
UNIVERSITY OF NAIROBI

COLLEGE OF BIOLOGICAL & PHYSICAL SCIENCES

SCHOOL OF COMPUTING AND INFORMATICS

MSC PROJECT

vV AN APPROACH FOR USING TWITTER TO PERFORM
SENTIMENT ANALYSIS IN KENYA V

BY - ERIC W rAU
P58/9104/2006

SUPERVISOR - EVANS MIRITI

FEBRUARY, 2011

SUBMITTED IN PARTIAL FUILFILMENT OF THE REQUIREMENTS OF THE MASTERS OF

SCIENCE IN COMPUTER SCIENCE

DECLARATION

1 declare that the work contained in this report, is my own work except where explicitly indicated in the text

and has not been previously submitted in another university for any award.

This project has been submitted as part fulfillment o f the requirement for the Masters o f Science in

Computer Science, University o f Nairobi, with my approval as the University Supervisor.

Name: / / C f T / Signed:

Date: O % f / el O I)

ACKNOWLEDGEMENTS

I would like to begin by thanking the Almighty God for granting me his grace, favor, strength and wisdom

during the time spent in developing this piece of work.

1 would like to thank my supervisor, Mr. Evans Miriti for his suggestions, advice and guidance during the

project period. I wish to extend my gratitude to Dr. Wanjiku Ng’ang’a, for her excellent ideas and

suggestions which have greatly impacted the shape and form of this project. I wish to also thank Mr. Robert

Oboko of the project examination panel for his technical input into the work that is presented in this

document as well as his encouraging words.

Lastly my gratitude goes to my family, friends and colleagues; my parents for their encouragement, support

and patience as I labored on this project, my colleagues, for their support and understanding nature, and in

particular, Mr. Kirwa Kemei for his technical assistance during the initial stages of writing code for this

project, Stella Mitine, for her support and encouraging words, and my employer for KRA for providing an

environment where I could take time off to work on this project.

To you all 1 say Thank You.

ABSTRACT

The interest in sentiment analysis as a research area has become increasingly popular with the development

of new social interaction technologies. Twitter, being one of these new technologies, presents a unique

environment where one can track sentiments expressed about various topics. This report therefore considers

the problem of attempting to classify sentiments expressed on twitter about certain products, services or

personalities as being positive, negative or neutral. The approach adopted to solve this problem is through

the use of machine learning methods. In particular, the Naive Bayes model is chosen to build the classifier.

This being a learning problem, training data and testing data is required. Two methods of collecting

training data are considered and their impact on the performance of the classifier is discussed. The first

method is distant supervision, where emoticons are used as labels to identify and collect training data that

contains sentiment information. The other method is manual supervision where a human trainer manually

identifies and labels training data with that contains the necessary sentiment information. It is discovered

that using distant supervision to collect training data results in poorer performance, than using manual

supervision techniques, even where the training set collected using distant supervision is larger than the

training set from the manual supervision techniques. Using emoticons as labels to identify 5000 tweets as

training data, the classifier performed with an accuracy of 70.3% compared to use of 500 hand labeled

tweets as training data which resulted in 76.3% accuracy. A third method for collecting training data using

manual supervision methods is also suggested and its performance is also discussed. This method which

uses hand labeled keywords grouped according to word characteristics yields a performance of 80.3%. This

report concludes by giving recommendations of ideal models to start with when attempting to develop a

twitter based sentiment classifier. A software tool, developed using the learning model to classify live

streams of data from twitter into positive, negative or neutral classes and provide a summary of results, is

also demonstrated.

tv

TABLE OF CONTENTS

DECLARATION.. II

ACKNOWLEDGEMENTS.. Ill

ABSTRACT..IV

LIST OF TABLES..VII

LIST OF FIGURES.. VIII

LIST OF ABBREVIATIONS... IX

I. INTRODUCTION...I

A. Background...1
B. Definition of Concepts...2
C. Problem Statement:.. 2
D. Objective... 3
E. Significance of the Project: ... 3

II. LITERATURE REVIEW... 4

A. Introduction to Natural Language Processing..4
1. Statistical and Corpus Based Methods for NLP.. 4

B. Sentiment Analysis.. 5
C. Sentiment Analysis on the Web...5
D. Language Processing for Sentiment Analysis...6
E. Twitter as a Corpus for sentiment Analysis.. 6
F. Conclusion...7

III. METHODOLOGY..8

A. Introduction... 8
1. Training Data.. 8
2. Testing Data.. 8

B. NaIve Bayes Classifier for Text Classification...8
/. Collection o f Training Data...10
2. Collection o f Testing Data... 12

C. Collection of Data from Tw itter :.. 12

IV. IMPLEMENTATION OF THE EXPERIMENT.. 13

A. INTRODUCTION..13
B. Implementation of the learning model... 13
C. Collection of Data from Twitter...13
D. The Python Environment... 15
E. Creating the Training Set ...16

/. Method 1: Using Emoticons a? Noisy Labels... 16
2. Method 2: Use o f labeled data... 18

F. Training the Classifier.. 19
G. Creating the testing set ..19
H. TESTING THE CLASSIFIER.. 19

1. Accuracy.. 19
2. Precision...................... 20
3. Recall.. 20
4. The Error Set...20
5. Manual Testing...20

v

21

,22

.22
23
23
23
,23
24

,27

,27
27
27
27
21
27
28
28
28

29

29
31
31
33
38
45
47
49
49
52
55
58
58
58
60

vi

I. Handling of the Neutral Class...

V. EVALUATION AND DISCUSSION OF RESULTS..

A. Evaluating the Performance of the trained classifier...
B. Discussion..

7. Emoticons as Noisy Labels...
2. Feature Extraction Methods to be used...

C. Further Analysis..
D. Implementing the Sentiment Analysis Tool...

VI. CONCLUSION..

A. Achievements...
7. Comparison o f Machine learning models:..
2. Development o f the Classifier:...
3. Development o f the Web Based Application..

B. Limitations of the study..
7. Collection o f training data..
2. Practical Comparison o f Models...
3. Testing Kenyan Tweets...

C. Future Work ..

VII. APPENDICIES..

A. BIBLIOGRAPHY...
B. CODELISTINGS...

7. Code Listing For the Twitter Search Tool..
2. Code Listing For the Sentiment Analysis Tool...
3. Reused Code Listing For the Twitter API Wrapper..
4. Code Listing For the Learning Model..
5. Code Listing for the Live Data Sentiment Classifier Model..

C. DETAILED TEST RESULTS..
7. USE OF EMOTICON LABELED TRAINING DA TA AND HAND LABELED TEST DA TA
2. USE OF HAND LABELED TRAINING AND TEST DATA..
3. KEYWORDS FOR TRAINING DA TA AND HAND LABELED TWEETS AS TEST DATA..

D. SAMPLE TRAINING AND TEST FEATURES MATRICES..
7. Hand Labeled Training Features Matrix — Combined Unigrams and Bigrams..................
2. Hand Labeled Test Features Matrix - Combined Unigrams and Bigrams...........................

E. INSTALLATION INSTRUCTIONS..

LIST OF TABLES

Table 1 List of common queries terms...18
Table 2 Summary Performance Results..22
Table 3 Performance results for the third classifier.. 24

LIST OF FIGURES

Figure 1 An emoticon used as the input to a twitter search query..14
Figure 2 Results from the emoticon query... 14
Figure 3 Results stored in a text file...15
Figure 4: - the results interface of the sentiment analyser... 25
Figure 5 some tweets with their sentiment classified...25

LIST OF A BURE VI AT IONS

NLTK Natural Language Tool Kit

NB Naive Bayesian

SVM Support Vector Machines

ME Maximum Entropy

ND Noisy Data

SMS Short Messaging Service.

IRC Internet Relay Chat

POS Part of Speech

API Application Programming Interface

PHP PHP Hypertext Processor

JSON JavaScript Object Notation

URL Uniform Resource Locator

ELTD Emoticon Labeled Training Data

HLTD Hand Labeled training Data

KWTD Key Word Training Data

NLP Natural Language Processing

NLU Natural Language Understanding

I. INTRODUCTION

A. Background

Twitter is a social network that allows registered user to communicate to other members through updates to

their personal profile pages with small status messages of less than 140 characters. This can be done

through a web interface or through SMS on mobile phone devices. Since its inception, the nature of twitter

has undergone tremendous transformation. The end result has been a micro-blog where users express

certain emotions, ideas, feelings and personal sentiments on a wide array of topics ranging from sports and

movies, to brands, products and services. The ease of use of twitter, and its fun nature makes it popular

among the young and those technologically savvy. It is no surprise therefore, that a lot of big companies

have twitter accounts through which they communicate and engage their customers in an attempt to better

understand customers’ needs while improving the mode of communication between them as service

providers and the consumers of their products and services.

A lot of times, marketing departments are curious about what their customers think about their products or

services. Traditional methods of gathering this information would be through market research in the form

of a survey which is usually a time consuming and costly activity. Twitter on the other hand is one of the

social spaces where such information can be easily collected. Users are constantly using twitter to express

their opinions on all manner of subjects. Even better is the fact that these opinions are expressed

immediately they are experienced. The use of mobile devices makes it possible to interact with twitter

while you undertake other activities. This makes it possible to share feelings and opinions immediately you

experience something. For example a lady while out shopping for shoes enters a shop and sees a pair she

likes. She immediately logs in to her twitter account and updates her status message about where she has

seen the shoes and expresses her opinion on the shoes. This information is valuable to the shoe designer

because he wants to know what people think about his shoes, and the owner of the shoe store who is

interested in how many people mention his shop.

Given a certain subject of topic, the challenge then is to be able to collect opinions expressed by different

people in various forms and media, and provide a summary of their general opinion. Sentiment analysis is

an area of research that attempts to address this challenge. It tries to determine the general thoughts of a

group of people in relation to a certain subject matter. The main task performed during analysis of

sentiments is the classification of user opinions into certain categories, where the category with the most

number of opinions is considered to be the preferred sentiment. This is an area of research that is closely

linked to data mining, and it uses computer science disciplines such as machine learning, especially in the

domain of natural language processing, to come up with algorithms and models that can be used to deduce

opinions from people’s comments about specific topics.

With the large amount of data found on twitter spurred by its growth and popularity, and the growing need

for information about products and services, a platform can be developed that combines these two areas,

thereby providing a way for any interested party to get an idea on what the twitter community feels about a

certain product, service or personality.

B. Definition of Concents

Tweet: - A message update to a profile page of a registered Twitter user.

Emoticon: - An emoticon sometimes also known as smiley is a combination of standard punctuation

symbols and letters of the alphabet that is used to signify an emotion in a piece of text. Emoticons have

their origin in IRC chat systems and newsgroups where face to face communication was not possible over

the internet. Users therefore started denoting their emotions through this semi-graphic text and symbolic

combinations. An example of these emoticons include :-) for happiness, and :-(for sadness.

C. Problem Statement:

The use of twitter as a social network in Kenya is currently growing and with this growth, a lot of

potentially useful information is being passed through the network. This information can provide some

value to marketers or researchers on the general perception of their products or services. However the

nature of tweets from Kenyan users is such that both English and Swahili text is usually combined in the

message, and this combination is usually unstructured and informal. Currently, the few sentiment analysers

that exist have only been trained in English. This therefore means that attempting to get an opinion on a

product or service name in Swahili will produce erroneous results. Similarly attempting to search for a

Kenyan product in English might also produce an erroneous result. This is because Swahili data was not

used to train the classifiers. Therefore any tweets with a mixture of English and Swahili would be ignored,

and this would then skew the results in* favor of one side of the sentiment. There is therefore need to

develop a sentiment analyser that is trained in both English and Swahili therefore correctly classifying

tweets that contain both English and Swahili, as well as allowing searches of products or services that are

named in Swahili.

2

It is also not very clear on the best approach to take when building such a learning model. Classification of

tweets for sentiment analysis is a new research area; hence the various models that exist for other

classification problems, may or may not produce desired results when applied to this problem. There is

therefore a need to compare the suitability of existing learning models for purposes of using tweets for

sentiment analysis.

D. Objective

The purpose of this project therefore is to:

• Analyze machine learning models used in other classification problems and discuss their

suitability for the problem of classifying tweets for sentiment analysis before suggesting a good

starting point.

• Using a suitable model, develop a classifier, that uses data collected from twitter in both English

and Swahili as training data, and then extract features that will allow it to classify sentiments in

tweets as positive, negative or neutral.

• Based on the above classifier, develop a web based application that does sentiment analysis on a

search criterion using real time data from twitter on people, products and services that are found in

the Kenyan market. The search items are to be entered in either English or Swahili.

E. Significance of the Project:
/

The proposed project is significant because it will involve work that would lead to:- •

• An understanding of the challenges faced in sentiment analysis and ways to handle these

challenges.

• The discussion of a possible scientific starting point, for the problem of sentiment analysis

where twitter is the source of training data.

• The creation of a learning model that will be integrated with software, which will be able to

handle query searches in Swahili and English and also contain training data in both languages.

• The development of a demo showcasing how a platform for getting feedback on products or

services in the Kenyan market using data from twitter can be created.

• Laying of the foundation for further study that can incorporate other social networks therefore

increasing the sample space which in turn would improve the quality of data used for the

sentiment analysis. E.g. a researcher interested in performing sentiment analysis on Facebook

can use the results of this research to get an idea of the most ideal feature extraction methods to

use for Facebook. The training data collected during this research can also be reused thereby

reducing the amount of time it would take to develop the Facebook sentiment analysis tool.

3

II. LITERATURE REVIEW

A. Introduction to Natural Language Processing

NLP is an area of research in computer science falling under the wider subject of machine learning.

Machine learning in itself can be defined as a the process of creating computer systems that are able to use

human like cognitive skills to learn new patterns and behaviors that they can then use to make future

decisions and produce certain desired results. Machine learning involves the process of “learning” where a

human “teacher” uses training data to familiarize the machine with expected output behaviors, after which

the machine, when presented with new data to processes using the learned knowledge, is able to derive new

results. NLP is defined as an area of research that attempts to use computational techniques to give

computer systems the ability to read pieces of text understand the meaning implied in the text and use the

information gathered to make decisions and perform some form of future processing. For successful NLP

research, the researchers aim to understand how natural languages are constructed and using that

knowledge provide the same abilities for computer systems. Being a subset of machine learning, NLP uses

tools and techniques derived from various other disciplines such as mathematics, statistics and artificial

intelligence. This makes it possible to apply NLP technologies to various applications and research areas.

Some of these areas include information retrieval for online search engines, and sentiment analysis. In

order to solve a problem using NLP, an important element to be considered is Natural Language

Understanding. Using NLP requires understanding of natural language so that the model is able to deduce

meaning from the text presented before it can use the knowledge to perform any meaningful processing.

The process of Natural Language Understanding (NLU) can be understood as a mathematical process of

mapping text into classes or entities that show the relationship between the pieces of text.

1. Statistical and Corpus Based Methods for NLP

As earlier mentioned, NLP borrows from various academic areas with mathematics and statistics

specifically playing a vital role in implementation of learning models. In the area of information retrieval

for example, common mathematical techniques used include use of probability distributions and markov

models. These mathematical models have given rise to various techniques used as part of processes

necessary for NLP such as word sense disambiguation, parsing, etc. Statistical and corpus based methods

are mainly used for natural language understanding. These methods became popular between the 80’s and

90’s as collections of text became more common. A corpus is simply a large collection of text usually

structured in a specific format. Using corpus based methods allowed for use of statistical methods. Since

the corpus has structure it becomespossible to model the variables necessary for creating relationships used

in the learning process. The corpus based approach therefore reduced the complexity present in trying to

create learning models.

L

4

B. Sentiment Analysis
The field of sentiment analysis is a wide research area covering a number of different approaches,

methodologies and algorithms. The last ten years have been instrumental in the growth of the research field

mainly due to the increasing interest in machine learning methods among researchers, coupled with the

massive growth of internet usage all over the world. Social media has become one of the biggest areas of

internet business providing large amounts of information that can be leveraged for purposes of sentiment

analysis. Similarly emerging technologies are fuelling innovative techniques of information collection,

classification and dissemination allowing this research area to grow in terms of collection of training data

and presentation of sentiment results.

One of the earliest mentions of the term “sentiment analysis” is found in the paper by Das et al (2001)

where they attempt to derive market sentiment from stock message boards. Subsequently the term became

more common, with most researches opting to use it over the term “opinion mining” when discussing a

more technical approach towards the process or extracting sentiments from text documents. The use of

machine learning techniques in sentiment analysis marked the beginning of a more scientific approach

towards this problem. Pang et al (2002) carried out various tests using different machine learning

algorithms and compared their results to human classification methods. They used a movies review corpus

to train and test their classifiers after which they were able to classify movie reviews as either positive or

negative. There results indicated that the statistical methods were able to outperform the human

classification methods in terms of accuracy. The best learning model from the three they studied was the

SVM model with an accuracy of 82.9% when using unigrams as features while checking for feature

presence. The SVM model was also the best performer when both unigrams and bigrams were combined

giving score of 82.7%.The NB classifier had the best result with accuracy of 78.7% when using unigrams

as training features and classifying based on feature frequency. The ME classifier also took home some

glory during the tests by being the best model when using adjectives, and bigrams as features. It registered

scores of 77.7% and 77.4% respectively. The work done by these researchers created a great place to start

when deciding to use machine learning models for sentiment analysis.

C. Sentiment Analysis on the Web
As the use of machine learning techniques became more understood the shift of sentiment analysis now

moved to the application of these models on data found on the internet. Zhang et al (2007) discussed the

process of retrieving opinion from blogs by using machine learning based classifiers (SVMs) to perform

sentence by sentence classification. Similarly Yang et al (2006) described a method used to retrieve opinion

from blog postings by employing a fusion approach. They first used information retrieval methods to

retrieve blogs containing certain topics of interest, after which they used opinion extracting methods to

weight the blogs depending on the degree of opinion expressed. The growth of internet use and social

5

media also presented new possibilities for sentiment analysis. The use of emoticons in online chat tools,

blog postings and social networks provides an identifier that can be used to capture pieces of text

containing sentiment information. Read (2005) used emoticons to identify training data that was used to

train and develop a sentiment classifier. The classifier performed with an accuracy of up to 70% when

predicting the sentiment of articles extracted from the emoticon based dataset. However, the performance

was unsatisfactory when used to classify external pieces of text, such as news articles. This was largely

attributed to fact that the size of the articles being classified was considerably large hence the vocabulary

created during the training of the classifier was insufficient for accurate classification.

D. Language Processing for Sentiment Analysis
Another interesting area of research that is always closely associated within sentiment analysis is

linguistics. Problems of text classification using machine learning models require an understanding of how

language is constructed and what to look for in order to get the best results during classification. The

understanding of languages can therefore provide new ideas on how best to use language constructs, and

language structure to extract features for sentiment analysis. For example Benamara et al (2007) attempt to

show that use of adjective and adverbs in training data is better than using adjectives alone for sentiment

analysis. This they do this buy considering various adverb adjective combinations while focusing on

adverbs of degree. Such discussions can spur creative ideas on how best to integrate other existing

disciplines, technologies and methodologies for purposes of sentiment analysis.

E. Twitter as a Corpus for sentiment Analysis
Coming closer to our problem of sentiment classification using twitter as a corpus, Go et al (2009)

described an approach of using distant supervision to collect training data used to train a classifier for

purposes of classifying tweets as belonging to either a positive or negative class. Their approach used

emoticons as a noisy label used only to identify tweets containing sentiment information, after which the

emoticon was stripped from the tweet and the rest used as part of the training set. They then trained 3

machine learning based classifiers (NB, ME and SVMs) and compared the accuracy of results when used to

classify hand labeled test data. The best performance was realized by the ME classifier with an accuracy of

83% when they combined both unigrams and bigrams as training features. The NB classifier produced the

highest accuracy when bigrams were used as the only training feature with an accuracy of 81.6%, while the

SVM classifier had the highest performance of 82.2% and 81.9% when using unigrams and unigrams

combined with part of speech tags as training features respectively. Pak et al (2009) used a similar

approach where they used emoticons as noisy labels to identify tweets that contained sentiment

information. Using the NB classifier, they then classified tweets as either positive or negative based on

either bigrams or POS tags as word features. The use of bigrams as the feature extraction method produced

the best accuracy.

6

F. Conclusion
Looking at the two cases of using twitter as a corpus for sentiment analysis, a number of opportunities for

further research arise. The first area is the introduction of a neutral class in the classification process. This

class will improve classification of live tweets where the classifier is unable to make a proper classification.

The assumption made here is that some of the errors made during classification occur as a result of the

classifier not knowing where to classify neutral text. For example tweets containing “pass along”

information to news stories or links to other websites do not necessarily have any sentiments in them.

However in a training set that contains English stopwords, the classifier may classify such a tweet as either

positive or negative depending on the probabilities of observing those stopwords in the training sets. This

means that proper handling of the neutral class is important in ensuring the accuracy of overall results

presented by the classifier.

Another important area of further research is extending sentiment analysis using twitter to the use of a

multilingual corpus. This will allow the extraction of sentiments from tweets that are posted in more than

one language. The research described in this report attempts to incorporate methods that will create this

feature by using a training set containing both English and Swahili words. In both languages, formal and

informal language constructs are considered. This is to cater for the largely informal nature of

conversations on twitter and also the constraints of using less than 140 characters to communicate. The

general twitter population is also generally made up of younger users hence the use of slang is most

preferred.

Finally it is important to ask ourselves whether using distant supervision affects the accuracy of the

classifier. By simply collecting tweets that contain emoticons, and then assuming that there are sufficient

features in those tweets to be used to classify sentiment in tweets without emoticons, one may end up with

a learning model that consumes lots of training data, yet fails to deliver in terms of accuracy when put to

the literal test of classifying live data. This research hopes to compare the performance of a classifier

trained with data collected through distant supervision using emoticons vis-a-vis a classifier trained with

data collected through normal supervision by using hand labeled data.

7

III. METHODOLOGY

A. Introduction
The problem of classifying tweets as either a positive or negative can be solved through the use of machine

learning algorithms as discussed in the previous chapter. In order to implement a learning algorithm, the

following components are required.

• The training data

• The testing data

1. Training Data
The training data is defined as the data that the learning algorithm uses to extract training features, which

are subsequently used in the classification of new data. This training data is commonly comprised of text

that is previously labeled as belonging to either one of the classification classes. The use of the training data

is to come up with the training set. The training set is usually made up of class labels, which identify to

what sentiment class the set itself belongs, as well as the training features themselves. Training features

could include unigrams, bigrams, and part of speech tags among others. The training features are usually

grouped according to the sentiment class where they were extracted from. By doing this, the learning

algorithm is able to know which training features will be used to identify a specific sentiment class.

2. Testing Data
The purpose of testing data is to provide where data where testing set will be extracted as to be used by the

learning algorithm to test the accuracy of the classification process. The testing data is comprised of text

that is previously labeled as belonging to either of the sentiment classes. From the testing data, a testing set

is extracted in a similar fashion to the extraction of the training set. Thus the testing set will have also have

features such as bigrams, unigrams etc. The learning algorithm uses features extracted from the training set

previously discussed above, to classify input from the testing set, and then compares its classification

results, with the initially labeled classification. Where the two classes are similar, then an accurate

classification has been realized, otherwise the learning algorithm has made an error in the classification

process.

B. Naive Bayes Classifier for Text Classification
In the previous chapter, it was seen that the use of the Naive Bayes model yields considerably good results

when used to classify pieces of text especially where bigrams are the training features. Coupled with its

relative ease of implementation whence compared with other classification models, the naive bayes model

presents a good starting point for twitter based sentiment analysis using machine learning methods.

A naive bayes classifier is a machine learning model used to classify a document as belonging to one of a

set of classes by computing probabilities using the bayes rule. It is used in a subset of machine learning

methods called supervised learning where a human “teacher” trains the classifier on how to make

8

classifications. Given an input document X, the naive bayes classifier will classify X to belong to a class Y

from a set of classes (Yl, Y2, Y3,...., YK) based on previous training data.

From the Bayes Rule:

p (x , y) = p (y | x) .p (x) = (p x | y) . p (y)

p (y I x) =
P i x 1 y) . p (y)

p (x)

The probability of determining the class Y given X can be computed from the formula above. To do this it

is necessary to compute p (x | j) . For this purpose, naive bayes makes the assumption that the probability

P(x i I y) 's independent of all other probabilities of (x() found in the piece of text. This is known as the

conditional independence assumption and is represented below.

p (, x \ y) = Y \ p (x k I y) = p (x } | y) x p (x 2 I y) x . . . x p (x n I y)
k= I

For classification to happen, p (y , \ x) is computed for all values of(x, | y ;) . Two main models of naive

bayes exists. The Multivariate Bernoulli model defines /?(x, | J') as the number of documents of class

(y) where (x ,) appears. On the other hand the multinomial model defines p (x i \ y) as the number of

times (x ,) appears in the all documents labeled as belonging to class (y)

The decision to classify x into class (j-r) will be determined by the larger of the two scores of

p (y , | x) .This can be represented as

CNB = arg m ax p (y \ x) = arg max 1 p (x k I y) x (p (y))
V. *=i y

In order to use a naive bayes classifier, a training set is required. This is usually in the form of a vocabulary

made up of words found in the documents that make up the training set. These words are assigned a label to

denote to which class they belong. From the training set, the classifier extracts the training features. These

features include unigrams, bigrams etc. When the classifier is presented with a new tweet to classify, it

would have to extract features from the tweet and calculates the probability of observing in the training set,

L
9

all the extracted features, with respect to both positive and negative classes. The classifier would then

classify the tweet based on which class returns the highest probability.

For the purpose of classifying tweets as either positive or negative, a definition of the naive bayes formula

is given with the following variables.

class (y) .

p (y) - The probability of observing the class y.

1. Collection of Training Data
Training data as was earlier mentioned is an important requirement in the development of a learning

algorithm. For the purpose of classifying tweets as either positive or negative, a training data in the form of

tweets is required. A number of approaches are available for acquiring these tweets.

a) Method I: Use of Emoticons as Noisy Labels.
With the rise in popularity of social media outlets such as blogs, social networks and media sharing portals,

users continue to find new ways to express feelings and opinions about the media they consume. One of the

most popular ways to do this is through the use of emoticons. Twitter is one social space that makes

extensive use of emoticons. With the limitation of 140 characters per status updates, people will generally

wish to convey their feelings in the shortest from possible. Emoticons therefore feature extensively on

twitter as a way of expressing opinion.

The use of emoticons as noisy labels for identifying tweets with sentiment information was discussed by

Go et al (2009). They defined a procedure where they simply searched for tweets with either positive or

negative emoticons, collected the results and created a training data containing refined tweets from the

search results. This appears to be a good place to start based on the results they achieved using this method.

For the collection of tweets for training data, the made is that assumption that any tweet containing positive

emoticons contains a positive sentiment within the text. Similarly, in any tweet where any negative

emoticon is found, then that tweet contains sentiment information of a negative nature. This therefore

Where

y — (Ti = posit ive, y 2 — negative) - This set defines the positive or negative class.

X = (X[, x 2, ■ ■ ■, Xn) - These are the words found in each tweet.

p (x : | y) - This defines the probability of classifying word (x t) found in tweet (X) as a member of

10

means that for the collection of training data, what is required is to search twitter for positive and negative

emoticons and store all tweets that the search returns.

Data Clean Up

One the tweets are collected, some data clean up is to be performed on the data before any features can be

extracted from the set. Go et al (2009) found that leaving the emoticons in the training set would affect the

accuracy of the results of the learning model. For this reason, all emoticons need to be removed from the

training set during the data clean up stage. Similarly, http hyperlinks all twitter based symbols (such as @

for usernames, # for hash tagged twitter topics) need to be removed from the training set as well because

they are generally common in most tweets.

Feature Extraction

Once the data has been cleaned up, the training features can now be extracted from the training data. A

number of feature extraction methods can be considered.

• Use of unigrams: - using this method, each word present in the tweet is considered as an

independent feature and is therefore collected as a training feature for the sentiment class where

the tweet occurs. The end result of using unigrams to extract training features is a training set that

is similar to a “bag of words” where all the words that are found in the tweets collected in the

training data make up the training set.

• Use of bigrams: - this feature extraction method identifies each bigram present in the tweet as an

independent feature. The bigram is stored as part of the training set in the sentiment class where

the tweet occurs.

b) Method 2: Use of labeled data.
The second approach for collecting training data is the traditional use of manually labeled data. For our

case, there would be need to hand label tweets as belonging to either the positive of negative class. To

identify such tweets, a list of 5 common keywords was identified. The idea is to query twitter using each of

these keywords and observe the resulting tweets. Where a tweet contains sentiment information, the tweet

is placed in its respective class as identified by the sentiment information.

Data clean up.

Once hand labeled tweets are collected,..data cleaning should also be performed on the set in a similar

fashion to method 1 above, with only a slight modification. While in method 1 we did propose to do away

with emoticons since they were noisy labels, in this method, we plan to do away with the query search

terms present in the tweets. This is because the presence of a query term in many tweets that contain a

certain sentiment class would result in that query term being identified as a feature during the training

process.

11

Feature Extraction

Feature extraction for labeled data follows similar steps as extraction of features for emoticon labeled data.

Both unigrams and bigrams are identified and stored in their respective training set classes.

2. Collection of Testing Data
Another important element of a learning algorithm as described earlier is the testing data. The use of the

testing data will make it possible to extract a testing set which allow one to determine whether the classifier

is making the correct classification. In order for one to create a testing set of tweets, an ideal approach is to

use query terms to collect a number of tweets. These tweets would then be analyzed and those with

sentiment information in them are hand labeled and placed in their respective sentiment classes. Once a

substantial number of tweets are realized in both classes, the testing data is complete. No data cleaning is

necessary for the testing data. This is because the test data needs to closely resemble the live data that the

learning model will be classifying once the process of developing the classifier is complete. However, the

process of extracting features from the testing data will be similar to the process described for extracting

features from the training data. Both unigrams and bigrams will be considered in this case.

C. Collection of Data from Twitter:
For the purpose of classifying tweets as either positive or negative, a training set and testing is required to

train and test the classifier respectively. During this chapter we have extensively talked about the

collection of tweets for this very purpose. The most reasonable approach for this activity is the use of the

twitter search API. The twitter API provides an interface that allows one to query twitter for a search term

and return tweets containing the search keyword. These tweets are rate limited to a maximum of 1500

tweets per call, for a maximum period of 4 days since the time of the search. Further to this, the API allows

inclusion of a geocode variable into the query, so as to limit the search results to a certain locale. A twitter

query can therefore be constructed with variables such as the latitude and longitude values of Nairobi as the

geocode, and the relevant search keywords as the query variable, returning a result set containing all tweets

containing the keyword mentioned in Nairobi within 4 days of the search.

12

IV. IMPLEMENTATION OF THE EXPERIMENT

A. Introduction
In the previous chapter, we have looked at the methodology for creating a machine learning model that can

be used to classify tweets as either positive or negative. One of the necessary ingredients of a machine

learning model is the training set. We discussed two approaches of collecting training data for purposes of

creating a training set. In this chapter we shall be looking at the actual processes used to actualize the

methodology previously discussed, while paying attention to any similarity or difference found in the

results obtained from using two different training data collection methods.

13. Implementation of the learning model
The model chosen in this case was the Naive bayes model with the development environment being the

NTLK in python. Since the aim was to look at performance and accuracy, it was not necessary to

implement a personal Naive bayes model. The decision was made to use the naive bayes classifier

implemented by NLTK. This was done by importing the nltk. classify package. This package would then

allow us to call methods such as classifier.train(testfeats)-which trains the classifier using the variable

testfeats which represents the training features. More details about the python environment will be

discussed later on in this chapter.

C. Collection of Data from Twitter
Collection of data from twitter was made possible by the use of a search tool. The search tool was

developed in PHP through the use of a reusable PHP-Twitter integration library. (Please see the appendix

for further reference). This library contained class constructor methods for the various objects that the

twitter API has made public. This made it possible to easily instantiate these classes with the local variables

required without having to define all the classes again. The information exchange between the search API

and the search tool developed was handled through the use of the JSON format. Queries were created using

URL’s and passed to the API as http get methods while the results from the API to the search tool were

transmitted through the JSON format. The JSON format was chosen since the PHP-Twitter wrapper class

chose to use JSON format as the transport protocol of choice. The figures below illustrate the process of

retrieving tweets through the search tool.

13

* > TWITTER SEARCH Mo/llla Firefox 4.0 Bela 11
Ete H®ory Bookmarks fools help

I Problem loatlng page • Correcting

http: //tocat*»t A waets A®«6. php

) | Search

m -i

Figure 1 An emoticon used as the input to a twitter search query

t > Mozflla Firefox 4.0 Beta 11

File Ed* View H$tory Bookmarks fools Help

! Problem foadng page http://kxa»xwt/t*wets/positive.php

& http: //locatiost A weets/posxive.php

‘l + l
El? *

' 'i

*40 (flmeemantalel By the way if you write to them they will -) or refuse to pay city council rates

M l Finally got One Hundred Years of Solitude D

342 @muchintony @marhnmugera conference call today»on T hur?« at this rate our son will marry your daughter .)" —
haiya!! !»early planner:)

343 @gbenrostvlc how u dey?ur preety quite hopin u gud av a hivly evemn:)

344 31-0 after 7 overs. Ouman Waters trying kazana kazana)

345 It's mine :) RT @vanderwangwe: missed my 12000th tweet how?? 12077 belongs to @Wntel - again' III

346 @ Ia a a Hah siubet na mtu mwingine pia This time round, bet utawatch oga movies na soaps na yeye D

34" @samkitcnyi re. #Bibleapp @.azthc dance didn't report cunous looks last Sunday, karibu #vmeyard) rachel what was it
called? #android

348 Perl code demo from the author himself:-) once in a life tone expenence!

349 RT @ThatDivaFarydah: OM FG!I believe I get my libido from my hmje side hehehel Thanks for the heads up =) HA HA
HAI Must be die kukul

350 Try Tweetcaster) RT @emblaize IWeetdeck blows

351 @KenyaPower tgfamninu so now you check back a few decades later? ~ Swty aint u overeactmg just a little bit? It was just a
century.. :)

352 @karencruie usijali unajua am also looking forwarcfto you coming back., cozl want those boots so bad) .):)

23rd February 2011
04:52:04 PM

23rd February 2011
04:50:58 PM

23rd February 2011
04:50:11PM

23rd February 2011
04:45:36 PM

23rd February 2011
04:45:06 PM

23rd February 2011
04:44:42 PM

23rd February 2011
04:42:24 PM

23rd February 2011
04:39:01 PM

23rd February 2011
04:35:42 PM

23rd February 2011
04 35 38 PM

23rd February 2011
04 35 25 PM

23rd February 2011
04:32 59 PM

23rd February 2011

Figure 2 Results from the emoticon query

14

http://kxa%c2%bbxwt/t*wets/positive.php

|P po»corHcnt_23fdFcbruafy70t 1 WordPad
File Ed* View Insert Format Help

Dtsa a a m ® E&
0mactingicheru Olaa Hr. Web Developer :)
Diamonds truly r a grls bst fend :) http://twltpic.com/42t8xr
6misswnasteph I'm pretty good, how're you? :-)
You mean 'are' RT BSteveKltota: RT BEdGlcovl: SIGH...Pixar has made most of my favourite animations -) // which is?!
BlmaniFC Jambo :)
OBlastYromHyPast, #np, dlinmyhead. Love He For a Reason - Boytone. P.s.
Hate is a really strong word...but Love is equally stronger :)
Bposilutely how is your week tho? Viatu hatijaisha bado. Hine were done in 4 weeks flat :)
6sheepyshaunnle what is it tweetlepie? :)
0SupremeGREAH pssst. After slapping yourself, si you let me know how to block numbers via this our phone. Hi! :)
0caroledee Haha... I can only imagin'! U're welcome i)
:-) RT BFlonaAmusudtu: Bnjeshsta in short wharrayousayin?? nkkt!!
gmissmumbi hehehehe I didn't know they invented virtual pinky swears.. God! how things move fast :)
RT Bidaempress: Bnatelmusic I long for them.Btw 0SilverStarSounds hve u as their guest artist frlday night....I long 4 that too(gt;me too :D
Things get bettercamp:(amp;better :)
Wgoldenllfe
RT BEdGicovi: SIGH...Pixar has made most of my favourite animations -) // which is?!
#NV The Incredibles :)
SIGH...Pixar has made most of my favourite animations *)
Bshaydest hahahhaha ave kufad shadyest he is called Sebastian Vanzalla :)
BAkelLove sawa, thanks i)
RT Bjqlush: If only all days could be spent this way :-) smiles for smiles 0*0
•ahem* wtf is Huliro gardens? :)
RT Bkevojuice: RT 6jayawinjaya: Anticipation can kill! 1 agreee Cgt; :) Serna?
Huh? :) RT Bmkaigwa: Bkanaosh What did you think? BEdGlcovl gets the credit for a great article I reckon.
BAkelLove so when can I check it out? :) Sounds interesting!
0laazici remeirtser when you used to sign your letters with BOHBAY! Both Of Hy Boobs Are Yours... miss dem days :)
Bmissmumbi Smile. :)
BQuiragu mi niko poa imagine today l ate fruit cocktail (salad/puddlng) all alone 2day *sigh* hope kesho sitakula pekee yangu.. :)
RT Bsirmyke: can Brobertalai tell us how he got hold of such upclose photos Mmulirogardens
RT BJaymsbrooks: When you reach for the stars, you may not quite get them, but you vona«"t come up with a handful of mud either Cltj- Fresh.
BCrystalmbg Sawaz
will be on the outlook :) thanks
Bmissmumbi Just had a small preview., apparently eating finger nails cause stomach nails syndrome :)
Bgeorgiendirangu gacungwa:) :)
Qmauryn kanuki stp gOin mum. .av u kam acrOs d Omulirogardens porn pics? :)
Bdianangila is vipi?! Pole saw you chat laters and i was away from my machine most of the day leo...soo jana ullnimiss?? hehehe
RT Bsirmyke: can Brobertalai tell us how he got hold of such upclose photos #mulirogardens
can Brobertalai tell us how he got hold of such upclose photos #mulirogardens
RT 8lTweetInsane: FUCK fftwitter . Leads to failure in projects. Yet, we still love it. :D

For Help, press FI

Figure 3 Results stored in a text file

The tweets were automatically stored in a text file for further processing.

In order to perform a search, the query passed to the API was constructed in the following format:

GEThttp.V/search. twitter. com/search.json?geocode=-

1,274359%o2C36.813106%>2C15.0mi&q=%o3A%o29&rpp=100&page=l HTTP/1.1

Here we can see the query term is represented in its URL encoded format as “q=%3A%29”, while the

geocode variable is “-l.274359%2C36.813106%2C15.0miThis defines the coordinates of Nairobi and

returns tweets within 15miles of this coordinates. “rpp=100” describes a rate of 100 tweets per page, while

“page=l ” shows that the results being retrieved currently are the first page of a maximum of 15 pages.

I). The Python Environment
The entire process of creating the training and testing sets, training the classifier, testing the classifier, and

creating the actual classifier was done in python using the NLTK. The NLTK contains a collection of

functions and methods that can be used to perform various natural language processing tasks in an easy

way. It was not the intention of this project to develop our own implementation of a learning model. The

NLTK provides an ideal set of tools that allow rapid prototyping of solutions and was thus deemed the best

development platform. The main methods to consider in this case are:

15

http://twltpic.com/42t8xr
http://http.V/search

• The CategorizedPlaintextCorpusReader method: - this method instantiates a categorized corpus

reader. The corpus reader is simply a function that takes text documents classified in more than

one category and creates lists containing all words appearing in a certain category. The corpus

reader is also able to identify class labels, based on the names assigned to the locations of the text

e.g. names of folders where text files are located can serve as class labels where each folder

contains text for each class. The corpus reader also requires file extensions so that it’s able to

identify which files form part of the data it is required to load.

• The NaiveBavesClassifier method: - this method made it possible to create a naive bayes classifier

that could be trained, tested and used to classify external data. This was made possible by simply

passing training, testing and live data to the classifier function as variables.

• The Bigrams Method: - this method made it possible to extract bigrams from pieces of text by

simply passing a list of words as a variable to the bigram function.

• The Metrics Method: - the metrics method provided a means of computing metrics that were

necessary for testing the qualify of the classification process. This method used the classifier and

testing features as its input variables.

E. Creating the Training Set
As already previously mentioned before, two methods were considered for the collection of the training

data.

1. Method 1: Using Emoticons as Noisy Labels.
The rationale behind using emoticons as noisy labels was discussed in the previous chapter. The first step

in this process was to make a search on twitter with the query being either the positive or negative

emoticon. All collected tweets were gathered and stored in two separate text files, one for each sentiment

category. Once all tweets were stored in their respective text files, the two files were then placed in a

location where the categorized corpus loader would then read the tweets into the python environment. This

was done by passing the text files as variables into the corpus loader function within python. The corpus

loader then returned each individual tweet as an independent instance of the sentiment category. Class

labels were also initialized at this stage since the corpus loader was able to identify two separate folders

(one named positive and the other negative) in the location where the tweets were stored.

Feature extraction
With the text files now loaded, the next step was to extract training features. In some cases, before training

features could be extracted, it was necessary for data cleaning to be performed on the data. Data cleaning

was done so as to compare performance of the classifier with and without the noisy data. The process

involved removing stopwords, symbols, hyperlinks and noisy labels such as the emoticons themselves. The

development environment of python allowed these two activities of clean up and extraction of training

features to be combined into one function

16

a) Extraction of Unigrams as features
For the extraction of unigram features, the following function was used.

def good_word_feats(words):

return dict([(word, True) for word in words if not(word.lower().strip(",").strip("!") in ["r",

"u", "ur", "urs", "we", "was", "2", "at", "that", "it", "for", "is", "i", "on", "of', "am", "i'm", ":D", ":P", "D",
n p u t».tt it ii ii.•• iijii ii^ ii ii •• it it ii.yi it.^ii ii. \ ii ii. iiyi ii^ ii ii_ ii i»_yi h a A ” »•_»» Mjij.311 ii.^ii ii.jii

"www",""", ">", ">>", ... , "=d", "in", "the", ":d","!!","+",

"!!!", ":p", ">", ">:", ":o", ";o", "<3", "a", "rt"]) and (not word.lower() in

stopwords.words('english')) and (not word.lower().isdigit()) and (not word.lower().startswith("#")) and (not

word. lowerQ.starts with("@")) and (not word.startswith("RT")) and (not word.lower().startswith("http"))]

For every tweet passed into this function, the result is simply a dictionary data structure that returns all

words found in the tweet as long as the word does not begin with “#” or begin with “@” or begin with

“http” or the word is not “:)” etc. The python dictionary is a container that stores tuples in the form of a of a

key, value mapping. Breaking it down further, the following example shows how a single tweet would have

unigram features extracted using this function.

The input tweet is: “SIGFt...Pixar has made most of my favourite animations =)”

Before passing this tweet into the unigram function, the first thing to be done would be to break it down

into a list of words. This was done by a python function that took a piece of text and split it into words

wherever white spaces occurred. This means that in the example above, the output would be a list with 9

elements in it, denoted as

[‘SIGH...Pixar’, ‘has’, ‘made’, ‘most’, ‘o f, ‘my’, ‘favourite’, ‘animations’, <=)’].

This list, it is then passed as input into the unigram extractor function. Assuming the tweet was identified as

one with positive sentiment information, the function would the return the following

[{‘SIGH...Pixar’,True} {‘has’,True}, {‘made’,True} {‘most’,True} {‘of,True} {‘my’,True}

{‘favourite’,True} {‘animations’,True} Pos],

The above list of tuples contains one less word since the emoticon at the end of the tweet has been

removed. It is also evident that each word present in the tweet is also mapped to a Boolean value of true.

This is done so as to make it possible for the python classifier function to correctly identify which features

are members of a certain sentiment class. In this case these 8 features are all members of the positive class

as denoted by the “Pos” keyword at the end.

This process was repeated until all features were extracted from all tweets present in both the positive and

negative classes.

17

b) Extraction of Bigrams as features
For extraction of bigram features, a similar function was developed that returned each bigram in the tweet,

paired with a boolean value of True to represent the membership of that bigram in a certain sentiment class.

The following function was used to extract bigram features:

def bigramwordfeats(words):

mybigrams = bigrams(words)

return dict([(bigram, True) for bigram in mybigrams])

A tweet such as “Finally watched TRON LOVED IT :)”, is labeled as positive, and would yield the

following features:

[{“Finally watched”, True} {“watched TRON”, True} {“TRON LOVED”, True} {“LOVED IT”, True}

{IT :), True} pos]

In similar fashion to the extraction of unigrams, the bigram features are placed in a list with the keyword

“pos” identifying them as members of the positive set of training features. Again this iterative process was

performed until all bigram features were extracted from all tweets in both the positive and negative classes.

2. Method 2: Use of labeled data
The other method earlier identified for the collection of training data was through the use of hand labeled

data. As discussed in the first part of this chapter, the collection was done through the twitter search tool.

For labeled data, a number of query topics were identified. For each of those topics, a search was

performed and from the resulting tweets, an analysis was done to determine those with sentiment

information. Each tweet with sentiment information was then placed in a separate text file corresponding to

its appropriate sentiment class. At the end of this process, there were two text files corresponding to both

the positive and negative classes. The last step before having the text files initialized by the python

environment was stripping the actual query terms from the tweets. This was done using a simple find and

replace procedure where the query keywords were replaced by white spaces. The process of feature

extraction in this method was similar to that of method one. Both unigrams and bigram features were

extracted using functions identical to those identified in method 1 above. The table below shows some of

the common query terms used to search for tweets with sentiment information.

Table 1:- List of common queries terms
Query No of Positive tweets Collected No of Negative Tweets Collected

Safaricom 22 42

Zuku 19 26

18

KPLC N/A 152

Churchill 25 N/A

safcom 34 40

Homeboyz 10 N/A

F. Training the Classifier

In order to train the classifier, it was necessary to create a new instance of a Naive Bayes classifier and pass

the training features as variables into this function. This was easily achieved through the following code

snippet.

trainfeats = negfeats + posfeats

classifier = NaiveBayesClassifier.train(trainfeats)

The first line combines both the negative and positive training features into a list know as trainfeats. These

training features are used in the second line as variables to the train method of the NaiveBayesClassifier

object that is now being instantiated into our classifier.

G. Creating the testing set
The procedure used to obtain a test set involved the same activities as that of developing a training set. The

first step was to use the search tool to gather tweets. A list of query keywords was identified and then used

to query twitter for tweets. The data gathered was analyzed and tweets with sentiment information were

placed in the respective text files for those classes. The two resulting text files were then used as input to

the corpus loader function in python. Once the corpus loader had created an instance of each tweet, the

tweets were passed to the feature extractor functions where unigram and bigram features were extracted

from the tweets in similar fashion to the methods described in the previous section.

H. Testing the Classifier

1. Accuracy
The main purpose of testing the classifier was to determine the accuracy of the classification process.

Accuracy can be defined as the number of correct classifications made in relation to the total number of all

classifications made. That is given a set of already labeled tweets, what percentage of those tweets does the

learning model classify correctly. Python provided functions that were able to easily measure the accuracy

of the classifier. The example below shows how the accuracy was returned using the functions

testfeats = negtestfeats + postestfeats

print 'accuracy:', nltk.classify.util.accuracy(classifier, testfeats)

19

The first line of this snippet simply combines the positive and negative test features into a list of all test

features. The next step uses the utilities package of the python NLTK module to calculate the accuracy of

the classifier, given the test feats (note that classifier variable present here refers to the same classifier we

earlier initialized when training the classifier). The results are then printed to the screen. While the

accuracy tends to be the most common metric for measuring the performance of the classifier, other metrics

are also necessary in getting a clearer understanding of how the learning model is working. These are the

precision and recall metrics.

2. Precision
The precision metric measures the preciseness of the classifier. This means that it measures how exact the

classifier is in its classification. It is defined as the ratio of the number of true positives compared to the

total number of true positives and false positives. The higher the precision value the lower the false

positives in the data classified

3. Recall
The recall metric measures the sensitivity of the classification and can be defines as the ratio of the number

of true positives compared to the total number of true positive and false negatives. A higher recall value

means less false negative in the result set of classified data.

4. The Error Set
Another important component used during the testing of the classifier is the error set. The error set is

simply a list of all tweets that were incorrectly classified during the testing process. The set will usually

show what classification the learning model gave in comparison to the label that had been manually set.

With a large training and testing set, the error set is important because when critically analyzed, it is

possible to observe similarities between pieces of text that are incorrectly classified. For example close

investigation may reveal the presence of a certain stop word that is common in a lot of the incorrectly

classifier tweets. In this project, the error set was used to identity presence of features that the classifier had

not come across and hence unable to correctly classify. Such tweets were then automatically added into the

training data for those features to be extracted.

5. Manual Testing
The final element in the process of testing the classifier is the use of manual observation. Closely related to

the error set discussed above, the manual observation was crucial because of the ability of the human

observer to easily identify where a classification error had been made. The person observing the tweets was

then able to isolate the causes of the improper classification and take corrective measures. A good example

of this is the tweet • i

“Watching tpf season 4 ...loving it so far”. At face value, this tweet looks like one that would automatically

be classified as positive. However, the sentiment classifier may not make a correct classification of this

20

tweet. Why u ask?? Remember we had earlier said that during extraction of features, the tweet is broken

down into constituent words by splitting the text where white spaces occur. In this tweet, “4 ...loving”

would be treated as a single word feature. The learning model would not be able to make any classification

based on this feature since it does not exist in the training set. Therefore a process of removing such tokens

was necessary so that “loving” can be included as an independent feature. For such cases, using manual

observation proved to be the most suitable and effective method of carrying out tests.

I. Handling of the Neutral Class

Sentiment analysis cannot be complete without handling the neutral class. When dealing with tweets, the

idea of the neutral class cannot be over emphasized enough because of the nature of information exchanged

on twitter. Pass along information such as links to news articles, mentions by media houses, questions or

general comments etc need to be correctly classified so as to ensure the subjects of these discussions do not

reap sentiments where they have not sown, so to speak. In order to handle the neutral class, the approach

taken involved the extraction of features from the tweet and then searching for the presence of any of these

features in both the positive and negative training feature sets. Where none of the tweet’s features were

found in the training features, it was assumed that the tweet contained no sentiment information hence it

was classified as neutral.

21

V. EVALUATION AND DISCUSSION OF RESULTS

In the previous chapter, the technical implementations of the suggestions presented in the methodology

chapter were discussed. This chapter looks at the results obtained using these implementations, and

evaluates the results.

A. Evaluating the Performance of the trained classifier
As you may recall, on of the most important metrics for computing the accuracy of a learning model is the

accuracy. In our methodology, two approaches for obtaining training data had been identified. One was

collecting tweets using emoticons as noisy labels for sentiment classes, while the other was collecting

tweets manually hand labeled with their sentiment classes. For comparison of performance, two naive

bayes classifiers were created. Classifier one (Cl) used training data identified to contain sentiment by the

use of emoticons, also referred to as emoticon labeled training data (ELTD). Classifier two (C2) used

training data manually labeled as belonging to specific sentiment classes, what is also referred to as hand

labeled training data (HLTD). The ELTD set contained 5000 tweets, while the HLTD set contained 500

tweets. Testing was performed on both classifiers using a set of HLTD. This was necessary since HLTD

closely resembles the live data that learning model would be used to classify in future. The training set was

made up of 300 tweets. In each of the classifiers, both unigrams and bigrams were considered as feature

extraction methods. We further note that for each feature extraction method, two instances were considered.

The first instance contained noisy data (examples include emoticons, symbols, and English stopwords)

within the training set while in the second instance, all noisy data (ND) was removed. The combination of

both unigrams and bigrams was also considered as a feature extraction method. Once the training features

were extracted, the two classifiers were trained and tested and a summary of the results are presented

below.

Table 2 Summary Performance Results
FEATURE EXTRACTION METHOD

Training Amount of Amount of Unigrams Bigrams Unigrams

Data type Training Data Test Data + Bigrams

With Without With Without With Without

ND ND ND ND ND ND

ELTD 5000 300 69.3% 70.3% 57% 50% 68.6% 70%

HLTD 500 300 75% 76.3 59.3% 55% 74.6 75.3

v
22

B. Discussion

1. Emoticons as Noisy Labels
The use of ELTD resulted in poorer performance than the use of the HLTD even when the amount of

training data from the former was ten times more than the latter. In our case ELTD had 5000 tweets while

HLTD had a mere 500 tweets, yet the performance was around 5% more using all three feature extraction

methods. These results confirm what is manually observable when using emoticons to collect tweets. A lot

of the tweets that contain emoticons need not have any sentiment information in them. Most of these tweets

are usually greetings and informal chatter or jokes. For example, when attempting to collect training data

using emoticons from twitter during the month of December 2010, most of the tweets with an emoticon

were accompanied by phrases such as “Merry Christmas”, “happy holidays” etc. While the volume of the

tweets collected was large only about 5% to 10% of those tweets contained any features that could be

extracted for training the classifier. Using emoticons to identity tweets with sentiment information would

require the intervention of a human being to filter out all the noisy tweets before the data set can be of any

meaningful use. It is more advisable to go with hand labeling tweets, as this would improve performance

drastically. Given that with only 500 tweets their was a growth in performance by 5%, getting the HLTD

set to 5000 tweets would defiantly improve the performance of the classifier by leaps and bounds

2. Feature Extraction Methods to be used.
A rather interesting thing to note in the results presented is the behavior of the feature extraction methods.

Bigrams, traditionally known to be the best method to use with a naive bayes classifier were outperformed

by unigrams. The explanation for this could be the nature of tweets. With tweets having less than 140

characters, and most people using extensive slang on twitter, it may come as no surprise that unigrams

would be a much better choice when selecting a feature extraction method for use in classifying tweets. The

presence or absence of noisy data in the tweet doesn’t seem to make a very substantial difference in the

accuracy, expect when using bigrams. This makes sense because adding or removing a stop word before or

after certain words, completely changes the sentiment implied by the word.

C. Further Analysis
From the results presented in table 3, it was evident that there was still a lot to be done in trying to improve

the quality of the classifier. With this in mind, a last attempt was made at trying to further push the

accuracy levels up. A new approach was introduced. This new approach was the use of keywords training

data (KWTD). The rational behind this was that looking at already hand labeled tweets, it was possible to

identify which keywords implied sentiment in the tweet. Similarly human beings know intuitively which

words are commonly used to imply certain sentiments. Therefore the task of collecting training data for this

approach came down to using personal intuition to create a list of positive and negative keywords. Since

tweets are not so large, it was possible to also manually scan tweets and where there was sentiment

information the keywords responsible for that sentiment were extracted and added to the list. A training set

23

of 1165 keywords was developed. Using this training set, training features were extracted and a third

classifier was trained using this data. Classifier C3 was tested using the 300 hand labeled tweets used to test

C1 and C2 previously. The results of the test performed on C3 are presented below.

Table 3 Performance results for the third classifier
FEATURE EXTRACTION METHOD

Training data type Unigrams Bigrams Unigrams + Bigrams

With ND Without ND With ND Without ND With ND Without ND

Use ofKWTD 77.6% 77.3% 69% 57.3% 80.3% 77.3%

From the results it is evident that the use of keywords as the training data further improves the quality of

the classifier giving us the highest accuracy values so far. The use of keywords for the creation of the

training data also played a big part in making the classifier more ideal for Kenyan use. By allowing the

human supervisor to manually add keywords intuitively, more and more Swahili words and local street

slang became part of the training corpus. This would greatly improve the accuracy of the classification

made where the tweets contain Swahili or slang.

D. Implementing the Sentiment Analysis Tool
The previous chapters of this project have been discussing implementations of various components. From

data collection from twitter, to training and testing the classifier, pretty much most of the technical work

covered during this project has been discussed. Flowever it is not all complete without talking about the

sentiment analysis tool. This is web based software that demonstrates twitter based sentiment analysis using

live data. It is made up of a search interface that allows a user to enter a search topic and receive results

summarizing the overall sentiment of that topic based on discussions on twitter. The system queries twitter

for the search topic within Nairobi, using the API methods discussed at the beginning of chapter 4. Each

tweet that is received is sent to the sentiment classifier where it is classified as being positive, negative or

neutral. Once all tweets are classified, the system computes the totals and provides summarized results.

These results are presented as pie charts showing percentage distribution of tweets among the three classes,

bar graphs showing distribution of tweets by number, and a timeline that shows overall sentiment behavior

of the three classes over a period of 4 days. An example is shown below. The interface design and

presentation format is inspired by the work of Go et al (2009).

24

| ' ' IW ITTfR S EN TIM fN T ANALYSER Mo/llla 1 1 refox 4 .0 Beta 11

tie fcdt View H#ory Bookmark* ^

! Problem loadng page TWITTER SEARCH TWITTER SENTIMENT ANALYSER ' The URLEncode and URLDecode Page LRL Encoring , +

4 “ http ://bcatiost/tweets/test 1«. pbp Atwater q-zukuB6eerd>>Se«ch • C * f • convertngwte%3A%29 ^ Feedback •

S h o w in g R m iJ h F o r z n k n

S n irtin riir A nalysis R esu lts Bv P e rn u tfa g e Sn iiuneiir Analysis Re sails By N iunb ti

■x%

S m iu n r in Analysis T u n rlin r

Figure 4 : - the results interface of the sentiment analyser

A set of tweets whose sentiment has been identified is also displayed below the summarized results
r) TWITTFRSENTIMENT ANALYSER Mozilla flrefox 4.0 Bela 11
Pie fcdt View H*tory Bookmarks Ipoti Help

I Problem looting peQe TWITTER SEARCH

4* http: //locaihost/tweets/test 14, php ?c wX ter q-iuku86e arch- Sear ch

Tweets Containing zuku

TWITTER SENTIMENT ANALV'SER x , The URLEncode end URLDecode Page URt Encoding

C i f converting urt* %3A%29

At this rate i'll need to hustle for Zuku.a. s ap
For red On 24th February 2011 02 0748 AM

@haydenelncs whats wrong with zuku?. we planning to get A m the cnb 30 your feedback will be v e r y helpful
Posred On 23rd February 2011 11 20 54 PM

logged back on just to say fiifc zuku -| And Go United1
Posted On 23rd February 2011 11:00:30 PM

really dunk that #zuku should collaborate with #M -Prsa and allow ckeris to pay from theie comfortCc fSjbobroOymore. who is ui marketing?
Posted Ou 23rd February 2011 11 38 11 AM

#Zuku y o u are being too personal Everyttm* I check into the office on Wakenya working hours you tell me to go to sleep! *Hii m ungwana?*
Posted Ou 23rd February 2011 11 2d 36 AM

@rigeny Was told zuku is cool, am yet to tiy I use orange m the house, u acceskeuya at the office.
Posted On 23rd February 2011 08.5745 AM

™1 Tried any o f ihif ?

@vostu am fresln iana. wanted tc. go ZUKU lakiiu our location is Sacked up, but we'll move once we pata better options
Posted On 23rd February 2011 08 53:56 AM

A

(Simuthigaru You weren't online. Ir was a spur of the moment U get Zuku hooked up yet? Yezh. it was Skype
Posted On 23rd February 2011 01:26 54 AM

j j) h lhirri do you know ariy of the technical guys who installed Zuku for you They may help with that instead of going through support

Figure 5 some tweets with their sentiment classified

. A number of libraries are used.

Google Visualization API. This

The sentiment analysis tool is implemented in PHP just like the search tool

The pie chart, bar graph and the annotated timeline are components of the

25

is a java script API that allows for the easy creation of charts for purposes of dynamic web based

presentation of information. Despite the API being in java script, this tool re uses a PHP wrapper class that

was written to allow the easy integration of the API with PHP pages.

Data Cleaning

Before each live tweet is sent to the classifier, it must goes through a clean up process. The words in the

tweet are stripped of leading and trailing symbols and punctuation marks. Where these punctuation marks

occur in the middle of words, they are replaced by white spaces. Once the clean up is done, the tweet is

ready to be passed to the classifier for classification.

Classification

The process of classification begins with extraction of features using function similar to those used to

extract training and testing features. The live features returned are then used as input to the classifier which

makes a classification and returns a class label. This class label is then submitted back to the PHP front-end

for where it is stored for subsequent use in computing overall sentiment scores.

/

26

VI. CONCLUSION

In the previous chapter, various results obtained after creating different classifiers each using training data

collected using different methods have been discussed. Software that allows users to enter query topics and

retrieve sentiment scores concerning those topics, based on data from twitter, has also been demonstrated.

With the popularity of twitter increasing, there will always be need to continue further in the field of

sentiment analysis on twitter and other forms of social media. This research has presented an approach that

can be used to create a baseline, from which further research may be carried out. The use of hand labeled

training data should be considered as the lowest starting point for any kind of research where the solution

requires a supervised learning model.

A. Achievements
In the first chapter, a number of objectives were identified. The following is a recap of these objectives and

to what extent they were met during this project

1. Comparison of Machine learning models:
While it would have been appropriate to practically compare various machine learning methods for

purposes of creating a classifier to be used to classify sentiment in tweets, the approach adopted in this case

was using previous literature, where the results and conclusions from these, formed a starting point for the

development of the classifier. This therefore means that comparison of machine learning methodologies

was done theoretically and not practically as earlier envisioned.

2. Development of the Classifier:
This objective was achieved by the implementation of the naive bayes classifier created using NLTK. The

classifier was able use training and testing data collected from twitter via their search API. The tests

carried, out whose results are presented in this document, show that the classifier performed to some

acceptable level of accuracy making it possible to state that this objective was achieved.

3. Development of the Web Based Application.
The final part of this piece of work was the web based sentiment analysis tool that was created as a

demonstration of the classifier. The software was able to take search terms in both Swahili and English, and

return real time classified tweets from twitter where the search term occurred. The tweets returned were

classifier as positive, negative or neutral.

B. Limitations of the study
The following are some of the limitations of the study undertaken.

1. Collection of training data
While the twitter API made it considerably easy to collect data, there were some challenges that were

encountered. The amount of training data that was used is considerably small. Time constraints made it

27

challenging to collect a large amount of training data which is necessary for a concrete machine learning

experiment. The tests were localized to Kenya and therefore the amount of ‘meaningful’ tweets generated

by the users of twitter in Kenya is relatively small in comparison to other places where this research has

been carried out. Rate limiting enforced by twitter on their search API also meant that only a maximum

number of 1500 tweets was available for a 5 day period.

In some cases, it was difficult to collect training data for certain sentiment classes. Specifically, the positive

class proved mostly affected. The negative class seemed to contain on average 30% more tweets than the

positive class for 80% of the search criteria used to collect training data. This therefore meant that some of

the negative training data collected was left out during the process of training the classifier so as to create

an equal qualitative benchmark for both classes during computation of performance metrics.

2. Practical Comparison of Models
Time constraints also made it a challenge to be able to implement various classifiers and compare

performance with the test data collected. As stated earlier, comparison of other methods and models was

left to theory as opposed to practical implementations that may have yielded some new knowledge with

regard to classification of sentiment information from tweets.

3. Testing Kenyan Tweets
One focal point of this research was to ensure its “Kenyan-ness”. This means the classifier was able to

classify tweets written with English, Swahili or a combination of both. In order to test this, the approach

adopted was to use already existing classifiers and compare their classification of tweets with Swahili

words, to the classification made by the classifier built during this project. However that proved

challenging as most existing classifiers made no attempt to classify tweets with phrases in Swahili. In fact,

most of these classifiers only returned results of tweets they were able to classify with 100% certainty. It

was therefore difficult to asses whether out classifier made any considerable value addition with regards to

classification of multilingual tweets.

C. Future Work

There are many further areas of research in this field. Looking at sentiment analysis in general, the

integration of other social networks such as facebook, video sharing sites such as youtube and blogs would

be an ideal place to begin. This would allow users to use a single web based portal and from it gain access

to summarized sentiment scores of opinions expressed in different forms about various topics, all over the

internet. Closer to the problem of classifying tweets, further research could be carried out on determining

the best learning model to use, and which feature extraction method it would work best with. SVM’s and

ME classifiers could be discussed with more feature extraction methods such as part of speech tags being

included in the research. ,

28

VII. APPENDICIES

A. BIBLIOGRAPHY

Accuracy and Precision, 2011. Accuracy and Precision, [online] (Updated 5 Jan 2011) Available at: <

http://en.wikipedia.0 rg/wiki/Accuracy_and_precision#Accuracy_and_precisionJn_binary_classif1cation>

[Accessed 17 January 2011]

Benamara, F. Cesarano, C. Picariello, A. Reforgiato, D. and Subrahmanian, V. (2007) .Sentiment analysis:

Adjectives and adverbs are better than adjectives alone. In Proceedings o f the International Conference on

Weblogs and Social Media (ICWSM).

Bird, S. Klein, E. and Loper, E., 2009. Natural Language Processing with Python. 1st ed. O’Reilly Media,

Inc.

Das, S. and Chen, M., (2001). Yahoo! for Amazon: Extracting market sentiment from stock message

boards. In Proceedings o f the Asia Pacific Finance Association Annual Conference (APFA).

Go, A. B, Richa. and Lei, H. (2009). Twitter Sentiment Classification using Distant Supervision, Stanford

University, Stanford, CA, USA.

/

Huffaker, D. A., and Calvert, S. L. (2005). Gender, identity, and language use in teenage blogs. Journal of

Computer-Mediated Communication, Vol. 10, no. 2, article 1.

Pak, A. and Paroubek, P. (2009). Twitter as a Corpus for Sentiment Analysis and Opinion Mining,

Universit'e de Paris-Sud, Cedex, France.

Pang, B. and Lee, L. and Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification Using Machine

Learning Techniques. In Proceedings o f the Conference on Empirical Methods in Natural Language

Processing(EMNLP), pages 79-86.

• A

Pang, B. and Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundation and Trends in

Information Retrieval, Vol. 2, No. 1-2, pp. 1-135.

Perkins Jacob, 2010. Text Classification for Sentiment Analysis - Naive Bayes Classifier. StreamHacker,

[blog] May 10, Available at: <http://streamhacker.corn/2010/05/10/text-classification-sentiment-analysis-

naive-bayes-classifier/> [Accessed 10 January 2011]

29

http://en.wikipedia.0rg/wiki/Accuracy_and_precision%23Accuracy_and_precisionJn_binary_classif1cation
http://en.wikipedia.0rg/wiki/Accuracy_and_precision%23Accuracy_and_precisionJn_binary_classif1cation
http://streamhacker.corn/2010/05/10/text-classification-sentiment-analysis-naive-bayes-classifier/
http://streamhacker.corn/2010/05/10/text-classification-sentiment-analysis-naive-bayes-classifier/

Perkins Jacob, 2010. Text Classification for Sentiment Analysis - Precision and Recall. StreamHacker,

[blog] May 17, Available at: <http://streamhacker.eom/2010/05/10/text-classification-sentiment-analysis-

precision-recall/> [Accessed 11 January 2011]

Perkins Jacob, 2010. Text Classification for Sentiment Analysis - Stopwords and Collocations.

StreamHacker, [blog] May 24, Available at: <http://streamhacker.eom/2010/05/10/text-classification-

sentiment-analysis-stopwords-collocations/> [Accessed 11 January 2011]

Read, J. (2005). Using Emoticons to reduce Dependency in Machine Learning Techniques for Sentiment

Classification. In Proceedings ofACL-05, 43rd Meeting o f the Association for Computational Linguistics.

Association for Computational Linguistics.

Sensitivity and Specificity, 2011. Sensitivity and Specificity, [online] (Updated 13 Jan 2011) Available at: <

http://en.wikipedia.org/wiki/Sensitivity_and_specificity > [Accessed 17 January 2011]

Twitter Sentiment, 2010. Twitter Sentiment. [online] Available at:

<http://twittersentiment.appspot.com/search?query=google> [Accessed 17 January 2011]

Twitter Sentiment, 2010. For Researchers - Twitter Sentiment Help, [online] Available at: <

https://sites.google.com/site/twittersentimenthelp/for-researchers> [Accessed 12 January 2011]

Yang, K. Yu, N. Valerio, A. Zhang, H. and Ke, W. (2006). Fusion Approach to Finding opinions in

Blogosphere. In Proceedings o f the International Conference on Weblogs and Social Media (ICWSM) .

Zhang, W. Meng, W. and Yu, C. (2007) Opinion retrieval from blogs. In Proceedings o f the ACM SIGIR

Conference on Information and Knowledge Management (C1KM).

.Perkins, J., 2010. Python Text Processing with NLTK 2.0 Cookbook. Is1 ed. Packt Publishing.

30

http://streamhacker.eom/2010/05/10/text-classification-sentiment-analysis-precision-recall/
http://streamhacker.eom/2010/05/10/text-classification-sentiment-analysis-precision-recall/
http://streamhacker.eom/2010/05/10/text-classification-sentiment-analysis-stopwords-collocations/
http://streamhacker.eom/2010/05/10/text-classification-sentiment-analysis-stopwords-collocations/
http://en.wikipedia.org/wiki/Sensitivity_and_specificity_
http://en.wikipedia.org/wiki/Sensitivity_and_specificity_
http://twittersentiment.appspot.com/search?query=google
https://sites.google.com/site/twittersentimenthelp/for-researchers
https://sites.google.com/site/twittersentimenthelp/for-researchers

B. CODE LISTINGS

1. Code Listing For the Twitter Search Tool

<html><head><title> TWITTER SEARCH </title></head>
<body>
<form action="test6.php" method="get">
<input name="twitterq" type="text" id="twitterq" />
<input name="Search" type="submit" value="Search" !>
</form>

<?php
header('Content-type: text/html; charset=utf-8');
if (isset($_GET['twitterq']))

{
Stwitterquery = SGETf'twitterq'] ;

//print "<h3> Query = Stwitterquery </h3>";

require once 'includes/class.twittersearch.php';
Sent = 0;

for (Si = 1; $i<= 15;$i++)
{

Ssearch = new TwitterSearch(Stwitterquery);

$search->since_date -2011-02-20';
$search->rpp = 100;
$search->page = Si;

Sdata = $search->results();
//Sfile = fopen('orange_'.date("jSFY").'.txt', 'a');
//Sfile = fopen($twitter_query.'_'.date("jSFY").'.txt\ 'a');
//Sfile = fopen($twitter_query.'_'.date("jSFY").'.txt', 'a');
Sfile = fopen($twitter_query.'_'.date("jSFY").'.txt', 'a');

//Sdata = $s->search('#carsonified');
//Sdata = $data->results;
?>
<table border=0 cellpadding=4 cellspacing=0 width=80% align=center>

<?php foreach($data as $d){ ?>

<?php
// values

Sent ++;

Srem = Sent % 2;

31

if (Srem == 0) { $bgc = "#eeeeee"; } else {$bgc = "#ffffff';}
Simage = $d->profile_image_url;
Sdate = strtotime($d->created_at) + 10800;
Sauthor = $d->ffom_user;
Slocation = $d->location;
Scontent = Sd->text;

//$info = array($author,Slocation,Scontent,Sdate);
//Sinfo = array($author,Slocation,Scontent,date("jS F Y h:i:s A",Sdate));

//Sinfo = array(Scontent);
Sinfo = array($content,date("jS F Y h:i:s A",Sdate));
Sline = implode(";;", $info)."\n";

fwrite($file, Sline);

?>

<tr <?php print "bgcolor=$bgc”; ? »
<td valign=top> <?php echo Sent ?></td>
<td valign=top><img src="<?php //echo Simage; ?>" alt="" / ></td>
<td valign=top><?php //print " $author

Slocation " ;?></td>
<td valign=top><?php echo preg_replace('/(A|\s)@(\w+)/','\l@V2', Scontent); ?></td>
<td valign=top><?php print date("jS F Y h:i:s A",Sdate); ?></td>

</tr>

<?php } ?> -
</table>

<?php }?>
<?php }?>

32

http://twitter.com/$author
http://twitter.comA2%e2%80%9d%3e@V2%3c/a%3e'

2. Code Listing For the Sentiment Analysis Tool

<html>
<head>
<title> TWITTER SENTIMENT ANALYSER </title></head>
<body>
<div style="position:relative; left: 205; width: 572;">
<H2>TW1TTER SENTIMENT ANALYSIS</H2></div>
<form action="testl4.php" method="get">

<div style="position:relative; left: 205; width: 572;">
<input name="twitterq" type="text" id="twitterq" size="30"/>
<input name="Search" type="submit" value="Search" />

</div>
</form>
<link href="tweets.css" rel="stylesheet" type="text/css" />

<?php
header('Content-type: text/html; charset=utf-8');
if (isset($_GET['twitterq']))

{
Stwitterquery = $_GET['twitterq'] ;

?>

<div style = "font-size: 12px; border:solid lpx #FFFFFF; position:relative; left: 205; width: 572;"
<H2>Showing Results For <?php echo Stwitter query; ?></H2>
</div>

<?php
require once 'includes/class.twittersearch.php';

Sent = 0;
Stpos = 0;
Stneg = 0;
Stneu = 0;
Stsents = 0;
$j = i;
$k=0;
Sdailyneg = 0;
$daily_pos = 0;
Sdailyneu = 0;

//Srset = array();
//Srow = array();

Sinitdata = 0;
$resultdata=array();

for ($a = 0; $a<5; $a++) {
$resultdata[$a]=array();
for ($b = 0; $b<3; $b++) {

}
$resultdata[$a][$b] = Sinitdata;

}

Stoday = date("Y-m-d");
Snewdate = strtotime (Stoday . ' -4 day');
Ssincedate = date ('Y-m-d', Snewdate);

for (Si = 1; $i<= 1; $i++)
{

Ssearch = new TwitterSearch(Stwitterquery);
$search->since_date = Ssincedate;
$search->rpp = 20;
$search->page = Si;

Sdata = $search->results();
Sfirst = $data[0];
Sedate = strtotime($first->created at) + 10800;
Scurrentdate = date("Y-m-d",Sedate);
//echo Scurrent date;
//Stoday = mktime(0, 0, 0, date('m'), date('d'), date('Y'));
//Scurrentdate = Stoday

?>

<?php foreach($data as $d) { ?>

<?php

Sstore = 'workfile.txt';

if(!file_exists($store)){
touch (Sstore);
Sfile = fopen (Sstore, 'w');

}
else{
Sfile = fopen (Sstore, V);
}

Sent ++;
Simage = $d->profile image u rl;

Sdate = strtotime($d->created_at).+ 10800;
Stimest = Sdate * 1000;

Sauthor = $d->ffom_user;
Slocation = $d->location ;
Scontent = $d->text;

Scheckdate = date("Y-m-d", Sdate);
Snew date = date ("Y, m, d",Stimest);

//while next(Sdate) = Scheckdate {
//while Scheckdate = Scurrentdate {

if (strtotime(Scheckdate) = strtotime(Scurrentdate)) {

}
else{

//Ssubtract = Scurrentdate - 86400;
//Scurrentdate = date ("Y-m-d", Ssubtract);
Scurrentdate = Scheckdate;
$j++;
$k++;
$daily_neg = 0;
$daily_pos = 0;
Sdailyneu = 0;

}

Sinfo = array(Scontent);
Sline = implode(";", $info)."\n";
fwrite($flle, Sline);

exec("C:\\Python26\\python.exe C:\\wamp\\www\\tweets\\tweets9.py");

Soutput = 'output.txt';
Sfh = fopen($output, 'r');
Ssent = fgets(Sfh);
$d->sentiment = Ssent;

fwrite($file,"");
fclose(Sfile);
fclose(Sfh);

if (Ssent == 'neg') {Stneg ++; $daily_neg ++;} elseif (Ssent == 'pos'){$tpos ++;
Sdaily pos ++;} else {Stneu ++; Sdaily neu ++;}

//Srset = array("day_".$j, Sdailyneg, $daily_pos);

$store_date = date("Y, n, j",$date);
Stimestamp = (strtotime($check date) - 10800) * 1000;

$resultdata[$k][0] = Stimestamp;
$resultdata[$k][l] = $daily_pos;
$resultdata[$k][2] = Sdailyneg;
$resultdata[$k][3] = Sdailyneu;

//echo '|' $resultdata[0][0].'|'.$resultdata[0][l].'|'.$resultdata[0][2].'|
';

?>

<?php } ?>
<?php

35

//echo '|'.$resultdata[0][0].'|'.$resultdata[0][l].'|,.$resultdata[0][2].'|
'
//echo '|'.$resultdata[l][0].T.$resultdata[1][1].T.$resultdata[1][2].'|
'
//echo '|'.$resultdata[2][0].'|'.$resultdata[2][l].'|'.$resultdata[2][2].'|
'
//echo ,|'.$resultdata[3][0].'|,.$resultdata[3][l].'|'.$resultdata[3][2].'|
'
//echo T.$resultdata[4][0].T.$resultdata[4][l].T.$resultdata[4][2].’|
'

?>
<?php }?>

<?php
require ('includes/GChartPhp/GChartPhp/gChart.php');
?>
<?php
Stsents = $tneg + $tpos + $tneu;

Spos jiercent = (($tpos/$cnt) * 100);
Snegpercent = (($tneg/$cnt) * 100);
$neu_percent = (($tneu/$cnt) * 100);

SpiChart = new gPieChart();
$piChart->addDataSet(array($pos_percent,$neg percent,$neu percent));
SpiChart->setLegend(array("positive", "negative", "neutral"));
$piChart->setLabels(array($pos_percent."%", $neg pe rc e n t.S n e u p e rc e n t ."%"));
SpiChart->setColors(array("AFDCEC", "FAAFBA", "D8D8D8"));
$piChart->setRotation(" 130");

SbarChart = new gBarChart(350,200,'g','v');
SbarChart->addDataSet(array($tpos));
$barChart->addDataSet(array($tneg));
$barChart->addDataSet(array($tneu));
$barChart->setColors(array("AFDCEC", "FAAFBA", "D8D8D8"));
$barChart->setDataRange(0, Stsents);
SbarChart->setLegend(array("pos = ".Stpos, "neg = ".Stneg, "neu = ".Stneu));
$barChart->setVisibleAxes(array('y'));
$barChart->addAxisRange(0,0,Stsents);
SbarChart->setAutoBarWidth();

//SbarChart->setBarW idth(17,15);

?>

<?php

include once 'includes/qgooglevisualapi/config.inc.php';

Schart = new QAnnotatedtimelineGoogleGraph();
Schart

//->ignoreContainer()
->addDrawProperties(

array(
"title"=>'Sentiment Timeline',
)

)
->addColumns(

array(
array(’date', 'Date'),
array('number', 'Positive'),
array('number', 'Negative'),

array('number', 'Neutral'),
)

);
for ($i= 0; $i<= $k; $i++)
{
Schart

->setValues(
array(

array($i, 0, 'new Date('.$resultdata[$i][0].')'),
array($i, 1, $resultdata[$i][l]),
array($i, 2, $resultdata[$i][2]),
array($i, 3, $resultdata[$i][3]),

)
);

}
//echo $chart->getReferenceLink();
?>

<div>
<table border=0 cellpadding=l cellspacing=6 width=80% align=center>
<tr>
<td align=center><H3>Sentiment Analysis Results By Percantage</H3></td>

<td align=center><H3>Sentiment Analysis Results By Number</H3></td>
/ </tr>

<tr>
<td align=center><img src="<?php print $piChart->getUrl(); ?>"/></td>
<td align=right><img src="<?php print $barChart->getUrl(); ?>"/></td>

</tr>
</table>

</div>

<div>
<table border=0 cellpadding=l cellspacing=6 width=80% align=center>
<tr>

<td align=center><H3>Sentiment Analysis Timeline</H3></td>
</tr>
<tr>

<td align=center><?php echo $chart->render();?></td>
</tr>

</table>

</div>

<div style = "font-size: 15px; bordersolid lpx #FFFFFF; position:relative; left: 85; width: 572;"
<H3>Tweets Containing <?php echo Stwitter query; ?></H3>
</div>

<div class ="twitter_container">
<?php //foreach($data as $d){ ?>

<?php
Send = 0;
if (Sent > 20) {Send = 20;} else {Send = Sent;}
?>

<?php for ($i= 0; $i< Send; $i++){ ?>

<?php
//for ($i= Sent; $i>= Sent - 3; $i=$i-l){
$d = $data[$i];
Simage = $d->profile_image_url;

Sdate = strtotime($d->created_at) + 10800;
Sauthor = $d->ffom_user;
Slocation = $d->location ;
Scontent = $d->text;

Ssentdata = $d->sentiment;

if (Ssentdata = ’neg') { Sbgc = "negative";} elseif (Ssentdata == 'pos') { Sbgc =
"positive";} else {Sbgc = "neutral";}

echo '<div class = '".Sbgc."'^;
echo '<div class="twitter_status">';
echo Scontent;
echo '<div class="twitter_smaH">';
echo 'Posted On:';
echo date("jS F Y h:i:s A",Sdate);
echo '</div>';
echo '</div>';
echo '</div>';
//}

?>
<?php }?>
</div>
<?php }?>

</body>
</html>

3. Reused Code Listing For the Twitter API Wrapper

<?php
/**
* Wrapper class around the Twitter Search API for PHP
* Based on the class originally developed by David Billingham
* and accessible at http://twitter.slawcup.com/twitter.class.phps
* @author Ryan Faerman <ryan.faerman@gmail.com>
* @version 0.2
* @package PHPTwitterSearch
*/

class TwitterSearch {
/** . "
* Can be set to JSON (requires PHP 5.2 or the json peel module) or XML - json|xml
* @var string
*/

38

http://twitter.slawcup.com/twitter.class.phps
mailto:ryan.faerman@gmail.com

var Stype = 'json';

/**
* It is unclear if Twitter header preferences are standardized, but I would suggest using them.
* More discussion at http://tinyurl.com/3xtx66
* @var array
*/

var $headers=array('X-Twitter-Client: PHPTwitterSearch','X-Twitter-Client-Version: 0.1','X-
Twitter-Client-URL: http://ryanfaerman.com/twittersearch');

/**
* Recommend setting a user-agent so Twitter knows how to contact you inc case of abuse.

Include your email
* @var string
*1

var $user_agent=";

/**
* @var string
*/

var $query=";

/**
* @var array
*/

var $responseInfo=array();

/**
* Use an ISO language code, en, de...
* @var string
*/

var Slang;

/**
* The number of tweets to return per page, max 100
* @var int
*/

var Srpp;

/**
* The page number to return, up to a max of roughly 1500 results
* @var int
*/

var Spage;

/**
* Return tweets with a status id greater.than the since value
* @var int
*/

var Ssince;

/**
* Returns tweets by users located within a given radius of the given latitude/longitude, where the

user's location is taken from their Twitter profile. The parameter value is specified by
"latitide,longitude,radius", where radius units must be specified as either "mi" (miles) or "km" (kilometers)

* @var string

i<
39

http://tinyurl.com/3xtx66
http://ryanfaerman.com/twittersearch'

*/
var Sgeocode;

/**
* When "true", adds "<user>:" to the beginning of the tweet. This is useful for readers that do not

display Atom's author field. The default is "false"
* @var boolean
*/

var Sshowuser = false;

var Ssincedate;

var Suntildate;

/**
* @param string Squery optional
*/
function TwitterSearch($query=false) {

$this->query = Squery;
}

/**
* Find tweets from a user
* @param string Suser required
* @retum object
*/
function from(Suser) {

$this->query .= ' ffom:'.str_replace('@',", Suser);
return Sthis;

/**
* Find tweets to a user
* @param string Suser required
* @retum object
*/
function to(Suser) {

$this->query .= ' to:'.str_replace('@', ", Suser);
return Sthis;

/**
* Find tweets referencing a user
* @param string Suser required
* @retum object
*/
function about(Suser) {

$this->query .= ' @'.str_replace('@',", Suser);
return Sthis;

/**
* Find tweets containing a hashtag

v
40

* @param string $user required
* @return object
*/
function with($hashtag) {

$this->query .= ' #'.str_replace(’# ',", Shashtag);
return Sthis;

}

/**
* Find tweets containing a word
* @param string Suser required
* @retum object
*/
function contains(Sword) {

$this->query .= ' '.Sword;
return Sthis;

/**
* Set show user to true
* @return object
*/
function show_user() {

$this->show_user = true;
return Sthis;

/**
* @param int Ssince id required
* @retum object
*/
function since(Ssince id) {

$this->since = Ssince id;
return Sthis;

}

/**
* @param int Slanguage required
* @retum object
*/
function lang(Slanguage) {

$this->lang = Slanguage;
return Sthis;

}

/** .
* @param int $n required
* @retum object
*/
function rpp(Sn) {

$this->rpp = $n;
return Sthis;

}

/**
* @param int $n required

* @return object
V
function page($n) {

$this->page = $n;
return $this;

function sincedate(Ssincedate) {
Sthis->since date = Ssince date;
return Sthis;

function untildate(Suntildate) {
$this->until_date = Suntil date;
return Sthis;

/**
* @param float Slat required, lattitude
* @param float Slong required, longitude
* @param int Sradius required.
* @param string optional. mi|km
* @retum object
*/
function geocode($lat, Slong, Sradius, $units='mi')

$this->geocode = Slat.','.Slong.','.Sradius.Sunits;
// Sthis->geocode = Slat.','.Slong.','.Sradius.','.Sunits;

return Sthis;
}

/**
* Build and perform the query, return the results.
* @param Sreset query boolean optional.
* @retum object
*/
function results($reset_query=true) {

//Srequest = 'http://search.twitter.com/search.'.$this->type;
//Srequest = 'http://search.twitter.com/search.'.$this->type;
Srequest = 'http://search.twitter.com/search.'.$this->type;
Srequest .= '?geocode=-1.274359%2C36.813106%2C15.0mi&';
Srequest .= 'q='.urlencode($this->query);
//Srequest .= '&since=2011-01-21';

if(isset($this->since_date)) {
Srequest .= '&since-,$this->since_date;

}

if(isset($this->until_date)) {
Srequest .f= '&until='.$this->until_date;

}

if(isset($this->rpp)) {

http://search.twitter.com/search.'.$this-%3etype
http://search.twitter.com/search.'.$this-%3etype
http://search.twitter.com/search.'.$this-%3etype

Srequest .= '&rpp='.$this->rpp;
}

if(isset($this->page)) {
Srequest .= '&page='.$this->page;

}

if(isset($this->lang)) {
Srequest .= '&lang='.$this->lang;

}

if(isset($this->since)) {
Srequest .= '&since_id-.$this->since;

}

if($this->show_user) {
Srequest .= '&show_user=true';

}

if(isset($this->geocode)) {
print $this->geocode ;
Srequest .= '&geocode='.$this->geocode;

}

if($reset_query) {
$this->query =

}

//print Srequest;

return $this->objectify($this->process($request))->results;

/**
* Returns the top ten queries that are currently trending on Twitter.
* @retum object
*/
function trends() {

Srequest = 'http://search.twitter.com/trends.json';

return $this->objectify($this->process($request));
}

/**
* Internal function where all the juicy curl fun takes place
* this should not be called by anything external unless you are
* doing something else completely then knock youself out.
* @access private
* @param string $url Required. API URL to request
* @param string Spostargs Optional. Urlencoded query string to append to the Surl
*/

function process($url, $postargs=false) {
Sch = curlinit(Sufl);
if($postargs !== false) {

curlsetopt (Sch, CURLOPT POST, true);
curlsetopt (Sch, CURLOPT POSTFIELDS, Spostargs);

http://search.twitter.com/trends.json'

}

curl_setopt($ch, CURLOPT VERBOSE, 1);
curl_setopt($ch, CURLOPTNOBODY, 0);
curl setopt($ch, CURLOPTHEADER, 0);
curl_setopt($ch, CURLOPTUSERAGENT, $this->user_agent);
curl_setopt($ch, CURLOPT FOLLOWLOCATIONJ);
curl_setopt($ch, CURLOPT RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT HTTPHEADER, $this->headers);

curl_setopt($ch, CURLOPT PROXY, "192.168.4.4:8080");
//curl_setopt($ch, CURLOPT PROXY, "10.2.21.98:80");
//curl_setopt($ch, CURLOPT_PROXYUSERPWD, "[uhs]:[uhs]");

Sresponse = curlexec(Sch);

$this->responseInfo=curl_getinfo($ch);
curlclose(Sch);

if(intval($this->responselnfo['http_code']) == 200)
return Sresponse;

else
return false;

}

I**
* Function to prepare data for return to client
* @access private
* @param string Sdata
*/

function objectify(Sdata) {
if($this->type == 'json')

return (object) json decode(Sdata);

else if($this->type == 'xml') {
if(function_exists('simplexml_load_string')) {

Sobj = simplexml_load_string(Sdata);

Sstatuses = array();
foreach($obj->status as Sstatus) {

$statuses[] = Sstatus;
}
return (object) Sstatuses;

* }
else {

return $out;
}

}
else

return false;
} •:

}

44

4. Code Listing For the Learning Model

from nltk.corpus import CategorizedPlaintextCorpusReader
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.util import bigrams
from nltk.corpus import stopwords
import nltk.classify.util, nltk.metrics
from nltk.metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist
import collections, itertools
import cPickle as pickle

corpus_root = r'C:\nltk_data\corpora\KWTweets'
filepattern = r'.*\.txf
tweets = CategorizedPlaintextCorpusReader(corpus_root,file_pattem,cat_pattem= r'(\w+)')

testcorpusroot = r'C:\nltk_data\corpora\HLTweets'
test_file_pattern = r'.*\.txf
testtweets = CategorizedPlaintextCorpusReader(test_corpusroot,test_filepattern,cat_pattern= r'(\w+)')

def goodwordfeats(words):
return dict([(word, True) for word in words if not(word.lower().strip(",").strip("!") in ["r",

"u", "ur", "urs", "we", "was", "2", "at", "that", "it", "for", "is", "i", "on", "of’, "am", "i'm", "!",
"" " " "www" "&auof" "&et-" "&et&et " "in" "the" "ft" "+" "ill" " n"

">",'">:", ":o", ";'o", "<3", "a",’"it"]) and (not word’.lower’() in stopwords’words('english')) and (not
word.lower().isdigit()) and (not word.lower().startswith("#”)) and (not word.lower().startswith("@")) and
(not word.startswith("RT")) and (not word.lower().startswith("http"))])

def good_words(words):
return [(word) for word in words if not(word.lower().strip(",").strip("!") in ["r", "u", "ur",

"urs", "we", "was", "2", "at", "that", "it", "for", "is", "i", "on", "of, "am", "i’m",
"www",""", ">", ">>", "in", "the", "!!", "+","!!!", ":p", ">", ">:",

":o", ";o", "<3", "a”, "rt"]) and (not word.lower() in stopwords.words('english’)) and (not
word.lower().isdigit()) and (not word.lower().startswith("#")) and (not word.lower().startswith("@")) and
(not word.startswith("RT")) and (not word.lower().startswith("http"))]

def get_words(words):
return [(word) for word in words]

def bigramwordfeats(words):
A

mybigrams = bigrams(words)
return dict([(bigram, True) for bigram in mybigrams])

def goodbigramwordfeats(words):

mybigrams = bigrams(good_words(words))
return dict([(bigram, True) for bigram in mybigrams])

def bow_word_feats(words):

45

return dict([(word, True) for word in words])

def comb_bigram_word_feats(words):

mybigrams = bigrams(words)
d = dict([(bigram, True) for bigram in mybigrams])
d.update(bow_word_feats(words))
return d

def comb_goodbigram_word_feats(words):

mybigrams = bigrams(good_words(words))
d = dict([(bigram, True) for bigram in mybigrams])
d.update(good_word_feats(words))
return d

def cleanup(words):
return [word, lower)). lstrip('#').lstrip('@')rstrip('!').strip)'*') for word in words]

negids = tweets.fileids(categories=['neg'])
posids = tweets.fileids(categories=['pos’])

neg testid s = test_tweets.fi I eids(categories=['neg'])
postestid s = test_tweets.fileids(categories=['pos'])

negwords = [)good_words(clean_up(str.split(tweets.raw)fileids=[f]))))) for f in negids]
poswords = [(good_words(clean_up(str.split(tweets.raw(fileids=[f]))))) for f in posids]

negfeats = [(comb_good_bigram_word_feats(clean_up(str.split(tweets.raw(fileids=[f])))), 'neg') for f in
negids]
posfeats = [(comb good bigram word_feats(clean_up(str.split(tweets.raw(fileids=[f])))), 'pos') for f in
posids]

neg test feats = [(comb_good_bigram_word_feats(clean_up(str.split(test_tweets.raw(fileids=[f])))), 'neg')
for f in neg test ids]
pos test feats = [(comb_good_bigram_word_feats(clean_up(str.split(test tweets.raw(fileids=[f])))), 'pos')
for f in pos test ids]

negcutoff = len(neg_test_feats)*5/8
poscutoff = len(postestfeats) * 5/8

trainfeats = negfeats + posfeats
testfeats = neg_test_feats[negcutoff:] + pos_test_feats[poscutoff:]
print 'train on %d instances, test on %d instances' % (len(trainfeats), len(testfeats))

classifier = NaiveBayesClassifier.train(trainfeats)
refsets = collections.defaultdict(set))
testsets = collections.defaultdict(set)

print 'accuracy:', nltk.classily.util.accuracy(classifier, testfeats)

46

for i, (feats, label) in enumerate(testfeats):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets [observed] .add(i)

print 'pos precision:', nltk.metrics.precision(refsets['pos'], testsets['pos'])
print 'pos recall:', nltk.metrics.recall(refsets['pos'], testsets['pos'])
print 'neg precision:', nltk.metrics.precision(refsets['neg'], testsets['neg'])
print 'neg recall:', nltk.metrics.recall(refsets['neg'], testsets['neg'])

classifier.show_most_informative_features()

filename = open('KWTD_NB_Classifier.pickle', 'wb')
pickle.dump(classifier, filename)
filename.close()

5. Code Listing for the Live Data Sentiment Classifier Model

from nltk.corpus import CategorizedPlaintextCorpusReader
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.util import bigrams
from nltk.corpus import stopwords
import nltk.classify.util, nltk.metrics
from nltk. metrics import BigramAssocMeasures
from nltk.probability import FreqDist, ConditionalFreqDist
import collections, itertools
import cPickle as pickle

def goodwordfeats(words):
return dict([(word, True) for word in words if not(word.lower().strip(",").strip("!") in ["r",

"u", "ur", "urs", "we", "was", "2", "at", "that", "it", "for", "is", "i", "on", "of', "am", " i ' m " , "!",
"www",""", ">", ">>", " ;) " , ... , "=d", "in", "the",

":d", "!!", "+","!!!", ":p", ">", ">:", ":o", ";o", "<3", "a", "rt"]) and (not word.lower() in
stopwords.words('english')) and (not word.lower().isdigit()) and (not word.lower().startswith("#")) and (not
word.lower().startswith("@")) and (not word.startswith("RT")) and (not word.lower().startswith("http"))])

def goodwords(words):
return [(word) for word in words if not(word.lower().strip(",").strip("!") in ["r", "u", "ur",

"urs", "we", "was", "2", "at", "that", "it", "for", "is", "i", "on”, "of', "am”, "i'm", ":D", ":P", "D", "P",
»» ii it.ii iiiii ii or ii •• ii it •• it.yi it./ii it. \ ii ii. /ii iiyi ii/ ii it__•• ii__\ n i i a a h ii ii i i r u . ^ i i ii./ii ii.|n

• > 9 9 • > 9 9 9 ••• 9 •) 9 •(. » • / 9 • V 9 / » V > 9) 9 _ 9 ~ 9 , .| ,

"www",""", ">", ">>", ... , "=d", "in", "the", ":d", "!!", "+",
"!!!", ":p", ">”, ">:", ":o", ";o", "<3", "a", "rt"]) and (not word.lower() in
stopwords.words('english')) and (not word.lower().isdigit()) and (not word.lower().startswith("#")) and (not
word.lower().startswith("@")) and (not word.startswith("RT")) and (not word.lower().startswith("http"))]

def words(words):
return [(word) for word in words]

47

def bigram_word_feats(words):
mybigrams = bigrams(words)
return dict([(bigram, True) for bigram in mybigrams])

def good_bigram_word_feats(words):
mybigrams = bigrams(goodwords(words))
return dict([(bigram, True) for bigram in mybigrams])

def bo w word feats(words):
return dict([(word, True) for word in words])

def comb_good_bigram_word_feats(words):
mybigrams = bigrams(words)
d = dict([(bigram, True) for bigram in mybigrams])
d.update(good_word_feats(words))
return d

def clean up(words):

return [word.lower().lstrip('#').lstrip('@').rstrip('!').rstrip('!!!').rstrip('...,).strip('*').strip]',') for word
in words]

def tweetsent] words):
value = 0
for i in words:

if [i} in negwords:
value += 1

elif [i] in poswords:
value += 1

else:
value += 0

return value

def biextract] words):
bivalue = 0
for a,b in words:

if [a,b] in negwords:
bivalue += 1

elif [a,b] in poswords:
bivalue += 1

else:
bivalue += 0

return bivalue

items = ","]

, corpus root = r'C:\nltk_data\corpora\KWTweets'
file pattern = r'.*\.txt'
tweets = CategorizedPlaintextCorpusReadef(corpus_root,file_pattern,cat_pattern= r'(\w+)')

negids = tweets.fileids(categories=['neg'])
posids = tweets.fileids(categories=['pos'])

48

negwords = [(good_words(clean_up(str.split(tweets.raw(fileids=[f)))))) for f in negids]
poswords = [(good_words(clean_up(str.split(tweets.raw(fileids=[f]))))) for f in posids]

data = openCworkfile.txt', V)
tweet= data.readline()
s = list(tweet)
for i in items:

s = [s.replace(i,'') for s in s]

newtweet ="".join(s)
classifier = pickle. load(open('K.WTD_NB_Classifier.pickle'))

tweetfeats = (good_words(clean_up(str.split(newtweet))))
bifeats = (bigrams(good_words(clean_up(str.split(newtweet)))))

k = 0
newbifeats= []
for i in bifeats:

var = list(bifeats[k])
newbifeats.append(var)
k += 1

wordresults = tweetsent(tweetfeats)
bifeatresults = biextract(newbifeats)
tresults = wordresults + bifeatresults

if tresults = 0:
sent = 'neu'

else:
sent = classifier.classify(bow_word_feats(clean_up(str.split(newtweet))))

results = open('output.txt', 'w')
results.write(sent)

C. DETAILED TEST RESULTS

1. USE OF EMOTICON LABELED TRAINING DATA AND HAND LABELED TEST DATA

a) UNIGRAMS

(I) With Noisy Data

train on 5000 instances, test on 300 instances
accuracy: 0.693333333333

49

Most Informative Features
:-(= True neg : pos = 107.0 : 1.0
:(= True neg: pos = 63.5 : 1.0
:p = True neg: pos = 34.0 : 1.0
:-) = True pos : neg = 17.6 : 1.0
:d = True pos : neg = 14.0 : 1.0
:) = True pos : neg = 13.7 : 1.0

@noninie: = True pos : neg = 11.0:
@hotlivia: = True neg: pos = 10.3 : 1

hme = True neg: pos = 9.7 : 1.0
4nai = True neg: pos = 9.7 : 1.0

pos precision: 0.701388888889
pos recall: 0.673333333333
neg precision: 0.685897435897
neg recall: 0.713333333333

(2) Without Noisy Data

train on 5000 instances, test
accuracy: 0.703333333333
Most Informative Features

4nai = True
2pak = True
hme = True
er = True

lovely - True
confirm = True

city = T rue
pain = True

believe = True
website = True

pos precision: 0.676300578035
pos recall: 0.78
neg precision: 0.740157480315
neg recall: 0.626666666667

300 instances

neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.0 : 1.0
pos : neg = 8.6 : 1.0
neg : pos = 8.3 : 1.0

neg : pos = 8.3 : 1.0
neg : pos = 8.3 : 1.0
neg : pos = 7.8 : 1.0
neg : pos = 7.7 : 1.0

b) BIGRAMS

(1) With Noisy Data

tram on 5000 instances, test on 300 instances
accuracy: 0.57
Most Informative Features

('thank', 'you') = True
= True

(':(', 'i') = True
(':(', 'miss') = True
('me',':)') = True

('come', 'to') = True
('miss', 'msa') = True

('rt', '@noninie:') = True

pos: neg = 23.7:1.0
neg : pos = 19.0:1.0
neg : pos = 13.8 : 1.0

neg : pos = 12.3:1.0
pos : n£g = 12.3 : 1.0

neg: pos = 11.7:1.0
neg : pos = 11.0 : 1.0
pos : neg = 11.0 : 1.0

('it',':(') = True neg : pos = 11.0 : 1.0
('rt', '@hotlivia:') = True neg : pos = 10.3:1.0

pos precision: 0.551724137931
pos recall: 0.746666666667
neg precision: 0.60824742268
neg recall: 0.393333333333

(2) Without Noisy Data

train on 5000 instances, test on 300 instances
accuracy: 0.5
Most Informative Features

('miss', 'msa') = True
('headed', 'hme') = True
('2pak', '4nai') = True
('4nai', ’miss') = True
('hme', '2pak') = True

('happy', 'birthday') = True
('looking', 'forward') = True

('chatting', 'pops') = True
("didn't", 'get') = True

('msa', 'alrdy!<>msa') = True
pos precision: 0.5
pos recall: 0.933333333333
neg precision: 0.5
neg recall: 0.0666666666667

neg : pos = 11.0 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0

pos : neg = 7.7 : 1.0
neg : pos = 7.0 : 1.0

neg : pos = 6.3:1.0
neg : pos = 6.3 : 1.0

neg : pos = 5.7 : 1.0

c) COMBINED UNIGRAMS AND BIGRAMS

(1) With Noisy Data

train on 5000 instances, test on 300 instances
accuracy: 0.686666666667
Most Informative Features

:-(= True
:(= True
:p = True

('thank', 'you') = True
(':(',':(') = True -

:-) = True
:d = True

(’:(’, 'i') = True
:) = True

(':(', 'miss') = True
pos precision: 0.684210526316
pos recall: 0.693333333333
neg precision: 0.689189189189
neg recall: 0.68

neg: pos =
neg : pos =
neg: pos

pos : neg
neg: pos =

neg „=
neg =
pos =
neg =

pos
pos

neg
pos

neg: pos =

107.0 : 1.0
63.5 : 1.0
34.0 : 1.0

= 23.7:1.0
19.0 : 1.0
17.6 : 1.0
14.0 : 1.0
13.8 : 1.0
13.7 : 1.0

12.3 : 1.0

51

(2) Without Noisy Data

train on 5000 instances, test on 300 instances
accuracy: 0.7
Most Informative Features

('miss', 'msa') = True
('headed', 'hme') = True
('2pak', '4nai') = True
('4nai', 'miss') = True

hme = True
('hme', '2pak') = True

4nai = True
2pak = True

er = True
lovely = True

pos precision: 0.678571428571
pos recall: 0.76
neg precision: 0.727272727273
neg recall: 0.64

neg : pos = 11.0 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.7 : 1.0
neg : pos = 9.7 : 1.0

neg : pos = 9.0 : 1.0
pos : neg = 8.6 : 1.0

2. USE OF HAND LABELED TRAINING AND TEST DATA

a) UNIGRAMS

(I) With Noisy Data

train on 500 instances, test on 300 instances
accuracy: 0.75
Most Informative Features

awesome = True pos : neg
love = True pos : neg =
:(= True neg : pos =

hate = True neg : pos =
great = True pos : neg =
2011= True pos : neg

february = True pos : neg
his = True pos : neg =
pm = True pos : neg =

museum = True pos : neg
pos precision: 0.781954887218
pos recall: 0.693333333333
neg precision: 0.724550898204
neg recall: 0.806666666667

= 9.7: 1.0
8.6 : 1.0

8.3 : 1.0
7.7 : 1.0
7.7 : 1.0
7.7 : 1.0
7.7: 1.0

5.7 : 1.0
5.7 : 1.0

= 5.0: 1.0

(2) Without Noisy Data

train on 500 instances, test on 300 instances
accuracy: 0.763333333333
Most Informative Features

awesome = True
love = True

:(= True
hate = True

great = True
february = True

pm = True
museum = True

work = True
free = True

pos precision: 0.761589403974
pos recall: 0.766666666667
neg precision: 0.765100671141
neg recall: 0.76

pos : neg = 9.7 : 1.0
pos : neg = 8.6 : 1.0

neg : pos = 8.3 : 1.0
neg : pos = 7.7 : 1.0
pos : neg = 7.7 : 1.0

pos : neg = 7.7 : 1.0
pos : neg = 5.7 : 1.0

pos : neg = 5.0 : 1.0
neg : pos = 5.0 : 1.0

pos : neg = 4.3 : 1.0

b) BIGRAMS

(1) With Noisy Data

train on 500 instances, test on 300 instances
accuracy: 0.593333333333
Most Informative Features

('at', 'the') = True
('february', '2011’) = True

('lebron', 'is') = True
('night', 'at') = True

('the', 'museum') = True
('i', 'hate') = True

('i', 'am') = True
('up', 'my') = True

('with', 'the') = True
('the', 'new') = True

pos precision: 0.567307692308
pos recall: 0.786666666667
neg precision: 0.652173913043
neg recall: 0.4

pos : neg = 7.7 : 1.0
pos : neg = 7.7 : 1.0

pos : neg = 5.7 : 1.0
pos : neg = 5.0 : 1.0

pos : neg = 5.0 : 1.0
neg : pos = 4.3 : 1.0
pos : neg = 3.7 : 1.0

neg : pos = 3.0 : 1.0
neg : pos = 3.0: 1.0
pos : neg = 3.0 : 1.0

(2) Without Noisy Data

train on 500 instances, test on 300 instances
accuracy: 0.55
Most Informative Features

('night', 'museum') = True
('customer', 'care') = True
('san', 'francisco') = True
('twitter', 'api') = True

('malcolm', 'gladwell') = True

pos : neg = 5.0: 1.0
(neg : pos = 3.0: 1.0
neg : pos = 2.3 : 1.0

neg : pos = 2.2: 1.0
pos : neg = 1.9 : 1.0

('palo', 'alto') = True
('east', 'palo') = True

('lambda', 'calculus') = True
('alien', 'hamilton') = True

('booz', 'alien') = True
pos precision: 0.526690391459
pos recall: 0.986666666667
neg precision: 0.894736842105
neg recall: 0.1 13333333333

pos : neg = 1.7 : 1.0
pos : neg = 1.7 : 1.0

neg : pos = 1.7 : 1.0
pos : neg = 1.7 : 1.0

pos : neg = 1.7 : 1.0

c) USING BOTH UNIGRAMS AND BIGRAMS

(I) With Noisy Data

train on 500 instances, test on 300 instances
accuracy: 0.746666666667
Most Informative Features

awesome = True pos : neg
love = True pos : neg

:(- True neg : pos =
('at', 'the') = True pos : neg =

hate = True neg : pos =
great = True pos : neg =
2011= True pos : neg =

february = True pos : neg =
('february', '2011') = True pos : neg

pm = True pos : neg =
pos precision: 0.776119402985
pos recall: 0.693333333333
neg precision: 0.722891566265
neg recall: 0.8

= 9.7: 1.0
8.6 : 1.0

8.3 : 1.0
7.7 : 1.0
7.7 : 1.0
7.7 : 1.0
7.7 : 1.0
7.7 : 1.0

= 7.7: 1.0
5.7 : 1.0

(2) Without Noisy Data

train on 500 instances, test on
accuracy: 0.753333333333
Most Informative Features

awesome = True
love = True
:(= True

hate = True
great = True

february = True
pm = True

museum = True
('night', 'museum') = True

work = True

300 instances

pos : neg = 9.7 : 1.0
pos : neg = 8.6: 1.0

neg : pos = 8.3 : 1.0
neg : pos = 7.7 : 1.0
pos : neg = 7.7 : 1.0

pos : neg = 7.7 : 1.0
pos : neg = 5.7 : 1.0

pos : neg = 5.0 : 1.0
pos : neg = 5.0 : 1.0

neg : pos = 5.0: 1.0

54

pos precision: 0.75
pos recall: 0.76
neg precision: 0.756756756757
neg recall: 0.746666666667

3. KEYWORDS FOR TRAINING DATA AND HAND LABELED TWEETS AS TEST DATA

a) UNIGRAMS

(1) With Noisy Data

train on 1165 instances, test on 300 instances
accuracy: 0.776666666667
Most Informative Features

great = True pos : neg = 5.6 : 1.0
ass = True neg: pos = 5.1 : 1.0

suck = True neg : pos 5.1 : 1.0
good = True pos : neg = 4.6 : 1.0
are = True neg : pos = 4.5 : 1.0
in = True pos : neg 4.2 : 1.0

not = True neg: pos = 4.2 : 1.0
i'm = True pos : neg = 4.1 : 1.0

cool = True pos : neg = 3.8 : 1.0
it = True pos : neg =

pos precision: 0.794326241135
pos recall: 0.746666666667
neg precision: 0.761006289308
neg recall: 0.806666666667

3.5 : 1.0

(2) Without Noisy Data

train on 1165 instances, test on 300 instances
accuracy: 0.773333333333
Most Informative Features

great = True pos : neg 5.6 : 1.0
ass = True neg : pos 5.1 : 1.0

suck = True neg : pos = 5.1 : 1.0
good = True pos : neg = 4.6: 1.0
cool = True pos: neg- = 3.8 : 1.0
like = True pos : neg = 3.4 : 1.0

funny = True pos: neg = 3.4 : 1.0
mambo = True pos: neg = 3.4 : 1.

big = True pos : neg 3.4 : 1.0
sana = True pos: neg = 2.9 : 1.0

pos precision: 0.797101449275
pos recall: 0.733333333333
neg precision: 0.753086419753
neg recall: 0.813333333333

55

b) BIGRAMS

0) With Noisy Data

train on 1165 instances, test on 300 instances
accuracy: 0.69
Most Informative Features

('is', 'a') = True
('it', 'up') = True

('still', ’in') = True
('too', 'good') = True
('that', 'bad') = True

('taking', 'the') = True
('just', 'too') = True
('2', 'death') = True

('my', 'evening') = True
('all', 'that') = True

pos precision: 0.813186813187
pos recall: 0.493333333333
neg precision: 0.636363636364
neg recall: 0.886666666667

neg : pos = 2.7 : 1.0
pos : neg = 2.6 : 1.0
pos : neg = 1.9 : 1.0

neg : pos = 1.5 : 1.0
pos : neg = 1.1 : 1.0
pos : neg = 1.1 : 1.0

pos : neg = 1.1 : 1.0
pos : neg = 1.1 : 1.0

pos : neg = 1.1 : 1.0
pos : neg = 1.1 : 1.0

(2) Without Noisy Data

train on 1165 instances, test on 300 instances
accuracy: 0.573333333333
Most Informative Features

('looking', Toward') = True
('thank', 'god') = None

('great', 'stuff) = None
('credit', "it's") = None

("it's", 'due') = None
('got', 'love') = None

('fresh', 'death') = None
('eat', 'dick') = None

('customer', 'care') = None
('feeling', 'good') = None

pos precision: 0.958333333333
pos recall: 0.153333333333
neg precision: 0.539855072464
neg recall: 0.993333333333

pos : neg = 1.1 : 1.0
neg; pos = 1.0 : 1.0

neg : pos = 1.0 : 1.0
neg : pos = 1.0 : 1.0
neg : pos = 1.0 : 1.0
neg : pos = 1.0 : 1.0
neg : pos = 1.0 : 1.0

pos : neg = 1.0 : 1.0
pos : neg = 1.0 : 1.0

pos : neg = 1.0 : 1.0

c) COMBINED UNIGRAMS AND BIGRAMS

(1) With Noisy Data

56

train on 1165 instances, test on 300 instances
accuracy: 0.803333333333
Most Informative Features

great = True pos : neg = 5.6 : 1.0
ass = True neg: pos = 5.1 : 1.0
suck = True neg : pos = 5.1 : 1.0
good = True pos : neg = 4.6 : 1.0
are = True neg : pos 4.5 : 1.0
in = True pos: neg - 4.2 : 1.0

not = True neg : pos = 4.2 : 1.0
i'm = True pos : neg = 4.1 : 1.0

cool = True pos : neg = 3.8 : 1.0
it = True pos : neg = 3.5 : 1.0

pos precision: 0.813793103448
pos recall: 0.786666666667
neg precision: 0.793548387097
neg recall: 0.82

(2) Without Noisy Data

train on 1165 instances, test on 300 instances
accuracy: 0.773333333333
Most Informative Features

great = True pos : neg = 5.6 : 1.0
ass = True neg : pos = 5.1 : 1.0
suck = True neg : pos 5.1 : 1.0
good = True pos : neg = 4.6 : 1.0
cool = True pos : neg = 3.8 : 1.0
funny = True pos : neg = 3.4 : 1.0
mambo = True pos : neg = 3.4 : 1.
like = True pos : neg 3.4 : 1.0
big = True pos : neg = 3.4 : 1.0
sana = True pos : neg = 2.9 : 1.0

pos precision: 0.797101449275
pos recall: 0.733333333333
neg precision: 0.753086419753
neg recall: 0.813333333333

D. SAMPLE TRAINING ANn TEST FEATURES MATRICES

1. Hand Labeled Training Features Matrix - Combined Unigrams and Bigrams

: True, 'sepia': True, ('sepia', ’killin’): True}, 'pos'), ({("j'sha", ’lets’):
True, ’lets’: True, "j’sha": True}, ’pos’), ({(’mix’, ’catchy’): True, ’old’: Tr
ue, ’skool’: True, ’g’: True, ’mix’: True, ('old', ’skool’): True, ’agai’: True,
(’skool’, ’hiphop’): True, 'play': True, ('hiphop', ’mix'): True, ('play', 'aga
i'): True, 'catchy': True, 'hiphop': True, ('g', 'play'): True, ('catchy', 'g'):
True}, 'pos'), ({('program', 'kindle2'): True, ('idea','-’): True, 'kindle2':

True, ('awesome', 'idea'): T r u e , T r u e , 'idea': True, ('-', 'continual'): Tr
ue, ('learning', 'program'): True, 'program': True, 'learning': True, 'continual
': True, ('continual', 'learning'): True, 'awesome': True}, 'pos'), ({'40d': Tru
e, 'love': True, ('model', 'getting???'): True, ('love', 'love'): True, 'ooooh':
True, 'getting???': True, ('getting???', '40d'): True, ('ooooh', 'model'): True

, 'model': True, ('40d', 'love'): True}, 'pos'), ({('dad', 'impressed'): True,'
even': True, ('even', 'dad'): True, 'sol': True, 'sauti': True, 'give': True, ('
gotta', 'give'): True, 'gotta': True, ('sauti', 'sol'): True, ('sol', 'somasoma'
): True, ('video', 'even'): True, 'somasoma': True, ('give', 'sauti'): True, 'vi
deo': True, ('somasoma', 'video'): True, 'dad': True, 'impressed': True}, 'pos')
, ({"india's": True, ("india's", 'election'): True, 'india:': True, 'times': Tru
e, 'election': True, ('times', 'india:'): True, 'wonder': True, ('wonder', "indi
a's"): True, ('india:', 'wonder'): True}, 'pos'), ({('search', 'options'): True,
('google', 'using'): True, ('video', 'google'): True, ('good', 'video'): True,

'search': True., 'good': True, 'google': True, 'video': True, ('using', 'search')
: True, 'using': True, 'options': True}, 'pos'), ({'draw': True, 'fashion': True
, 'show': True, 'top': True, 'Stanford': True, ('Stanford', 'charity'): True, ('
show', 'top'): True, ('fashion', 'show'): True, ('charity', 'fashion'): True, 'c
harity': True, ('top', 'draw'): True}, 'pos'), ({'profile': True, ('official','
university'): True, ('one', 'popular'): True, ('profile', 'one'): True, 'stanfor
d': True, 'university?s': True, 'university': True, 'official': T r u e , T r u e ,
('university?s', 'facebook'): True, ('facebook', 'profile'): True, ('pages’, '-

'): True, 'facebook': True, 'pages': True, 'popular': True, ('popular', 'officia
1'): True, 'one': True, ('university', 'pages'): True, ('Stanford', 'university?
s'): True}, 'pos'), ({('lyx', 'cool'): True, 'lyx': True, 'cool': True}, 'pos'),
({": True, ('danny', 'gokey'): True, 'hero': True, ('gokey', 'home'): True, ('
...danny',"): True, ('dissapointed', 'sent'): True, '...danny': True, 'rock':
True, 'sooo': True, 'yeah': True, ('sooo', 'dissapointed'): True, ('home', 'stil
1'): True, ('hometown', 'hero'): True, 'home': True, ('rock', '...danny'): True,
('yeah', 'milrockee'): True, 'still': True, ('hero',"): True, ('still', 'rock

'): True, 'gokey': True, 'danny': True, (", 'yeah'): True, ('sent', 'danny'): T
rue, 'sent': True, 'hometown': True, (", 'hometown'): True, 'dissapointed': Tru
e, 'milrockee': True}, 'pos'), ({('tones', 'danny'): True,": True, ('danny','
gokey'): True, 'danny': True, ('fashion:', 'adam'): True, ('gokey', 'cute'): Tru
e, 'lambert': True, ('lambert', 'tones'): True, ('"american", "idol"'): True,'"
american": True, 'gokey': True, ('adam', 'lambert'): True, 'fashion:': True,'

2. Hand Labeled Test Features Matrix - Combined Unigrams and Bigrams

": True, 'people': True, ('coming', 'coz'): True, ('show', 'people'): True, (’p
eople', 'going'): True, 'wit': True, 'request-keep': True, 'coming': True, (",
'maaad'): True, 'mins': True, ('em', 'coming'): True, 'maaad': True, 'coz': Tru

e, 'show': True, ('nuts', 'request—keep'): True, ('mins', 'show'): True, 'going

58

True, ('going', 'nuts'): True, ('request-keep', 'em'): True, ('wit',"): Tr
ue, 'nuts’: True, ('coz', 'wit'): True}, 'pos'), ({('paper', 'loving'): True, 'p
aper': True, 'loving': True}, 'pos'), ({'loving': True, ('team', 'selection'): T
rue, 'selection': True, ('loving', 'team'): True, 'team': True}, 'pos'), ({('day
', 'shout'): True, (til', 'die'): True, 'die': True, ('iv', 'waited'): True, ('
waited’, 'day'): True, 'iv': True, til': True, ('shout', 'til'): True, 'shout':
True, 'day': True, 'waited': True}, 'pos'), ({'go': True, ('go', 'gunaz'): True
, ('go', 'go'): True, 'gunaz': True}, 'pos'), ({}, 'pos'), ({'good': True, 'resu
Its': True, ('good', 'results'): True}, 'pos'), ({('result', 'today'): True,":
True, ('today',"): True, 'nice': True, ('nice', 'result'): True, 'today': Tru

e, 'result': True}, 'pos'), ({('theme', 'night'): True, 'town': True, ('town','
week'): True, 'aiiiiii': True, ("can't", 'wait'): True, 'tuesday': True, ('wait'
, 'next'): True, ('next', 'tuesday'): True, 'week': True, 'next': True, 'theme':
True, ('night', 'town'): True, 'best': True, 'night': True, ('week', "can't"):

True, ('best', 'theme'): True, ('aiiiiii', 'best'): True, "can't": True, 'wait':
True}, 'pos'), ({('good', 'great'): True, 'good': True, ('great', 'game'): True
, ('game', 'keep'): True, 'great': True, 'keep': True, 'game': True, 'going': Tr
ue, ('keep', 'going'): True}, 'pos'), ({'ishh': True}, 'pos'), ({('ok', 'give'):
True, 'ok': True, 'give': True, ('wins', 'one'): True, 'wins’: True, 'one': Tru
e, ('give', 'wins'): True}, 'pos'), ({": True, 'hatrick': True, 'would': True,
'congrats': True, ('would', 'hatrick'): True, ('one', "): True, ('nice', 'one')
: True, (", 'congrats'): True, 'one': True, ('asking', 'much.?'): True, 'much.?
’: True, ('hatrick', 'asking'): True, 'asking': True, ('congrats', 'brace'): Tru
e, 'brace': True, ('brace', 'would'): True, 'nice': True}, 'pos'), ({('well', 'd
one'): True, ('keep', 'spirit'): True, 'done': True, ('done', 'keep'): True, 'we
11': True, 'spirit': True, 'keep': True}, 'pos'), ({'congrats': True, ('congrats
', 'ft'): True, 'ft': True, 'di': True, ('ft', 'di'): True, 'win': True, ('di',
'win'): True}, 'pos'), ({('-', 'pun'): True, 'pun': True, ('dinner','-'): True,
('clearly', 'west'): True, 'intended': T r u e , T r u e , ('ham', 'dinner'): True
, 'dinner': True, 'west': True, ('west', 'ham'): True, ('pun', 'intended'): True
, 'clearly': True, 'ham': True}, 'pos'), ({('great', 'keep'): True, 'great': Tru
e, ('playing', 'great'): True, ('well', 'playing'): True, 'well': True, 'playing
': True, 'keep': True}, 'pos'), ({'...on': True, ('second', '...on'): True, 'sec
ond': True, 'vs': True, ('westham', 'vs'): True, ('...on', 'westham'): True, 'we
stham': True}, 'pos'), ({'dance': True, 'looooove': True, 'victory': True, ('vie
tory', 'dance'): True, ('dance', 'looooove'): True}, 'pos'), ({('affleck', 'bar'
): True, ('ths', 'well'): True, 'managed': True, ('ben', 'affleck'): True, 'well
': True, ('bar', 'managed'): True, ('overdue', 'bt'): True, "town"': True, 'bt':
True, ('well', 'overdue'): True, 'star,direct’: True, 'know': True, 'bar': True
, ('know', 'ths'): True, ('managed', 'star,direct'): True, "’the": True, 'ben':

E. INSTALLATION INSTRUCTIONS

1. In order to deploy the Twitter Sentiment Analyser, the following prerequisites need to be installed

on the target machine.

• A web server of your choice e.g. Apache Tomcat, IIS etc.

• At least version 5.3.3 of PHP with curl support.

• At least version 2.6 of Python installed and initialized into the environment variables

(Linux) on Path (Windows).

2. To install the application, please copy the folder labeled “tsa” into your web browser root

directory.

3. Ensure that you have a direct connection to the internet from the target machine. If you do, skip to

step number 6 otherwise proceed to step number 4.

4. If you do not have a direct connection to the internet, you are probably behind a proxy. Navigate

into “tsa/includes” and find the files “class.twittersearch.php”. Open this file and go to line

number 309. Uncomment this line and specify your proxy IP address and port.

5. If a proxy username and password is required, uncomment line 310 and add the necessary proxy

credentials.

6. Ensure your web server is started and point your browser to this address

http://[nameofserver]/tsa/index.php where [nameofserver] could be the hostname, or IP address of

the target machine. E.g. http://localhost/tsa/index.php .If you receive the page displayed below the

installation has successfully completed. You can now proceed to enter the queries you wish to

search in Twitter, for sentiment analysis results.

TWITTER SfNTIMENT ANALYSfR Mo/illa Ffrefo*

He Ed* 1<tm HQtory Bookmark* fcxte beto

TWITTER SENTIMENT ANAiVSER ±

4* http:/flocafioKA*a/ridex.[*p|

■aiaffl

e .'I

TWITTER SENTIMENT ANALYSIS

[Search]

http://%5bnameofserver%5d/tsa/index.php
http://localhost/tsa/index.php

