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Abstract

The objective of this work is to express mixed Poisson distributions in four ways; namely, in ex-
plicit form, in terms of special functions, in recursive form and in terms of transforms also called
expectation forms.

In explicit form, a gamma function and its properties is used. Posterior distributions and poste-
rior moments are also obtained.

Modified Bessel function of the third kind and confluent hypergeometric function with their
properties are used in expressing mixed Poisson distributions in terms of special functions.

Integration by parts is used in determining recursive models for mixed Poisson distributions.
To determine the corresponding differential equations for these recursive models, Wang’s recursive
approach is applied.

Laplace transform and jth moment of a mixing distribution are used to express Poisson mixtures
in expectation forms. Factorial moments, moments about the origin and moments about the mean
of the Poisson mixtures are determined in terms of probability generating functions of the mixtures.
A major bottle-neck in using Laplace transform technique is to obtain its xth derivative.

Determining some mathematical identities based on Poisson mixtures is a major contribution
in this research. These identities are obtained by equating results derived using explicit forms and
their corresponding method of moments. Identities are also obtained by equating Poisson mixtures
expressed in terms of special functions and their corresponding method of moments.

The other major contribution is use of integration by parts in determining recursive models.
Other researchers obtained similar results but with certain conditions to be fulfilled. The integration
by parts approach does not need these conditions.

In literature, Lindley distribution has been generalized to two parameters. A contribution in this
research work is the construction of a three-parameter generalized Lindley distribution which nests
the one and two parameter Lindley distributions.

The focus of this research is on constructions and properties of mixed Poisson distributions. For
further research, estimations and applications could be pursued. Other approaches to constructing

Poisson mixtures could also be identified and pursued.



Abbreviations and Notations

Abbreviations and notations for specific chapters can be found in those chapters. Abbreviations and

notations generally used are given below:

cdf Cumulative distribution function

pdf Probability density function

pef Probability generating function

pmf Probability mass function

PVF Power variance function

LHS Left hand side

RHS Right hand side

f(z) Probability mass function of a mixed Poisson distribution
Ly (t) Laplace transform of mixing distribution

g(N) Probability density function of a mixing distribution

G (s) Probability generating function of mixed Poisson distribution
fh, (X) rth raw moment of the mixing distribution

Y (a,c; ) Tricomi confluent hypergeometric function

1F1 (a;¢;2)  Kummer’s confluent hypergeometric function
K, (w) Modified Bessel function of third kind
M{¢(x),s} Mellin transform
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Chapter 1

GENERAL INTRODUCTION

1.1 Background Information

One major area of Statistics is Probability Distributions: their constructions, properties, estimation
of parameters and applications.

There are various methods for constructing these probability distributions. There are those
based on power series, transformations, mixtures, recursive relations in probabilities, differential
equations, sums of independent random variables, hazard functions, stochastic processes, geometry
and trigonometry, Lagrangian expansion, generator approach, special functions, etc.

In this work we wish to mix a Poisson distribution which is discrete with a continuous distribution,
resulting in a new distribution known as continuous mixed Poisson distribution (Poisson mixture).

Poisson distribution can be constructed from an exponential power series, from a Poisson process,
as a limit of binomial distribution and as a limit of negative binomial distribution.

Historical background of mixed Poisson distributions goes back to 1920 when Greenwood and
Yule mixed a Poisson distribution with a gamma distribution to obtain a negative binomial dis-
tribution. This work considers many other continuous distributions to be mixed with a Poisson
distribution to produce new distributions known as mixed Poisson distributions; which will be ex-

pressed in different forms.

1.2 Definitions and Terminologies

Let f (x) be a function of a random variable x. If

f(w)>0and/_oof($)d:v:1



then f (x) is called a probability density function (pdf) of a continuous random variable X.

If
f(z)>0and > f(z)=1

Tr=—00

then f (x) is called a probability mass function (pmf) of a discrete random variable X.
Let (0,¢] be a fixed interval of time, then a Poisson distribution with parameter At is denoted as

e M ()T

e =0,1,2,..;0,t>0 (1.1)
X!

fzl)) =

which is a conditional distribution of X given A = A, that is, A is a value of a continuous random
variable A whose pdf is g (A) which is called a mixing distribution.

The mixed Poisson distribution (Poisson mixture) is the marginal distribution f (z) defined by
f@ = [ raygoan

_ / OO g (1.2)
0

z!

Since the mixing distribution g (\) is continuous, we call f () a continuous Poisson mixture.

1.3 Statement of the Problem

Haight (1967), Karlis and Xekalaki (2005) are among those who reviewed works on mixed Poisson
distributions. However, classifications based on ways of expressing Poisson mixtures were not exam-
ined.

In classifying the Poisson mixtures in this work, a number of issues arose and needed to be addressed.
Thus, some of these issues have formed part of the problem statement described below in terms of

questions.

(i) Only a few mixed Poisson distributions are obtained by direct integration. The question
therefore is; what are the other mixing distributions to be introduced so as to obtain more

mixed Poisson distributions explicitly?

(ii) Mixed Poisson distributions expressed in recursive forms were constructed under certain con-

ditions such as in Willmot’s (1993) approach. Could these conditions be relaxed?

(iii) Some Poisson mixtures are expressed in more than one form, that is, explicit form, special func-
tion form, recursive form and expectation form. The results obtained therefore look different.

Can these results be proved to be identical?

(iv) What are other by-products (such as posterior distribution and posterior moments) of con-

structing Poisson mixtures?



1.4 Objectives

1.4.1 General Objectives

The main objective is to construct mixed Poisson distributions for various cases of continuous mixing

distributions.

1.4.2 Specific Objectives

(a) To construct mixed Poisson distributions via the following routes:

(i) explicit evaluation
(i) use of special functions; (modified Bessel function of third kind and confluent hypergeo-
metric function)
(iii) recursively

(iv) in expectation forms (transforms)

(b) To introduce other mixing distributions which have not been considered before. These include,

3-parameter generalized Lindley and transmuted exponential distributions.

(¢) To construct mixed Poisson distributions recursively using Integration by Parts and compare

the results obtained using Willmot’s (1993) Approach .
(d) To obtain moments through the various routes as in (a).

(e) To use the constructed Poisson mixtures in explicit form to obtain Posterior distributions and

the posterior moments.

(f) To obtain identities based on the constructed Poisson mixtures.

1.5 Literature Review

Various mixed Poisson distributions can be constructed depending on the choice of the mixing
distribution using several ways such as the explicit evaluation, use of recursive relations, use of the
Laplace transforms of the mixing distributions and representing the mixed Poisson distributions in
terms of special functions.

Among the first review on this subject was done by Haight (1967) and Karlis and Xekalaki
(2005). In this work we shall re-examine what has been done and include the latest works on this

subject.



1.5.1 Explicit Forms

Greenwood and Yule (1920) pioneered the derivation of mixed Poisson distributions. They mixed a
gamma density and the Poisson distribution resulting in a negative binomial distribution. In this
case they did not study the posterior distribution and expectation of the mixed Poisson distribution.
Taking A to have a shifted gamma (three parameter gamma) distribution, the resulting mixed Poisson
distribution is Delaporte distribution; a convolution of negative binomial distribution and Poisson
distribution (Ruohonen, 1988). This model is suitable for data having a distribution with a long
tail. It would be interesting to obtain other Mixed Poisson distributions which are convolutions.
The Poisson-linear exponential distribution is obtained by formally mixing the Poisson distribution
with the linear exponential family of distributions (Sankaran, 1970b).

The Poisson distribution is mixed with Lindley distribution resulting in the Poisson-Lindley
distribution (Sankaran, 1970a). Two applications to real data suggest that the Poisson-Lindley
distribution can be used as an approximation to the negative binomial distribution.

Further, Zakerzadeh and Dolati (2010) generalized the Lindley distribution to obtain a two-
parameter generalized Lindley distribution. Taking this distribution as the mixing density, Mah-
moudi and Zakerzadeh (2010) obtained a Poisson -generalized Lindley distribution. This distribution
is among the latest mixed Poisson distributions which can be expressed explicitly. It is shown that
generalized Poisson-Lindley distribution is flexible enough for the analysis of different types of count
data.

The most recent mixed Poisson distribution was obtained by Bhati et al (2015) where transmuted
exponential distribution was used as a mixing distribution. This mixing distribution is a finite
mixture of two exponential distributions. It should be noted that in very few cases, mixed Poisson

distributions are expressed explicitly. Hence there is need to find alternatives.

1.5.2 Mixed Poisson Distributions in Recursive Forms

Willmot (1993) devised a method now known as Willmot’s Approach to determine mixed Poisson
distributions in recursive forms. He obtained recursive formulae for the following mixing distribu-

tions:
(i) Gamma distribution to obtain negative binomial distribution.

(ii) Generalized inverse Gaussian distribution to obtain the Sichel distribution; Poisson - inverse

Gaussian distribution is a special case.
(iii) Beta distribution to obtain Poisson - beta

(iv) Generalized Pareto to obtain Poisson - generalized Pareto. Poisson - Pareto is a special case.

4



(v) Transformed or generalized gamma
(vi) Transformed beta
(vii) Inverse gamma
(viii) Mixing distributions based on hazard functions

(ix) Shifted and truncated mixing distributions; shifted gamma to obtain Delaporte distribution,

shifted Pareto, truncated gamma, truncated normal.

Gupta and Ong (2005) obtained recursive forms of some Poisson mixtures.Sankaran (1968) obtained

a recursive formula for Poisson - inverse Gaussian using differential equation in pgf.

1.5.3 Use of Generating Functions and Laplace Transforms

Probability generating function technique and Laplace transforms have been handy in determining
some mixed Poisson distributions. Ruohonen (1988) obtained the Delaporte distribution in terms
of a product of the pgfs of negative binomial and Poisson distributions. Gupta and Ong (2005)
obtained pgfs for Poisson - generalized gamma and Poisson - generalized exponential distributions.

Power variance function (PVF) distribution is a three parameter family uniting gamma and

positive stable distributions. The distribution is denoted by PVF(«, d,0). The Laplace transform is
5 « «
L (s) =exp —a[(e—l—s) —0°] (1.3)
according to Hougaard et al (1997).
(i) For o — 0, the gamma distribution is obtained

(ii) For # = 0, the positive stable distribution is obtained

(ili) For a = 3, the inverse Gaussian distribution is obtained

(iv) For a = —1, the non-central gamma distribution of shape parameter zero is obtained.

The mixed Poisson (Poisson - Power Variance) pmf can be obtained using the formula

L L&) (1)
z!

f@) = (-1) (1.4)

where L) (s) denotes the ath derivative of L (s).

Willmot (1986) obtained the Poisson - generalized inverse Gaussian (Sichel) distribution by
considering the Laplace transform of generalized inverse Gaussian distribution. He then converted
the Laplace into pgf by the relation;

G(s)=Ly(1—s) (1.5)

5



which corresponds to ¢ = 1. Hence the pmf as a coefficient of s*. He also used the pgf to determine
the recursive relation. Hougaard et al (1997) obtained f(x) in terms of L&x) (s). Willmot(1986)
used the relationship between G (s) and Ly (s)to obtain f (x).

Karlis and Xekalaki (2005) gave an alternative useful method which links the probability function

of a mixed Poisson distribution to the moments of the mixing distribution as
1 (-1)"
f(z)= o Z T Hatr (A) (1.6)
r=0
where g, (\) is the rth raw moment of the mixing distribution.

1.5.4 Mixtures in terms of Special Functions

Some integrals that cannot be evaluated explicitly can be expressed in terms of special functions.
Willmot (1993) expressed the pgf of Poisson - scaled beta distribution in terms of a confluent
hypergeometric distribution. This same result was obtained by Gurland (1958) by mixing a Poisson

with a parameter Ap with the classical beta distribution.

1.5.5 Other Cases

Brown and Holgate (1970) found that the Poisson - lognormal distribution cannot be evaluated
explicitly. Bulmer (1974) also examined the Poisson - lognormal as a model for species abundance
and confirmed that there appears to be no simple form. Thus, Bulmer evaluated the model by

numerical integration.

1.6 Methods

The methods used in the construction of the mixed Poisson distributions are:
(i) Direct integration and substitution

(ii) Special functions: Beta function, gamma function, Modified Bessel function of the third kind

and Confluent hypergeometric function (Kummer’s and Tricomi).
(iii) Integration by parts

(iv) Transforms: Generating functions, Laplace transforms and Mellin transforms

1.7 Significance of the study

Mixed Poisson distributions can be applied in many fields, such as



(a) In Actuarial Data: Poisson-inverse Gaussian distribution was used by Tremblay (1992) in No
Claims Discount Systems. Klugman et al (1998) used negative binomial distribution to fit data
on number of accidents per driver of automobiles. The negative binomial distribution was also
used by Greenwood and Yule (1920) for modeling accident proneness among drivers. Ruoho-
nen (1988) considered the Delaporte distribution in modeling number of claims. Delaporte
distribution is a mixed distribution of Poisson and truncated gamma which is equivalently a
convolution of Poisson and negative binomial distributions - in the current context,it is being
used as a mixed distribution. Lemaire (1985) used negative binomial in modeling automobile

insurance data. Sankaran (1970a) applied Poisson-Lindley distribution to errors and accidents.

(b) Health Care: Bhati et al (2015) used Poisson-transmuted exponential distribution to model

epileptic seizure counts and compared the results with other Poisson mixtures.

(c) Biological Sciences: Shanker and Fesshaye (2015) used Poisson-Lindley distribution in mod-
eling some biological data. Bulmer (1974) used Poisson-lognormal as a model for species

abundance.

In this study, posterior distributions have been obtained from the mixed Poisson distributions
constructed explicitly. Posterior distributions play crucial role in Bayesian statistics and more so
Bayesian inference. Mixtures adequately describe heterogeneous populations - an inherent character-
istic not exhibited by simple probability distributions. This study has also made use of generalized
distributions nesting other distributions. Such generalized distributions are: generalized inverse
Gaussian, 3-parameter generalized Lindley and transmuted exponential. The focus in probability
distributions is on generalized distributions due to their flexibility.

Mathematical identities have been deduced as a result of expressing mixed Poisson distributions

in more than one route, that is explicitly, in special function form and in expectation form.

1.8 Outline of the thesis

The rest of the thesis is outlined as follows: In Chapter 2, mixed Poisson distributions have been
constructed in explicit forms and their moments obtained by conditional expectation approach. In
Chapter 3, mixed Poisson distributions have been expressed in terms of special functions, specifi-
cally, confluent hypergeometric functions and modified Bessel function of the third kind. Recursive
relations for mixed Poisson distributions have been obtained in Chapter 4. This has been achieved
through integration by parts. Differential equations for the mixed Poisson distributions are also
obtained. In Chapter 5, mixed Poisson distributions and their moments are derived in terms of

transforms. Specifically, Laplace transform, Mellin transform and probability generating function.



Mathematical identities based on Poisson mixtures are also deduced by equating result of mixture
obtained in explicit form with that obtained by method of moments and equating result of mixture
obtained in terms of special function with that obtained by the method of moments. Chapter 6 gives

the summary, conclusions and recommendations of the study.



Chapter 2

MIXED POISSON DISTRIBUTIONS
AND THEIR MOMENTS IN EXPLICIT
FORMS

2.1 Introduction

In this chapter we consider mixed Poisson distributions in explicit form by direct integration. The
moments are also obtained by conditional expectation approach. We shall specifically derive formulae
for the first four moments about the origin (raw moments) and moments about the mean (central
moments) of the Poisson mixtures in terms of moments of the mixing distributions. The posterior
rth moment is also derived.

The following mixing distributions are used: gamma, shifted gamma, Lindley, 3-parameter gen-

eralized Lindley and transmuted exponential distribution. Some examples are given.

2.2 Mathematical Formulation of the Problem

A mixed Poisson distribution is defined by equation (1.2). The rth raw moment of the Poisson

mixture is

E(X") = EE(X"|A)

_ E{e‘Athr(ﬁt) } (2.1)
=0




The posterior distribution is defined by

_ [N g
g(Alz) = T @A) g(\)dx
Mg ()
Jooe (/\t)xg(A)
g (N)

IS Aw _)‘tg (A) dA (22)

Moments about the origin (raw moments) and moments about the mean (central moments) of a

mixed Poisson distribution in terms of moments of the mixing distribution are as follows:

Proposition 2.2.1. The raw moments are:

(i)
E(X)=tE(A) (2.3)

(it)
E (X?) = ¢’E (A?) +tE (A) (2.4)

(iii)
E (X?) = t°E (A®) + 3t°E (A*) + tE (A) (2.5)

(iv)
E (X*) = t'E (A*) + 6t°E (A®) + Tt°E (A?) + ¢E (A) (2.6)

Proof. (i) The first raw moment is obtained as

E(X) = E{e

or simply

which is (2.3).

10



(ii) The second raw moment is

E(X?) = E

e

)

z—2

- E —AtA2
e t xzx—Z)

- E +At}

= £°E (A*) +tE(A)
which is (2.4).

(iii) The third raw moment is obtained as

E(X3) = E{e—Atil’g(f}t)x}

2

= E{eAtZ 1;;11 (At)
[
149

]

o0 gj—

e M (At) Z

z:l

_ - (x — 14+ 1)* (A1)
- RS
= [($—1)2—|—2(x—1)+1] (At)°”

= E{e A ; 1) }
o [ e-2+3 & .
= E{eA ;2 @—2) +;(m—1)! (At)}
B e_At'OO 1 >3 <1 .
- E{ P3N TR D ey D Dy (“)}
_ Bl (At)?’i(At)%?’Jr?)(At)Qi(At)%er(At)i

L =3 (QZ o 3)' =2 ($ o 2)' r=1
- {(At) +3(At)2—|—(At)}

= °E (A®) + 3£°E (A%) +tE (A)

which is (2.5).

11




(iv) The fourth raw moment is

E(X') = E {e—“i 2 (

oo

At)® }
|

[e.9]

s 33—2—1—1) +3(x—2+1)+

¢ Z :c—l

which is (2.6).

(AY) +6t3E (A3)+7 (A2)+tE(A

(z —2)!

00
0t
*3

oo
+
3)! ;2(33

~—

Proposition 2.2.2. The central moments are as follows:

(i) Variance

(ii) Third Moment

p2 = t*Var (A) +tE (A)

pz = tE[A —E (A + 3t*Var (A) + tE (A)

(i1i) Fourth Moment

gy = t4E[A—}E(A)]4+6t3{E[A—}E(A)]3+Var(A)E(A)}

+2 {7Var (A) + 3[E (A)]2} FE(A)

Proof. (i) The variance is

2

Var (X)
E (X?) — [E (X)]*
t°E (A?) +tE (A) — 2 [E(A))?
t*Var (A) + tE (A)

12
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Alternatively,

which is (2.7).

pe = Var(X)
= Var[E(X | A)]+E[Var (X | A)]
= Var (tA) +E(tA)
= t*Var (A) +tE (A)

(ii) The third central moment is

ps = EX -EX)P

= E(X°) - 3E(X?)E(X) + 2 [E (X))’

= 3E (A%) + 3t%E (A%) +tE (A) — 3£°E (A%) E (A) — 3¢* [E (A)]> + 3 [E (A))?

= PE[A-E (A +3t2Var (A) +tE (A)

which is (2.8).

(iii) The fourth central moment is

pa =

which is (2.9).

E[X —E(X)]*
E (X*) - 4E (X*)E(X) + 6E (X?) [E(X)]* - 3[E (X)]*

4 {IE (A%) — 4E (A3) E (A) + 6E (A%) [E (A)]? — 3[E (A)]4}

+6¢° {E (A%) - 2E (A%) E (4) + [E (W)}

+2 {71E (A%) —4[E A)]2} E(A)

PEA-E (W) + 6 {EIA - EA) + [E(A2) - E(W)*]E()}

+t2{7Var(A) 3[E (A)] }+tE(A)
HEA — E(A)]4—|—6t3{ A — E(A)]3+Var(A)]E(A)}
E(A)

+2 {7Var (A) +3[E(A))] } +tE (A)

Proposition 2.2.3. The posterior rth moment is

and in particular the posterior mean is

O
. B B E [Az+r€—At]

E(A| X =)= e (2.10)

E(A|X =)= BAT ] (2.11)

E[Aze—At]

13



Alternatively,
x4+r) f(z+r)

E(A" | X =) =

2.12
tra! f(z) (2.12)
and
(x+1) f(x+1)
EA| X =x2)= . 2.13
(X =)= S (213)
Proof. The posterior rth moment is
AT e AL g () dA
E(W [X=a) = Qo X790
Jo o Ame=Mg (X) dA
B E [Aa:—l—re—At]
- E [Axe—At}
which is (2.10) and in particular the posterior mean is
E [Ax+1efAt]
EA|X=2)=——"—"+
(A z) E [Aze—A
which is (2.11).
Alternatively,
—At f
e (M) g (M)
A =—" - - 2.14
90 2) = (214)
The posterior rth moment is
EAN | X=2) = / ANg(A|z)dA
0
1 o0
= ——— [ NeMA)Tg(N)dA
T L e e a o)
| o ,—At T+r
_ (x+r)! / e M (At) (V) dA
trzlf (x) Jo (x +r)!
() f(z+r)
- tral f(z)
which is (2.12) and in particular the posterior mean is
1 1
B(A|X gy DG
t f(x)
which is (2.13). O

2.3 Examples of Mixed Poisson Distributions and Their Moments

in Explicit Forms

2.3.1 Poisson-Gamma Distribution

A two - parameter gamma distribution is

Ba
I'(e)

g(\) = e PN NS>0, 0,8>0 (2.15)

14



Proposition 2.3.1. (a) The mized Poisson distribution is

f(x):<a+j_1) (tj5>m<tfﬁ>avx:0’1’2=-“ (2.16)

which is the negative binomial distribution with parameters o« and [ (Greenwood and Yule,

1920).

(b) The rth moment of gamma distribution is

I'(a+7)

E(A") = 2.17
W)= Foo s (217)
where I' is the gamma function. Therefore
E(A) =2 (2.18)
B
a
Var (A) = 7 (2.19)
2a
E[A-E(AN)? = » (2.20)
3a(a+2)
EA-EQA)* = — (2.21)
(¢) Moments of the mizture (negative binomial distribution)
E(X)= 2t (2.22)
B
o o
Var (X) = —t* + —t 2.23
(X) =5t +3 (2.23)
ps = E[X —E(X)P
2a 3o «
= S+ttt 2.24
CAA A 224
w = E[X —E(X)
Ba(at2) 4 62-)ay (T+3a)a, o
= t + t° + t°+ -t 2.25
Eh B? p? B (2:25)
(d) Posterior distribution is
_ (t+ﬂ)a+x —(t+B8)A yatz—1 .
g(Nz) = F(a—f—ac)e A ,A>0;0,8>0 (2.26)
which is Gamma (o + x,t + ).
The posterior rth moment is
Fx4+a+r)
E (A" = 7 2.27
(A" | z) Tt a) (1) (2.27)
and in particular the posterior mean is
T+«
E (A = 2.28
(A7) = 555 (2.25)

which is a linear function of x.
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Proof. From equation (2.15) the mixed Poisson distribution is

oo =\ x «
flz) = /U T B e BTN

x! I'(a)

Bat:(; /oo )\z+a7167/\(t+6)d)\
0

') !

Y t* I' (z+ «)

which is (2.16). Its pgf is,

G (s)

The posterior distribution is

g(\z) =

[ (a) 2! (t+ )"

_ (”%‘1) (tj5>x<tf/3)a?$:071727"'

— / e—)\t(l—s) Le—ﬂ)\)\a—ld)\
0 I'(a)

_ B * a—1_—X\(t—ts+B)
() /0 A e dA
B ' ()
I'(a)(t—ts+p)°

B (0%
= 7 .
1—m5

[N g )
f(x)

e MA)T BT —BAya—1
2! @6 B )\Oc

("7 () ()
e—)\t ()\t)ff ﬁae—ﬁA)\a—l
z!I(a)(a+x)t* S
2T (a) (t+B) T

(4B (s
I'(a+x)

At N> 00,8 >0

which is Gamma (a + x,t 4+ ) and the posterior mean is

E(A]x)

/'OO (t + B)OH_m e—(t-f—ﬁ))\)\a'i‘x—ld)\
0 I'(a+z)

_ +p) /Oo Aot ) =1 —(+B)A g
F(a+x) Jy

t+B8)*T"T(a+2+1)

L(a+z) (t4 pg)>tott

a+x

t+ 5"

16
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2.3.2 Poisson-Shifted Gamma Distribution

Consider the shifted gamma distribution

5&

—BA—p) () _ @1 . 2.32
T(a)* A=), A> pp,a,8>0 (2.32)

g\ =
where p is the shift parameter.
Proposition 2.3.2. (a) The mized Poisson distribution is

=S [ (N () () e

k=0
which is a convolution of Poisson distribution and a negative binomial distribution. It is called

Delaporte distribution (Ruohonen, 1988).

(b) The rth moment of the mixing distribution is

A Vit E—1\ 1
E(A’“):Z(Z‘ik)l<o‘+k )/Bk (2.34)
k=0 ’
and in particular,
E(A) = p+ % (2.35)
E(AZ) _M2+2/ga+a(0;j;‘1)
3ap?  3a(a+1) (a+1)(a+2)
E(A?) = p® + O‘; + aam = L Bg(a

4o 6o (a+ 1) p? +4oz(a+1)(oz+2)u

4 _ 4
E(AY) = p*+ 5 + 52 53
af@+1)(a+2)(a+3)
L
so that

Var (A) = % (2.36)

E[A—E(A)P = 2;; (2.37)

E[A—E(A)] = 3“(;‘4*2) (2.38)

(¢) Moments of the Delaporte distribution are

E(X)= (u + g) / (2.39)

Var (X) = %ﬁ + (u + g) ¢ (2.40)



ps = EX-E(X)P

- ;‘;‘3+Z§t2+(u+g>t (2.41)
= EX-EX)
= 3a(g+2)t4+6 2a—(u+g>3]t3
+ 7a+3<,u+g>2 ;+<u+g>t. (2.42)

Remark: If u =0, we obtain the results of the Poisson-Gamma distribution.

(d) The posterior distribution is
Zk: 0() T— k()\ “)k+a—1 —(t+B8)(A—p)

g\ 2) = . (2.43)
S _o (B)pm=*T (k + @) (t + )~ *F)
The posterior rth moment is
D k= 0{() ”Z] 0() PTG+ k+a)(t+6)” ]+k+a)}
E(A" | z) = ra) (2.44)
> im0 (R FT (k + ) (t + 58)~
and in particular, the posterior mean is
z—1 (x|, z—k L(k+a) kta I(z+a) Tta
o (WK o (Mt 35 ) T =7a |1+ 5
E(A|z)= (t+8)"" ( t+5> (t+8) ( t+5> ' (2.45)

z—1 (ac) o—k T'(k+a) + I'(z+a)
k=0 \k (t+ﬂ)(k+a) (H_ﬁ)“”ra

Proof. From equation (2.32) the mixed Poisson distribution is

f(x) _ /oo e N ()\t)x /Ba efﬁ()\f,u,) ()\ . M)a—l d\
I

x! I'(«)
7 B % Atye 8O- a=1
21T () /u ©one A=n)
and making the substitution z = A — u, we obtain
— tr B —pt > T a=1, —(t+8)z
fa@) = S [ e az

- ZFBQ —utz{<> /Omzma—le—(tw)zdz}
- Srwe s

= 6"“20 gﬂ];fa (it (tjﬁy(tfﬁ)a
- () S St e ()
-2l ) ) ()
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which is (2.33).
The pgf of Delaporte distribution is,

o0

_ B 1 /OO —Xt e —BA—p) (y _ a—l
G(s) = P () 22l ), e " (Ats)" e (A=) " dA
I /OO a-1_—At(1—s) —B(A—p)
= A—p e Sle wdx

and making the substitution z = A — u, we obtain

_ pe —pt(l—s) /OO a—1_—[B+t—ts]z
G(s) = F(a)e ; 2% e dz

. Ba —pt(1—s) r (Oé)

T(a)° (B+t—ts)

_ nt(1-s) [t+ﬁﬁ— tsr (2.46)

which is the product of the pgf of Poisson (ut) and pgf of negative binomial (a, ) and hence
Delaporte distribution is a convolution of Poisson and negative binomial distributions. O
2.3.3 Poisson-Transmuted Exponential Distribution
In general, a transmuted probability is defined as

F(z)=(1+v)H(z)—v[H ), -1<v<1 (2.47)

where H (x) and F (z) are old and new cdfs, respectively. If h (z) and f (x) are the corresponding
pdfs, then by differentiation

f@)=0+v)h(z)—2vH (x)h(z). (2.48)
Given an exponential pdf,
h(z)=0e% 2>0;0>0 (2.49)
then
2
F(zx)=(1+v) {1 — 6_9”] —v {1 — 6_9:”} (2.50)
and
flx) = (1+v)oe 20 [1 - 6_9:”] e e
= (14 v)0e % —200e % + 2vhe= 20"
= (1—v)0e7% 4 20he= 20
— (1) 4y (296—29”5) z>0;0> 0. (2.51)
Let v = a then
f(z)=(1—a)fe % + 200e 22 (2.52)
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which is a transmuted exponential distribution (Bhati et al, 2015). This is a finite mixture of an

exponential distribution with parameter § with another exponential distribution with parameter 26.

We shall thus denote the transmuted exponential mixing distribution as
g(\) = (1 —a)fe % +2a0e 2 X\ >0;6,a >0

Proposition 2.3.3. (a) The Poisson-transmuted exponential distribution is

(2.53)

t \"( 0 t \°[ 20
f(x)z(l—oe)<t+9) <t+9)+a<t+20> <t+29>,x:0,1,2,...;0>0 (2.54)

which is a finite mizture of geometric distributions with parameters t%—, and %.
(b) The rth moment of the mizing distribution is
E(An) =" [ _2?;_ Dol o 1934
so that
Var (A) = i72a a7 132_ o
- 4— 2 — 2—a)?
Bia - BQyt = HE=T0) 300 (-
16 — _ _ 4 N2 N4
E[A—E (A = 3( 6264704) ~3(8 7;;)4(2 a) N 3( 340124(2 )’ 3(2160404)
(¢) Raw moments of the mizture are
9 _
E(X) == eat
E (X2) _ 42—0;’>at2 22—0at
E (X3) 3 (84037a)t3 3 (42;23a)t2 22—0at
E (X4) _3 (162;41504) n 9 (82;3704) £ 7(42523a)t2 n 22—0at

Thus, variance is

pe = Var(X)

_ (4—204—042)252+<2—oz>t7

20
third central moment s
ps = E[X-E(X)

(8 = 3a— 3a? — a?) 3(4—-2a—a?) 2—«
= 163 - t2+< 20 )t

20

(2.55)

(2.56)

(2.57)

. (2.58)

(2.59)
(2.60)
(2.61)

(2.62)

(2.63)

(2.64)



and fourth central moment is

3(12—22a+8a? —5a%) 3ot | , 3(24—1lda—6a*+a?) ,
fa = 167 1667 [ 46° !
+(40—26a—3a2)t2+ 2-ay,
402 20 ’
(d) Posterior distribution is
(| 2) = e MAT (1 — @) e7 4 2ae=204)
g = o[ e e ]
Lottt T (t+20)
The posterior rth moment is
(1-a) 2a
B[ | o) = @+ ] o ¥ Gy
o ,]," (1—(1’) + 2a
(t+6)*Tt T (t420)7F!
and in particular, the posterior mean is
(1*0412 + 2a —
t4-0)” t426)
EA o] = (@ +1) § e
t+)* 1 (t420)° !
Proof. The Poisson-Transmuted Exponential distribution is obtained as;
oo ,—At A)Z
f(z) = / # {(1 —a)fe P + 20&06_20)\] d\
0 xZ:
— (]' - a‘) ot* /OO A:)Se*(t+9))\d)\ + 2a9't1‘ /OO )\zef(t+29))\d)\
xZ. 0 xX. 0

(1-a)0t* T(x+1) 2a0t" T'(x+1)
! (t+6)"* z! (¢4 20)"

0t* (1 — o) 0t"2c

(t+60)"Tt (¢4 20)"

= (1- )Ajlfx L LY (- =0,1,2
- Y\txe) \txe) T N\ix20) \txoe) T

which is (2.54). This result was obtained by Bhati et. al (2015), when ¢ = 1.

2.3.4 Poisson-Lindley Distribution

The pdf of Lindley distribution is
2

T+

g(\) A+1)e M A>0,0>0

Proposition 2.3.4. (a) The Poisson-Lindley distribution is

62t* [x+1+t+9

f(x) = (9+1) (t+9)x+2

},x—0,1,2,...;)\,0>0

When t =1, we have a result similar to that of Sankaran (1970a,).
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;0>0

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)



(b) The rth moment of Lindley distribution is

rl (r+1+0)
E(A") = =1,2,3,4
( ) 0+1 97. 7T ) 73)
so that
24404 62
Var(A):7+ —;
(0+1)°02
2 (8+60 + 60 + 6°
Ep-E()P = 2B 6 +6)
60+1)°63
12 (6 + 1660 + 176% + 863 + 6*
B[A— B () = L2010+ 170" + 807+ 07)
0+1)" 04
(¢) Raw moments of Poisson-Lindley distribution are
(2+0)
E(X)=-—"—7=
X) =% 06
2(3+96) (2+6)
2\ _ 2
E(X)_(9+1)92 0+1)0
]E(X?’): 6(4+0) . 6(3+0)t2+ (2+0)t

(0+1)63 (60 +1)62 @+1)0
E( 4):24(5+0)4 36(4+6) 5 14(3+0), (2+0)
(0+1)04 (0+1)63 (0+1)02 0+1)6

Thus, variance s

(2+40+06%) , (2+6) .

frnd + s
BT ey T 00

third central moment is

2(8+60+692+93)t3 3(2+40+6%) ,  (2+0)
(0 + 1) 63 (0 +1)*62 O+1)0

and fourth central moment is

t

3 =

t.

B4 =

0+ 1)* 64 (0+1)363
2 (13+200+56%) ,  (2+0)
5 t .
(0+1)%6? @+1)0
(d) Posterior distribution is
t40) 2N (A + 1) e~ (A
g(n|x) = LI AT

7! 0 +z+1+1)
Therefore, the rth moment of the posterior distribution is

(x+r)l(x+r+1+t+0)

BT o) == (t+0)

and in particular the posterior mean is

2+ (B+t+0)x+ (2+t+0)
(t+6)

EA|z)=

22

12 (6 4 160 + 176% + 86° + 6*) a0 (20 + 2260 + 186% + 36%) 3

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)
(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)



Proof. From equation (2.69) the mixed Poisson distribution is

o = [ M) 62y ey

z! 0+1

6 * z+1 z\ —(t+6)A
- (AL 4 x7) e~ (+0A Gy
0

0 +1
- 62 F(xz+2) T(zx+1)
! (9+1) |:(t+9>x+2 (t+0)ac+1:|
t"0? T(x+1) [z+1
ﬂw+4)@+m“1{t+9+1}
62 1 r+1+t+6
O+1(t+0)""  t+0
0% x+14t+0

_ =0,1,2,...
@+1) (t+6)" TR RS

which is (2.70).

The pgf of Poisson-Lindley distribution is

e 92
G — —At(l-s) Y A 1 —/\Hd)\
() = [ ML e

2 00 00
— 0 {/ )\67/\(9+t*ts)d)\ + / 6)\(9+tt5)d)\}

s { r(2) N 1 }
0+ 1(0+t—ts)? O+t—ts
6?2 (1+0+t—ts)

_ 2.85
0+1 (94t —ts)? (2.85)

When ¢ =1 in (2.85), then
02 (0+2—5s)
0+1)(0+1-s)

G (s) = (2.86)

as given by Johnson et al. (2005).

The posterior distribution is

e M A)TO2(A+1) e (1 +0)" T
O+ 1)t 02 (0 +x+1+1)
e MM (N4 1) e (¢ + )"
zl(@+x+1+1)
(t + 0)x+2

— x —(t+0)\
A rarivn, ATDe

g(\z) =

23



which is (2.82). The posterior mean is

(t+0)"" /OO +1 —(t+0)A
E(Alz) = @ 1
(Alz) dGtarizn ), N AFDe X

42 o) o)
_ (t+6)"" {/ AEF2e= (0N gy / /\x+le(t+9)>\d)\}
2 (0+z+1+1) Lo 0
B (t+6)* {F(:c+3) r(x+2)}
ol a1+t L ¢+0)" T (t+0)"
(t+0)"" (z +1)! T+ 2
= 42 + 1
2 (O+z+1+1)(t+0) t+0
(z+1) (@ +x+2+1)

(t+0)O+x+1+1)

z+1 r+1

t+60  (t+0) (x+1+60+1)
t+1 z4+1+60+t—0—t
R Ty ¥ P
T+ 2 1

t+60 z+1+0+¢

which is (2.84).

2.3.5 Poisson- 3 Parameter Generalized Lindley Distribution

Consider the following finite mixture

g(A) =p1g1 (A) + p2g2 (N)

0

=7 and hence

where p; + po = 1,p1 > 0,p2 > 0. Suppose py then po

.
0+~

g(A) (A) + g2 (A).

= g1 7
0+~ 0+

If g1 (A) is Gamma (c,0) and g2 (\) is Gamma (o + 1,0) then (2.88) becomes

ea—i-l 1
S0+ (a+1)

g(N) (@ + )X X >0,a,7,0 >0

which is a 3-parameter generalized Lindley distribution, with the following special cases:

(i) @ =+ =1, we have the one-parameter Lindley distribution used by Sankaran (1970a).

(ii) v =1, we have a 2-parameter generalized Lindley distribution
9a+1 1

_ a—1_—60X\,
_7H+17I‘(04+1)(a+)\))\ e "N A>0,a,0 >0

g(A)

as obtained by Zakerzadeh and Dollati (2010).
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(iii) o =1, we have a 2-parameter generalized Lindley distribution

2

9
\) = T+ N) e 2 A>0:7.0>0
g(A) 1+,y(+7)e ;A > 057,60 >

as obtained by Bhati et al. (2015).

Proposition 2.3.5. (a) The Poisson-3 parameter generalized Lindley distribution is

o= S (o) () ()

with the following special cases:

(i) a=A=1and t =1, we have

02 (z + 6 +2)
)= ———r—>
f( ) (1+9)x+a+2
as obtained by Sankaran (1970a).
(ii)) v=1 and t = 1, we have
T+ a T+« 1

as obtained by Mahmoudi and Zakerzadeh (2010).

(i4i) o =1 and t =1, we have

fx) = o {1+7(w+1)} L o012,

(6 +7) 146

as obtained by Bhati et al (2015).

(1 + 9)1‘-&-1’

(b) The rth moment of the 3-parameter generalized Lindley distribution is

M'(a+r) roy
EAN)= ———2_ _— =1.2.3.4
(A7) 07T(a+1){0‘+9+7}’r e

Therefore mean is
1 Y
E(A) == —
(A) 0 {a + 0+ 'y}
variance is
af? +2(a+1)v0 + (a+1)4?

Var(A) = (01

bl

third central moment is

20024+ 6(a+1)702+6(a+1)7?0+2(a+1)7°

3
E[A—E(A) Py

and the fourth central moment is

E(A-E(A)* =

(2.91)

—

2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

3a(a+2)0* +12(a+1) (a+2)v0% + 6 (a+ 1) (3a + ) 26?2

04 (0 + )"
12(a+1)(a+3)y20+3(a+1) (a+3)
+ 1
04 (0 + )

25
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(¢) The central moments of Poisson-3-parameter generalized Lindley distribution are:

(i)
B [04024—2(044-1)764-(a+1)72]t2+ [@f + (o +1)7]
o 62 (0 + ) 6(0+)

(2.101)

When t =1, then

ag o o 2 1o o 2
PR ACE R +1;]29(91-L(72);7)( + D0+ (a+1)y (2.102)

(i)
[2&03+6(a+1)792+6(a+1)729+2(0¢+1)fy3]t3
03 (0 + )
+3[a92+2(a—|—1)79+(a+1)’y2]t2+ [af + (a + 1) 7]
02 (6 + ) 0(0+7)

py =

t (2.103)
When t = 1, then

030+ s = ab®+ (Ba+3ay+7) 0" + (20 + 9oy + 67 + 3072 + 297) 63
+y(a+1) (6+97++%) 0* +3(a+1)(2+7)7%0

+2(a+1)4* (2.104)

Proof. From equation (2.89), the Poisson - 3 parameter generalized Lindley distribution is

= X o (A)” 0 ) 1 a—1_—6\
f(x) = /0 e PR F(a+1)(a+’y)\)>\ e "N\

_omeett T oeta—to—t 0 gy 1 [ aerae— (A gy

x!0+vf(a+1){/0 “ ¢ +/0 7 ¢ }

ottt 1 al'(z4+a) AT (z+a+1)
Mﬂr(aﬂ){(tw)m (t+9)w+a+1}

tr 0t T (z+a)|a(t+0)+v(z+a)

210+~ T(a+1) (t 4 g)=tot!

_ T'@+o) [a(t+0)+7(x+a)]< " )x< g )a+1

2l (e +1) 0+~ t+6) \t+4
I'(z+ «) ~yx + ot t x 0 a+1

T Wl (a+1) =0,1,2,...; >0
I (o + 1) <a+ 0+~ )(t+9> (t—i—&) yx=0,1,2,...50,7,0 >
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which is (2.92) and its pgf is

0o 9a+1 1
— “x(l-s)Y ) A 1e=0A 7\
G(s) /0 ¢ 9+7F(a+1)(a+7) ¢
9a+1

— > a—1 a\ ,—[0+t—ts]*
(0+7)F(a+1)/0 (A>T + XY e d\

0a+1

— ) {a/oo )\O‘_le_(eﬂ_ts)/\d/\ 4 7/00 )\ae—(e-i-t—ts)/\d)\

@+ (a+1 0 ;
_ ga+1 { ol (a) AT (a+1) }
T 0+ NTa+ ) L F—t8) (04t ts)HT

_ gotl 1 0
0+ {(9+t—t8)a * (9+t—ts)o‘+l}
0t T O+t —ts+
6+~ {(9+t—ts)““]

When ¢ =1 and 7 =1 in (2.92)

= ;&jf%{a+?ig}<dﬁ>zQﬁﬂ>wl

_ T(@@+a) a+ux go+t
2l (a+1) 146/ (146)"tot!

and in (2.105)

Gls) = 0t TO+1—s+1
- 0+1 (0+1_8)a+1
gott 0+2—s

0+1 (9+1— s

B 0 G542
- \f-s+1 6+1

as obtained by Mahmoudi and Zakerzadeh (2010).

The rth moment of 3-parameter generalized Lindley distribution is

o0 gotl 1
E(A") = A\ + AN N LT 0A g
W) = N g ra N

ot > r+a—1 —OA
= (6+7)F(a+1)/0 N (a4 yX) e dN
gott al' (r+a) AT (r+a+1)
- (9+qqr@1+1){ gro grot }
go+t I'(r+a«) v(r+a)
@+7)T(a+1) gra {a 6 }
_ I (r + ) af +r +ya
B (9+7)F(a+1)9r+a{ 0 }
0T (r+a) (a(@+v)+qr
T T(a+1)grted { @+7) }

I'(r+a) ~yr

= — _— =1,2,3,4
F(Cl—i-l)gr |:04+0+,_Y:|a7a s Ly Iy

27



which is (2.96) so that

Var(A) = E(A%) —[E(A))
(et D@+ +29]0+7)  [a@+7)+]°

o (0+)° 02 (0 +7)°

Now,

02 (0+9)Var (A) = (a+1)[a(@+7)+21]0+7) —[a(0+7)+7’
= a(@+1)(0+7)°+2(@+1)7 (@ +7) — |a® (0 +7)° + 27 (0 +7) + 7
= a@+)*+2y(0+7)—°
= (0+7) (a8 +ay+2y) -
= 76* + (207 +27) 0 + oy’ + 297+

= af?+2(a+1)v0+ (a+1)4?

Therefore
af? +2(a+1)v0 + (a+1)42

Var (A) = (01

which is (2.98).
Next,
E[A-E(A)P =E (A% —3E (A?)E(A) +2[E(A)]°

*(0+1)°EA-EMW] = (a+1)(a+2)[a(@+7)+3](0+7)°
=3(a+ 1) [a(@+7)+29]la(@+~)++](0+7)
+2[a (0 +7~) +~)?

= a(a+1)(a+2)(@+7)>+3(a+1)(a+2)y(0+7)°

—3(a+1) [0 (8+9)° +307 (0+7)° + 292 (6 +7)
+2[a (0 +7) +~)?
= [la(e+1)(a+2)—3(a+1)a?] (0+7)°
+[B(a+1) (a+2)y— 9oy (a+1)] (0 +7)?
—6(a+1)7* (0 +7) +2[a(0+7) +)°

= [(@+1) (a®+2a —30%)] (0 +7)°
+[B(a+1)y(a+2-3a)](0+7)
—6(a+ 1)V 0+ +2[a@+7) +°

= Ra(@+ 1)1 -a)]@+7)>+[Ba+1)y(2—2a)](0+7)°

—6(a+1)v2O0+7)+2[a(@+~)+])°
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Further solving yields

00+ EA-EM)F = [2a(1-a?)](0+7)"+6(1-0a?)7(0+7)’
—6(a+1)7* (6 +7)
+2 [043 (9+7)3+3a2 (04—7)274-304(04_7)72 _1_,73}
= [20-20%+20°] (0+7)" + [6 (1 - 0®) v+ 6a®] (0 + )’
+ [6ay? — 6 (a+1)v*] (0 +7) + 29°
= 20(0+7)° +67(0+7)" — 677 (0 +7) +29°
= 20 (6% +30%y + 307 + %) + 67 (0% + 290 + 7°) — 67°0 — 49°
= 2a6® + [6ay + 67] 0% + [6ar* + 129%]
+2a7° 4+ 69° + 297 — 67°

= 204(93—1—6(044—1)792—1—(60472—&—672)04—2(04—1—1)73

Therefore the third central moment is

3 _ 200° +6(a+1)90? +6(a+1)7%0+2(a+1)9°

E[A —E(A)] i 5s )

which is (2.99). O

2.3.6 Special Cases of Poisson-3 Parameter Generalized Lindley Distribution

When o = v = 1, then the second central moment of the mixture is

0P +46% 60 4 2
I e g1 1)

a result obtained by Sankaran (1970a) and when v = 1 then

a®d+Ba+1)02+3(a+1)0+ (a+1)
02 (0 + 1)
a(0?+302+30+1)+60>+30+1
62 (6 +1)°
a(@+1)° +6%+30+1

_ PR (2.108)

po =

as obtained by Mahmoudi and Zakerzadeh (2010).

Also when v = 1, the third moment about the mean for the mixture is obtained as
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O+1)3pus =

a95—|—(6a+1)04+(14a+8)93+16(a+1)02+9(a+1)6+2(a+1)
af [0% + (4% + 20°) + (667 + 86%) + (40 + 120) + (1 + 8)] + 20 + [0* + 8% + 1667 + 96 + 2]

af [(0" +46° + 60° + 460 + 1) + (26° + 86 + 120 + 8)| + 2a + [0* + 86° + 166* + 90 + 2]
6

Q

+ 1)+ af [20° + 807 + 120 + 8] + 2a + [0* + 86° + 166 + 90 + 2]

0
af (0 +1)" +2a [0* + 46° + 60° + 40 + 1] + [0* + 86 + 1667 + 90 + 2]
af (0 + 1) +2a (0 +1)* + [0 + 86° + 166 + 90 + 2]

0

a0+ 1) (0+2)+ [0* +80° + 1667 + 90 + 2]

Which on further solving becomes:

6% (04 1)° 3

Therefore

4

= a(@+1)"(O0+2)+ [0* +80(0+2) +80+ (0 +2)]

= a(@+1)"O+2)+ [0 +80+ (86> +1) (0 +2)]

= a(@+1)"O+2)+[0(0°+8) + (86> +1) (0 +2)]

= a(@+1)"O+2)+[0(0+2) (0% —20+4) + (80 +1) (6 +2)]

a(@+ 1) (0+2)+ [0°+60%+40 +1] (0 +2)
03 (0 +1)°

as obtained by Mahmoudi and Zakerzadeh (2010).
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Chapter 3

MIXED POISSON DISTRIBUTIONS
IN TERMS OF SPECIAL FUNCTIONS

3.1 Introduction

In this chapter, mixed Poisson distributions and their probability generating functions have been
expressed in terms of special functions. Specifically, we shall express them in terms of confluent
hypergeometric functions and modified Bessel functions.

We shall first define confluent hypergeometric function and give its properties. Examples of
Poisson mixtures based on this function will follow. We shall next define modified Bessel function
of the third kind and gives its properties. Examples of Poisson mixtures based on this function will

follow.

3.2 Confluent hypergeometric functions

3.2.1 Kummer’s Series

The confluent hypergeometric function, also known as Kummer’s series, denoted by 1 F} (a,c; x) is

defined as:

ar a(a+1)z?
Flacz) = 1+22 997297
1Fi (. cs) +cl!+c(c—|—1) 2!

o0

B al@a+1)(a+2)...(a+n—1)a"
=1 Z clec+1)(c+2)...(c+n—-1) n!

n=1

where ¢ #0,—1,—-2,-3,...
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An integral representation is derived as follows:

) i(a+n—1)(a—|—n—2)...(a+2)(a+1)aP(a)F(c)x”

1F1 (a,¢; ) (c+n—1)(c+n—-2)...(c+2)(c+1)cl'(¢) T (a)n!

I'(a+n)T(c)z™
1+Zf(c+n)l“(a)ﬁ

F'a+n)T'(c—a) T (c) 2
1+nZ::1 I'(c+n) T(a)T (c—a)n!
0o ) o
— 1+;B(a+n,c—a)3(a70_a)n!

On further simplification, we have

1Fy (a,c5) = 1—}—723 a+mn,c—a)—

_ 1 ! a—1 _ p\c—a—1 - (.%'t
= 1+B(a’c_a)/0t (1—1) (;1

1
- 1 - tafl 1—+¢ c—a—1 xt 1) dt
+ B(a,c—a) /0 ( ) (e )

_ tafl 1—¢ c—a—1 :J:tdt
B(a,c—a) / ( ) c
0

and making the substitution z = (1 — ¢) we obtain

1

1

T 1
_ € c—a—1 c—(c—a)—1 —zz
S 1 d
B(c—a,a) /0 : (1-2) ¢ ‘

= ¢"1F(c—a,c—x)

3.2.2 Tricomi Confluent hypergeometric function

Another confluent hypergeometric function also known as Tricomi has integral representation

oo
v (a,c;r) = /ta11+tca1_mtdt
0

The following relation holds:

Y(a,c;x) =2 (a—c+ 1,2 —c;x).
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The connection between Tricomi and Kummer’s confluent hypergeometric functions is

I'l—e¢ [(c—1)zt

i) = ——— "1 F : Fy(a— 1,2 — ¢ :
QIZ)(Cl,C,l') F(a—c—i—l)l 1((1,C,ZE)+ F(a) 1 1((1 c+ ; C7$) (36)
where ¢ #£ 0, —1,—2,.. ..
3.2.3 Incomplete Gamma Function
Incomplete Gamma function is defined as
v (a,x) = /taletdt (3.7)
0

which is related to confluent hypergeometric function as shown below:

xT

v(a,z) = /taletdt

0

C g (1)
= N T g
/0 7;) n!
o _1n x
_ Z( ') / jatn—1 g
=0 n: 0
S Vi

:Z nl a+n

n=0

[ee]

1 (==)"
_ a
-7 nz: a+n n!

which becomes

v(a,z) = x

@ (0), e@t) (2, a@th@+) (0
a+1 1! (a+1)(a+2) 2! (a+1)(a+2)(a+3) 3!

—alat+l)(@+2)--(atn—1)(-2)"
1+Z (a+1)(a+2)---(a+n) n! } (38)

therefore
a

v(a,z) = %1}7’1 (a,a+ 1;—x) (3.9)

and using relation (3.3), we get the relation

v(a,7) = =e 1 (1a+ 1ia) (3.10)
as given by Johnson et al (2005).
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3.3 Mixed Poisson distributions based on Confluent

Hypergeometric Functions

3.3.1 Beta I distribution

The Beta I distribution is

A1 (1 -\t
A) = ,0< A<l a,8>0
AR TPN)
Proposition 3.3.1. The Poisson-Beta I distribution is
t* B
f(z)= Jf!m 1Fi(ze4+a,z+a+6;—-t),r=0,1,2,...;0,8 >0

and its pgf is
G(S) = 1F1 (OJ,CK + B; —t (1 — S))

Proof. The mixed Poisson distribution is

! e—/\t T yo—1 _ )81
flz) = / AT A (1= N) D\
0

x! B(a,B)

1
- ﬁ’l/lv*a—1(1_-xﬁx+®+5@+a>1e—”dA

z!B (a, )
0
"Bz +a,B) ' B '
= EW1F1(3;'+a,33+0z+,87—t),1‘—0,1,2,...,04,5>O
which is (3.12) and has pgf
1 1
G (s — /)\al 1— ) at+f—a—1 ef[t(lfs)])\dA
(s) Ba.B) J ( )

= 1Fi(,a+p3;-t(1—-3s))

as obtained by Gurland (1958) and Katti (1966) .

3.3.2 Rectangular distribution

The Rectangular distribution is

1
A) = <A<b
gA) == asAs<

Proposition 3.3.2. The Poisson-Rectangular distribution is

tﬁ?

f(fv):m{

VR (x4 1,2+ 2;—bt) —a® T Py (24 1,2+ 2; —at)}

and its pgf is

1 —bt(1—s —at(l—s
G“*:@—@ufwu{ebu)_e " @
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Proof. The mixed Poisson distribution is

z! b—a

b a
= / e MATIN — / e MATIN
0

and making the substitution y = At we obtain

bt at

tr . y*
T@ = To=a / Yy — / tmd?/

0 0

— M{y(m—l—l,bt)—v(m%—l,aﬂ}

1 1 .
= x!(b—a)t{x-i-l(bt) +11F1($+1’;[;+2;_bt)}

1 1 .
_$!(b—a)t{x+1 (at) HlFl(“lvH?;—at)}

tfb
GO TR @ e+ 20 — o™ R @+ L+ 25 —at))
which is (3.15) and its pgf is

b
G(s) = / e A

—a
a
_ 1 —bt(1—s) —at(l—s)}
- (b—a)(l—s)t{e ¢
which yields a result obtained by Bhattacharya and Holla (1965) for ¢t = 1. O

3.3.3 Beta II distribution

The beta distribution of second kind also known as inverted beta distribution is

Aafl
A) = A ; .
g\ Blad) 11N >0; o, 8>0 (3.17)

Proposition 3.3.3. The Poisson-Beta II distribution is

T (z + «)

f(:L‘):amd)(z—l—a,x—ﬁjtl;t),x:O,1,2,...;a,5>0 (3.18)

and its pgf is
G(s) = Y(a,1=pt(1—13s)), 0<pf<1 (3.19)
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Proof. The mixed Poisson distribution is

o0

. Y (At)” Aot
fe) = t/) ! B(a,ﬁ)(H—A)a*BdA

0
= x!Bt(Zz, 8) / NI (] 4 \)THIB )=l gy
0
= me(x—i—a,x—ﬂ-i- 1;t)
which is (3.18) and its pgf is
G(s) = 3(01475) 070)\@—1 (14 A)I=F-a=1 =209 g\
_ ;&%)¢MJ—BJO—$%O<B<I

3.3.4 Scaled Beta distribution

Consider the classical Beta (Beta I) distribution

A dy 1
Y uy an o
we have the scaled Beta distribution
AT (=T

g(A) = , 0< A<y a,8>0

o tP1B (a, B)
Proposition 3.3.4. The Poisson-Scaled Beta distribution is

(ut)” B (a+x, 5)
z! Bl(a,p)

fx) =

and its pgf is
G(s)= 1Fi(a,a+ B;—pt (1 —s))

Proof. The mixed Poisson distribution is

I

_ t* —Atyoataz—1 81
! (x)_ﬂf!ﬂaJrﬂ_lB(Oéaﬁ)o/ e
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and making the substitution A = pz we obtain

f(x) = W/lza+x_1 (1 _ Z)oc+ac+6—(oc+ac)—1 e HAt g,
1B (. B)
0
t)" B (a + ,
- (L;v) feam 2>ﬁ) A (et zata+ B —pt), ©=0,1,2,...
Its pgf is
“w
= 1 /5 1 —-Xt(1-

G(s) = jioF5— 1B /)‘a e M=) g\

0

and using the above substitution we obtain
petH -1 +8—a—1 _—put(1—
G(s) = aipEg )~ Q- e
0

= 1P (a4 B —pt(1—s))

which yields a result obtained by Willmot (1986) when t = 1.

A more general situation is given by letting

A—o dy 1
Y= = A=uy+oand —~ = —
Jz d\
If 1
a—1 -
y* (1—y)
w(y) = ,0<y<1l;, a,8>0
Y=""F@n
then

IO A () R e

A) = o< A<o+ua,B,0>0
5 petF=1B (o, B) g

and therefore
t* s
_ x _ ya—1 _ y18-1 =)t
f(x)= B () / AN —o0) [(0 4 pn) — A" e MdA

and making the substitution

N —
z =
we obtain
1
. tT T a—1 . _ 9B=1 _—(pzto)t
F@) = s | e e o ) — s ol e
0
t(ltefo't 1 L 5.1
- r o=l _ —pzt
B (0675)/0 (pz+0) 297 (1 —2)"" " e *dz
tre—ot /1 i <:U> k k 1 B—1 —pazt
= o” z 27" (1 -z e *dz
g | {k_o otk ()t h 2 (1 2)
_ e S () e 1B (a+k,B) 1Fy (a+k,atk+ B —put)
~ 2!B(o,B) k 1 »—H
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Its pgf is

o+up
efAt(lfs) . a—1 o) — B-1
5/ (=) [(+0) — AP

o

1

G (S) - Hoﬂrﬂle

and making the above substitution we obtain

G (3) — L(I_S) / za—l (1 _ z>04+5—04—1 e—ut(l—s)zdz
B (a, p) /
= e UNE (a0t B -t (1 - 5) (3.24)

The special case when o =t =1 is
G (5) = DL F (1,14 B ju (s — 1)) (3.25)
as obtained by Willmot (1986) . O

3.3.5 The Full Beta model

Kempton (1975) mixed two gamma distributions to obtain what he called Full beta model given by

o0 Clp ]_ a
A = / eTINTLL T o507 g
() o I'(p) vT (q)
bP Ap—1
= , A>0;b,p,g>0 3.26
B(p,q) (1 +bA)"0 P (3.26)

This distribution can also be obtained by the following transformation:

From the Beta II pdf

) v 0 0
= ,y>0; pg>
B (p,q) (1 +y)"™

w(y

we make the substitution

dy
= Yy
y X

and therefore the Full beta distribution is

bP AP—1
B(p,q) (1+b\)PHT

g(A) = A>0; b,p,g>0

Proposition 3.3.5. The Poisson-Full Beta distribution is

f(a:)z(é) mw(:ﬂ+p,m+l—q;z>, z=0,1,2,... (3.27)
and its pgf is
G(s) = L) ¢< 1- 't(1—5)> (3.28)
B, \"" "0 |
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Proof. The mixed Poisson distribution is

W [

f ((L‘) = /eAt)\I+pl (1 + b)\)—p—q d)\
B(p,q) x!
(p,q) /
and making the substitution
d
p=bA= =2 and d\ = =,
b b
we obtain
wee 1 [ t
@) = o | AT L e s

B(p,q) x! b+
0
et T (z+ p)
B (p,q)z! b=tp 7/1<
1<t>xf(x+p)

2!\b) B(p.q)

t
w+p,x+1—q;b>

t
5 ¢<x+p,x+1—q;b>.

and using relation (3.5) we have

b

f(x): <Z>Iww <p+Q7x+1_q;t>7 ‘/L‘:O71727"'

B (p,q) !
which yields the result given by Gupta and Ong (2005) when ¢ = 1.

Its pgf is

G (s) = o / AP (1 4 bA) P9 e MA=8) )
0

oy

(r,q)

and making the substitution

z:b)\:>)\:§andd)\:d—bz

we obtain

3.3.6 Pearson Type I Distribution

The Pearson Type I distribution is

1 A =a)Pr =0T
g()\)_B(p,Q)(b—a)p_l(b—a)q_lb—a7a§)\§b
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Proposition 3.3.6. The Poisson-Pearson Type I distribution is

(at)"e T (p+q)

flz) =

! I'(p)
2 (z\ (b—a\* T (k+q)
Fy (k + p: k - (b—a)t), z=0,1,2,.(3.30
kZO@( ) Tty B0 00, (330
and its pgf is
G(s)=e B (p,q) 1Fi(p,p+q—(b—a)t(l-s)) (3.31)

Proof. The mixed Poisson distribution is

b
T 1T A=—a)P =0T ax
fle) = /e al B(p,g) (b—a)’' (b—a) 'b—a

a

b

x o p—1 _ q—1
_ t /e‘”)\x A—a 1 A—a dA
z!B (p,q) b—a b—a b—a

a

and making the substitution

A—a
b—a

—= A A=a+(b—a)zand d\= (b—a)dz

z =

we obtain

txefat

—(b—a)tz o z _p—1 N\ g-1
e a+(b—a)z|" z 1—=2 dz
z!B (p,q) [ ( )] ( )

flx) =

tme—at

z!B (p,q)

— . O —

e_(b—a)tz [Z <i> ax—k (b o a)kzk] Zp—l (1 o z)q—l dz

k=0

<w>ax-k (b—a)w Py (k +p,k+p+q;—<b—a>t>}

i(:c) (b_a>kr(rk(i;i)q) F (k4 p k4 p+g—(b—a)t)

Its pgf is

1
G (S) _ /e[aJr(ba)z]t(ls)zpl (1 . Z)q—l dz

0
= ¢ =B (p,g), Fi(p,p+q;— (b—a)t(1—s))
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3.3.7 Pearson Type VI Distribution

The Pearson Type VI distribution is

(A d)b a=l

d—c d—c

g(A\) = 5 A>dsa,bc,d>0 (3.32)
B(a,b— a) (1+3:§)

Proposition 3.3.7. The Poisson-Pearson Type VI distribution is

dt)® e~
) = x!(B()a,b—a)
x T d—c\"
kz_(){(J <d> P(k+b—a)¢(k+b—a,k—a+1;(d—c)t)} (3.33)
and its pgf is .
G(s)zmr(b—aw(b—m—a;(d—c)m—s)) (3.34)

Proof. The mixed Poisson distribution is

f(m):j’e_xw ()

1 ~\b
p r B(a,b—a)( 37?)
and making the substitution
A—d
Z=o— = A A=d+(d—c)zand d\ = (d —c)dz
we obtain
f(x) _ tredt / x bfafl (1 +Z)_b ef(dfc)tzdz
J:'B (a,b—a)
0
_ tTe—dt / Zm: dsz (d . C)k Zk+bfa71 (1 + Z)ib ef(dfc)tzdz
z!B (a,b—a) k
B (dt)* e~
~ 2!B(a,b—a)
- x d—c\"
Z{(k) <d> F(k:+ba)¢(k+ba,k:a+1;(dc)t)}
k=0
and for £ = 0 we have
e—dt
f) = WF(b—a)¢(b—a71 —a;(d—c)t)
e~ T (b)
= —————I'(b-— —a,1 —a;(d—
F(a)F(b_a) (b a)¢(b a? a’? (d C) t)
— x4 L (b)
dt
= —a.l—a:(d—
e F(a)w(b a,1—a;(d—c)t)
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which is a result given by Albretch (1984) when t=1.
Its pgf is

5 Bl(a,b—a) 1+2\1:§)bd—c
_ e—dt(1-s) T b—a—1 —a+1—(b—a)—1 —(d—c)t(1—s)z
B(avb—a)/z (1+2) dz
o—dt(1-s) "
- B(a,b—a)r(b a)(b—a,1—a;(d—c)t(l—s))

3.3.8 Shifted Gamma (Pearson Type III) Distribution

Consider Shifted Gamma distribution given by (2.32).

Proposition 3.3.8. The Poisson-Shifted Gamma distribution is

(ut)* (uB)* e~ M
x!

fla) =

and its pgf is
£ _emt(l=s)p (@)Y (sa+1;t(1 —s)+ P)

Proof. The mixed Poisson distribution is

tm ﬁoz 7 _ v _ o
f(z) = :n!l"(oz)/e MATe B (X — 1)L dA
o
= tx?;é?_;n/y (A — p)> L e A= g\
2T (e
o

and making the substitution
z=A—p=A=z+pand d\ = dz,

we obtain

_ tTpreH Ji ¢ _a—1 —(t48)z
f(x)= 21T () /(z—i—u) 2 e dz
0

Next, making the substitution

z = py = dz = udy

42
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we obtain

. txﬁae_ut r z z a1, a—1_—(t+B)uy
fx) = 2T (a) /u (I+y)" p* Ty e pdy
0

T ae—ut T+o o
- /Bxll“(of; / y* (L)t e gy

T ae—t
_ () (Lf) (ot a1t )

as obtained by Rolski et al (1999). Using the relation (3.5), Albretcht (1984) obtained

txﬁae—ut

fla)= ——— [+ BTy (a1~ a—w (t+5) ). (3.38)

By letting z = A — p, its pgf is

[ rtm) B s .
G(s) = /e At )me BO=1 (X — p)* L dr
m

— P omt(l-s / )\ 1) a L o=(A=p)[t1—s)+8] 7y
I

_ ﬁa)e—ﬂt(l_s)/za_ (1+z)a+1—a—1 e 2lt=9)+8] 1,

'«
_ B ) .
— e I @ (e Lt -9+ )
O
3.3.9 Truncated Gamma (from above) Distribution
A two-parameter gamma is
h()—a—b b=l > 05 ab >0 (3.39)
y) = F(b)e Wyt oy a, :

Consider the integral
P
I= /e“yybldy,p >0
0

and making the substitution

d
x:ayjyzganddy:;x
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we obtain

a a
0
1 T
= b/e_mxb_ldw
a
0
= (b, ap)

Therefore

P
a? a’ 1 v (b, ap)
—ay b—ld — —~ (b — )
F(b)/e Y dy = moy 5 (b, ap)
0

where v (b, ap) is a truncated gamma function. Therefore,

which also implies that

Thus, the mixing distribution to be considered is truncated gamma (from above)

b
7 (b, ap)

where p is the truncation parameter.

g(\) = e\ 0< A< p; a,b>0 (3.40)

Proposition 3.3.9. The Poisson-truncated gamma (from above) distribution is

(pt)* b 1Fi(x+b,x+b+1;—pt —ap)

J @)= x! b+ 1F1 (b,b+ 1; —ap)

(3.41)

and its pgf is
11 (b,b+1; —pt (1 — s) — ap)

b=t (ap)’ 1 Fy (b, b+ 1; —ap)

Proof. The mixed Poisson distribution is

G (s) = (3.42)

p
— t+a )\1’—0—1) ld)\
Fw) = s [
0

ta®  y(z+b,(t+a)p)
aly(b,ap)  (t+a)" P

(pt)” (ap)” v (x+Db, (pt + ap))
z! (pt + ap)™ T 7 (b, ap)
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and using relation (3.9) we obtain

fl@) = ()" (ap)’  (x+b)"" (pt +ap)" "1y (x + b,z + b+ 1;—pt — ap)
2! (pt + ap)™ b=1 (ap)’ 1 Fy (b,b+ 1; —ap)
(pt)* b 1Fi(x+bx+b+1;—pt —ap)

! b+x 1F1 (b,b+ 1; —ap)

and using relation (3.9), we obtain

f ) = ()" (ap)®  (z+b)"" (pt +ap)™ e PP Fy (1,2 + b+ 1;pt + ap) (3.43)
2 (pt + ap)™ P b1 (ap)° e~ %1 F (1,0 + 1;ap) '

which yields a result given by Johnson et al.( 2005) for ¢t = 1.
Its pgf is

n b,—a \b—1
G(s) = /6—/\t(1—8)a’€>‘d)\
0

7 (b, ap)

a’ v (b, (t(1—s)+a)p)
[t(1—s)+a] 7 (b, ap)
1F1(b,b+1;—pt (1 —s) — ap)

b1 (ap)’ 1Fy (b0 + 15 —ap)

3.3.10 Truncated Gamma (from below) Distribution

Consider gamma distribution with two parameters a and 3

/8&

h(y) = F(a)e_ﬂyy"‘_l, y>0; a,f>0
therefore -
Ba / —By, a—1
Tldy =1
F(a) € ) Yy
0
Ba Ao 0o
—By a—ld —By a—ld = 1
F(a) {/6 Yy y+/6 ) y}
0 Ao
,Y(Oéaﬂ)\()) Ba 7 —By, a—1
dy = 1
) T/ 7" Y
Ao
Therefore
[empay = L)1
J B B
1

- Za F(a)_f)/(a75)\0)}
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which implies that

/ Bre Py tdy
=1
(@) =7 (e, BAo)
Ao
Therefore a truncated gamma (from below) distribution is

ﬁae—ﬁ)\)\a—l

9 = Flay 7 (@ o)

, A> A

where
BAo
7 (e, BXo) =/ e vy T ldy.
0
Proposition 3.3.10. The Poisson-truncated gamma (from below) distribution is

o5 () A

flx) =

and its pgf is

G(S):< p >“F(a>v<a,[t<ls>+m0)
B+t(l—s) I'(a) =7 (a, BAo) '
Proof. The mixed Poisson distribution is

o0

_ (AT et
f(.%’) - )\\/6 x! F(a) —’Y(aaﬁAO)d)\

et ) A

and its pgf is

® « —B)\)\a—l
_ “at(1-s) B
Gl) ! ‘ T(a) =7 (o fro)
0

_ ( g >af(a)—7(a>[t(1—8)+5]ko)
B+t(l—s) I'(a) =7 (@, BAo) '

3.3.11 Truncated Gamma (from above and below) Distribution

Consider the integral

b b
/e_ﬂyyo‘_ldy = /e_ﬁyya_ldy—/e_ﬁyya_ldy
a

therefore ,

/ Boe=Puya=1dy = ~ (a, Bb) — 7 (o, Ba)

a
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which implies

/ Bae—,@yya—l dy 1
J v (e, pb) = (a, Ba) '

Hence truncated gamma (from above and below) distribution is

5(16—5)\)\(1—1 .
g(A) = (@75 = (a.Ba)’ 0<a<A<b<oo; a,38>0. (3.47)

Proposition 3.3.11. The Poisson - truncated gamma (from below and above) distribution is

1Lt NTY B\ @t B)b) (@t (t+B)a)
10=5 () (73) [ (@, 6) — 7 (. ) (345)
and its pgf is
_ B "
@ [5+t(1—s)]
V(o [B+1t(1—s)]b) —v(a,[ﬁth(l—S)]a)}
{ 7@ Bb) — 7 (. Ba) (349
Proof. The mixed Poisson distribution is
b
_ AT rem N
flo) = / oy (0. B) (o)
b
t:pﬁa _ _
_ \rta—1 )\(t+ﬂ)d/\
Ty (@, B) =7 (o, Ba)] / ’
B 1 " T B e
- u(75) ()
’y(x—i—a,(t—i—ﬁ)b) —"}/(IL'-FO[,(t-i-ﬁ)a)
h/ (a7 Bb) -7 (Oé, /BCL)]
and its pgf is
b
_ (1) Bae—ﬂ)\Aa—l
@ / C N =y (@ pa)
 fres]
B+t(l—ys)
{v(a,[ﬁ+t(1—8)]b) —7(a7[ﬁ+t(1—8)]a)}
’y(a,ﬁb)—v(a,ﬁa) ‘
O
3.3.12 Truncated Pearson Type III Distribution
The Pearson differential equation is
ldy a+x
ydr  co+crx + con? (3.50)
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where y = f (x) is a probability distribution function. Pearson Type III corresponds to the case of

ca =0 and ¢; # 0 in (3.50). Therefore

ldy T+a
ydr azx + ¢
_ 1 |xz+4+a
N c1 :L‘+§—(l)
1 2=

C1 1T + ¢

d 1 @ _q
LA / [— + L } dz
) C1 c1xr + Co
logy = ——+ (coc;" —a) ¢y log (1 + co) + log K
C1

= _ci +log (c1z + )™ + log K
1

where m = ¢j ' (cocl_1 — a) . Therefore

logy = log e T+ log (c1z + ¢9)™ + log K

y = Ke o (1 + )™, 1 #0.

If ¢1 > 0,then c1x + ¢g > 0 implies z > _%(1)'
If ¢ < 0,let ¢ = —§ where § > 0 then cix + ¢y > 0 which implies that

c
—5az+co>O:>—5a:>—00:>5x<00:>x<—O

1)
so that
c
a<0=zx< 2
C1
a case we want to consider. Therefore
y = Ke < (cqz+co)™

= Kes (co— ox)™
= K&™es (?—m)m.

Making the substitution

1
%:1anda:5

we obtain

but



therefore

Consider the integral

1 1
/eax (1 _ x)m dr = /xll (1 . x)2+m—l—l e dor
0 0
B(1l,m+1) 1F1(1,m+2;a)

and making the substitution

B=m+2—pF—-1=m+1land m=p0—2
we obtain .

/ew (1—2)2de=B(1,8-1) 1F (1, 8;0)

0

implying
1

(1 —:1;)5_2 e B
O/B(lvﬁ -1) 1/ (Lﬁ;@dm =t

Thus, the mixing distribution (Truncated Pearson Type III) under consideration is

(1-— )\)ﬂ_Q e
1’5_ ]-) 1F1 (]-aﬁaa)

\) = A< 1
g()B( ,0<A<

Proposition 3.3.12. The Poisson-Truncated Pearson Type III distribution is

'3 1FhA(x+1,x+8a—t)

IO = Gy A G

and its pgf is
1F1 (L, Bya—t+ts)

Gls) = 1F1 (1, 8 a)

Proof. The mixed Poisson distribution is

! T _ 5*2604)\
flz) = /eAtO\t) (1-X I\
0

z! B(1,8-1) 1F1(1,5;a)

1
e

_ /)\(x—l-l)—l (1= A)THB-GHD=1 a=0A gy

z'B(1,8-1) 1F (1,5;a) )

t*Bx+1;6-1) 1Fi(z+1,z+ B;a—1t)
z! B(1,8-1) 1F1 (1, Bs )

: T(B) 1R (r+1,x+Ba—1)
I'(z+8) 171 (1, 8 )
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and its pgf is

1
_ )82 ar
G(s) = / R C k)l dX
0

B(1,8—-1) 1F1(1,53;a)

1
1
A1 =\ Bg—-1-1 e[a—t(l—s)})\d)\
B(laﬁ_l) 1F1(175;a)0/ ( )

1F1 (1,6;0& —t+t8)

1F1 (1> 67 Oé)
When o = t, we have

Fi(1,5;t

171 (1, 85 )
a result similar to that given by Johnson et al (2005). O
3.3.13 Pareto I Distribution
The Pareto I distribution is

o

and is sometimes called Pareto of the first kind. Willmot (1993) calls it Shifted Pareto.

Proposition 3.3.13. Poisson-Pareto I distribution is

v o5
fz)= Ww(ljx—aﬂ;ﬁt) (3.57)

and its pgf is
G (s) = ae P01y (1,1 — a; Bt (1 — ). (3.58)

Proof. The mixed Poisson distribution is

tl‘ o i
f @)= 22 / e MNP N

x!
B
and making the substitution

A=z+fB=z2=A—Fand d\=dz

we obtain -
+* 3o — [t
f(x) = arpe i'e /(z + B)x_o‘_l e Az
0

and further making the substitution

z =Py = dz = Bdy
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we obtain

at® e Pt 7 o o1
fla) = SEEE [prertaayte sy
' 0
oztxe_ﬁtoo, t—atl—1-1 —
0
tB)" e~ Pt
= a(ﬁi'e Y (l,z —a+1;6t).
Its pgf is
G (S) = af® / Afaflefkt(lfs)d)\
B

and making the substitution

A=z+B8=2=A—Fand dz =d\

we obtain

G(s) = ape P07 / (z+B) e 792,
0

and further making the substitution z = Sy = dz = Bdy we obtain

o0

el (S) — O[Baefﬁt(lfs) /IBal (1 + y)fafl eft(lfs)ﬁyﬁdy

0o
_ /yl 1 1 a—1-1 eft(lfs)ﬁydy

0
— e 0y (1,1 a3 Bt (1 — 5)).

3.3.14 Pareto II (Lomax) Distribution

The Pareto II distribution also referred to as Lomax is

Bt
()\ + B)a—‘rl’

Proposition 3.3.14. The Poisson-Pareto II distribution is

g(A) = A>0; a,>0

f@)=a@) Y (@+1,2—a+1;5)

and its pgf is
G(s)=ay (1,1 —a;8t(1—5))

ol

(3.59)

(3.60)

(3.61)



Proof. The mixed Poisson distribution is

o0

F@)=Sap [ X7 gy teNan

0
and making the substitution

A= fu = d\ = Bdu

we obtain
[o@)
. ﬁ o T, T —o —a—1 _—pBtu
f(x) = a:'aﬁ BruB7 (1 +u) e "du
' 0
. oo
_ t'aﬁx/ux-i-l—l (1 + u)l-i-ﬂ&—oé—(f'?‘f'l)_l e_ﬁtudu
z!
0
= aBt)*'Y(r+ 1,2 —a+1;58t).
Its pgf is

[e o]

G(S) _ aﬁa/()\+ﬁ)a1 e—)\t(l—s)d)\

0
oo

— Oéﬁa/(ﬁu—kﬁ)_a_l e_BUt(l_S)ﬂdu

0
0o

_ oz/ul_l (1 +u)1—a—1—1 e—ﬁt(l—s)udu

0
= ap(1,1 —a;pt(l—s)).

3.3.15 Generalized Pareto Distribution

The generalized Pareto distribution also known as gamma- gamma is

© K s B kgt
g\ = / — e PN __emukpa—lgy
o T'(B) I'(a)
a)\ﬁ—l
— H 5 A >0 B> 0.
B(a,8) (A +p)

Proposition 3.3.15. The Poisson-Generalized Pareto distribution is

F@) = (ot 8) 0 o+~ T
and its pgf is
6(s) = ey (51— it (1 - )
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Proof. The mixed Poisson distribution is

/)\er,B 1 )\+,Uz) Oé—ﬁef)\td)\
0

fa) = ==

and making the substitution

A= pz = d\ = pudz

we obtain
_ tx,uoc z+B—1—a—p+1 x+B-1 —a—f —puzt
flz) = 2B (0. 5) /u z (1+2) e Hdz
0
_ (:ut)x /Zachﬁl (1 + Z)x+1,a,(x+/3),1 e HAt g,
z!B (a, f)
0
(nt)*
——T — 1; ut
B (0. F) (+B)¢(z+ B,z —a+1;ut)

which yields a result obtained by Willmot (1993) for ¢ = 1.

Its pgf is

)\B—l ()\ + M)fafﬁ e—)\t(l—s)d)\

0/
/'1/ — —a— — Uz —S
-~ B /(MZ)/S Nz 4 p) P et 07 gy
0
/Zﬂ—l (1 + Z)lfafﬁfl 6—pt(1—$)zdz
0

1
= mr (B) (B, 1 —a;put(1—s))
~ T'(a+5) .
= W¢(571—0@Mt(1—3))-

Using relation (3.6) we have

_ )" T@+p) _ ,
f(l') - (a)F() (x+1)r(06—$)1F1((E+6,1+.’L'—Oé,ﬂt)
(ut)*  T'(z+8)

F(@)T(B) I'(z+1)

This result is similar to that of Bruno et al (2006) for ¢t = 1.

11 (a4 B3 1 — o+ a; ut)

The pgf becomes

G(s)=1F1 (81— pt (1 —s)) +

93

[ut (1= )" 1P (o + By 1+ ot (1 = 5)).

(3.65)



3.4 Mixed Poisson Distributions based on Modified Bessel function
of the third kind

In this section, mixed Poisson distributions are expressed in terms of modified Bessel function of the

third kind.

3.4.1 Modified Bessel function of the third kind

The modified Bessel function of the third kind denoted by K, (w) is defined as

/xvle_g(m+:lc)d:c (3.66)

0

N

which is a function of w with index v. Some properties of the Bessel function of the third kind are:

Ky(w) = K_,(w) (3.67)

Kopir (w) = %KU(wHKv,l () (3.68)

Ky (w) = %K@ (w)z—%[KU 1 (W) + Ky (W) (3.69)
T _, (o4 (2w)

K, (@) = \/;e {H;((v)—i)'z')} (3.70)

Ki(w) = %e—% (3.71)

3.4.2 Inverse Gamma Distribution

The inverse gamma distribution is

A) = I AS 0 0 3.72
g () NN , A>0; 8> (3.72)
Proposition 3.4.1. The Poisson-inverse gamma distribution is
Tt+a
_2(pt) > B
fla)=— I (a) Kia (2\/@ , x=0,1,2,... (3.73)
and its pgf is
G(s)= 2 b K o (2 Bt(1— s)) . (3.74)
I'(a) t(l—s)
Proof. The mixed Poisson distribution is
¢ Ba i \r—a—l —t +81
Ho) = 0w / Te3)d
0

and making the substitution

:\/Ez:d)\:\/ﬁdz
t t

o4



we obtain

fz) = f,rﬁa <\/;> ‘t\fz+ dz

_ 2(67&)”7“ .
- 0 T@ Kz_a(Q\/E),x_O,l,Q,...

Its pgf is
_ b Ji —a—1_—Xt(1—s)—4
G(S) - F(O{) /\A (& )‘d)\
0
_ Boz /)\ a—1 —t(l s)[k+f(1 S)i]d/\
[ (a)
0

and making the substitution

| B B
= t<1_8)z:>d)\: mdz

we obtain
G(s) = ( ) /Z—a L= 250 (24 1) g
t(l—ys)
0

_ 25& Q/:) Koo (280 =3)).

3.4.3 Pearson Type V Distribution

The Pearson type V distribution is

I = e 0= A G a0

Proposition 3.4.2. The Poisson-Pearson type V distribution is

por= S (1) (7) T e )

k=0

and its pgf is

G(s) = ZFB(Z) < t(lﬁ— S)> e =9, <2 Bt(1- 5)) :

(3.75)

(3.76)

(3.77)



Proof. The mixed Poisson distribution is
£ T o arn) B
f<x>:M(a)/A (A — )+ A3 gy

C

and making the substitution z = A — ¢ we have

_ ﬁ B —ct i r —a—1,_—tz—2
f@) = Spmge ottt
0

txﬂaeict i xT —k 7 k—a—1 —t(z+81
- m{z@ [t
k=0 0

and further making the substitution

we obtain

When ¢ = 0, we obtain the result for Poisson-Inverse Gamma distribution.

Its pgf is

o0

G(s) = g /()\ _ C)f(aH) 6—/\t(1_s)_%d)\

we obtain

0

o o0
0

I'(a)
B e [ R N = T
a F(a)e /( t(l—s)) y € ( )dy

- Qrﬁ(Z)< t(16_3)> e K, (zm)

o6



3.4.4 Inverse Gaussian Distribution

The inverse Gaussian distribution is
1
2 9 A
g\ = <d’> eu)\gexp{—;ﬂ—;;}, A>0 (3.78)

Proposition 3.4.3. The Poisson-Inverse Gaussian distribution is

0= () (fats) malEe)  em

and its pgf is

G(s):exp{—g[ 1—2575(8—1)—1}}. (3.80)
Proof. Consider inverse Gaussian distribution given by (3.78), making the substitution p = g
implying p? = %, we have
6\* 1 é
_ (2 3 V99 _= bt
g () (277) A" ze exp{ 5 (gp)\+ A)} (3.81)

The distribution of Poisson Inverse Gaussian can be obtained directly with the use of Bessel function

of the third kind as

5 ep oo L
flz) = <2¢;> Ejt/o )\(z_2)_1exp{—)\t—;(cp)\-l-f)}d)\
(e \EeYEhT 2t + ¢ 1
= () e e () et

Let \ = ﬁz, implying that d\ = ﬁdz, then

o - <2qu> Vft <m>— /Ooozu—;)—lexp {_W <Z+ 1) } .
- (2) 07 (fass) s (o) oo
w0 = ()6 e G e

() [aer 2p?t(1—s)+¢ ou? 1
N (%) W/A eXp{_< 2412 >[AJF2u2t(1—s)+¢>A”dA

0
A= ou? z
252t (1—5) + o

o7

M

Ll
I

M

D=

and making the substitution




we have

1 [ o[2u2t(1—s)+¢] 1
e S G

G(s) = e e s

o
SgESS
le-
e
o
=
[\
~
= -
| 1=
Do
&=
_|_
-
~__
e
\8
N\
[

L) o)
27 202t (1 —s)+ ¢

oK ( \/WWL ~9) +¢]> | (3.83)

Using Willmot’s notation, ¢ = u?/3

2\ A : 22t (1—s) + &
Gl = <257T> ¢ <\/2ﬂu2t(1 —8)+u2> 2Ky (\/ B
_ Jad
B

2Nz ,
2(;&1') em—a( 25t(1—s)+1> o

_ (2“>%e§( 25t(1—s)+1>éKé (g Qﬁt(l—s)—l—l)

N[
=
Y
[\
=
~
—~
—
|
&
+
—_
N——

B

but K% (w) = /55€e"“ therefore
1 42—+

Glo) = (?:r)ée (;’;)é

6%6_% 2Bt(1—s)+1

— ew{-4[vi—zme-0-1]}.

=S

O
3.4.5 Reciprocal Inverse Gaussian Distribution
The Reciprocal Inverse Gaussian distribution is
1
g(\) = <2qu>26¢/“)\_éexp{—§)\— 2:;)\},)\>0 (3.84)
and making the substitution p = \/g : implying that p? = %, we have
1
g(\) = (;;) T Ve exp {—g)\ - (5)1\} ,A > 0. (3.85)
Proposition 3.4.4. The Poisson-Reciprocal Inverse Gaussian distribution is
(207 v+
o=t () e (([52s) R (Vo). (3.56)

o8



Proof. The mixed Poisson distribution is

1 00
_t”qb%/@/xl I
f(x) = = <27T> e AP 2 exp  —tA 2)\ ) d\
0

_ B2 e
z! \ 27

[l

1

2 A

3

10
= — ] e
z! \ 27

AT exp{—(%;—gb) [)\—i- L4

L (N e ([P NTE [ e, [ V@)
fe) = 5 (27r) ¢ S0( 2t+¢) /Z+ eXp{ 2
0

|
[
5
-
7N
[\
~
Zls
<-
N———
8
-
[\)
e
+
/N
©
S
~
_|_
&
N—

A
- 5
SV e ([E Yk, (Veme)
B 2%+ ¢ w3 \V? '

o\

3.4.6 Generalized Inverse-Gaussian Distribution

The generalized inverse-Gaussian distribution is

g(\) = Mg%?/;@)\v_lexp{—; <¢A+‘§>}; A>0

with the parameters taking values in one of the ranges:
(i) >0, p>0ifv<0
(i) >0, p>0if v=0

(iii) ¢ >0, p=01if v >0.

Proposition 3.4.5. The Poisson-Generalized Inverse Gaussian Distribution is

4 % zTHKmU 2t +
Ja) =" <¢> < 0 > +( o (p)),x:O,l,Q,...

o)

10} 2+

K, (\/@)

and its pgf is

LK, [ V2T —8) + ¢
G(s) = <2t(1 —@s)ﬂo) [ }

99

AT exp {— (2t + o)A+ %] } X

(o4

(3.87)

(3.88)

(3.89)



Proof. The mixed Poisson distribution is

oo

f(x)= t;; 2K¢/¢ /)\x“’l exp {—; (2t + ) |:>\ + (27}19@)1\} } dA\
0

A= \ 2t +9) — A= \ (2t+<p)d

and making the substitution

we obtain

LA S S PP O | 1

f) = 4 <¢> (2t+<p) 2Kv(\/@)/z eXp{ 2 MQHSD)(HZ)}CLZ
0
_ ”(9‘7);( ¢ )TKW( 40+ 9) r=0,1,2,....
AN 2t + ¢ K, (Vo) , 1,2,

Its pgf is

Gls) = % /XJ 1~ [@-9)+e)+%] g

m\e

0
oo
1
_ /)\v 1,3 [2t(1—-5)+¢] {/Vrmx}d)\
0

N (ZZ) 2K, 1 (\/ 2 (1 — s) +¢>U07 —3 V2= Fe () g
K

3.5 Conclusion

A number of mixed Poisson distributions can be expressed in terms of special functions. This
chapter has derived Poisson mixtures in terms of confluent hypergeometric functions and modified
Bessel functions of the third kind for continuous mixing distributions. These expressions seem quite
involving.Algorithms have also been developed by Press et al (1992) and have been used to calculate

Generalized Pareto mixtures of Poisson distributions by Bruno et al (2006).
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Chapter 4

MIXED POISSON DISTRIBUTIONS
IN RECURSIVE FORMS AND THEIR
DIFFERENTIAL EQUATIONS

4.1 Introduction

The main difficulty with the use of mixed Poisson distributions is that, with the exception of a few
mixing distributions, its probability mass function is difficult to evaluate. One way of circumventing
this problem is to express the mixed distributions in terms of recursive relations.

A number of methods for deriving such recursive relations have been developed: Katz (1965),
Panjer (1981), Sundt and Jewel (1981), Panjer and Willmot (1982), Schroter (1990), Sundt (1992),
Willmot (1993), Hesselager (1994), Wang (1994), etc.

The main objectives of this chapter are:
(i) To review some recursive models obtained by other researchers
(ii) To use integration by parts to obtain recursive models

(iii) To correspond the recursive models obtained using integration by parts to Wang’s (1994) model

and then deduce the corresponding differential equations.
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4.2 A Review of Recursive Models

4.2.1 Panjer’s Class of Recursive Relations

Pearson difference equation is given by

flz+1) _ P(x)
= 4.1
@ QW -y
where f (-) is the discrete probability distribution; P (x) and @ (x) are polynomials.
Katz (1965) considered the difference equation
fle+1)  a+pz
= =0,1,2,.. 4.2
f (Qf) 1 + T Y x P ( )
Equation (4.2) can be rewritten as
a+pB(x—1
fo) = (PR e
b
= <a—|—x)f(x—l);x:1,2,3,... (4.3)

where a = 8 and b = a — .

Equation (4.3) is the Panjer’s recursive relation model. By iteration or pgf technique, it can
be shown that only Poisson, binomial and negative binomial distributions satisfy the Katz - Panjer
model (Sundt and Jewel, 1981; Katz, 1965).

Panjer’s class of order k is defined by

fl+1) o+ px
fx)  1+az2’

r=kk+1,k+2...:k=012... (4.4)

4.2.2 The Ratio Method for Mixtures in Explicit Form

Most Poisson mixtures expressed in explicit form can be expressed in a recursive form by taking the

ratio of two consecutive probabilities as described below:

Poisson-Gamma Distribution

[ I

Using (2.16)

with
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Poisson-Lindley Distribution

Using (2.70),

f(z+1) t (z+t+0+2
= cx=0,1,2,...
f(x) t+o\z+t+0+1) " 0: 1,2,
with
6> (1+t+0)
0) =
O =513 (t + 6)*

Poisson-Generalized Lindley Distribution

Using (2.92),

fla+l) ctalat+O)+yl@tat] t
fl@) 24+1 [a@t+0)+v(x+a) t+0,x_

r0=(1+55) (%)

4.2.3 Willmot’s Recursive Model

with

Consider the Poisson mixture given in equation (1.2); when ¢ = 1, its pgf is

G (s) = /0 T A0 (3) d

whose nth derivative of is

G™ (s) = / AerEH g (A) dA.
0

A generalization of a Pearson system, according to Ord (1972), is given by

d n ()
alogg()\) = o0y
_ T
D hm0 P A"
that is, )
SO0
g(A) e (N)

Willmot (1993) used this generalization to derive a recursive model.

0,1,2,...

(4.6)

(4.8)

(4.9)

(4.10)

(4.11)

Proposition 4.2.1. (a) Willmot’s differential equation in pgf for a Poisson mixture is given by

k

Z (5¢n + 6n) G (s) = g (A1) o (M) €MD — g (Ng) @ (Ao) et~V

n=0
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(b) The corresponding Willmot’s recursive model is given by

k k
Zx(n+x—1)!g0nf(n+:c—1)+Z(n+x)!¢)nf(n+x)
n=0 n=0
=g(A) e (M) eMAT — g (o) (ho) e A (4.13)

where ¢p, = (N4 1) Pri1 — @n + 10 and g < X < A1

(¢) When Ao =0 and A\ = oo, then the recursive model becomes

k k
Zaj(n—i—x— Donf(z+n— 1)—|—Z(n—|—x)¢nf(n—|—:v) =0. (4.14)
n=0 n=0
Proof. Consider
Lo ] = -0t )+ L )+ g e}
= g () {(8 —De\)+e () + ‘(;((j))so (A)}
= Ag ) {se )=o)+ W) +7 ()}
= g () {sp () + 6 (V) (4.15)
where

k
S = D guN
n=0
= YN - +n()

d k k k
= AN = e\ Y
n=0 n=0 n=0

k k k
= j{:7upnAn71__j£:<PnAn'+'§E:nnAn
n=1 n=0 n=0

k—1 k k
= Z (n+1) Epi1 A" — Z A" + Z M A" (4.16)
n=0 n=0 n=0
and therefore
dn=m+1)op+1 —on+m,n=0,1,2,... k. (4.17)

Integrating (4.15) over (Ao, A1), we have
)\1 d /\1
[ [ ] = [T g () s () +6 ()} i
N AA Ao

that is,
A1

A1 k k
W A g () {s PCNEDY qﬁn)\”} d.
0 n=0 n=0
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Therefore

k A1
Mg () e (M) — e Vg (M) e (ho) = Y A (50n + &) A"X57 Vg (1) dA
n=0" "0
k A1
- Z (s¢n + ¢n) / )‘nek(s_l)g (A) dA
n=0 Ao
k
= > (s¢n+ ¢n) G (s)
n=0
and rearranging, we have
k
D (spn+60) G (5) = g (M) (M) €MD — g (o) @ (Ng) X7
n=0

which is a differential equation in pgf.
To obtain the corresponding recursive model, we start from (4.12), that is,

k

D (s + 6n) / N'eXe™hg (A) dA = g (0) ¢ (Ar) €™M = g (do) ¢ (Ao) e70e"

n=0 0

therefore

k 0o 00 Sl oo sl
> senton) [ WY et man = gonponen Y B

n=0 =0 . =0

On further simplification, we have

00 k n [ ooe—>\ n—+l 0o 6_)\1 I
3 CIRERTLELLY gt ac S WSS S (OIS E 1P

=0 \n=0
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Therefore

) 00 k
Z{Z o l)!f(n—l-l)}5l+1+Z{Z¢n(n;l)!f(n+l)}3l
‘ !

=0
o0 —)q)\l e—/\o)\l
=S {o0ne 00 P - g0 00 S0 L
1=0 ’

Comparing the coefficient of s*, by letting [ =  — 1 in the first term and | = x in the second term

of the above equation, we get

— |
ngn n+i D fn+2x—-1) +Z¢n )f(n+33)
! — !

e*/\l)\fﬂ e*Ao)\x
=9 (M) (M) ——= = g (o) ¢ (ho) ==

therefore
k k
Zx(n+x— Dienf (n+ax — 1)+Z(n+x)!¢nf(n+:1:)
n=0 n=0
=g (M) e (M) e AT — g (M) @ (Mo) e 0N
which is Willmot’s recursive model. O

The following are examples of recursive models, for some Poisson mixtures, obtained using Will-
mot’s model.
Poisson-Gamma Distribution

Consider the Gamma distribution given by (2.15), then

’

d g N
7y logg (V) ey
—BA
_ la-D=p5 A) b (4.18)
_ Zﬁzo A"
Zﬁ:o PnA"
This implies that M is equivalent to (Zgizll’}\, therefore, g = a — 1, m1 = —f, pg = 0, and
Y1 = 1.
From (4.12), the differential equation becomes
k
D (500 +60) G (5) = g (M) 9 (M) e 079 — g (Xo) p (o) e 0079 (4.19)
n=0

In this case, A\g = 0 and A\; = co. Hence the RHS of (4.19) is zero, since e *11=%) = 0 for A\; = oo
and g (Ag) = 0, for \g = 0. Therefore, (4.19) becomes

(s¢o + d0) G (s) + (501 + ¢1) GV (5) = 0
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which is equivalent to

$0G () + (s +¢1) G (s) =0
since g = 0 and p1 = 1. But ¢, = (n+ 1) op+1 — ©n + N, therefore ¢pg = a and ¢ = — (1 + 3).
The differential equation is therefore

[s — (1+B)] G (s)+aG(s) =0 (4.20)

From (4.13), the recursive model is
k k

Zx(n+x—1)!g0nf(n+x—1)+Z(n+x)!¢nf(n+x):()

that is,

wof (x = 1) +zp1f (x) + ¢of () + (x+1)p1f(x+1)=0

Since g = 0 and ¢ = 1, we have

af (@) +¢of () +(@+1)¢1f(z+1)=0
But ¢9 = @ and ¢ = — (1 + f3); therefore the recursive relation for Poisson-Gamma distribution is

A+B)(x+1D)f(z+1)=(z+a)f(x) (4.21)

Poisson-Lindley Distribution
Consider the Lindley distribution whose pdf is given in (2.69), then

ilogg(A) = ey

dA g ()
1—-6)—6X
_ o wm
This implies that (1_1?2)_\9’\ is equivalent to % and hence ng =1—60, ny1 = —60, po = 1 and
Y1 = 1. "
Since A\g = 0 and A\; = oo, e *(17%) = 0 and g (\g) = %. The differential equation (4.12)
becomes

(5+¢0) G () + (s + ¢1) G (5) =0
But ¢, = (n 4+ 1) @nt1 — ©n + Nn, therefore pg = 1 -0 and ¢1 = — (1 + 6). The differential equation
now becomes
(s—0—1)G (s)+(s—0+1)G(s) =0 (4.23)
The corresponding recursive model is

vof (x—1)+zp1f(x) +dof () +(x+ 1)1 f(x+1)=0

which, on further simplification and substitution, becomes
fa-1)+@+1-0)f(z)—1+0)(z+1)f(x+1)=0. (4.24)

67



4.2.4 Hesselager Recursive Model

Hesselager (1994) considered the class of counting distributions which satisfy the recursive relation

k r
f () :f(x—l)%, r=1,23,...
for some k. Therefore
k k
f(z) Zbrmr =f(z—-1) ZCLN?T
r=0
=f@-1)) a[l+@-1)

where ¢; = Zfzo ar(})-

4.2.5 Wang’s Recursive Model

Wang(1994) extended Hesselager (1994) model to

k s k
) SRS ol [ Sl P A
i=0 j=1 i=0
where ¢ is a positive integer, and f (z) = 0 for z < c.

When k = s =c =2, then

Proposition 4.2.2. When k = s = ¢ = 2, then Wang’s recursive model becomes

(bo+biz+b22%) f () = [ao+an (@—1)+aw(@—17% f@z-1)

_l’_

[a20+a21(x—2)+a22(a:—2)2]f(m—2),x:2,3,...
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The corresponding differential equation is given by

1

s? (bg — ay9s — (12282) G (s)+s [(bl + b2) — (a11 + a12) s — (a1 + az2) 82} el (s)
+ (bg — a10S — CL2032) G (S) = by f (0) — [alof (0) + (*bo + b1 + b2) f (1)] S (427)

Proof. The corresponding differential equation is determined by considering the following:

Z (bg + bz + b2$2) flz)s® = Z [alo +ay (z—1)+ap(z— 1)2} flx—1)s"
=2 =2

WE

[ag() + ag (z —2) + ax (v — 2)2} fz—2)s".

3
||
N

On expansion, the above expression becomes

oY f(z)s" +bis > af (x)s" by Yy a’f (x)s”
=2 =2

=2

= alosi flx—1)s" 4 ays? i (x—1)f(x—1)s"2
=2

=2

+aio Z (£ —1)% f (# — 1) s° + ags? Z f(x—2)s2
r=2

r=2
tans® (-2 f(z—2)s" P tan) (r-2)°f(z—-2)s
=2 =2
and therefore
bo[G(5) = £ (0) = F (D) s] +bus |G () = f (V)] + 2D w (@ =14+ 1) f (2)s°
r=2

= a105[G (s) — £ (0)] + a115°G (s) + ara Z (z—1)(x—24+1)f(x—1)s"

r=2

+a05°G () + a1 s°G () + ags Z (x=2)(x—=3+1)f(x—2)s".

r=2
On further expansion, we have
boG (5) — bof (0) — bof (1;t) s+ b1sG (s) —bif (1) s+bas® Y w(x—1) f(2)s" > +bas > af (z)s""
=2 =2

= a108G (s) —aiof (0) s + a118°G (5) 4 ay2s® Z (x—1)(x—2) f(x)s"3
=2

+aq28> Z (x—=1)f(z-1) 72 4 ag0s°G (s) + a915°G (s)
r=2

+aggs? Z (z—2)(z—3)f(x—2)s" %+ axps® Z (x—2) f(x—2)s"3

r=2 r=2
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and therefore

boG (s) — bof (0) — bo.f (1) s+ b1sG’ (s) — bif (1) s + bas*G’ (s) + bas [G’ (s)— f(1)
= a108G (s) — a0 f (0) s + a1182G (s) + a128°G" (s)+ a1252G’ (s)
+CL2082G (8) + a2183G/ (8) + a2234G" (8) + GQQSSG, (S)
Putting like terms together, we obtain the differential equation:

52 (bg — @198 — a2232) e (s)+s [(bl +by) — (a11 + a12) s — (a1 + a22) 82] G (s)

+ (bo — a108 — azos®) G (s) = bof (0) — [arof (0) + (—bo + by + ba) £ (1)] s.

4.3 Recursive Models based on Integration by Parts and Differential
Equations based on Wang’s Model

A proper choice of u and dv is necessary to apply integration by parts formula:

/udv:uv—/vdu

In order to deduce the differential equations, the recursive relation for the Poisson mixture should
be in the form of Wang’s recursive model (4.26).
4.3.1 Beta I distribution

The mixing distribution used here is the Beta I given in (3.11).

Proposition 4.3.1. The recursive relation for Poisson-Beta I distribution is
(z+Daf(z+1)=P+t+z+a—-1)zf(z)—tx+a—-1)f(x—-1), =1,2,3,... (4.28)

with initial conditions
f(0)= 1F1 (o, + 35 —t)

and
Py =P

Proof. The Poisson-Beta I distribution is

1Fi(a+Lat+B+1;-1).

T 1
f(z) ! / e Mt (1— AP dA

N z!B (a75) 0
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and using integration by parts, let
w=e M\ anddv = (1 — )\ LdA
Therefore the recursive relation is
(x+1zf(z+1)=P+t+z+a—-1)zf(z)—t@z+a—-1)f(x—1);2=1,2,3,....
The recursive relation can be rewritten as:

z(@—1)f(x) = [(a+ﬁ+t—1)(x—1)+(x—1)2] Flo—1D)—tlatz—2f(z—2),c=23,....
(4.29)

Recursive relation (4.29) is equivalent to Wang’s recursive model (4.26), whose coefficients are:

bp =0,bp = —1,bp = L5410 = 0,a11 = (a+ B+t —1),a12 = 1;a20 = —at,a91 = —t,a2 = 0. The
corresponding differential equation is therefore obtained by replacing the coefficients in equation

(4.27) with the obtained values. This results in the following differential equation:

1 /

(1—s5)G (s)—[a+B+t—ts]G (s)+atG(s)=0. (4.30)

O

4.3.2 Rectangular distribution
The Rectangular distribution is the mixing distribution given in equation (3.14).

Proposition 4.3.2. The recursive relation for Poisson-Rectangular distribution is

e~ (g z+1 _e—bt z+1
f(a:—i—l):f(m)—i—{ (t(tb)_a)(xﬂ()bf) };sz,l,Q,... (4.31)

with wnitial condition

—at bt

(& —e

TO=50—

Proof. The Poisson-Rectangular distribution is obtained as

_ t* b—/\ T a—)\ T

Let y =X = A=Y and d\ = %, then,

bt at
f(z) = t(b—la)a:!{/o e_yyxdy—/o €_yyxdy}

t(b_la)x!{y(x—i—l,bt)—'y(x—i-l,at)}

where

C
v (z,c) = / y" e Vdy
0
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is an incomplete gamma function.

Consider \
¢
v (z+1,0) =/ e Yytdy
0

making the substitution u = y* and dv = e Ydy. we have

e~ (g z+1 _ e bt z+1
f($+1):f($)+{ (t(tl))_a)($+1()t)!t) };33:0,1,2,....

4.3.3 Beta II distribution

Consider the Beta II given by (3.17)

Proposition 4.3.3. The recursive relation for Poisson-Beta II distribution is

(z+Dzf(z+1l)=@—-F-t)af(zx)+t(z+a—-1)f(r—1);2=1,2,3,...

with initial conditions

F(0) = 5=t (1= Bid)

and
_(a+1)

f(l)_ B(Oé B) ¢(a+1aﬁ)t)'

Proof. The Poisson-Beta II distribution is

td} oo
flz) = / ATl (14 0T e M,

z!B (aaﬁ) 0

Let u = A*Te=1e=2 and dv = (1 + A)~@"?) @A, Therefore the recursive relation is

(+Dafx+l)=(x-F-t)af(x)+t(x+a—-1)f(z—-1);2=1,2,3,....

The recursive relation can be rewritten as

(4.32)

p@-1f@)=[-B+)@-1D+@-1?f@-D)+tla+@-2)]f(-2), s=234...,

(4.33)

Therefore the values for the coefficients are: by = 0,b1 = —1,be = 1;a19 = 0,a11 = — (8 + 1) ,a12 =

1;a20 = at,a21 = t,azs = 0 and the corresponding differential equation is

(1—5)G () +[B+t—ts—1]G (s) — atG (s) = 0.
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4.3.4 Scaled Beta distribution

Consider the Scaled Beta distribution given by equation (3.20).

Proposition 4.3.4. The recursive relation for Poisson-Scaled Beta distribution is
z(z+1)fz+)=QB+put+r+a—-1Naf(x)—(e+a—-1)(ut) f(z—1),z2=1,2,3,... (4.35)

with initial conditions
f(0) = 1F1 (o, + B; —pt)

and
ptB (a+1,5)
B (a, 3)

Proof. The Poisson-Scaled Beta distribution is

f)= 1Fi(a+Lat B+ 1 —put).

_ t* K r+a—1 B—1 —)\t
f(x)_z!B( 5) o= 1/ A (n—AN)"""e dA.
A

Let A = puz, = d\ = pdz and z = 2, therefore,

T 1
f(x)= x!éu(to)z,ﬁ) /0 el (1- z)ﬁ_l e M2z,

Put u = e #7271 and dv = (1 — )%~ dz, therefore the recursive relation is
ze+)fle+)=@F+pt+rt+a-lzf(r)—(e+a-1)(u)f(z-1),2=1,23,....

The recursive relation can be rewritten as

x(x—1)f(z)= [(a%—ﬁ—i—ut—l)(w—l)—i—(w—l)ﬂ fla=1D—ptla+(z—-2)]f(x—2), x=2,3,4,...
(4.36)
Therefore the values for the coefficients are: by = 0,01 = —1,by = 1;a10 = 0,a11 = (a+ S+ put — 1) ,a12 =

1;a90 = —aut, as; = —pt, azs = 0 and the corresponding differential equation is
(1—5)G" (s) + [uts — (@ + B+ ut)] G (s) + autG (s) = 0. (4.37)
O
4.3.5 Full Beta Model
Consider full beta model given by (3.26)
Proposition 4.3.5. The recursive relation for Poisson-Full Beta distribution is
e+ fa+l)=[b—q) —tjbef(x)+bt(x+p—1)fx—1);2=1,2,3,...  (4.38)
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with initial conditions

and

)= <z>qm¢ <p+q,q;z).

Proof. The Poisson-Full Beta distribution is

G
f(x) / ATFPTL (1 4 pA) 0T oAy,

~ 2B (p,q) Jo

Let 2 = bA; dz = bdX and \ = 7, then

"1 > wip1 ~(pt+a) 4
N=-]) ——— 2* 14 2)" P79 em 8%z,
/@) <b> w!B(p,q)/o ( )

Put u = 2771757 and dv = (14 2)~ " dz then the recursive relation is
Ve(x+1)f(x+1) =[x —q) —tlbaf(z)+bt(x+p—1)f(z—1);2=1,2,3,....
The recursive relation can be rewritten as

Ve(x—1)f(@)=b|(bg—t)(x—1)+bx—1)>2 flx—1)+bt[p+(x—2)]f(x—2),2=2,3,4,....

(4.39)
Therefore the values for the coefficients corresponding to Wang’s model are: by = 0,by = —b?, by =
b2 a0 =0,a11 = b(bg—t),a12 = b2: aso = btp, as = bt,ass = 0 and the corresponding differential
equation is

b2 (1—5)G (s)+ [bt(1—s) = b (¢+1)] G (s) — btpG (s) = 0. (4.40)

O

4.3.6 Transformed Beta Distribution

A transformed beta distribution is

CMO‘ )\cﬁ—l
(a, B) (u+ Ac)a‘i‘/j’

9N =5 A>0 (4.41)

Proposition 4.3.6. The recursive relation for Poisson-Transformed Beta distribution is

pt(x —c+1) f(x—c+1) :tC(q:—c—l—cB),u,f(x—c)+(x—ca)H(x—c+i)f(x)
1 =1
~Me-c+if@+1),0=012. ... (4.42)
i=1
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Proof. The Poisson-Transformed beta distribution is

cpu® tr

B(a,B) x!

() = | At g e N
0

and making the substitution u = A*¢+fe= and dv = A" (1 + A¢) " P d\, we have the recursive

relation

ut(x—c+1)f(r—c+1) :tc(:v—c—l—cﬁ),uf(:z‘—c)+(w—ca)H(a:—c+i)f(a:)

i=1
c+1
~[[@-c+i)f+1)2=01,2,.... (4.43)
i=1
O
4.3.7 Inverse Gamma Distribution
Consider the inverse gamma distribution given by equation (3.72).
Proposition 4.3.7. The recursive relation for Poisson-Inverse Gamma distribution is
z(z+1)fz+)=(x—a)ef(z)+ptf(z—1);2=1,2,3,... (4.44)
with initial conditions .
2(pt)?
- Ko (2v/5t)
and w1
2(pt) >
D= 20T oy
f( ) F(Oz) l1-a /8
Proof. The Poisson-Inverse Gamma distribution is
l@a tm/oo o1 (a8
= = el (R gy,
/(@) I(a)z! °
Making the substitution v = e_(’\t+§) and dv = A*~*"1d\ we have the recursive relation
z(xz+ ) fz+l)=(x—a)af(z)+P0tf(x—1);2=1,2,3,....
The recursive relation can be rewritten as
z(x—1)f(z)= fa(x71)+(:v71)2] flx—1)+ptf(r—2),2=2,3,.... (4.45)
Therefore the values for the coefficients corresponding to Wang’s model are: by = 0,b; = —1,by =
1;a10 = 0,a11 = —a,a12 = 1;a99 = Bt,a01 = 0,a99 = 0 and the corresponding differential equation
is
(1—5)G" (s)+ (1 —5)G (s) — BtG (s) = 0. (4.46)
O
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4.3.8 Shifted Gamma Distribution

Consider a shifted gamma distribution given by (2.32).

Proposition 4.3.8. The recursive relation for Poisson-Shifted Gamma distribution is
(t+B8)(x+1) fx+1)=[z+a+(t+B)ultf(z)—pt’f(z—-1);2=1,2,3,... (447
with inatial conditions
F0) = (uB)" e (e, a + 15 (t + B) )

and

FQ) = pt (uB)* e " (a, 0+ 2 (t+ B) ).
Proof. The Poisson-Shifted gamma distribution is

txﬁa
z!I' (@)

f(z) = / e NN B (X — 1) dA
"

and making the substitution z = A — u, = dz = dX and A = u + z, we have

txﬁa

e¢]
— —(ut2)t zr —Bz a—1
f(z) 20 (a) /0 e (n+2z)" e P22 dz.

On further substitution z = py, = dz = udy, we have

f @)= (ui)!”;(&ﬁ)fe—m /OOO v (L4 y)T e gy,

xr —

Using integration by parts, let u = (1+y)“e 481y and dv = y*'dy, therefore the recursive

relation is
t+8)(z+ 1) fx+)=[z+a+{t+B)pltf(z)—pt’f(z—1);z=1,2,3,....
The recursive relation can be rewritten as
t+pB)af(x)=tla+t+B)u+(x—1D]f(zx—1)—put’f(x—2),2=2,3,4,.... (4.48)

Therefore the values for the coefficients are: bg = 0,01 = (t+ 8),ba = 0;a10 =t [+ (t + B) p] ,a11 =

t,a10 = 0;a99 = —,ut2, as1 = 0,a99 = 0 and the corresponding differential equation is

s(t+B8—ts)G (s) + [ut?s® —ts(a+tu+tB)] G (s) = —ts(a+tu+tB) f(0) —s(t+B) f(1).
(4.49)
]
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4.3.9 Truncated Gamma (from below) Distribution

Consider truncated gamma (from below) distribution given by (3.44)

Proposition 4.3.9. The recursive relation for the Poisson-Truncated gamma (from below) is

x+1
)‘0

t+8)(z+1)f(x+1) :t(ac—}—a)f(:r)—}—tx"'le_t’\og (Mo) x=0,1,2,... (4.50)

x!

with initial condition

o= () L=l D)

t+p I' () =7 (a, BAo)

Proof. The Poisson-Truncated gamma (from below) distribution is

— gt > z+a—1_—(t+B)A
F@ = i 2

Let u = e~ #A)X and dv = A\¥+t2~1d) then the recursive relation is

z+1

<t+,8>(x+1>f<:c+1)=t(ar+a)f(x)+t“16*”09(Ao>Ail » 2=0,1,2,....

4.3.10 Generalized Gamma Distribution

Consider the generalized gamma distribution

am—(Se—a)\)\m—l
g(\) = s, A >0; mya,n>0,6>0 (4.51)
s (m,an) (A +n)

where
o ,m—1_,-y
L5 (m,an) = / yielsdy.
0o (y+an)

Proposition 4.3.10. The recursive relation for Poisson-Generalized Gamma distribution is

(a+t)x(z+1)f(x+1)=x4+m—0—n(a+t)]xz(nt)f(x)

+(@+m—1) )’ fz—1), =1,2,3,... (4.52)
with initial conditions
f(0) = Lﬂs /OO e~ (att)Aym—1 (n+ )\)—5 d\
s (m,an) J,
and
f@)= ﬂ /Oo e (@FAN™ (1 4 )\)*5 d\
Ts (m,an) J, '
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Proof. The Poisson-Generalized gamma distribution is

txam—(S

f (:IZ) — / ef(ath)/\)\ermfl (n + )\)—6 d)\

z!s (m,an) J,

therefore
zlf () Ts (m, an)
tmam—é

- / e~ (@HOA NTHm=T (3 | )0 g
0

Making the substitution A = nz = dA = ndz we have
RHS = / e~ (attnz (o y2tm=1,0 (1 1 2) ™ ndz
0

prtm=o /00 e~(aftnz wtm—1 (1 4 Z)_6 dz.
0

Let u = 2#tm~Lle=(@+nz and dv = (1 4 2)~° dz, then the recursive relation is

(a+t)z(z+1)f(z+1)=z+m—35—n(a+t)ntef (x)

+@+m—1) )’ f(z—1), 2=1,2,3,...

a result similar to Ong (1995) for ¢ = 1.

The recursive relation can be rewritten as

(a+t)z(z—1)f(x) = nt[(m—é—na—nt)(x—1)+(:v—1)2 fx—1)

+(nt) m+(x—2)]f(z—2),2=2,3,4,.... (4.53)

The values for the coefficients are therefore: by = 0,61 = — (a+1t),bs = (a+t);a10 = 0,a11 =
nt(m— 8 —na —nt), a2 = nt;agy = (nt)>m,ag; = (nt)?,age = 0 and the corresponding differen-

tial equation is

(a+t—nts)G (s)+ |nt —nt(m— 6 —na—nt) — (nt)?| G (s) — (nt)*>mG (s) =0.  (4.54)

O
4.3.11 Transformed Gamma Distribution
Consider a transformed gamma distribution
[e%
g(\) =c b A= NS 0, 8> 0,ce Z7T. (4.55)
I ()
Proposition 4.3.11. The recursive relation for Poisson-transformed gamma distribution is
C
cf .
(z+ca)f(z)= (:13—}—1)f(x+1)+t—c {H(z+z)}f{az+c), r=0,1,2,... (4.56)
=1
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Proof. The Poisson-Transformed gamma distribution is
cBMr [ c
— Aercafl —At—BA d.
f @) I'(a) 2! /0 ©

At—BAC

Let u =€~ and dv = X*t~1g)\, then the recursive relation is

(w+ca)f(ac):($+1)f(x+1)+?f{H(m—i—i)}f(a:—kc), r=0,1,2,....

i=1
O
4.3.12 Pareto I Distribution
Consider Pareto I distribution given by (3.56)
Proposition 4.3.12. The recursive relation for Poisson-Pareto I distribution is
t —Bt pa
@+1)f(z+1) = (:Ufa)f(xfa)+u,x:O,1,2,... (4.57)
!
with initial condition
£(0)=ae PP [1,(1—a);Bt.
Proof. The Poisson-Pareto I distribution is
tﬂ? oo
f(l’) — Oéﬁa/ e—)\t)\ar—a—ld)\.
Let u = e ™ and dv = A*~*"1d), then the recursive relation is
+T —fBt pa
(+1)f(z+1) = (x-a)f(x—aHM, r=0,1,2,....
x!
O
4.3.13 Pareto Il (Lomax) Distribution
Consider the Lomax distribution given in (3.59)
Proposition 4.3.13. The recursive relation for Poisson-Pareto I distribution is
(z4+1)fz+)=(x+pt—a)f(x)+t8f(x—1);z=1,2,... (4.58)

with initial conditions
f(0) =a (1,1 —a; ft)
and

Q) =abt (2,2 —a; Bt).
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Proof. The Poisson-Pareto II distribution is

td} o0
a|/ e NN (A +B8)7

Z: Jo

f(x)=ap
Let u = e MA* and dv = (A + 8)”“ ' d), then the recursive relation is
+D)fx+l)=(z+pt—a)f(z)+tBf(xr—1);2=1,2,3,....
The recursive relation can be rewritten as
zf(x)=pPt—a+z—1)f(zr—1)+ptf(r—2),2=2,3,4,.... (4.59)

Comparing equation (4.59) with equation (4.26), we have the following values for the constants: by =
0,01 = 1,be = 0;a10 = (Bt — @) ,a11 = 1,a12 = 0;a20 = PBt,as1 = 0,a22 = 0. The corresponding
differential equation is therefore obtained by replacing the given constants in equation (4.27). The

resulting differential equation is:

(L=5)G () +[a =Bt (L+5)]G(s) = (a—Bt) f(0) = f(1). (4.60)

O

4.3.14 Generalized Pareto Type I distribution

Consider the generalized Pareto Type I distribution given by equation (3.62).
Proposition 4.3.14. The recursive relation for Poisson-Generalized Pareto distribution is
z(x+1)fz+l)=(x—a—pt)zf(x)+tp(z+-1)f(zx—1),2=1,2,3,... (4.61)

with initial conditions

f(0) = ¥ (8,1 —a;put)

and

F(1) = T (400 (14 8.2 = aip).

Proof. The Poisson-Generalized Pareto Type I distribution is

Pt % Ayatpo1 —a—p
= A A dA.
F@ = b e (4 0)

Let u = e M =1 and dv = (A + 1) " P d), then the recursive relation is

z(z+1)fz+)=(x—a—ut)zf(x)+tpu(z+5—-1)f(x—1). (4.62)

80



The recursive relation can be rewritten as

(—z+22) f () = [—(oﬁ—ut) -+ @—1% fle-D+ut[B+@—2)]f(z—2),2=234,...

(4.63)
Therefore the values for the coefficients corresponding to Wang’s model (4.26) are: by = 0,b; =
—1,be = 1;a10 = 0,a11 = — (a+ pt) ,a12 = 1;a90 = ptf,a21 = pt,aze = 0 and the corresponding

differential equation is
(1—5)G" (8)+ [(+ put — 1) — pts] G (s) — utBG (s) = 0 (4.64)

O]

4.3.15 Generalized Pareto Type II Distribution

The generalized Pareto type II distribution is

1 c o\ -1
g()\):E<1—E)\> >0 (4.65)

Consider the following three cases for the possible values of ¢:
Case (i): When ¢ < 0
Let ¢ = —d where d > 0, therefore

Lfa
g(\) = Z (1 + k)x) s A>0 (4.66)

Proposition 4.3.15. The recursive relation with respect to (4.66) is
cle+1)f(x+1)=(cx+kt+1)f(x)—thkf(x—1);¢<0,x=1,2,3,... (4.67)

with initial conditions

and

1
t [ d \ a1
1) =~ “MA(1+ 2 d\.
Q) k/O e (+k)

Proof. The Poisson-Generalized Pareto Type II distribution is

1
_ ¢ >~ —Atyx d ma
f(z)= ol /0 e A <1 + k‘)\) dA.

_1_
Let u = e M)\ and dv = (1 + %)\) a~t d), then the recursive relation is

cle+1) f(x+1)=(cx+kt+1)f(x)—tkf(x—1);c<0,x2=1,2,3,....
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The recursive relation can be rewritten as

cxf(x)=[kt+14+c(x—1)]f(x—1)—ktf(xr—2),2=2,3,4,....

(4.68)

The values for the coefficients corresponding to Wang’s model are therefore: by = 0,b1 = ¢, by =

0;a10 = (kt +1),a11 = ¢,a12 = 0;a20 = —ktS,a21 = 0,a22 = 0 and the corresponding differential

equation is

c(1—5)G (s)+ [kts — (kt + 1)] G (s) = — (kt + 1) f (0) — cf (1) .

Case (ii): When ¢ — 0 The mixing distribution is

.1 c \e !
g = e (1-72)
_ ! —% A>0
= Ee ,

which is an exponential distribution with mean k.

Proposition 4.3.16. The recursive relation with respect to (4.70) is

tk
kt+1

e L d T
f(O)—/O o (1490) " an

Proof. The Poisson-Generalized Pareto Type II distribution is

fa) = /Oooe—k(”i)mzx

" kal

flat1) =

flz);2=0,1,2,...

with wnitial condition

1
Let u = e M%) A% and dv = d), then the recursive relation is

(kt+1) f(x+1)=tk(z),x=0,1,2,...

which can be rewritten as

(kt+1) f(x)=ktf(x—1),2=1,2,3,....

(4.69)

O

(4.70)

(4.71)

(4.72)

The values for the coefficients corresponding to Wang’s model are therefore: bg = kt + 1,01 = by =

0;a19 = kt,a11 = a12 = 0;a99 = ao1 = age = 0 and the corresponding differential equation is

G (s) = (kt — kts+1) £ (0) + (kt + 1) sf (1).
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Case (iii): When ¢ > 0
1 c o\ -1 k
g(/\)_E(l—E)\) 0<A<= (4.74)

Proposition 4.3.17. The recursive relation with respect to (4.74) is
clz+1) fx+1)=1Q+thk+cx) f(x)—thf(x—1); 2 =1,2,3,... (4.75)

with initial conditions

and

¢ e (1 _ ZA)H X,

S

Proof. The Poisson-Generalized Pareto Type II distribution is
k
o[ c\ye !
= X (1=22)" an
F@) =30 /0 ¢ K
1
Let u = e M)\ and dv = (1 - %/\)571 d), then the recursive relation is

clz+1) fx+1)=1Q+thk+cx) f(x)—thf(x—1); 2 =1,2,3,...

which is the same as equation (4.67). Therefore the corresponding differential equation will be

similar to equation (4.69). O

4.3.16 Inverse Gaussian Distribution

Consider inverse Gaussian distribution given in (3.78).

Proposition 4.3.18. The recursive relation of Poisson-Inverse Gaussian distribution is
(2,u2t—|—gb)x(:x+ D f(z4+1)=p? Qe — 1D atf (z)+ pot’f(x—1); 2 =1,2,3,... (4.76)

with initial conditions

and
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Proof. The Poisson-Inverse Gaussian distribution is

O e e e

27'(' .’E' 0
—(t+i)>\—i _3
Let u=-¢e 22 22 and dv = \* d)\ then the recursive relation is
2p*t+¢)x(z+1)f(x+1)=p® (22— 1) atf (v) +pot’f(x— 1), 2 =1,2,3,...
The recursive relation can be rewritten as

(2p%t + ¢) [—2+22] f(2) = 26 (@ — 1) + (2 — 1)2} Flz—1)+ 202 f (x — 2),0=2,3,4, ...
(4.77)
Wang’s coefficients are therefore:by = 0,07 = — (2,u2 +¢) by = (2,u2 —I—gb) ;a9 = 0,a11 =
2tu alg = 2tu ag) = W qﬁt as1 = 0,a90 = 0. The corresponding differential equation is therefore

obtained by replacing the given constants in equation (4.27). The resulting differential equation is:
[2u%t + ¢ — 24°¢s] G (s) — 4%tG (s) — P2 pt>G (s) = 0 (4.78)

O]

4.3.17 Reciprocal Inverse Gaussian Distribution

Consider reciprocal inverse Gaussian distribution given in (3.84).

Proposition 4.3.19. The recursive relation for Poisson-Reciprocal Inverse Gaussian distribution is
p2(o+20)z(x+1) f(z4+1) =tpu® 2z + 1) af (z)+ ot2f (x —1),2=1,2,3,... (4.79)

with initial conditions

f(0)= (?)“ﬂ Qti(szg( o2+ 9))

and

s =i (2) o ([5) &y (vemea).

Proof. The Poisson-Reciprocal Inverse Gaussian distribution is

f(z)= ( )tm/ P 2exp{ —\t — ¢(12;2’;A) }d)\.

Let u = exp{—% -

5 — 252 and dv = A7), then

prp+2)r(z+1) fz+1)=tu? Qe+ af(z) +ot*f(x—1),2=1,2,3,...
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The recursive relation can be rewritten as
12 (¢ + 2t) [—x—i—xQ] f@)=t2|(xz—-1)+2(@—1)72 f(z—1)+ ¢t’f (x — 2),2 = 2,3,4,..(4.80)

The values for Wang’s coefficients are therefore:bg = 0,01 = —p? (¢ + 2t) ,be = % (¢ +2t);a10 =
0,a11 = tu2,a12 = 2tu2;a20 = ¢t?,a01 = 0,a29 = 0. The corresponding differential equation is
therefore obtained by replacing the given constants in equation (4.27). The resulting differential
equation is

(120 + 2tu® (1 — )] G () — 3tu>G (s) — $t°G (s) = 0. (4.81)

O

4.3.18 Generalized Inverse Gaussian Distribution

Consider a generalized inverse Gaussian distribution given by (3.87).

Proposition 4.3.20. The recursive relation for Poisson-generalized inverse Gaussian distribution
18
t+p)x(x+1)fz+1) =2 +v)af(x)+ot’f(z—1),2=1,2,3,... (4.82)

with initial conditions

f(O):<90>;< P >2Kv( ¢(2t+90)>

2t +

and

f(l):t(¢>g< & )TKHv( ¢(2t+@)>.

¢ 2t + ¢ K, (\/@)

Proof. The Poisson-Generalized Inverse Gaussian distribution is

2) ' e
_ L —Atyxz+v—1 _1 ?
f(z)= 2K, (V20) 37!/0 e A exp{ 5 (go)\+)\>}d>\.

2t+p)x(@+1) fz+1)=2@x+v)af(z)+ot’f(x—1),2=1,2,3,....
The recursive relation can be rewritten as
@t+¢) [~o+a?] o) =2 [v@—1)+ @10 f 2= 1) + 62f (z - 2), 2 =2,3,4,... (4383)

The values of Wang’s coefficients are:bg = 0,b1 = — (2t + @) , b2 = (2t + ¢) ;a10 = 0,a11 = 2tv,a12 =
2t; a0 = ¢t?,as1 = 0,a92 = 0. The corresponding differential equation is therefore obtained by

replacing the given constants in equation (4.27). The resulting differential equation is:
[p+2t(1—5)]G" (s) =2t (v+1)G (s) — Ppt>G (s) = 0. (4.84)
O
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4.3.19 Confluent Hypergeometric Distribution

The Confluent Hypergeometric distribution is

X a4 ek
1IN =T g @ah

Proposition 4.3.21. The recursive relation for the Poisson-Confluent Hypergeometric distribution

,A>0; —co<a<oo; —00 < e< o0 (4.85)

18

k+t)z@x+1)fe+D)=(c+rx—1—-k—-t)atf(x)+@+a—-1)t3f(z—1), 2=1,2,3,...
(4.86)

with initial conditions

B oo ya—1 (1 + )\)C*afl e~ (k+t)A
1= / Fv@ak) N

and

B o0 4a (1 + )\)C—a—l 67(k+t)/\
f(l)—/0 T (a)d (@ e k) dA.

Proof. The Poisson-Confluent Hypergeometric distribution is

[ e~ (A)* A1+ /\)C_“_1 e~ kA
f(2) _/0 2 T(a)v(ack) dA.

Let u = Ao~ le= DA and dv = (1 + A)*" ! d), then the recursive relation is
k+t)z(z+1)fx+1)=(c+z—1—k—t)atf(x)+(x+a—-1)t2f(x—1), 2=1,2,3,....
The recursive relation can be rewritten as

(k+t) [~z +2%] f(x) =t [(c—k—t—l) (z—1)+@—-1%fle-D)+2a+ (@ —-2)]f(x—2),2=234,...
(4.87)

Therefore the values for the coefficients corresponding to Wang’s model (4.26) are: by = 0,b7 =

—(k+1t),by = (k+1t);a10=0,a11 =t (c—k —t—1),a12 = t;as = at? as; = 12, a0 = 0 and the

corresponding differential equation is
k+t(1—s)]G () +[t(k—c)+t2(1—5)] G (s) — at?G (s) = 0. (4.88)
O

4.3.20 Half-Normal Distribution

The half normal distribution is

Ne 2 S s 52> 0 4.89
g()—me o2 3 A>0; —oo < pu<oo;0”>0. (4.89)
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Proposition 4.3.22. The recursive relation for Poisson-Half-normal distribution is
(z+2) f(xz+2)=t20"f (v) — (to* —p)tf(x+1),2=0,1,2,... (4.90)

with initial conditions

0 N2
f(O):/O J;T?eXp{_At_()\Qcﬂm}d)\

> 2) A= p)?
f(l):/o \/%exp{—/\t—(QUZM)}d)\.

Proof. The Poisson-Half-normal distribution is

> 6_)‘t ()\t)x 2 (a=—w)?
€Tr) = . 6_ 202 d)\
/@) /0 ! V2mo?

and

_0=w? . L
M="57 and dv = ATd\, then the recursive relation is

Let u=¢€"
(x+2) f(xz+2)=t22f (z) — (t02—u)tf(a:—l—l),:v:O,l,Q,....
The recursive relation can be rewritten as
af (x) = —t(to® —p) f(x— 1)+ 20 f (v —2),2=2,3,4,.... (4.91)

Therefore the values for the coeflicients corresponding to Wang’s model are: by = 0,b; = 1,by =
0;a190 = —t (t02 — u) cai1 = 0,a12 = 0;a90 = t?02,a21 = 0, a2 = 0 and the corresponding differen-
tial equation is

/

G (s)+ [P0 (1 —s) —tu] G (s) = (20 —tu) £(0) — f (1) (4.92)

O]

4.4 Conclusion

In this chapter a number of recursive formulae for mixed Poisson distributions are derived using
Integration by parts technique. This technique is simple and straight forward provided the choice
of u and dv in the integrand is done correctly to facilitate integration.

The differential equations obtained provide a compact form of obtaining moments for the cor-
responding Poisson mixtures, if the differential equations are solved. However there is a limitation
in generating probabilities when the initial condition is in terms of special functions, therefore a

numerical approximation of the initial conditions suffice.
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Chapter 5

MIXED POISSON DISTRIBUTIONS
AND THEIR MOMENTS IN TERMS
OF TRANSFORMS

5.1 Introduction

The objective of this chapter is to derive mixed Poisson distributions and their moments in terms
of transforms. Specifically, Laplace and Mellin transforms are used in the construction and the
probability generating function is used in obtaining moments.

The pgf of the mixed Poisson distribution is expressed in terms of the Laplace transform of the
mixing distribution. The rth factorial moment is obtained using the pgf and is expressed in terms of
the rth moment of the mixing distribution. Raw moments and central moments of a mixed Poisson
distribution are obtained using pgf.

The index of dispersion of mixed Poisson distribution is also considered. The mathematical

formulation follows.

5.2 Mixed Poisson Distribution and Properties based on Transforms

For a mixed Poisson distribution defined in equation (1.2), its probability generating function is

G(s) = Zf(m)sx, seR
x=0

= E [SX] . (5.1)
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The Laplace transform of ¢ (z) is

L{6(x)} = /0 e (2) dr = 7(s) (5.2)

whenever the improper integral converges. Thus, L is an operator acting on ¢ (x) to produce another

function, say 7 (s). If ¢ (z) is a probability density function, then

L{¢(z)} =E [e ] (5.3)

Mellin transform is
M@} = [ o @) da (5.4

provided the integral exists and if ¢ (z) is a probability density function, then
M{¢(z)} =E[X*7']. (5.5)
Proposition 5.2.1. Mixtures based on Laplace and Mellin transforms of mizing distribution

(a) The mized Poisson distribution in terms of the Laplace transform is

fla)= (1" =LY (1) (5.6)

z!

where

is the Laplace transform of the mizing distribution g (\) and its xth derivative is

x d®
Lgx)(t) = %LA(@

= 90 (5.7)

(b) The mized Poisson distribution in terms of Mellin transform is

r@ = S gy e er -1y
P

o= (—t)"

2! 7!
r=0

where i, ., is the (x + r)th raw moment of mizing distribution g ().

Proof. (a) The mixed Poisson distribution is

tl’ o0 B -

flz) = ), e MATg (\) dX
t* —Atrz
= g}E [6 tA]



and when = 0 we have

F(0) = Ef[e™]
= L (t)

which is the Laplace transform of the mixing distribution g (A). On taking the first derivative,

we have
Cr0) = Snaw
= E[-Ae™™], (5.9)
the second derivative is
j;f 0)=E [(—1)2 A%*At] (5.10)
and in general, the xth derivative is
F@(0) = (-1)"E [A%e™M] (5.11)
hence the mixed Poisson distribution is
f@) = (1P S0
= o LLP o

(b) The mixed Poisson distribution in terms of Mellin transform is

t:l? (0.) _

flz) = ,/ Ae Mg (\) dA
xX: 0
+Z 00 0

= = XY (_)\t)rg (A) dX

z! Jo — 7!
1% o= (—t)" [
— 7' ( ') / /\(x+7“+1)—lg (/\) d\
xX. —0 r 0
7 o= (—=1)"
S S TR T
x! il
r=0
o= [ (=)
x! 7!
r=0
= (—t)
= g 'I"! :U’x+7'
r=0
or equivalently, letting r = j — xz, we have
o (=)
f(z)=— ‘ ; (5.12)
x! = (j—a)
where u; =E (Aj ) is the jth raw moment of the mixing distribution g (\).
O



Proposition 5.2.2.

(a) The probability generating function of the mized Poisson distribution is expressed in terms of the

Laplace transform of the mizing distribution as
G (s) = Lal(1 - 5)4

and therefore

E[X (X -1)(X —2)...(X —r+1)] = 'E[A"]

(5.13)

(5.14)

where the LHS of (5.14) is the rth factorial moment of the mized Poisson distribution.In particular,

E(X) = tE [A]

and

Var (X) =t*Var (A) +tE(A).

The index of dispersion is

Var (X)
E(X)

= 1+tly.

Ix =

(b) (i) The raw moments of Poisson miztures in terms of pgf are:

/

E(X)=G (1)
E(X?)=G"(1)+a (1)

E(X3)=G"(1)+3G¢" (1)+G (1)

E (X% =G (1) +6G" (1) +7G" (1) + G (1)

(ii) Moments of Poisson miztures about the mean in terms of pgf

The second central moment is
E(X —p)?=G
third central moment is

111

E(X—p)? = G (1)+3[1—G’(1)]G (1)

E(X —p)t = G<iv>(1)+(6—4a’(1))G

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
(5.20)

(5.21)

(5.22)

(5.23)

(5.24)



Proof. (a) From equation (5.1) the probability generating function of a Poisson mixture is

G(s) = /0 e M=) g () dX

= La((1—-9)t)

To obtain the rth factorial moment, the pgf is differentiated r times and the value obtained

when s = 1. The first two derivatives are:

G (s) = / h Me MM g () dA (5.25)
0

G (s) = / h (At)% e MM g (X) dA (5.26)
0

and in general the rth derivative is

The rth factorial moment is

G (s) = /O h (At)" e MM g () dA. (5.27)

EX(X-1)(X-2)(X-r+1) = G (1)

and in particular,

and

- /0 T 0 g (1) dx
— FE(AT),r=1,23,... (5.28)

= (E(A) (5.29)

" , , 2
Var(X) = G"(1)+G (1) - (G (1))

The index of dispersion is

= ’E (A?) +tE(A) — 2 (E(A))?
= t*Var (A) +tE(A). (5.30)

tE (A) + t*Var (A)
tE (A)
= 14ty (5.31)

Ix =

(b) (i) Raw moments of Poisson mixtures

When r = 1, we have the first raw moment

E(X) =G (1)
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and when r = 2, we have the second raw moment

1

E(X?)=G"1)+G (1).
When 7 = 3 we have
G (1) = EX(X-1)(X-2)
= E(X?) -3E(X?) +2E(X)

and therefore the third raw moment is

111

E(X3)=G"(1)+3G" 1)+G (1).
When r = 4, we have
G(1) = E(X(X-1)(X—-2)(X -3))
= E(X') —6E (X*) +11E (X?) — 6E (X)
and therefore the fourth raw moment is
E(X*) =G (1) +6G" (1) +7G" (1) + G (1)

Central moments

The second central moment is

E(X —p)® = E(X?) —2uE(X)+ u?
- F (XQ) _ MQ
1 ! / 2
= G'()+6 () - (G (1))
The third central moment is obtained in terms of probability generating function as
E(X —p)® = E(X®) —3uE (X?) + 3p°E (X) — 43
(1)
/ 3 / 2 /
+2 (G (1)) ~3 (G (1)) +G' (1)

117

= &' (1)+3 (1 el (1)) G’
and the fourth central moment is
E(X —p)* = E(X?) —4uE (X?) +64°E (X?) — 3

= ¢™ 1)+ (6 el (1)) G

1

(1)
+ <7 126/ (1) + 6 (¢ (1))2> ¢ (1) +G (1)
3
3

a(d (1))2 ro(c' ) ~3(d (1))4
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5.3 Examples of Mixed Poisson Distributions Based on Transforms

The following are examples of Mixed Poisson distributions based on Laplace and Mellin transforms
of the mixing distributions.
5.3.1 Poisson-Gamma distribution

The gamma distribution given in equation (2.15) has Laplace transform

Ly(t) = E[e™]
—Lo=(t+BA g\

B F()
I'(a) (t+ B)”

_ <66>a (5.32)

Ly (t) = —aB* (t + 8) !

with the first three derivatives as:

Ly () = (~1)*(a+ 1) ap® (t+8) "
Ly (t) = (-1)*(a +2) (@ + 1) ap* (t+ 5)*°

Therefore in general the zth derivative is

LW = (1) (a+z—1)(a+z—2)-(a+1)af* (t+8) 7
— (~1)"al (O‘ +§ N 1)5a (t+B) " (5.33)
. and from equation (5.6) the Poisson-gamma distribution is
@ = Chrpw
- Elcara(* T e py e

 fa+z-1 t \N°( B8\
_ ( ’ ><t+,8> (t+ﬂ> r=0,1,2,...
which is (2.16).

From equation (5.13) and (5.32) its pgf is

G(s) = (1—s9)t

< 1—sﬁ)t+ﬁ>a
- <t+gts>

G )

..;;



and the first three derivatives are:

feo=a(ci5) (e85) (-etr)

& t\?
ngG(s):(a+2)(oz+1)oz(t ﬁ) "

therefore, the rth derivative is generalized as

(
dT‘G(S) = (a+r—1)(a+7~_2),,.(a+1)a<ti6 T( 3 >a(1_ ; S>_a_T
(

ds”
- r t+ t+ 5

and making the substitution s = 1, we have
r . r a a+r
d ca) = a+r—1 ¢ B t+p
ds” r t+ 5 t+ B
_ (et [t "
= 7! . 3

—_
|
~
+ | =
=
»n
N—
|
Q
1

that is
! -1
E(X(X—l)(X—2)---(X—r+1))—t’";r<a+: ) (5.35)
and from equation (5.28)
rl fa+r—1
E(A") = —
wy = ("
F'la+r)
= ——. 5.36
D) A (5:36)
When r = 1, we have the first moment
t
E(X)=-a. (5.37)
B
When r = 2, we have the second factorial moment
2t2 (a+ 1
EX(X-1) = —
- = %"
2 (a+1)a
_ e :
therefore the variance is
Var (X) = E(X(X -1))+E(X) - (E(X))?
_ tla+1)a +t£_ t2a?
B2 g B
ta (1
= — |5+ 1) 5.38
5 (5 (538)
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and the index of dispersion is

Ix = + 1.

t
g
The jth moment of the gamma distribution is

. oo .ﬁf" B a—1
E (A) = N 2 _e=BA a1y
W) = [ ¥ege

ﬁa 0o L
— )\]+a 1 ,Bz\d)\
I'(a) /0 ‘
I'(j+ a)
I (a)pi

and the Poisson-gamma distribution by method of moments is

(=t T (4 @)
f& = G T @e

Let k=j—2 = j=k+ z, therefore

Xt (=) T (k+ 2 + )
Elzl T (o) gE+e

k=0
at+z—1 <t>z
B

flz) =

k
k

() ()
() )

5.3.2 Special cases of Poisson-Gamma Distribution
Exponential distribution

When o = 1 we have:

g(\) =Be P A>0,6>0

_ B
f =55
@) 4y = (— x:z:!iﬁ

Therefore,

_( t N (B Y.
f(x)—<t+ﬁ> (t+ﬁ>,x—0,1,2,...

which is a Geometric distribution with parameter %
B
G(s) = ———
(s) (1—s)t+p

- s (-w)
t+p t+p
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i) <x+a;rk1> <B>k

)
- ()6 20576
()

(5.39)

(5.40)

(5.41)

y

(5.42)

(5.43)

(5.44)

(5.45)



e = E[A"]

/Br
then
t
E(X)=-
(X) 5
t(t+ )
Var(X) = 72
and
t
One parameter Gamma distribution
When g = 1, we have
N S S P
g( ) - r (Of) ’ > y & >

La(t) = <t+11)°‘

- 1> (t+1)0"

Therefore,

which is NBD (a, 1).

then,
EA) =«

E(A%) =a(a+1)
Var(A) = a
E(X) = ta
Var (X) = at (t +1)
and

Ix =1+t.
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(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)



Chi-Squared distribution

When a = 5, 8 = %, where n is a fixed positive integer, we have:

Az A >0

SN
B
—~
o~
N~—
Il
T
—_
SN—
8
N
|3
+
) |
[
~ +
-
~
NI

(7o)
f ) = 241 28 \"( 1 \2 L2
= x 2%+1) \26041) T

which is NBD (%, z—il) with pgf

1\ 2t 172
G(S):<2t+1) [1_2t+1]

Therefore,

E(A) =n, E(A?) = (n+2)n and Var (A) = 2n.

Var (X) =nt (1+ 2t)

and
Ix =1+ 2t
Scaled Chi-Squared distribution
When o = 5 and 8 = , we have:
1 A n
gA) = ——F——€ 227A275 A >0
?) (202)2T (%)

n

La®®) = <202t+ 1)
a 1

+ 202t 2

(z) T 5+x—1 1 2 202 x
Ly ) =(=1) x( x ><1+202t 1+ 202

0|3

Therefore

ngg—1 202t \* 1 2
= (2 ;2 =0,1,2,...
/(@) ( x ) <1+202t> 1120%) 7700 %
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(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)



which is NBD (" 1 )

20 1+202t
Gl = (— L \P[_ 2t E (5.68)
Y=\ 1+ 202 1+ 202" '

202)'T (r+ %

E(A") = (20°) 5’” 2) (5.69)
r(3)

then E (A) = no?, E (A?) =n(n+2)0* and Var (A) = 2no*.
E (X) = nto? (5.70)
Var (X) =nt (1+ 20°t) o° (5.71)

and

Ix =1+ 20, (5.72)

5.3.3 Poisson-3 Parameter Generalized Lindley Distribution

Consider the generalized 3-parameter Lindley distribution given in (2.89), its Laplace transform is

oo —¢A92 O\ a—1 A —OX
L = [TEOEON e,
0 0+~ (a+1)
9a+1

_ o )\a,1 7(t+9))\d)\ /OO )\(a+1)71 7(t+9))\d)\
(9+7)F(a+1){a/() ‘ 7o ‘

B go+t { al'(a) AT (a+1) }
G DT D\ G0+

9a+1 -« —a—1
— 9+7{(t+«9) +y(t+0) } (5.73)

The first three derivatives of the laplace transform (5.73) are:

L\ (t) = oo {(—l)a(t+9)7°‘71+ (—1) (e + 1) (t+9)’°"2}
A 01~ v
" gt 2 a2 2 —a-3
L) = g A ala+ D404y ()P @k ) (a+2) (6+0) 7
a+1
Ly(t) = 09:7 {(—1)3a(oz+1) (@+2) (t+0) "7 +7(-1)> (a+1) (a+2) (a +3) (t+9)’°"4}
gt I'(a+3) o I'(a+4) o
- 9+7{_13F(a)(t+9) 3+7(_1)3m(”9) 4}
Therefore, the xth derivative is
ot a+x a+x
LY (1) = gﬂ {(_1)36 F(F(Z)) (E+0)" 4+ (<1)° W (t+ 9)—a—<z+l>} (5.74)
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and the Poisson-Generalized Lindley is obtained via laplace transform is

C I 0
_ 0t (T (a+a) cae M (a+z+1) PN
= 914 { @) CHO ey 9 1}

a+1x - a+x at+x+1
_ 0Tt a+zr—1 1 oy a+zx 1 ' (5.75)
0+~ T t+0 T t+6

Making the substitution & = v =1 in equation (5.75) we have

) giﬁl{(tie)x+l+(x+1)<ti9>%w}

6%t*
= D er (t+0+x+1) (5.76)

which is Poisson-Lindley distribution.
The pgf for Poisson-3-parameter generalized Lindley distribution is
9a+1
T 0+ Y

G (s) (((1 —s)t+9)_o‘+7((1—s)t—i—@)_o‘_l) (5.77)

and the first three derivatives are:

d Cas ta y(a+1)t
£G(s) O+ <((1 —s)t+0)* —s)t+9)a+2>

d? A t2a (a+1) y(a+1) (a+2)t2
CLSQG(S)_9+’Y<((1—3)t+9)a+2+ ((1—s)t+9)0‘+3>
d—gG(s)— gott <t3a(a+1)(a+2) 7(a+1)(a+2)(a+3)t3>

ds? S0+ \ (1=s)t+6)>F3 (1—s)t+6)

therefore the rth derivative is generalized as

dr et fra(a+r—1)(a+r—2)---(a+1l)a  yla+r)(a+r—1)-(a+ 1)t
mﬁGQ)_6+7< (1—s)t+60)" - (1 —s)t+ )ttt >'

Making the substitution s = 1, we have

dr(;(l)_ gotiyr a(a—i-?“—l)(a—i-?"—?)-..(a—i-l)a+’y(a+r)(a+r—1)--.(a+1)
ds’ R gotr gatr+l

that is

EQXX—lMX—Q}~@Y—T+D)—;Z;<&:<a+r_l>+;(éjw>> (5.78)

and from equation (5.28),

E (A"

1 (F(a+r) WM (a+7r+1)

= =1,2,3,.... 5.79
0+~ \01T(a) 6T (atl) )’T (5:79)

100



When r = 1, we have the first moment

E(X)= (e +vy(a+1)). (5.80)

6(0+)
When r = 2, we have the second factorial moment

/2
62 (60 + )

The jth moment of the 3-parameter generalized Lindley distribution is

E(X (X - 1)) = (@(a+1)0+~(a+2)(a+1)). (5.81)

) oo ea—f—l
E(A) = pY A) A Le=02 gy
() /0 T )T agn @t ATe

9a+1 oo [e'e) ]
= o )\]+a*1679)\d)\+ / A(]+a+1)169)\d)\}
(9+7)F(a+1){ / "o

_ ot {aﬁF(j+a)+v(j+a)F(j+a>}
T 0+ (at1) | Gitefl pitot
B I‘(j+oz){oz9+j’y+’ya}

Tlat) | 090+

which simplifies to

E(A) = {a(9+7)+7j}

)
)L (0+7)0
_ i+a; {a—i— 917 }91] (5.82)

Therefore, the Poisson-generalized Lindley distribution is obtained by the method of moments as

¢ (—t)j_zF(jJra){ vJ } 1

INgE

Fo = L Gt ar )\ " T o4n S @
ST () T+ ) v\ 1
= LT o 'r<a+1>{‘”e+v}w‘

T

J

[
M8

S (0 () ()
Eo O
G 10 A

<.
8

.

+
Mg

9+’y

j=x
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But

S ()6 - ESENG)

- e e ()
- G mer (T 6)
- ()06

)

- F;!Q;J(rao)[) (2)1
[(z+a) t*0°

= uT@) Geo (5.84)

a2 (06

j=z

_ 7N~ DT T(at) (Y
- a(@—l—v);z!(j—:n)! T (a) j(e)
__TGta) NV TTErats-a)
@+ T(a+1) . (j—2)T (z+«)

j=z

- <;>jx+x

AT+ N X (=D T (2 + o+ k) t\*
B (9+7)F(a+1)<9>kz:0 KT (z + a) UH@(&)
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Further simplification yields the following

e 6

i O B () o ()
@ - T L1V (24 o k-1 ota
- wf;ﬁﬁfll) (2) {_ _t(x;a)_kZZE((k_)mrF((xiaiﬁ) <e> +$<90+t> ) }
- g () [ S (Y () e ()
- Wit () {1 65) e G )
I N CRe) °0°  { t(z+a)
(9+7)F(a+1)(9+t)$+0‘{ o+t ”}
- (ef;gwrzal ) (eff;m {0 =t (5.85)

—_—

Now, replacing (5.84) and (5.85) in (5.83) we obtain the following expression

- a+j—1 i t)’
S () traat) ()
- T+a t70¢ ' (z + o) t* > e
B P N e (N S S O
B I'(z+ «a)t™6« {a(9+’y)(0+t)+’y(0x—ta)}
2D (a+1) (0 +8)*™ (0 +7)(0+1)

T (a? +a) 70 [ (0 + ) + at + v

2! (0 +)T (a+1) (0 + )"t
. TI'(z+a) +at—i—*yac 9\ t \"
T T+ \" T o1y )01t 0+t

5.3.4 Poisson-Transmuted Exponential Distribution

Consider the transmuted exponential distribution given in (2.53), its Laplace transform is
o0
Ly (t) = / e M [(1 o) e + 204(96_26/\] dA

= (1-a)b / (DA GN + 200 / —(E+20)A g\

= 1—a)0(t+60)"" +2a0 (t +20)" (5.86)
the first three derivatives of (5.86) are
Ly@)=(1—a)0(=1)(t+0)"+2a0 (1) (t +26) 2
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Ly(t) =1 —a)8 (1) 2! (t+0) "> + 206 (—1)? 2! (t + 20) >
Ly (1) =(1—a)0(=1)*3!(t+60)"* +2a0 (1) 3! (¢t + 20)*
and in general, the xzth derivative is

L@ =1—a)0(=1)% 2! (t+60)" @) 4 206 (—1)% 2! (¢ + 20)@+D

The Poisson-transmuted exponential distribution is obtained via laplace transform as

f@) = S

x!
(1—a)bt* 200t*

+
(t—i— 9)m+1 (t + 29)x+1

0 t\" 20 t\"
- (1_0‘>(t+9> (t+6> +O‘<t+20> <t+20> =012,

The jth moment of transmuted exponential distribution is
E (A7) = / N [(1 —a)fe 4 2@96_29/\] d\
0

= (1—a)0/ )\je_e’\d/\+2049/ Me= 202 g\
0 0

PG+1)  TG+1)
T TR0 e

therefore, by method of moments, the Poisson-transmuted exponential distribution is

= (1-a)f

o 17 (=) !

f@) = Z;MW<(IQ)+;)

_ (1a)i;(1)a'x <i> <0>] +ai(_l)j—x (i) (;(9)]
- (1—a)2(—1)k (") (;)M+ai<—1)k (1) (;@)M
= (1-a) (2)1‘:0(_1)k <$+1Zk_1> <2>k

+a (;0>$§(_1)k <:r+1;rk—1> (;)k
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(5.89)



o = G B () ()
() g: () <2te>k
el () o) ()

0t* (1 — ) N 0t"2c
t+0)"™ (1 +20)"

() () e () ()

5.3.5 Poisson-Inverse Gamma Distribution

Consider the inverse gamma distribution given by (3.72), its Laplace transform is

La(t) = E [e*ﬂ

o o
_ / LA S e Y
0

I'(a)
Boz > —a—1_—-Xt—%
= A dA
' (a) Jo
_ Ba > —a—1 _t(A g%
= F(a)/o Ao 1t (M5 3) g\ (5.90)

and making the substitution \ = \/gz, implying d\ = \/gdz, we have

La(t) = rﬁ((;) /OOO (\/?z)ﬂx_le_t\/?(ﬂri)\/?dz

o O A T - T
= F(a)( t) /0 z lg=2 (+z)dz

- (3 e

- Fﬁ(;;wa (2 ,875)

_ B¢
= 2y K (2\/575) (5.91)

The pgf is

2[8(1—s)1]}

G == K,a(2 B(l—s)t). (5.92)

To obtain derivatives of Lp () take




The first derivative is

L) = SLy

but

K@) = K@)

= 5 [Kurt (@) + Kopr ()]

and

Kot () = 2Ky (@) + Kot ()
therefore

Kow) = =5 (Ko @)+ 2K, @) 4 Ko )]

- —% {2}( LW+ K (w)}

and

%= |70 ()

+F(2a)(5t)3[ al(zf) (W)}

- rip o ()t wﬂ
|0 A S @¢ﬂ
2

= 2B gk, (Q\F) BT Koy (gm)}
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the second derivative is

Ly (1)

therefore,

Ly ()

- ff) (0‘2 1)(6t>5‘16Ka  (2v/A)
(5) [ a2(2\ﬁ> ol a1(2\F>]2ﬁt zf
(o 6t Sl 1<2f>]

(86)°F B (Bt) 2 [ Kaos (2@)—2%«&_1 (NE)],

m
o {580 Ky (235 + (905 550 K (V) |
e (B0 B0 E S K 1(2f)
o {580 Ky (25) - 8 (00°F Ko (2VF) |
g (0" Ko (21/50)
—lf(i) {580 Koo (20/51) }
(~1)? ﬁfj) ()7 Ko (2v/51)

and the third derivative is

Ly (t)

therefore

22 5 ke (V) )
F<20‘> <_1)2/32{<a;2> (887 ! 8K (20/8) + (8) 7 %KH (Wﬁ)}
I S R MM V)

+F(2a)(1)262{(5t)2 [ o 3<2\f)7w 2<2m)} 1}}
Fay >ﬂ2{ 2550 Koca (2v/B1) — B(51) T 2Ka3<2f>}
T 1>2/32{6<6t>;—1a22 o)

e 07 02 200" s (2VBT) 0 K (215
_F(Qa)< >52{< =2 g a1k, 2(2\ﬁ>}

—

Ly (t) = Ffa) (-1 B (80)°%" Kas (20/B1).

107



By induction

(z) T
L)y = 2 7 Koy (2 .
A () F(&)( 1)* g* (Bt) (\/ ) (5.93)
and therefore the mixed Poisson distribution is
(=)
f@) = L7 )
= C 2y (a0 K, (2V/5)
z! T'(a)
2 (Bt)° I
= SN Ko (2
I'(a) z! (5¢) ( 575)
2 ()" 5t
= Ko (2 =0,1,2,.... .94
[(a) a! ( ) z=0 (5.94)
The jth moment of inverse gamma is
E(A) = / N —se ATl
= N lemRdA
30 /0
and making the substitution z = % implying \ = g and dz = —Z%dz we have
~ g /°° BY T B
E (A - *d
(A7) '(a) Jo \z e
B ica—1 * 1-2 —
— 7ﬁj a B/ Zj-i-a—i— e %dz
' () 0
_ ﬁ] /OO Zf(jfa)flefzdz
I' (@) Jo
L /°° 1
= 2% e “dz
L' (@) Jo
p T j j 5.95
- F(a) (Oé—j)7CE>j. ( )
Now, the variance of inverse gamma distribution is
B2 5
Var (A) = -
(&) (a—1)(a=2) (a—1)
B I
 a—-1la-2 a-1
52
 (e=1)’(a-2)
the mean of mixed Poisson distribution is
B
E(X)= .
()=, (5.96)
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the variance is

Var (X)

and the index of dispersion is

= tE(A)+t*Var (A)
tﬁ t2ﬁ2
a-1 (a—1)7*(@-2)
_ B R
RS e Yeay (5:97)
B /32 o — 1
B (a—1)2(a—2) B
_ t8
= Yo T e (5.98)

The Poisson-inverse gamma distribution is therefore obtained by method of moments as

fo) = S0

(]2

(—t) BT (a — j)

Jj=z

(j — z)lx!

oo

'F

8

I' ()
/ 20T 72,
0

1)77° ﬂt)
— ( )]} 2 lem2d,

]—ZE

Bt

z

and making the substitution z = /fty, implying dz = /Stdy, we have

f ()

(88)°
z!l a)

[y
) (

x'F

2(pt) =

z!l’

)) /0 yafxqe—\/E(er%)dy
(o3 )dy]

|:1 /oo yafzfle—
0

Koo (20/51)

2 2W

«

a+tz
2

)
2l (o)
t)
2l (o)

(07

109



5.3.6 Special Cases of Poisson-Inverse Gamma Distribution
Inverse Exponential distribution

When o = 1, we have

g\ =Be AANEA>0,8>0 (5.99)
and its Laplace transform is
La(t) =2(8)2 K_4 (2\/&) : (5.100)
The pgf is
G(s)=2[8(1—s)t] 2 K_4 (2\/ 1—s)t ) (5.101)
The xzth derivative of the Laplace transform is
x z -z
L@ =2(=B)" (Bt) 7 K1, (2«/51&) (5.102)
w=p8T(1-r) (5.103)

E(Ar)zgzoo E (A?) = o0, Var (A) = co.
E(X) =00, Var(X)=o00, Ix = .

The mixed Poisson distribution is
f@)=2(80"F Kia (2\/ ) (5.104)

Inverse Chi-Squared distribution

When a = 7, and § = 2, we have

g = e A2 A>0 (5.105)
(%)
and its Laplace transform is
2(2t)%
La () = 230 K » (2\/5) (5.106)
I (3)
with the xth derivative
T —1)* a.n n_ z
LE\) — ( n) 22+4+1t4 2 % (2\/>> (5107)
(%)
The mixed Poisson distribution is
1 n
9 (2@5(“5)
- Ko, (2 2t>, 5.108

the rth raw moment of inverse chi-squared distribution is

E(AT)_FQ(:;)F(Z‘T>’
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and variance

22
Var(A) = - 5
(5-1)7(3-2)
_ 4
 (n=2)% (n—4)
1 2
B 32
(n—2)° (n—4)
The mean of Poisson mixture is
2
E(X) = o
n
B 4t
 on=2
variance is
2 2
Var(X) = - t 1+ - tn ]
73— 1 (5-1)(5-2
N U P 8t
 on-2 (n—2)(n—4)
and the index of dispersion is
2t
IX = 1+ n n
(5-1)(3-2)
= 1+ 8t
ERCEICET
The pgf is
2[2(1—s)t]1
G(S) = n K,ﬂ 2(1—8) .
s )

Scaled Inverse Chi-Squared distribution

_n _ 2
For a = 5, B = 207,

o2 2 2052 n
g(\) = (1%(")) e A Azt
2
La(t) = = (2n) \/202t>% K_» (2«20%)
2
2y
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(5.109)

(5.110)

(5.111)

(5.112)

(5.113)



G(s) = ng) Vo1 —s)t]%K_g (2v27 (1~ 5)1)
[ = f??{r (g - r) (5.114)
E(X(X-1)(X-2)- (X —r+1)) = (i‘fgr (g —7‘)
B(X) = 7%
Var (X) = gajtl [(3_12;’2_2) +1 (5.115)
Ix = 20°t +1 (5.116)

5.3.7 Poisson-Hougaard Distribution

To determine Poisson-Hougaard distribution through Laplace transform, we use equation (5.6),

implying that

f0) = La(t)
= exp{—i[(&—l—t)a—ﬁa}},ae(0,1).

The first derivative of the Laplace transform is

second derivative is

Ly = (~D6{(a=1 @+ fO)+ O+ 1 (0)}
= (DF{la= DO+ P+ @+ (-1 +6)" "} (0)
HO=a)s0+0" + 80+ } £ (0)

'l—a)
Nl—a)

{

{a-a

= (-1 {F (2-a)s O+8)*2+6%(0+ t)zaZ} £(0)
{

50+ 172 18 (0 +t>2a—2} £ 0)

Q
N
=
—~

Q
SN—

(o9

(0 +)° 2 + cap () 0% (0 + t)2°"2} 7(0)
2
= (-1 Zcz,i (@) 8% (0 + )2 £(0) (5.117)

where cp ;1 (o) = ;8:3 and ¢ (o) = 1.
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The third derivative is obtained as follows:
Ly @) = ch o {(ia = 2) 0+ )" 1 () + 0+ 1)1 (0)}]
_ 2621 5 (i =2 (0 + /" + 0+ /2 (-1)5 6+ 1)} £ (0)
— (-1)? Z; 23 (@) {(2=ia) (646 + (941 (<1)8 (0 + 1)} 1 (0)

2
= ()P {@=ia) 5 O+ 0+ 5 0+ 0 £ (0)

On solving further, then

2
I = (0P {@ i) en (@)5 (04070 4 03 (054 0+ 1)) £ (0)
i=1
= (—1)3{(2 o2 (0) 0 (046" + e ()2 (0+ 0} £ (0) +
(~1*{(2 = 20) 22 (0) 82 (0 + 1) + c22 (@) 6* (0 + 1)} £ (0)
_ I (2 — Oé) a— oa—
= (-1)? {(2 — ) E T @) Pt ean (@) (0 + )77 f(0) +
(~1*{2(1 = @) 22 () 82 (0 + )" + 22 () 6% (0 + 1)} 1 (0)
_ r (3 B O‘) a— a—
= (-1)° {F T o)’ @+D ¥ [e21 (@) + (2 — 20) ca2 ()] 6% (6 + 1)° 3} £(0)+
(—1)* {ezz (@) 8% (6 + 8>} £ (0)
= (P (@) 04077+ eg2(0) 02 (04 1) 4 cy5(@)6° (94 1™} £ (0)
therefore,
3
= (=1° D ez (@) 8" (0 + )7 £ (0)
=1
where
I'B-a)
B )
c32(a) =co1 (@) + 22 () {2 —2a}
and

6373 (a) = 0272 (Oé) =1.
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3

L0 = (1Y eni(@) 0 {Ga=3) 0+ 0" 1 (0)+ 0+ F (0

=1

= 2631 { o — 3 )(‘9+t)ia_4+ (—1)5(0+t)(i+1)04—4}f(0)

= (-1)* Z c3 (a) 0 {(3 —ia) (0 + 1)+ 50+ t)<i+1>a—4} f(0)

3

= (D)"Y {B—ia)esi (@) 8 0+ 1" + ey (a) 5 (04 0TI £ (0)

i=1
that is,

3
L0 = ()Y {B-ia) i (@) (040 + e (a) 5 (040D f (0)

=1
= (D' {B-a)er (@) 0+ +esn (@) 6”0+ 1)} f(0)
+(-1*{ 0+ 0™ (0)
(=18 - 30) 53 (0) 87 (04 )+ g5 (@) 6 (94 1)} £ (0)
- 4{c41 5(0+1)° +[C31(a)+(3—2a)032(a)]52(9+t)2a—4}f(0)
+(- 14{[c32< )+ (3 30) 33 ()] 6% (04 1™} £ (0)
4 {c&g (@) 64 (0 +t)* 4} 7(0).

(3—2a)c32(a) 6% (0+1)"* " + c32 () 6°
54

(
(

Therefore,

L) (1) = ZCM 5 (0+ 1" 1 (0)

where ¢4 () = %; ca2 (@) =31 () +c32(a){3—2a}; a3 () =32 (a) + 33 (a) {3 —3a}
and c44 () = c33 () = 1.

In general the xth derivative is

Ly Zc“ ) 0% (0 + )77 £ (0) (5.118)

where ¢, 1 () = ll:(g:zg,cm (o) = cp1,i—1 (@) + cg—1,i (o) {(z — 1) —ia} fori=2,3,..., x —1 and
Coz () = 1.

The Poisson-Hougaard distribution is therefore

f @)= 3 D eni (@) 86+ £ (0) (5.119)

where



Remark: Hougaard distribution is a case where the Laplace of a mixing distribution is relatively
easier to handle than the pdf. We shall therefore not obtain the pgf, factorial moments, the index

of dispersion and Poisson mixture in terms of Mellin transform.

5.4 Mixed Poisson distributions by method of moments

In this section, we shall obtain Poisson mixtures by method of moments only. We shall also derive
the Laplace transform of the mixing distribution and hence the pgf of the mixture. We shall not

however obtain the xth derivative of the Laplace transform.

5.4.1 Lindley Distribution

Consider Lindley distribution given in (2.69), its Laplace transform is

Ly(t) = f(0)
2
_ 9(0+t+12 (5.120)
O+1)(t+0)

and therefore the pgf of Poisson-Lindley distribution is

020+ (1—s)t+1)
O+1)((1—s)t+0)°

G (s) = (5.121)

The jth moment of Lindley distribution is

A o g2
E(N) = j +1)e
(A7) /0 )\0 1(/\ )e "hdA

92 00 ) )

— )\]4’271 )\]+1*1 79)\d)\

1), (e
8 TG+2) T+
o9+ fi+2 gi+1
B (gl+ 1) [j+1 .y

0+1 @itl 0

4! )

= — 1+6 122

Fine Ut1To) (5.122)
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The Poisson-Lindley distribution is therefore obtained by the method of moments as

00 1 (—t j—x 1 ‘
f(z) = Z(j<—x))!:c! (94]1)93‘ (G+1+06)

tk-i-;t(i) (k+2+1+0)
— (0—{—1)05‘72(_1)k<x+1_]:k_1)(k+x+1+9)<;>k
- (9ﬂfml)9“’:0 <—(a?k+ 1)) (é)k(k+x+1+9)

N (efl)ex {(x+1+9)2 (‘ (ﬂfk+ 1) (2)’“}

I
=
Tl
N
S
—_—
8
+
—
+
N
b VN
—_
+
|
~—
+
_ N——

_(efi)er {(t($;1)> kzl(_l)k_l <x+2zf11—1> <2>k1}
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therefore;

On solving further, we have

flo) = trgr+l [(w+1+9)(9+t)—t(x+1)]
0T (0+1) (0 + )T (0 +1)
%62

= <9+1)(9+t)3&+2(x+1+9+ze)

5.4.2 Beta I Distribution

Consider Beta I distribution whose pdf is given in (3.11), then its Laplace transform is
Ly (t) = 1F1 (o, + B;—t) (5.123)
and the pgf of Poisson-Beta I distribution is
G(s)= 1F (a,a+ B;—t(1—9))

The jth moment of Beta I distribution is obtained as

) 1 yj+a=1(1 _ B—1
0 - [P

_ BU+ap) (5.124)

B (a,p)
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Therefore, Poisson-Beta I distribution obtained in terms of moments is

& (B +a,8)
f(z) = EZ(]'—:(;)! B (a, B)

Jj=x
= i N (_t)]_x ! jt+a—1 B—1
B x!B(a,B);(]_x)!/o Y (L—y)" dy

e b atanl (et ) —(a+0) 1 —t
— TTQ 1 _ TTa T yd
x!B(a,,B)/O y (1-y) e Ydy

Further simplification yields

B (HJ + Oé,,@) 1 szrozfl (1 _ y)(m+a+ﬁ)—(a:+a)—1 oty

f (@) 2!B (a, B) /0 B +a,0) dy
t*B(z + «, 5) . .
B HEteTtet ol

5.4.3 Rectangular Distribution

Consider the Rectangular distribution given by equation (3.14), then its Laplace transform is

L= 1a)t (5“ - e*“f) (5.125)

and the pgf of Poisson-Rectangular distribution is

1 —bt(1—s —at(l—s
G(s):(b—a)(l—s)t(eb(l )—et ))'

The jth moment of Rectangular distribution is
. b\
E(A) = / dx
. b—a

1 bj+1_aj+l
_ b_a( — > (5.126)
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The Poisson-Rectangular distribution is therefore obtained by method of moments as

X (=) 1

f(l‘):';x. . (

pitl _ g+l
j+1

- e X
- 753 E;t—)jx_; {/oszdz‘/oazjdz}

[e.e]

_ t* /bi( t)] ’ ] x+zd /az ] r+xdz
zl(b—a) Jo (J—2) R (j —2)!

j=x =z

+* b i .
= x!(b_a)\/oze dZ—/OZe dz

. . . _ . . _ oy _ dy
and making the substitution ¢tz =y, implying z = § and dz = %7, we have

T bt z at .
1@ = g ) ([T

t* 1 . (z+1)-1 ot (z+1)—
= et =lemyqy — @ ~Yd
x! (b —a)trt! {/0 Y W /o Y ¢ y}

te 1
21 (b—a) to+1 {v(@+1,bt) =y (z+1,at)}

Formula (3.9) gives the relationship between incomplete gamma function and confluent hypergeo-

metric function; that is
a

v (a,x) = et (a;a+ 1; —x)

therefore
1 foenT™ (at)™*!
= F 1; 2: —bt) — F 1; 2; —at
f(:[:) x|(b_a)tx+l{x+1 1 1(CC+ ,fL’"‘ 5 ) 1 1 1(.’E+ ,J;‘i‘ N a)
tl‘
= — (4 F iz +2;—bt) —a® 1 F 1;z +2;—at
(a:+1)!(b—a)( 1Fi(z+ 1242 )—a 1B (e 4+ L+ 2 a))

5.4.4 Beta II Distribution

Consider Beta II distribution given in equation (3.17), then its Laplace transform is

r
L) =5 (ff)ﬁ) b (a1 Bit) (5.127)
and the pgf of Poisson-Beta II distribution is
_ _I'(a)
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The jth moment of Beta II distribution is

E (A TN
() = /0 B (p,q) (1+ 1)

1 0 N1
= / - —dA
B(p.q) Jo (14 XU+
Bp+j,9-7J

Therefore, the Poisson-Beta II distribution by method of moments is

o= (=t " B(p+4,q — )
!~ (j—=z)!  B(pq)

J=x

(_t)j—ff»‘ o0 Spti—1
(j—z)! /0 (1+ Z)(p+j)+(qu) dz
x X N\j—T oo p+j—1
= t Z ( . ) / : 0 dz
!B (p.q) = (G—2)Jo (1+2)"+q
t* el (T
= d
x!B(p,q)/o (1+z)p+qu G-o “

- " / R ol 0

t* o] zm+p71
= / - e tdz
!B (p,q) Jo (1+2)P"™
Further simplification yields

t* - x+p—1 (z—q)—(z+p) —tz
) = ——— z 1+2 e “*dz
/(@) w!B(p,Q)/o (1+2)
" * z+p—1 (z—q+1)—(z+p)—1 —tz
= — z 142 e “dz
x!B(p,Q)/o (1+2)
t* 00 Z:E—l—p—l 1) 1
= — T (z+p / ed— A o P
z!B (p, q) (@ +2) 0 F(fﬂﬂ?)( )

tCC
= -l @+p)d(z+pr—qg+1t
B TP :

5.4.5 Scaled Beta Distribution

Consider the scaled Beta distribution given in (3.20), then its Laplace transform is
Ly () = 1Fi (a0 + 5 —put) (5.129)
and the pgf of Poisson-Scaled Beta distribution is

G(s)= 1F1(,a+B;—pt(1—3s)).
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The jth moment of Scaled Beta distribution is

) poy\Jto—1 (1 — )\)/3—1
5W) = [ s
1

"t (- 2P ax
- EEEE

Let A = pz implying that z = % and pdz = d), therefore

, 1 1 o _
EWN) = S ip@ 5)/0 (2o (= p2)’ " pdz
j+a+Bf—1 1
- e 6)/0 2=l (1= )P g
j
- B(‘; FB 0 +a.f) (5.130)

Therefore, Poisson-Scaled Beta distribution by method of moments is given as

o~ (=) " W B (j + o, B)
xl “~ (j—=z)!  B(a,p)

(1t)” = (—pt)’ " B(j + o, 8)
x! (j—=z)! B(a,p)

fle) =

i
_ % /0 ' ota-i (1 — o)a+a)+B—(ata) =1 —utz g,

_ (ut);é ((:; JFB ;z,ﬁ) /0 tated (g(ijz)ﬁ*f(”a“emdz
= (Mt);é((zjrﬁ;" A) 1Fi (e 4+ oz 4+ o+ B; —put)

5.4.6 Full Beta Distribution

Consider the Full Beta model given in equation (3.26), then its Lapalce transform is

L (1) = Br(ép)q)w <p, 1—gq Z) (5.131)

and the pgf of Poisson-Full Beta distribution is

_ T |t
66 = gl (p1-aja-9).

The jth moment of Poisson-Full Beta distribution is

E (A b o0 Nt+p—1
( )_B(WJ)/O B(p,q) (14 b1
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z dz

Let bA = z implying A = 7 and d\ = 97, therefore

- bP o0 Zitp-l dz
J — -
E ) B (p,q) /0 bitp=1 (14 2)P*7 b

1 Sl ZJtp—1
= i / . -dz
WB(p,q) Jo (14 z)Pte
_ Bp+ijq—7)

Therefore, Poisson-Full Beta distribution is obtained by the method of moments as

o= (=) B(p+4,q— )
zl —~ (j—x)  bB(p,q)

j=x
—t>j_$ 1 Bp+j,q—7)
(j—=2)!  B(pq)

—t\’* 1 oo L ptj-l
)l
b G—2)Jo (142"

fz) =

Lrtr—1 (1+ Z)(I—q+1)—(x+l?)—1 et dy

T  poo Z:c+p—1

o I'(z+p)

‘ ¢
<x+p,x—|—1—q;b>

(1+ Z)(:v*qﬂ)*(:vﬂ?)*l e~ b%dx

<

(5.133)

5.4.7 Pearson Type I Distribution

Consider the Pearson Type I mixing distribution given in (3.29), then its Laplace transform is
La(t) = e "B (p,q) 1Fi (p,p+¢;— (b—a)t) (5.134)
and the pgf of Poisson-Pearson Type I distribution is
G(s)=e B (p,q) 1Fi(pp+aq—(b—a)t(1—s)).

The jth moment of Pearson Type I distribution is

1 A=—a) =111

(W) = / Y5 (Pq) b—a)P™t (b—a)T ' b— ™
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Let ﬁ = z, therefore A\ =a+ (b—a)z and d\ = (b—a)dz

E(N) = /01 Mzwl (1-2)7""dz

B (p.q)
_ ! 1 ! J a'fk _akzk+p71 _Zq—l p
- /OB<p7q>k0<k>J (Ot =
o (ko BUE+D0)
N ,;0 k‘> O B0

The jth moment is therefore

E (Aj) = Z (Z) al ™" (b— a)i Bg(—;pq,)q) (5.135)
i=0 ’

The Poisson-Pearson Type I distribution by method of moments is

o = SEEGE () w-artigh
- S {EE e e
- w!Bth, q) g { E;i):; “ /o1 [;0 G) o <b ; az>i2i] A= dz}
s S [ (e 0]
_ :c'Bt:p, 5 g { E;t_)jx), /0 et () (1 2y dz}
_ x'Bth J /0 1 {]i E;t_);_), o+ (b—a) z]j} 2711 - 2)  dz
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Further simplification yields

7 ot (b-a) -1 -1
) = ———— | O g 4 (b—a)2]" 2P (1 —2)T dz
f@ = o fat (b—a)2l 2 (1-2)

— t* ! —at ,—(b—a)tz - T\ z2—k k _k+p—1 q—1
= ac‘B(p,q)/ {e e Z 1)@ (b—a)"z (1—-2) dz

k=0

t* 1

= 70,15 X k k+p—1 1 o q—1 *(b*(l)tZd
z'B(p,q) Z <k:> —a) /0 z (1—-2)""e 2

t* e~ x Lo ktp—1(1 _ , k+q+p—k—p—1 i
~ 2B(p,q) tz<k) )’fB(ker,q)/O (B(k‘—l)-p ” o—(b—a)tz g,
. tr fat €T i ' u B
N x‘B (p,q Z(k:) —a)"Bk+p,q) 1FAlk+pk+p+q¢—(b—a)t)

(at)" e T (p+q)
z! T (p)

2 (z\ (b—a\F T (k+q) .
,;0@( a ) F(k+p+Q)1F1(k+p’k+p+q,—(b—a)t)

5.4.8 Pearson Type VI Distribution

Consider Pearson Type VI distribution given by (3.32), then its Laplace transform is

efdt

LA(t):m

Fb—a)y(b—a,1—a;(d—c)t) (5.136)

and the pgf of Poisson-Pearson Type VI distribution is
efdt(lfs)

Gls) = B(a,b—a)

Fb—a)y(b—a,l—a;(d—c)t(l—3s)).

The jth moment of Pearson Type VI distribution is

)\—d> b—a—1 1
—c —c d\

» o N (d d
E (A7) :/ -
¢ B(a,b—a) <1+>‘:C)
Let 2=% = 2 implying A = d + (d — ¢) z and d\ = (d — ¢) dz, therefore
. S _ J Jb—a—1
E(A) = / [d+ (d—c)z) z "
0

B(a,b—a)(1+2)°

/oo Z )dj z( _ C)i Zi-l—b—a—ldz
0 B(a,b—a)(1+z)b

)l 0o Zi—l—b—a—l

d . ~dz
B a b — a 0 (1 + Z)(H—b—a)—i-(a—z)

(

I ()i
= gé)fi,gda) (t+b—a,a—1i). (5.137)

sH

U

7
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Therefore, by method of moments, Poisson-Pearson Type VI is

fx) = Zzgj_t_);; {Z(z)djl()_dc B(i—l—b—a,a—i)}
j=x

~ 2B (:b —a) i E;t—]x_; {2; <Z> (d ; c>idj /0°° Zii:i:j);ldz}
U B0 0] )

(
(
Tl () e

_ t* [e%S) i (_t)j—m [d N (d B )Z]j b—a—1 5
z!B(a,b—a) J, = (j —x)! (1+2)°
R Y N Rt E P
N x!B(a,b—a)/O JZ:; (j —x)! d+(d=c)z] (1+z)bd
b—a—1

t* > —t[d+(d—c)z] x Z
= ——— (& d + d—c)z dz
z!B (a,b— a) /0 ld+( ) (14 2)°

Further solving yields

t* o0 yb—a—1 y
= V5 1 — z ~  _—td —(d—c)tz
f(x) B (a,b—a)/o [d+ (d—c)z] (1+z)be e dz
txe—td /oo T (l’) N A Zk‘—l—b—a—l
= RN k(g —(d=otzg,
B (a,b—a) Jy kZO K = (1+2)
_ tretd T S 4k (d - c)"’ /°° Phtbma=l(q 4 z)1+k;—a_(k+b_a)_1 o—(d=0)tz g,
z!B (a,b— a) prt k 0
= tretd Zx: z A=) T (k+b—a)p(k+b—ak—a+1;(d—c)t)
.’E'B (aa b— CL) k=0 k ’ ’
dt)" e N (2 (d—c\"
— r — - — 1:(d —
x'B(ab—a)kO k d (k+b—a)p(k+b—ak—a+1;(d—c)t)

5.4.9 Shifted Gamma Distribution

Consider the Shifted-Gamma distribution given in (2.32), then its Laplace transform is

/6(1
I'(a)

Ly (t) = e M ()Y (o, a4 15t + B) (5.138)

and the pgf of Pisson-Shifted Gamma distribution is

IB(Z

A Y

e~ M=) (@)Y (sa+1;t(1—s)+ ).
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The jth moment of Shifted Gamma distribution is

E(Aj) - /MOO)\J' B(a)eﬂ()\u) ()‘_N)a_ld/\

(A= gt p) e PO (X — )t

>

1

Fw ),
»

# ()WM 8O- () — )T
- a‘é;/f(

)

Bl o)
M

1:0

Z) BO=I) (\ — pyite=l gy

and making the substitution z = A — 4 = dz = d\, we have

0 - g [

=0
- @ Z (0
_ ;(Z)MJ—W (5.139)

The Poisson-Shifted Gamma distribution is therefore obtained in terms of moments as

o~ (—)7 () ;T (i+a
1o = 3G () ra
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Let z = uBy then dz = uBdy, therefore

tﬂ? > — xT T a— a— -
fla) = vm)/o e MO (1 )" (uB)™ ™y ey
¢ >
_ —pt, x @ a—1 x —pt+B)y
AT @) W) /0 LAy w
() e (uB)” / Xyt (g 1B g
x! 0 ' ()
) e H (uB)”
= WDy ot ot L+ )

5.4.10 Truncated Gamma (from above) Distribution

Consider a Truncated Gamma (from above) distribution whose pdf is given in (3.40), then its Laplace

transform is
1F1 (b; b+ 1; —pt — ap)

Ly (t) = 5.140
g b1 (ap)’ 1 F (b;b + 1; —ap) ( )
and the pgf of Poisson-Truncated Gamma (from above) distribution is
Fy(b;b+1;—pt (1 —s) —
G(S):l 1(7 —{;7 p( 8) CLp)
b=1 (ap)”1Fy (b;b+ 1; —ap)
The jth moment of Truncated Gamma (from above) distribution is
: P \aqb
E(N) = / L _emadzb-1gy
o 7 (b) ap)
_ a’ /p )\j+b—16—a)\d)\
7 (b, ap) Jo
Let z = a), then A = Z and d\ = %. Therefore
, b ap b1
50 = g GG
7 (b, ap) a a
b a
_ a 1 /pszrblezdz
v (b,ap) altt Jy
_ 2Utbap) (5.141)
“aly (b,ap) '

The Poisson-Gamma (Truncated from above) distribution is therefore obtained by method of mo-
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ments as

tl‘

flz) = - t) v (j + b, ap)

j—x)! alvy(b,ap)

Mg

8 |

T

<.
Il

xT

I
5%
Mg

J— ) ( +b) aJ(ap) Fl (b b+1 —ap)

t) b p71F1(j+b,]+b+1;_ap)
J—x)tj+b 1F1 (b,b+1; —ap)

xT

<.
Il

(—
(j
(=)™ (ap)y ™ 1 Fy (4 b,j 4+ b= 1;—ap)
(j
(—
“ (J

Il
SR
||Mg

~ 2R (b, Z+1 —ap) gg, v 2)! ]_bH) Eap;jiz 1F1(j + 0,5 +b+ 1;—ap)
T 2R (b, if%— 1; —ap) i Ej t_);_;b(agj% ((;pj_];—b 1Fi(j+0b,7+b+1;—ap)
TRV (b, Zx+ 1; —ap) ; E] 75);; aj+bpb7 (j + b, ap)

~ 2l R (b, IZ+ 1, —ap) - i E_t_;; ajfbpb /Oap -

J
4 ap | 2 (=) 7" 2 by -
= - Zd
x.lFl(b,b+1;ap)/o {Z(jw)w @’

Solving further, we have

t o () (Z)x b
o= ——— (= 2’7 e Fdz
t* W 2%

e z <~ 7 Zd
x! 1Fy (b,b+ 1;—ap) / € af‘+bpbz e “az

til? b /a z+b—1 (a+t)
g P e 1 .
z! 1Fy (b,b+ 1; —ap) a®+bpb [,

Put 3z =y, this implics that = = v and dz = 4 dy. Therefore,

" b (a+tlp /4 s+l
$!1Fl(b;b+1a_(lp)a D 0 a+t a+tt

x z+b a

= t b a + /( +t)p y’”*b_le—ydy

x! 1] (b, b+1; —ap) aﬂH—bpb a4+t 0

t* b 1
x! 1Fy (b,b+ 1;—ap) p (a+t)x+b7(x+ (a+1)p)

t‘” b 1 [at+tpt’

- F: b b+1:— t
x! 1F1(b b+1; —ap) ( _|_t)m+b r+b 1 1(:17—1— ,xt+b+1; (a—I— )p)

(pt)* b 1Fi(z+ba+b+1;—(a+t)p)
x! x+b \Fy (b,b+ 1; —ap)
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5.4.11 Truncated Gamma (from below) Distribution

Consider a truncated gamma (from below) distribution given in (3.44), then its Laplace transform

is

B )"‘ T (@) =y (e, (t + 8) M) (5.142)

LA(t)Z(mt T'(a) — 7 (a, Bro)

and the pgf of Poisson-truncated gamma (from below) distribution is

_ B8 “ () —v(a, (t(1 = 5) +5) o)
Glo)= <B+t(1—8)> I'(a) =7 (a, BX0) '

The jth moment of truncated gamma (from below) distribution is obtained as

) B () )\j/@ae—ﬂ)\)\a—l
2W) = [ e

Ba /oo ) 4
= NFa—lg=BAg\
I () — v (v, BXo) S,

50( {/oo el Ao L
= Nte—le=BAgy — / Nte=le=BAgy
I' () — v (o, BAo) Lo 0

_ B {F(j+0‘)_7(j+a,ﬂ>\o)}
I' () = v (e, BAo) Bita Bita

T +a)=v({+a,B)

B (@) = (o BA)] (5.143)

The Poisson-Gamma (Truncated from below) distribution is therefore obtained by the method of

moments as

7 o= (1) T (j+ @) — v (j + a, BAo)

dl = (G—o) 5T (T (@) =7 (@ Br))

B 1+ 0 (_t)j—z{ oo jta—1 o BXo SJta—l1 . }
N fU!(F(a)—’Y(a,/BAo))Z(j—w)! /0 i /o g

=z

fz) =

— t* * ( t)]_ ﬁzcx—le—z s
S oETE Y 2 Gaips ¢

Bho O (_p)i=e
_/ ( ) izaflefzdz
0 (J— ) p

j=z

t* oo @ (_%>J'*I Zz+oz71 .
- x!(r(a)—’Y(a,ﬂ)\o))/o LG

j=o

s ()"

BAo 3 Z:c—i—a—l

—Z

_/0 D i T
Jj=x

t* 1 /oo *%Z r+a—1 7zd 1 /BAO *% r+a—1 fzd
= —_— e z e zZ— — e z e z
2! (I (@) = v (e, BAo)) B Jo 8% Jo
[eS) B
= & ! {/ Zm+a716_(%+l>zdz —/ ’ Zerale_(é‘—H)ZdZ}
0 0

2! (T (a) — v (o, Bo)) B
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flz) = r 1) T@t+a) y(@+a,(t+5) )
! (P (O‘)_PY(O@ﬂ)\O)) Ba: (%+1>m+a (%+1>$+a

- o (tfﬂ> <t+t5)x S

5.4.12 Truncated Gamma (from below and above) Distribution

Consider a truncated gamma (from below and above) distribution given in (3.47), then its Laplace

_ B a’Y(a’(/B"i_t)b)_’Y(a?(B'i_t)a)
Lalt) = <5+t> + (@, 5b) 7 (v, fa) (5.144)

and the pgf of truncated gamma (from below and above) distribution is
6l0= () LB U1 G0 = )
p+t(l—s) 7 (@, Bb) =7 (a, Ba)
The jth moment of truncated gamma (from below and above) is obtained as
| b N Bae—BA\a—1
50 = [ = e
e (fob Atamle=BAgy — [ )\j+a—1e—6>\d>\>
7 (o, Bb) — v (a, Ba)

and making the substitution S\ = z implying A = £ and d\ = %Z, we have

a b P +o¢ 1 a +a 1 e ?
y(a,ﬁb)—v(a,ﬁa)

7(] +Oé,6b) _7(] —|—0z,ﬁa)
Bj (’7 (Oé,ﬁb) - ’y(a,ﬁa))

The Poisson-Truncated Gamma (from below and above) distribution is therefore obtained by method

transform is

E(A) =

(5.145)

of moments as

fa = Iy (—t)jx{V(J'Jra,/Bb)—'V(jJra,ﬁa)}

gl (=)t U A (7 (e, Bb) = (a, fa))
_ * = (_t)j_x { o i+a—1_-—z7, pa +a—1_—z }
- x!(’v(a,ﬂb)—v(a,ﬂa));(J‘-x)!ﬁj e
— t* 1 = <_> o a—1 e * po a—1_-—z
= S0 B @B 2 (- o {/ St [ dz}

o 1 B8b o0 ; jiz Ba (;tz>]7x
— - Z :c—i—a 1 e dy — / Z fB za:+o¢—1e—zdz
zl (v (@, Bb) =7 (@, Ba)) B* | Jo = (= x) 0 = (-2

_ t* 1 o Srta=l, +1 g ota-1,~(5+1)z
~ 2l (y (@, Bb) =7 (o, Ba) ﬁf{/o A dz_/o et (i) dz}
t* 1{//817 r+a—1 *(Tﬂ> dz_/‘ﬁazx—&-oa—le(tgﬂ)zdz}
0 0

2! (v (a, 6b) = v (o, Ba)) B*
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making the substitution (%) z =y implying z = (%) y and dz = <t+5) dy, we have

e 1
z! (v (a, Bb) — 7 (@, Ba)) B*

(t+B)b B sta—l B (t+B8)a 3 sta=1 3
{/0 <t+6y> ‘ yt+ﬁdy_/o <t+6y> g™

fla) =

B = 1 H—ﬁ x—i—a—l _— (t+B)a sl —y <B>x+0‘
2! (v (o, Bb) — ﬁ””{ ¢ Vdy /0 4 ¢ dy t+p
g (x+a,<+ﬁ> Y@ +a,(t+B)a)

! (t+ )" (v (a ) 7 (o, Ba))

1< ' )( 5 ) Y@+, (t+A)b) — (@t a,(t+H)a)
t+/6 t+ﬂ ’Y(aaﬂb)_’Y(alea)

5.4.13 Truncated Pearson Type III Distribution

Consider the Truncated Pearson Type III distribution given by equation (3.53), then its Laplace

transform is

F1 (1 B o — t)
Ly (t) = 2222 5.146
A (1) 1F1 (1, Bs ) ( )
and the pgf of Poisson-Truncated Pearson Type III is
Fi(1,8;a—t+t
1F1 (]-aﬁaa)
The jth moment of Truncated Pearson Type III is obtained as
. M ( ),6?2 eOA
E(A) = dA
() / B(1 —1 ) 151 (185 )
J+1) _ \)U+HB -G+ -1 Jax
_ / La—-)) e
0 B(1,8-1) 1F1(1; 85 )
B(Gj+1,8-1)1Fi(j+1;j ;

B(1,8-1) 171 (1; 85 )

The Poisson-Truncated Pearson Type III distribution is therefore obtained by the method of mo-
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ments as

f) = OY (=t " B(i+1,8-1)1F(+1j+Bsa)
ple= (j—a)t B(1,6-1) 151 (1 85 )
= i (=t)’ ‘_x B(j+1,8- )/1 A1 (1 — ) UHA -G+ oz
z!B (1 5—1) 1F1 (158 j:x(J 0 B(j+1,8-1)
4 o) ( t)]—.’[ /1 i 52
= 21—z e**dz
z!B (1,8 —1) 1F1(L;8;a ]z;( )t Jo t=2)
t* Lo (—tz)) 7" p—2
— T (] _ azg
T A e 2 Gt (oA
+Z 1
— (z+1)—1 1— (z4+B—(z+1)—1)—1 (a—t)zd
z!B (1,8 —1) 1F1 (1;B; )/0 : (1=2) ‘ :
t*B(x+1,86—-1)
— P+ Lz+8a—t
PAB(LA—1) 1F (L) B S
_ g rg 1Fx+l,z4+pa—1t)
I'(z+B) 171 (1, 85 )
5.4.14 Pareto I Distribution
Consider the pdf of Pareto I distribution given in (3.56), then its Laplace transform is
La (t) = ae™ P9 (1,1 — a; Bt) (5.148)
and the pgf of Poisson-Pareto I distribution is
G(s) = ae Py (1,1 —a; Bt (1 — 5)) .
The jth moment of Pareto I distribution is obtained as
E(AN) = aﬂa/ N7eldA
B
J
. aaf ; (5.149)

The Poisson-Pareto I distribution is therefore obtained by method of moments as

f(x)

7 (1) Bl

m!j:w (J—x)Na—j
th S ( t)j_ J—T QT afjfld
! = (j —2)! L / :

1 J
<> 227z
(j —x) z

—T

zoc—a:—ldz

at:‘ /
/

=T

dz



and making the substitution z = i implying dz = —%, we have

at® _ 1 dy
- ot ()
f( ) ya—a:—l y2
= O‘txﬁx/ooyaf—a—le—ﬁtydy
1

Making the substitution w = y — 1, implying y = 1 + w, we have

at‘”

at®e —pBt 1
_ Bz‘/ wl—l <1+w)(x—a+1)—1—1 e—ﬁtwdw
0

z!

T =B
= a(wl,e t¢(1,x—a+1;5t)

5.4.15 Pareto II Distribution

Consider Pareto II distribution given by (3.59), its Laplace transform is
La(t) =ay (1,1 —a; Bt)
and the pgf of Poisson-Pareto II distribution is
G(s)=ay (1,1 —a; Bt(1 —3)).

The jth moment of Pareto II distribution is

) 00 N
E() =i [ o=

Making the substitution A = Sz implying d\ = Sdz, we have

, J i
E(A) = / Botl (1 B : aHBdZ

y Z(J+1)
- aﬂ/o (1+Z>(J+1) (a—j)dz

= afB(j+1,a-7)
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Poisson-Pareto II distribution is therefore obtained by method of moments as

f@) = 53 saB G+ a1
e '

z X _p\j—r oo (j+1)—1
- % Ejt—)x)!ﬁ] / (1 Z)<j+1>+<a—j>dz
o 0 +z

at® [ (-t 1
- Z( ) (Bz) (1+z)a+1dz

z! o (] —x)!
B oztx/ (—=Btz)’"  (B2)"
- (=) (142>

T

_ Oét' ﬁ / ($+1) (1+Z)z+17a7(x+1)71 e—ﬂtzdz
xX: 0

= a(B)"Y(r+ 1,z —a+1;5t)

5.4.16 Generalized Pareto Distribution

Consider the Generalized Pareto pdf given in (3.62), then its Laplace transform is

I'(a+p)
I'(a)

and the pgf of Poisson-Generalized Pareto distribution is

I'(a+p)
I'(a)

The jth moment of generalized Pareto distribution is

N lua [e'¢) )\]+,8 1

La(t) = (8,1 — as ut) (5.152)

G(s) = (B, 1=t (l—s)).

Let A = pz then d\ = udz

‘ a oo iHBLGHB-1
E(AN) = —- / F s de
B(o,B) Jo  poth (14 2)°

L 00 LJ+B8-1 J
N B(a,ﬁ)/o (1+z)(j+ﬁ)+(a—j) :
B(a, )

(5.153)
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Poisson-Generalized Pareto distribution is therefore obtained by method of moments as

@ = 53¢ e

)l Bf(a,f)
- a:'BIozﬁ i j—xx ‘/Ooo(li;igiwdz
- wenl LT
_ %/Ooozmw L(1 4 pyr-atl-a=-1 —utsg,
= %F(w+ﬂ)¢(m+ﬁ,x—a+l;ut)

5.4.17 Pearson Type V Distribution

Consider Pearson Type V distribution given by equation (3.75),its Laplace transform is

La () = 2FB(Z) ( f) eTCK (2\/@)

and pgf of the mixed Poisson distribution is

G(S):Qr[)()Z) ( t(1ﬁ_s)> K <2Vﬂt 1_8)

The jth moment of Pearson Type V distribution is

E (A7) = ﬂ / N (A=) e 3 dA

and making the substitution z = A — ¢, implying A = z + ¢ and d\ = dz we have

) a oo 1 s
E(N) = Fﬂ(a)/o (z+c¢) s dz
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Let y = ; implying z = - and dz = —y—Z, therefore

. ﬁa /oo<1 >j . dy
E (A = . atl =By =J
W) = m@ )y GFe) Ve

= B(Z)/Ooo(l—i—cy)j a—j—1, 6ydy

—~

Il
o\..
8
C\

> Za]l ,Bydy

(]> i, a—(j—1) Bydy
7

- 10

Il
%
8

=0
= ;ZO (‘Z)c Oooy e Py
RS -
— r(la) zj: (Z) BT (a— (5 — 1)) (5.155)

s
Il
o

lon

Poisson-Pearson Type V is therefore obtained by method of moments as

H
8
8
—— A

f@ = xlzﬁ @

= F(Z)xligj W; {io <]> <;>25 j /szajﬂ - zdz}
= rﬁ)xéﬁ] t—)j@' {/ooo [g (J> <ﬁ>] pa dz}
B P(nggt—):; {/ooo (”?)jﬁjza e Zdz}

- X, () e

- i, S () e

- ) X = Ej i;ﬂj (42) s
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Solving further,

flx) =

k=0
tCE —ct o©Z xr ﬁ —kta—1 — _Bt
= I‘(oz)a:'cme C/o Z(k) 7 TeTFT R dz
k=0
t* x —ct — (z /Bk /oo —(k—a)—1_—z—5¢
= ce —_— z e z dZ
I'(a)x! k;o k) ck Jo

a5 () R [T e
oS (VOB (V) () e (2
oz 3 (1) P e ()
e (V)5 () s oo (24)
S B e

5.4.18 Inverse Gaussian Distribution

Consider inverse Gaussian distribution given by (3.78), its Laplace transform is

Ly (t)

E (e_tA)

O o 6\ ¢ (A — 1)
— A et (27-(-)\3) exp{—w}d)\

! o) 2 _ 2
/ )\_gexp{—t)\— [#2 2¢A”+¢M}dx
0

vl

22

o, 0
{—t)\— EA_ 2)\}d)\

1
2 4 s 20t + ¢ 1
en A 2exp{—< 202 ))\—2)\ d

_3 1 (2u*t+ ¢ op® 1
A 2exp{—2< 2 >[>\+2M2t+¢/\ dA
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. . . _ ¢/‘L2 . . _ d)lu2
and making the substitution \ = T2TG% implying that d\ = \/mdz we have

ALY S I U 122+ [ op? 1
Lp(t) = <27r> eu< 2M2t+¢> /0 z exp{—2 2 \/E[Z—FJ}M

[ % 22t+¢%g o 1 | (2u2t+ o 1
= o\ o /0 ° 1‘”“){‘2 (M;ﬂ )<Z+z>}dz
_ | [e@ut+e) Eegﬂ{ SRR
(2rp)® | Tz 12
I TR0 RN Y CACTE R
B I 2mp | “2 2
= :u ¢(2M2t+¢)]2eﬁf(—_é< ¢(2“;2+¢)> (5.156)

Using Willmot’s (1986) notations, let ¢ = MT; therefore the Laplace transform for the inverse Gaussian

distribution is

1
- = 2
2 p2 (0, u\ | e p2 202t + b
= _ —_— e B - e
Ly (t) i\ B <2M t+ 3 e #K,% 3 12
o [ 1

g 2 /9,2t 4 2
oy ()
2\\ B Iz

(2 P
- |ZE 2,ﬂﬁt+u2] eFK 1 (“ 2,8t+1>
| T p

L 1
2 2 p m : L\ /2BEFT
Lpa(t) = |—+/28t+1 B |le— B
0 Lrﬁ ’ ]e [%WW ‘
1
20 el 1 2 o _u o
= |2 /26t+1- 5 — Be B
[Wﬁ Pt + 2u\/26t+1] e
- exp{g[l—\/Qﬁt—f-l}}
— exp{—g {\/1—1—2675—1}} (5.157)
as obtained by Willmot (1986). The pgf of the Poisson mixture is
_ H
G (s) —exp{—ﬁ [\/1 Y281 —s)t— 1}} (5.158)
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The jth moment of inverse Gaussian distribution is

E (A) = (;;)é e\/@/ooo A(j—é)—lexp{—; (cp)\—i- ‘i’)}

and making the substitution A\ = \/%z, implying that d\ = \/%dz, we have
1 i-1
. 3 oo g 1
sw) = (2) o= [T(2) el
1 i3
(@)= (F) e P ()
27 %) 0 2 z
2\ b 0\
_ <7T> V7 <\/;> K, («/gqu) (5.159)

The Poisson-Inverse Gaussian distribution is obtained by the method of moments as

1 i-3%
GV AR S GO B
-2 i <7r> j;c(j—x)' ) Kj—% (\/(’OTZ))
1 -3
P (20 s o ([N L e
N x!e ’ <7r> 2;(]—30)! © /0 Z c ( >dz
1 . 7 7%
e (2L R e (o' o\ s
- a (ﬂ) 2/0 ;(J—:c)! ¢ o) e e
o 2\b1 e |ty L B N\ Vg8 (14 1)
— Ve [ Y — ® A m—%—l — g 2+1
- a(F) 5 2 -a (\ﬁ) T *
x! 0 2 @ 0
On solving further, we have
@ 26\2 1 [¢ I e 1y 1|2t/ + /%0 Vo
f@) = guN(n) 2(\[@) /o A7) 1‘”‘1’{‘2{[\/@ ”z}}dz
e 20N L o\ LVoR+e)  Ved
= ¢ W(ﬂ) 2<\/;> /0 A )1exp{—2[ NG z+ . ]}dz
~ e () L) e R [ e 1)
= xeso <7r> 2<\/;> /0 2(2=3) exp{ 5 NG z+(2t+<p)z dz



_ ®
Let z = ST

e 20 2
fz) = ‘6\/@(%) 5
26\ 2
-)
2¢
’)

X

tw

_ e (
x!
t[l)
Ve <
x!

y implying dz =

5= i dy, therefore

/-
AIASS
~__—
8
|
7 N
)
~
+ |6
AS)
N~
8
1
&
|
=
—
©-
~
~
+
&
~

[

( 2tf—s0) iy (o)

5.4.19 Reciprocal Inverse Gaussian Distribution

[V
N | =
/N
ASHIASS
~__—

8

|

[V
7N
)
~
+ 16
©
~_

7

|
cn\..

8
<
&
Wl
@

X
o)
——

-
| Y

+

s

Consider the pdf of reciprocal inverse Gaussian distribtuion given by equation (3.84), its Laplace

transform is

Ly ()

and making the substitution A = 4/ mz implying that d\ = 4/ mdz, we have

Ly(t) = 2<

= E (e_tA)

(SN eyt o BT
_/0 <27r> . exp{ tA 2M2/\}d)\
t+ ¢ 10} 1
- () e [Cten {22 [ ] o
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Therefore

26+ _ 1] } (5.160)

1
0] 2 2t + ¢
Ly (t) = - -1 161
w0 = (505 o] -var [\ (5.161)
Parameterization 2: (Willmot’s, 1986). Let ¢ = “Tj, then
1
2 Il
_ s ARG (QH 6)
Ly(t) = |——5—| ep{—5 5 -1
B (15 +2t) E z

B w2 \? po| |28t
= <,uz+25t> exp{—ﬁl M2+1_1]} (5.162)

The pgf of the mixture is

o0~ (gratiam) o {-vE ]} e

Remark: The Laplace transform of a reciprocal inverse Gaussian distribution is a product of
the Laplace transform of a Gamma distribution and the Laplace transform of an inverse Gaussian
distribution.

The jth moment of reciprocal inverse Gaussian distribution is obtained as

‘ < /¢ 3 1 10} pl
AR J pep TN r-
E (A7) /0 A <2w> VPINBexp DA - D3

¢
sw) = (2) @ (o) [Tt
0
2 i+t
= 2(;;) e‘/@<\/i> KjJr% (\/@)

- () () (e 1

and making the substitution A = \/gz implying d\ = \/%dz, we have
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Poisson-Reciprocal Inverse Gaussian distribution is therefore obtained by method of moments as

fle) = tw(f éemi )];!< ¢>j+éKj+é (V#9)

() :
-5 L () (/D) ke

<) (B e ()
S ()L S R R ()
S () - )

Solving further, we obtain
(2t
+0)¢ soqb} } &

o = 5 (8t
) B e

dy, therefore

Let z = y implying that dz =

2t+¢>

1 x+%
_ 2¢ ANE ¢ L[ (ar1) p (2t +9) 1
f(:l,‘) = x‘ <7T> <\/;> ( 2t—|—¢> 2/0 y(+ ) 1exp{— 5 <y+y>}dy
+Z 2¢ % N ) m—i—%
x‘<w) e w( 2t+¢) K, (Ve 2t 9))

5.4.20 Generalized Inverse Gaussian Distribution

2t+

Consider the generalized inverse Gaussian (GIG) distribution given by equation (3.87), its Laplace

transform is

La(t) = /OooeijKE;é\)/;)A” 1exp{—; (m#ﬁ)}dx
— ZKS;E?/szb) /Ooo)\”_lexp{— <t+;g0>)\—;f}d)\
s e (459 el
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and making the substitution A = 4/ 2tf—g&Z implying d\ = 2t+so dz we have

¢ )UzvleXp{_W <z—|— i)}dz

Lty = 2KM@)/O ( 2% + ¢

<£'ﬁ)% 1 b2t + @) 1
= 2;)(”(\—;@/0 z exp{—ﬂ(z-i-zj)}dz
o %Kv< ¢(2t+<p)>
<2t+90) Ky (Vo)

Using Willmot’s (1986) notations, let ¢ = % and @ = %, therefore
w2 1
K, ( s (2t + 6))

1
Ly(t) = (2ﬁt+1) Kv(\/%)
K, (4260 +1)

% (5)

Ko (B (14 261)
= 0 T A

(SIS

N
[\
2
—_
+
—_
N———
(SIS

N|=

} (5.165)

and
Ky [uB71 (14281 5)1)?]
(5.166)

v

G(s)=(1+28(1—s)t)"% Y

as given by Willmot (1986).
The jth moment of generalized inverse Gaussian distribution is

E(A) = HE*W/ N lexp{—; (¢A+f>}dA

1
‘P/¢ / Nit+o- 1exp{— <)\+¢>}d)\
©A
and making the substitution A = \/%z implying d\ = \/%dz, we have

W( ¢)j+v/owzj+v—lexp{_\/? <z+i>}dz

E(A) = 2K, (Vo)

¥
v Jjtv
(p/0)2 ¢ , —
K, (\/@) ( 80> KH-U( 90¢> (5.167)

Therefore, Poisson-generalized inverse Gaussian distribution is obtained by the method of moments
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as

x 5 0 t ¢
: ;;ﬁ% (ﬁ) ;f ” e (59
CF (gfe)} (\/E)””m (~t fi)Hl/ o {_@( +1)}d
N ! Ky (Vo) © = G—2)! 2, : P 2 \""2 :
v z+v @ jox
e et [\ e (e L N
- (o) LSS e [ ()

T+v
_ t (gp/(j))f ¢ L[> 4 %Z r+v—1 @ @
o - S ()L e
v T+v
_ ﬁ ((P/¢)§ ? 1 > r+v—1 < { |:2t\/> :| }
= x'Kv(\/@)(\/;> 2/02 exp 5 +\/7 z
_ e (o x+v1/°°zm+v_1exp{ i [EETNCR
x'KU (\/@) ¥ 2 0 2
T+v
_ T (p/9)? [ L {_(2t+s0 [ @ 1”
x!Ky(\/@)< w) 2/0 S 2./% %+ ¢z
Let z = ﬁy implying that dz = Qtﬂ,dy therefore

v T+v
T (p/9)? ¢ e\ [ 62t + ) 1
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5.4.21 Special Cases of Generalized Inverse Gaussian Distribution

Case (i): When v = —3
Using the formula (5.165), then

K_
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2
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(w) = \/5;€7%, therefore
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as given in (5.157).

The pgf is
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From (5.167),
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as given in (5.159).
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Thus when v = —%, we get similar results as those for Inverse Gaussian and Poisson-Inverse Gaussian

distributions.
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Case (ii): When v =

From (5.165),

1Ky [pB (142602
La(t) = <\/1+25t> 2 [Kl GED) }
™ 67u5_1(1+25t)%

= \/%Qﬁtexp{uﬂ 1[1— (1+25t)”
= <1+125t>2exp{—g {m—l}}
<21ﬁ%t)>2€xp{—g [\/T%t—l]} (5.172)

which is a product of Laplace Transform of a Gamma distribution and Inverse gamma distribution.

The pgf is

K

Ky 8T (142801 9)0)?)
G(s)=(1+281—-s)t) 12

Ky (uB )

(5.173)

From (5.167),

E(AJ) - K% (\/@)
(B s )
_ \/?e\/@ <\/g>ﬁ2Kj+é (\/907)) (5.174)
and therefore, )
e (VE) & o (o)
T@) =05, (@)Z;U-@!( ¢> Kyt (‘/@) (5.175)

This is the case of Reciprocal Inverse Gaussian and Poisson-Reciprocal-Inverse Gaussian distribu-

tions.

5.5 Identities based on Poisson mixtures and by method of moments

As a consequence of identifying the routes to mixed Poisson distributions, in this section we deduce

mathematical identities based on Poisson mixtures. Specifically, we equate the result of a mixture
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obtained in explicit form with that obtained by method of moments. We also equate the result

obtained in terms of a special function with that obtained by method of moments.

5.5.1 Explicit form Identities

Poisson-Gamma Distribution

[e.9]

SO (Y () () em

j=z

Poisson-Shifted Gamma Distribution

(=) 5\ jull+a) e ()" T(k+a) BNt )
O(j—:r)!av!<l>'u [ (a)p _kg (x—k)! T(k+1)T(a) <B—|—t> <ﬁ+t>

0

oo J

(5.177)
Poisson-Lindley Distribution
1 /=t j> t°02 (x +t+60+1)
— — +1+6)(-1)" = 5.178
i (7) eroe () =S (5179

Poisson-3-parameter Generalized Lindley Distribution

S () rsta) )-8 %2 5 (29

j=x
(5.179)
Poisson-Transmuted Exponential Distribution
> (N an () ot*o 0t 20
-1 Jj—x a—+ — () = —+ 5.180
jz::x( ) (w>< )7 (t+0)""  (t+20)"" )
5.5.2 Confluent hypergeometric function Identities
Poisson-Beta I Distribution
— (=)
Z (,7 —JJ)'B(j +Oé,5) = B(.T—I—O(,,B) lFl (.ZU‘I‘O(,LU-FO&-F[?, _t) (5181)
j=z '

Poisson-Rectangular Distribution

o (=) [bT —aT! 1 o1 ot1
Z(j—x)! s :($+1) {b 1Fi(z+ L2+ 2,—bt) —a 1F1(x+1;:13+2;—at)}

Jj=z

(5.182)
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Poisson-Beta II Distribution

S C B Gt i) =T kD) bl g+ 1) (5.183)
j== '

Poisson-Scaled Beta Distribution

Z%B(ﬁa,ﬁ) B(z+a,8) 1F1 (x+ as2 + o+ B; —put) (5.184)

Poisson-Full Beta Distribution

i<?)jﬂ (j_lw)!B(erj,q—j) =T(z+p)y (m+p,m+1—q;z> (5.185)

Poisson-Pearson Type I Distribution

_ —atz{< > F(b—a)* B (k+p.q) 1F1(k+p;k+p+q;—(b—a)t)} (5.186)

Poisson-Pearson Type VI Distribution
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Poisson-Shifted Gamma Distribution

k
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Poisson-Truncated Gamma (from above) Distribution
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> ) 1P (j+ bij + b+ 1 —ap) =
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el R )L
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Poisson-Truncated Gamma (from below) Distribution

C(z+a)—y(@+at+8) )] (5.190)
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Poisson-Truncated Gamma (from below and above) Distribution

Y +a,Bb)—v(+aBa) B¢ vt A
Z j—l’ { ﬁj }_(t+6)x+a{7( + (t"i_ﬁ) ) ( + (t+6) )}
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Poisson-Truncated Pearson Type III Distribution

Z(ft)]_xB(j‘i‘l,B—l) 1Fi(+1Lj+80)=Bx+1,8—-1)1Fi(x+ Lz + B;a—1t)
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Poisson-Pareto I Distribution
S B e sty (1,0 — o+ 1, 61) (5.193)
Poisson-Pareto II Distribution
Z ﬁJB (G+1,a—j) =T+ (x+ 1,2 —a+1;5t) (5.194)
Poisson-Generalized Pareto Distribution
3 Ej DB G B ) = T (o B) (o Bt L) (5.195)
j=u '
5.5.3 Bessel function of third kind Identities
Poisson-Inverse Gamma Distribution
17 (=)~ AT (a—J) _
t $ o 2 .1
> =y 2(6t) (2v/51) (5.196)

j=x
Poisson-Pearson Type V Distribution
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Poisson-Inverse Gaussian Distribution

00 j—x i—3 o1
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Poisson-Reciprocal Inverse Gaussian Distribution
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Poisson-Generalized Inverse Gaussian Distribution

o0 i jtv z4v
}:Gﬂj ( ¢> JQM(%w)=< 0 ) Kpio (VO LT ) (5.200)

=)\ | e 2t + ¢

J=x

150



Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Summary of Results and Challenges

The objective of this research was to construct mixed Poisson distributions via four routes, namely,

explicit, special functions, recursive and transform routes.

Explicit Route

By explicit route, mixed Poisson distributions were obtained using the following mixing distributions:
Gamma, Shifted Gamma, Transmuted Exponential, Lindley and 3-parameter Generalized Lindley
distributions.

Moments about the origin and moments about the mean of the Poisson mixtures were obtained
in terms of moments of the mixing distributions. Posterior distributions, posterior 7th moments and
posterior means were also obtained.

Remark 7.1: Explicit route was achieved by direct integration. Very few cases however follow
this route.

Remark 7.2: Transmuted Exponential and 3-parameter generalized Lindley distributions are
finite mixtures used as mixing distributions. The 3-parameter generalized Lindley distribution nests

one parameter Lindley distribution and two types of 2-parameter generalized Lindley distributions.

Special Functions Route

The mixing distributions leading to Poisson mixtures expressed in terms of Kummer’s and Tricomi’s
confluent hypergeometric functions are: Beta I, Rectangular, Beta II, Scaled Beta, Full Beta, Pear-

son Type I, Pearson Type VI, Shifted Gamma (Pearson Type III), Gamma truncated from above,
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Gamma truncated from below, Gamma truncated from above and below, truncated Pearson Type
I1I, Pareto I, Pareto II (Lomax) and generalized Pareto distributions. The corresponding pgfs of the
mixtures were also expressed in terms of confluent hypergeometric functions.

For Poisson mixtures in terms of modified Bessel function of the third kind, the following mixing
distributions were used: Inverse Gamma, Inverse Gaussian, Reciprocal Inverse Gaussian, Pearson
Type V and Generalized Inverse Gaussian distributions. The pgfs were also obtained in terms of

modified Bessel function of the third kind.

Recursive Route

The following mixing distributions were used to obtain mixed Poisson distributions using integration
by parts: Beta I, Rectangular, Beta II, Scaled Beta, Full Beta, transformed Beta, Inverse Gamma,
Shifted Gamma, Gamma truncated from below, Generalized Gamma, transformed (Generalized)
Gamma, Pareto I, Pareto II (Lomax), Generalized Pareto, Generalized Pareto Type II, Inverse
Gaussian, Reciprocal Inverse Gaussian, Generalized Inverse Gaussian, Confluent hypergeometric
and Half-Normal distributions.

Remark 7.3: Recursive models obtained were similar to those obtained by other methods. The
disadvantage of the integration by parts technique is that it does not have a general formula for

differential equation in pgf. For each case, a differential equation has to be derived.

Transform Route

Some Poisson mixtures can be determined through zth derivatives of Laplace transforms of mixing
distributions such as Gamma, 3-parameter generalized Lindley, Transmuted Exponential, Inverse
Gamma and Hougaard.

In particular, it is tedious to find the xth derivative of Laplace transform of Hougaard distribu-
tion.

In the Mellin transform approach, the rth moment of mixing distribution was used to determine
Poisson mixture.

The pgf technique was used to determine factorial moments of the mixtures. The pgf is expressible

in terms of Laplace transform.

Identities based on Poisson Mixtures

By comparing results obtained by explicit and by method of moments, we were able to deduce
mathematical identities. Also by comparing results obtained by special function and by method of

moments, other identities were deduced.
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6.2 Recommendations

The following recommendations are suggested.

Explicit Form

More mixing distributions leading to mixed Poisson distributions in explicit forms could be iden-
tified. In particular, Generalized Lindley and Transmuted Exponential distributions are mixing
distributions of finite mixtures. More finite mixtures of this nature could be identified to obtain

Poisson mixtures in Explicit form.

Special Functions

Confluent hypergeometric and Bessel functions have been used to construct mixing distributions.

There are other special functions such as Laguerre Polynomials which could be explored.

Recursive Models

Recursion is one way of numerical or approximation methods. Other techniques, such as Taylor’s
series could be explored. In this research, we have used integration by parts technique to obtain
recursive models. In obtaining the corresponding differential equations in probability generating
functions, we have made use of Wang’s (1994) recursive model. Other existing differential equations

could be used and compared.

Expectation Forms

Mathematical identities based on Poisson mixtures have been derived by equating results obtained
in explicit forms and those in terms of special functions with those results obtained by method of
moments. More identities could be derived.

Using Laplace transform technique, mixed Poisson distributions have been obtained. However for
Poisson mixtures in terms of special functions, obtaining many differentiations of the Laplace trans-
forms is quite involving. Patterns of differentiations need to be identified. Further work therefore

needs to be done in this area.

Other routes

Further work could be on identifying other routes to obtaining mixed Poisson distributions, such as

numerical integration given by Bulmer (1974).
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Properties

In this research, we have concentrated on constructing posterior distributions from Poisson mixtures
and hence obtained posterior moments. We have also obtained the general formula for factorial
moments, moments about the origin and about the mean in terms of derivatives of probability
generating functions. However, other properties have not been looked at, such as identifiability,

infinite divisibility, compound distributions, etc. Extensive works in this area would be worthwhile.

Inference on Parameters and Applications

The focus in this research is on constructions and properties of mixed Poisson distributions. Esti-
mations, testing of hypotheses and applications of Poisson mixtures are definitely major areas for

further research.
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