𝑇
  ] + 𝑉𝑚𝑝𝐼𝑠 − 𝑃𝑚𝑎𝑥,𝑒}

  (3.11) 

where 𝑃𝑚𝑎𝑥,𝑒  , refers to experimentally evaluated peak power at MPP as recorded in the datasheet. 

𝑃𝑚𝑎𝑥,𝑚   , refers to peak power mathematically evaluated by the model. 
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An iterative technique is then required to solve the eq. (3.11) above. By substituting parameters 

from the datasheet, the model can be enumerated. Further improvements can then be made to the 

model by utilizing solutions for 𝑅𝑠ℎ and 𝑅𝑠  obtained to better model or represent items estimated 

earlier. The nominal photocurrent for one can be re-evaluated as  

 
𝐼𝑝ℎ,𝑛 =

𝑅𝑠ℎ + 𝑅𝑠
𝑅𝑠ℎ

. 𝐼𝑠𝑐,𝑛 (3.12) 

From which,  𝐼𝑝ℎ which is light dependent can be rewritten as, 

 
𝐼𝑝ℎ = (

𝑅𝑠ℎ + 𝑅𝑠
𝑅𝑠ℎ

. 𝐼𝑠𝑐,𝑛 + 𝐾𝐼∆𝑇)𝐺/𝐺𝑛  

 

(3.13) 

3.3.3 Solar Array Model 

A single cell does not produce enough power to be of significant use, as such the cells are 

connected in a series parallel configuration to produce enough power at the required working 

voltage. Such configuration of cells is called a module. A panel would constitute one or more PV 

modules factory assembled and pre wired ready for field installation, they are usually sold 

commercially at set sizes by wattage say 120 W, 200W or 250W etc. A similar series parallel 

configuration of panels forms an array and is the generating unit of a solar PV plant. The wattage 

rating of a PV module is usually the maximum DC power output in watts under standard test 

conditions defined by a standard cell operating temperature of 25C and incident irradiance level 

of 1000𝑊/𝑀2. 

Thus for 𝑁𝑝 parallel circuits and  𝑁𝑠  Series circuits, the equivalent model equation for the array 

becomes, 

 

𝐼𝑎𝑟 = 𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼𝑠 [exp(

𝑞
𝑘𝑇
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1]

−
𝑉𝑚𝑝𝑁𝑝 + 𝑅𝑠𝐼𝑚𝑝𝑁𝑝

𝑅𝑠ℎ
 

(3.14) 

The peak array power can be presented as  
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𝑃𝑚𝑎𝑥,𝑎𝑟 = 𝑉𝑚𝑝𝑁𝑝 {𝐼𝑝ℎ − 𝐼𝑠 [exp(

𝑞
𝑘𝑇
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1]

−
𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝

𝑅𝑠ℎ
} 

(3.15) 

The nominal power of the array at a given operating voltage  𝑉𝑛  is thus determined as  

 

𝑃𝑛,𝑎𝑟 = 𝑉𝑛𝑁𝑝 {𝐼𝑝ℎ − 𝐼𝑠 [exp(

𝑞
𝑘𝑇
(𝑉𝑛 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1]

−
𝑉𝑛 + 𝑅𝑠𝐼𝑚𝑝

𝑅𝑠ℎ
} 

(3.16) 

The critical required parameter in studies of optimal unit sizing for a hybrid power system is the 

number of PV modules to deploy in the array. This is given by 𝑁𝑝.  Thus for a known required 

amount of power to be supplied by solar, then   

 
𝑁𝑝 =

𝑃𝑃𝑉

𝑉𝑛 {𝐼𝑝ℎ − 𝐼𝑠 [exp(

𝑞
𝑘𝑇
(𝑉𝑛 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1] −

𝑉𝑛 + 𝑅𝑠𝐼𝑚𝑝
𝑅𝑠ℎ

}

 
(3.17) 

Assuming a maximum power point tracker of efficiency   𝜂𝑚𝑝𝑝𝑡 then, 

We can assume, all operating points will be at the determined maximum power point minus the 

losses of the tracker thus, 

 𝑃𝑛,𝑎𝑟 = 𝜂𝑚𝑝𝑝𝑡  × 𝑃𝑚𝑎𝑥 (3.18) 

Consequently, 

 𝑁𝑝

=
𝑃𝑃𝑉

𝑉𝑚𝑝𝜂𝑚𝑝𝑝𝑡 {𝐼𝑝ℎ − 𝐼𝑠 [exp (

𝑞
𝑘𝑇
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1] −

𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝
𝑅𝑠ℎ

}

 

 

(.319) 

More completely, the number of modules required will be  
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 𝑁𝑝

=
𝑃𝑃𝑉

𝑉𝑚𝑝𝜂𝑚𝑝𝑝𝑡 {(
𝑅𝑠ℎ + 𝑅𝑠
𝑅𝑠ℎ

. 𝐼𝑠𝑐,𝑛 + 𝐾𝐼∆𝑇)𝐺/𝐺𝑛  − 𝐼𝑠 [exp (

𝑞
𝑘𝑇
(𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝)

𝑎𝑁𝑠
) − 1] −

𝑉𝑚𝑝 + 𝑅𝑠𝐼𝑚𝑝
𝑅𝑠ℎ

}

 

 

(3.20) 

Of course it is imperative that 𝑁𝑝 be an integer, and if a mixed number value is obtained, this 

should be rounded up to the nearest integer. 

3.3.4 Modelling Power Output of a Kyocera KD 200 SX Series Panel 

A sample commercially available solar panel is then modelled below, with the model parameters 

obtained from the panel datasheet [58] an excerpt of which is presented on Table 3-1 . This model 

is chosen due to its extensively informative datasheet useful for modelling the PV generator. It is 

also the choice of several authors and is a popular choice in field application as well.  

Table 3-1: Kyocera KD 200 SX Parameters 

Parameter Value  (Units) 

𝑷𝒎𝒂𝒙 200.143 (W) 

𝑽𝒎𝒑 26.3 (V) 

𝑰𝒎𝒑 7.61 (A) 

𝑽𝑶𝑪 32.9 (V) 

𝑰𝑺𝑪 8.21 (A) 

𝑷𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 +7/−0 (%) 

𝐾𝑉 −0.1230 V/ K 

𝐾𝐼 0.0032 A/K 

𝑁𝑠 54 

Calculated parameters based on the Algorithm of Villalva et al result in the following additional 

parameters presented on Table 3-2 for the model at STC. 

Table 3-2: Calculated parameters for the Kyocera KD 200 SX 

Parameter Value  (Units) 



 

-48- 

 

𝐼𝑠,𝑛  9.825 × 10−8  𝐴 

𝐼𝑝𝑣 8.214  𝐴 

𝑎 1.3 

𝑅𝑠ℎ 415.405 Ω 

𝑅𝑠 0.221Ω 

According to [32] assuming the PV arrays are equipped with MPPT trackers then for modelling 

simplicity, the equation below sufficiently models the array power output. 

 𝑃𝑃𝑉(𝑡) = 𝑓𝑃𝑉𝑃𝑃𝑉𝑅
𝐺(𝑡)

𝐺𝑆𝑇𝐶
(1 +∝𝑇 (𝑇(𝑡) − 𝑇𝑆𝑇𝐶)) (3.21) 

Where, 

The output power of the panel array at time instance 𝑡  is 𝑃𝑃𝑉(𝑡) , the rated power of which 

is 𝑃𝑃𝑉𝑅 , the derating factor considering shading and wiring losses is 𝑓𝑃𝑉  . The inputs to the model 

are the temperature at time instance  𝑡 represented by  𝑇(𝑡) and the solar radiation represented by 

 𝐺(𝑡). 𝐺𝑆𝑇𝐶  , and 𝑇𝑆𝑇𝐶  respectively are the solar radiation and temperature for the panel at standard 

test conditions. ∝𝑇 , is the temperature coefficient which is provided by the manufacturer’s 

datasheets. 

The de-rating factor 𝑓𝑃𝑉 is determined from solar PV modelling best practice [59]. It is assumed 

in this research that shading is negligible and hence is not accounted for in determination of 𝑓𝑃𝑉. 

This is somewhat true for utility scale PV applications as the layout can be such that shading from 

adjacent panels is eliminated or minimized by proper spacing, whereas that due to features in the 

topography of the surrounding site avoided by proper site selection and preparation. The remaining 

contributing factors are summarized in Table 3-3 below. 

Table 3-3: Panel derating factors 

Parameter Value 

AC wiring 99.00% 

Array soiling 95.00% 

DC wiring 98.00% 

Diodes and Connections 99.50% 

Inverter and transformer 92.00% 

Mismatch 98.00% 
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Panel de-rating factor, 𝑓𝑃𝑉 82.68% 

3.4 Wind Turbine Generator Model 

Wind turbine technology is maturing fast and the penetration of wind in electric grids has been on 

a steep increase with some countries such as Germany shutting down conventional fossil fuel and 

nuclear powered plants in favor of renewable energy generation via wind and solar. However as 

Literature cited by [59] indicates, increasing penetration of wind in electricity grids has brought 

with it concerns on its effect on the stability of the grid. 

To this end, a lot of work has gone into developing wind turbine models intended for use in grid 

stability studies. Most of these models so far have been manufacturer specific which unfortunately 

implies that they are subject and limited to terms of non-disclosure agreements. This has impeded 

sharing and open development of these models [59]. In recent times however, newer work keen 

on developing generic open wind turbine models have emerged. These include but are not limited 

to [60] [61] [62] [63] [64] [65] [59] [66]. The general objective for these works has been 

development of wind turbine models suitable for stability and transient analysis in power systems. 

In this research more simplistic models are required for mapping out available wind resource 

quantified in terms of wind speeds to energy generation potential based on specific class of wind 

turbine generators. 

3.4.1 Power in Wind 

The power in wind can be evaluated from Newton’s second law of motion as highlighted in [60]. 

 𝐹 = 𝑚𝑎 (3.22) 

Where 

𝐹 , is exerted force; 

𝑚 , is mass of air; 

𝑎 , the acceleration of the mass of air. 

From which, 

 𝐸 = 𝑚 × 𝑎 × 𝑠 (3.23) 

But 

 𝑣2 = 𝑢2 + 2𝑎𝑠 (3.24) 
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Or 

 
𝑎 =

𝑣2 − 𝑢2

2𝑠
 (3.25) 

Assuming initial velocity 𝑢 as zero then 𝑎 =
𝑣2

2𝑠
  substituting in equation (3.23)(3.25) then, 

 
𝐸 =

1

2
× 𝑚 × 𝑣2 (3.26) 

Power in wind is thus formulated as 

 
𝑃 =  

𝑑𝐸

𝑑𝑡
=
1

2

𝑑𝑚𝑣2

𝑑𝑡
=
1

2
𝜌 × 𝐴 × 𝑣3 (3.27) 

However, actual mechanical power extracted by turbine blades from the wind is evaluated from 

the difference between the upstream and downstream wind speeds. Thus, 

 
𝑃 =

1

2
× 𝜌 × 𝐴 × 𝑣𝑤(𝑣𝑢

2 − 𝑣𝑑
2) (3.28) 

𝑣𝑢  , is the upstream wind speed in 𝑚/𝑠 while 𝑣𝑑 is the downstream wind speed. These two 

together give rise to the blade tip speed ratio an important metric in wind engineering. This will 

be demonstrated later. Also, 𝑣𝑤 =
𝑣𝑢+𝑣𝑑

2
  thus  

 
𝑃 =

1

2
× 𝜌 × 𝐴 × (

𝑣𝑢 + 𝑣𝑑
2

)(𝑣𝑢
2 − 𝑣𝑑

2) (3.29) 

 

𝑃 =
1

2
 { 𝜌𝐴𝑣𝑢

3 ×
(1 +

𝑣𝑑
𝑣𝑢
)(1 − (

𝑣𝑑
𝑣𝑢
)
2

)

2
} 

(3.30) 

or 

 
𝑃 =

1

2
  𝜌𝐴𝑣𝑢

3𝐶𝑝 (3.31) 

where  

 

𝐶𝑝 = 
(1 +

𝑣𝑑
𝑣𝑢
)(1 − (

𝑣𝑑
𝑣𝑢
)
2

)

2
 

(3.32) 

𝐶𝑝  , is referred to as the turbine power coefficient or coefficient of performance, and its varies 

with the blade tip speed ratio and the blade pitch angle 𝛽. The blade tip speed ratio is given as  
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 𝜆 =
𝑣𝑢
𝑣𝑑

 (3.33) 

And the blade pitch angle 𝛽 is as illustrated in Figure 3-9  [63]. 

 

Figure 3-9: Cross-section of wind turbine blade airfoil and relevant angles 

3.4.2 Ideal Wind Turbine 

Power calculation for an ideal turbine as in [65] assumes a circular tube of air flow through an 

ideal turbine as illustrated in Figure 3-10  

 

Figure 3-10: Circular airflow through an ideal turbine 
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Then under optimal conditions, 

 
𝑣𝑤2 = 𝑣𝑤3 =

2

3
𝑣𝑤1  (3.34) 

 
𝑣𝑤4 =

1

3
𝑣𝑤1 (3.35) 

 
𝐴2 = 𝐴3 =

3

2
𝐴1 (3.36) 

 𝐴4 = 3 𝐴1 (3.37) 

Thus the mechanical power extracted can be given as 

 𝑃𝑚,𝑖𝑑𝑒𝑎𝑙 = 𝑃1 − 𝑃4 (3.38) 

 
𝑃𝑚,𝑖𝑑𝑒𝑎𝑙 =

1

2
𝜌(𝐴1𝑣𝑤1

3 − 𝐴4𝑣𝑤4
3 ) =  

1

2
𝜌 (
8

9
𝐴1𝑣𝑤1

3 ) (3.39) 

 

Expressed in terms of undisturbed wind speed, 

 
𝑃𝑚,𝑖𝑑𝑒𝑎𝑙 =

1

2
𝜌 [
8

9
(
2

3
𝐴2) 𝑣𝑤1

3 ] =
1

2
 𝜌 (

16

27
 𝐴2𝑣𝑤1

3 ) (3.40) 

This shows that an ideal turbine cannot extract more than 59.3% of the power in an undisturbed 

tube of air [65] and the factor 
16

27
= 0.593  is referred to as the Betz coefficient. 

The existing models of various wind turbine classes are examined in order to develop the 

simplified model needed for this work. 

3.4.3 Practical Wind Turbines 

Practical turbines do not reach the 59.3% limit that can be achieved by an ideal turbine in extracting 

power from the wind. In fact practical turbine depending on the type can only extract between 10 

and 40% of the power in the wind. Fractions of between 35 and 40% are considered good although 

fraction as high as 50% have been claimed according to [65]. 

Practical wind turbines can be classified according to their rotor axis orientation. This yields two 

categories of wind turbines. These are vertical axis and horizontal axis type turbines. Vertical axis 

type turbines are usually setup in urban environments are typically of small capacity compared to 

available horizontal axis turbines. The advantage to vertical axis wind turbines is that they are able 

to take advantage of wind blowing in any direction. Their key disadvantage however is that 
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massive amount of vibrations are set to the supporting structures hence need for reinforced 

structures. Horizontal axis turbines are the most popular in this classification in terms of 

commercial deployment. 

Horizontal Axis Wind Turbines (HAWT) are further classified into 4 classes. 

Type 1 Turbines, are also known as fixed speed wind turbines [59]. They are the most basic type 

of utility scale wind turbines and are referred to as fixed because they operate within 1% variation 

of the rated rotor speed. Squirrel cage machines directly connected to the grid are usually 

employed. Their main advantage is that they are low cost, robust, reliable and simple to maintain 

[59].  Their key disadvantage is their sub-optimal performance in terms of power extraction this is 

because in most cases wind speed varies well beyond the acceptable variance for these turbines. 

Figure 3-11 is a representation of type 1 wind turbines. 

 

Figure 3-11: A type 1 (Fixed Speed) Wind Turbine 

Type 2 Turbines are also known as variable slip wind turbine generators [59]. They resemble type 

1 wind turbines in most respects but are however able to generate rated power at higher than rated 

wind speeds. They are thus known as variable speed wind turbines as the range of speeds within 

which the turbine can continue generating rated power is large. These machines usually employ 

wound rotor induction machines with external rotor resistance which is used to regulate power 
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output. A clear advantage here is the ability to harness the power in wind with speeds above the 

rated rotor speed.  Figure 3-12 is a representation of a type2 wind turbine.  

 

Figure 3-12: Type 2 (Variable- slip) Wind Turbine 

Type 3 Turbines are also known as doubly fed induction generators (DFIG). DFIGs have emerged 

as the preferred technology for Wind Power Plants [59]. DFIGs are similar to conventional wound 

rotor induction generators albeit with additional external power electronics circuitry on the rotor 

and stator windings to optimize the wind turbine operation [61]. A three-phase supply voltage at 

the power system frequency typically feeds the stator winding. The rotor winding is separately 

powered via a back to back (AC-DC-AC) converter at the desired system frequency. This circuit 

process only the slip power, and because this is only a fraction of the rated turbine output, the 

converter circuit need only be rated at about 20%-30% of the rated turbine output. According to 

[59] DFIGs present the below advantages over Type 1 and 2 WTGs. 

 They enable independent active and reactive power control. 

 They can utilize wind speeds ±30% of rates wind speed to generate power with minimal 

slip losses. 

 They have maximized aerodynamic power extraction. 

 They can be controlled to reduce mechanical stress. 

Figure 3-13 is a representation of a type 3 (DFIG) wind turbine. 
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Figure 3-13: Type 3 (DFIG) wind turbine 

Type 4 Turbines are also known as Full Converter Wind Turbines (FCWT), the most popular of 

which employ a permanent magnet alternator (PMA). These turbines present a number of 

advantages over other types earlier mentioned key among them according to [59] being. 

 Decoupling of the generator from the grid hence improving fault response 

 Larger wind speed operation range for the turbine 

 More headroom to supply reactive power to the grid. 

 For FCWT using PMAs, the absence of rotor windings reduces excitation losses and the 

need for slip rings which translates in reduced maintenance requirements. This is a key 

advantage especially for offshore installations. 

FCWTs however compared to DFIGs and the other types of wind turbines are more costly as the 

full converter is connected to the stator and must process / handle the entire rating of the turbine. 

Figure 3-14 is a representation of a type 4 wind turbine. 
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Figure 3-14: Type 4 (Full Converter) Wind Turbine 

3.5 Wind Turbine Model 

A simplistic yet realistic model is required that follows the typical characteristics of a practical 

turbine. i.e. 

 If the wind speed range is below the cut-in speed for the turbine, then output power is 

zero. 

 If the wind speed range is between the cut-in and the rated speed for the turbine, then the 

power output is the maximum extractable from the wind based on the 𝐶𝑝 and wind speed 

relation for the turbine. 

 If the wind speed range is between the rated and cut-out speed for the turbine, then the 

power generated is the rated output of the plant. 

 If the wind speed range is above the cut-out speed, then the power generated is zero. 

Governing equations earlier developed are used with realistic experimental 𝐶𝑝 figures from a 

datasheet of an actual wind turbine. 

The model block is represented in Figure 3-15 below. 
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Equation (3.41) governs the power output as derived by the model, however for computational 

efficiency, equation (3.42) can be used without loss of meaning as a consequence of its implicit 

generalization.  

 

𝑃 =

{
 
 

 
 
0                                       0 ≤ 𝑣𝑢 < 𝑣𝑖𝑛
1

2
  𝜌𝐴𝑣𝑢

3𝐶𝑝                    𝑣𝑖𝑛 ≤ 𝑣𝑢 ≤ 𝑣𝑟

𝑃𝑟                                   𝑣𝑟 ≤ 𝑣𝑢 < 𝑣𝑜𝑢𝑡
0                                            𝑣𝑢 ≥ 𝑣𝑜𝑢𝑡

 

 

(3.41) 

 

𝑃 =

{
 
 

 
 
0                                       0 ≤ 𝑣𝑢 < 𝑣𝑖𝑛

𝑃𝑟
𝑣𝑢 − 𝑣𝑖𝑛
𝑣𝑟 − 𝑣𝑖𝑛

                     𝑣𝑖𝑛 ≤ 𝑣𝑢 ≤ 𝑣𝑟

𝑃𝑟                                   𝑣𝑟 ≤ 𝑣𝑢 < 𝑣𝑜𝑢𝑡
0                                            𝑣𝑢 ≥ 𝑣𝑜𝑢𝑡

 

 

(3.42) 

 

where 𝑃𝑟, is the rated power output of the wind turbine, 

𝐶𝑝(𝑣𝑢), is the coefficient of performance of the turbine, simplistically modelled from the turbine 

datasheet to be a function of wind speed only, 

𝑣𝑢, is the prevailing incident wind speed adjusted to mast height, 

𝑣𝑖𝑛, is the cut-in speed of the wind turbine taken from the turbine datasheet. 

𝑣𝑟, is the rated speed of the turbine taken from the turbine datasheet. 

𝑣𝑜𝑢𝑡, is the cut-off / out speed of the turbine taken from the turbine datasheet. 

Wind Turbine 
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Wind Speed 

Data adjusted 

to Mast Height

Turbine 
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Figure 3-15: WTG model block diagram  
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3.6 Energy Storage 

Interest in energy storage is surging in recent times as a consequence of a confluence of industry 

drivers such as increased deployment of renewable energy generation, demands large investments 

on grid infrastructure for reliability and mini-grid initiatives and high capital cost of managing 

peak grid [67].  

An energy storage scheme is a technology or device that can take in energy in a charging process 

and hold this energy for some finite time and later release this energy in a discharging process 

when required. Energy storage systems are diverse and of different natures. Some scheme involve 

conversion of energy from one form to another whereas others don’t.  In general all practical 

energy storage schemes involve some energy loss, consequently different schemes have different 

efficiencies. 

The two fundamental characteristics of an energy storage scheme are: 

 The Power Rating of the Scheme / Discharge Capacity: Refers to the maximum amount 

of power that can be drawn from the scheme during discharge when properly configured. 

 The Energy Rating of the Scheme / Storage Capacity; Refers to the amount of energy that 

can be stored in the scheme. This is usually specified in either KWh or Ah, but both have 

the same inference. 

Subsequently, [68] identifies two main applications of energy storage systems as being Energy 

applications – discharge over periods of hours and corresponding long charging periods and Power 

application – short discharge periods (seconds to minutes) and short recharging periods resulting 

in many cycles over a day. 

For application in micro grids and for hybrid renewable energy systems, various Energy Storage 

technologies have appeared in literature. These technologies include Battery Energy Storage 

Systems (BESS), Flywheel Energy Storage (FES), Compressed Air Energy Systems (CAES), 

Pumped Hydro Storage (PHS), Ultra Capacitors (UC), Super Magnetic Energy Storage Systems 

(SMES) and Hydrogen.  Each is briefly highlighted below; 

3.6.1 Battery Energy Storage Systems (BESS) 

Include an array of different electrochemical technologies for energy storage such as Lead Acid, 

Nickel Cadmium, Sodium Sulphur, Lithium Ion etc. Battery energy storage technologies are very 
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versatile and can be used for both power and energy applications depending on the specific 

technology. They are also the easiest to scale down for portable applications as is seen with 

Lithium Ion (Li-Ion) batteries on virtually every portable electronic gadget today. Their biggest 

downside so far has been cost. Their applications depending on type range from power supply for 

electric vehicles, energy smoothing from renewable energy sources such as wind and solar, voltage 

support and frequency stabilization, provision of spinning reserve, power quality improvement, 

ramp control and curtailment mitigation. 

3.6.2 Flywheel Energy Storage Systems (FES) 

In these energy storage systems, a rotor is rotated to a very high speed. The energy capacity of a 

flywheel is the maximum speed it can attain. A typical FES would consist of a rotor / flywheel and 

a generator/ motor combination set in vacuum on magnetic or mechanical bearings. When the 

supply exceeds demand, the flywheel picks up speed and stores this extra energy in form of 

rotational energy. When demand exceeds supply or in the absence of supply the kinetic rotational 

energy spins the generator to supply back power. In grid setups they are mainly used in power 

applications and in frequency stabilization. They also feature in the automotive and aviation 

industries. 

3.6.3 Compressed Air Energy Storage Systems (CAES) 

These plants compress air and store it under pressure in underground caverns. During the stored 

energy recovery phase the compressed air is then heated and expanded in an expansion turbine to 

drive a generator for electricity production. The compression stage results in the air heating up, in 

diabatic systems this energy is lost and the compressed air has to be heated by say natural gas in 

the expansion turbine to drive generators which produce electricity. The two large scale plants in 

existence are of this type. In adiabatic CAES systems, the heat energy generated during the air 

compression stage that is usually lost is recovered and later used in the stored energy recovery 

phase to reheat the compressed air being expanded. These storage schemes depend on the existence 

of natural caverns for storing the compressed air and their energy storage capacity depends on the 

cavern size. Their key applications are in grid energy storage and energy arbitrage. A stellar 

example of a CAES is the 321MW Huntorf plant in Germany, able to reach its rated output power 

of 321 MW in 6 minutes and supply this for up to 2 hours. Smaller capacity applications are also 

available using artificial pressurized containers for storage of air and have applications in 

automotive (locomotive) industry. 
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3.6.4 Pumped Hydro Storage (PHS) 

This is a very mature energy storage application that involves pumping of water from a lower 

reservoir to a higher level reservoir. Its power rating is based on the nameplate rating of the turbine 

/ pumps usually determined from the design discharge up or down the reservoirs and the elevation 

differences between the reservoirs. PHS is highly dependent on geography, i.e. availability of 

water to pump, and availability of naturally occurring reservoirs within close proximity and at an 

elevation difference. Where the terrain and geography allow, PHS tend to be the largest scale 

energy storage systems both in terms of energy and power rating, however such locations are 

limited around the globe. Their key applications are in grid energy storage and in energy arbitrage. 

3.6.5 Hydrogen  

Hydrogen has been proposed in various research and experimented on as a potential energy storage 

system. The concept is relatively straight forward and simple. Excess energy e.g. that generated 

by wind farms is used to electrolyze water to produce hydrogen. Hydrogen is then stored and later 

used as a fuel either in fuel cells or combusted to drive engines or generate steam that turns turbines 

that in turn drive generators that produce electricity. The application are very versatile especially 

when the hydrogen generation and recovery of energy stored in it are decoupled. It then can be 

applied in hydrogen vehicles or as fossil fuel substitute etc. The key challenge with this scheme 

are the low efficiencies and difficulties in storing hydrogen gas. It is also only applicable for energy 

applications. 

Other Schemes mentioned in literature but not explored here are Ultra-Capacitors and Super 

Capacitors and Super Magnetic Energy Storage Systems (SMES). These are not dealt with as the 

technologies are very new and not well proven especially for grid applications.  

3.6.6 Criteria for Selecting an Energy Storage Scheme 

As each energy storage scheme has its advantages and disadvantages and an inherent proper 

application, it is imperative that on a case by case a qualitative and quantitative criteria be 

developed and observed for selecting the appropriate energy storage scheme to use. Barin et. al. 

[69], developed a multiple criteria analysis for selecting the most appropriate energy storage 

system from a power quality perspective. From their work it is emergent that the intended 

application be clear first then therefrom a criterion can be developed. In their work, FES and Li-

ion emerged as the preferred technologies as determined by an Analytic Hierarchy Process (AHP) 

and fuzzy logic approach.  
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The qualitative criteria they considered included  

 Load management in consideration of load following and load levelling, which will also 

be a consideration in this study. 

 Maturity of the technology from a technical standpoint, also a consideration in this study 

 Environmental Impact and  

 Power quality 

The quantitative criteria they considered included 

 The roundtrip efficiency, also considered in this study. 

 The cost of the technology in US $ per kW, also considered in this study. 

In addition to the criteria listed above, other criteria considered in this study include: 

 The technology lifetime an important factor in determining lifecycle costs of a 

technology 

 Feasible power rating and 

 Feasible energy rating (in terms of discharge time) 

The result of this review is presented on Table 3-4, Table 3-5, Table 3-6 and Table 3-7. 

Table 3-4: Large scale energy storage systems comparison 
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Table 3-5: Large scale energy storage systems, technical characteristics  

 

 

Table 3-6: Technical suitability of large scale energy storage systems 

 

 

Table 3-7: Large scale energy storage systems, economic and environmental characteristics 

 

From which it is clear that a 

battery energy storage system 

would be the favored option due 

to its versatility. However as there 

are various battery energy storage 

solutions the appropriate battery 

energy storage technology also needs to be selected. Below is an overview of battery storage 

technologies. 
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3.7 Generic Model of a Battery Energy Storage System. 

BESS modelling is necessary to predict given a set of parameter the operational characteristics of 

a given battery. The parameters determining the operational characteristics of a battery include: 

the Discharge rate, charge rate, battery age, battery type and temperature [71]. 

Two classes of battery models are explored here: 

 The electrochemical model and 

 The equivalent circuit model. 

Electrochemical models are usually more precise and complex as they take into account the 

chemical, thermodynamic and physical qualities of the batteries. They are not considered in this 

research, however a short overview can be found in [71]. 

Equivalent circuit models are usually used in circuit modelling software as they are usually much 

easier to model. Two classes exist, dynamic – where the primary parameter; voltage, charge, 

current and temperature all vary as a function of one another and static -where primary parameters 

are predetermined and then remain constant through the simulation. 

Simpler generic equivalent circuit models are documented in [72] and include the ideal model, the 

linear model and the Thevenin model. 

The ideal model, Figure 3-16 is characterized only by an 

ideal voltage source and does not factor in internal battery 

resistance. 

The linear model, 

Figure 3-17 

includes to the ideal model a series resistance to model the 

battery internal resistance.  

The Thevenin model, Figure 3-18 improves on the linear 

model by addition of an RC circuit in series with the series resistance that models the battery 

internal resistance. The resistor in parallel with the capacitor 

is referred to as an overvoltage resistor. 

Additionally specific models have been developed for the 

different battery types usually taken in to account the various 

Figure 3-16: Ideal Model 

Figure 3-18: Thevenin Model 

Figure 3-17: Linear Model 
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behavioral characteristics of the battery types. These have not reached perfection yet but can be 

reliably used in modelling BESS with better accuracy than the generic models mentioned above 

[71]. Examples include a Lead Acid model developed in [73], a Sodium Sulphur model developed 

in [74] and a Zinc Bromine battery model developed in [75].  

3.8  The Kinetic Battery Model (KiBaM) 

This model developed by Manwel and McGowan [76] is based on a chemical kinetic process. It 

models the battery charge as distributed over two tanks: an available energy tank and a bound 

energy tank. The available energy tanks supplies electrons directly to the load as its energy is 

available. The bound energy tanks contains energy that is still chemically bound and can only 

supply electrons to the available energy tank. This model is simple and particularly useful at 

modeling batteries where the state of charge and depth of discharge are important. The maximum 

battery capacity 𝑄𝑀𝐴𝑋 is the sum of the capacity of the available energy  𝑄𝐴 and bound energy 𝑄𝐵. 

 𝑄𝑀𝐴𝑋 = 𝑄𝐴 + 𝑄𝐵 (3.43) 

and 

 
𝑐 =

𝑄𝐴
𝑄𝑀𝐴𝑋

 (3.44) 

 

The conductance between the two tanks, and indication of the rate at which charge flows between 

the two states is dependent on a parameter 𝑘 as well as the height difference between the two tanks 

[77]. The ratio of the capacities of the two tanks is expressed as 𝑐.  

The change of charge in both tanks is given by the following system of differential equations, 

 𝑑𝑄𝐴
𝑑𝑡

=  −𝐼 + 𝑘( ℎ𝐵 − ℎ𝐴) (3.45) 

 𝑑𝑄𝐵
𝑑𝑡

= −𝑘( ℎ𝐵 − ℎ𝐴) (3.46) 

With initial conditions, 𝑄𝐴(0) = 𝑐. 𝑄𝑀𝐴𝑋  and 𝑄𝐵(0) = (1 − 𝑐). 𝑄𝑀𝐴𝑋 for ℎ𝐴 =
𝑄𝐴

𝑐
  and ℎ𝐵 =

𝑄𝐵

1−𝑐
   on application of a load 𝐼 , the available charge reduces and the height difference between the 

two tanks increases. Charge only flows back from the bound energy tank to the available energy 

tank when the load 𝐼 is removed. Eq. (3.45) and (3.46) can be solved using Laplace transforms 

which results in; 
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𝑄𝐴 = 𝑄𝐴

0
𝑒−𝑘∆𝑡 +

(𝑄𝑀𝐴𝑋
0
𝑘′𝑐 − 𝐼 )(1 − 𝑒−𝑘

′𝑡)

𝑘′
+
𝑐𝐼(𝑘′∆𝑡 − 1 + 𝑒−𝑘

′∆𝑡)

𝑘′
 (3.47) 

 

 𝑄𝐵−𝑒𝑛𝑑 = 𝑄𝐵
0
𝑒−𝑘

′∆𝑡 + 𝑄𝑀𝐴𝑋
0
(1 − 𝑐)(1 − 𝑒−𝑘

′∆𝑡)

+
𝐼(𝑐 − 1)(𝑘′∆𝑡 − 1 + 𝑒−𝑘

′∆𝑡)

𝑘′
 

(3.48) 

Where 𝑄𝑀𝐴𝑋
0
= 𝑄𝐴

0
+ 𝑄𝐵

0
 and are the charge quantities at 𝑡 = 0  

A linear model as in Figure 3-17 is used to model the terminal voltage of the battery, thus 

 𝑉𝐵𝐸𝑆𝑆 = 𝐸 − 𝐼𝑅𝑂 (3.49) 

Where the discharge current is 𝐼 and  𝐸 the internal voltage and 𝑅0 is the internal resistance. The 

internal voltage is expressed as; 

 
𝐸 = 𝐸0 + 𝐴𝑋 +

𝐶𝑋

𝐷 − 𝑋
 (3.50) 

The initial linear variation of battery voltage with state of charge is represented by the parameter 𝐴. 

The decrease in battery voltage with progressive discharge of the battery is represented by the 

parameter 𝐶 and 𝐷 whereas 𝑋 represents the normalized charge removed from the battery. 

These parameters are usually obtained from battery discharge curves, hence this model has to be 

modified for the different batteries available [77]. 

The BESS’s state of charge is determined as: 

 
𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1)(1 −

𝜎∆𝑡

24
) +

𝑃𝑊𝑇𝐺(𝑡) + 𝑃𝑃𝑉𝐺(𝑡) − 𝑃𝐿(𝑡)

𝐶𝐵𝐸𝑆𝑆𝑉𝐵𝐸𝑆𝑆
 (3.51) 

Eq. (3.64) is used to update the state of charge of the BESS at the end of each time step. 

Where the battery self-discharge rate is given by 𝜎 and ∆𝑡 is the length of the time step, 𝐶𝐵𝐸𝑆𝑆 is 

the BESS capacity in Ampere hours and 𝑉𝐵𝐸𝑆𝑆 the terminal battery voltage as defined in  eq.(3.49). 

The State of charge is an energy ratio hence cannot be plugged in directly to a power flow equation. 

It would be necessary to multiply it with the BESS energy rating. For simplicity in calculation, the 

researcher makes an assumption here that the BESS is able to deliver constant power over the 

duration of the time step (1 hour), the internal self-discharge rate is also ignored as it is negligible 

relative to the other quantities (depends on the battery technology but typically assumed at 0.2% 

per day for generic models [78]), while not the case in reality it greatly simplifies computational 

requirements without adversely affecting the results. With this assumption, the power rating and 
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the energy rating in a time step are equally treated. Thus the corresponding available power flow 

from the BESS can be determined as; 

 𝑃𝐵𝐸𝑆𝑆(𝑡) = (𝑆𝑂𝐶(𝑡) + 𝐷𝑂𝐷𝑀𝐴𝑋 − 1) × 𝑃𝐵𝐸𝑆𝑆_𝑟𝑎𝑡𝑒𝑑 (3.52) 

In this expression, 𝐷𝑂𝐷𝑀𝐴𝑋 is the maximum depth of discharge and is the equivalent of the 

absolute minimum state of charge for the proper functioning of the BESS. It varies with the BESS 

technology used. 

The BESS charge-discharge algorithm can thus be written in the form of the pseudo code below; 

1. If  (𝑃𝑃𝑉𝐺 + 𝑃𝑊𝑇𝐺) > 𝑃𝐷 

a. Then , all demand has been met, extra power generated to charge BESS 

b. Update SOC as;𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) (1 −
𝜎∆𝑡

24
) +

𝜂𝑐𝑜𝑛𝑣∗𝑅𝑇𝐸𝐹∗(𝑃𝑃𝑉𝐺+𝑃𝑊𝑇𝐺−𝑃𝐷

𝑁𝐵𝐸𝑆𝑆∗𝑃𝐵𝑅
 

2. Else if (𝑃𝑃𝑉𝐺 + 𝑃𝑃𝑊𝑇𝐺) < 𝑃𝐷 

a. Check if Demand will be met with BESS addition 

b. If  (𝑃𝑃𝑉𝐺 + 𝑃𝑃𝑊𝑇𝐺 + 𝜂𝑐𝑜𝑛𝑣𝑁𝐵𝐸𝑆𝑆𝑃𝐵𝑅(𝑆𝑂𝐶(𝑡 − 1) + 𝐷𝑂𝐷𝑚𝑎𝑥 − 1)) > 𝑃𝐷 

c. Demand has been met 

d. Update SOC as 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) (1 −
𝜎∆𝑡

24
) −

(𝑃𝑃𝑉𝐺+𝑃𝑊𝑇𝐺−𝑃𝐷

𝜂𝑐𝑜𝑛𝑣∗𝑁𝐵𝐸𝑆𝑆∗𝑃𝐵𝑅
 

e. Provided that maximum Depth of Discharge is not violated: thus 

i. If 𝑆𝑂𝐶(𝑡) < 1 − 𝐷𝑂𝐷_𝑚𝑎𝑥 then 

ii. Revert and declare Demand not met, overwrite SOC as 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) (1 −
𝜎∆𝑡

24
) 

3. Else 

a. Demand not met 

b. Nonetheless , update SOC on account of self-discharge as 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) (1 −
𝜎∆𝑡

24
) 

 

 

 



 

-67- 

 

3.9 Load Model 

A hypothetical load model is used. It is derived from data made available to the researcher by the 

national power utility, Kenya Power. The data covers the month of September for the years 2009 

to 2012. It is used to derive a typical metropolitan daily load curve which is plotted in Figure 3-19 

for weekdays and Figure 3-20 for weekends. This data is sufficient as there is very little 

interseasonal variation demand resulting from heating and cooling loads for location close to the 

equator like Nairobi. For improved accuracy, two load curves are used one to represent typical 

weekdays and one to represent typical weekends and holidays. A base consumption figure is 

derived from the data above and adjusted to reflect growth as covered in [79].  

 

Figure 3-19: Demand curve for a typical weekday 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1
2

:0
0

 A
M

1
:0

0
 A

M

2
:0

0
 A

M

3
:0

0
 A

M

4
:0

0
 A

M

5
:0

0
 A

M

6
:0

0
 A

M

7
:0

0
 A

M

8
:0

0
 A

M

9
:0

0
 A

M

1
0

:0
0

 A
M

1
1

:0
0

 A
M

1
2

:0
0

 P
M

1
:0

0
 P

M

2
:0

0
 P

M

3
:0

0
 P

M

4
:0

0
 P

M

5
:0

0
 P

M

6
:0

0
 P

M

7
:0

0
 P

M

8
:0

0
 P

M

9
:0

0
 P

M

1
0

:0
0

 P
M

1
1

:0
0

 P
M

Weekday Demand Curve



 

-68- 

 

 

Figure 3-20: Demand curve for a typical weekend or holiday 

3.10 Problem Formulation 

From the models above, the cost function is derived. It is desired that a technical feasible system 

is sized at a minimum cost. The objective function is thus in this case an economic cost function 

that is constrained with technical boundary conditions. These boundary conditions are discussed 

in the next section. The optimization problem is modelled around one technical index the Loss of 

Power Supply Probability (LPSP) to model system reliability and one economic index the 

Levelized cost of Energy (LCoE) to model cost of energy produced by the system. These are from 

here on referred to as the reliability objective and the cost objective. 

3.10.1 The Reliability Objective 

The Loss of Power Supply Probability (LPSP) introduced in the literature review is used here. 

LPSP is the probability that over a certain period of study, the power demand is not fully met by 

the generated power. Mathematically it is represented as shown below 

 
𝐿𝑃𝑆𝑃 =

∑ [𝑃𝐿(𝑡𝑖) − 𝑃𝐺(𝑡𝑖)]
𝑁
𝑖=1

∑ 𝑃𝐿(𝑡𝑖)
𝑁
𝑖=1

 (3.53) 

The period of consideration is one year in time steps of an hour, hence 𝑁 = 8760 

In the equation above 𝑃𝐿(𝑡𝑖), represents the load at a given time step on hour 𝑖 . 

𝑃𝐺(𝑡𝑖) , in the same equation represents the energy generation from the hybrid power system. In 

actual implementation, 𝑃𝐿(𝑡𝑖) is generated from daily load curves for weekdays and weekends and 
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factors in monthly anticipated load growth as deduced from the 10 year power sector expansion 

plan for Kenya covering the years 2014 – 2024 [79]. This is covered under the load model above. 

 

𝑃𝐺(𝑡𝑖) = {

𝑃𝑊𝑇𝐺(𝑡𝑖) + 𝑃𝑃𝑉𝐺(𝑡𝑖) + 𝑃𝐵𝐸𝑆𝑆(𝑡𝑖)                  … 𝑐𝑎𝑠𝑒 1

𝑃𝑊𝑇𝐺(𝑡𝑖) + 𝑃𝑃𝑉𝐺(𝑡𝑖)                                         … 𝑐𝑎𝑠𝑒 2

𝑃𝑊𝑇𝐺(𝑡𝑖) + 𝑃𝑃𝑉𝐺(𝑡𝑖) − 𝑃𝐵𝐸𝑆𝑆(𝑡𝑖)                  … 𝑐𝑎𝑠𝑒 3

 (3.54) 

 

 Case1, applies when the total power generation from both the wind turbines and solar PV cells is 

less than the load is. The shortfall in power is then met by the stored energy in the batteries. 

Case 2, applies when the total power generation from both the wind turbines and solar PV cells is 

equal to the demand, and 

Case 3, applies when the total power generation from both the wind turbines and solar PV cells is 

greater than the demand, in this case, the surplus power is used to charge the batteries. 

𝑃𝑊𝑇𝐺(𝑡𝑖) , is the power generated by the wind turbines in the time step 𝑖. This is expressed as in 

eq.(3.41) .𝑃𝑃𝑉𝐺(𝑡𝑖) , is the power generated by the solar photovoltaic generator in the time step 𝑖. 

This is expressed as in eq.(3.21) .𝑃𝐵𝐸𝑆𝑆(𝑡𝑖) , is the power flow equation from or to the battery 

energy storage system in the time step 𝑖. This is expressed as in equation (3.54) 

Eq. (3.54) can be further simplified using the Heaviside step function as; 

 𝑃𝐺(𝑡𝑖) = 𝑃𝑊𝑇𝐺(𝑡𝑖) + 𝑃𝑃𝑉𝐺(𝑡𝑖) + 2. 𝑃𝐵𝐸𝑆𝑆(𝑡𝑖). (𝐻(𝑃𝐿 − 𝑃𝑊𝑇𝐺 − 𝑃𝑃𝑉𝐺) −
1

2
) (3.55) 

 

From the definition of LPSP, it is clear that an LPSP of 1 indicates that the load is never met 

whereas that of 0 indicates the load is fully met. The reliability objective is passed as an inequality 

constraint in the minimization of the cost objective. An LPSP of 5 % corresponding to 

approximately 500hrs in a year of unmet demand is chosen as the low threshold for any solution 

to be valid. 

3.10.2 The Cost Objective 

The Levelized Cost of Energy (LCOE) introduced in chapter 1 is used here. The LCOE is a 

convenient metric for measuring the overall cost competitiveness of a generating technology. It 

represents the overall project cost both in terms of overnight capex, operation and maintenance 

cost and discounted negative cash flows, inter alia over the project life divided by the total energy 
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generated by the project over its entire life and is presented as dollars per kWh. In deriving the 

LCOE the following consideration are made: 

Costs; The initial invested capital, operating and maintenance costs (fixed and variable), Financing 

costs, insurance costs, Taxes, Lifecycle or Major replacement costs, decommissioning costs. Etc. 

Rebates and Incentives; Tax credits, Accelerated depreciation (MACRS), Incentives .etc. 

Energy; Annual energy production, annual degradation, system availability. 

The LCOE is then expressed as; 

 
𝐿𝐶𝑂𝐸 =

∑𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑠𝑡𝑠(𝑈𝑆𝐷) − ∑ 𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝑅𝑒𝑏𝑎𝑡𝑒𝑠 (𝑈𝑆𝐷)

∑𝐿𝑖𝑓𝑒 𝐶𝑦𝑐𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 
 (3.56) 

 

Moreover, the LCOE can be expressed either as nominal LCOE or as real LCOE where the real 

LCOE has been inflation adjusted to cater for the macroeconomic factors. In this evaluation the 

LCOE has not been inflation adjusted as its principle purpose is to be a fitness function for 

comparing multiple options in a similar setting which implies the macroeconomic environment 

remains the same hence no need for the adjustment. Furthermore, for efficiency in execution of 

the algorithm a simplified version of the LCOE is used as an objective function. The simplified 

LCOE does not factor in financing costs, insurance costs, future replacements and degradation as 

it is thought that these differences among the options will be marginal yet the savings in terms of 

computational resources will be substantial. The LCOE used is thus expressed as: 

 
𝐿𝐶𝑂𝐸 = [

𝐶𝐶 × 𝐶𝑅𝐹 + 𝐹𝑂𝑀

8760 × 𝐶𝐹
] + 𝐹𝐶 + 𝑉𝑂𝑀 (3.57) 

Where 𝐶𝐶 refers to capital costs in USD/ kW and is deduced as shown in below. 

 
𝐶𝐶 =

𝑁𝑃𝑉
𝑁𝑇𝐼𝐶

𝐶𝐶𝑃𝑉 +
𝑁𝑊𝑇
𝑁𝑇𝐼𝐶

𝐶𝐶𝑊𝑇 +
𝑁𝐵𝐸𝑆𝑆
𝑁𝑇𝐼𝐶

𝐶𝐶𝐵𝐸𝑆𝑆 (3.58) 

From which; 

𝑁𝑇𝐼𝐶  , is the total installed capacity in kW, 

𝑁𝑃𝑉 , is the PV installed capacity in kW, 

𝑁𝑊𝑇 , is the installed capacity of wind turbines in kW, 

𝑁𝐵𝐸𝑆𝑆 , is the power rating of the installed battery energy storage units, 
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And 𝐶𝑅𝐹 is the capital recovery factor. The capital recovery factor is the ratio of a constant annuity 

to the present value of receiving that annuity for a given length of time. In this evaluation  𝐶𝑅𝐹 has 

been based on a nominal discount rate as opposed to a real discount rate as the researcher has 

settled for evaluation of a nominal LCOE. 𝐶𝑅𝐹  , is calculated as shown in the equation below; 

 
𝐶𝑅𝐹 =

𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 (3.59) 

 

Where the nominal annual discount rate is 𝑖 and 𝑛 is the project life in years. 

The other key cost consideration is the operations and maintenance costs (O&M). O&M is divided 

into Fixed and Variable components. The Fixed Operations and Maintenance costs, 𝐹𝑂𝑀 in 

equation (3.57) refers to those O&M costs that relate to the installed capacity of the plant and has 

the units of USD/kW.  

 𝐹𝑂𝑀 =
𝑁𝑃𝑉

𝑁𝑇𝐼𝐶
𝐹𝑂𝑀𝑃𝑉 +

𝑁𝑊𝑇

𝑁𝑇𝐼𝐶
𝐹𝑂𝑀𝑊𝑇 +

𝑁𝐵𝐸𝑆𝑆

𝑁𝑇𝐼𝐶
𝐹𝑂𝑀𝐵𝐸𝑆𝑆  (3.60) 

From which; 

𝑁𝑃𝑉 , 𝑁𝑊𝑇 , 𝑁𝐵𝐸𝑆𝑆, 𝑎𝑛𝑑 𝑁𝑇𝐼𝐶  , retain their definitions from eq.(3.58) above. 

The fixed O&M cost associated with PV technology are represented by 𝐹𝑂𝑀𝑃𝑉. 

The fixed O&M cost associated with wind turbines are represented by 𝐹𝑂𝑀𝑊𝑇𝐺 . 

The fixed O&M cost associated with battery energy storage technology are represented 

by 𝐹𝑂𝑀𝐵𝐸𝑆𝑆. 

 

The other component of the Operations and maintenance costs, the Variable O&M or 𝑉𝑂𝑀 as in 

eq. (3.57) is the O&M component relative to the amount of energy generated by the power plant. 

The Variable O&M costs are defined in a similar manner to eq.(3.60). Thus; 

 
𝑉𝑂𝑀 =

𝐸𝑃𝑉
𝐸𝑇𝐼𝐶

𝑉𝑂𝑀𝑃𝑉 +
𝐸𝑊𝑇
𝐸𝑇𝐼𝐶

𝑉𝑂𝑀𝑊𝑇 (3.61) 

 

From which; 

𝐸𝑇𝐼𝐶  , is the total energy generated in the plant life in kWh, thus 
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 𝐸𝑇𝐼𝐶 = 𝐸𝑃𝑉 + 𝐸𝑊𝑇 (3.62) 

 

𝐸𝑃𝑉 , is the PV generated energy in kWh, 

𝐸𝑊𝑇 , is the energy generated by the wind turbines in kWh, 

The Operations and maintenance costs relating to the battery storage unit are all modelled as Fixed 

O&M. This approach allows for simplicity in evaluation of the objective function. It is also the 

researcher’s postulation that the variable component in the O&M cost for the battery energy 

storage system is negligible compared to the fixed component. 

The Fuel Cost is represented by FC. In this assessment since generation is based on wind and solar, 

for which the energy sources are wind and solar irradiation respectively and which are free and 

abundant in nature, the fuel cost component is thus zero and is eliminated from the implemented 

cost objective function. 

CF in eq. (3.57) refers to the plant capacity factor, evaluated as  

 
𝐶𝐹 =

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦 𝑏𝑦 𝐻𝑅𝐸𝑆(𝑘𝑊ℎ)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑃𝑜𝑤𝑒𝑟 𝑈𝑛𝑖𝑡𝑠 (𝑘𝑊) × 8760
 (3.63) 

 

 
𝐶𝐹 =

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑉 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑊𝑇 + 𝐸𝑛𝑒𝑟𝑔𝑦𝐵𝐸𝑆𝑆
(𝑁𝑇𝐼𝐶) × 8760

 (3.64) 

The cost objective function to be minimized can thus be presented in full as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝐶𝑜𝐸, 

 𝑤ℎ𝑒𝑟𝑒 𝐿𝐶𝑂𝐸

=
((𝑁𝑃𝑉𝐶𝐶𝑃𝑉 + 𝑁𝑊𝑇𝐶𝐶𝑊𝑇 + 𝑁𝐵𝐸𝑆𝑆𝐶𝐶𝐵𝐸𝑆𝑆) × 

𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
) + (𝑁𝑃𝑉𝐹𝑂𝑀𝑃𝑉 + 𝑁𝑊𝑇𝐹𝑂𝑀𝑊𝑇 +𝑁𝐵𝐸𝑆𝑆𝐹𝑂𝑀𝐵𝐸𝑆𝑆)

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑉 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑊𝑇 + 𝐸𝑛𝑒𝑟𝑔𝑦𝐵𝐸𝑆𝑆

+
𝑉𝑂𝑀𝑃𝑉𝐸𝑃𝑉+𝑉𝑂𝑀𝑊𝑇𝐸𝑊𝑇

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑉 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑊𝑇
 

(3.65) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 3.10.3.  
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3.10.3  Boundary Conditions 

These are imposed on the proposed optimal solutions to ensure adherence to physical feasible 

limits and safe operating conditions of the power plant. The following conditions below are 

considered; 

That the reliability objective is met, an inequality constraint is defined as; 

 𝐿𝑃𝑆𝑃𝑖 < 0.05 (3.66) 

A configuration 𝑖 is only a viable candidate solution if its Loss of Power Supply Probability (LPSP) 

is less than 5%. This corresponds only 500 hours annually of unmet demand, much better than the 

existing distribution grids nationally. 

Maximum installed capacity is benchmarked to the demand. A peak demand of 2 MW after 

factoring load growth over a 20 year period is considered. A suitable system configuration would 

then be sought to supply this peak demand at the least cost. Sizing constraints are also applied on 

the individual generation technologies.  

(1) Option 1 – Land Size based Constraints 

The number of wind turbine units is constrained by consideration of losses due to wake effect. 

Thus as developed by [34], for a region with area 𝑆1 , length 𝐿 , and width 𝑊 , the maximum 

number of wind turbines that can be installed is then evaluated as  

 
𝑁𝑊𝑇 ≤ [

𝐿

𝐿𝑀𝑑
+ 1] × [

𝑊

𝑊𝑀𝑑
+ 1] (3.67) 

 

Where 𝐿𝑀 , is a multiplier between 6 and 10 and  𝑊𝑀 is a multiplier between 3 and 5. 

𝑁𝑊𝑇  , is evaluated to 14 units assuming a 10 acre piece of land. 

The maximum number of PV panels will also be constrained by the size of the land acquired for 

the project. Thus assuming a land area 𝑆𝐴 , and a PV panel size 𝑆𝑃𝑉; 

 
𝑁𝑃𝑉  ≤

𝑆𝐴(1 − 𝛼𝐵𝑂𝑃)

𝑆𝑃𝑉
 

 

(3.68) 

The ratio of land size requirements of the balance of plant to the whole plant is represented by the 

factor 𝛼𝐵𝑂𝑃. This based on research documented in [80] has been evaluated at around 0.276. 

This evaluates to 117,430 units based on a 10 acre parcel of land. 
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Minimum installed capacity is set as a lower bound of zero indicating that at least some capacity 

must be installed. 

Battery charge/ discharge constraints are handled using the state of charge. There is a correlation 

between the state of charge and a battery’s state of health. The higher the minimum state of charge, 

the more cycles a battery in proper operating conditions has. The charge / discharge constraints of 

the battery have been modelled into the performance objective function. 

The number of battery units 𝑁𝐵𝐴𝑇, Number of installed panels 𝑁𝑃𝑉  and number of installed wind 

turbines 𝑁𝑊𝑇 are all bound as positive integers. This ensures only true hybrid systems with battery 

storage are considered. 

(2) Option 2 – Algorithm Evaluated Constraints 

A second set of constraints is also applied. These constraints are engineered to constrain the 

optimization algorithm to resolve to minimum in less time. 

The Matlab code written to achieve this is in the appendix. The pseudocode is listed below; 

1. Set BESS units to 0 

2. Run optimal sizing algorithm with random but reasonable upper bounds for wind and solar 

(base case assumptions used) 

3. Iterate through 8760 time steps to work out wind and solar potential 

4. Calculate approximate lower bounds using; 

a. 𝑆𝑜𝑙𝑎𝑟𝐿𝐵 =
𝑆𝑃𝑃𝑉𝐺(1−𝐿𝑃𝑆𝑃)×𝑃𝐿𝑀𝐴𝑋

𝑆𝑃𝑃𝑉𝐺+𝑆𝑃𝑊𝑇𝐺
 

b. 𝑊𝑖𝑛𝑑𝐿𝐵 =
𝑆𝑃𝑊𝑇𝐺(1−𝐿𝑃𝑆𝑃)×𝑃𝐿𝑀𝐴𝑋

𝑆𝑃𝑃𝑉𝐺+𝑆𝑃𝑊𝑇𝐺
 

c. 𝐵𝐸𝑆𝑆𝐿𝐵 = 𝐿𝑃𝑆𝑃 ∗ 𝑃𝐿𝑀𝐴𝑋 

5. Calculate approximate upper bounds using a scale factor of 10 as; 

𝑈𝐵 = 𝐿𝐵 ∗ 𝑆𝐹 

The matrix of lower bounds as determined via this method are listed on Table 3-8. 

Table 3-8: Boundary parameters 

Case DSM Trackers Lower Bounds Upper Bounds 

   Solar  Wind BESS Solar  Wind BESS 

D No No 1,975 4 7,879 19,750 40 7,890 

E Yes No 2,438 4 3,230 24,380 40 32,300 

F Yes Yes 3,041 3 2,103 30,410 30 21,030 
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(3) Base Case 

As the trivial solution would involve, scaling a generation and storage sources to match the load 

plus a margin, upper constraints are set on the installed capacities of the solar PV generation units, 

wind turbine generation units and battery storage system as below; 

The maximum Number of wind turbines, is set to the 1.2 times the maximum demand divided by 

the rated capacity of a single unit. This evaluates to 10 units.  

The maximum number of PV panels is set to 2 times the maximum demand divided by the rated 

capacity of a single unit. This evaluates to 16000 units. 

The maximum number of battery units is calculated at 1 times the maximum demand divided the 

rated power delivery in a single hour of each unit. This evaluates to 23809 units. These parameters 

are listed on Table 3-9. 

Table 3-9: Base case assumptions 

Base Case Assumptions 

Solar  Wind BESS 

16,000 10 23,809 

 

3.11 Flow Chart and Initial Algorithm Parameters 

3.11.1 Process Flow Chart 

The process flow chart for coarse grained parallel genetic algorithms is illustrated on Figure 3-21 
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Figure 3-21: Flow chart CGPAGA 
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3.11.2 Population 

Population is an important parameter in a genetic algorithm implementation. The population 

defines the quality of solution arrived at as well as how good the solution is. A population with a 

large diversity at the earlier generations of the genetic algorithm will ensure exploration of the 

search space. As the search progresses over several generations, the diversity should reduce to 

enable exploitation of a potential region of the search space near the optimal solution. An important 

characteristic of the population is its size; which directly affects the quality of the solutions 

obtained and how fast the algorithm converges towards an optimal solution, however a large 

population will overburden computational resources. A total population of 150 across 5 equal 

demes of 30 members each is applied. The initial population is created randomly but in a manner 

that ensures all bounds and constraints are satisfied. 

3.11.3 Fitness Scaling and Selection 

The selection function is used to select parents for the next generation based on their fitness. The 

fitness function values are scaled using a fitness scaling function to enable easy comparison hence 

selection. Various ways exist to perform fitness function scaling each with its advantages and 

disadvantages. In this work, rank selection is used on account of its simplicity. Rank selection sorts 

the raw fitness function scores and ranks the individuals based on their scores. A roulette wheel 

selection is then used to select the parents for the next generation. In roulette wheel selection, a 

roulette wheel is simulated with the area of each segment of the wheel proportional in expectation 

to that of the individual it represents, a random number then selects one of the segments in a 

manner which like natural selection gives a higher likelihood to the fittest individual being selected 

to pass its gene's to the next generation. 

3.11.4 Reproduction, Elitism, Crossover and Mutation 

The next generation of individuals is produced from the selected parents via the reproduction 

process. In this work, Elitism is used. This is a procedure where by a number of very fit individuals 

(elite) are guaranteed to survive into the next generation. To encourage exploration of the search 

space only the 3 (2% of the initial population) fittest individuals are allowed as elite.  

Crossover then is the procedure by which genetic information from both parents are combined to 

form an offspring. The crossover fraction determines what percentage of the population in the next 
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generation are generated as result of crossover with the remainder being a result of mutation. 

Crossover enables exploitation of the search space and as in real life the crossover fraction is 

usually a large fraction much closer to 1, whereas the mutation fraction is it’s complementary. In 

this work a crossover fraction of 0.98 has been chosen to promote refinement of good solutions 

and discovery of better ones. A heuristic approach is used for the crossover mechanism. This 

approach creates offspring that randomly lie on the line containing the two parents, closer to the 

parent with better fitness values hence generally ensuring an improved fitness over the present 

generation over the past. 

The mutation function is used to ensure genetic diversity in the population and is very important 

in exploration of the search space. The method employed adds a random number taken from a 

Gaussian distribution centred on zero to an individual's genes. The Gaussian distribution is defined 

by a scale parameter which specifies the standard deviation away from the initial population and a 

shrink factor which controls how the deviations shrink with successive generations. This is an 

important parameter which ensures that the algorithm decreases explorative behaviours with 

successive generation and promoting more exploitative behaviours. A scale factor of 1 and a 

similar shrink factor have been selected. 

3.11.5 Migration 

As this implementation of the genetic algorithm is coarse grained ( implies the population is 

composed of sub populations that “evolve” independent of each other, a novel real life concept of 

migration is introduced. The best individuals from one sub population moves (in actual sense is 

copied) to another and replaces the worst in the other subpopulation. This movement is set to 

happen both ways from subpopulation n to n+1 and to n-1. Migration promotes sharing of good 

solutions that have been discovered among the demes. The number of individuals participating in 

the migration should be limited to promote diversity of the overall population and to maintain the 

integrity of the individual demes evolution direction. A fraction of 0.1 (10% of the deme) is 

applied. The frequency of the migration is also an important parameter in ensuring the demes 

follow unique evolution patterns that can promote discovery of good solutions. Migration is 

therefore set in this study to occur after every 15 generations. 

3.11.6 Stopping Criteria 

The stopping criterion is the method used to determine when the algorithm needs to stop. A 

function tolerance method has been used to stop the algorithm when the weighted average change 
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in the fitness function value of a number of generation taken as 50 in this case is less than 10−6 . 

An upper limit of 500 has also been set on the generations and the algorithm will stop on 

exceedance.  

 

3.12 Data Pre-processing 

Data pre-processing was done using Microsoft Excel. The purpose of this step was to set up static 

data required by the software program developed to an acceptable form that would reduce need 

for further computation in the algorithm itself, so as to free the algorithm to only perform 

optimization hence be more efficient. 

An input matrix was created, the matrix is preloaded with data records that correspond to the 

simulation time steps. The data records include incident wind speed, wind speed adjusted to hub 

height, GHI, proxy demand figures based on a typical daily demand curve for weekdays and 

weekends for Kenya and dry bulb temperature. 
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Chapter 4 Results and Discussion 

The results of select simulation runs are documented in this chapter. Six configuration scenarios 

are simulated, starting with the base configuration as A. Scenario B, then is an improvement of A 

in which the effects of a proper demand side management are simulated, resulting in a demand 

profile that follows the generation profile. Scenario C improves scenario B by including single 

axis tracking on the PV generation side. For each scenario two cases 1 and 2 are run for each of 

the 2 strategis around boundary conditions as explained in 3.10.3. 

4.1 Simulation Results 

4.1.1 A: Base Configuration without DSM Simulation 

The base configuration is run without any optimization conducted. The results are shown in Table 

4-1. It is clear that the resulting system does not work as the the cost is very high and the reliability 

requirements are not met. 

Table 4-1: Base Configuration without DSM 

  
  Solar PV Panels Wind 

Turbines 
PV Batteries LPSP 

requirements not 
met 

a 

Number 16000 10 23809 

Rating 4,000 kW 2,500 kW 2,000 kWh 

LPSP 0.2318 

LCOE Not Evaluated US cents/ kWh 

OCC 
 $    

79,811,947.31  
 $  

21,163.71  
 $       

5,101,928.57  
 $   84,935,039.59  

 

4.1.2 B: Base Configuration with DSM Simulation 

The base case is improved by including a simulation of a successful demand side management 

scheme (DSM). The results are presented in Table 4-2.The DSM tries to approximate a load pattern 

that matches the generation pattern. No optimization is performed and the cost of the DSM is not 

factored in. The overall solution has a remarkably improved reliability but still fails to meet the 

acceptance criteria, optimization is thus still necessary.  
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Table 4-2: Base Configuration with DSM Simulation 

  
  Solar PV Panels Wind 

Turbines 
PV Batteries LPSP 

requirements 
not met 

b 

Number 16000 10 23809 

Rating 4,000 kW 2,500 kW 2,000 kWh 

LPSP 0.0838 

LCOE Not Evaluated US cents/ kWh 

OCC 
 $    

79,811,947.31  
 $  

21,163.71  
 $       

5,101,928.57  
 $   
84,935,039.59  

 

4.1.3 C: Base Configuration with DSM Simulation and PV Tracking 

Case B is further improved by utilizing single axis trackers to enhance PV generation. Single axis 

trackers have been shown to improve generation at a marginal incremental cost in both CAPEX 

and OPEX. The results of these are highlighted in table Table 4-3. With increased generation, the 

reliability criteria is now met, however the system cost is still prohibitive hence the case for 

optimization. 

Table 4-3: Base configuration with DSM Simulation and PV Trackers 

  
  Solar PV Panels Wind 

Turbines 
PV Batteries   

c 

Number 16000 10 23809 

Rating 4,000 kW 2,500 kW 2,000 kWh 

LPSP 0.0484 

LCOE 31.9 US cents/ kWh 

OCC 
 $    

79,811,947.31  
 $  

21,163.71  
 $       

5,101,928.57  
 $   84,935,039.59  

 

4.1.4 D: Optimal Configuration without DSM Simulation 

(1) Current Best Individual, algorithm constrained. 

A series of simulations are carried on the configuration on scenario A and the best solution with 

an algorithm defined set  of boundary conditions is tabulated on Table 4-4. The overall cost of the 

system attained is 39 million USD with  a levelized costs of energy of 21.51 US cents per kWH. 
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Table 4-4: Optimal Configuration without DSM 

  
  Solar PV Panels Wind 

Turbines 
PV Batteries   

d.1 

Number 4459 33 78580 

Rating 1,115 kW 8,250 kW 6,601 kWh 

LPSP 0.0498 

LCOE 21.51 US cents/ kWh 

OCC 
 $    

22,242,592.06  
 $  

69,840.24  
 $  

16,838,571.43  
 $   39,151,003.73  

The interim results of the optimization process are also documented. Figure 4-1, shows the 

fitness value across generations, the pattern is indicative of a proper convergence towards a 

global minimum. This convergence can also be interpretd in the similarity of individual within 

the search space. Figure 4-2 shows this similarity in terms of the aveerage distance between 

solution over iterated generations.Figure 4-3, shows the fitness value of each individual at the 

final iteration, the similarity of heights of the bar charts further indicate a convergence of the 

solution towards a global minimum. This is also clear across the different demes which are 

represented with different colors. Figure 4-4 shows the fitness scaling and Figure 4-5 is a score 

histogram indicating the distribution in the range of scores. Figure 4-6 illustrates the satisfaction 

of the stopping criteria defined in 3.11.6. 

 

 

Figure 4-1: Fitness value vs generation 
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Figure 4-2: Average distance between individuals 

 

Figure 4-3: Fitness of Each individual at final iteration 
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Figure 4-4: Fitness scaling 

 

Figure 4-5: Score histogram 
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Figure 4-6: Stopping criteria 

(2) Current Best Individual, land size constrained. 

The procedure is repeated several times with a land size constrained boundary condition approach 

as explained in 3.10.3. The results of the best indidual in the search space are documented on Table 

4-5. Figure 4-7, represents the fitness values across generations. Figure 4-8 shows the average 

distance between inviduals in the search space.Figure 4-9 shows the fitness of each individual 

across all subpopulations at the final iteration. Figure 4-10 shows the fitness scaling.Figure 4-11 

shws the distribution of scores within the population in the form of a histogram. Figure 4-12 

illustrates the satisfaction of the stopping criteria.  

Table 4-5: Optimal Configuration, land size constrained 

  
  Solar PV Panels Wind 

Turbines 
PV Batteries LPSP 

requirement 
downgrade from 

5% to 10% 

d.2 

Number 20311 14 66837 

Rating 5,078 kW 3,500 kW 5,614 kWh 

LPSP 0.0997 

LCOE 30.03 US cents/ kWh 

OCC 
 $  

101,316,278.86  
 $  

29,629.19  
 $  

14,322,214.29  
 $ 115,668,122.34  
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Figure 4-7: Fitness value vs generation 

 

 

Figure 4-8: Average distance between individuals 
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Figure 4-9: Fitness of each individual 

 

Figure 4-10: Fitness scaling 
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Figure 4-11: Score histogram 

 

Figure 4-12: Stopping criteria 
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4.1.5 E: Optimal Configuration with DSM Simulation 

The procedure in 4.1.4 is repeated several times on scenario B, where load is assumed to have a 

demand side management scheme effected and the results therefrom are simulated. 

(1) Current Best Individual, algorithm constrained. 

Several simulations are conducted with an algorithm defined boundary conditions as described in 

3.10.3 and the best result from the search space selected. These results are displayed on Table 4-6. 

Figure 4-13,Figure 4-14,Figure 4-15,Figure 4-16 and Figure 4-17, have the same interpration as 

Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6 respectively from the 

earlier results of the simulations under the procedure in 4.1.4.  

Table 4-6: Optimal configuration with DSM simulation 

 
 

Solar PV Panels Wind 
Turbines 

PV Batteries 
 

e1 

Number 6830 25 32243  
Rating 1,708 kW 6,250 kW 2,708 kWh  
LPSP 0.0491  
LCOE 28.26 US cents/ kWh  

OCC 
$    

34,069,725.01 
$  

52,909.27 
$       

6,909,214.29 
$   41,031,848.56 

 

 

Figure 4-13: Average distance between individuals 
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Figure 4-14: Fitness of each individual 

 

Figure 4-15: Fitness value vs generation 
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Figure 4-16: Fitness scaling 

 

Figure 4-17: Stopping criteria 
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(2) Current Best Individual, land size constrained. 

Several simulations are conducted with boundary conditions dependent on the land size as 

described in 3.10.3 and the best result from the search space selected. These results are displayed 

on Table 4-7.Figure 4-18, Figure 4-19, Figure 4-20, Figure 4-21, Figure 4-22 and Figure 4-23, 

have the same interpration as Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 

4-6 respectively from the earlier results of the simulations under the procedure in 4.1.4.  

Table 4-7: Land size constrained optimal configuration with DSM 

 
 

Solar PV Panels Wind 
Turbines 

PV Batteries LPSP requirement 
downgrade from 

5% to 10% 

e.2 

Number 1976 13 117610 

Rating 494 kW 3,250 kW 9,879 kWh 

LPSP 0.0882 

LCOE 17.76 US cents/ kWh 

OCC 
$       

9,856,775.49 
$  

27,512.82 
$    

25,202,142.86 
$   35,086,431.17 

 

Figure 4-18: Fitness value vs generation 
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Figure 4-19: Average distance between individuals 

 

Figure 4-20: Fitness of each individual 
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Figure 4-21: Fitness scaling 

 

Figure 4-22: Score histogram 
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Figure 4-23: Stopping criteria 

4.1.6 F: Optimal Configuration with DSM Simulation and PV Tracking 

The procedure in 4.1.4 is repeated several times on scenario C, where in addition to simulating the 

effects of a successful demand side management scheme, single axis trackers are also implemented 

on the PV generators. 

(1) Current Best Individual, algorithm constrained. 

Several simulations are conducted with an algorithm defined boundary conditions as described in 

3.10.3 and the best result from the search space selected. These results are displayed on Table 

4-8Table 4-6. Figure 4-24, Figure 4-25, Figure 4-26, Figure 4-27, Figure 4-28 and Figure 4-29  

have the same interpration as Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and 

Figure 4-6 respectively from the earlier results of the simulations under the procedure in 4.1.4. 

Table 4-8: Optimal configuration with DSM Simulation and PV Tracking 

 
 

Solar PV Panels Wind 
Turbines 

PV Batteries 
 

f.1 Number 11047 15 20984  
 Rating 2,762 kW 3,750 kW 1,763 kWh  
 LPSP 0.0494  
 LCOE 28.02 US cents/ kWh  

 
OCC 

$    
55,105,161.37 

$  
31,745.56 

$       
4,496,571.43 

$   59,633,478.36 
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Figure 4-24: Fitness value vs generation 

 

Figure 4-25: Average distance between individuals 
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Figure 4-26: Fitness of each individual 

 

Figure 4-27: Fitness scaling 
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Figure 4-28: Score histogram 

 

Figure 4-29: Stopping criteria 
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(2) Current Best Individual, land size constrained. 

Several simulations are conducted with boundary conditions dependent on the land size as 

described in 3.10.3 and the best result from the search space selected. These results are displayed 

on Table 4-9.Figure 4-31, Figure 4-32, Figure 4-33, Figure 4-34 and Figure 4-35 , have the same 

interpration as Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6 

respectively from the earlier results of the simulations under the procedure in 4.1.4.  

Table 4-9: Land constrained optimal configuration with DSM and PV trackers simulated 

 
 

Solar PV Panels Wind 
Turbines 

PV Batteries LPSP requirement 
downgrade from 

5% to 10% 

f.2 

Number 1976 13 94856 

Rating 494 kW 3,250 kW 7,968 kWh 

LPSP 0.0937 

LCOE 17.62 US cents/ kWh 

OCC 
$       

9,856,775.49 
$  

27,512.82 
$    

20,326,285.71 
$   30,210,574.03 

 

Figure 4-30: Fitness value vs. generation 
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Figure 4-31: Average distance between individuals 

 

Figure 4-32: Fitness of each individual 
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Figure 4-33: Fitness scaling 

 

Figure 4-34: Score histogram 
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Figure 4-35: Stopping criteria 

 

4.2 Discussion 

4.2.1 Scenario A: Base case 

The base case is a trivial solution involving the scaling of generation sources to match the load 

while allowing for a small margin in this case 20% as contingency for growth or resource shortfall. 

This is the approach taken in similar studies and is meant to be a control set up and is not expected 

to provide the optimal solution to the problem. 

The base case setup consisted of 16000 photovoltaic modules with an equivalent peak power rating 

of 4 MWp and 10 wind turbine generator units with an equivalent rated power output of 2.5 MW 

and 23809 advanced lead acid battery storage units with a rated storage capacity of 2000kWh.  

This set up presents an estimated overnight capital cost of approximately 85 USDM.  

The overnight capital cost is developed from the transparent cost database by NREL. It is derived 

from average of a selection of project carried out in the USA with costs documented over a period 

of about 15 years.  This approach has proved ineffective in determining true and reflective costs 

as it doesn’t capture market trends in pricing. Solar PV for example has dropped down in pricing 
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(about 5 times) over the last decade as a result of increased production driven by demand for green 

energy across the globe. For a comparative analysis however, this is a sufficient approach. 

The levelized cost of energy for the base case was not evaluated as the base case did not meet the 

set threshold for the Loss of Power Supply Probability (LPSP). The configuration delivered an 

LPSP of 0.2318 equivalent to about 2030 hours of unavailability per year. This would definitely 

not be an acceptable solution. 

4.2.2 Scenario B: Base case with demand side management simulation 

An attempt is made to improve the base case by introducing demand side management strategies. 

The actual strategy is not covered in the scope of this work, only the desired effect is simulated. 

The objective of the simulation is to shift demand to match the abundant resource, solar in this 

case.  

In practice there are various ways in which this can be achieved for example via tariff structuring 

that makes it expensive to consume electricity at certain times of the day, via load shedding, etc. 

Theoretically DSM should enable better utilization of the available resource hence a lower LPSP. 

This was indeed realized with an LPSP of 0.0838. This translates to about 740 hours of outage in 

a year which although a significant improvement, is still below the threshold of 0.05, and the 

levelized cost of electricity was thus not calculated. 

4.2.3 Scenario C: Base Case with demand side management simulation and PV 

trackers 

Another strategy for improving resource utilization of solar is by installation of the panels on a sun 

tracking racking system, simply known as trackers. Two variants of trackers are commercially 

available; single axis trackers and two axis trackers. Single axis trackers, track the movement of 

the sun along one axis – the horizontal, whereas a two axis tracker tracks along the horizontal and 

vertical axes. Single axis trackers have a higher cost benefit ratio and hence are more popular 

compared to two axis trackers. Compared to a fixed tilt installation, a single axis tracker is able to 

increase generation by up to 20%, but is more expensive to install and maintain. OPEX and 

CAPEX figures vary by manufacturer and region, for this study an assumption of 10% increase in 

OPEX and 10% increase in CAPEX over fixed tilt structures has been assumed in the calculation 

of LCOE for scenarios such as this that involve single axis trackers. 
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With both trackers and demand side management simulated, an LPSP of 0.0484 is achieved. This 

corresponds to about 430 hour of outage in a year. 

The levelized cost of electricity was also evaluated and this was found to equal 31.9 USD per kWh. 

This is still much higher than the national average cost of electricity but is acceptable for remote 

installations without access to the grid. It is also cheaper than LCOE for diesel generated energy 

on remote sites. 

4.2.4 Scenario D: Optimal Configuration without demand side management 

simulation 

An attempt to arrive at the optimal solution is made here. The objective is to solve for an optimal 

plant configuration in consideration of the simulated demand and simulated resource (sunshine 

irradiance and wind speed). A multi deme parallel genetic algorithm implementation is used. A 

population of 80 individuals equal spread across 5 demes (sub populations) is used to perform the 

search. Two methods have been developed as observed in other literature to provide constraints to 

the algorithm. The first is based on a test run method, where constraints are developed 

programmatically in response to results of a simulation run. This method has been explained in 

more detail in an earlier section of this report. The method evaluates lower bounds from which 

upper bounds are obtained by multiplication by a scale factor. For solar PV modules, a lower bound 

of 1,975 units was arrived at while for wind and battery units a lower bound of 4 and 7,879 were 

computed respectively. A scale factor of 10 was used to obtain the upper bounds. 

Figure 4-1, is a plot of the fittest individual and the mean fitness of the overall population (across 

all 5 demes) vs the generation. It shows how the algorithm narrows down to global minimum 

which is evident when the overall population fitness score and the fitness score of the fittest 

individual coincide. The algorithm was set up to stop iterations when the change in the mean fitness 

of the population between successive generations was less than 1 × 10−5.  

Figure 4-3, is also an excellent visual indication of the state of optimality of the population. It 

shows the different demes in different colours and individual fitness of members of a deme as well 

as of the whole population can be seen. It is clear that the algorithm evaluated well and converged 

at an optimal solution given the conditions presented to it. 

The result from this run of the algorithm is recorded Table 4-4Table 4-1. An LPSP of 0.0498, 

which translates to about 440 hours of outage in year was achieved with this configuration. The 
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LCOE for this configuration was evaluated to only 21.51 US Cents per kWh at an estimated 

overnight capital cost of 39 MUSD. This is a stellar result compared to the only feasible solution 

of the base configurations earlier discussed. 

The second approach simulated involved constraining the algorithm parameters by the size of land. 

Assuming a 10 acre parcel of land for the development of the PV/ wind farm, using equations 

(3.67) and (3.68), the upper bound on the number of wind turbines and PV modules that can be 

supported by the site are evaluated to 14 and 117,430 units respectively. The optimization 

algorithm fails to narrow down on an optimal solution that meets the minimum requirement of a 5 

% LPSP. With a down-rating of the LPSP requirement to 10%, which translates to a maximum 

allowable outage rate of 876 hours annually, an optimal solution consisting of 20311 solar panels, 

14 wind turbines and 66837 battery units is arrived at with an LPSP of 0.0997 and a resulting 

levelized cost of electricity of 30.03 US cents per kWh at an overnight capital cost of 116 Million 

USD.  

Comparing the results from the two constraint scenarios, the effect restrictions on the search space 

put on the optimality of the obtained results is very clear. The conclusion drawn is that placing 

restriction on land size, effectively capped the contribution from the various resources. Wind was 

limited to only 14 units or 3.5 MW. It so happens that based on the pricing guide used, wind is 

cheaper than solar in terms of levelized cost of generated electricity hence resulting in a scenario 

where the optimal solution is a bias for wind over solar. 

4.2.5 Scenario E: Optimal configuration with demand side management simulated 

With Demand side simulation implemented, aimed at aligning the demand to generation and 

shifting peak demand away from generation troughs to generation peaks, an interesting set of 

results is arrived at.  

In the first optimization scenario, lower bounds of 2,438, 4 and 3,320 for solar, wind and battery 

storage units respectively are arrived at. With these bounds, the algorithm converged to a solution, 

an optimal configuration of 6,830 solar PV panels, 25 wind turbines and 32,243 battery units. The 

configuration resulted in an LPSP of 0.0491 and an equivalent LCOE of 28.26 cents US per kWh. 

Figure 4-13, Figure 4-14 and Figure 4-15 shows the convergence behaviour of the algorithm run 

with the current parameters. 
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Comparing these results to the earlier ones of scenario D, the bias action of DSM simulation is 

evident in the way it has promoted the adoption of solar. In the pricing scenarios used, solar being 

the more expensive energy source in terms of dollars per kWh has effectively ramped up the 

weighted average LCOE to 28.26 US Cents per kWh, nearly 7 US cent more expensive. The 

number of PV panels have increased from 4459 to 6830. It is thus clear that a DSM scheme will 

promote better utilization of a resource but that doesn’t guarantee that its implementation results 

in the most cost optimal solution especially where more than one generation source is considered. 

In the second optimization case, upper bounds of 117,430 for the PV units and 14 for the wind 

turbines same as in the earlier case are employed. Like the previous case, the configuration fails 

to arrive at an optimal solution with the LPSP threshold set to 5%.  With the threshold adjusted to 

10 %, the algorithm converges to an optimal configuration. The optimal configuration arrived at 

is constituted of 1976 PV modules, 13 wind turbines and 117,610 battery storage units. This results 

in a LPSP of 0.0882 and a corresponding LCOE of 17.76 US cents per kWh. The obvious 

explanation for the reduction in LCOE, compared with case D option two, is the reduction in the 

overnight capital cost made possible by a reduction in the number of panels. With DSM simulation, 

it is possible to reduce the installed capacity required to meet a certain energy demand. It is not 

valid to compare these results with those of the first option in this very case. The reasoning behind 

this is that, this option failed to meet the LPSP threshold.  

4.2.6 Scenario F: Optimal Configuration with DSM Simulation and PV Tracking 

The PV modules are usually mounted in either fixed tilt racking systems or in single axis tracker 

racking systems. A fixed tilt installation features panels mounted at a fixed tilt angle that is optimal 

to utilization of the sun’s energy.  Tracker racking systems are designed to track the diurnal 

movement of the sun across the sky as the earth rotates. Both single and two axis tracker systems 

are available but the latter are not as commercially popular as single axis trackers. Tracking 

systems cost more in both CAPEX and OPEX but with their ability to track the sun can generate 

up to 20% more energy from the sun’s irradiation. The objective of simulating trackers in this 

study was to optimize solar generation which is quite costly and consequently reduce the levelized 

cost of electricity from the entire plant as a result of a reduction in the average cost per kWh from 

solar generation. 

With the first set of constraints, as determined by the algorithm, the lower bound on solar PV 

modules, wind turbine and battery units are set at 3,041, 3 and 2,103 respectively. The algorithm 
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converges on an optimal configuration consisting of 11,047 PV modules, 15 wind turbines and 

20,984 battery units. This configuration evaluates to an LPSP of 0.0494. With an assumed increase 

of 10% on both OPEX and CAPEX as result of the installation of PV trackers, an LCOE of 28.02 

Us cents per kWh is obtained. These results conclusively show that a technology bias on solar, a 

situation brought about by the use of trackers, promotes adoption of solar in the optimal generation 

mix but does not necessarily guarantee a lower LCOE. 

With the second set of constraints, formulated from limitations of land size, with the upper limits 

set as before, the algorithm converges on an optimal configuration consisting of 1976 solar 

modules, 13 wind turbines and 94856 battery units. Like the previous two scenarios run under 

these constraints, it fails to achieve the required LPSP threshold of 5%, managing only 9.37% at 

an LCOE of 17.62 US cents per kWh.  Similar OPEX and CAPEX assumptions for the PV trackers 

are used as in the case above. 

Comparing these two results obtained from running the algorithm under different sets of 

constraints, it is evident that the resource characterizes the results obtained. The second set of 

results is an excellent control for the first in answering the question of how much lower the LCOE 

can get by reducing the generation from solar. It is clear that aside from the upper bound of 14 set 

on the number of wind turbines which are cheaper than solar and hence contribute to a lower 

LCOE, there is a limit the contribution of wind to the generation mix since if this were not the case 

the optimal solution would consist of only 14 wind turbine units.  

4.3 Validation 

4.3.1 Comparison with the Transparent Cost Database (TCD) 

The results obtained were validated by comparison with the transparent cost database published 

by openei.org. The transparent cost database is an initiative of the United States Department of 

Energy in association with the National Renewable Energy Laboratory (NREL). It is a public 

transparent database of program costs and performance estimates for energy efficiency and 

renewable energy programs that have been published in open literature. It has collated cost 

information from nearly 500 different sources in the last decade or so and is an authoritative 

benchmarking tool used in industry by project developers, investors, financiers, policy makers and 

regulators. 
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The database features levelized cost of energy generation for various technologies and provides a 

platform for comparison of results and analysis of solution optimality. An abridged form of the 

database used for this validation is attached in ANNEX 4: Validation – The Transparent Cost 

Database (Abridged form). 

Below is a summary of this comparison. 

Table 4-10: Comparison with the transparent cost database 

    Solar Wind Mean LCOE 
Max 
LCOE 

Min 
LCOE 

TC
D

 

Photovoltaic 100% - 28.85 
 $     
56.00  

 $            
-    

Land-Based 
Wind - 100% 7.18 

 $     
12.30  

 $       
5.30  

Sc
en

ar
io

s 

A 62% 38% -   - 

B 62% 38% - - - 

C 62% 38% - - - 

D.1 12% 88% 21.51 - - 

D.2 59% 41% 30.03 - - 

E.1 21% 79% 28.26 - - 

E.2 13% 87% 17.76 - - 

F.1 42% 58% 28.02 - - 

F.2 13% 87% 17.62 - - 

 

Table 4-11: Derived worst case and nominal case compared to obtained results 

    Results 
TCD Nominal 
Case  

TCD Worst 
Case 

Adjusted TCD 
Nominal Case 

Adjusted TCD 
Worst Case 

Sc
en

ar
io

s 

A - 20.52 39.19 21.75 41.54 

B - 20.52 39.19 21.75 41.54 

C - 20.52 39.19 21.75 41.54 

D.1 21.51 9.76 17.50 13.96 25.03 

D.2 30.03 20.01 38.17 22.49 42.90 

E.1 28.26 11.83 21.68 13.83 25.33 

E.2 17.76 10.04 18.07 17.25 31.04 

F.1 28.02 16.37 30.83 17.61 33.16 

F.2 17.62 10.04 18.07 16.80 30.22 

 

Error! Reference source not found. is a direct comparison of the results obtained from the 

research with those from the transparent cost database. It is not easy to directly compare the two 
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results for a number of reasons. First, the TCD does not have records of hybrid renewable energy 

power plants and as such any comparative metric has to be derived from the measured and 

documented data of the TCD. Secondly, the concept of energy storage is quite different from 

energy generation and decoupling its contribution to the LCOE from that of the generation sources 

is not easy. Nonetheless, as the TCD is best open documented cost database that is freely available, 

an attempt has been made by the researcher to determine the quality of results obtained by 

comparison of these to derived metrics from the TCD. This information is presented on Error! 

Reference source not found..  The TCD Nominal Case is the LCOE derived from average LCOE 

values of wind and solar generation from the TCD and weighted in the same proportion as the 

scenario to which it is being compared. The TCD worst case is the LCOE derived from the 

weighted average of maximum LCOE values of wind and solar generation from the TCD, weighted 

in the same proportion as the scenario it is being compared to. As the derived TCD corresponding 

LCOE values do not factor in storage, the actual corresponding LCOEs if calculated from the TCD 

to factor in storage would be worse. A second pair of derived metrics attempt to include the 

influence of energy storage on the LCOE value from the TCD. Since the overnight capital cost 

component of the energy storage as a percentage of the total project overnight capital cost is 

known, this factor is used to dilute the quality of the derived LCOE. The two columns adjusted 

nominal LCOE and adjusted worst case LCOE provide this information. The obtained results can 

now be compared against the adjusted nominal and worst case LCOE. With the exception of 

scenario E.1 all the results lie within the bounds of the nominal and the worst case LCOE as derived 

from the TCD. These findings satisfactorily validate the results obtained from this research. 
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Chapter 5 Conclusion 

5.1 Summary of Thesis Findings and Contributions 

Multiple scenarios were simulated in this work in an attempt to find an optimal solution to the 

problem of sizing a hybrid renewable energy power system. The results have been documented 

and discussed in the previous chapter and are here below summarized ahead of drawing a 

conclusion to the work. Three control scenarios were set up; the base cases A, B and C and were 

found to be suboptimal as expected. In these control cases, a configuration of 16000 PV modules, 

10 wind turbines and 23,809 battery units was used. Further, scenario B included simulation of a 

demand side management scheme, whereas scenario C included simulation of a demand side 

management scheme as well as PV units mounted on a single axis, sun tracking racking system. 

Scenarios D, E and F were the results from the optimal configuration of the hybrid renewable 

energy power system based on scenarios A, B and C respectively. 

5.2 Conclusions Drawn 

Three optimal configurations from three scenarios simulated have been obtained. The first 

objective of this study was to mathematically model the components of the hybrid renewable 

energy system. These were covered in Error! Reference source not found., all components; the 

wind turbine, solar PV modules and battery storage modules were modelled and used to develop 

the objective function which is later minimized using a parallel, multi -deme genetic algorithm. 

The second objective was to develop an objective function that would be minimized by the 

algorithm so as to obtain the optimal sizing configuration of the plant. This as well as done in 

Error! Reference source not found., the result of which is a two-fold objective, to minimize the 

loss of power supply probability (LPSP) and the levelized cost of energy (LCOE). The objective 

function is implemented in a Matlab function that is called by the algorithm. The third objective 

was to run multiple scenario analysis on the most optimal configuration as optimized by a parallel, 

multi-deme genetic algorithm for implementation at a specific site. The site Marsabit, which had 

already been pre-selected, is a wind and solar hotspot in Kenya. Data for the site was obtained 

from SWERA as highlighted in Chapter 3. A total of 9 scenarios were evaluated, a process that 

took 45 simulation runs and over 150 hours of computer runtime.  



 

-111- 

 

With all objectives met, conclusions can then be drawn from the results. The first conclusion based 

on the results of this work is that it is feasible to develop a hybrid renewable energy system at 

certain locations e.g. Marsabit in Kenya. It was observed that at locations where wind and solar 

had complementary regimes, it was possible to optimally size the individual components of the 

plant to meet a certain reliability requirement. It was also concluded as can be observed from the 

results of the land size constrained simulations that a higher reliability requirement was achievable 

at a higher cost. Most of the scenarios with a lower reliability requirement (10% LPSP) resulted in 

lower levelized cost of energy of less than 20 US cents per kWh, whereas the best scenario with a 

high reliability requirement (5% LPSP) resulted in a levelized cost of energy of 21.51 US cents 

per kWh. 

A second interesting conclusion drawn is that a resource optimal configuration does not necessarily 

equal a cost optimal configuration where the cost of utilizing the different resources are not the 

same. It was observed that in a scenario where demand side management was simulated to optimize 

solar utilization and the solar PV modules themselves mounted on a sun tracking racking system, 

the resulting optimal configuration optimizes the utilization of solar energy but does not yield the 

lowest LCOE as solar PV systems were more expensive than wind turbines. The clear conclusion 

in terms of the way forward seen from the results is that a cost optimal system is one that optimally 

utilizes the cheapest resource to exploit. This is corroborated by the finding that wind intensive 

configuration resulted in lower LCOE than solar intensive configurations. 

On the algorithm implementation and simulations, it was observed severally, and conclusions can 

be drawn that a parallel multi-deme genetic algorithm implementation, was better than a similar 

control experiment run in a serial generic GA in diversity of individuals in a search space and its 

exploration. This was measured by observing the average distance between individuals which was 

higher in the multi-deme parallel GA as compared to the serial generic GA. On the quality of the 

final solution though, clear conclusions could not be drawn on which was better as they both 

converged to approximately similar solutions. 

From the results obtained based on the different scenarios, the recommended practical scenario for 

implementation would be scenario f.2 where the plant is constrained to a land size of 10 acres , 

demand side management is practised, and the PV modules are installed on a sun tracking racking 

system. Even though this option has an LPSP of only 10%, it is by far the most cost effective 
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resulting in an LCOE of 17.62 US cents per kWh. It could further be improved with grid storage 

or back up to the grid, but this has been left as a proposition for further work. 

5.3 Recommendation for further Work 

A number of assumptions have been made throughout this work to simplify computation and 

evaluation of solutions. It is recommended that on future work more detailed models be used in 

the modelling of the objective function. Further this work did not factor in tax in calculation of the 

LCOE as its purpose as for comparison, tax assumptions are a critical but complicated aspect that 

affects the real life levelized cost of energy. It is recommended that future researchers include this 

aspect in their research to obtain results that can be validated with market data. 

Another key area for further investigation would be on the components of the hybrid system. It is 

apparent from this work that battery energy storage systems still need further technological 

advancements for mainstream adoption in grid applications. Researchers of the future are 

encouraged to look into newer battery technologies as well as alternatives. The most promising 

alternative proposed herein are diesel displacement solutions where the hybrid system is used to 

offset reliance on diesel generators for remote and isolated areas and grid backup solutions, where 

the hybrid system is tied to the grid for energy storage during times of surplus generation and for 

back feed to meet generation shortfalls. For both cases complex econometric models will have to 

be developed to characterize the economics of the power purchase transactions involved.
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ANNEX 1: Publications Resulting from this Work 

A: A Review of Techniques in Optimal Sizing of Hybrid 

Renewable Energy Systems 

Abstract 

This paper presents a review of techniques used in recent published works on optimal sizing of 

hybrid renewable energy sources. Hybridization of renewable energy sources is an emergent 

promising trend born out of the need to fully utilize and solve problems associated with the 

reliability of renewable energy resources such as wind and solar. Exploitation of these resources 

has been instrumental in tackling or mitigating present day energy problems such as price 

instability for fossil based fuels, global warming and climate change in addition to being seen as 

way of meeting future demand for power. This paper targets researchers in the renewable energy 

space and the general public seeking to inform them on trends in methods applied in optimal sizing 

of hybrid renewable energy sources as well as to provide a scope into what has been done in this 

field. In reviewing previous works, a two prong approach has been used focusing attention on the 

sizing methods used in the reviewed works as well as the performance indices used to check quality 

by these works. In summary there is a clear indication of increased interest in recent years in 

optimal sizing of hybrid renewable energy resources with metaheuristic approaches such as 

Genetic Algorithms and Particle Swarm Optimization coming out as very interesting to 

researchers. It has also been observed that resources being hybridized are those with 

complementary regimes on specific sites. 
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B: Modelling, Simulation and Optimal Sizing of a Hybrid Wind, 

Solar PV Power System in Northern Kenya 

Abstract 

Solar and wind, the most abundant renewable energy resources are still expensive to deploy and 

are unreliable as they are intermittent. It has long been postulated in open published literature that 

solar and wind have complementary regimes, and that their reliability can be improved by 

hybridization. This paper reports on the findings of research examining the problem of optimally 

sizing a hybrid wind and solar renewable energy power generation system. 

In the research, a target site was first identified and meteorological data collected. Components of 

the system were then mathematically modelled from which an objective function was developed. 

A parallel multi-deme implementation of genetic algorithm was then used to optimize. Multiple 

scenarios were prepared and simulated to obtain an optimal configuration of the hybrid power 

system. The results obtained were validated against openly published results from real word 

projects. The key findings confirmed that on some locations wind and solar have complementary 

regimes and can thus be hybridized. To this end an optimal configuration of the system for off-

grid deployment was developed with an attractive levelized cost of energy of 17 US cents per kWh. 

Another finding of the research decoupled resource optimal solutions from cost optimal solutions 

in that the least cost configuration didn’t necessary maximize on the utilization of the abundant 

resource. 
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ANNEX 2: Datasheets 

A: Solar PV Module 
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B: Wind Turbine Generator 
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C: Battery Unit 
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ANNEX 3: MATLAB code 

Runner.m 

%%Call optimization function 
% Syntax:: [x,fval,exitflag,output,population,score] = 

optim_ga(nvars,lb,ub,PopulationSize_Data,EliteCount_Data,CrossoverFraction_Da

ta,MigrationInterval_Data,MigrationFraction_Data,TolFun_Data) 
%Function params 
nvars = 3; 
lb=[1358 3 7280]; 
ub = [13580 30 12800]; 
PopulationSize_Data=[20 20 20 20]; 
EliteCount_Data = 3; 
CrossoverFraction_Data = 0.75; 
MigrationInterval_Data = 10; 
MigrationFraction_Data = 0.1; 
TolFun_Data = 1e-5; 
% call function 
[x,fval,exitflag,output,population,score] = 

optim_ga(nvars,lb,ub,PopulationSize_Data,EliteCount_Data,CrossoverFraction_Da

ta,MigrationInterval_Data,MigrationFraction_Data,TolFun_Data); 

 

Optimga.m 

function [x,fval,exitflag,output,population,score] = 

optim_ga(nvars,lb,ub,PopulationSize_Data,EliteCount_Data,CrossoverFraction_Da

ta,MigrationInterval_Data,MigrationFraction_Data,TolFun_Data) 
%% Preload Data and Configurations. 
[HWSPSData,HWSPSConf] = loader('Data-Matrix.xlsx'); 
%% Start with the default options 
options = gaoptimset; 

  
%% Modify options setting 
options = gaoptimset(options,'PopulationSize', PopulationSize_Data); 
options = gaoptimset(options,'EliteCount', EliteCount_Data); 
options = gaoptimset(options,'CrossoverFraction', CrossoverFraction_Data); 
options = gaoptimset(options,'MigrationDirection', 'both'); 
options = gaoptimset(options,'MigrationInterval', MigrationInterval_Data); 
options = gaoptimset(options,'MigrationFraction', MigrationFraction_Data); 
options = gaoptimset(options,'TolFun', TolFun_Data); 
options = gaoptimset(options,'CreationFcn', @gacreationlinearfeasible); 
options = gaoptimset(options,'SelectionFcn', @selectionroulette); 
options = gaoptimset(options,'CrossoverFcn', {  @crossoverheuristic [] }); 
options = gaoptimset(options,'MutationFcn', @mutationadaptfeasible); 
options = gaoptimset(options,'Display', 'iter'); 
options = gaoptimset(options,'PlotFcns', {  @gaplotbestf @gaplotbestindiv 

@gaplotdistance @gaplotexpectation @gaplotgenealogy @gaplotrange 

@gaplotscorediversity @gaplotscores @gaplotselection @gaplotstopping 

@gaplotmaxconstr }); 
options = gaoptimset(options,'OutputFcns', { @outputfunc }); 
options = gaoptimset(options,'Vectorized', 'off'); 
options = gaoptimset(options,'UseParallel', 'always'); 
[x,fval,exitflag,output,population,score] = ... 
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ga(@(x)(fitnessfunc_ser(x,HWSPSData,HWSPSConf)),nvars,[],[],[],[],lb,ub,[],[]

,options); 

 

loader.m 

function [HWSPSData,HWSPSConf] = loader (File) 
%This script preloads all necessary data to the workspace 
%%Preload Data preprocessing Matrix 
%   Sheets 
%   1&2. Demand  "Load" 
    Demand = xlsread(File,'Load','D2:E8761'); 
%   3&4&5. Solar Resource "Solar" 
    Solar = xlsread(File,'Solar','G2:I8761'); 
%   6. Wind  Resource "Wind" 
    Wind = xlsread(File,'Wind','D2:D8761'); 
%Output Data     
   HWSPSData = cat(2,Demand,Solar, Wind); 
%% Load configuration 
   HWSPSConf = xlsread(File,'Conf','B1:B50'); 
end   

 

gaOptimSet.m 

function options = gaoptimset(varargin) 
%GAOPTIMSET Create/alter GA OPTIONS structure. 
%   GAOPTIMSET returns a listing of the fields in the options structure as 
%   well as valid parameters and the default parameter. 

 
if (nargin == 0) && (nargout == 0) 
    fprintf('          PopulationType: [ ''bitstring''      | ''custom''    | 

{''doubleVector''} ]\n'); 
    fprintf('            PopInitRange: [ matrix           | {[0;1]} ]\n'); 
    fprintf('          PopulationSize: [ positive scalar ]\n'); 
    fprintf('              EliteCount: [ positive scalar  | {2} ]\n'); 
    fprintf('       CrossoverFraction: [ positive scalar  | {0.8} ]\n\n'); 
    fprintf('          ParetoFraction: [ positive scalar  | {0.35} ]\n\n'); 

     
    fprintf('      MigrationDirection: [ ''both''           | {''forward''} 

]\n'); 
    fprintf('       MigrationInterval: [ positive scalar  | {20} ]\n'); 
    fprintf('       MigrationFraction: [ positive scalar  | {0.2} ]\n\n'); 

     
    fprintf('             Generations: [ positive scalar ]\n'); 
    fprintf('               TimeLimit: [ positive scalar  | {Inf} ]\n'); 
    fprintf('            FitnessLimit: [ scalar           | {-Inf} ]\n'); 
    fprintf('           StallGenLimit: [ positive scalar ]\n'); 
    fprintf('          StallTimeLimit: [ positive scalar  | {Inf} ]\n'); 
    fprintf('                  TolFun: [ positive scalar ]\n\n'); 
    fprintf('                  TolCon: [ positive scalar  | {1e-6} ]\n\n'); 

     
    fprintf('       InitialPopulation: [ matrix           | {[]} ]\n'); 
    fprintf('           InitialScores: [ column vector    | {[]} ]\n\n'); 
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    fprintf('          InitialPenalty: [ positive scalar | {10} ]\n'); 
    fprintf('           PenaltyFactor: [ positive scalar | {100} ]\n\n'); 

  
    fprintf('             CreationFcn: [ function_handle  | 

@gacreationuniform | @gacreationlinearfeasible ]\n'); 
    fprintf('       FitnessScalingFcn: [ function_handle  | 

@fitscalingshiftlinear  | @fitscalingprop  | \n'); 
    fprintf('                            @fitscalingtop   | {@fitscalingrank} 

]\n'); 
    fprintf('            SelectionFcn: [ function_handle  | 

@selectionremainder    | @selectionuniform | \n'); 
    fprintf('                            @selectionroulette | 

@selectiontournament   | @selectionstochunif ]\n'); 
    fprintf('            CrossoverFcn: [ function_handle  | 

@crossoverheuristic  | @crossoverintermediate | \n');  
    fprintf('                            @crossoversinglepoint | 

@crossovertwopoint | @crossoverarithmetic | \n'); 
    fprintf('                            @crossoverscattered ]\n'); 
    fprintf('             MutationFcn: [ function_handle  | @mutationuniform 

| @mutationadaptfeasible | \n'); 
    fprintf('                            @mutationgaussian ]\n'); 
    fprintf('      DistanceMeasureFcn: [ function_handle  | 

{@distancecrowding} ]\n'); 
    fprintf('               HybridFcn: [ @fminsearch | @patternsearch | 

@fminunc | @fmincon | {[]} ]\n\n'); 

     
    fprintf('                 Display: [ ''off'' | ''iter'' | ''diagnose'' | 

{''final''} ]\n'); 
    fprintf('              OutputFcns: [ function_handle  | {[]} ]\n'); 
    fprintf('                PlotFcns: [ function_handle  | @gaplotbestf | 

@gaplotbestindiv | @gaplotdistance | \n'); 
    fprintf('                            @gaplotexpectation | 

@gaplotgenealogy | @gaplotselection | @gaplotrange | \n'); 
    fprintf('                            @gaplotscorediversity  | 

@gaplotscores | @gaplotstopping  | \n');  
    fprintf('                            @gaplotmaxconstr | @gaplotrankhist | 

@gaplotpareto | @gaplotspread | \n'); 
    fprintf('                            @gaplotparetodistance |{[]} ]\n'); 
    fprintf('            PlotInterval: [ positive scalar  | {1} ]\n\n'); 

         
    fprintf('              Vectorized: [ ''on''  | {''off''} ]\n\n'); 
    fprintf('             UseParallel: [ ''always'' | {''never''} ]\n'); 
    return;  
end      

  
numberargs = nargin;  

  
%Return options with default values and return it when called with one output 

argument 
options=struct('PopulationType', [], ... 
               'PopInitRange', [], ... 
               'PopulationSize', [], ... 
               'EliteCount', [], ... 
               'CrossoverFraction', [], ... 
               'ParetoFraction', [], ...                
               'MigrationDirection',[], ... 
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               'MigrationInterval',[], ... 
               'MigrationFraction',[], ... 
               'Generations', [], ... 
               'TimeLimit', [], ... 
               'FitnessLimit', [], ... 
               'StallGenLimit', [], ... 
               'StallTimeLimit', [], ... 
               'TolFun', [], ... 
               'TolCon', [], ... 
               'InitialPopulation',[], ... 
               'InitialScores', [], ... 
               'InitialPenalty', [], ... 
               'PenaltyFactor', [], ... 
               'PlotInterval',[], ... 
               'CreationFcn',[], ... 
               'FitnessScalingFcn', [], ... 
               'SelectionFcn', [], ... 
               'CrossoverFcn',[], ... 
               'MutationFcn',[], ... 
               'DistanceMeasureFcn',[], ...                
               'HybridFcn',[], ... 
               'Display', [], ... 
               'PlotFcns', [], ... 
               'OutputFcns', [], ... 
               'Vectorized',[], ... 
               'UseParallel', []);    

  

  
% If we pass in a function name then return the defaults. 
if (numberargs==1) && (ischar(varargin{1}) || 

isa(varargin{1},'function_handle') ) 
    if ischar(varargin{1}) 
        funcname = lower(varargin{1}); 
        if ~exist(funcname) 
            

error(message('globaloptim:GAOPTIMSET:functionNotFound',funcname)); 
        end 
    elseif isa(varargin{1},'function_handle') 
        funcname = func2str(varargin{1}); 
    end 
    try  
        optionsfcn = feval(varargin{1},'defaults'); 
    catch 
        error(message('globaloptim:GAOPTIMSET:noDefaultOptions',funcname)); 
    end 
    % To get output, run the rest of psoptimset as if called with 

gaoptimset(options, optionsfcn) 
    varargin{1} = options; 
    varargin{2} = optionsfcn; 
    numberargs = 2; 
end 

  
Names = fieldnames(options); 
m = size(Names,1); 
names = lower(Names); 
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i = 1; 
while i <= numberargs 
    arg = varargin{i}; 
    if ischar(arg)                         % arg is an option name 
        break; 
    end 
    if ~isempty(arg)                      % [] is a valid options argument 
        if ~isa(arg,'struct') 
            error(message('globaloptim:GAOPTIMSET:invalidArgument', i)); 
        end 
        for j = 1:m 
            if any(strcmp(fieldnames(arg),Names{j,:})) 
                val = arg.(Names{j,:}); 
            else 
                val = []; 
            end 
            if ~isempty(val) 
                if ischar(val) 
                    val = deblank(val); 
                end 
                checkfield(Names{j,:},val); 
                options.(Names{j,:}) = val; 
            end 
        end 
    end 
    i = i + 1; 
end 

  
% A finite state machine to parse name-value pairs. 
if rem(numberargs-i+1,2) ~= 0 
    error(message('globaloptim:GAOPTIMSET:invalidArgPair')); 
end 
expectval = 0;                          % start expecting a name, not a value 
while i <= numberargs 
    arg = varargin{i}; 

     
    if ~expectval 
        if ~ischar(arg) 
            error(message('globaloptim:GAOPTIMSET:invalidArgFormat', i)); 
        end 

         
        lowArg = lower(arg); 
        j = strmatch(lowArg,names); 
        if isempty(j)                       % if no matches 
            error(message('globaloptim:GAOPTIMSET:invalidParamName', arg)); 
        elseif length(j) > 1                % if more than one match 
            % Check for any exact matches (in case any names are subsets of 

others) 
            k = strmatch(lowArg,names,'exact'); 
            if length(k) == 1 
                j = k; 
            else 
                allNames = ['(' Names{j(1),:}]; 
                for k = j(2:length(j))' 
                    allNames = [allNames ', ' Names{k,:}]; 
                end 
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                allNames = sprintf('%s).', allNames); 
                

error(message('globaloptim:GAOPTIMSET:ambiguousParamName',arg,allNames)); 
            end 
        end 
        expectval = 1;                      % we expect a value next 

         
    else            
        if ischar(arg) 
            arg = (deblank(arg)); 
        end 
        checkfield(Names{j,:},arg); 
        options.(Names{j,:}) = arg; 
        expectval = 0; 
    end 
    i = i + 1; 
end 

  
if expectval 
    error(message('globaloptim:GAOPTIMSET:invalidParamVal', arg)); 
end 

  

  
%------------------------------------------------- 
function checkfield(field,value) 
%CHECKFIELD Check validity of structure field contents. 
%   CHECKFIELD('field',V) checks the contents of the specified 
%   value V to be valid for the field 'field'.  
% 

  
% empty matrix is always valid 
if isempty(value) 
    return 
end 

  
switch field 
    case {'PopulationType','MigrationDirection'} 
        if ~isa(value,'char')  
            

error(message('globaloptim:GAOPTIMSET:checkfield:NotAString','OPTIONS',field)

); 
        end 

         
    case {'FitnessScalingFcn','SelectionFcn','CrossoverFcn','MutationFcn',... 
                

'CreationFcn','HybridFcn','PlotFcns','OutputFcns','DistanceMeasureFcn'} 
        if ~(iscell(value) ||  isa(value,'function_handle')) 
            

error(message('globaloptim:GAOPTIMSET:checkfield:NotAFunctionOrCellArray','OP

TIONS',field)); 
        end 

         
    case 

{'ParetoFraction','EliteCount','CrossoverFraction','MigrationInterval','PlotI

nterval','TolCon', ... 
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'TolFun','MigrationFraction','TimeLimit','StallTimeLimit','FitnessLimit','Sta

llGenLimit'}  
        if ~isa(value,'double')   
            if ischar(value) 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosRealNumButString','OP

TIONS',field)); 
            else 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosRealNum','OPTIONS',fi

eld)); 
            end 
        end 
    case 

{'PopInitRange','InitialPopulation','InitialScores','InitialPenalty','Penalty

Factor'} 
       % The content is checked elsewhere. 
    case {'Display'} 
        if ~isa(value,'char') || 

~any(strcmpi(value,{'off','none','iter','diagnose','final'}))             
            

error(message('globaloptim:GAOPTIMSET:checkfield:NotADisplayType','OPTIONS',f

ield,'off','iter','diagnose','final')); 
        end 
    case {'Vectorized'} 
        if ~isa(value,'char') || ~any(strcmp(value,{'on','off'})) 
            

error(message('globaloptim:GAOPTIMSET:checkfield:NotOnOrOff','OPTIONS',field,

'off','on')); 
        end 
     case {'Generations'} % integer including inf or default string 
        if ~(isscalar(value) && isa(value,'double') && value >= 0) && ... 
                ~strcmpi(value, '200*numberOfVariables') 
            if ischar(value) 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosNumericScalarButStrin

g','OPTIONS',field));                 
            else 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosNumericScalar','OPTIO

NS',field));   
            end 
        end 

         
    case {'PopulationSize'} % integer including inf or default string 
        if ~(isa(value,'double') && all(value(:) >= 0)) && ... 
                ~strcmpi(value,'15*numberOfVariables') 
            if ischar(value) 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosNumericButString','OP

TIONS',field));   
            else 
                

error(message('globaloptim:GAOPTIMSET:checkfield:NotAPosNumeric','OPTIONS',fi

eld));   
            end 
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        end  

     
    case 'UseParallel' 
        if ~ischar(value) 
            

error(message('globaloptim:GAOPTIMSET:checkfield:NotNeverOrAlways','OPTIONS',

field,'never','always'));  
        end 

  
    otherwise 
        error(message('globaloptim:GAOPTIMSET:unknownOptionsField')) 
end     

  

 

fitnessfunc_ser.m 

function LCOE  = fitnessfunc_ser(x,HWSPSData,HWSPSConf) 
%fitnessfunc Function to evaluate solution fitness 
%   evaluates suitability of a configuration. 
%   evaluates LPSP and LCOE  

  
%Layouts 
Npv = x(1);Nwtg = x(2);Nbess=x(3); 
%Declare globals 
%global HWSPSData; global HWSPSConf; 
%%   1. Read configuration 
        PVConf = HWSPSConf(2:10);WTGConf = HWSPSConf(12:20); BESSConf = 

HWSPSConf(22:30); CRF = HWSPSConf(34);EFF = HWSPSConf(37:40); 
        LPSPThrshld = HWSPSConf(43);DSM = HWSPSConf(44);SPT=HWSPSConf(45); 
%   Panel constants 
%       (1)Ppvr - rated unit capacity (W),(2)fpv - derating factor,(3)Gstc - 

STC irradiance,(4) Tstc - STC temperature,(5)alpha_t - 
%       temperature coefficient (7) -  (8)CCPV - Overnight 
%       Capital Cost, (9)FOMPV - Fixed O&M Costs, (10) IEF - Inverter 
%       Efficiency 
%       Costs. 
        Ppvr = PVConf(1);fpv 

=PVConf(2);Gstc=PVConf(3);Tstc=PVConf(4);alpha_t=PVConf(5);CCPV=PVConf(7);FOM

PV=PVConf(8); 
%   WTG Constants 
%       (1)Pwtgr - rated unit capacity (W),(2)v_in - Cut In speed (m/s),(3) 

v_r - Rated 
%       Speed (m/s),(4) v_out - Cut Off Speed (m/s), (5)CCWTG - Overnight 
%       Capital Cost, (6) FOMWTG - Fixed O&M , (7) VOMWTG - Variable O&M 
%       (8) - Hub Height, (9) TEF - Transformer Efficiency 
        Pwtgr = 

WTGConf(1);v_in=WTGConf(2);v_r=WTGConf(3);v_out=WTGConf(4);CCWTG=WTGConf(5);F

OMWTG = WTGConf(6); VOMWTG = WTGConf(7); 

  
%   BESS constants 
%       (1)PBr - unit BESS size (kW),(2)SDR - Self Discharge Rate,(3)Cbess - 

BESS rating 
%       in AH, (4)Vbess - BESS Voltage rating, (5) DOD_Max - Maximum Depth 
%       of Discharge, (6) CCBESS - Overnight Capital Cost (7)FOMBESS - 
%       Fixed O&M 
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        PBr = BESSConf(1);SDR = BESSConf(2);Cbess = BESSConf(3);Vbess = 

BESSConf(4);DOD_max = BESSConf(5);CCBESS = 

BESSConf(6);FOMBESS=BESSConf(7);RTEF = BESSConf(8); 

  
% Converters 
%       DCDC - DC to DC Boost converter, ACDC - AC to Dc Power rectifiers, 
%       DCAC - Inverter, ACAC - Step up transformer. 
        DCDC = EFF(1);ACDC = EFF(2);DCAC = EFF(3);ACAC=EFF(4); 

         
%%   2. Load Data 
        switch DSM 
            case 1 
                Demand = HWSPSData(:,2); % Simulate Demand Side Management 
            case 0 
                Demand = HWSPSData(:,1);% No Demand Side Management 
        end 
        switch SPT 
            case 1 
                Solar = HWSPSData(:,4:5);% simulate PV trackers 
            case 0 
                Solar = cat(2,HWSPSData(:,3),HWSPSData(:,5));% Do NOT 

simulate PV trackers 
        end 
        Wind=HWSPSData(:,6); 

        

  
%%   3. Calculate LPSP 
%      a. Iterative loop through all timesteps 
        %prep matrices 
        Pg = zeros(8760,1);SOC=zeros(8760,1);Ppvg=zeros(8760,1); 
        Pwtg = zeros(8760,1);Pbess=zeros(8760,1);Pl=zeros(8760,1); 
        %prep sum values 
        SPlPg = 0; SPl=0;LPSP=0;LCOE=0;SPwtg=0;SPpvg=0;SPbess=0;LPS=0; 
        %Demand adjusted as seen on DC Bus 
        Pl = Demand/(DCAC*ACAC); 
        % initial charge set to 1-DOD_max 
        SOC(1) = 1-DOD_max; 
        for t=1:8760 
%           ii. Evaluate Pg(ti) - All calculation on DC Bus 
%                   Evaluate Ppvg 
                    Ppvg(t) = 

DCDC*fpv*Npv*Ppvr*(Solar(t,1)/Gstc)*(1+alpha_t*(Solar(t,2)-Tstc)); 

                     
%                   Evaluate Pwtg 
                    if  Wind(t) < v_in 
                            Pwtg(t)=0; 
                    elseif (Wind(t)>v_in)&&(Wind(t)<v_r) 
                            Pwtg(t) = ACDC*Nwtg*Pwtgr*((Wind(t)-v_in)/(v_r-

v_in)); 
                    else 
                            Pwtg(t) = 

ACDC*Nwtg*Pwtgr*rectangularPulse((Wind(t)-(v_out+v_r)/2)/(v_out-v_r)); 
                    end;                                             

  
%                   Evaluate Pg 
                    Pg(t) = Pwtg(t)+Ppvg(t); 
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%                   Energy Summations 
                    SPl = SPl + Pl(t); 
%                   Check if Pg is greater than Demand 
                  if t>1   
                    if Pg(t)>Pl(t) 
                        % Demand met, extra power to charge BESS 
                        SOC(t) = SOC(t-1)*(1-SDR/24)+ (DCDC*RTEF*(Pg(t)-

Pl(t)))/(Nbess*PBr); 
                        SOC(t) = limits(1-DOD_max,SOC(t),1); 
                        %calculate actual power delivered from wind 
                        SPwtg = SPwtg + (Pwtg(t)/Pg(t)*(Pl(t)+(SOC(t)-SOC(t-

1))*1/(DCDC*RTEF)*Nbess*PBr)); 
                        %calculate actual power delivered from solar 
                        SPpvg = SPpvg + (Ppvg(t)/Pg(t)*(Pl(t)+(SOC(t)-SOC(t-

1))*1/(DCDC*RTEF)*Nbess*PBr)); 
                    else 
                        %Check if Demand will be met with input from BESS 
                        if (Pg(t)+DCDC*Nbess*PBr*(SOC(t-1)+DOD_max-1))>Pl(t) 
                            %Demand met, update SOC 
                            SOC(t) = SOC(t-1)*(1-SDR/24)-(Pl(t)-

Pg(t))/(DCDC*Nbess*PBr); 
                            SOC(t) = limits(1-DOD_max,SOC(t),1); 
                            SPbess = SPbess + (Pl(t)-Pg(t)); 
                            %check that DOD-max not violated 
                            if SOC(t)<1-DOD_max 
                                %Demand will not be met without violation, DO 

not Discharge from 
                                %batteries, overwrite calculate present 
                                %state of charge 
                                LPS = LPS+1; 
                                SOC(t) = SOC(t-1)*(1-SDR/24); 
                            else 
                                SOC(t) = limits(1-DOD_max,SOC(t),1); 
                                if Pg~=0 
                                %calculate actual power delivered from wind 
                                SPwtg = SPwtg + (Pwtg(t)/Pg(t)*(Pl(t)-(SOC(t-

1)-SOC(t))*DCDC*Nbess*PBr)); 
                                %calculate actual power delivered from solar 
                                SPpvg = SPpvg + (Ppvg(t)/Pg(t)*(Pl(t)-(SOC(t-

1)-SOC(t))*DCDC*Nbess*PBr)); 
                                end 
                            end 

  
                        else 
                            %Demand not met 
                            LPS = LPS+1; 
                            SOC(t) = SOC(t-1)*(1-SDR/24); 
                        end 

                         
                    end 
                  else 
                      if Pg(t)> Pl(t) 
                          %Calculate actual power delivered from wind 
                          SPwtg = SPwtg + 

(Pwtg(t)/Pg(t)*(Pl(t)+(SOC(t)+DOD_max-1)*1/(DCDC*RTEF)*Nbess*PBr)); 
                          %calculate actual power delivered from solar 
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                          SPpvg = SPpvg + 

(Ppvg(t)/Pg(t)*(Pl(t)+(SOC(t)+DOD_max-1)*1/(DCDC*RTEF)*Nbess*PBr)); 
                      end 
                  end 

                 

                     
        end 
%       Evaluate LPSP 
        LPSP = LPS/8760; 
%%   4. (Optional) Check if LPSP within allowed range and proceed or quit 
        if LPSP > LPSPThrshld 
            %THreshold not met, exit no need to calculate LCOE, return 
            %negative LCOE, solution will be discarded. 
            LCOE = NaN; 
        else                          
%%  5. Calculate LCOE 
%       a. Solar PV (SLCOE) 
        SLCOE = Npv*Ppvr*(CCPV*CRF+FOMPV)/SPpvg; 
%       b. Wind TG (WLCOE) 
        WLCOE = (Nwtg*Pwtgr*(CCWTG*CRF+FOMWTG)/SPwtg)+VOMWTG; 
        %Combine Solar and Wind LCOE 
        SWLCOE = (SPpvg*SLCOE+SPwtg*WLCOE)/(SPpvg+SPwtg); 
%       c. BESS (BLCOE) 
        BLCOE = Nbess*PBr*(CCBESS*CRF+FOMBESS)/SPbess+SWLCOE; 
%       d. Weighted Average LCOE 
            if SPbess ~= 0 
                LCOE = 

(SPpvg*SLCOE+SPwtg*WLCOE+SPbess*BLCOE)/(SPpvg+SPwtg+SPbess); 
            else 
                LCOE = 

(SPpvg*SLCOE+SPwtg*WLCOE+SPbess*1)/(SPpvg+SPwtg+SPbess);    
            end 
        end 
end 

 

limits.m 

function [ limit ] = limits( LB,val,UB ) 
%limits Enforce limits on outputs of calculations 
%   Returns the value (val) if it is not more than the upper bound (UB) and 
%   not less than the lower bound(LB). 
%   Returns the lower bound LB, if the value is less than LB and returns 
%   UB, the upper bound if the value exceeds the UB. 

  
if val < LB 
    limit = LB; 
elseif val >UB 
    limit = UB; 
else 
    limit = val; 
end 

  
end 
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outputfunc.m 

 
function [state, options,optchanged] = outputfunc(options,state,flag) 
%output Save output statistics of an algorithm run for post optimization 
%analysis 
optchanged = false; 
switch flag 
case 'init' 
disp('Starting the algorithm'); 
case {'iter','interrupt'} 
disp('Iterating ...') 
fname=[pwd,'\log\',num2str(state.Generation),'.mat']; 
save(fname,'state') 
case 'done' 
disp('Performing final task'); 
fname=[pwd,'\log\',num2str(state.Generation),'.mat']; 
save(fname,'state'); 
end 

  

 

ga.m 

function [x,fval,exitFlag,output,population,scores] = 

ga(fun,nvars,Aineq,bineq,Aeq,beq,lb,ub,nonlcon,intcon,options) 
%GA    Constrained optimization using genetic algorithm. 
defaultopt = struct('PopulationType', 'doubleVector', ... 
    'PopInitRange', [0;1], ... 
    'PopulationSize', 20, ... 
    'EliteCount', 2, ... 
    'CrossoverFraction', 0.8, ... 
    'MigrationDirection','forward', ... 
    'MigrationInterval',20, ... 
    'MigrationFraction',0.2, ... 
    'Generations', 100, ... 
    'TimeLimit', inf, ... 
    'FitnessLimit', -inf, ... 
    'StallGenLimit', 50, ... 
    'StallTimeLimit', inf, ... 
    'TolFun', 1e-6, ... 
    'TolCon', 1e-6, ... 
    'InitialPopulation',[], ... 
    'InitialScores', [], ... 
    'InitialPenalty', 10, ... 
    'PenaltyFactor', 100, ... 
    'PlotInterval',1, ... 
    'CreationFcn',@gacreationuniform, ... 
    'FitnessScalingFcn', @fitscalingrank, ... 
    'SelectionFcn', @selectionstochunif, ... 
    'CrossoverFcn',@crossoverscattered, ... 
    'MutationFcn',{{@mutationgaussian 1  1}}, ... 
    'HybridFcn',[], ... 
    'Display', 'final', ... 
    'PlotFcns', [], ... 
    'OutputFcns', [], ... 
    'Vectorized','off', ... 
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    'UseParallel', 'never'); 

  
% Check number of input arguments 
errmsg = nargchk(1,11,nargin); 
if ~isempty(errmsg) 
    error(message('globaloptim:ga:numberOfInputs', errmsg)); 
end 

  
% If just 'defaults' passed in, return the default options in X 
if nargin == 1 && nargout <= 1 && isequal(fun,'defaults') 
    x = defaultopt; 
    return 
end 

  
if nargin < 11, options = []; 
    if nargin < 10,  intcon = []; 
        if nargin < 9,  nonlcon = []; 
            if nargin < 8, ub = []; 
                if nargin < 7, lb = []; 
                    if nargin <6, beq = []; 
                        if nargin <5, Aeq = []; 
                            if nargin < 4, bineq = []; 
                                if nargin < 3, Aineq = []; 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
% Is third argument a structure 
if nargin == 3 && isstruct(Aineq) % Old syntax 
    options = Aineq; Aineq = []; 
end 

  
% Is tenth argument a structure? If so, integer constraints have not been 
% specified 
if nargin == 10 && isstruct(intcon) 
    options = intcon; 
    intcon = []; 
end 

  
% One input argument is for problem structure 
if nargin == 1 
    if isa(fun,'struct') 
        [fun,nvars,Aineq,bineq,Aeq,beq,lb,ub,nonlcon,intcon,rngstate,options] 

= separateOptimStruct(fun); 
        % Reset the random number generators 
        resetDfltRng(rngstate); 
    else % Single input and non-structure.  
        error(message('globaloptim:ga:invalidStructInput')); 
    end 
end 
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% If fun is a cell array with additional arguments get the function handle 
if iscell(fun) 
    FitnessFcn = fun{1}; 
else 
    FitnessFcn = fun; 
end 

  
% Only function handles or inlines are allowed for FitnessFcn 
if isempty(FitnessFcn) ||  ~(isa(FitnessFcn,'inline') || 

isa(FitnessFcn,'function_handle')) 
    error(message('globaloptim:ga:needFunctionHandle')); 
end 

  
% We need to check the nvars here before we call any solver 
valid =  isnumeric(nvars) && isscalar(nvars)&& (nvars > 0) ... 
    && (nvars == floor(nvars)); 
if ~valid 
    error(message('globaloptim:ga:notValidNvars')); 
end 

  
% Specific checks and modification of options for mixed integer GA 
if ~isempty(intcon)    
    % Check whether the user has specified options that the mixed integer 
    % solver will either ignore or error. 
    gaminlpvalidateoptions(options);     
    % If a user doesn't specify PopInitRange, we want to set it to the 
    % bounds when we create the initial population. Need to store a flag 
    % that indicates whether the user has specified PopInitRange so we can 
    % do this in the creation function. 
    UserSpecPopInitRange = isa(options, 'struct') && ... 
        isfield(options, 'PopInitRange') && ~isempty(options.PopInitRange); 
    % Change the default options for PopulationSize and EliteCount here. 
    defaultopt.PopulationSize = max(min(10*nvars, 100), 40); 
    defaultopt.EliteCount = floor(0.05*defaultopt.PopulationSize); 
end 

  
user_options = options; 
% Use default options if empty 
if ~isempty(options) && ~isa(options,'struct') 
        error(message('globaloptim:ga:optionsNotAStruct')); 
elseif isempty(options) 
    options = defaultopt; 
end 
% Take defaults for parameters that are not in options structure 
options = gaoptimset(defaultopt,options); 

  
% Check for non-double inputs 
msg = isoptimargdbl('GA', {'NVARS','A',   'b',   'Aeq','beq','lb','ub'}, ... 
                            nvars,  Aineq, bineq, Aeq,  beq,  lb,  ub); 
if ~isempty(msg) 
    error('globaloptim:ga:dataType',msg); 
end 
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[x,fval,exitFlag,output,population,scores,FitnessFcn,nvars,Aineq,bineq,Aeq,be

q,lb,ub, ... 
    NonconFcn,options,Iterate,type] = 

gacommon(nvars,fun,Aineq,bineq,Aeq,beq,lb,ub,nonlcon,intcon,options,user_opti

ons); 

  
if exitFlag < 0 
    return; 
end 

  
% Turn constraints into right size if they are empty. 
if isempty(Aineq) 
    Aineq = zeros(0,nvars); 
end 
if isempty(bineq) 
    bineq = zeros(0,1); 
end 
if isempty(Aeq) 
    Aeq = zeros(0,nvars);  
end 
if isempty(beq) 
    beq = zeros(0,1); 
end 

  
% Call appropriate single objective optimization solver 
if ~isempty(intcon)    
    [x,fval,exitFlag,output,population,scores] = gaminlp(FitnessFcn,nvars, 

... 
        Aineq,bineq,Aeq,beq,lb,ub,NonconFcn,intcon,options,output,Iterate,... 
        UserSpecPopInitRange); 
else     
    switch (output.problemtype) 
        case 'unconstrained' 
            [x,fval,exitFlag,output,population,scores] = 

gaunc(FitnessFcn,nvars, ... 
                options,output,Iterate); 
        case {'boundconstraints', 'linearconstraints'} 
            [x,fval,exitFlag,output,population,scores] = 

galincon(FitnessFcn,nvars, ... 
                Aineq,bineq,Aeq,beq,lb,ub,options,output,Iterate); 
        case 'nonlinearconstr' 
            [x,fval,exitFlag,output,population,scores] = 

gacon(FitnessFcn,nvars, ... 
                

Aineq,bineq,Aeq,beq,lb,ub,NonconFcn,options,output,Iterate,type); 
    end 
end 

 

galincon.m 

function [x,fval,exitFlag,output,population,scores] = 

galincon(FitnessFcn,GenomeLength, ... 
    Aineq,bineq,Aeq,beq,lb,ub,options,output,Iterate) 
%GALINCON Genetic algorithm linear constrained solver. 
%   GALINCON solves problems of the form: 
%           min F(X)    subject to:      A*x <= b 
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%            X                          Aeq*x = beq 
%                                      LB <= X <= UB 
%   Private function to GA 

  
%   Copyright 2005-2011 The MathWorks, Inc. 
%   $Revision: 1.1.6.7 $  $Date: 2012/08/21 00:23:49 $ 

  
% Initialize output args 
x = []; fval = []; exitFlag = []; 
LinearConstr = options.LinearConstr; 

  
% Create initial state: population, scores, status data 
state = 

makeState(GenomeLength,FitnessFcn,Iterate,output.problemtype,options); 
% Determine who is the caller 
callStack = dbstack; 
caller = callStack(2).file(1:end-2); 

  
% Set state for plot and output functions (only gacon will have 
% 'interrupt' state) 
if ~strcmp(caller,'gacon') 
    currentState = 'init'; 
else 
    currentState = 'interrupt'; 
end 
% Give the plot/output Fcns a chance to do any initialization they need. 
state = gadsplot(options,state,currentState,'Genetic Algorithm'); 
[state,options] = gaoutput(FitnessFcn,options,state,currentState); 

  
% Setup display header 
if  options.Verbosity > 1 
    fprintf('\n                               Best           Mean      

Stall\n'); 
    fprintf('Generation      f-count        f(x)           f(x)    

Generations\n'); 
end 

  
% Set state for plot and output functions (only gacon will have 
% 'interrupt' state) 
if ~strcmp(caller,'gacon') 
    currentState = 'iter'; 
else 
    currentState = 'interrupt'; 
end 
% Run the main loop until some termination condition becomes true 
while isempty(exitFlag) 
    state.Generation = state.Generation + 1; 
    % Repeat for each subpopulation (element of the populationSize vector) 
    offset = 0; 
    totalPop = options.PopulationSize; 
    % Each sub-population loop 
    for pop = 1:length(totalPop) 
        populationSize =  totalPop(pop); 
        thisPopulation = 1 + (offset:(offset + populationSize - 1)); 
        population = state.Population(thisPopulation,:); 
        score = state.Score( thisPopulation ); 
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        % Empty population is also possible 
        if isempty(thisPopulation) 
            continue; 
        end 
        [score,population,state] = 

stepGA(score,population,options,state,GenomeLength,FitnessFcn); 
        % Store the results for this sub-population 
        state.Population(thisPopulation,:) = population; 
        state.Score(thisPopulation) = score; 
        offset = offset + populationSize; 
    end 

  
    % Remember the best score 
    best = min(state.Score); 
    generation = state.Generation; 
    state.Best(generation) = best; 
    % Keep track of improvement in the best 
    if((generation > 1) && isfinite(best)) 
        if(state.Best(generation-1) > best) 
            state.LastImprovement = generation; 
            state.LastImprovementTime = cputime; 
        end 
    end 
    % Do any migration 
    state = migrate(FitnessFcn,GenomeLength,options,state); 
    % Update the Output 
    state = gadsplot(options,state,currentState,'Genetic Algorithm'); 
    [state,options,optchanged] = 

gaoutput(FitnessFcn,options,state,currentState); 
    if optchanged 
        options.LinearConstr = LinearConstr; 
    end 
    % Check to see if any stopping criteria have been met 
    [exitFlag,output.message] = isItTimeToStop(options,state); 
end % End while loop 

  
% Find and return the best solution 
[fval,best] = min(state.Score); 
x = state.Population(best,:); 

  
% Update output structure 
output.generations = state.Generation; 
output.funccount   = state.FunEval; 
output.maxconstraint = norm([Aeq*x'-beq; max([Aineq*x' - bineq;x' - 

ub(:);lb(:) - x'],0)],Inf); 
population = state.Population; 
scores = state.Score; 

  
% Call hybrid function 
if ~isempty(options.HybridFcn) 
    if  strcmpi(options.PopulationType,'doubleVector') 
        [x,fval] = callHybridFunction; 
    else 
        warning(message('globaloptim:galincon:notValidHybrid')); 
    end 
end 
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% Set state for plot and output functions (only gacon will have 
% 'interrupt' state) 
if ~strcmp(caller,'gacon') 
    currentState = 'done'; 
else 
    currentState = 'interrupt'; 
end 
% give the Output functions a chance to finish up 
gadsplot(options,state,currentState,'Genetic Algorithm'); 
gaoutput(FitnessFcn,options,state,currentState); 

  
%----------------------------------------------------------------- 
% Hybrid function 
    function [xhybrid,fhybrid] = callHybridFunction 
        xhybrid = x; 
        fhybrid = fval; 
        % Who is the hybrid function 
        if isa(options.HybridFcn,'function_handle') 
            hfunc = func2str(options.HybridFcn); 
        else 
            hfunc = options.HybridFcn; 
        end 
        % Inform about hybrid scheme 
        if   options.Verbosity > 1 
            fprintf('%s%s%s\n','Switching to the hybrid optimization 

algorithm (',upper(hfunc),').'); 
        end 
        % Create functions handle to be passed to hybrid function 
        FitnessHybridFcn = @(x) FitnessFcn(x,options.FitnessFcnArgs{:}); 
        ConstrHybridFcn = []; 
        if ~any(strcmpi(hfunc,{'fmincon', 'patternsearch'})) 
            

warning(message('globaloptim:galincon:unconstrainedHybridFcn',upper(hfunc),'F

MINCON')); 
            hfunc = 'fmincon'; 
        end 
        [x_temp,f_temp,funccount,theMessage,conviol_temp] = ... 
            

callHybrid(hfunc,FitnessHybridFcn,x,options.HybridFcnArgs,Aineq,bineq,Aeq,beq

,lb,ub,ConstrHybridFcn); 
        output.funccount = output.funccount + funccount; 
        output.message   = sprintf([output.message '\n', theMessage '\n']); 
        hybridPointFeasible = isHybridPointFeasible(conviol_temp, ... 
            hfunc, options.HybridFcnArgs{:}); 
        % We have to recheck whether the final point returned from GA is 
        % feasible because GA asserts that the final point is always 
        % feasible. If a user supplies their own operators, this may not be 
        % the case. We could replace this code if output.maxconstraint 
        % reflects the true constraint violation. 
        tol = max(sqrt(eps),sqrt(options.TolCon));         
        gaPointFeasible = isTrialFeasible(x(:), Aineq, bineq, ... 
            Aeq, beq, lb, ub, tol); 
        if hybridPointFeasible && (~gaPointFeasible || f_temp < fhybrid) 
            fhybrid = f_temp; 
            xhybrid = x_temp; 
        end 
        % Inform about hybrid scheme termination 
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        if  options.Verbosity > 1 
            fprintf('%s%s\n',upper(hfunc), ' terminated.'); 
        end 
    end % End of callHybridFunction 
end  % End of galincon 

  

 

 

 

Constraints_estimator 

%%Estimation of Lower and Upper Bounds 
disp('------First run sizing check-------'); 
disp('-----------------------------------'); 
dispX=['Peak load: ', num2str(max(Pl))];disp(dispX); 
disp('Initial bounds:'); 
dispX=['Solar = ', num2str(round( max(Pl)/Ppvr))];disp(dispX); 
dispX=['Wind = ', num2str(round(max(Pl)/Pwtgr))];disp(dispX); 
disp('BESS = 0'); 
disp('------------------------------------'); 
disp('---Calculating Approximate Bounds---'); 
SLB = SPpvg/(SPpvg+SPwtg)*(1-LPSP)*max(Pl); 
WLB = SPwtg/(SPpvg+SPwtg)*(1-LPSP)*max(Pl); 
BLB = LPSP*max(Pl); 
scaleFactor = 10; 
dispX=['Solar Bounds [ ', num2str(round(SLB/Ppvr)), '---' , 

num2str(scaleFactor*round(SLB/Ppvr)), ' ]'];disp(dispX); 
dispX=['Wind Bounds [ ', num2str(round(WLB/Pwtgr)), '---' , 

num2str(scaleFactor*round(WLB/Pwtgr)), ' ]'];disp(dispX); 
dispX=['BESS Bounds [ ', num2str(round(BLB/PBr)), '---' , 

num2str(scaleFactor*round(BLB/PBr)), ' ]'];disp(dispX); 
disp('------------------------------------'); 
disp('-----------End of Report------------'); 
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ANNEX 4: Validation – The Transparent Cost Database (Abridged form) 

 

# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

1 
Land-Based 

Wind 2010  $        0.06    18 6 DOE 2013 2013 DOE Program Estimate 

2 
Land-Based 

Wind 2014  $        0.05    51 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

3 
Land-Based 

Wind 2013  $        0.05    51 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

4 
Land-Based 

Wind 2009  $        0.05   $      1,435.00  26.79   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

5 
Land-Based 

Wind 2009  $        0.04   $      1,435.00  26.79   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

6 
Land-Based 

Wind 2009  $        0.04   $      1,435.00  26.79   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

7 
Land-Based 

Wind 2009  $        0.07   $      1,922.99  30.3 0 AEO 2009 2009 Annual Energy Outlook 2009 

8 
Land-based 

Wind 2009  $        0.08        USOWC 2009 U.S. Offshore Wind Energy: A Path Forward 

9 
Land-Based 

Wind 2010  $        0.07   $      1,964.39      AEO 2010 2010 Annual Energy Outlook 2010 

10 
Land-Based 

Wind 2009  $        0.07   $      1,965.56      AEO 2010 2010 Annual Energy Outlook 2010 

11 
Land-Based 

Wind 2010  $        0.07   $      2,034.20      EPA 2010 2010 
Environmental Protection Agency (2010). Data from 
Integrated Power Model (IPM), ICF International. 

12 
Land-based 

Wind 2009  $        0.05    10.28 4.82 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

13 
Land-based 

Wind 2009  $        0.04    10.28 4.82 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

14 
Land-Based 

Wind 2009  $        0.07        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

15 
Land-based 

Wind 2009  $        0.07    13.7 5.5 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

16 
Land-based 

Wind 2009  $        0.06    13.7 5.5 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

17 
Land-Based 

Wind 2009  $        0.09        
Wiser and 

Bolinger, 2010 2010 
2009 Wind Technologies Market Report, U.S. 
Department of Energy. 

18 
Land-Based 

Wind 2009  $        0.07    60 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

19 
Land-Based 

Wind 2009  $        0.09    50 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

20 
Land-Based 

Wind 2009  $        0.08        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

21 
Land-Based 

Wind 2009  $        0.11    60 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

22 
Land-based 

Wind 2009  $        0.09    17.13 7.66 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

23 
Land-based 

Wind 2009  $        0.09    17.13 7.66 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

24 
Land-Based 

Wind 2011  $        0.08   $      2,402.77      AEO 2011 2011 Annual Energy Outlook 2011 

25 
Land-Based 

Wind 2010  $        0.07   $      2,408.76  27.73 0 AEO 2011 2011 Annual Energy Outlook 2011 

26 
Land-Based 

Wind 2009  $        0.05        
Wiser et al, 

2011 2011 

Wind Energy, Chapter 7, an IPPCC Special Report on 
Renewable Energy Sources and Climate Change 
Mitigation. 

27 
Land-Based 

Wind 2011  $        0.05      12 IPCC 2011 2011 IPCC Annex 3 

28 
Land-Based 

Wind 2011  $        0.07      17.5 IPCC 2011 2011 IPCC Annex 3 

29 
Land-Based 

Wind 2009  $        0.06        
Wiser et al, 

2011 2011 

Wind Energy, Chapter 7, an IPPCC Special Report on 
Renewable Energy Sources and Climate Change 
Mitigation. 

30 
Land-Based 

Wind 2009  $        0.07        
McCalley et al, 

2011 2011 
A Wider Horizon. IEEE Power & Energy Magazine. 
May/June 2011 

31 
Land-Based 

Wind 2011  $        0.07    11.7 6 DOE 2011 2011 DOE Program Estimate 

32 
Land-Based 

Wind 2009  $        0.07        
Wiser et al, 

2011 2011 

Wind Energy, Chapter 7, an IPPCC Special Report on 
Renewable Energy Sources and Climate Change 
Mitigation. 

33 
Land-Based 

Wind 2011  $        0.09      23 IPCC 2011 2011 IPCC Annex 3 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

34 
Land-Based 

Wind 2012  $        0.06    60 0 
Tegan et al, 

2012 2012 2010 Cost of Wind Energy Review 

35 
Land-based 

Wind 2010  $        0.09    36   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

36 
Land-Based 

Wind 2010  $        0.06    12.24 7.45 
Mai et al, 

2012 2012 Renewable Electricity Futures 

37 
Land-Based 

Wind 2010  $        0.07    59.41 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

38 
Land-Based 

Wind 2010  $        0.07    34 0 
Tegan et al, 

2012 2012 2010 Cost of Wind Energy Review 

39 
Land-based 

Wind 2010  $        0.08        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

40 
Land-based 

Wind 2010  $        0.10        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

41 
Land-based 

Wind 2011  $        0.11        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

42 
Land-based 

Wind 2010  $        0.11        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

43 
Land-based 

Wind 2009  $        0.12        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

44 
Land-based 

Wind 2010  $        0.12        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

45 
Land-based 

Wind 2013  $        0.05    31.72 6.34 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

46 
Land-based 

Wind 2013  $        0.05    31.72 6.34 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

47 
Land-based 

Wind 2013  $        0.06    31.72 8.46 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

48 
Land-based 

Wind 2013  $        0.06    31.72 8.46 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

49 
Land-based 

Wind 2013  $        0.09    31.72 10.57 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

50 
Land-based 

Wind 2013  $        0.07        
Tegen et al 

2013 2013 2011 Cost of Wind Energy Review 

51 
Land-based 

Wind 2013  $        0.11    31.72 10.57 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

52 
Land-based 

Wind 2010  $        0.05        IIASA 2014 2014 AMPERE DB 

53 
Land-Based 

Wind 2014  $        0.04    35   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

54 
Land-based 

Wind 2013  $        0.06        
Wisner et al 

2014 2014 2013 Wind Technologies Market Report 

55 
Land-Based 

Wind 2014  $        0.08    40   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

56 
Land-based 

Wind 2012  $        0.07        
Wisner et al 

2014 2014 2013 Wind Technologies Market Report 

57 
Land-based 

Wind 2010  $        0.07        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

58 
Land-based 

Wind 2010  $        0.07        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

59 
Land-based 

Wind 2011  $        0.07        
Wisner et al 

2014 2014 2013 Wind Technologies Market Report 

60 
Land-based 

Wind 2010  $        0.08        
Wisner et al 

2014 2014 2013 Wind Technologies Market Report 

61 
Land-based 

Wind 2009  $        0.08        
Wisner et al 

2014 2014 2013 Wind Technologies Market Report 

62 
Wind-

Offshore 2010  $        0.16    67 17 DOE 2013 2013 DOE Program Estimate 

63 
Wind-

Offshore 2013  $        0.17    132 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

64 
Wind-

Offshore 2014  $        0.17    132 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

65 
Wind-

Offshore 2013  $        0.17    132 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

66 
Wind-

Offshore 2014  $        0.17    132 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

67 
Wind-

Offshore 2013  $        0.19    162 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

68 
Wind-

Offshore 2014  $        0.19    162 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

69 
Wind-

Offshore 2009  $        0.16   $      2,838.75  180   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

70 
Wind-

Offshore 2009  $        0.13   $      2,838.75  180   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

71 
Wind-

Offshore 2009  $        0.12   $      2,838.75  180   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

72 
Wind-

Offshore 2009  $        0.13   $      3,851.50  89.48 0 AEO 2009 2009 Annual Energy Outlook 2009 

73 
Wind-

Offshore 2009  $        0.13   $      3,936.77  86.92 0 AEO 2010 2010 Annual Energy Outlook 2010 

74 
Wind-

Offshore 2009  $        0.11    60 13 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

75 
Wind-

Offshore 2009  $        0.21    100 18 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

76 
Wind-

Offshore 2009  $        0.18    90 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

77 
Wind-

Offshore 2010  $        0.18   $      6,055.75  86.98 0 AEO 2011 2011 Annual Energy Outlook 2011 

78 
Wind-

Offshore 2011  $        0.10      20 IPCC 2011 2011 IPCC Annex 3 

79 
Wind-

Offshore 2009  $        0.13    86.92   
McCalley et al, 

2011 2011 
A Wider Horizon. IEEE Power & Energy Magazine. 
May/June 2011 

80 
Wind-

Offshore 2011  $        0.14      30 IPCC 2011 2011 IPCC Annex 3 

81 
Wind-

Offshore 2011  $        0.12        
Schwabe et al 

2011 2011 
Multi-national Case Study of the Financial Cost of wind 
Energy 

82 
Wind-

Offshore 2011  $        0.17      40 IPCC 2011 2011 IPCC Annex 3 

83 
Wind-

Offshore 2011  $        0.17    40 19.7 DOE 2011 2011 DOE Program Estimate 

84 
Wind-

Offshore 2010  $        0.13    107 0 
Tegan et al, 

2012 2012 2010 Cost of Wind Energy Review 

85 
Wind-

Offshore 2010  $        0.12    15.96 22.35 
Mai et al, 

2012 2012 Renewable Electricity Futures 

86 
Wind-

Offshore 2010  $        0.12    99.01 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

87 
Wind-

Offshore 2010  $        0.14    114   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

88 
Wind-

Offshore 2014  $        0.10    60 13 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

89 
Wind-

Offshore 2014  $        0.20    100 18 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

90 Photovoltaic 2012  $        0.20    30 0 DOE 2013 2013 DOE Program Estimate 

91 Photovoltaic 2014  $        0.11    17 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

92 Photovoltaic 2013  $        0.14    18 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

93 Photovoltaic 2009  $        0.21   $      4,591.94  7.56   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

94 Photovoltaic 2009  $        0.29   $      5,161.67  16.46   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

95 Photovoltaic 2009  $        0.37   $      6,096.26  39.49   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

96 Photovoltaic 2009  $        0.29   $      6,037.52  11.68 0 AEO 2009 2009 Annual Energy Outlook 2009 

97 Photovoltaic 2010  $        0.41   $      6,110.55      AEO 2010 2010 Annual Energy Outlook 2010 

98 Photovoltaic 2009  $        0.41   $      6,171.18  11.94 0 AEO 2010 2010 Annual Energy Outlook 2010 

99 Photovoltaic 2009  $        0.17        
Barbose et al, 

2010 2010 
Tracking the Sun III. The Installed Cost of Photovoltaics 
in the US from 1998-2009. 

100 Photovoltaic 2009  $        0.14    25 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

101 Photovoltaic 2009  $        0.16    37.5 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

102 Photovoltaic 2009  $        0.22    50 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

103 Photovoltaic 2009  $        0.19    25 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

104 Photovoltaic 2009  $        0.23    37.5 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

105 Photovoltaic 2009  $        0.17    60 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

106 Photovoltaic 2009  $        0.24    25 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

107 Photovoltaic 2009  $        0.20    68 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

108 Photovoltaic 2009  $        0.34        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

109 Photovoltaic 2009  $        0.24    92 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

110 Photovoltaic 2009  $        0.34        
Barbose et al, 

2010 2010 
Tracking the Sun III. The Installed Cost of Photovoltaics 
in the US from 1998-2009. 

111 Photovoltaic 2009  $        0.24    65 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

112 Photovoltaic 2009  $        0.43        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

113 Photovoltaic 2011  $        0.31   $      4,634.63      AEO 2011 2011 Annual Energy Outlook 2011 

114 Photovoltaic 2010  $        0.32   $      4,697.26  25.73 0 AEO 2011 2011 Annual Energy Outlook 2011 

115 Photovoltaic 2011  $        0.16    14   IPCC 2011 2011 IPCC Annex 3 

116 Photovoltaic 2011  $        0.16    16   IPCC 2011 2011 IPCC Annex 3 

117 Photovoltaic 2011  $        0.24    18   IPCC 2011 2011 IPCC Annex 3 

118 Photovoltaic 2011  $        0.25    19   IPCC 2011 2011 IPCC Annex 3 

119 Photovoltaic 2011  $        0.15    26 0 DOE 2011 2011 DOE Program Estimate 

120 Photovoltaic 2011  $        0.25    41.5   IPCC 2011 2011 IPCC Annex 3 

121 Photovoltaic 2011  $        0.25    45.5   IPCC 2011 2011 IPCC Annex 3 

122 Photovoltaic 2011  $        0.36    59   IPCC 2011 2011 IPCC Annex 3 

123 Photovoltaic 2011  $        0.34    69   IPCC 2011 2011 IPCC Annex 3 

124 Photovoltaic 2011  $        0.38    64.5   IPCC 2011 2011 IPCC Annex 3 

125 Photovoltaic 2011  $        0.29    30 0 DOE 2011 2011 DOE Program Estimate 

126 Photovoltaic 2011  $        0.34    75   IPCC 2011 2011 IPCC Annex 3 

127 Photovoltaic 2011  $        0.35    41 0 DOE 2011 2011 DOE Program Estimate 

128 Photovoltaic 2011  $        0.49    100   IPCC 2011 2011 IPCC Annex 3 

129 Photovoltaic 2011  $        0.51    110   IPCC 2011 2011 IPCC Annex 3 

130 Photovoltaic 2012  $        0.10    26 0 DOE 2012 2012 DOE Program Estimate 

131 Photovoltaic 2012  $        0.18    30 0 DOE 2012 2012 DOE Program Estimate 

132 Photovoltaic 2011  $        0.25        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

133 Photovoltaic 2012  $        0.26   $                   -    0 0 
Goodrich et 

al, 2012 2012 

Residential, Commercial, and Utility-Scale Photovoltaic 
(PV) System Prices in the United States: Current Drivers 
and Cost-Reduction Opportunities 

134 Photovoltaic 2010  $        0.26        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

135 Photovoltaic 2011  $        0.27        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

136 Photovoltaic 2010  $        0.27        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

137 Photovoltaic 2010  $        0.16    19.93   
DOE SETP 

2012 2012 Sunshot Solar Vision 

138 Photovoltaic 2010  $        0.24    40   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

139 Photovoltaic 2010  $        0.15    20.69 0 
Mai et al, 

2012 2012 Renewable Electricity Futures 

140 Photovoltaic 2010  $        0.17    50 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

141 Photovoltaic 2011  $        0.28        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

142 Photovoltaic 2012  $        0.24    41 0 DOE 2012 2012 DOE Program Estimate 

143 Photovoltaic 2012  $        0.30   $                   -    0 0 
Goodrich et 

al, 2012 2012 

Residential, Commercial, and Utility-Scale Photovoltaic 
(PV) System Prices in the United States: Current Drivers 
and Cost-Reduction Opportunities 

144 Photovoltaic 2012  $        0.31   $                   -    0 0 
Goodrich et 

al, 2012 2012 

Residential, Commercial, and Utility-Scale Photovoltaic 
(PV) System Prices in the United States: Current Drivers 
and Cost-Reduction Opportunities 

145 Photovoltaic 2010  $        0.32        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

146 Photovoltaic 2010  $        0.30    50 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

147 Photovoltaic 2010  $        0.33        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

148 Photovoltaic 2010  $        0.33    49   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

149 Photovoltaic 2010  $        0.33        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

150 Photovoltaic 2012  $        0.33   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 

151 Photovoltaic 2010  $        0.26    23.5   
DOE SETP 

2012 2012 Sunshot Solar Vision 

152 Photovoltaic 2009  $        0.34        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

153 Photovoltaic 2010  $        0.34        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

154 Photovoltaic 2012  $        0.34   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 
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# Technology Year 
 Calculated 

LCOE  

 Overnight 
Capital Cost 

dollar per kW 
including 

Contingency  

Fixed 
O&M 
dollar 

per kW 

Variable 
O&M 
dollar 

per 
MWh 

Reference 
Name 

Publication 
Year Dataset name 

155 Photovoltaic 2010  $        0.30    23.27 0 
Mai et al, 

2012 2012 Renewable Electricity Futures 

156 Photovoltaic 2010  $        0.35        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

157 Photovoltaic 2012  $        0.36   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 

158 Photovoltaic 2009  $        0.37        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

159 Photovoltaic 2012  $        0.38   $                   -    0 0 
Goodrich et 

al, 2012 2012 

Residential, Commercial, and Utility-Scale Photovoltaic 
(PV) System Prices in the United States: Current Drivers 
and Cost-Reduction Opportunities 

160 Photovoltaic 2012  $        0.39   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 

161 Photovoltaic 2012  $        0.40   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 

162 Photovoltaic 2010  $        0.37    50 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

163 Photovoltaic 2010  $        0.32    32.8   
DOE SETP 

2012 2012 Sunshot Solar Vision 

164 Photovoltaic 2010  $        0.42        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

165 Photovoltaic 2011  $        0.42        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

166 Photovoltaic 2012  $        0.42   $                   -    0 0 
Feldman et al, 

2012 2012 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 

167 Photovoltaic 2010  $        0.39    32.47 0 
Mai et al, 

2012 2012 Renewable Electricity Futures 

168 Photovoltaic 2012  $        0.17        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

169 Photovoltaic 2012  $        0.22        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

170 Photovoltaic 2011  $        0.25        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

171 Photovoltaic 2012  $        0.29        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

172 Photovoltaic 2010  $        0.29        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

173 Photovoltaic 2011  $        0.31        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 
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174 Photovoltaic 2010  $        0.34        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

175 Photovoltaic 2011  $        0.40        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

176 Photovoltaic 2010  $        0.45        
Feldman et al 

2013 2013 
Photovoltaic System Pricing Trends: Historical, Recent, 
and Near-Term Projections 2013 Edition 

177 Photovoltaic 2014  $        0.06    13   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

178 Photovoltaic 2014  $        0.06    13   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

179 Photovoltaic 2014  $        0.10    20   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

180 Photovoltaic 2014  $        0.10    20   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

181 Photovoltaic 2013  $        0.14        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

182 Photovoltaic 2014  $        0.12    13   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

183 Photovoltaic 2012  $        0.18        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

184 Photovoltaic 2013  $        0.18        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

185 Photovoltaic 2013  $        0.22    30 0 LBNL 2014 2014 Tracking the Sun VII 

186 Photovoltaic 2014  $        0.16    20   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

187 Photovoltaic 2012  $        0.22    30 0 LBNL 2014 2014 Tracking the Sun VII 

188 Photovoltaic 2012  $        0.22        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

189 Photovoltaic 2014  $        0.17    25   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

190 Photovoltaic 2011  $        0.25    30 0 LBNL 2014 2014 Tracking the Sun VII 

191 Photovoltaic 2010  $        0.25        IIASA 2014 2014 AMPERE DB 

192 Photovoltaic 2013  $        0.25        
Bollinger-

Weaver 2014 2014 

Utility-Scale Solar 2013: An Empirical Analysis of Project 
Cost, Performance, and Pricing Trends in the United 
States 

193 Photovoltaic 2013  $        0.25        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

194 Photovoltaic 2011  $        0.25        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

195 Photovoltaic 2010  $        0.27    30 0 LBNL 2014 2014 Tracking the Sun VII 
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196 Photovoltaic 2012  $        0.26        
Bollinger-

Weaver 2014 2014 

Utility-Scale Solar 2013: An Empirical Analysis of Project 
Cost, Performance, and Pricing Trends in the United 
States 

197 Photovoltaic 2013  $        0.27    30 0 LBNL 2014 2014 Tracking the Sun VII 

198 Photovoltaic 2010  $        0.27        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

199 Photovoltaic 2010  $        0.28        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

200 Photovoltaic 2012  $        0.29        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

201 Photovoltaic 2013  $        0.30    30 0 LBNL 2014 2014 Tracking the Sun VII 

202 Photovoltaic 2010  $        0.29        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

203 Photovoltaic 2014  $        0.25    30   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

204 Photovoltaic 2012  $        0.32    30 0 LBNL 2014 2014 Tracking the Sun VII 

205 Photovoltaic 2013  $        0.32    30 0 LBNL 2014 2014 Tracking the Sun VII 

206 Photovoltaic 2011  $        0.32        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

207 Photovoltaic 2011  $        0.34    30 0 LBNL 2014 2014 Tracking the Sun VII 

208 Photovoltaic 2012  $        0.35    30 0 LBNL 2014 2014 Tracking the Sun VII 

209 Photovoltaic 2010  $        0.34        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

210 Photovoltaic 2012  $        0.37    30 0 LBNL 2014 2014 Tracking the Sun VII 

211 Photovoltaic 2011  $        0.40    30 0 LBNL 2014 2014 Tracking the Sun VII 

212 Photovoltaic 2010  $        0.40    30 0 LBNL 2014 2014 Tracking the Sun VII 

213 Photovoltaic 2011  $        0.40        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

214 Photovoltaic 2011  $        0.43    30 0 LBNL 2014 2014 Tracking the Sun VII 

215 Photovoltaic 2010  $        0.45    30 0 LBNL 2014 2014 Tracking the Sun VII 

216 Photovoltaic 2010  $        0.46        
Feldman et al 

2014 2014 
Photovoltaic (PV) Pricing Trends: Historical, Recent, and 
Near-Term Projections 2014 Edition 

217 Photovoltaic 2010  $        0.48    30 0 LBNL 2014 2014 Tracking the Sun VII 
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218 Photovoltaic 2009  $        0.53    30 0 LBNL 2014 2014 Tracking the Sun VII 

219 Photovoltaic 2009  $        0.54    30 0 LBNL 2014 2014 Tracking the Sun VII 

220 Photovoltaic 2009  $        0.56    30 0 LBNL 2014 2014 Tracking the Sun VII 

221 
Solar 

Thermal 2011  $        0.24    71 0 DOE 2013 2013 DOE Program Estimate 

222 
Solar 

Thermal 2014  $        0.21    71 3 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

223 
Solar 

Thermal 2013  $        0.21    75 3 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

224 
Solar 

Thermal 2014  $        0.16    71 3 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

225 
Solar 

Thermal 2013  $        0.17    75 3 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

226 
Solar 

Thermal 2009  $        0.14   $      5,219.08  56.6   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

227 
Solar 

Thermal 2009  $        0.19   $      5,021.14  56.78 0 AEO 2009 2009 Annual Energy Outlook 2009 

228 
Solar 

Thermal 2009  $        0.17    50 0.71 
Staley et al, 

2009 2009 

Juice from Concentrate - Reducing Emissions with 
Concentrating Solar Thermal Power. World Resources 
Institute in conjunction with Goldman Sachs. 2009 

229 
Solar 

Thermal 2010  $        0.14   $      4,932.80      AEO 2010 2010 Annual Energy Outlook 2010 

230 
Solar 

Thermal 2010  $        0.16   $      6,001.63      EPA 2010 2010 
Environmental Protection Agency (2010). Data from 
Integrated Power Model (IPM), ICF International. 

231 
Solar 

Thermal 2009  $        0.14   $      5,132.31  58.05 0 AEO 2010 2010 Annual Energy Outlook 2010 

232 
Solar 

Thermal 2009  $        0.15    60 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

233 
Solar 

Thermal 2009  $        0.17    68 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

234 
Solar 

Thermal 2009  $        0.19    92 0 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

235 
Solar 

Thermal 2009  $        0.20    66 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

236 
Solar 

Thermal 2009  $        0.24    66 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 
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237 
Solar 

Thermal 2009  $        0.15    50 3 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

238 
Solar 

Thermal 2009  $        0.21    60 3 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

239 
Solar 

Thermal 2009  $        0.21    70 3 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

240 
Solar 

Thermal 2009  $        0.25    60 3 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

241 
Solar 

Thermal 2010  $        0.21    70 3 Turchi 2010 2010 
Parabolic Trough Reference Plant for Cost Modeling 
with the Solar Advisor Model 

242 
Solar 

Thermal 2010  $        0.23    70 3 Turchi 2010 2010 
Parabolic Trough Reference Plant for Cost Modeling 
with the Solar Advisor Model 

243 
Solar 

Thermal 2011  $        0.13   $      4,574.59      AEO 2011 2011 Annual Energy Outlook 2011 

244 
Solar 

Thermal 2010  $        0.13   $      4,636.41  63.23 0 AEO 2011 2011 Annual Energy Outlook 2011 

245 
Solar 

Thermal 2009  $        0.21    80 3 
DOE SETP 

2011 2011 

US DOE Energy Efficiency & Renewable Energy (EERE). 
Solar Energy Technologies Program. Accessed August 
2011. 

246 
Solar 

Thermal 2011  $        0.18    60   IPCC 2011 2011 IPCC Annex 3 

247 
Solar 

Thermal 2011  $        0.17        
McCalley et al, 

2011 2011 
A Wider Horizon. IEEE Power & Energy Magazine. 
May/June 2011 

248 
Solar 

Thermal 2011  $        0.20    71   IPCC 2011 2011 IPCC Annex 3 

249 
Solar 

Thermal 2011  $        0.22    82   IPCC 2011 2011 IPCC Annex 3 

250 
Solar 

Thermal 2009  $        0.22    80 3 
DOE SETP 

2011 2011 

US DOE Energy Efficiency & Renewable Energy (EERE). 
Solar Energy Technologies Program. Accessed August 
2011. 

251 
Solar 

Thermal 2011  $        0.25    71 11 DOE 2011 2011 DOE Program Estimate 

252 
Solar 

Thermal 2009  $        0.07        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

253 
Solar 

Thermal 2010  $        0.11        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

254 
Solar 

Thermal 2010  $        0.20    70   
DOE SETP 

2012 2012 Sunshot Solar Vision 

255 
Solar 

Thermal 2010  $        0.19    49.5 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 
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256 
Solar 

Thermal 2010  $        0.14        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

257 
Solar 

Thermal 2010  $        0.21    80 3 
Mai et al, 

2012 2012 Renewable Electricity Futures 

258 
Solar 

Thermal 2010  $        0.15        
Hubbell et al 

2012 2012 Renewable Energy Finance Tracking Initiative 

259 
Solar 

Thermal 2010  $        0.16    65   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

260 
Solar 

Thermal 2010  $        0.18    49.5 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

261 
Solar 

Thermal 2010  $        0.22    80 3 
Mai et al, 

2012 2012 Renewable Electricity Futures 

262 
Solar 

Thermal 2013  $        0.14    65 4 
Turchi and 
Heath 2013 2013 

Molten Salt Power Tower Cost Model for the System 
Advisor Model (SAM) 

263 
Solar 

Thermal 2013  $        0.15    65 4 
Turchi and 
Heath 2013 2013 

Molten Salt Power Tower Cost Model for the System 
Advisor Model (SAM) 

264 
Solar 

Thermal 2013  $        0.18    65 4 
Turchi and 
Heath 2013 2013 

Molten Salt Power Tower Cost Model for the System 
Advisor Model (SAM) 

265 
Solar 

Thermal 2010  $        0.15        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

266 
Solar 

Thermal 2014  $        0.10    80   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

267 
Solar 

Thermal 2010  $        0.19        Mai et al 2014 2014 
Envisioning a renewable electricty future for the United 
States 

268 
Solar 

Thermal 2014  $        0.22    115   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

269 Geothermal 2013  $        0.08    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

270 Geothermal 2013  $        0.10    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

271 Geothermal 2009  $        0.04   $      3,050.96  69.59   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

272 Geothermal 2009  $        0.06   $      4,281.00  112.16   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

273 Geothermal 2009  $        0.04   $      1,711.11  164.64 0 AEO 2009 2009 Annual Energy Outlook 2009 

274 Geothermal 2010  $        0.07   $      5,268.24      AEO 2010 2010 Annual Energy Outlook 2010 
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275 Geothermal 2009  $        0.04   $      1,748.99  168.33 0 AEO 2010 2010 Annual Energy Outlook 2010 

276 Geothermal 2009  $        0.03    40.32 4.31 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

277 Geothermal 2009  $        0.04    49.62 4.85 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

278 Geothermal 2009  $        0.05    58.38 5.06 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

279 Geothermal 2009  $        0.06    47.44 4.55 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

280 Geothermal 2009  $        0.07    67.14 5.28 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

281 Geothermal 2009  $        0.09    54.65 5.12 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

282 Geothermal 2010  $        0.05   $      2,481.75  107.27 9.52 AEO 2011 2011 Annual Energy Outlook 2011 

283 Geothermal 2011  $        0.05    150   IPCC 2011 2011 IPCC Annex 3 

284 Geothermal 2011  $        0.05    150   IPCC 2011 2011 IPCC Annex 3 

285 Geothermal 2011  $        0.06    170   IPCC 2011 2011 IPCC Annex 3 

286 Geothermal 2011  $        0.08    190   IPCC 2011 2011 IPCC Annex 3 

287 Geothermal 2011  $        0.08    170   IPCC 2011 2011 IPCC Annex 3 

288 Geothermal 2011  $        0.10    190   IPCC 2011 2011 IPCC Annex 3 

289 Geothermal 2010  $        0.07    229 0 
Mai et al, 

2012 2012 Renewable Electricity Futures 

290 Geothermal 2010  $        0.10    229 0 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

291 Geothermal 2013  $        0.05    86.15 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

292 Geothermal 2013  $        0.06    89.79 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

293 Geothermal 2013  $        0.08    89.79 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

294 Geothermal 2013  $        0.08    89.79 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

295 Geothermal 2013  $        0.11    154.78 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 
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296 Geothermal 2013  $        0.14    182.58 0 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

297 Geothermal 2010  $        0.08    0 17.099 DOE 2013 2013 DOE Program Estimate 

298 Geothermal 2011  $        0.10    
222.97

61 0 DOE 2011 2011 DOE Program Estimate 

299 Geothermal 2010  $        0.09    0 32.3142 DOE 2013 2013 DOE Program Estimate 

300 Geothermal 2013  $        0.09    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

301 Geothermal 2013  $        0.09    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

302 Geothermal 2013  $        0.15    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

303 Geothermal 2013  $        0.15    115 0 
NREL_ATB 

2015 2015 NREL Annual Technology Baseline 2015 

304 Geothermal 2009  $        0.06   $      3,904.14  136.54   GPRA 2009 2009 

Government Performance and Results Act (2009). Data 
from Market Allocation (MARKAL) model, International 
Energy Agency and Brookhaven National Laboratory 

305 Geothermal 2009  $        0.06        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

306 Geothermal 2009  $        0.08    0 30 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

307 Geothermal 2009  $        0.09    180 5 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

308 Geothermal 2009  $        0.09        E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

309 Geothermal 2009  $        0.13    0 40 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

310 Geothermal 2011  $        0.03        
McCalley et al, 

2011 2011 
A Wider Horizon. IEEE Power & Energy Magazine. 
May/June 2011 

311 Geothermal 2010  $        0.15    223 0 DOE 2011 2011 DOE Program Estimate 

312 Geothermal 2014  $        0.08      30 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

313 Geothermal 2014  $        0.13      40 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

314 Small Hydro 2009  $        0.02    9.88 1.9 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

315 Small Hydro 2009  $        0.07    17.57 3.48 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

316 Small Hydro 2009  $        0.26    28.83 5.54 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

317 Small Hydro 2011  $        0.14    130 0 DOE 2011 2011 DOE Program Estimate 
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318 
Hydroelectri

c 2010  $        0.09    90 0 DOE 2013 2013 DOE Program Estimate 

319 
Hydroelectri

c 2009  $        0.04   $      2,241.84  13.63 2.43 AEO 2009 2009 Annual Energy Outlook 2009 

320 
Hydroelectri

c 2009  $        0.06   $      2,291.48  13.93 2.49 AEO 2010 2010 Annual Energy Outlook 2010 

321 
Hydroelectri

c 2009  $        0.01    8.77 1.6 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

322 
Hydroelectri

c 2009  $        0.04    12.59 2.39 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

323 
Hydroelectri

c 2009  $        0.19    27.05 5 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

324 
Hydroelectri

c 2009  $        0.12    25 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

325 
Hydroelectri

c 2009  $        0.08    25 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

326 
Hydroelectri

c 2010  $        0.06   $      2,221.23  13.55 2.42 AEO 2011 2011 Annual Energy Outlook 2011 

327 
Hydroelectri

c 2011  $        0.03    25   IPCC 2011 2011 IPCC Annex 3 

328 
Hydroelectri

c 2011  $        0.07    50   IPCC 2011 2011 IPCC Annex 3 

329 
Hydroelectri

c 2011  $        0.10    75   IPCC 2011 2011 IPCC Annex 3 

330 
Hydroelectri

c 2010  $        0.09    14.85 3 
Mai et al, 

2012 2012 Renewable Electricity Futures 

331 
Hydroelectri

c 2010  $        0.09    14.85 5.94 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

332 Ocean 2011  $        0.23    100   IPCC 2011 2011 IPCC Annex 3 

333 Ocean 2011  $        0.24    100   IPCC 2011 2011 IPCC Annex 3 

334 Ocean 2011  $        0.25    100   IPCC 2011 2011 IPCC Annex 3 

335 Biopower 2009  $        0.07   $      2,542.97  114.25 0.01 AEO 2009 2009 Annual Energy Outlook 2009 

336 Biopower 2009  $        0.08   $      3,765.70  64.45 6.71 AEO 2009 2009 Annual Energy Outlook 2009 

337 Biopower 2009  $        0.06   $      3,849.07  65.89 6.86 AEO 2010 2010 Annual Energy Outlook 2010 

338 Biopower 2009  $        0.05   $      2,599.27  116.8 0.01 AEO 2010 2010 Annual Energy Outlook 2010 
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339 Biopower 2009  $        0.04    0 17 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

340 Biopower 2009  $        0.05    70 3 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

341 Biopower 2009  $        0.06    107.8 4.7 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

342 Biopower 2009  $        0.04    0 17 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

343 Biopower 2009  $        0.08    160.1 6.98 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

344 Biopower 2009  $        0.07    125 3 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

345 Biopower 2009  $        0.08    130 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

346 Biopower 2009  $        0.09    150 4 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

347 Biopower 2009  $        0.09    95 15 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

348 Biopower 2009  $        0.08    99.5 4.47 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

349 Biopower 2009  $        0.11    200 8.73 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

350 Biopower 2009  $        0.11    175 4.5 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

351 Biopower 2009  $        0.11    95 15 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

352 Biopower 2009  $        0.11    155 4 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

353 Biopower 2009  $        0.12    150 10 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

354 Biopower 2009  $        0.12    165 0 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

355 Biopower 2010  $        0.07   $      3,723.89  99.3 6.94 AEO 2011 2011 Annual Energy Outlook 2011 

356 Biopower 2010  $        0.16   $      8,236.87  369.28 8.23 AEO 2011 2011 Annual Energy Outlook 2011 

357 Biopower 2011  $        0.01    12 1.8 IPCC 2011 2011 IPCC Annex 3 

358 Biopower 2011  $        0.01    12 1.8 IPCC 2011 2011 IPCC Annex 3 

359 Biopower 2011  $        0.01    12 1.8 IPCC 2011 2011 IPCC Annex 3 

360 Biopower 2011  $        0.01    18   IPCC 2011 2011 IPCC Annex 3 

361 Biopower 2011  $        0.01    18   IPCC 2011 2011 IPCC Annex 3 
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362 Biopower 2011  $        0.02    18   IPCC 2011 2011 IPCC Annex 3 

363 Biopower 2011  $        0.05    84 3.4 IPCC 2011 2011 IPCC Annex 3 

364 Biopower 2011  $        0.05    87 4 IPCC 2011 2011 IPCC Annex 3 

365 Biopower 2011  $        0.06    86 3.5 IPCC 2011 2011 IPCC Annex 3 

366 Biopower 2011  $        0.06    84 3.4 IPCC 2011 2011 IPCC Annex 3 

367 Biopower 2011  $        0.06    87 4 IPCC 2011 2011 IPCC Annex 3 

368 Biopower 2011  $        0.06    86 3.5 IPCC 2011 2011 IPCC Annex 3 

369 Biopower 2011  $        0.07    84 3.4 IPCC 2011 2011 IPCC Annex 3 

370 Biopower 2011  $        0.07    87 4 IPCC 2011 2011 IPCC Annex 3 

371 Biopower 2011  $        0.07    86 3.5 IPCC 2011 2011 IPCC Annex 3 

372 Biopower 2012  $        0.05    56.4 3.8 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

373 Biopower 2012  $        0.07    210.87   
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

374 Biopower 2012  $        0.06    64.2 3.8 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

375 Biopower 2012  $        0.06    65.1 3.8 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

376 Biopower 2012  $        0.11    487.2   
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

377 Biopower 2012  $        0.06    54.054 4.2 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

378 Biopower 2012  $        0.08    106.5 3.8 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

379 Biopower 2010  $        0.10    94.06 14.85 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

380 Biopower 2010  $        0.09    102.6 4.6 
Mai et al, 

2012 2012 Renewable Electricity Futures 

381 Biopower 2012  $        0.11    255.6 4.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

382 Biopower 2012  $        0.11    270 4.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

383 Biopower 2012  $        0.11    167.1 3.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 
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384 Biopower 2012  $        0.14    342 4.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

385 Biopower 2012  $        0.15    427.28 4.2 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

386 Biopower 2012  $        0.15    392.7 3.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

387 Biopower 2012  $        0.16    409.2 4.7 
IRENA 

Biomass 2012 2012 IRENA Biomass 2012 

388 Biopower 2013  $        0.09    106.26 5.29 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

389 Biopower 2013  $        0.11    106.26 5.29 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

390 Biopower 2013  $        0.14    100.44 15.86 
McCann RE 

2013 2013 Cost of Generation Workshop: Non-solar Renewables 

391 Biopower 2014  $        0.09    95 15 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

392 Biopower 2014  $        0.11    95 15 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

393 
Distributed 
Generation 2009  $        0.09   $      1,369.74  16.03 7.12 AEO 2009 2009 Annual Energy Outlook 2009 

394 
Distributed 
Generation 2009  $        0.48   $      1,644.72  16.03 7.12 AEO 2009 2009 Annual Energy Outlook 2009 

395 
Distributed 
Generation 2011  $        0.05    65 11 IPCC 2011 2011 IPCC Annex 3 

396 
Distributed 
Generation 2011  $        0.06    68 15 IPCC 2011 2011 IPCC Annex 3 

397 
Distributed 
Generation 2011  $        0.06    71 19 IPCC 2011 2011 IPCC Annex 3 

398 
Distributed 
Generation 2011  $        0.11    54 35 IPCC 2011 2011 IPCC Annex 3 

399 
Distributed 
Generation 2011  $        0.13    54 35 IPCC 2011 2011 IPCC Annex 3 

400 
Distributed 
Generation 2011  $        0.14    54 35 IPCC 2011 2011 IPCC Annex 3 

401 
Distributed 
Generation 2011  $        0.16    59 43 IPCC 2011 2011 IPCC Annex 3 

402 
Distributed 
Generation 2011  $        0.19    70 47 IPCC 2011 2011 IPCC Annex 3 

403 
Distributed 
Generation 2011  $        0.22    80 51 IPCC 2011 2011 IPCC Annex 3 
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404 
Distributed 
Generation 2014  $        0.01    15   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

405 
Distributed 
Generation 2014  $        0.04    15   Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

406 
Distributed 
Generation 2014  $        0.09      18 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

407 
Distributed 
Generation 2014  $        0.13      22 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

408 Fuel Cell 2010  $        0.10    140 8 DOE 2013 2013 DOE Program Estimate 

409 Fuel Cell 2009  $        0.15   $      5,359.52  5.65 47.92 AEO 2009 2009 Annual Energy Outlook 2009 

410 Fuel Cell 2009  $        0.07   $      5,478.18  49 5.78 AEO 2010 2010 Annual Energy Outlook 2010 

411 Fuel Cell 2009  $        0.10    169 11 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

412 Fuel Cell 2009  $        0.22    850 11 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

413 Fuel Cell 2010  $        0.11   $      6,752.47  345.8 0 AEO 2011 2011 Annual Energy Outlook 2011 

414 Fuel Cell 2011  $        0.12    140 8 DOE 2011 2011 DOE Program Estimate 

415 Fuel Cell 2011  $        0.15    188 8 DOE 2011 2011 DOE Program Estimate 

416 Fuel Cell 2014  $        0.10      30 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

417 Fuel Cell 2014  $        0.16      50 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

418 
Combined 

Cycle 2009  $        0.05   $          947.50  11.7 2 AEO 2009 2009 Annual Energy Outlook 2009 

419 
Combined 

Cycle 2009  $        0.05   $          962.43  12.48 2.07 AEO 2009 2009 Annual Energy Outlook 2009 

420 
Combined 

Cycle 2009  $        0.07   $      1,889.91  19.9 2.94 AEO 2009 2009 Annual Energy Outlook 2009 

421 
Combined 

Cycle 2009  $        0.02   $          968.48  11.96 2.04 AEO 2010 2010 Annual Energy Outlook 2010 

422 
Combined 

Cycle 2009  $        0.02   $          983.74  12.76 2.11 AEO 2010 2010 Annual Energy Outlook 2010 

423 
Combined 

Cycle 2009  $        0.03   $      1,931.75  20.35 3.01 AEO 2010 2010 Annual Energy Outlook 2010 

424 
Combined 

Cycle 2009  $        0.05    5.76 2.19 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

425 
Combined 

Cycle 2009  $        0.04    5.01 1.95 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 
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426 
Combined 

Cycle 2009  $        0.04    5.76 2.19 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

427 
Combined 

Cycle 2009  $        0.05    5.5 2 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

428 
Combined 

Cycle 2009  $        0.05    7.17 2.69 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

429 
Combined 

Cycle 2009  $        0.06    8.3 3.02 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

430 
Combined 

Cycle 2009  $        0.05    8.62 3.02 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

431 
Combined 

Cycle 2009  $        0.07    6.2 3.5 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

432 
Combined 

Cycle 2009  $        0.06    10.97 3.42 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

433 
Combined 

Cycle 2009  $        0.02    8 4.9 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

434 
Combined 

Cycle 2009  $        0.07    12.62 3.84 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

435 
Combined 

Cycle 2009  $        0.07    12.62 3.84 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

436 
Combined 

Cycle 2010  $        0.02   $          966.82  14.22 3.37 AEO 2011 2011 Annual Energy Outlook 2011 

437 
Combined 

Cycle 2010  $        0.02   $          990.79  14.44 3.07 AEO 2011 2011 Annual Energy Outlook 2011 

438 
Combined 

Cycle 2010  $        0.04   $      2,036.13  29.89 6.37 AEO 2011 2011 Annual Energy Outlook 2011 

439 
Combined 

Cycle 2010  $        0.02    20   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

440 
Combined 

Cycle 2010  $        0.05    6.31 3.67 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

441 
Combined 

Cycle 2013  $        0.07    34.56 0.61 
McCann and 
Walters 2013 2013 

Cost of Generation Workshop: Natural Gas 
Technologies 

442 
Combined 

Cycle 2013  $        0.07    34.56 0.61 
McCann and 
Walters 2013 2013 

Cost of Generation Workshop: Natural Gas 
Technologies 

443 
Combined 

Cycle 2014  $        0.05    5.5 2 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

444 
Combined 

Cycle 2014  $        0.08    6.2 3.5 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

445 
Combustion 

Turbine 2009  $        0.06   $          634.17  10.53 3.17 AEO 2009 2009 Annual Energy Outlook 2009 
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446 
Combustion 

Turbine 2009  $        0.06   $          670.26  12.11 3.57 AEO 2009 2009 Annual Energy Outlook 2009 

447 
Combustion 

Turbine 2009  $        0.03   $          648.21  10.77 3.24 AEO 2010 2010 Annual Energy Outlook 2010 

448 
Combustion 

Turbine 2009  $        0.04   $          685.10  12.38 3.65 AEO 2010 2010 Annual Energy Outlook 2010 

449 
Combustion 

Turbine 2009  $        0.08    6.27 0.79 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

450 
Combustion 

Turbine 2009  $        0.16    16.33 3.67 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

451 
Combustion 

Turbine 2009  $        0.15    6.68 0.88 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

452 
Combustion 

Turbine 2009  $        0.16    6.68 0.88 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

453 
Combustion 

Turbine 2009  $        0.35    39.82 8.05 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

454 
Combustion 

Turbine 2009  $        0.05    14 5 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

455 
Combustion 

Turbine 2009  $        0.37    17.4 4.17 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

456 
Combustion 

Turbine 2009  $        0.40    23.94 4.17 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

457 
Combustion 

Turbine 2009  $        0.94    42.44 9.05 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

458 
Combustion 

Turbine 2009  $        0.98    42.44 9.05 
Klein et al 

2010 2010 
Comparate Costs of California Central Station Electricity 
Generation. Final Staff Report 

459 
Combustion 

Turbine 2010  $        0.05   $          961.49  9.75 8.15 AEO 2011 2011 Annual Energy Outlook 2011 

460 
Combustion 

Turbine 2010  $        0.04   $          657.58  14.52 6.9 AEO 2011 2011 Annual Energy Outlook 2011 

461 
Combustion 

Turbine 2010  $        0.05    10   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

462 
Combustion 

Turbine 2010  $        0.11    5.26 29.9 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

463 
Combustion 

Turbine 2013  $        0.19    25.24 0 
McCann and 
Walters 2013 2013 

Cost of Generation Workshop: Natural Gas 
Technologies 

464 
Combustion 

Turbine 2013  $        0.33    27.44 0 
McCann and 
Walters 2013 2013 

Cost of Generation Workshop: Natural Gas 
Technologies 

465 
Combustion 

Turbine 2013  $        0.34    28.39 0 
McCann and 
Walters 2013 2013 

Cost of Generation Workshop: Natural Gas 
Technologies 
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466 
Combustion 

Turbine 2014  $        0.15    5 4.7 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

467 
Combustion 

Turbine 2014  $        0.20    25 7.5 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

468 Coal 2009  $        0.06   $      2,057.84  27.53 4.59 AEO 2009 2009 Annual Energy Outlook 2009 

469 Coal 2009  $        0.06    20.4 2 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

470 Coal 2009  $        0.14    31.6 5.9 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

471 Coal 2010  $        0.04    46   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

472 Coal 2010  $        0.07    23 3.71 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

473 Coal 2014  $        0.06    40 2 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

474 Coal 2014  $        0.15    80 5 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

475 Coal 2009  $        0.06   $      2,378.34  38.67 2.92 AEO 2009 2009 Annual Energy Outlook 2009 

476 Coal 2009  $        0.08   $      3,495.95  46.12 4.44 AEO 2009 2009 Annual Energy Outlook 2009 

477 Coal 2009  $        0.06   $      2,568.84  39.53 2.99 AEO 2010 2010 Annual Energy Outlook 2010 

478 Coal 2009  $        0.08   $      3,776.17  47.15 4.54 AEO 2010 2010 Annual Energy Outlook 2010 

479 Coal 2009  $        0.09    26.4 6.8 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

480 Coal 2009  $        0.12    28.2 7.3 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

481 Coal 2009  $        0.18    25 10 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

482 Coal 2010  $        0.08   $      3,182.10  58.52 6.79 AEO 2011 2011 Annual Energy Outlook 2011 

483 Coal 2010  $        0.12   $      5,286.63  68.47 8.83 AEO 2011 2011 Annual Energy Outlook 2011 

484 Coal 2010  $        0.09    31.1 6.54 
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

485 Coal 2014  $        0.10    62.25 7 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

486 Coal 2014  $        0.17    73 8.5 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

487 Nuclear 2009  $        0.06   $      3,317.80  90.02 0.49 AEO 2009 2009 Annual Energy Outlook 2009 

488 Nuclear 2009  $        0.06   $      3,820.23  92.04 0.51 AEO 2010 2010 Annual Energy Outlook 2010 

489 Nuclear 2009  $        0.08    12.8 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 
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490 Nuclear 2009  $        0.12    70 6 E3 2010 2010 Capital Cost Recommendations for 2009 TEPPC Study. 

491 Nuclear 2009  $        0.11    12.8 0 Lazard 2010 2010 Lazard Levelized Cost of Energy Analysis, version 4.0 

492 Nuclear 2010  $        0.08   $      5,274.51  87.69 2 AEO 2011 2011 Annual Energy Outlook 2011 

493 Nuclear 2011  $        0.06    87.31 0.62 Rothwell 2011 2011 

The Economics of Future Nuclear Power: An update of 
The Economic Future of Nuclear Power (2004). 
Department of Economics. Stanford University. Feb 22, 
2011 

494 Nuclear 2011  $        0.07    109.34 0.48 Rothwell 2011 2011 

The Economics of Future Nuclear Power: An update of 
The Economic Future of Nuclear Power (2004). 
Department of Economics. Stanford University. Feb 22, 
2011 

495 Nuclear 2010  $        0.08    115   IEA 2012 2012 
Energy Technology Perspectives 2012 Pathways to a 
Clean Energy System 

496 Nuclear 2010  $        0.10    127   
Black and 

Veatch 2012 2012 
COST AND PERFORMANCE DATA FOR POWER 
GENERATION TECHNOLOGIES 

497 Nuclear 2014  $        0.09    95 0.25 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 

498 Nuclear 2014  $        0.13    115 0.75 Lazard 2014 2014 Lazard Levelized Cost of Energy Analysis, version 8.0 
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ANNEX 5: Data Visualization 

 

 

Figure 0-1: Monthly variation of Dry Bulb and Dew point for a TMY at station 636410 
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Figure 0-2: Monthly variation of relative humidity and Dry Bulb Temperature over a TMY at station 636410 

 

  



 

-181- 

 

 

 

Figure 0-3: Hourly Average Radiation range for Day lit Hours over a TMY at station 636410 
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Figure 0-4: Hourly day lit hour’s illumination over a TMY at station 636410 
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Figure 0-5: Monthly average ground temperature over a TMY at station 636410 
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Figure 0-6: Diurnal hourly averages for various radiation and temperature parameters over a TMY at station 636410 
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Figure 0-7: Sky cover range in percentage over a TMY for station 636410 
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Figure 0-8: Complementary wind and solar regimes – analysis in data matrix 
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