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ABSTRACT

The effectiveness of hedging is examined using crack spreads on crude oil and distillate

fuels traded at the New York Mercantile Exchange (NYMEX). Using both static and dyn-

amic hedge ratios, and allowing for volatility transmission and cross market linkages, it is

found that dynamic cross-market hedges are more effective. We use multivariate volatility

models to account for spillover between the markets. We consider the statistical properties

of energy futures and spot prices and investigate the trends that underlie the price dyna-

mics in order to gain further insights into possible nuances of price discovery and energy

market dynamics. The family of autoregressive moving average (ARMA)-generalised au-

toregressive conditional heteroscedastic (GARCH) models are explored. The trends depict

time varying variability and persistence of oil price shocks. The return series conform to

a constant mean model with GARCH variance. We consider the joint behaviour of all the

series using co-integration to analyse the long-term equilibrium relationship between the

commodities. Analysis using the Engle-Granger (E-G) and Johansen co-integration test

reveal co-integrating relations and a vector error correction model (VECM) is used to cap-

ture the short term dynamics of energy prices. Finally, multivariate GARCH (MGARCH)

models are used to capture the source and magnitude of volatility spill overs. BEKK, con-

stant conditional correlation (CCC) and dynamic conditional correlation (DCC)-GARCH

models are used to capture the volatility transmission between the series and estimate the

parameters using maximum likelihood estimation (MLE). The hedge ratios are estimated

under a mean variance and utility maximization framework.
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1. INTRODUCTION

Energy use is behind virtually everything we interact with daily. It dictates the activities

in our lives now more than ever. The global energy market has rapidly expanded and

become increasingly interdependent. In developed countries, there is heavy reliance on

energy and other related products for sustainable economic growth and development as

is evidenced by the increase in consumption of energy products. Similarly, for developing

countries, there is heavy reliance on energy resources to steer economic growth and deve-

lopment.

Initially, energy was viewed just as an enabler, a utility with very limited consumer in-

terest, but now, it has become key in the achievement of a sustainable future and affects

all, from household production to professional consumption (Dorsman et al., 2013; Ramos

and Veiga, 2014). Globally, the energy trading marketplace has also developed along with

the growing demand for energy that is worldwide. New energy trading products are being

introduced in exchanges around the world at a record pace. Most of these new products

aid energy companies in offsetting various risks.

Energy firms are increasing their trading and risk management activities to ensure enhan-

ced and uninterrupted supplies of energy products to their consumers and also protect

themselves against economic shocks and political influence. Energy industry activities en-

tail four interrelated functions, which constitute the energy cycle around which the entire

industry revolves. These include exploration and production, transportation and storage,

refining and processing and finally distribution and sales. These functions entail complex

risks which inform mitigation strategies. The first two steps are generally referred to as

upstream processes, while the last two are downstream (GARP, 2009).
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Energy markets globally have undergone rapid deregulation, implying, more competition

and increased price volatility which exposes participants to potentially much greater risks.

Before, regulators, who were mainly governments, set prices. Prices were generally stable,

though consumers paid highly for inefficiencies such as complex cross-subsidies from sur-

pluses areas to shortage or inefficient technology areas (Clewlow and Strickland, 2000).

Deregulation gave rise to a free market implying more competitive prices revealing incre-

ased energy price volatility across all commodities.

The impact of deregulation is felt by both consumers and producers. It has increased

awareness for the need of risk management to control exposure to energy price fluctuati-

ons (Dooley, 1998; Winston, 1993). Risk in energy markets could be due to unexpected

jumps in demand and supply, a reduction in production capacity, resource reserve po-

licy, Organization of Petroleum Exporting Countries (OPEC) share capacity and policy,

regional and global economic policies, environmental regulations and stringent product

specifications among others (Chang et al., 2011), and other geopolitical risks. Other in-

vestors have also been drawn in as they seek new markets to operate. This combination

of producers and consumers, coupled with the sheer size of the market contributes to

the unparalleled growth experienced in energy derivatives, which is considered by most

market participants as a new phenomenon.

Crude oil is a fossil fuel composed of hydrocarbons formed from animals and plants that

eons ago. It is found in underground pools or reservoirs, in tiny spaces within sedimentary

rocks,in liquid form , and close to the surface in tar (or oil) sands. Petroleum products

are made from crude oil and other hydrocarbons contained in natural gas. After mining,

it is sent to a refinery and separated into usable petroleum products such as gasoline and

other distillates such as heating oil, diesel fuel, jet fuel, waxes, asphalt, lubricating oils

and petrochemical feed-stocks.
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The oil refining process cracks crude oil into its constituent products. The refiner’s profits

are directly linked to the “crack spread" (the difference between the revenue from mainly

gasoline and distillate fuels and cost of crude oil). The term “crack" refers to the process

a refiner uses to make money by breaking up the long hydrocarbon chains that make up

crude oil into petroleum products which are made of shorter chains. As a result, refiners

are simultaneously exposed to both sides of the market, and hence, exposed to greater

risks compared to oil producers or fuel consumers. They are caught between two markets:

the raw materials they must purchase and the finished products they sell. Figure 1.1

displays the products of the refining process (EIA, 2015).

Figure 1.1: Products of the refining process

Gasoline is used mainly as an engine fuel for vehicles, with most vehicles operating on the

least expensive grade, regular gasoline. The distillate fuels include diesel, used in diesel

engines found in most trucks, trains, buses, boats, and farm and construction vehicles

and heating oil used for heating homes.

This section gives a brief history of energy markets and their evolution; it discusses the

risks faced in these markets and how they can be managed. It introduces futures and
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crack spread trading; and gives a brief insight into hedging against energy market risks

using crack spreads. The problem statement, objectives and significance of the study are

also presented in this section.

1.1 Futures and Forwards

Over the last 30 years, pricing, expansion of global markets and significant changes in

demand and supply, have affected most commodity markets and especially the energy

markets. Changing economic patterns, war, international politics and other structural

changes within the energy sector have introduced considerable uncertainty with respect

to the future direction of market conditions (Dorsman et al., 2013). This has caused an

upsurge in market volatility, hence, creating a need for an effective hedge for the risk of

adverse exposure to price vulnerabilities. The main risk management tools available to

participants in energy markets are derivative contracts listed in exchanges worldwide.

A futures contract is a commitment to trade a specified quantity and quality of a particu-

lar asset at a specified price to be delivered on a specified future date. Essentially, it allows

the investor to “lock in" a price now so as to potentially benefit in future if prices fluctua-

tes. The price of the asset is agreed upon at the time the commitment is made. The long

party, who is the buyer, agrees to receive the underlying commodity, while the short party,

who is the seller, agrees to deliver the underlying commodity. Futures are standardized,

in terms of dates, quality and amounts traded, and can be re-traded during their life time

on a futures exchange. Forward contracts, which are direct agreements between two par-

ties made over the counter, are also agreements to transact on fixed terms at a future date.

Although forwards and futures all involve an agreement to trade at a certain future date

for a certain price, they have significant differences. Foremost, futures are standardized

meaning they are exchange traded, whereas forwards trade between individual instituti-

ons (Over-the-counter). Secondly, cash flows of the two contracts occur at different times.

Forwards are settled once at maturity whereas futures are marked to market daily with
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cash-flows exchanging between the long and short positions to reflect the daily price va-

riations. However, if future interest rates are known with certainty then both forwards

and futures can be treated as similar for purposes of pricing.

1.2 Hedging using futures

A financial position set to offset a significant loss (or gain) that could be incurred in a

portfolio is called a hedge. Hedging is one of the most important and practical applicati-

ons of futures contracts. In the event of any adverse movements in the market, hedging is

a simple work around to protect a trader’s trading positions from making a loss. Futures

can also be used to make profit. All the terms of the contract are standardized except for

the price, which is discovered through the bids (demand) and offers (supply). Ultimately,

all contracts are settled either by delivery of the actual physical commodity or through

liquidation by an offsetting transaction (a sale after an initial purchase or a purchase after

an initial sale).

The principle of hedging in energies is based on the co-evolution of spot and futures

market prices. This evolution is not necessarily identical, but usually close enough that

minimising risk of a loss in the spot market by taking an opposite position in the futures

market is possible. This way, losses in one market are offset by gains in the other by the

hedger. In this manner, the hedger is able to establish a price level for a spot transaction

that may not actually take place for several months.

A perfect hedge involves a strategy that eliminates the risks associated with a future

market commitment completely. It is established by matching the holding period to the

maturity date of the futures contract, and the physical characteristics of the commodity

to be hedged must exactly match the underlying commodity in the futures contract, ot-

herwise, a perfect hedge is not possible. If there exists a mismatch, risk could still be

reduced but not entirely eliminated. With futures, a trader uses short and long hedges to
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replace price risk with basis risk.

1.2.1 Spread trading

Spread trading involves the simultaneous purchase and sale of different financial instru-

ments with the objective of profiting from the movement of the spread between the prices

of the instruments, and not from the movement of the absolute values of the prices of

the instruments (Kanamura et al., 2011). In energy markets, apart from temporal spread

traders who use calendar spreads, and traders who try to hedge transportation risk ex-

posure using locational spreads, most spread traders use at least two different physical

commodities. These markets use spreads to quantify the production cost of refined pro-

ducts after cracking the crude oil. Crack and spark spreads are the most commonly used

in the markets. Crack spreads are also known as paper refineries while spark spreads are

also known as paper plants.

1.2.2 Crack spreads

The oil refining process that cracks crude oil into its constituent products. Processes in

these markets are independently subject to various levels of supply, demand, transpor-

tation costs among other factors, exposing refiners to greater risks as compared to oil

producers and fuel consumers, especially when crude prices increase with those of refined

products remaining static or even dropping. In order to manage risks, a refiner straddles

the crude oil it buys and the petroleum product it sells.

Crack spreads involve a position of purchase and sale of futures contracts on crude oil

and the petroleum products simultaneously. This allows the refiner to lock in any price

differentials between their input and output prices. A crack spread seller (refiner) buys

crude oil contracts and sell gasoline and heating oil contracts. The refiner has to observe

both sides of the market on more than one commodity namely the crude on the costs
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side and the refined products on the revenue side. In crack spread hedging, the profit

maximizing portfolio for the refiner is sought in terms of taking various positions (long

and short) in the market.

1.3 Statement of the Problem

Over the past three decades, the oil market has grown to become the biggest commodity

market in the world. It evolved from a market engaging primarily in physical activities

into sophisticated financial markets with trading horizons extending over 10 years forward

(Chang et al., 2010; Fleming and Ostdiek, 1999). In the process, a wide range of partici-

pants including hedge funds, investment banks, insurance companies, asset managers for

mutual funds, pension funds, physical oil traders among others have been involved. In line

with this expansion, oil price volatility and risk mitigation needs of industry participants

triggered the development of derivative contracts (futures, forwards, swaps and options)

which now dominate market activities.

Oil is physically traded in two levels; first, as feedstock for the refinery , and, secondly,

as a finished product. Even though crude oil and refined petroleum products have diffe-

rent characteristics, they are inextricably linked by the economics and technology of the

refining process. Despite the fact that product prices may, and do, fluctuate, they must

be related to crude oil prices because refineries can not continue to operate on negative

margins while competition on the other hand will also drive down high margins.

Using historical data from energy markets, this study looks at strategies used to esti-

mate optimal dynamic hedge ratios that minimize the effects of exposure to adverse price

changes of crude oil and the refined petroleum products, using crack spread differentials

while taking into account volatility spill over effects and time varying volatility as the key

determinants of the dynamics in the oil industry.
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1.4 Objectives of the Study

In many markets, energy markets included, the concept of perfectly replicating contracts

by continuously trading the underlying asset is unrealistic. Some commodities like spot

electricity cannot be easily stored, and therefore continuously adjusting trading positions

may not be possible and hence not optimal. Most energy derivatives actually depend on

the futures rather than spot prices, and futures contracts can be used to replicate trading

positions that minimize exposures the price variation vulnerabilities. This study applies

multivariate volatility models to estimate optimal dynamic hedge ratios for crack spreads

with volatility spillovers in energy markets, specifically using crude, gasoline and distillate

fuel prices.

1.4.1 Specific objectives

(i) Analysing the trends and patterns in energy markets and investigating the stylised

features of the financial time series.

(ii) Investigate co-integration and multivariate heteroscedasticity in energy markets so

as to capture volatility spill overs or transmissions in the markets.

(iii) Incorporating volatility spill over effects in the futures and spot markets market

using MGARCH models.

(iv) Estimating static and dynamic hedge ratios that can account for spillover effects in

energies and compare their hedge effectiveness.

1.5 Significance of study

Oil production and consumption is one of the greatest drivers of most economies the world

over. As a transportation fuel, oil has virtually no substitute and there doesn’t seem to be

any immediate prospects for a substitute at current prices. The need for a reliable source

of energy is key for any economy as is evidenced by the continuous explorations for oil

prospects by most countries. This seems to be the only path for industrialization. Energy
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Risk management is therefore an emerging area and strategies to hedge these risks would

also be worth considering. Due to the heavy reliance of all economies around the world,

on oil products as the main sources of energy, ability to carefully harness this energy, and

handle the risks that come with this by turning them into opportunities will steer growth

in any economy.

This study is also intended to establish the better hedging strategy for international trade

affected by oil price fluctuations, demand and supply, and transportation among other

factors. For an investor wishing to hedge their market risk exposure, crack spread trading

in oil markets, with optimal dynamic hedge ratios would be an interesting alternative.

Precise recognition of the trends and patterns in energy markets would also provide the

much needed information in understanding market dynamics and the data generating

process (DGP).

1.6 structure of the document

The rest of the document is structured as follows; In chapter 2, there is a review of previous

literature, chapter 3 looks a univariate analysis of energy prices, chapter 4 discusses

co-integration in energy models and uses MGARCH models to describe the dynamics

of energy prices. In chapter 5, crack spread trading is discussed and hedge ratios are

estimated based on the models developed in chapter 4. Finally, in chapter 6, we give

Conclusions and make recommendations.



2. LITERATURE REVIEW

For any economy, investment in energy and management of risks in the energy markets is

of paramount importance. Salman and Atya (2014) in their paper on the role of financial

development and energy consumption on economic growth, state the importance of the

existing causal relationship between energy consumption, financial development and eco-

nomic growth, to policy makers, as it directly affects production, economic growth and

development. According to Dorsman et al. (2013), oil shocks of the 1970’s demonstrated

the vulnerability of the world’s economy to interruptions of energy supply, the steady

increase in global energy demand, price volatilities, the recent energy price increases, po-

litical instability experienced in energy producing regions and the threats of terrorism

related strikes against energy infrastructure have significantly led to a growing concern

over security in the energy sector.

Moshiri and Foroutan (2006) observed that oil prices are complex and unpredictable and

cannot therefore be subjected to traditional linear models since large errors would be

expected if a linear model were to be applied to a non-linear DGP. They applied ARMA

and GARCH models to describe the trends of, forecast crude oil prices. ARMA models

provide insight into many areas of time series forecasting. An ARMA model entails order

identification, parameter estimation and forecasting (Box and Jenkins, 1976). In ARMA

modeling, the time series must be linear and stationary (Chan, 2011), though in real

life, time series data are by nature non-linear and non-stationary. If the present can be

modelled plausibly in terms of only the past values of the independent inputs, then, fo-

recasting will be possible (Shumway and Stoffer, 2010). They are most widely used for

the prediction of second-order stationary processes (Box and Jenkins, 1976; Chan, 2011;

Montgomery et al., 2011; Taylor, 2007; Wei and Wei, 1990).
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Engle (1982) introduced ARCHmodel, and later Bollerslev (1986) introduced the GARCH

which was an important generalization of the ARCH model. This collection of GARCH

volatility models have come up as a very important tool kit for empirical asset pricing

and financial risk management. After the work of Engle (1982) and Bollerslev (1986),

volumes of econometric literature have developed on the estimation and forecasting of

volatility. Some literature in empirical finance such as Bollerslev (1986), Campbell and

Hentschel (1992), French et al. (1987), Glosten et al. (1993), Pagan (1990), and Schwert

(1989) apply GARCH models.

This family of models have been extended in various directions in order to increase the

flexibility of the original ARCH model that was introduced by Engle (1982) and later ge-

neralization to GARCH by Bollerslev (1986). Herwartz and Reimers (2002) modelled and

analysed daily log returns of exchange rates. To account for volatility clustering, they fit

a GARCH(1,1)-model with leptokurtic innovations and found that this model accurately

described the empirical distribution of foreign exchange returns. Similarly persuaded by

the past success of GARCH models in fitting log returns and by the failure of determinis-

tic volatility models in fitting derivative prices, researchers have broadened the GARCH

models into the area of derivatives pricing.

With regard to the application of GARCH in derivatives pricing, Duan (1995) developed

a risk-neutral model within the GARCH framework. He used the non-linear GARCH in

mean (NGARCH-M) that was developed by Engle and Ng (1993). He characterized the

transition between the real world and the risk-neutral probability distributions if the asset

price dynamics of the underlying followed a GARCH process, and hence he established

the foundation for option valuation under GARCH. An important feature all GARCH

models is that they are non-Markovian in nature and hence can be used to explain some

of the systematic biases associated with existing pricing models such as the Black-Sholes

model. In essence, asset prices depends on the information set generated by the past and
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present prices of the underlying stock, and its past, present and one-step-ahead values of

the conditional variances.

Duan and Pliska (2004) built a co-integration option valuation model. Their approach

was based on a discrete-time model where the assets were co-integrated process with

MGARCH volatility. They showed that the co-integrating variable enters the pricing mo-

del only when volatility is dynamic or time-varying. They performed a numerical study

for European-style spread options, compared the option prices obtained with their mo-

del to those obtained with a constant volatility model and with those obtained using an

MGARCH model without co-integration. Despite GARCH models being convenient pa-

rametric models that can capture positive excess kurtosis and volatility clustering, Baillie

and Bollerslev (1990) and Bollerslev (1987) among others note that GARCH models con-

ditioned on the normal distribution of errors generally fail to capture the positive excess

kurtosis which usually characterizes asset returns. Benavides (2004) applied the GARCH,

the BEKK model (named after Baba, Engle, Kraft and Kroner, Engle and Kroner (1995)),

an option implied and a composite forecast model to investigate the accuracy of volati-

lity forecasts for corn and wheat futures and found that the option implied model was

superior to the historical models and the composite forecast model was the most accurate.

Time varying hedging strategies constructed using MGARCH models have, to some cer-

tain extent, had empirical success with respect to risk reduction. These time varying

hedge ratios are usually estimated using CCC (GARCH) model of Bollerslev (1990) and

DCC (GARCH) model of Engle and Sheppard (2001). These models have the flexibility

of univariate GARCH models and the parsimony of parametric models for correlations.

They are non linear but can simply be estimated using methods based on the likelihood

function. (Alizadeh et al., 2004; Cecchetti et al., 1988; Chang et al., 2011; Chen et al.,

2003; De Jong et al., 1997; Haigh and Holt, 2002) among others discuss the concept of

optimal hedging, optimal hedge ratios and hedging efficiency in futures markets.
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Haigh and Holt (2002) allowed for time-varying volatility spillovers when finding the op-

timal hedge ratio and noted that from a risk management perspective, there had been

no attempt to combine the estimation of dynamic hedge ratios while accommodating dy-

namic co-variability between related energies. They therefore built upon previous work

to examine, the effectiveness of using crude oil, heating oil and unleaded gasoline futures

contracts in helping reduce price uncertainty for energy-traders, for the first time. In par-

ticular, to directly consider time-varying volatility spillovers between related markets they

employed an MGARCH model that also allowed for the direct incorporation of the time to

maturity effect often found in futures markets. They note that considerable improvements

over all other hedging procedures may be obtained if informational linkages among energy

markets are directly accounted for in a time varying manner using an MGARCH model

that directly incorporates maturity effect.

Alizadeh et al. (2004) also compared the effectiveness of constant versus time-varying

hedge ratios and noted that differences in hedging effectiveness across regional markets

are attributed to varying regional supply and demand factors in each market. Byun and

Min (2011) investigated the disparity between the data generating and risk neutral con-

ditional volatilities. They allowed the risk-neutral one-day ahead conditional volatility

to be different from physical one-day-ahead conditional volatility so as to accurately des-

cribe the risk neutral dynamics of asset returns and volatility implied by a cross section

of prices. Their results showed that using day-ahead conditional volatilities estimated

under the real world measure did not indicate any advantage of the discrete GARCH

option pricing model over continuous-time stochastic volatility models unless risk neutral

day-ahead volatilities is adjusted for non-normality and risk premium.

Carmona and Durrleman (2003) surveyed the theoretical and computational problems

associated with pricing and hedging financial instruments for which closed form formulae

cannot be derived such as spread options. They also looked at their role as speculation

devices and risk management tools. In considering risks associated with below-target
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returns, Fishburn (1977) considers a mean-risk dominance model where a threshold is

measured by a probability weighted function of deviations below a specified target return

and later De Jong et al. (1997) uses this to study out of sample hedging effectiveness for

currency futures.



3. TRENDS AND PATTERNS IN ENERGY MARKETS

Most financial data occur sequentially through time creating a time series. A time series

is a chronological or a time-oriented sequence of observations on a variable of interest.

When building dynamic econometric models, the first step is to carry out a detailed ana-

lysis of the attributes of the variables involved so that when modelling the DGP of a

system of potentially related variables, properties of the individual series are considered

(Lütkepohl and Krätzig, 2004). Econometricians are faced with the task of developing

reasonably simple models that can predict future values, interpret and test hypothesis of

economic series (Enders, 2008). There are two methods in time series analysis, namely:

frequency-domain which entails the analysis of mathematical functions or signals with re-

spect to frequency, and time-domain which entails the analysis of mathematical functions,

physical signals or time series of economic or environmental data, with respect to time.

This research is mainly concerned with time-domain.

Here an observed price series, p1, p2, . . . , pT , is regarded as a particular realisation of a

stochastic process {pt}. A realization of stochastic process is just a sample path of T real

numbers which could for example be a stock price process; and if history took a different

course, we would have observed a totally different sample path. A stochastic process can

be described as a model which describes the probability structure of a sequence of random

data, the simplest being specified as pt i.i.d.∼ D for some distribution D.

The important concepts that underlie standard time series analysis include stationarity,

ergodicity, autocorrelation, white noise and innovation processes. Time series analysis is

grounded on a central family of models known as ARMA models (Francq and Zakoian,

2011). In addition to these, for the analysis of financial time series, the concept of vola-
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tility, which is pivotal in finance has to be incorporated. Along side volatility, the main

stylized facts which include unpredictability of returns, volatility clustering and hence

predictability of squared returns, leptokurticity of the marginal distributions, asymme-

tries, etc. concerning financial time series, are also considered (Francq and Zakoian, 2011;

Tsay, 2010; Zivot and Wang, 2007).

This chapter is structured into three main sections. Section 3.1 introduces time series

concepts and important models together with extensions to model financial time series

data. Section 3.2 discusses financial time series concepts and models and in section 3.3,

an exploratory analysis of the US energy markets is carried out based on the models

discussed in section 3.1.

3.1 Time Series Concepts and Models

Figure 3.1 is a time series plot of the daily prices of Cushing OK WTI crude oil futures for

contract 1 for the period 03/01/2006 to 22/05/1015. In this section, we discuss the basic

Figure 3.1: Cushing OK WTI crude oil futures contract 1 daily prices

concepts of time series analysis which are the building blocks for complex or advanced

time series models. A time series is a stochastic process which can be defined as follows:

Definition 3.1.1 (Time series model). For some observed data {pt} at time t, a time

series model is a specification of the joint distributions (or possibly only the means and
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covariances) of a sequence of random variables {Pt} of which {pt} is postulated to be a

realization at time t (Brockwell, 2002).

3.1.1 Stationarity

One of the most basic requirements for any statistical data analysis is the existence of

some statistical properties of the data which remain stable over time. This is important

for parameter estimation, and for characterization of the dependence between observati-

ons over time. Stationarity of a time series relates to its statistical properties in time.

In a more strict sense, a stationary time series exhibits similar “statistical behaviour”

in time, often characterized by a constant probability distribution in time (Montgomery

et al., 2011).

There are two forms of Stationarity, namely, strict and weak or covariance stationarity.

Definition 3.1.2 (Strict Stationarity). A stochastic process {pt} is strictly stationary

if it’s properties are not affected by a change in the time origin. The joint probability

distribution associated with t observations p1, p2, . . . , pt, at times 1, 2, . . . , t and the joint

distribution associated with t observations pk+1, pk+2, . . . , pk+t, at times k+1, k+2, . . . , k+t

for k ∈ Z are the same.

The joint distribution of any such set of observations remains unchanged even if all the

times of the observations are shifted either forward or backwards by any integer amount

k. The only factor which affects the relationship between the two sets of observations

is the distance between them. For a strictly stationary process, since the distribution

function is the same for all t, the mean function µt = µ, a constant provided E [pt] <∞,

the variance function σ2
t = σ2 for all t provided E [p2

t ] < ∞, the covariance function

γ(i, j) = γ(i + k, j + k) and the correlation function ρ(i, j) = ρ(i + k, j + k). Also if

we let i = t − k and j = t, we will have γ(i, j) = γ(t − k, t) = γ(t, t + k) = γ(k) and

ρ(i, j) = ρ(t− k, t) = ρ(t, t+ k) = ρ(k) since γ(k) and ρ(k) are even functions and hence

symmetric (Wei and Wei, 1990). The first two moments are also finite and the covariance

and correlation between pt and pt+k depend only on the distance between them or the
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time difference k.

Definition 3.1.3 (Covariance Stationarity). A stochastic process {pt} is covariance sta-

tionary if the unconditional mean and unconditional variance are finite and do not change

over time. This means

E [pt] = µ ∀ t, V [pt] = σ2 <∞ ∀ t E [(pt − µ) (pt−k − µ)] = γk ∀ t and any k.(3.1)

From (3.1), We notice that a strictly stationary process which has the first two moments

being finite is also covariance stationary. The white noise process is the simplest ex-

ample covariance stationarity. This process facilitates the construction of more complex

stationary processes making it particularly important. Covariances are particularly im-

portant as input to, for example, a portfolio analysis, though, in order to understand the

relationship between variables, examining their sample correlations is more informative.

Definition 3.1.4 (White noise). The process {at} is called weak white noise if, for some

positive constant σ2; (i) E [at] = 0 ∀ t, (ii) V [at] = σ2 ∀ t and (iii) Cov(at, at+k) =

0 ∀ t and for k 6= 0.

It is sometimes necessary, particularly for financial time series, to replace hypothesis

(iii) by the stronger hypothesis that {at} and {at+k} are independent and identically

distributed (i.i.d). In this case the process {at} is said to be strong white noise. For

strong white noise, {at} cannot be predicted either linearly or non-linearly and it reflects

the true innovation in the series. For a general white noise process, the innovation term

may not be predictable linearly, yet it can be probably predictable non-linearly using

ARCH or GARCH models. Figure 3.2 shows a simulated white noise process of 5,000

values with σ2 = 4

In analysis of time series data, the initial step is to make the non-stationary data sta-

tionary by removing the trend or any other inherent pattern, since, a strong trend will

usually obscure the behaviour of the stationary process and also most statistical and

econometric models only apply to stationary time series. This is achieved either by de-
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Figure 3.2: White noise process

trending or differencing the data. The simplest form of stationarity to work around is

trend stationarity, where, the process is stationary around a trend. This type of model is

written as

pt = µt + at (3.2)

where pt represents the observations through time, µt denotes the trend, and at denotes

the innovations which form the stationary process. The trend is removed by estimating

the trend component µ̂t using an appropriate method like say, OLS, and then working

with the residuals ât. This is known as de-trending, given as

ât = pt − µ̂t (3.3)

With respect to differencing, the first difference, denoted by Opt = pt − pt−1 is used to

eliminate the linear trend while a second difference eliminates a quadratic trend, and

so on. To define higher order differences, we can use the back-shift operator, given by

Bpt = pt−1, and its powers can be extended so that B2pt = B(Bpt) = Bpt−1 = pt−2 and

so on, so that Bkpt = pt−k. With this, we can rewrite the first difference equation as
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Opt = (1−B) pt and differences of order d can be written as Od = (1−B)d. The second

difference for example becomes O2pt = (1−B)2 pt = (1− 2B +B2) pt = pt−2pt−1 +pt−2.

Instead of modelling a fixed trend as in (3.2), we can use the random walk with drift to

model the trend as a stochastic process.

µt = δ + µt−1 + wt (3.4)

so that if the appropriate model is (3.2), then differencing pt, yields a stationary process;

that is,

pt − pt−1 = (µt − at)− (µt−1 − at−1) = δ + µt−1 + wt + at − δ − µt−2 − wt−1 − at−1

= µt−1 − µt−2 + wt − wt−1 + at − at−1

but µt−1 = δ + µt−2 + wt−1, so µt−1 − µt−2 = δ + wt−1

and pt − pt−1 = δ + wt−1 + wt − wt−1 + at − at−1 = δ + wt + at − at−1 which is stationary.

(3.5)

One advantage of differencing over de-trending is that when differencing, there is no need

to estimate any parameters, though, it does not estimate the stationary process {pt}.

When analysing time series, we must check for the presence of unit roots. The order of

integration of each variable in the model is tested to check for stationarity and establish

the number of times the variable needs to be differenced to yield stationarity.

If to achieve stationarity, a series, pt must be differenced d times, then this series is said

to be integrated of order d, written as pt ∼ I(d) so that if pt ∼ I(d), then, pt contains d

unit roots, and Odpt ∼ I(0). While an I(1) series contains one unit root, an I(0) series

is stationary. Most financial time series contain one unit root. They are I(1) processes,

although some are stationary. From literature however, consumer prices have been argued

to have two unit roots. There are several ways of testing for unit roots, but, the most

popular is the Dickey-Fuller (DF) test, because of it’s simplicity and general nature. It

tests the null hypothesis that the series contains a unit root, against the alternative of
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stationarity.

3.1.2 Ergodicity

In the analysis of time series , the fundamental challenge is that the realization of a process

is observed only once out of the many that could have arisen from the stochastic process

had history taken a different course. Egordicity describes a random process where the

time average of one sequence of events is the same as the average of the whole ensemble.

Definition 3.1.5 (Ergodicity). If a time series {pt} is ergodic and it’s rth moment µr is

finite, then, the ensemble mean can be determined by the time average based on a single

realization given the following limit for the ensemble average. T−1∑T
t=1 p

r
t

p→ µr where T

is the time interval of 1 realization and p represents the convergence in probability.

Ergodicity has to do with asymptotic independence. If a stochastic process, which is

ergodic, is sampled at two points far apart in time, the samples will be independent.

Using a single realisation to infer unknown parameters of a joint probability distribution

only works if the process is ergodic, meaning, sample moments for finite stretches of

the realisation approach their population counterparts as time tends to infinity (Mills

and Markellos, 2008). The ergodicity theorem states that averages will converge to their

expectation, provided the expectation exists. For an ergodic process, there is no need

observing separate independent replications of the entire process when estimating its

mean or other moments. One sufficiently long sample path enables us to estimate the

underlying moments (Chan, 2011).

3.1.3 Autocorrelation and partial autocorrelation

For stationary time series, the joint probability distribution of any two observations, pt,

and pt+k is similar for any two time periods t and t+k that are separated by the same time

difference or lag length k (Montgomery et al., 2011). The auto-covariance of a time series

measures the dependence between observations. For a stationary process {pt}, the auto-

covariance function at lag k is γ(k) = Cov (pt+k, pt) = E [(pt+k − µ)(pt − µ)] for k 6= 0.

When there is interest in the linear dependence between {pt+k} and its past values {pt},
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the correlation concept is generalized to autocorrelation (Tsay, 2010). The autocorrelation

coefficient for a time series measures of the auto-covariance restricted to lie between -1

and 1. For a process {pt}, the ACF at lag k is denoted by

ρ(k) = Cor (pt+k, pt) = E [(pt+k − µ)(pt − µ)]
E [(pt − µ)2] = γ(k)

γ(0) for k 6= 0. (3.6)

For a stationary process, the variance σ2 = γ(0) is the same at time t + k as at time

t, implying that ρ(0) = 1. Classical time series analysis is focused on the second-order

structure of the processes. Gaussian stationary processes are completely characterized

by their mean and auto-covariance function. For non-Gaussian processes, the mean and

auto-covariance give a first idea of the temporal dependence structure. In practice, these

moments are unknown and are estimated from a time series (Francq and Zakoian, 2011).

For a series with stationary DGP, the sample autocorrelations usually die out fast as the

lag length k increases. The correlation between {pt+k} and {pt} after their mutual linear

dependency on the intervening variables {pt+k−1, pt+k−2, . . . , pt+1} has been removed, gives

the partial autocorrelation which provides important information on the properties of the

DGP of a given series (Wei and Wei, 1990). Partial autocorrelation between {pt+k}

and {pt}, is the autocorrelation conditional on the in–between values of the time series.

Formally,

Cor (pt, pt+k|pt+1, pt+2, . . . , pt+k−1) (3.7)

represents the partial autocorrelation in the time series analysis. The partial correla-

tion between {pt} and {pt+k} will equal the ordinary correlation between (pt − p̂t) and

(pt+k − p̂t+k). If %(k) denotes the partial autocorrelation between {pt} and {pt+k}, then,

the PACF is given by

%(k) = Cov [(pt − p̂t) , (pt+k − p̂t+k)]√
Var (pt − p̂t)

√
Var (pt+k − p̂t+k)

(3.8)
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where p̂t and p̂t+k are the best linear estimates of pt and pt+k respectively and

p̂t = β1pt+1 + β2pt+2 + . . .+ βk−1pt+k−1 and

p̂t+k = α1pt+k−1 + α2pt+k−2 + . . .+ αk−1pt+1

(3.9)

and βi and αi for (1 ≤ i ≤ k − 1) are the mean square linear regression coefficients obtai-

ned by minimizing

E (pt − p̂t)2 = E (pt − β1pt+1 − β2pt+2 − . . .− βk−1pt+k−1)2 and

E (pt+k − p̂t+k)2 = E (α1pt+k−1 − α2pt+k−2 − . . .− αk−1pt+1)2
(3.10)

3.1.4 Autoregressive moving average (ARMA) Models

ARMA models are a very useful class of models used to describe time series dynamics.

An ARMA model allows the dependent variable to depend on the past or lagged values

of the independent variables and possibly its own past or lagged values. Forecasting is

possible if the present can be modelled in terms of only the past or lagged values of

the independent variable (Shumway and Stoffer, 2010). In order to predict second–order

stationary processes, ARMA models are the most widely used (Box and Jenkins, 1976;

Chan, 2011; Montgomery et al., 2011; Taylor, 2007; Wei and Wei, 1990). These ARMA

models can be further decomposed into the autoregressive (AR) and the moving average

(MA) processes.

3.1.4.1 Autoregressive (AR) Models

AR models stem from the idea that for a time series {pt}, the current values can be

described by p past values, pt−1, pt−2, . . . , pt−p, where p represents the number of steps

back into the past needed to predict the current value. Current values are therefore

functions of the past p values of the time series {pt}. AR models closely resemble the

traditional regression models with the predictor variables replaced by the past (lagged)

values of the time series, a property that makes them so appealing. An AR model of order
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p, abbreviated AR(p), for a stationary series {pt} takes the form

pt = φ1pt−1 + . . .+ φppt−p + at, at ∼WN(0, σ2)

=
p∑
i=1

φipt−i + at,
(3.11)

where φ1, φ2, . . . , φp are constants with φp 6= 0. The mean µ of {pt} in (3.11) is zero. If

µ 6= 0, then replace {pt} by {pt − µ} in (3.11) giving

pt − µ = φ1 (pt−1 − µ) + φ2 (pt−2 − µ) + . . .+ φp (pt−p − µ) + at so that

pt = φ0 + φ1pt−1 + φ2pt−2 + . . .+ φppt−p + at,

(3.12)

where φ0 = µ (1− φ1 − . . .− φp) , so that µ = φ0

1− φ1 − . . .− φp
= φ0

1−∑p
i=1 φi

. The

general AR(p) process can also be written using the back-shift operator, as

(
1− φ1B − φ2B

2 − . . .− φpBp
)
pt = at, (3.13)

or more succinctly, as φ (B) pt = at, where φ (B) = 1−φ1B−φ2B
2− . . .−φpBp is the AR

operator. For the polynomial φ(B) = 0, if the solution lies outside the unit circle, then

the AR(p) process will be stationary. However, if a variable contains a unit root, then it

is non-stationary. Some of the properties of a general AR(p) model like the one in (3.11)

include:

(i) The mean, E[pt] = φ0

1−∑p
i=1 φi

, hence the mean is only finite if ∑p
i=1 φi < 1.

(ii) The variance, V [pt] = σ2

1−∑p
i=1 φiρ(i) where ρ(i) is the ith autocorrelation. The

variance is only finite if ∑p
i=1 φi < 1.

(iii) The auto-covariance, E[(pt − E[pt]) (pt−k − E[pt−k])] 6= 0 for any k (generally, though

certain parametrizations could produce 0 auto-covariances)

Following the definitions of ACF and PACF in section 3.1.3, the ACF of an AR(p)

process can be a combination of exponential decay and diminishing sinusoid expressions
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based on the roots of associated polynomial, and, the PACF between pt and pt−k for an

AR(p) model for k > p should equal zero.

3.1.4.2 Moving average (MA) Models

Let {at} be a sequence of i.i.d random variables with zero mean and variance σ2. If we

require {at} only to be uncorrelated, and not necessarily independent, then {at} is just a

white noise sequence denoted by at ∼WN(0, σ2). This means this system is random with

no systematic structures. Forming a weighted average of {at} gives an MA(q) time series

model represented as

pt = at + ψ1at−1 + . . .+ ψqat−q, at ∼WN(0, σ2)

= at +
q∑
i=1

ψiat−i

(3.14)

This model has q lags and ψ1, ψ2, . . . , ψq are parameters with ψq 6= 0. The MA(q) pro-

cess may also take the the form pt = ψ(B)at where, ψ(B), the MA operator, given by

ψ(B) = 1 + ψ1B + ψ2B
2 + . . . + ψqB

q defines a linear combination of values in the shift

operator Bkat = at−k. In contrast with the AR process, the MA process is stationary for

any values of the parameters ψ1, ψ2, . . . , ψq.

If an MA model is algebraically equivalent to a converging infinite order AR model, then

it is said to be invertible. Converging here implies the AR coefficients diminish to 0 as we

move back in time. To ensure that this happens, |ψ| < 1. The condition for invertibility

of a MA process is the counterpart to the condition of stationarity of an AR. An MA(q)

model is invertible if the roots of the polynomial ψ(B) = 0 all lie outside the unit circle.

Some of the properties of a general MA(q) model include,

(i) The mean, E[pt] = 0.

(ii) The variance, V [pt] =
(

1 +
q∑
i=1

ψ2
i

)
σ2.

(iii) The auto-covariance, E[(pt − E[pt]) (pt−k − E[pt−k])] = σ2
q−k∑
i=0

ψiψi+k for k ≤ q and

0 otherwise.
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ACF and PACF have very distinct and indicative properties for AR and MA processes

respectively, and are thus necessary for identification of the model. The PACF of an

MA(q) process is a combination of exponential decay and diminishing sinusoid expressi-

ons based on the roots of associated polynomial, and, the ACF between at and at−k for

an MA(q) model for k > q should be equal to zero.

Although both AR and MA processes have their own merits, in order to capture the

complexity of the structure oa a time series, a relatively long AR and MA model is

required. This compromises parsimony and to correct this, the AR and MA parts are

combined form an ARMA process (Chan, 2011).

Definition 3.1.6 (ARMA process). A time series {pt} is ARMA(p, q) if it is stationary

and

pt = φ1pt−1 + . . .+ φppt−p + at + ψ1at−1 + . . .+ ψqat−q,

=
p∑
i=1

φipt−i +
q∑
j=1

ψjat−j + at
(3.15)

with φp 6= 0, ψq 6= 0 and σ2
a > 0, and, where at is a white noise process with the additional

property that Et−1[at] = 0 and p and q are the AR and the MA orders, respectively.

The ARMA(p, q) model can be expressed as φ(B)pt = ψ(B)at using the back-shift ope-

rator. The stationarity of an ARMA(p, q) model is related to the AR component in the

model and if the absolute values of all the roots of the polynomial φ(B) = 0 are less

than one, then, the ARMA(p, q) process is stationary. Similarly, the invertibility of an

ARMA(p, q) process is related to the MA component and if the absolute values of all

the roots of the polynomial ψ(B) = 0 are less than one, then, the ARMA(p, q) process is

invertible.

The efficiency of ARMA models lie in their parsimonious representation, and their proper-

ties can be characterized using their ACF and PACF just like in the case of AR and MA

models. Similar to the stationarity and invertibility conditions, the ACF and PACF of
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ARMA processes are driven by the AR andMA components respectively. The ACF and

PACF of an ARMA(p, q) both exhibit exponential decay and/or diminishing sinusoid

patterns, which makes model identification of the ARMA(p, q) model comparably more

difficult. Table 3.1 summarises the theoretical behaviours of the ACF and PACF for

stationary time series models.

Table 3.1: Nature of the ACF and the PACF for stationary time series models

Model ACF PACF

AR(p) Exponential decay and/or diminishing
sinusoid

Cuts off after lag p

MA(p) Cuts off after lag q Exponential decay and/or diminishing
sinusoid

ARMA(p, q) Exponential decay and/or diminishing
sinusoid

Exponential decay and/or diminishing
sinusoid

A homogeneous non-stationary process {pt} whose first differences at = pt − pt−1 =

(1−B) pt or higher-order differences at = (1−B)d pt produce a stationary time series is

an ARIMA process of orders p, d, and q. The ARIMA(p, d, q) model can therefore be

written as:

φ(B)(1−B)dpt = ψ(B)at (3.16)

After differencing to obtain the stationary time series at = (1−B)d pt, methods provided

previously can be employed to obtain the full model. Usually, for most cases, (d = 1) and

sometimes (d = 2) suffices to achieve stationarity. However, occasionally, other transfor-

mations such as taking logarithms of the original series can be used to achieve stationarity.

After model identification, methods such as least squares, MLE and method of moments

can be employed for the estimation of parameters for the provisionally identified model.

After fitting a provisional model to the data, its adequacy is examined through residual

analysis and potential improvements proposed.
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3.2 Financial Time Series Concepts and Models

So far, in the previous section, we have discussed general time series concepts and models.

In this section, we discuss the basic concepts of financial time series analysis which is an

extension of the time series models, to cater for peculiar properties inherent in financial

data.

In most financial studies, we consider asset returns, rather than asset prices, because,

foremost, for an investor, the return represents a complete and scale-free summary of the

investment opportunity and secondly, return series have desirable statistical properties

(Tsay, 2010). Rather than analyse price series {pt} which often displays unit-root beha-

viour, they are transformed to log–return series and analysed. For a price series {pt}, the

continuously compounded return, or simply, the log–return rt is represented as

rt = log pt − log pt−1 = ln
(
pt
pt−1

)
= ln

(
1 + pt − pt−1

pt−1

)
= ln(1 +Rt), (3.17)

where Rt is the simple or relative return. Log–returns approximately equal relative price

changes and conform to the stationarity hypothesis, at least in the short run. Log–returns

rather that relative returns are considered for analysis because of their additivity property,

not shared by relative returns.

3.2.1 Stylised facts in finance

Modelling financial time series is complex mainly as a result of the existence of stylised

facts which are challenging to artificially reproduce using stochastic models. These stylised

facts were first discussed by Mandelbrot (1963) and have since then been extensively

researched on (Campbell et al., 1997; Cont, 2001; Danıelsson, 2011; Francq and Zakoian,

2011; Pfaff, 2012; Tsay, 2010). They can be observed more or less clearly depending on

the nature of the time series and its frequency. These observed properties have important

implications for assessing how appropriate a chosen model is. Figure 3.3 shows the return
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series plot for the daily prices of Cushing OK WTI crude oil futures for contract 1 for the

period 03/01/2006 to 22/05/1015.

Figure 3.3: Cushing OK WTI crude oil futures contract 1 daily return series

From figure 3.3, we see that sample paths of prices generally look similar to random

walks as were depicted in figure 3.1, with oscillations varying in magnitude but being

almost averagely constant over long sub-periods. For observed financial market data, the

following stylised facts can be stated.

3.2.1.1 Volatility clusters

The observation that the magnitudes of financial return volatilities tend to cluster to-

gether, so that turbulent (high-volatility) periods are followed by quiet (low-volatility)

periods relates to volatility clustering. Extreme returns are observed closely in time as

shown in figure 3.3. Changes between periods of low, medium and high turbulence occur-

ring randomly and can not be modelled using any systematic pattern. This implies that

shocks due to volatility presently will influence the expectations of volatility in several fu-

ture periods (Engle and Patton, 2001). Volatility clustering is further evidenced in figure

3.4 which depicts the sample ACF of the Cushing OK WTI crude oil futures contract 1
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daily return and the squared return series. The ACF of the squared returns show conside-

Figure 3.4: Sample ACF for Cushing OK WTI crude oil futures contract 1 daily return and
squared return series

rable positive autocorrelation which is attributed to volatility clustering. This causes the

similarities of values of the squared returns between some days say t to t− k, at least for

small values of k. GARCH and stochastic volatility models are stochastic processes with

a non-constant conditional variance, a property necessary when modelling volatility clus-

tering. This makes GARCH and stochastic volatility models appropriate for modelling

volatility clustering.

3.2.1.2 Fat tails (leptokurticity)

The empirical distribution of daily returns does not resemble a Gaussian distribution.

The distribution of financial market returns is leptokurtic. The densities have heavy

tails, meaning that extreme values occur more often than is implied in the Gaussian

distribution. They are also sharply peaked at zero. Heavy tails, point to the fact that

financial returns occasionally have very large negative or positive returns, which are very

unlikely to be observed, if returns were to be normally distributed. The excess kurtosis

for the returns series is greater than 0. When the time interval over which returns are

computed increases, excess kurtosis vanishes and the empirical distributions tend towards
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a Gaussian distribution.

3.2.1.3 Non-linear dependence

The autocorrelation coefficient of linearly dependent return series describes how the series

move together. Non-linear dependence of return series addresses how they relate with each

other, and usually, the absolute or squared returns are highly autocorrelated if there exists

serial dependence.

3.2.1.4 Leverage effect

Leverage effect, which involves an asymmetry of the impact of past positive and negative

values on the current volatility, was first noted by Black (1976). Negative returns (corre-

sponding to price decreases) tend to increase volatility by a larger amount as compared

to positive returns (price increases) of a similar magnitude.

3.2.1.5 Seasonality

Calendar effects manifest in financial returns data. The effects of the day of the week

and the closeness of holidays among other seasonal phenomenon, may significantly affect

returns. After a period of market inactivity, volatility tends to rise, reflecting the news

or information that cumulated during the break. However, it can be seen that this boom

is much less than if the information had been accrued at a steady pace. Seasonal effects

can also be observed in intra-day data.

3.2.2 Conditional Heteroscedastic Models

The effects of heteroscedasticity observed in a time series process typically in form of

heavy tails, volatility clusters, and the leverage effect cannot be accounted for by the mean

equation, hence the need for conditional heteroscedastic models. Consider a log-return

series rt with mean given by µt = E [rt|Ft−1] and variance given by σ2
t = Var [rt|Ft−1] =

E
[
(rt − µt)2 |Ft−1

]
, where Ft−1 consists of the historical information (all linear functions
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of past returns). The dependence, if seen is weak (weakly stationary). So we can have

rt = µt + at

µt =
p∑
i=1

αiYt−i −
q∑
i=1

βiat−i and

Yt = rt − α0 −
k∑
i=1

θixit,

(3.18)

where at is the shock at time t also known as the innovation process, xit are explanatory

variables and Yt represents the adjusted series of returns after the effect of explanatory

variables have been corrected for. Considering (3.18), at−1 can be regarded as new infor-

mation obtained at time t regarding the time series .

Notice that

at = rt − µt,

E [at] = 0, and

Var [at] = E
[
a2
t

]
− 0 = E

[
a2
t

]
.

(3.19)

Conditional heteroscedastic models are concerned with how the conditional standard de-

viation of an asset return σ2
t , which measures the volatility of an asset, evolves. σ2

t can

not be directly observed, but possesses some attributes seen commonly in asset returns.

These include Volatility clustering, continuous evolution of volatility over time, (jumps

are not common), stationarity (volatility does not infinitely diverge) and leverage effect

(volatility reacts differently to big price changes, compared to small price changes.)

Volatility models can generally be classified into two, namely:

1. The type that formulates the conditional variability directly as a function of obser-

vable phenomenon. GARCH models fall in this category.

2. The types that do not formulate volatility models as functions purely of observa-

bles, rather, they use stochastic equations to describe σ2
t . These are the latent or
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stochastic volatility models.

In this work, we will concentrate mainly on the first category. Conditional heterosce-

dastic models, which model volatility, play an important role in today’s financial risk

management. Continuous time stochastic volatility models, which can be a bit difficult

to implement (observations are discrete), are effective for option pricing.

Understanding changes in σ2
t is of importance in financial markets since agents and market

players require higher compensation for holding riskier assets, and this compensation takes

the form of expected returns. Further, a time series with variance changing over time

definitely has implications on the validity and efficiency of statistical inference about the

parameters. It is partly for these reasons that time series models with heteroskedastic

errors came into being.

3.2.2.1 Generalised autoregressive conditional heteroscedastic (GARCH) Models

Energy price returns distribution tend to be leptokurtic (fat tailed) and crude oil prices

also exhibits volatility clustering. These two behaviours are consistent with the process

where volatility is both stochastic and autoregressive. Models that attempt to incorporate

and explain these behaviours are the GARCH models. The GARCH model framework,

which was developed by Bollerslev (1986), explains variance using two distributed lags,

the first one on past squared residuals so as to capture high frequency effects, and the

second one on lagged values of the variance itself, so as to capture longer term influences.

This enables the model th capture volatility clustering as well as the positive excess kur-

tosis that is prevalent in the unconditional distribution of returns.

A GARCH model is a parametric error distribution model, commonly used in the analysis

of financial time series. It captures volatility clustering and also accommodates positive

excess kurtosis (i.e. thick tails). The GARCH model expresses the conditional variability

at time t as a linear combination of it’s past values and of the squared variance values

in a manner similar to an ARMA model for conditional mean. The simplest GARCH
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model is the ARCH(1) process.

ARCH Models

Engle (1982) proposed a stationary non-linear model for the return series rt which he

termed the ARCH model. This model provides the first systematic framework used in

modelling volatility. Formally, the ARCH model is simply a regression model that models

the conditional volatility as the response variable and the past lags of squared innovations

are modelled as covariates. For an ARCH model basically, (i) innovations or shocks are de-

pendent but serially uncorrelated, and (ii) this dependence of the shocks can be described

simply using a quadratic function of its lagged values. The conditional errors are normally

distributed and the conditional variance is a linear function of past squared errors. This

causes extreme values to be followed by other extreme values, albeit of unpredictable signs.

Let at be the innovation or shock of an asset return at time t be, so that at = rt−µt, µt is

the expected return and rt = ln
(
Pt
Pt−1

)
is the conditional return. at can also represent the

unexpected return. In its simplest form, the ARCH(p) model represents an innovation

series at as

at = σtεt where εt ∼ N(0, 1), and σ2
t = α0 +

p∑
i=1

αia
2
t−i. (3.20)

α0 . . . , αp are constants, volatility depends on historical news hence the conditional vari-

ance is evolves according to the previous values at−i. The effect of a shock i periods ago,

for (i ≤ p) on the volatility today is governed by αi and as expected, αi < αj for i > j

since the effect of historical information on current volatility diminishes with time. Any

information more than p periods old does not affect current volatility

For an ARCH(1) where: at = σtεt, σ2
t = α0 + α1a

2
t−1, and- α0 > 0, α1 ≥ 0

1. E [at], which is the unconditional mean of at is 0, since E [at] = E [E (at|Ft−1)] =

E [σtE (εt)] = 0, where Ft−1 represents the information set at time t− 1.
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2. Var(at) = α0

1− α1
, which gives the unconditional variance of at, is obtained as below.

Var(at) = E(a2
t ) = E

[
E
(
a2
t |Ft−1

)]
= E

[
α0 + α1(a2

t−1)
]

= α0 + α1E(a2
t−1)

Due to stationarity of at, E(at) = 0, Var(at) = Var(at−1) = E
[
a2
t−1

]

∴ Var(at) = α0 + α1Var(at)

Var(at)− α1Var(at) = α0

Var(at) {1− α1} = α0

Var(at) = α0

1− α1

and since it must be positive, 0 ≤ α1 < 1

3. Higher moments of at must also exist to study skewness and kurtosis.

The evolution through time of the conditional variance of at is governed by the previous

values of at like is the case in an AR(p) model as shown by the identity below. If the

sigma field generated by historical information until time t − 1 is denoted by Ft−1 =

(at−1, at−2, ...) , then,

E(a2
t |Ft−1) = E(σ2

t ε
2
t |Ft−1) = σ2

tE(ε2
t |Ft−1) = σ2

t .

Conditions need to be imposed on the coefficients so as to obtain a properly defined

process for (3.20). To ensure that σ2
t ≥ 0 and at is well defined, one sufficient condition is

αi ≥ 0 for i = 1, . . . , p and α1 + · · ·+ αp < 1.

To test for conditional heteroscedasticity or ARCH effects, the squared series a2
t is used.

To this end, two tests can be used,

(i) The Ljung-Box (LB) test (Ljung and Box, 1978), which tests the null hypothesis

that all the autocorrelations of the first p lags of the series {a2
t} are zero. The lag p
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LB Q-test statistic is given as:

Q(p) = n(n+ 2)
p∑
i=1

ρ̂2
i

n− i
, (3.21)

where ρi represents the estimated autocorrelation of the series at the ith lag, and

p denotes the number of lags being tested. The LB statisticQ(p) will follow an

asymptotic χ2 distribution with p degrees of freedom if the data are white noise

then. A statistically significant value of Q(p) provides evidence that the conditional

volatility varies with time. The LB test rejects the null hypothesis at an α level of

significance if Q(p) > χ2
1−α,p

(ii) The Lagrange multiplier (LM) test (Engle, 1982), which is similar to applying the

usual F statistic that tests the null hypothesis that αi = 0 for i = 1, . . . , p in a linear

regression

a2
t = α0 + α1a

2
t−1 + . . .+ αpa

2
t−p + et for t = p+ 1, . . . , T

where T is the sample size, p is a pre-specified positive integer and et is the error

term. The F statistic is computed as

F = (SSR0 − SSR1) /p
SSR1/ (T − 2p− 1) where, SSR0 =

T∑
t=p+1

(
a2
t − ā

)
and, ā = 1

T

T∑
t=1

a2
t

and F is asymptotically distributed as χ2 with p degrees of freedom.

If significant ARCH effects are evident in the time series, the order of ARCH can be

determined using the PACF of a2
t , since, a2

t is an unbiased estimator of σ2
t , and, a2

t is

expected to be linearly related to a2
t−1, . . . , a

2
t−p, in a manner similar to an AR(p) process.

GARCH Models

Despite their simplicity, in order to adequately represent the asset return volatility dy-

namics, ARCH models often require several parameters. Bollerslev (1986) sought an
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alternative to this by generalising the ARCH(p) model to the GARCH(p, q) such that:-

at = σtεt where εt ∼ N(0, 1) and σ2
t = α0 +

q∑
i=1

αia
2
t−i +

p∑
j=1

βjσ
2
t−j. (3.22)

where α0, . . . , αp and β1, . . . , βq are constant parameters. The model also requires that

conditions be imposed on α′s and β′s for (3.22) to be well defined. These conditi-

ons are that α0 > 0, αi ≥ 0, βj ≥ 0 for the unconditional variance to exist, and(
q∑
i=1

αi +
p∑
j=1

βj

)
< 1, for the unconditional variance to be finite. For i > p and j > q, it

should be noted that αi = 0 and βj = 0 respectively.

The GARCH model is just an ARCH model of infinite order, and the effects of shocks on

the present day volatility decline over time following a geometric fashion. σ2
t , which is the

conditional variance of pt, given the available news up to time t− 1 has an autoregressive

structure and is correlated positively to it’s own recent past and the recent past values

of the squared innovations a2. This implies that the conditional variance or volatility is

“persistent”, and that, small (large) values of a2
t are likely to be followed by small (large)

values. It can be shown that E(a2
t ) = α0

1−
(

q∑
i=1

αi +
p∑
j=1

βj

) provided the denominator

remains positive. The standard GARCH model can also be more conveniently represented

using the back-shift operator as shown in (3.23)

σ2
t = α0 + α (B) a2

t + β (B)σ2
t where

α (B) =
q∑
i=1

αiB
i and β (B) =

p∑
j=1

βjB
j and

(3.23)

α (B) and β (B) are polynomials of degrees q and p. In standard form, it is assumed

that the GARCH model driven by normally distributed innovations. Empirical studies

have shown the success of the family of GARCH models. From the survey of Bollerslev

et al. (1992), it is noted that in most cases, of these models, the GARCH(1, 1) is most

preferred since adopting lower orders for the lags p and q seems sufficient in modelling

variance dynamics.
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In the basic ARCH model shown in (3.20) as well as the GARCH model in (3.22), we see

that only the squared residuals a2
t−j enter the equation. This implies that directions of

the shocks or residuals do not affect the conditional volatility, only the magnitude does.

The standard GARCH assumes that both good and bad news have equal effects on the

volatility. In reality however, good news (positive shocks) tends to have a smaller impact

on volatility as compared bad news (negative shocks). Black (1976) attributed this to the

fact that negative news tends to push down stock prices, hence increasing the leverage

(debt-equity ratio) which results in an increase in price volatility.

After the introduction of ARCH and GARCH models, researchers have suggested a num-

ber of modifications and extensions. One of the main reasons for considering GARCH

model extensions is to achieve greater parsimony. The leverage effect also known as the

asymmetric news impact, is for example not captured by the standard GARCH model.

For example if at is a GARCH(1, 1) then σ2
t = α0 +αa2

t−1 + βσ2
t−1. Suppose α1 + β1 = 1,

then it means there exists a unit root in the AR polynomial of the GARCH model re-

presentation, and hence the underlying process at is no longer stationary and we have an

integrated GARCH (IGARCH)(1,1), which can be given by,

at = σtεt where εt ∼ N(0, 1) and

σ2
t = α0 + β1σ

2
t−1 + (1− β1) a2

t−1.

(3.24)

For the IGARCH(1, 1) model, volatility is persistent since it is not covariance stationary.

This means the impact of past squared shocks is prolonged. Although the IGARCH(1, 1)

model strongly resemblance a random walk model, extreme caution is necessary for such

an analogy since the autocorrelations still decay exponentially unlike the autocorrelations

of a random walk model which are approximately equal to one. Empirically, the volati-

lity reacts asymmetrically to the direction (sign) of the shocks, and as a result, several

extensions of the GARCH model aim at accommodating this asymmetry in the variance

response. Due to these considerations, many GARCH model generalizations that can cap-
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ture some of these phenomena have been proposed. These include EGARCH, FIGARCH,

TGARCH, GJR-GARCH, and NGARCH models, among others. The Gaussian assump-

tion of εt facilitates the estimation process, but it is also not crucial. It can be relaxed to

accommodate heavy-tailed distributions, such as a t-distribution.

3.2.2.2 Combining ARMA and GARCH Models

If some first order autocorrelation exists in the standardized residuals, it implies that re-

turns are correlated and as such, they do not follow a GARCH process. This problem can

be remedied by considering a combination of an ARMA model to describe the conditional

mean and a GARCH model to describe the conditional variance. This combined model

is referred to as the ARMA-GARCH model. The application of ARMA-GARCH models

in time series analysis, is a common approach in that considers volatility clustering, hete-

roscedasticity and autocorrelation. An ARMA(P,Q)−GARCH(p, q) model for a return

series rt, is specified as follows:

rt =
P∑
i=1

φirt−i +
Q∑
i=1

ψiat−i + at and

at = σtεt where εt ∼ N(0, 1)

σ2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j.

(3.25)

The possible autocorrelations of the return values are captured by the first summation

term in the first level of (3.25) whereas heteroscedasticity and volatility clustering are

captured in the third level of this equation. The GARCH component of this model plays

an important role in estimating and forecasting volatility (Beck et al., 2013).

3.2.3 Methods for evaluating model sufficiency

The appropriateness of a chosen model is measured by the sufficiency of the model. The

methods of evaluating model sufficiency can give critical guidance to the choice of appro-

priate models. These methods are mainly categorized into two,
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1. The first category include methods that evaluate the goodness of fit for the fitted

models. They include:

(a) Root mean square error (RMSE), which is shown in (3.26). It is a function

of the sum of squared errors (SSE), the number of observations n, and the

number of independent variables k ≤ p + 1 where p represents the number of

independent variables so that k includes the intercept.

RMSE =
√
SSE

n− k
(3.26)

It is calculated for all possible subset models, and, the best linear model is the

model with the smallest RMSE.

(b) Adjusted R2 which is shown in (3.27). It reflects the proportion of variability in

a data set accounted for by the corresponding statistical model. It is a function

of the SSE, the total sum of squares (SST), the number of observations n, and

the number of independent variables k ≤ p + 1. It’s value ranges between 0

to 1 and it measures how well a model can predict the future outcome. It is a

modification of the R2 and it considers the number of explanatory variables in

a fitted model.

adjR2 = 1− (n− i)SSE
(n− k)SST (3.27)

It is calculated for all possible subset models, and, the best linear model is the

model with the largest adjusted R2. It is only if the new variable improves the

model more than would be expected by chance that the adjusted R2 increases.

However, when a predictor improves the model by less than expected by chance,

It decreases . However, for models with different numbers of independent

variables, it cannot provide a very meaningful comparison (Liu et al., 2011).

(c) F -test which is calculated as shown in (3.28). It is a function of the SSE, the

mean square error (MSE) and the SST. It is a ratio of the explained variability
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(as reflected by R2) and the unexplained variability (as reflected by 1-R2), each

divided by the corresponding degrees of freedom. The F statistic

F = (SST − SSE)/k
MSE

= R2

(1−R2)/ [n− (k + 1)] (3.28)

where MSE = SSE

(n− 1). The larger the F statistic, the more useful the model.

The calculated value is compared with the critical value and we reject H0 if

Fcritical > Fcalculated. If we reject the null hypothesis, then, at least one of the

predictors is linearly associated to the response. The larger the F statistic, the

more useful the model.

(d) Mallows’ Cp which calculated as shown in (3.29). It is a function of the full

model pure error estimate σ2, the SSE, the number of independent variables

k ≤ p+ 1 and the number of observations n.

Cp = SSE

σ2 + 2k − n (3.29)

Mallows’ Cp is calculated for all possible subset models and the best linear

model is the model with the smallest Cp.

(e) AIC and Schwarz’s Bayesian Information Criterion (BIC) or (SC, or SBC):

Information criteria are measures of goodness of fit or the difference between

the “true” underlying model and the fit model. The AIC is is calculated as

shown in (3.30) and is a function of the number of observations n, the SSE and

the number of independent variables k ≤ p+ 1.

AIC = n. ln
(
SSE

n

)
+ 2k. (3.30)

BIC is calculated as shown in (3.31), and, it is a function of the full model pure

error estimate σ2, the SSE, the number of independent variables k ≤ p+ 1 and
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the number of observations n.

BIC = n. ln
(
SSE

n

)
+ 2(k + 2)nσ2

SSE
− 2n2σ4

SSE2 , (3.31)

and SBC is calculated using (3.32)

BIC = n. ln
(
SSE

n

)
+ k ln .n. (3.32)

The “best” model is the one with the smallest AIC, BIC or SBC is since it

minimizes the difference between the “true” model and the fit model.

2. The methods for the diagnostic checking of fitted models, and they include the LB

statistic.

3.3 Exploratory Analysis of Energy Markets

Time series analysis is concerned with model identification, parameter estimation, di-

agnostic checking of model adequacy, and forecasting. In this section, we discuss the

exploratory analysis of energy market data. We specifically explore various price series

for both spot and futures markets from the United States of America’s energy markets.

The series being discussed include the daily futures and spot prices for crude oil, gaso-

line and distillate fuels for the period running from 2nd of January 2006 to 22nd of May

2015. Exploratory data analysis and model estimation and fitting are carried out using

MATLAB. We analyse the historical performance of the futures and spot prices of the

refiners raw material crude oil, and the refinery products gasoline and heating oil, which

are traded on the NYMEX and investigate the characteristics and evolution dynamics of

the energy market.

The data considered are the official daily closing prices as at 2:30 p.m. American time, for

a specific delivery month for each product as listed in the NYMEX. The data was obtained

from the U.S. Energy Information Administration (EIA) website http://www.eia.gov/

http://www.eia.gov/petroleum/data.cfm
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petroleum/data.cfm, accessed on June 25, 2015. The EIA is the principal agency of the

U.S. Federal Statistical System responsible for collecting, analysing, and disseminating

energy information to promote sound policy-making, efficient markets, and public under-

standing of energy and its interaction with the economy and the environment (EIA, 2015).

Figure 3.5 shows various time series plots for daily spot and futures contract 1 prices for

Cushing OK WTI, Reformulated Blendstock for Oxygenate Blending (RBOB) gasoline

and No. 1 heating oil as well as the spot price and futures price 3:2:1 crack spreads

that will be considered throughout this research. From figure 3.5, we see that generally

Figure 3.5: Time series plots for spot, futures prices and crack spreads in energy mar-
kets. CF=crude futures, CS=crude spot, GF=gasoline futures, GS=gasoline spot,
HF=heating futures, HS=heating spot, crkF= crack spread on futures and crkS=
crack spread on spot.

the series are heteroscedastic, and, they co-evolve with some spikes and jumps at various

points in time. The series seem to be co-integrated and this means the volatilities from

one commodity could have a spill over effect on the others. Table 3.2 shows a strong

positive correlation between the spot and futures price series of all the products under

consideration.

We also see that the data is definitely not stationary and hence in order to be able to

http://www.eia.gov/petroleum/data.cfm
http://www.eia.gov/petroleum/data.cfm
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Table 3.2: Correlation analysis of energy spot and futures prices

CF CS GF GS HF HS

CF 1.0000 0.9997 0.9132 0.8908 0.9427 0.9417
CS 0.9997 1.0000 0.9129 0.8903 0.9421 0.9408
GF 0.9132 0.9129 1.0000 0.9662 0.9381 0.9353
GS 0.8908 0.8903 0.9662 1.0000 0.9054 0.9078
HF 0.9427 0.9421 0.9381 0.9054 1.0000 0.9970
HS 0.9417 0.9408 0.9353 0.9078 0.9970 1.0000

apply any time series models, we need to try and make it stationary. Below is a discussion

of the model building process.

3.3.1 Model Building

The analysis carried out in ARIMA modelling is performed in three stages, namely, iden-

tification, estimation and diagnostic checking and forecasting.

3.3.1.1 Model Identification

In the model identification stage, a candidate ARIMA model that fits the data is iden-

tified. This begins by performance of stationarity tests to determine if differencing or

de-trending is necessary. If necessary, the data is differenced, then autocorrelations, par-

tial autocorrelations, inverse autocorrelations, and cross correlations are computed. From

this kind of analysis, one or several ARIMA models that could be suggested for fitting.

3.3.1.2 Estimation of the Model and Diagnostic Checking

At this point, we fit each candidate models that has been identified and estimate it’s

parameters. Once the models for the conditional mean and variance have been identi-

fied from the differenced series, we employ the MLE method to fit parameters for the

specified model of the differenced series. Given a sample time series consisting of n i.i.d

observations{p1, p2, . . . , pn} which follow a distribution f(p) with unknown parameters

θ, the joint density function is f(p1, p2, . . . , pn|θ) = f(p1|θ) × · · · × f(pn|θ). By consi-

dering the observed values p1, p2, . . . , pn to be fixed ‘parameters’ of this function and θ

as the function’s variable, the likelihood function can be given as L(θ|p1, p2, . . . , pn) =
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f(p1, p2, . . . , pn|θ) =
n∏
i=1

f(pi|θ). In practice, the logarithm of the likelihood function

lnL(θ|p1, p2, . . . , pn) =
n∑
i=1

ln f(pi|θ) is more convenient to work with.

The MLE concept interprets the density as a function of the set of parameters, conditio-

nal on an outcome set (Wurtz et al., 2009). This method infers the process innovations

by inverse filtering, so that it transforms the the observed innovations at into a white

noise process εt. the log-likelihood unction is then used to infer corresponding conditional

variances σ2
t from the inferred innovations εt using recursive substitution into conditio-

nal variance equations which are dependent on the model. The inferred innovations and

conditional variances are finally used to evaluate the appropriate log-likelihood objective

function to be optimized. By minimizing the ‘negative’ log-likelihood function, the para-

meters θ that best fit the model are obtained . Assuming the observations {p1, p2, . . . , pn}

follow a normal distribution with unknown parameters θ = {µ, σ2}, and using at = εtσt,

the log likelihood function is given by

lnL(θ) = ln
i=1∏
n

1√
2πσ2

t

e
− a2

t
2σ2
t

= −1
2

n∑
i=1

[
ln(2π) + ln(σ2) + ε2

t

] (3.33)

Then, diagnostic statistics which help to judge the model adequacy are produced. Sig-

nificance tests on parameter estimates indicate which parameters in the model are un-

necessary. Goodness-of-fit statistics are used to compare the fit model to other possible

models. Tests on the residuals show whether there could be any additional information in

the residual series, that might be useful for more complex analysis. If a particular model

is found to be problematic by the diagnostic tests, another model is tried, and the whole

estimation and diagnostic checking process is repeated.

3.3.1.3 Forecasting

The appropriate model fitted is then used to predict future values of the fitted time series

model and to produce confidence intervals for these predictions.
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3.3.2 Modelling Energy markets using ARIMA models

In this section, we model the U.S. energy data using ARIMA models. This is useful in

establishing the conditional mean equation specification, which can be given by, Et−1 [yt],

the expectation conditioned on available information at time t− 1. Typically it takes the

form

Et−1 [yt] = φ0 +
p∑
i=1

φiyt−i +
q∑
j=1

ψjat−j, (3.34)

where φ0 is a constant and all the other variables are as explained for (3.15).

Depending on the type of data and frequency of the data set used, the conditional mean

can be typically specified as zero, a constant or even a low order ARMA process in the case

where there is autocorrelation due to say, the market micro-structure or any other effects

not related to trading. In cases of unusual or extreme happenings in the market during

the period being considered, dummy variables that are associated with these happenings

are included in the specification of the conditional mean equation in order to take care

of the effects of these happenings. In this case, the conditional mean specification would

typically take the form

Et−1 [yt] = φ0 +
p∑
i=1

φiyt−i +
q∑
j=1

ψjat−j +
K∑
k=0

β′kXt−k, (3.35)

where Xt is an m× 1 vector of the exogenous explanatory variables.

Table 3.3 gives a summary of the descriptive statistics along with the Jarque-Bera (JB)

test for normality for the data under consideration. The null hypothesis for the JB test for

normality is that the data are i.i.d as normal, implying the skewness and excess kurtosis are

both zero; against the alternative that the data do not conform to the normal distribution.

The JB statistic is asymptotically distributed as χ2 with 2 degrees of freedom under the
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null hypothesis. (3.36) shows the representation of the JB test statistic.

JB = n

6

(
Ŝ2 − (K̂ − 3)2

4

)
, (3.36)

where Ŝ denotes the sample skewness given by S =

n∑
i=1

(xi − x̄)3

n (σ̂2)3/2 ] and K̂ denotes the

sample kurtosis given by K =

n∑
i=1

(xi − x̄)4

n (σ̂2)2 .

From the JB statistics summarised in Table 3.3 against the JB critical value of 5.9681, the

null hypothesis of normality is rejected for all the differenced series under consideration.

Part of the non-normality is caused by the jumps and clusters that can be witnessed in

Figures 3.6, 3.7 and 3.8. From the measure of skewness, we can see, all the differenced

series are skewed to the left, and from the measure of kurtosis, these differenced series are

all leptokurtic, and these are some of the stylised facts of financial time series data. The

data therefore doesn’t conform to the normal distribution.

Table 3.3: Descriptive statistics for energy spot and futures prices

∆CF ∆CS ∆GF ∆GS ∆HF ∆HS
Mean -0.0014 -0.0018 0.0048 0.0025 0.0028 0.0010
Median 0.0350 0.0400 0.0420 0.0420 0 0
Mode 0.1400 -0.2500 -0.7140 0.3360 0 0
Maximum 16.3700 18.5600 13.0200 21.3360 12.3060 11.5080
Minimum -14.3100 -14.7600 -17.7240 -21.7560 -17.3040 -10.6680
Skewness -0.0508 0.0415 -0.4559 -0.1728 -0.4672 -0.0898
Kurtosis 10.2522 12.0458 8.0076 8.3115 8.6993 5.8373
SE 0.0007 0.0008 0.0009 0.0012 0.0008 0.0008
JB 5177.1 8053.7 2549.7 2788.3 3282.7 795.4796

∆ denotes differenced series.

Figures 3.6, 3.7 and 3.8 show time series plots of the differenced series for the energy

prices. The modified series look somewhat mean stationary, though there is evidence that

they are not variance stationary. Despite the fact that the series look mean stationary,

this has to be confirmed by testing for stationarity in the means of these series. Volatility
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clustering can also be observed from the series.

Figure 3.6: Differenced series for crude futures and spot prices

Figure 3.7: Differenced series for gasoline futures and spot prices
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Figure 3.8: Differenced series for heating oil futures and spot prices

3.3.2.1 Test for Stationarity

After differencing the data, the new differenced series have to be tested for stationarity,

and in this case, the DF test is used. Dickey and Fuller (1979) developed a method to test

if the variable follows a random walk, or equivalently, the null hypothesis that a variable

contains a unit root. For a given series pt = φpt−1 + at for t = 1, 2, . . ., p0 = 0, φ is a real

number, and at ∼ N(0, σ2), the following can be observed:

(i) As t→∞, the series {pt} will converge to a stationary time series if |φ| < 1.

(ii) As t → ∞, the series {pt} will not converge to a stationary time series if |φ| = 1.

{pt} will be a homogeneous non-stationary time series and it’s variance will be tσ2.

A time series with φ = 1 is a random walk.

(iii) As t → ∞, the series {pt} will not converge to a stationary time series if |φ| > 1.

{pt} will be explosive non-stationary, and the variability of the time series will grow

exponentially as time t increases.
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The DF test states the hypothesis that

H0 : |φ| = 1⇒ pt ∼ I(1)

Ha : |φ| < 1⇒ pt ∼ I(0).
(3.37)

If the DF test equation exhibits serial correlation, i.e., if the true model is not an AR(1))

process, then, an AR(p) process is used in order to get rid of this serial correlation, and

hence the augmented Dickey-Fuller (ADF) test is applied and the hypotheses remain the

same.

Applying OLS method and finding the estimator for φ, the test statistic is given by

tφ=1 = φ̂− 1
s.e

(
φ̂
) . (3.38)

The test is a one-sided left tailed test. Table 3.4 gives the summary report of the DF test

on the six series under consideration. From Table 3.4, we can see that all the differenced

Table 3.4: Results from the Dickey-fuller test on the six series

Series p− value Test statistic Critical value Decision
∆CF 0.001 -51.2762 -1.9416 Reject H0
∆CS 0.001 -50.9918 -1.9416 Reject H0
∆GF 0.001 -49.5626 -1.9416 Reject H0
∆GS 0.001 -50.9792 -1.9416 Reject H0
∆HF 0.001 -50.0207 -1.9416 Reject H0
∆HS 0.001 -50.6481 -1.9416 Reject H0

series are stationary and hence can be subjected to further time series analysis.

3.3.2.2 Model Identification and Fitting

Once the stationary form of the series has been established, the next step is establish the

form of the ARMA(p, q) model for that stationary series. This is done by visually in-

specting the ACF and PACF plots of the stationary series. Through this inspection, the

numbers of AR and/or MA terms that are necessary for correcting any autocorrelation
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that remains after differencing can tentatively be identified. An ACF plot displays the

coefficients of correlation between a time series and it’s own lags, while a PACF plot is

a plot of the partial correlation coefficients between a time series series and it’s own lags

itself. The partial autocorrelation at lag k is the autocorrelation between {pt} and {pt−1}

not accounted for by the previous lags 1 up to k − 1. The effects of any correlation due

to the shorter lags are removed.

Figures 3.9 and 3.10, show the ACF and the PACF plots of the crude futures and spot price

series. From these plots, it can be seen that it is not very easy to tell the autoregressive or

moving average orders of the series. Exponential decay is not clearly visible in either plots

and we can see significant lags up to 39 of the 40 plotted. Figures 3.11 and 3.12 show the

ACF and PACF plots for the differenced gasoline futures and spot price data. We still

see that by merely inspecting the correlogram, we may not be adequately able to get the

model that describes this data accurately. There seems to be some decay but then there

are surprises of significance at larger lags after some kind of exponential decay. Figures

3.13 and 3.14 are the ACF and PACF plots for the heating oil price series for both the fu-

tures and the spot market. They also behave in much the same way as the previous series.

For all the differenced series, when the LB test is carried out, the null hypothesis that all

the autocorrelations are zero, is rejected for the crude and gasoline series, and not rejected

for the heating oil series as per the results presented in Table 3.5. This implies that a

conditional mean model is necessary for the crude and gasoline series, but for the heating

oil series, a conditional mean model is not necessary. We therefore start exploring the

best conditional mean model for the crude and gasoline series. Since from the ACF and

PACF plots, it is not possible to distinctly classify the models for all the series in question,

we resort to fitting various models and picking the most appropriate model based on the

value of the AIC.

Various ARMA models are fitted for p = 40 and q = 40 lags, using the Matlab command
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Figure 3.9: ACF plots for the differenced crude futures and spot price series

Figure 3.10: PACF plots for the differenced crude futures and spot price series

armaxfilter found in Kevin Sheppard’s GARCH Toolbox for Matlab accessed from his

website (https://www.kevinsheppard.com/MFE_Toolbox) in May 12, 2015. The AICs

https://www.kevinsheppard.com/MFE_Toolbox
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Figure 3.11: ACF plots for the differenced gasoline futures and spot price series

Figure 3.12: PACF plots for the differenced gasoline futures and spot price series

for the models are compared and the best model is selected as that with the smallest AIC.

The Matlab code used for model selection can be found in Appendix A
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Figure 3.13: ACF plots for the differenced heating oil futures and spot price series

Figure 3.14: PACF plots for the differenced heating oil futures and spot price series

For the differenced series of the crude futures prices ∆CF , an excerpt of the various AICs
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Table 3.5: Results from the Ljung-Box test on the six series

Series p− value Test statistic Critical value Decision
∆CF 0.0132 36.5559 31.4104 Reject H0
∆CS 0.0035 41.1845 31.4104 Reject H0
∆GF 0.0065 39.0942 31.4104 Reject H0
∆GS 0.0307 33.3769 31.4104 Reject H0
∆HF 0.0939 28.6954 31.4104 Do not reject H0
∆HS 0.0760 29.6954 31.4104 Do not reject H0

for the fitted models are shown in Table B.1, and plotted on the graph in Figure 3.15.

From these AIC values, and as can be seen from Table B.1 and the lowest point of figure

3.15, the best model is ARMA(6, 11).

Figure 3.15: Plot for the AICs for the various ARMA models fitted for the differenced crude
futures price data

From these fits, the candidate model for ∆CF is the ARMA(6, 11) with an AICs of

−4684.1. This model has the parameters estimated via the maximum likelihood using

the Matlab Command arima, summarized in Table 3.6.
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Table 3.6: Results from the ARMA(6, 11) Model fitted to the differenced crude futures price
series:

Parameter Estimate Standard Error t− Statistic
Constant -0.0003 0.0055 -0.0494
AR(1) 0.1064 0.2303 0.4622
AR(2) 0.5423 0.2234 2.4273
AR(3) 0.0277 0.0757 0.366
AR(4) -0.7031 0.0729 -9.652
AR(5) 0.0806 0.2265 0.3558
AR(6) 0.8426 0.2163 3.896
MA(1) -0.1625 0.2304 -0.7054
MA(2) -0.5671 0.2374 -2.3886
MA(3) 0.0127 0.0852 0.1488
MA(4) 0.7652 0.0712 10.7484
MA(5) -0.1797 0.2365 -0.7597
MA(6) -0.8514 0.2529 -3.3666
MA(7) 0.0874 0.0380 2.2975
MA(8) 0.0383 0.0189 2.0253
MA(9) -0.0402 0.0185 -2.1675
MA(10) -2.5142×10−5 0.0257 -0.001
MA(11) 0.0432 0.0242 1.7835
Variance 3.069 0.0503 61.0522

From Table 3.6, we can use the values of the t−statistic to check the significance of the

parameters. The greater the absolute value of t, the greater the evidence against the null

hypothesis that there is no significance difference between the parameter estimate and 0.

The closer to 0 the t−statistic is, the more likely the fact that there isn’t a significant

difference between the parameter and 0. We can use the general rule of thumb that we

reject the null hypothesis whenever |t| ≥ 3

For time series modelling, the assumption of Gaussian innovation distribution is com-

monly made. After model fitting, the inferred residuals are standardized and normality

checks are conducted. If this assumption of normality holds, then the residuals will ap-

pear to be approximately normally distributed. Figure 3.16 shows two plots. The first

one is a plot of the residual series from which we can still see some significant clustering

which suggests non-normality. From this plot, we see that the variance is not constant,

there is some indication that there is an excess of large residuals. The second plot of
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figure 3.16 is a histogram of the residuals from which it is not very clear to see evidence of

non-normality. Figure 3.17 shows a quantile-quantile plot and a box plot of the residuals

and from these, we can also deduce non-normality of the residuals largely because of the

extreme values.

Figure 3.16: Normality plots for residual checks

Figure 3.17: QQ-plot and Box plot for residuals from the ARMA(6,11) model

A visual inspection may therefore not be sufficient, so we apply the Kolmogorov-Smirnov

(KS) test. The KS-test is a non-parametric test used to determine whether or not two

data sets differ significantly. It tests the equivalence of probability distributions which are
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continuous and one-dimensional, and which can be used to compare a sample with some

reference probability distribution. Given two samples, X1, ..., Xm and Y1, ..., Yn, where

F1(x) denotes the cumulative distribution function (CDF) for the distribution of the first

population and F2(y), the CDF for the second. If F̂1 denotes the CDF for the first sample,

and F̂2, the CDF for the second sample, then, the KS statistic, is found using the formula

KS = maxw |F̂1(w)− F̂2(w)|. The statistic is calculated by finding the maximum absolute

value of the differences between the two sample CDFs. It tests the null hypothesis that

both data sets come from the same distribution. Formally, the hypotheses can be stated

as

H0 : The distributions being compared are the same

H1 : The distributions being compared are not the same

In this case, the reference distribution is the normal probability distribution. This test

relies on the fact that the value of the sample CDF is asymptotically normally distributed.

The KS statistic results obtained are as shown below.

KS statistic critical value p-value

0.0959 0.0279 2.3662× 10−19

From these results, the null hypothesis that the residuals are normally distributed is re-

jected. In this case the ARMA(6, 11) that was fitted does not obey the assumption of

Gaussian innovation distribution. The innovation process is also assumed to be uncorre-

lated. After fitting a model, the residuals are inferred and checked for any unexplained

autocorrelation. The sample ACF and PACF of the standardised residuals are plotted

as shown in figure 3.18, and in this case, we see that the residuals appear uncorrelated.

In addition to visually inspecting the plotted ACFs, the LB Q-Statistic can be used to

quantify the autocorrelation. It tests the residuals for high order serial correlation. The

test can be conducted at many values of lags k. To test a residual series, there are k−p−q

degrees of freedom, where p and q are the number of AR and MA coefficients in the fitted
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Figure 3.18: ACF and PACF for residuals from the ARMA(6,11) model

model, respectively. For the LB-test on the residual series, the results obtained are as

shown below.

LB −Q statistic critical value p-value

9.3767 31.4104 0.9781

From this test, we do not have sufficient evidence to reject the null hypothesis that the

residuals are not autocorrelated. Based on these results, we test for ARCH effects in the

squared residuals and obtain the following results.

LB −Q statistic critical value p-value

862.3104 31.4104 < 0.001

The results indicate that there are significant ARCH effects in the residuals of the returns.

Figure 3.19 also shows evidence of serial autocorrelation (conditional heteroscedasticity)

on the squared residuals. The PACF plot shows autoregression of order one so ARCH(1)

should be able to capture the ARCH effects in the residuals.



3. Trends and Patterns in Energy Markets 60

Figure 3.19: ACF and PACF for squared residuals from the ARMA(6,11) model

So we now specify the conditional mean and variance model and fit a combined ARMA-

GARCH model so that we can incorporate the ARCH effects present in the variance.

We fitted an ARMA(6,11)-GARCH(1,1) to capture these effects and the fit had an

AIC of 8810.9. A search for the best combined model revealed that an ARMA(0, 0) −

GARCH(1, 1) model gives the best fit with an AIC 0f −4.4037. From this analysis, we

see that a more appropriate model to use would be one with a constant conditional mean

and a conditional variance. The most appropriate model for this would be a GARCH

model.

For the crude spot market, a similar fit is done and from these AICs, it can be seen from

Table C.1, and the lowest point of Figure C.1, the best model is ARMA(7, 11). This

model has the parameters summarized in Table C.2. A similar analysis was also done

on the differenced gasoline futures and gasoline spot prices and they behaved in much

the same way as the crude futures data. Some of the results are presented in Figures

D.1 and D.2 and Table D.1. The series under consideration here have very high order
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AR and MA terms and so since modelling just the evolution of the variance gives a more

parsimonious model, in the next section, all the differenced series are now only considered

under GARCH in order to capture the heteroscedasticity that is evidently present.

3.3.3 Modelling Energy Markets using using GARCH Models

In the previous section we used ARMA models for the differenced series under the as-

sumption that the variance does not evolve over time. The sample ACF and PACF plots

for all the series show virtually no significant autocorrelation. The LB test null hypot-

hesis that all autocorrelations are zero is not rejected for all the series. This implies that

a conditional mean model is not necessary for this particular returns series. The analysis

in the previous section has shown that the differenced series exhibit the “stylized facts”

such as volatility clustering and a non-normal empirical distribution. Non-normality and

volatility clustering in financial time series is typically envisaged in high frequency data

such as weekly, daily or intra-day data. The persistence of the conditional volatility tends

to increase with the sampling frequency.

Volatility clustering in financial time series manifests itself as autocorrelation in squared

and absolute returns, or in the residuals of the estimated conditional mean equation.

Examining the ACF and PACF plots for the squared differenced series shown in figures

3.20, 3.22, 3.24, 3.21, 3.23 and 3.25 reveals serial correlation of the squared differenced

series. The significance of these autocorrelations at various lags was tested using the LB

test and the LM test at lags 1,5 and 10, and the results are summarized in Table 3.7

As is evident from Table 3.7, there is enough evidence to reject the null hypothesis of no

ARCH effects as per the LB test since the test indicates that there are significant ARCH

effects in the all squared series. However, based on Engle’s ARCH test, which is the LM

test, we do not have sufficient evidence to reject the hypothesis of no ARCH effects for

the gasoline futures and the heating oil futures series. For all the other series we reject

that hypothesis of no ARCH effects.
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Figure 3.20: ACF plots for the squared differenced crude futures and spot price series

Figure 3.21: PACF plots for the squared differenced crude futures and spot price series

Serial correlation in squared returns, or conditional heteroscedasticity can be modelled
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Figure 3.22: ACF plots for the squared differenced gasoline futures and spot price series

Figure 3.23: PACF plots for the squared differenced gasoline futures and spot price series

using GARCH models. GARCH models allow for the volatility to evolve with time. A

GARCH model can be expressed as an ARMA model of squared residuals and hence many
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Figure 3.24: ACF plots for the squared differenced heating oil futures and spot price series

Figure 3.25: PACF plots for the squared differenced heating oil futures and spot price series

of it’s properties follow easily from those of the corresponding ARMA process. Bollerslev

(1986) showed that if the fourth order moment of a GARCH (1,1) exists, the kurtosis
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Table 3.7: Results from the Ljung-Box test and LM test for ARCH effects on the squared diffe-
renced series

Q(p) LM -test
Lag 1 5 10 1 5 10
(∆CF )2 348.7860 677.9798 821.8668 431.6908 564.0678 608.2411

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
(∆CS)2 383.8102 696.8113 799.9966 287.6458 346.9196 358.5530

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
(∆GF )2 39.1419 101.4364 157.9903 3.6144 4.3235 5.3290

(< 0.001) (< 0.001) (< 0.001) (0.0573) (0.5038) (0.8681)
(∆GS)2 317.2978 858.4161 962.2979 311.7861 792.5090 866.7921

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
(∆HF )2 45.9233 180.8631 271.3969 1.3445 5.3405 5.7203

(< 0.001) (< 0.001) (< 0.001) (0.2463) (0.3758) (0.8382)
(∆HS)2 79.1121 251.7390 379.0275 23.2807 38.8980 46.1772

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
p-values are indicated in the parenthesis.

implied by a GARCH(1,1) process with normal errors is greater than that of the normal

distribution which is 3. For this reason, a GARCH model with normal errors can replicate

some of the fat tailed behaviour observed in financial time series, though, most often, a

GARCH model with a non-normal error distribution is required in order to fully capture

the observed fat tail behaviour in financial time series. Just like exogenous variables can

be included in the conditional mean equation as shown in (3.35), exogenous explanatory

variables can at times also be incorporated in the conditional variance equation so that

(3.22) is modified to take the form

at = σtεt where εt ∼ N(0, 1)

σ2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j +

K∑
k=0

δ′kZt−k,
(3.39)

where δ is an m× 1 vector of positive coefficients and Zt is an m× 1 vector of variables.

Some of these exogenous variables include the trading volume, implied volatility, reali-

zed volatility, after hours realized volatility, overnight returns and macroeconomic news

announcements.



3. Trends and Patterns in Energy Markets 66

3.3.3.1 Model Identification and Fitting

In most practical problems, the establishment of the ARCH order p or the GARCH order

q can usually pose a significant challenge. Various criteria for model selection such as

AIC and BIC can be employed since GARCH models resemble and can be viewed ARMA

models for a series of squared residuals. AIC and BIC typically select ARCH(p) mo-

dels with relatively large values of p when considering high frequency data, whereas for

GARCH(p, q) models, the models with p, q ≤ 2 are typically selected. For most practical

applications, the GARCH(1, 1) model is usually the most parsimonious.

In this section, we fit several GARCH(p, q) model to the differenced crude futures series

for p = 20, q = 20. The parameters α0, αi and βj of the GARCH(p, q) model and the

in-sample estimates of the volatility are estimated via maximum likelihood. This being

high frequency data, the model with the smallest AIC was GARCH(19, 16) with an AIC

of 8776.4 as shown in Tables E.1, E.2, E.3 and figure 3.26 both showing the AICs of all the

models fitted. The best model according to these fits have the parameters summarized in

Table 3.8. The Matlab code used to fit these models is in found in Appendix F.

Table 3.8: Results from the GARCH(19, 16) Model fitted to the differenced crude futures price
series:

Parameter Value Standard Error t− Statistic
Constant 0.1753 0.1030 1.7014
GARCH(16) 0.0898 0.1692 0.5304
GARCH(19) 0.3478 0.1995 1.7432
ARCH(1) 0.1212 0.0221 5.4752
ARCH(2) 0.0710 0.053 1.3404
ARCH(5) 0.0381 0.0523 0.7287
ARCH(6) 0.0374 0.0461 0.8107
ARCH(8) 0.0257 0.033 0.78
ARCH(9) 0.0069 0.0369 0.188
ARCH(10) 0.0498 0.037 1.346
ARCH(13) 0.0217 0.0371 0.5845
ARCH(14) 0.036 0.0376 0.9554
ARCH(15) 0.0125 0.0358 0.3482
ARCH(16) 0.0825 0.0361 2.2876
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From these results model it can be seen that most of the in-between lags are not significant,

though the important lags at 19 and 16 respectively, are significant. As per the AIC values,

most these models do not seem to be significantly different and so the lags can be reduced

to gain parsimony. Table 3.9 summarizes the estimated parameters for the GARCH(1,1)

model that was fitted to this data.

Table 3.9: Results from the GARCH(1, 1) Model fitted to the differenced crude futures price
series:

Parameter Value Standard Error t− Statistic
Constant 0.0191 0.0067 2.8406
GARCH(1) 0.9464 0.0074 127.718
ARCH(1) 0.0475 0.0061 7.7615

Figure 3.26: A plot for the AICs for various GARCH models fitted
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Figure 3.27: GARCH(19, 16) Conditional variances plot and standardized residuals histogram

3.3.3.2 Evaluation of the Estimated GARCH models

After a GARCH model has been fit to the data, it’s adequacy is evaluated both graphi-

cally and using statistical diagnostic tests. If the model has been correctly specified, then

the estimated standardized residuals given by ε̂t/σ̂t should typically behave similar to the

residuals from classical regression. They must now not display conditional heteroscedas-

ticity, serial correlation, or any other type of non-linear dependence. The distribution

of these standardized residuals should also match the specified error distribution used in

the estimation. An analysis on the residuals of this model show that this model gives a

fairly good fit. Figure 3.27 shows a plot of the inferred conditional variances and a his-

togram of the standardized residuals. From the histogram, these residuals appear to be

normally distributed. Figure 3.28 shows the quantile quantile plot and the box plot. For

the quantile quantile plot, most of these values lie along the 450 line, depicting a normal

distribution. The boxplot also conforms to a normal distribution with a few outliers.

From these two plots we see that although there are a few residuals larger than expected

for a Gaussian distribution, the normality assumption is not unreasonable. Generally,

An examination of the plots of the standardised residuals after fitting the GARCH(1,1)

model for the return series indicates that the residuals are, on the overall, stable with



3. Trends and Patterns in Energy Markets 69

Figure 3.28: GARCH(19, 16) Standardized residuals QQ-plot and boxplot

some clustering as can be seen from the plots in Appendix G. From figure 3.29 of the

ACF and the PACF of the standardized residuals, we see that the standardised residu-

als display no autocorrelation. A residual analysis of the GARCH(1, 1) model gives the

exact same result and therefore it makes more sense to just fit a GARCH(1, 1) for this

data. The other series also behave in much the same way as the crude futures. Fitting a

GARCH(1, 1) model on all the six series gives the results in Table 3.10.

From the measure of persistence, we see the highest persistence of 0.9938 in the ∆CF se-

ries, although, all other return series are quite persistent. This indicates that the volatility

processes return to their means after some time.

Table 3.10: Results from the GARCH(1, 1) Model fitted to all the differenced price series:

Parameter ∆CF ∆CS ∆GF ∆GS ∆HF ∆HS
α0 0.0191 0.0265 0.3354 0.5388 0.0743 0.0428
α1 0.9464 0.9388 0.8236 0.8318 0.915 0.9429
β1 0.0475 0.058 0.1072 0.1036 0.0642 0.0451

(α1 + β1) 0.9938 0.9916 0.9308 0.9354 0.9792 0.9878
(α1 + β1) measures the persistence
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Figure 3.29: GARCH(19, 16) ACF and PACF of standardized residuals

3.3.3.3 Forecasting volatility with GARCH(1, 1)

Model selection depends on how well the model fits the data, as well as on the objective

of the analysis carried out. For purposes of forecasting for example, the best model for

in-sample fitting may not necessarily provide better or more accurate predictions (Tsay,

2010). For this reason, the use of the performance of the out-of-sample forecasts to assist

in the selection of an adequate statistical model is more common. In the out-of-sample

forecasts, the data that is used in model fitting are not the same as those used in forecas-

ting evaluation.

In finance, the sample standard deviation, of returns σ, is used as a simple h time periods

ahead forecast of the volatility of returns, over the future period [t, t+ h]. Suppose this

model is estimated using daily stock returns as shown in (3.17), then, the k-periods

historical variance will be calculated as

σ̂2
t (k) = 1

k − 1

k−1∑
i=0

(rt−i − r̄) , (3.40)
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with the sample mean return r̄ = 1
k

k−1∑
i=0

rt−it, representing the estimate of the mean return

µ. The average return does not consider the price fluctuations, or the number of prices

within the period. Mostly, the mean is usually set to zero in order to achieve a better

forecast. Multiplying the variance by the number of trading days in a year, N , and taking

the square root results in the annualised volatility

σ̂ =
√
N.σ̂2. (3.41)

In most cases, the number of trading days in a year is taken to be N = 250. The value σ̂

is the best estimator for the volatility from the available price data and the volatility of

any period of length, k, can be estimated from it. The k-day volatility forecast can also

be found by using the GARCH model. Under the condition that returns are uncorrelated

across days, the k-day variance as of t− 1 is given by

E
[
r2
t,t+k|Ft−1

]
= E

[
r2
t |Ft−1

]
+ E

[
r2
t+1|Ft−1

]
+ . . .+ E

[
r2
T |Ft−1

]
(3.42)

The predicted volatility over k future periods from t + 1 to t + k, denoted by σFt, is the

mean of the expected volatility on each and every day from t to t+ k i.e.

σFt =

√√√√1
k

k∑
i=1

E
(
σ2
t+k|Ft

)
(3.43)

where

E
(
σ2
t+k|Ft

)
= α0

1− (α1 + β1)k

1− (α1 + β1) + (α1 + β1)k σ2
t . (3.44)

Notice that for (α1 + β1) < 1,

lim
k→0

E
(
σ2
t+k|Ft

)
= α0

1− α1 − β1
, (3.45)

which is the unconditional variance. The In-Sample and Out-of-Sample forecasting ability

of the various volatility models can be measured by the mean absolute error (MAE) and
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the root mean squared forecasting errors (RMSFE). These two statistical loss functions

are symmetric and have very simple mathematical forms making them more popular for

the evaluation the predicting power of a chosen model. The RMSFE has a weakness of

assigning more weight to larger forecasting errors. This weakness can be managed using

the MAE which contrary to this, assigns equal weights to both scenarios of under and

over predictions of volatility.

For comparison of the in-Sample forecasting performance of the various models, the com-

plete data sets for each of the return series will be used. For comparison of out-of-sample

forecasting performance of various volatility models, the sample data will be split into

two portions. The first part, which is used in training the model and estimating the

parameters of the chosen model, which in this case is the GARCH(1, 1), contains data

from at least two thirds of the entire sample. The remaining one third of the sample is

then used to test the forecasting ability of the volatility models. Rolling forecasts are

used such that the parameters of the GARCH(1, 1) model are estimated each time with

a rolling constant sample size. This implies that for a forecasting horizon of k, at each

forecast date we add k new data points and subtract k of the old data points. At each

forecast date, the realised volatility is then calculated using the expression

σR,t =

√√√√ 1
N

N∑
i=1

r2
t+i, (3.46)

so that, for a given model, if the forecast volatility is given by σFt, then the RMSFE is

given by

RMSFE =
√√√√ 1
n

∑
t∈s

(σFt − σR,t)2, (3.47)

and the MAE is given by
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MAE = 1
n

n∑
t=1
|σFt − σR,t| , (3.48)

where n and s denote the number of forecasts and the set of times at which ex ante

forecasts are produced respectively in the above expression. Forecasting using ARCH

models is obtained recursively (Jondeau et al., 2006). If we left t be the date at which we

start the forecasting, then, the 1− step ahead forecasts for σ2
t+1 is

σ2
t (1) = α̂0 + α̂1a

2
t+1−1 + α̂2a

2
t+1−2 + . . .+ α̂pa

2
t+1−p

= α̂0 + α̂1a
2
t + α̂2a

2
t−1 + . . .+ α̂pa

2
t+1−p

= α̂0 +
p∑
i=1

α̂iâ
2
t+1−i,

(3.49)

where at is the estimated residual. For a 2− step ahead forecast, we need to forecast a2
t+1,

and this is given by σ2
t (1)

σ2
t (2) = α̂0 + α̂1σ

2
t (1) + α̂2â

2
t + . . .+ α̂pâ

2
t+2−p. (3.50)

The k− step ahead forecast for σ2
t+kis

σ2
t (k) = α̂0 + α̂1σ

2
t (k − 1) + . . .+ α̂pσ̂

2
t (k − p)

= α̂0 +
p∑
i=1

α̂iσ
2
t (k − i),

(3.51)

where, σ2
t (k − i) = â2

t+k−i for k − i ≤ 0.

Forecasts with GARCH are done in a similar way. The 1− step ahead forecast for σ2
t+1 is

σ2
t (1) = α̂0 +

q∑
i=1

α̂iâ
2
t +

p∑
i=1

β̂iσ̂
2
t , (3.52)
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and, since a2
t = σ2

t ε
2
t , the GARCH(1, 1) model can be expressed as

σ2
t = α0 + α1σ

2
t−1 + β1σ

2
t−1

= α0 + (α1 + β1)σ2
t−1 + α1σ

2
t−1

(
a2
t−1 − 1

)
,

so that at time t+ 2, we have

σ2
t = α0 + (α1 + β1)σ2

t+1 + α1σ
2
t+1

(
a2
t+1 − 1

)

with E
[(
a2
t+1 − 1

)
|Ft
]

= 0. This means, the 2− step ahead forecast for σ2
t+2 is

σ2
t (2) = α̂0 +

(
α̂1 + β̂1

)
σ2
t (1) (3.53)

and the k−step ahead forecast for σ2
t+k is

σ2
t (k) = α̂0 +

(
α̂1 + β̂1

)
σ2
t (k − 1) for k > 1. (3.54)

An alternative way of writing (3.54) is as shown in (3.55)

σ2
t (k) = σ̂2 +

(
α̂1 + β̂1

)k−1 (
σ2
t − σ̂2

)
for k > 1. (3.55)

where

σ̂2 = α̂0

1− α̂1 − β̂1
.

From (3.55), we can see that σ2
t → σ̂2 as k →∞

The forecasting ability of the model can only be determined by considering how well a

model performs on data not used in estimating the model. It is common practice partition

the data into two sets, use the larger portion for estimating the model and the smaller

one for testing the model. The test data can be used to measure model accuracy on new

data. The size of the test data set should typically be about 20% of the total sample,

although this depends on the sample size and the forecast horizon. In an ideal sense,

the size of the test sample should be at least as large as the maximum forecast horizon
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Figure 3.30: Crude futures return series and inferred conditional variances showing the two sub-
samples

required (Hyndman and Koehler, 2006).

For this research, the total length of the data under consideration is 2363 data points.

this data set was divided into two sets, the first sub-sample, used for model estimation

contained 2063 points and the second sub sample, used for forecasting, contained the

remaining 300 points. The top graph in figure 3.30 shows how the two sub-samples were

produced from the entire data set for the crude oil futures prices. the blue part represents

the first sub-sample and the red, the second sub-sample. The second graph shows the

inferred conditional variances, inferred from fitting a GARCH(19, 16), divided into the

same two sub-samples.

In figure 3.31, we have a graph similar to figure 3.30, except now the red potion on each

graph represents the forecast values, both for the returns, and the inferred conditional

variances. The red portions of the graph on figure 3.31 are zoomed in on figure 3.32

actually shows our model did some good forecasts.
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Figure 3.31: Crude futures return series and inferred conditional variances showing the estima-
tion sub-sample and the foretasted values

Figure 3.32: Crude futures return series and inferred conditional variances showing the estima-
tion sub-sample and the foretasted values

In order to regain a forecast of the price series, the differencing on the foretasted return

series obtained from the foretasted inferred conditional variances is undone. However

because the inferred variances are conditioned on a standard normal error, there are

several possibilities and, having many different forecasts and averaging would give a stable

forecast for the crude futures prices, which can then be used to predict future crude oil

futures prices. Figure 3.33 shows on of the possibilities of the foretasted prices, and figure
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3.34 just zooms in on figure 3.33 to show the dynamics therein. The RMSFE for this

model is 0.2072, an indication that the forecasts are generally good. The MATLAB code

used to generate these forecast values is shown in appendix H

Figure 3.33: Crude futures price series showing foretasted prices

Figure 3.34: Crude futures price series showing foretasted prices



4. MULTIVARIATE ANALYSIS AND CO-INTEGRATION IN

ENERGY MARKETS

It is a simple fact is that most realistic applications in empirical finance are actually

multivariate, involving more than two assets. Of essential importance in finance is the

covariation and co-evolution between the prices of financial assets. The risks faced by a

long-run and a short-run investor can usually be quite different since as the investment

horizon increases, market fluctuations become the main sources of variability in returns.

The ability to understand and model the behaviour of asset or stock returns, especially

over long horizons, critically depends on the understanding and modelling of the market

dynamics. In order to investigate the common trends seen in multivariate time series,

the co-integration approach has emerged as a very powerful technique which provides a

sound methodology useful for modelling both short-run and long-run dynamics in a sy-

stem (Alexander et al., 2002).

Figure 4.1 shows a time series plot of the six series under consideration and figure 4.2

shows a plot of crack spread margins calculated from the ratios discussed and represented

in (5.1). Co-evolution of the six series is evident from visual inspection of figure 4.1. This

study uses co-integration to analyse the long-run equilibrium relationships between the

prices of crude oil and the distillate fuels. If they are co-integrated and have co-integrating

residuals which are stationary, then the various spreads are somewhat stationary as can

be seen in figure 4.1. If on the other hand they are not co-integrated, then, the spreads

can deviate without bounds and using crack spreads for risk management would be que-

stionable (Girma, Paulson, et al., 1999). Co-integration refers to co-evolution in prices,

and not the co-evolution in returns.
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Figure 4.1: Daily futures and spot prices for crude oil and distillate fuels: CF=crude futu-
res, CS=crude spot, GF=gasoline futures, GS=gasoline spot, HF=heating futures,
HS=heating spot

4.1 Multivariate Analysis of Energy Markets

The positive correlation of price variations or volatility clustering, as seen on specula-

tive markets is what motivated the introduction by Engle (1982), of the ARCH process,

which were later generalized by Bollerslev (1986) to GARCH. The univariate nature of

these models implies their capabilities are limited, and as such, they fail to capture any

further information embedded in multivariate data that have could have temporal and

cross-sectional dependencies in empirical stock price variation and the contemporaneous

cross correlation implied by economic theory, such as a set of asset prices, exchange and

interest rates, stock market indices among other macroeconomic variables.
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Figure 4.2: Daily crack spread margins from futures and spot prices for crude oil and distillate
fuels: AcrkF=1:1:0 futures crack, BcrkF=1:0:1 futures crack, CcrkF=3:2:1 futures
crack, DcrkF=5:3:3 futures crack, AcrkS=1:1:0 spot crack, BcrkS=1:0:1 spots crack,
CcrkS=3:2:1 spot crack, DcrkS=5:3:3 spot crack

Often we are not interested merely in the behaviour of a single random variable but rather

in the joint behaviour of several random variables, for example, several stock returns and

a market index. Multivariate distributions are used to describe such joint behaviour since

multivariate time series analysis takes into consideration, multiple time series simultane-

ously. Prices of stocks in the same market usually exhibit similar patterns of behaviour

in response to new information that is importance to the whole market. From this per-

spective, when modelling volatilities that vary with time, a multivariate model seems to

provide the natural framework that can be used to take account of cross sectional informa-

tion. In the evolution of financial markets, asset prices tend to move simultaneously. Over

time, asset returns also tend to move simultaneously and so do their respective volatilities.

When studying multivariate processes, a structure is required for depicting the properties
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of the individual series as well as the conceivable cross-relationships among these series

since they might be interrelated both contemporaneously and across time lags (Reinsel,

1993). Haigh and Holt (2002), employ an MGARCH model that allows for direct incor-

poration of the time to maturity effect in accounting for the time-varying volatility spill

overs between related markets when considering the possibility of simultaneously hedging

crude oil, unleaded gasoline and heating oil price risk in a dynamic setting. Their results

show that cross market linkages between crude oil, unleaded gasoline and heating oil mar-

kets are great importance.

This work uses a multivariate model for time varying volatilities that takes cross sectional

information into account. In this section, we discuss some of the basic concepts and

models which are deemed crucial in understanding multivariate time series analysis. The

main building blocks for the models used in this research are discussed in section 4.2.

4.2 Basic Concepts and Models for Multivariate Time Series

In most practical cases, time series are best considered as components of some vector-

valued (multivariate) time series {pt}, which has not only serial dependence within each

component of the series {pti} but, also has interdependence between different components

{pti} and {ptj}, for i 6= j (Chan, 2011; Tsay, 2013). Most of the theories that apply

in univariate time series naturally extend to multivariate time series except for the two

major problems of dimensionality and identifiability.

Considering a k−dimensional time series {pt = (pt1 . . . , ptk)′}, the mean vector is defined

by

µ = E [pt] = (E(pt1), . . . , E(ptk))′ (4.1)
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and the covariance matrix

Γ(t+ h, t) = Cov (pt+h, pt)

=


γ11(t+ h, t) . . . γ1k(t+ h, t)

... . . . ...

γk1(t+ h, t) . . . γkk(t+ h, t)

 ,
(4.2)

where γij(t+ h, t) = Cov (pt+h,i, pt,j).

Using matrix notation, we have

Γ(t+ h, t) = E (pt+h − µt+h) (pt − µt)′ . (4.3)

The diagonal elements of the matrix in (4.3) are the auto-covariance functions of the

univariate series {pti}, while the off-diagonal elements are the covariances between pt+h,i

and pt,j, i 6= j. Note also that γij(h) = γji(−h) and the autocorrelation matrix is then

defined as

R(h) =


ρ11(h) . . . ρ1k(h)

... . . . ...

ρk1(h) . . . ρkk(h)

 , (4.4)

where ρij(h) = γij(h) (γii(0)γjj(0))−1/2

4.2.1 Stationarity

A k−dimensional time series {pt} is considered to be weekly stationary if the moments

µt and Γ(t + h, t) are time invariant, meaning, they are both independent of t, in which

case

E [pt] = µ, a k-dimensional constant vector, where µ = (µ1, µ2, . . . , µk)′
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and

Cov (pt) ≡ Γ(0) = E
[
(pt − µ) (pt − µ)′

]
= Σp, a k × k positive definite matrix.

The probability distribution of observations from a stationary vector process is unchan-

ging with respect to the changes in time.

A k−dimensional time series {pt} is said to be strictly stationary if the joint distribution

associated with the m collection (pt1 , . . . , ptm) at times 1, 2, . . . , t is the same as that

associated with m observations (pt1+j , . . . , ptm+j)′ at times j + 1, j + 2, . . . , j + m where

m, j and (t1, . . . , tm) are arbitrary positive integers.

4.2.2 Linearity

In a strict sense, true multivariate time series are non-linear, yet linear models can regu-

larly give precise approximations for making inference.

A k−dimensional time series {pt} is linear if

pt = µ+
∞∑
i=0
ψiat−i (4.5)

where µ is a k−dimensional constant vector, ψ0−Ik is the k×k identity matrix, ψi, i > 0

are k × k constant matrices and at is a sequence of i.i.d random vectors with mean =0

and a positive definite covariance matrix Σa.

Definition 4.2.1. {at} ∼ i.i.d (0,Σ) if {at} are i.i.d with mean µ = 0 and covariance

matrix Σa.

Definition 4.2.2. {at} ∼WN (0,Σ) if and only if {at} is stationary with mean µ = 0
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and

Γ(h) =


Σ for h = 0

0 elsewhere

Alternatively, linearity could be expressed by requiring ψ0 to be a lower triangular ma-

trix with it’s diagonal elements being 1, and Σa, being a diagonal matrix. This can be

achieved by utilizing the Cholesky decomposition of Σa.

Particularly, the covariance matrix Σa can be decomposed as

Σa = LGL′ (4.6)

where L is a k× k lower triangular matrix with it’s diagonal elements being 1 and G is a

diagonal matrix.

If we let bt = L−1at so that at = Lbt, then

Cov(bt) = Cov
(
L−1at

)
= L−1Σa

(
L−1

)′
= L−1 (LGL′) (L′)

−1

= G

Using the sequence {bt} (4.5) can then be expressed as

pt = µ+
∞∑
i=0

(ψiL) bt−i

= µ+
∞∑
i=0
ψ∗

i bt−i

(4.7)

where ψ∗
0 = L, a lower triangular matrix, ψ∗

i = ψiL for i > 0 and the covariance matrix

for bt ia a diagonal matrix.

For the linear series represented in (4.5) to be stationary, the coefficient matrices must
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fulfil the condition

∞∑
i=1
‖ψi‖ <∞ (4.8)

where ‖ψ‖ denotes the norm of a matrix ψ. This implies that ‖ψi‖ → 0 as i→∞. This

means that ψi → 0 as i→∞. Further more, we must have

E (pt) = µ and Cov (pt) =
∞∑
i=0
ψiΣaψ

′
i

For a stationary multivariate linear time series {pt} represented as in (4.5), for the case

of lag h = 0, we have

Γ(h) = E
[
(pt − µ) (pt−h − µ)′

]
= E

[
(at +ψ1at−1 + . . .) (at−h +ψ1at−h−1 + . . .)′

]
= E

[
(at +ψ1at−1 + . . .)

(
a′

t−h + a′
t−h−1ψ

′
1 + . . .

)]
=
∞∑
i=h
ψiΣaψ

′
i−h

(4.9)

4.2.3 Covariance and Correlation

For a stationary process {pt}, the covariance between pt+h,i and pt,j must depend only on

the lag h, not on time, for i, j = 1, . . . , t and h = 0,±1,±2, . . .. If we let

γij(h) = Cov (pt+h,i, pt,j) = E [(pt+h,i − µi) (pt,j − µj)]

and denote a t× t matrix of cross-covariances at lag h by

Γ(h) = E
[
(pt − µ) (pt+h − µ)′

]
=



γ11(h) γ12(h) . . . γ1k(h)

γ21(h) γ22(h) . . . γ2k(h)
... . . .

. . . ...

γk1(h) γk2(h) . . . γkk(h)


(4.10)
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for h = 0,±1,±2, . . .. similarly, the cross-correlation matrix at lag h is denoted by

ρ(h) = V −1/2Γ(h)V −1/2 =



ρ11(h) ρ12(h) . . . ρ1k(h)

ρ21(h) ρ22(h) . . . ρ2k(h)
... . . .

. . . ...

ρk1(h) ρk2(h) . . . ρkk(h)


(4.11)

for h = 0,±1,±2, . . ., where V −1/2 = Diag
{
γ11(0)−1/2, . . . , γtt(0)−1/2

}
, since ρij(h) =

corr (pti, pt+h,j) = γij(h)
[γii(0)γjj(0)]−1/2 with γii = Var(pti).

For i = j, ρii(h) = ρii(−h) represents the autocorrelation function of the ith series pt,i,

and, for i 6= j, ρij(h) = ρji(−h) represents the cross-correlation function between the

series pt,i and pt,j. Note that for h = 0, we have the covariance matrix Γ(0) of pt since

Σp = Γ(0).

For a positive lag h, γij(h) can be viewed as a measure of the linear dependence of the

ith component pt,i on the hth lagged value of the jth component pt,j.

Also note that Γ(h)′ = Γ(−h) and ρ(h)′ = ρ(−h), since γij(h) = γij(−h) as shown below.

Γ(h) = E
[
(pt − µ) (pt−h − µ)′

]
= E

[
(pt+h − µ) (pt − µ)′

]
by stationarity

=
{
E
[
(pt − µ) (pt+h − µ)′

]}′
since A = (A′)′

=
{
E
[
(pt − µ)

(
pt−(−h) − µ

)′]}′
= {Γ(−h)}′ by definition

= Γ(−h)′

Therefore, unlike the instance of univariate stationary time series for which the auto-

covariances of lag h and lag −h are similar, one must transpose a positive-lag cross-
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covariance matrix in order to obtain the negative-lag cross-covariance matrix. The cross-

correlation matrices ρ(h) and the cross-covariance matrices Γ(h) are positive definite since
n∑
i=1

n∑
j=1
b′iΓ(i− j)bj ≥ 0 for all positive integers n and all k−dimensional vectors b1, . . . , bn,

which follows since Var
(

n∑
i=1
b′ipt−i

)
≥ 0

Note that the last equality holds because at has no serial covariances and ψ0 = Ik. So

for a stationary series {pt}, the lag h cross-correlation matrix ρ(h) is defined as

ρ(h) = D−1Γ(h)D−1

= ρij(h)

(4.12)

where D = diag {σ1, . . . , σk} is a diagonal matrix of the standard deviation of the com-

ponents of {pt}. Specifically, σ2
i = Var(pit) = γii(0), that is the i, ith element of Γ(0).

Note that ρ(0) is symmetric, it’s diagonal elements are 1 and the off-diagonal elements

are the instantaneous cross-variations between the components of {pt}.

Not however that for h > 0, ρ(h) is not symmetric generally because ρij(h) is the correla-

tion coefficient between pti and pt−h,j whereas ρji(h) is the correlation coefficient between

ptj and pt−h,i, but using the properties of Γ(h), we have ρ(h) = ρ′(−h).

Note that for a k−dimensional time series {pt} each matrix ρ(h) is a k × k matrix.

Where k is large, it is difficult to simultaneously decipher ρ(h) for several values of h. In

order to summarize this information, one can consider k2 plots of the elements of ρ(h),

for h = 0, . . . ,m, where m is a specified positive integer. For example for each {i, j}th

position, we plot ρij(h) versus h. these plots show the linear dynamic dependence of pti

on pt−h,j for h = 0, . . . ,m. The k2 plots are referred to as cross-correlation plots of pt.
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4.2.4 Invertibility

A process is viewed to be invertible if it can be represented as

pt =
∞∑
i=1

ψipt−i + at. (4.13)

In many time series applications such as forecasting, it is prudent to express the time

series {pt} as a function of it’s lagged values {bt−i} for i > 0 and some noise {at}. For

an invertible series, ψi → 0 as i→∞. A vector autoregressive (VAR) series of order 1 is

an example of an invertible time series.

In data analysis, we study the sample cross-correlation matrix ρ̂(h) in order to observe

the linear dynamic dependence in the data.

Given a sample series {pt} for t = 1, . . . , T , the sample mean vector is given by

µ̂p = 1
T

T∑
t=1

pt (4.14)

and the sample covariance matrix is

Γ̂(0) = 1
T − 1

T∑
t=1

(pt − µ̂p) (pt − µ̂p)′ (4.15)

The lag h sample cross-covariance matrix is defined as

Γ̂(h) = 1
T − 1

T∑
t=h+1

(pt − µ̂p) (pt − µ̂p)′ (4.16)

and the lag h sample cross-correlation matrix is given by

ρ̂(h) = D̂−1Γ̂(h)D̂−1 (4.17)
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where D̂ = diag
{
γ̂

1/2
11 (0), . . . , γ̂1/2

kk (0)
}
in which γ̂ii(0) is the i, ith element of Γ̂(0).

4.3 Co-integration in Energy Markets

Time series that contain some trend have a great potential of creating major problems

in empirical econometrics as a result of spurious regressions. A solution to this can be

by successively differencing the series until stationarity is achieved and then applying

regression analysis to the stationary series. This solution may however not be an ideal

one since in addition to differencing the error processes in the regression, it no longer

provides a unique long-run solution. For two non-stationary variables, the error can be

represented by a combination of two cumulated error processes. These cumulated error

processes form a stochastic trend which normally can be expected to combine to produce

a new non-stationary process. In the special circumstance that the two variables, say xt

and yt are truly related, it would be expected that they move together so that their two

stochastic trends would be smiler to each other, and in the event that they are combined,

there should be a possibility of finding a combination of them which would eliminates

non-stationarity. In such a case, we say the two variables are co-integrated.

Co-integration was developed as a means of modelling dynamic co-dependencies in multi-

variate time series (Chan, 2011). Time series are referred to as co-integrated if they evolve

together, while at the same time staying close together, even if as individual systems,

they can drift about. If spreads exhibit mean-reversion, and asset prices are entwined

by a common stochastic trend in the long-run, then, the price series are said to be co-

integrated. This can be interpreted to mean that there exists feedbacks that mutually

align the variables (Rachev et al., 2007). Co-integrated processes are characterized by

short-run dynamics and long-run equilibria.

Spot and futures prices are entwined since at some maturity date in the future, they con-

verge,and because of this, their tracking error or basis must exhibit mean-reversion. For
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tow related assets, if the prices are co-integrated then their spreads will usually be stati-

onary. Co-integration simply extends correlation analysis so as to incorporate an initial

stage during which the price data are analysed and a second stage which entails dynamic

analysis of correlations so that information concerning any lead-lag behaviour between

returns is provided (Alexander, 2008). Co-integration theory is useful in estimating and

testing long-term equilibrium relationships among non-stationary asset prices and allows

for meaningful statistical inference (Girma, Paulson, et al., 1999). Using co-integration,

macroeconomic models containing non-stationary stochastic variables can be constructed

so that the results are both statistically sound and economically meaningful.

4.4 Co-integration and common trends

Normally, a linear combination of integrated variables will also be integrated of the same

order as the individual variables. If two time series xt and yt are both integrated of order

d (I(d)), then generally, any linear combinations of the two series will also be I(d); that

is, the residuals obtained from regressing yt on xt will be I(d) (Harris and Sollis, 2003).

The exception from this rule is called co-integration, where a linear combination of the

integrated variables results in a lower order of integration. Co-integration is concerned

with the common behaviour of the multivariate time series where each component of a

multivariate time series may be non-stationary, but certain linear combinations of these

component series are indeed stationary (Chan, 2011).

The main objective of co-integration analysis is to identify any common stochastic (non-

stationary) trends and patterns present in price data and use these in the dynamic analysis

of correlations in returns. Co-integration involves a two step process. It starts by esta-

blishing any long-run equilibrium relationships between prices and then estimates the

dynamic correlation models of the returns, through, the error correction model (ECM)

since if any two variables are I(1) , and are co-integrated, they can be modelled as having

been generated by an ECM. An ECM corrects the deviations from the long-run equili-
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brium (Alexander et al., 2002).

In standard time series analysis, price data is differenced prior to any analysis, and this

eliminates any long-term trends present in the data a-priori, and hence, any information

that can hitherto be conveyed by there trends. Co-integration analysis on the other hand

is applied on raw price data and returns as well. two or more series are co-integrated if each

component series is integrated and some linear combination of these series is stationary

(Engle and Granger, 1987). For price series to be co-integrated, each must

(i) exhibit random walk behaviour at the price level,

(ii) be integrated of the same order

(iii) have co-integrating residuals which are stationary.

A series that is integrated is one that is stationary in the mean at order d, i.e. I(d). This

series contains d unit roots. In the multivariate case, these series may each be integrated

processes of some order. A given set of I(1) series are co-integrated if there exists a linear

combination of these series that is stationary. Examples of stationary spreads include

crack spreads and calendar spreads, which arise from the difference between two futures

prices on the same underlying but with different maturities, and are examples. If two

series xt, yt ∼ I(d) then, generally, any linear combination of these two series will also

be I(d). These two series {xt} and {yt} will be co-integrated if xt, yt ∼ I(1) but there

exists an α such that ut = xt − αyt ∼ I(0). In a more general sense, {xt} and {yt} are

considered to be co-integrated of order CI(d, p) if xt, yt ∼ I(d); and there exists an α such

that ut = xt − αyt ∼ I(d− p).

Two sequences of random variables {xt} and {yt} are considered to be co-integrated if

(i) they are non-stationary in levels, {xt} , {yt} ∼ I(1);

(ii) they are stationary in first differences; and
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(iii) there exists a linear combination of the levels, so that there is an α so that the error

term ut = xt − αyt ∼ I(0), where α is referred to as the co-integrating constant. ut

is also known as the disequilibrium error.

If there are n > 2 variables in the model, then there can be more than one co-integration

vector. It is possible to have up to n− 1 linearly independent co-integration vectors. Co-

integration is a two step process which begins with the establishment of any long-term

relationships between the series involved, and then estimating the time varying correlation

model of returns. Note however that, the co-integrating vector is not identified unless we

impose some arbitrary normalization.

A k−dimensional vector {Xt} is said to be I(1) if ∆Xt − (1−B)Xt = Xt −Xt−1 is I(0)

where BXt = Xt−1.

Let

Xt1 =
t∑
i=1

Zi1 + Zt2

Xt2 = 1
2

t∑
i=1

Zi1 + Zt3

Xt3 = Zt3

(4.18)

where (Zt1, Zt1, Zt3) ∼ N(0, I3), and I3 is an identity matrix of order 3. Xt =

(Xt1, Xt2, Xt3)′ is non-stationary since the first two components Xt1 and Xt2 contain

the common trend term
t∑
i=1

Zi1. It is this accumulated sum of Zi1 that gives rise to the

non-stationarity. On the other hand

∆Xt = (1−B)Xt = Xt −Xt−1

=
(
Zt1 + Zt2 − Zt−1, 2,

1
2Zt1 + Zt3 − Zt−1, 3, Zt3 − Zt−1, 3

)′
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is stationary since it is easy to verify that ∆Xt ∼ I(0),Xt ∼ I(1). In addition,

Xt1 − 2Xt2 =
t∑
i=1

Zi1 + Zt2 −
t∑
i=1

Zi1 − 2Zt3

= Zt2 − 2Zt3

which is stationary since it is expressed as a finite sum of two uncorrelated white noise

sequences. In this case, Xt is non-stationary, but α′Xt where α = (1,−2, 0)′ is stationary,

implying that Xt is co-integrated with co-integrating vector α = (1,−2, 0)′. In this case,

stationarity is attained either by differencing or by taking linear combinations.

Definition 4.4.1 (Co-integration). If {Xt} is non-stationary and there exists α 6= 0 such

that α′Xt is stationary by a suitable choice of α′X0, then Xt is co-integrated and α is

the co-integrating vector. The number of linearly independent co-integrating vectors

is the co-integrating rank and the space spanned by the co-integrating vectors is the

co-integrating space (Chan, 2011).

Figure 4.3: Simulated trivariate co-integrated system with one co-integrating vector
β = (1,−0.65,−0.35)′ and two stochastic trends

Figure 4.3 shows simulated data for a trivariate co-integrated system Yt = (y1t, y2t, y3t)′

with one co-integrating vector β = (1,−0.65,−0.35)′ and two stochastic trends. (4.19)
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shows the long-run equilibrium while the next two equations specify the common stochas-

tic trends.

y1t = β2y2t + β3y3t + zt where zt ∼ I(0) (4.19)

y2t = y2t−1 + ut where ut ∼ I(0) (4.20)

y3t = y3t−1 + et where et ∼ I(0) (4.21)

Co-integrated prices of energy products have a common stochastic trend since they co-

evolve in the long run even though they may drift apart in the short run, the spread

or any other linear combination of the two series exhibits mean reversion. Each specific

stationary linear combination of the price series acts as a bonding agent for the system so

that the more co-integrating vectors in the system, the greater the long rum relationship

and association between the price series.

4.5 Error correction model (ECM)

The time paths followed by co-integrating variables are influenced by the extent of any

deviations from the long-run equilibria. In any case, for a system to revert back to it’s

long-run equilibrium, it’s movements for at least some of the variables involved must be

responsive to the sheer size of the disequilibrium. These movements are captured using

an ECM. When two random walk (non-stationary and unit root) I(1) variables are co-

integrated, an ECM can be formulated to study their short-run dynamics. In an ECM,

the short-run variation of the variables in the system are influenced by the drifts from

equilibrium (Enders, 2008).

An ECM is a dynamic model in which the movements of one variable during any period

has some relationships with the departures from the long-term equilibrium manifested

by the previous period. In such a system, the changes in one variable depend on the

deviations from some equilibrium relation (Lütkepohl, 2007).
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Consider a simple long-term equilibrium model

yt = β0 + β1xt. (4.22)

A simple non-constant model of short-run adjustment (with p = q = 1) is given by

yt = α0 + γ0xt + γ1xt−1 + α1yt−1 + zt (4.23)

where zt ∼ N(0, σ2), γ0 represents the short-term reaction of yt to changes in xt and

not the long-term effect that would occur if the model had been in equilibrium. This

implies that in the long run, the elasticity between Y and X is β1 = γ0 + γ1
1−α , assuming

α < 1. However, with this form of the dynamic model, there are several potential pro-

blems including the likely high level of correlation between current and lagged values of a

variable, which will result in problems such as multicollinearity (Harris and Sollis, 2003),

non-standard distributed parameter estimates and spurious correlation. The solution to

these problems is in the estimation of first differences of (4.23) obtaining

∆yt = α0 + γ∆xt−1 + γ1∆xt−1 + α1∆yt−1 + zt (4.24)

This, however, has the disadvantage of introducing problems of loss of information con-

cerning the long-run equilibrium. A more suitable approach is to adopt the ECM, which

is set up as follows:

Subtracting yt from both sides of the short-run model in (4.23) yields

∆yt = α0 + γ0xt + γ1xt−1 − (1− α1)yt−1 + zt. (4.25)

Further subtracting γ0xt−1 from both sides of the resulting equation gives

∆yt − γ0xt−1 = α0 + γ0xt − γ0xt−1 + γ1xt−1 − (1− α1)yt−1 + zt. (4.26)
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Rearranging this equation gives

∆yt = α0 + γ0∆xt + (γ0 + γ1)xt−1 − (1− α1)yt−1 + zt, (4.27)

and re-parametrization then gives

∆yt = γ0xt − (1− α1)
[
yt−1 −

α0

1− α1
− γ0 + γ1

1− α1
xt−1

]
+ zt

= γ0xt − (1− α1) [yt−1 − β0 − β1xt−1] + zt

(4.28)

if we take β0 = α0

1− α1
and β1 = γ0 + γ1

1− α1
. This is an ECM. This model incorporates

both short-run and long-run effects so that if the equilibrium holds, then the quantity

[yt−1 − β0 − β1xt−1] = 0. If this quantity is non-zero, it indicates there is a period of

disequilibrium. This term zt−1 = [yt−1 − β0 − β1xt−1] = 0 is the error correction term

which measures the distance that the system has drifted away from equilibrium. This

introduction of the equilibrium error from the previous period into this representation as

an explanatory variable allows movement to a new equilibrium. The term (1− α1) mea-

sures the speed of adjustment back to the long-term equilibrium depicted by (4.22). The

coefficient of zt−1 is required to be negative if the system is to converge to equilibrium.

If the values of (1 − α1) → 1, it indicates that economic agents eliminate large percen-

tages of disequilibrium in each period, if (1 − α1) → 0, it indicates that adjustment is

slow and values close to 2, give an indication that the economic equilibrium has overshot.

Positive values would indicate that the system has diverged from the expected long-run

path of equilibrium. zt here is the disequilibrium error or the co-integrating residual. The

expected value of zt defines the long term equilibrium relationship between the variables

xt and yt and as the observed value of zt fluctuates around its expected value, periods of

disequilibrium occur.

All terms contained in the ECM are stationary, and so standard regression techniques are

appropriate, assuming co-integration and that the estimates of β0 and β1 have been found

(Harris and Sollis, 2003). According to Engle and Granger (1987), if yt, xt ∼ CI(1, 1),
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then an ECM must exist, and conversely, the ECM generates a co-integrated series. In a

general sense, if we increase the number of lags p and/or q, the ECM can be reformulated

as

A(L)∆yt = B(L)∆xt − (1− π) [yt−p − β0 − β1xt−p] + zt (4.29)

where A(L) is the polynomial lag operator 1 − α1L − α2L
2 − . . . − αpL

p, B(L) is the

polynomial lag operator γ0 + γ1L+ γ2L
2 + . . .+ γpL

p and π = (α1 + α2 + . . .+ αp).

Generally, the ECM is important for the following reasons

1. It’s convenience lies in it’s ability to measure the correction from disequilibrium of

the previous periods.

2. With co-integration, ECM models are constructed in terms of first differences, and

this ordinarily eliminates trend patterns from the variables involved, hence resolving

the problem of spurious regressions.

The ECM can also be specified in multivariate form. In order to do this, we begin with a

VAR representation of the time series. VARs are some of the most commonly used mul-

tivariate time series models. They can be estimated using least squares (LS), maximum

likelihood (ML) or Bayesian methods. VAR models are mainly used for forecasting and

structural analysis.

The linear model represented in (4.5) qualifies to be called a MA representation of time

series. MAs are mainly useful in forecasting for example when computing the covariance

of the forecast error, they come in handy. On the other hand, (4.13) is an AR represen-

tation of a time series model. It helps us understand how pt depends on pt−1.

If a time series has both the characteristics of stationarity and invertibility, then the

AR and MA representations will be equivalent and one can easily be obtained from the

other. However, neither AR nor MA representations are particularly useful for estimation
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if they have too many coefficient matrices. To ease this problem, it can be postulated

that coefficient matrices depend only on a finite number of parameters. This consideration

leads to the vector autoregressive moving average (VARMA) or multivariate autoregressive

moving average (MARMA). A general VARMA(pq) is written as

pt = φ0 +
p∑
i=1
φipt−i +

q∑
j=1

θjat−i + at (4.30)

with p and q ≥ 0, φ0 = k− dimensional constant vector, φi and θj = k × k constant

matrices and {at} ∼ i.i.d (0,Σa). Using the back shift operator, we can write φ(B)pt =

φ0 + θ(B)at where φ(B) = Ik − φ1(B)− . . .− φpBp and θ(B) = Ik − θ1(B)− . . .− θqBq

are matrix polynomials in B. If we consider a k−dimensional process, which is integrated

of order d so that {pt ∼ I(d)}, A general VAR(p) model is written as

pt = φ0 +
p∑
i=1
φipt−i + at (4.31)

with p ≥ 0, φ0 = k− dimensional constant vector, φi = k × k constant matrix and

{at} ∼ i.i.d (0,Σa). Using the back shift operator, we can write φ(B)pt = φ0 +θ(B)at

where φ(B) = Ik − φ1(B)− . . .− φpBp is the matrix polynomial in B. In a VAR model,

each variable is expressed by it’s own lagged values and the lagged values of all the other

variables in the system. If the variables are co-integrated vector autoregressive (CVAR),

we also include the co-integrating vectors that pull the entire system towards a long run

equilibrium. When the variables in a VAR model are co-integrated, a VECM model is

used.

In general, the variables in a k-dimensional process {pt} are said to be co-integrated of

order (d, b), written as, pt ∼ CI(d, b) , if all the components of {pt} are I(d) and there

exists a linear combination at := β′pt with β = (β1, . . . , βk)′ 6= 0 such that at ∼ I(d− b)

(Lütkepohl, 2007). Co-integrated variables are, for the most part unstable, in their le-

vels, although their “spreads" (generalized by the co-integrating relation) exhibit mean-

reverting tendencies that make the variables move around common stochastic trends.
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Co-integration is also distinguished from the short-run synchronies of positive covariance,

which only measures the inclination to co-evolve at each point in time. Am improvement

of the VAR model to incorporate co-integrated variables adjusts the short-run dynamics

of the system with the long-term inclinations.

If we consider the general VAR(p) model

pt =
p∑
i=1
φipt−i + at,

then, by differencing we have

∆pt = pt − pt−1 =(φ1 − 1)pt−1 + φ2pt−2 + . . .+ φppt−p + at

=− (1− φ1)pt−1 + φ2pt−2 + . . .+ φppt−p + at

=− (1− φ1 − φ2 − φ3 − . . .− φp−1 − φp)pt−1

− (φ2 + φ3 + . . .+ φp−1 + φp)pt−1

− (−φ2 − φ3 − . . .− φp−1 − φp)pt−2

− (φ3 + . . .+ φp−1 + φp)pt−2

...

− (−φp−1 − φp)pt−(p−1)

− (+φp)pt−(p−1)

− (−φp)pt−p + at

∆pt =Πpt−1 +
p−1∑
i=1

Γi∆pt−i + at, where

Π = (1− φ1 − φ2 − φ3 − . . .− φp−1 − φp) and

Γi =− (φi + . . .+ φp)

If the rank r of the matrix Π is zero, there is no co-integration, no stable long-run

relationship between variables and VECM is not possible, only VAR in first differences,
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so that the equation

∆pt = Πpt−1 +
p−1∑
i=1

Γi∆pt−i + at (4.32)

reduces to a VAR model for the differences

∆pt =
p−1∑
i=1

Γi∆pt−i + at. (4.33)

One way of testing for this is to test if the rank of Π, r = 0. If r = 0, the the variables

are not co-integrated.

If the matrix is full rank i.e. r = k, then all the variables in pt ∼ I(0), and there is need

to estimate the model as VECM since VAR on untransformed data is okay.

In fact the rank r denotes the number of co-integrating vectors. If 0 < r < k, there are

r co-integrating vectors describing the long-run relationships between variables. in this

case, a VECM is okay, and the k × k matrix Π can be written as

Π = αβ′, (4.34)

where α and β are k × r matrices, though this representation is of course not unique.

For the sake of interpretation, it is usually convenient to normalize or identify the co-

integrating vectors by selecting a specific coordinate system in which to express the va-

riables. An arbitrary normalization, suggested by Johansen (1995), is to solve for the

triangular representation of the co-integrated system. The elements of β′pt−1 may be in-

terpreted as equilibrium relations and the elements of α, as adjustment coefficients which

multiply the co-integrating relationship β′pt−1 to help counterbalance the deviations from

the equilibrium. α can also be considered a loading matrix since it determines into which

equation the co-integrating vectors enter and with what magnitudes. Normally, these

coefficients would be expected to be negative.



4. Multivariate Analysis and co-integration in Energy Markets 101

Suppose pt is I(1) with E[pt] = 0, then (4.34) represents a VECM and the rank r of the

matrix Π determines the number of co-integrating relationships. If Π is full rank, then

the system pt is stationary in levels. Πpt−1 is the only potentially non-stationary term in

the VECM. But since all the terms are stationary, the elements of Πpt−1 must be stati-

onary linear combinations of the non-stationary elements of pt−1. A VAR representation

for the levels may well be consistent with co-integrating relationships. A VECM model

with a reduced-rank error-correction coefficient is often called a co-integrated VAR model.

The ECM also fulfils the assumptions of the classical normal linear regression model

(CNLRM) which include a linear regression model, normally distributed residuals, no

serial autocorrelation of residuals, and no multicollinearity. As such, diagnostic tests must

be carried out to ensure these assumptions are not violated. Among the tests employed

are JB (Jarque and Bera, 1987) to determine the normality of the ECM, LM (Engle,

1984) test for ARCH effects and LB (Ljung and Box, 1978) for serial autocorrelation or

cross correlation in the residuals.

4.5.1 Estimation and testing for co-integration

Testing for co-integration is necessary in checking if the models being built are empirically

meaningful and if there is no evidence of cointegration, it is necessary to continue working

with time series data in differences. Two or more time series which are integrated of order

one are considered co-integrated in the event that it is conceivable to make a meaningful

linear regression of one process over the other(s). Generally, it is impossible to make

any meaningful linear regression of one integrated process over another. However, if the

two processes are co-integrated, regression will be possible. During analysis, sometimes,

completely unrelated time series may appear to have a relationship if tests are carried

out using conventional testing procedures. Significant relationships may sometimes be

obtained from variables that are in fact unrelated when non-stationary time series are

used in a regression model. This phenomenon is known as spurious regression (Granger
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and Newbold, 1974).

If two random walk series Yt = Yt−1 + ut and Xt = Xt−1 + εt, where each of the errors

are white noise, are used in a regression , for instance, in Yt = α + βXt + zt, where zt

is a white noise error, spurious regression can be obtained. We could get a highly sig-

nificant β estimate and a high value for the R2, and we could be tempted to conclude

that X has a significant impact on Y , when in fact there should be none. This regression

could well be meaningless, unless the series are co-integrated. It is therefore important to

discriminate between spurious regressions between series that are unrelated and genuine

relationships which occur when time series are co-integrated. According to Granger and

Newbold (1974), an R2 > d where d =
∑n
i=2 (ei − ei−1)2∑n

i=1 e
2
i

is the Durbin-Watson (D-W)

(Durbin and Watson, 1950, 1951) statistic could be a good sign that there is spurious

regression. The D-W statistic tests the null hypothesis that residuals from a regression

analysis are not autocorrelated against the alternative that the residuals follow an AR(1)

process. In value, the D-W statistic ranges from 0 to 4. A value close to 0 indicates

positive autocorrelation, a value close ti 2 indicates no autocorrelation and a value close

to 4 implies negative autocorrelation in the sample. Small values of d indicate successive

error terms are, on average, close in value to one another, or positively correlated.

The co-integration property allows regression of one integrated series over other integrated

series (Fabozzi et al., 2006). Testing for co-integration implies testing the theory that a

two or more non stationary series are related in the long run. Because of testing this

long run relationship, the length of the data under consideration is very crucial and using

a sufficiently long period of data would be important, in order to detect the common

long term trends among the series under consideration (Alexander, 2008). The two most

common methods used for testing co-integration among series are Engle and Granger

(1987), which is based on an OLS regression and Johansen (1988) also found in (Johansen,

1991; Johansen and Juselius, 1990) which is based on eigenvalue analysis.
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4.5.1.1 Engle-Granger Test for cointegration

The residual based E-G test (Engle and Granger, 1987) follows a two step procedure.

Having verified that the series are I(1), the first step involves fitting a static OLS regression

model in order to capture any potential long-run relationship between the series, and

then carrying out a stationarity test on the residuals of this OLS regression. The second

step describes the dynamic adjustment of the series towards an equilibrium like the one

described in (4.35). Consider two series xt and yt which are both I(1), with long-run

equilibrium relationships that can be captured by the regression models

xt = α0 + α1yt + ut and

yt = β0 + β1xt + vt

(4.35)

where α0, α1, β0 and β1 are co-integrating parameters and ut and vt are OLS residuals

which capture any divergences between the series from the assumed equilibrium long-run

relationship.

Since the E-G method produces only one co-integrating vector, it involves pairwise com-

parison of two co-integrating regressions and this makes it sensitive to the choice of the

dependent variable. Testing for cointegration using the E-G representation test is essen-

tially equivalent to testing for unit roots in the estimated residual series ût and v̂t for the

regressions represented in (4.35) using the DF test. The first difference of the residuals is

regressed on the lagged levels of the residuals without a deterministic trend as shown in

(4.36) below. If a deterministic trend were to be included, it would mean that the errors

would grow steadily over time, and this would violate the very idea of cointegration.

∆ût = ρ1ût−1 + εt and

∆v̂t = ρ2v̂t−1 + εt

(4.36)

The E-G test requires the error terms to be serially uncorrelated and this problem can

be addressed using the ADF test which accommodates more lags of the first difference of
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the residuals to eliminate the serial correlation and can be set up as shown in (4.37)

∆ût = ρ1ût−1 +
p∑
i=1

γi∆ût−i + εt and

∆v̂t = ρ2v̂t−1 +
p∑
i=1

ζi∆v̂t−i + εt

(4.37)

It should however be noted that the distribution for the residual based ADF-test is not

the same as the usual DF-distributions and will depend on the number of estimated pa-

rameters in the static regression above since additional variables in the static regression

will shift the DF-distributions to the left. For the ADF test, it is therefore of extreme

importance to find the correct augmentation lag length of ∆ût−i and ∆v̂t−i. A rule of

thumb is to count from lag i = 1 and include all significant lags plus one additional one

(Sjö, 2008). If the hypothesis of the existence of a unit root is rejected then the conclusion

is that xt and yt are co-integrated. Absence of a co-integrating relationship means the

residuals have the same stochastic trends as the dependent variable. Asymptotically, this

test is independent of the variable occurring on the left hand side of the co-integrating

regression. The co-integrating vector is said to be normalised around the variable chosen

to be on the left hand side of the co-integrating regression.

The error correction term, which represents the deviations from the equilibrium in (4.35)

may be defined as

ût = xt − α0 − α1yt and

v̂t = yt − β0 − β1xt,

(4.38)

considering the estimated cointegration parameters. Under cointegration, ût and v̂t are

stationary processes, and since their estimates will converge very quickly to their true

values, ût−1 and v̂t−1 can be included as fixed regressors in a time varying model. Given

ût−1 and v̂t−1, the second step in the E-G procedure therefore is to estimate the error-
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correction model as,

∆xt = δ + λ1∆xt−1 + κ0∆yt + κ1∆yt−1 + ρ1ût−1 + εt and

∆yt = γ + λ2∆yt−1 + ω0∆xt + ω1∆xt−1 + ρ2v̂t−1 + εt.

(4.39)

All the terms in the error correction models are stationary and therefore, the standard

procedures for inference will apply to all the parameters, and as such, t−ratios will be

N(0, 1) asymptotically.

Note that the constant term can be left out of equations (4.39) above in order to improve

the efficiency of the estimate. This test has the advantage that it is easy ti perform and

it is intuitive. The major drawback of the E-G method is that variables are treated as if

they are asymmetric in the sense that one is specified as the dependent variable and the

other as the independent variable. However, this problem is addressed by the Johansen

(1988) approach.

4.5.1.2 Johansen’s test for co-integration

The Johansen (1988) test provides a method to test for co-integration in multivariate time

series, where there is a possibility of more than one co-integrating vector being present

since the variables in the model might form several equilibrium relationships. The pro-

cedure builds co-integrated variables directly on MLE instead of just relying on the OLS

estimates. After it has been established that the variables are all I(1), then, Johansen’s

procedure can be applied to determine the presence of a stable long-term relationship be-

tween variables and establish how many co-integrating vectors present. Generally, there

can be a possible k − 1 vectors, where k represents the actual number of variables that

the model includes.

The test can be perceived as a multivariate generalization of the ADF test. It is concer-

ned with testing hypotheses about the rank r of the co-integration space. It generally

examines linear combinations of variables for unit roots, while following the same princi-
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ples as the E-G approach with respect to the order of integration. Based on the results

of this test, the long-run coefficients β and the speed adjustment coefficients α can be

determined, and the resultant ECM produced.

This test is founded on the examination of the long-run coefficient matrix Π = αβ′,

described in (4.34), so that testing for co-integration between variables is achieved by

examining the rank of Π through the eigenvalues. The test procedure produces two sta-

tistics useful in determining the number of co-integrating vectors. The first Johansen tests

is a likelihood ratio test that is based on the maximum eigenvalue of the stochastic matrix

and the second test is based on the trace on the stochastic matrix. The two Johansen

test are therefore known as the maximum eigenvalue test, and the trace test. Before the

estimation of the parameters of a VECM, a choice must be made on the number of lags

to be included in the underlying VAR model, specification of the trend, and the number

of co integrating relations.

The general steps for Johansen’s methodology are detailed below:

1. Test the order of integration of all variables.

2. Chose the lag length that would be appropriate for the model. The is commonly

done by specifying and estimating a VAR(p) model for Yt using a large number of

lags, then successively reducing the lags by re-estimating the model for one lag less

each time until lag zero is reached. Having done the diagnostic checks attributed

to autocorrelation, possible ARCH effects, heteroscedasticity and normality of the

residuals, the model with the smallest AIC is then selected as the one with the

optimal lag length. Since omitted variables automatically become part of the error

term, omitting variables that might only affect the short-run behaviour of the model

affects the value of the lag length.

3. Choose an appropriate model with regard the deterministic components in the multi-

variate system. In doing this, check whether is is necessary to introduce an intercept
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and/or trend in either the short-run or the long-run model, or both.

4. Conduct the likelihood ratio tests for the rank of the matrix Π so as to determine

the number of co-integrating vectors.

5. Where necessary, impose some normalizing and identification restrictions on the

co-integrating vectors.

6. From the normalized co-integrating vectors, get an estimate of the resultant co-

integrated VECM using ML.

For both test statistics, the initial Johansen test is a test of the null hypothesis that there

is no co-integration against the alternative that there is co-integration.

The tests differ in terms of their alternative hypotheses. For the trace test, the null

hypothesis states that the number of co-integrating vectors is less than or equal to the

rank r against an alternative that the co-integrating vectors present are more than r.

Restricting the number of co-integrating vectors to be r or less implies that where k is

the maximum number of possible co-integrating vectors, the remaining k − r eigenvalues

are equal to zero. Johansen (1988) derives the distribution of the trace statistic

LRtrace = −T
k∑

i=r+1
ln
(
1− λ̂i

)
(4.40)

where T represents the number of observations and λ̂i represents the k − r estimated ei-

genvalues. For any given values of r, a large value of the trace statistic is evidence against

the null hypothesis of r or fewer co-integrating relations in the VECM.

Note: The test is not based on the trace of Π

For the maximum eigenvalue test, the null hypothesis states that the number of co-

integrating vectors is r, against an alternative of r + 1. The Johansen ML procedure

requires that the trace and maximum eigenvalue statistics are first calculated, then com-

pared with appropriate critical values. However, the likelihood ratio statistic does not
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have the usual asymptotic χ2 distribution, instead it follows a multivariate equivalent of

the DF unit root distribution which depends on the dimension n− r and the specification

of the deterministic terms. Critical values for this distribution for n − r = 1, . . . , 10 are

tabulated in (Osterwald-Lenum, 1992). The maximum eigenvalue statistic is given by

LRmax = −T ln
(
1− λ̂r+1

)
(4.41)

where T represents the number of observations and λ̂r is the ith largest canonical corre-

lation.

Johansen’s ML approach presents a number of merits over the two stage E-G approach to

cointegration. Since this technique is based on VAR, there is little concern as to whether

the explanatory variables are either exogenous or endogenous. Using this method, re-

strictions can be applied to the co-integrating vectors, something that is not possible with

the E-G approach. Johansen’s ML test can also be applied in testing Granger-Causality,

where the lags in the ECM can be jointly tested for significance, hence determining any

short-run causality from the explanatory or independent variables to the dependent vari-

able.

However there is a particular issue related with this approach since there will be possibly

more than one co-integrating vector. This implies that there are possibly more than one

set of long-run coefficients and resultant error correction models. To identify the most

appropriate model, either a choice is made of the model with the most appropriate signs,

or certain specific over-identifying restrictions are employed, although both approaches

can be problematic.

4.5.2 Co-integration analysis of energy markets

Co-integration theory can be applied to study market integration. From the analysis in

section 3.3, it was established that all these series are non-stationary and integrated of

order one. The two stage E-G method is used to test the existence of any co-integrating
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relationship between these six series. In this test, we take the crude futures CF series as

the dependent variable and obtain the results summarised in table 4.1.

Table 4.1: Results obtained from the E-G test

Parameter Value t−statistic p−value SE
α0 0.511765 10.69652 0.0000 0.047844
α1 0.986809 625.7656 0.0000 0.001577
α2 -0.002571 -1.251454 0.2109 0.002055
α3 0.001709 1.004433 0.3153 0.001701
α4 -0.027940 -5.154723 0.0000 0.005420
α5 0.035578 6.805134 0.0000 0.005228

Though the R2 = 0.9994, the D-W statistic is 0.7545 signalling a spurious regression.

The null hypothesis of no co-integration is rejected with a p−value < 0.001 implying that

indeed these series are co-integrated with the single co-integrating vector given by

β′ = [1, 0.986809,−0.02571, 0.001709,−0.027940, 0.035578] (4.42)

and the long-run relationship given by

CF = 0.5118 + 0.986809CS − 0.02571GF + 0.001709GS − 0.027940HF

+ 0.035578HS
(4.43)

The co-integrating residuals which give the co-integrating relation are given by the repre-

sentation

ât = CF − 0.5118− 0.986809CS + 0.02571GF − 0.001709GS + 0.027940HF

− 0.035578HS,
(4.44)

and the plot of the co-integrating relations (the error correction term), which depicts

stationarity, is shown in figure 4.4. Testing for stationarity using the ADF test gives a

p−value < 0.001 implying that we should reject the null hypothesis of existence of unit

roots. However, as has been discussed previously, one of the main drawbacks of the E-G

technique of testing for co-integration is that it only identifies a single co-integrating re-

lation, from amongst what could be many such relations. When we consider more than
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Figure 4.4: Co-integrating residuals for the co-integrating relationship in the six series taking
crude futures prices as the dependent variable.

two series, we will have a different co-integrating relationship for every dependent variable

specified as shown in figure 4.5 where each of the six price series under consideration is

taken to be the dependent variable. In all the six relationships, the null hypothesis of

no co-integration is rejected with p−values < 0.001 in all the six instances indicating six

co-integrating relations.

For the Johansen co-integration trace test, we examine whether the rank of the matrix

Π = r. As such, testing begins sequentially for r = 1, 2, . . . , k and the first instance of

non-rejection of the null hypothesis is taken as an estimate for r. In our case this happens

for r = 4 at 4 lags with a p−value of 0.0746 as shown in table 4.2. Lag 4 is the smallest

lag for which we obtain a rank of 4, making this the optimal lag length. The trace test

indicates 4 co-integrating equations at the α = 0.05 level and * denotes rejection of the

null hypothesis at the 0.05 level

The co-integrating relations are as shown in figure 4.6 and the resultant parameters from
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Figure 4.5: Six co-integrating relations obtained when all six series are considered as dependent
variables

Table 4.2: Results obtained from Johansen co-integration test

rank trace critical p−value eigenvalue
statistic value

0* 444.1103 95.7541 0.0010 0.1150
1* 155.9466 69.8187 0.0010 0.0376
2* 65.5717 47.8564 0.0010 0.0132
3* 34.3072 29.7976 0.0143 0.0084
4 14.3214 15.4948 0.0746 0.0044
5* 3.9785 3.8415 0.0461 0.0017

MLE are the co-integrating speed parameters

α =



0.0991 0.0008 0.1401 0.0100

0.1803 −0.0336 0.1195 0.1037

0.0847 0.0396 0.1639 −0.0170

0.2289 0.0022 0.1364 0.0050

0.1508 0.4087 0.0775 0.0913

0.1001 0.0305 0.1070 −0.0324


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Figure 4.6: Four co-integrating relations obtained using the Johansen’s trace test

and the vector of co-integrating relations

β =



3.0080 0.1463 −0.1334 −0.1482

−0.0017 0.1818 0.0643 −0.0817

0.0870 −0.1898 −0.4645 −0.1300

−2.9847 −0.1302 0.0974 0.0821

0.0066 −0.1813 0.0136 −0.0022

−0.1008 0.1706 0.4150 0.2435


so that for most cases, the 6× 6 matrix Π represented in (4.34) would be

Π = αβ′ =



0.2782 0.0082 −0.0579 −0.2816 0.0024 0.0507

0.5062 −0.0072 −0.0469 −0.5137 0.0087 0.0509

0.2412 0.0190 −0.0741 −0.2434 −0.0043 0.0621

0.6699 0.0084 −0.0445 −0.6698 0.0029 0.0351

0.4897 0.0715 −0.1123 −0.4884 −0.0722 0.1089

0.2962 0.0149 −0.0426 −0.2951 −0.0033 0.0317



. (4.45)
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However, in this analysis, our full VECM is given as

∆pt = Γ0 +
4∑
i=1

Γi∆pt−1 +α (β′pt−1 + δ) + at (4.46)

where α and β are given as above, p′t = [CFt, CSt, GFt, GSt, HFt, HSt],

δ′ = [−1.4215, 1.6461, 0.9019, 2.5075] are intercepts in the co-integrating relations, Γ′
0 =

[−0.0045, 0.0017, 0.0021,−0.0009,−0.0002, 0.0021], and at are the shocks or innovations

associated with each of the relations,

Γ1 =



−0.3080 0.0253 −0.1005 0.2390 −0.0317 0.1120

−0.5324 0.0092 −0.1000 0.4972 −0.0102 0.0732

−0.2669 0.0049 −0.3733 0.2746 −0.0364 0.3705

−0.3995 0.0306 −0.1024 0.3167 −0.0291 0.1200

−0.3504 0.0815 0.1126 0.3070 −0.0287 −0.1938

−0.2601 0.0460 0.1269 0.2649 −0.0490 −0.1698



Γ2 =



−0.1898 0.0159 −0.1731 0.1933 0.0085 0.1007

−0.4415 −0.0219 −0.2134 0.4629 0.0007 0.1372

−0.1942 0.0021 −0.3479 0.2948 0.0129 0.2319

−0.2013 0.0159 −0.1646 0.1999 0.0075 0.0996

−0.1517 0.0158 −0.1349 0.2206 −0.0216 0.0236

−0.1870 0.0092 −0.1063 0.2752 0.0168 −0.0145



Γ3 =



−0.2912 −0.0254 −0.0248 0.3225 0.0006 0.0213

−0.4268 −0.0866 −0.0535 0.5186 0.0095 0.0366

−0.2768 −0.0503 −0.2320 0.3808 0.0160 0.1827

−0.1805 −0.0330 −0.0340 0.2683 −0.0029 0.0077

−0.2061 −0.1020 −0.0417 0.3759 0.0643 −0.0527

−0.3183 −0.0349 −0.0491 0.4017 0.0128 0.0058


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and

Γ4 =



−0.0854 0.0188 −0.0183 0.1668 −0.0166 −0.0293

−0.0418 −0.0058 −0.0020 0.1972 −0.0123 −0.0532

−0.2077 −0.0020 −0.0483 0.2911 −0.0197 0.0685

−0.0743 0.0190 −0.0155 0.1458 −0.0163 −0.0289

0.0470 −0.0729 0.0273 0.1029 0.0394 −0.0047

−0.0756 0.0060 0.0202 0.1828 −0.0084 −0.0508



.

α (β′∆pt−1 + δ) represents the error correction term.

After fitting this model, an analysis of the residuals show that they are not white noise.

Figure 4.7 shows plots for the residuals from the VECM. They do not seem to be multi-

variate normal, and this is confirmed by the results shown on table 4.3 which reports the

multivariate extensions of the JB normality test on the residuals. This is a test of the

null hypothesis that the skewness of the underlying distribution is zero, and the kurtosis

is three. The measures of these two moments allow one to test hypotheses that are in

harmony with the conjecture of multivariate normality.

This test is applicable since individual variables from a set of variables that are jointly

multinomial distributed are also normally distributed, although if a number of variables

are normally distributed individually, they are not necessarily also multivariate normal

(Von Eye and Bogat, 2004). The test statistic is given by (4.47) below where Ŝ and K̂

represent the sample skewness and sample kurtosis respectively.

JB = n

 Ŝ
2

6 +

(
K̂ − 3

)2

24

 (4.47)

The null hypothesis for this test is that the residuals are multivariate normal and this is

rejected in this instance as can be seen from the p−values reported in table 4.3.

A visual inspection of figure 4.7 suggests the presence of volatility clustering. Further

investigation of the residual series reveals the presence of ARCH effects as shown in table



4. Multivariate Analysis and co-integration in Energy Markets 115

Figure 4.7: Residuals from the VECM

4.4. The null hypothesis of no ARCH effects is therefore rejected and a conclusion that

the noise is therefore MGARCH is made.

4.5.3 Granger-Causality

Even when variables are not co-integrated in the long-run, they could still be related

in the short-run. One time series can be said to have a causal influence on another if

the incorporation of knowledge from the former improves the prediction of the later time

series. Granger (1969) proposed a time-series data based approach that can be used to
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Table 4.3: Multivariate normality test on residual series

Series Skewness χ2 statistic df p− value
CF 0.056937 1.274020 1 0.2590
CS -4.240484 7066.810 1 0.0000
GF -0.589093 136.3830 1 0.0000
GS 0.592101 137.7792 1 0.0000
HF -1.138971 509.8211 1 0.0000
HS -0.125048 6.145373 1 0.0132
Joint 7858.213 6 0.0000

Series Kurtosis χ2 statistic df p− value
CF 10.21375 5112.752 1 0.0000
CS 101.6174 955519.8 1 0.0000
GF 17.20323 19820.15 1 0.0000
GS 15.34322 14968.89 1 0.0000
HF 24.22178 44248.25 1 0.0000
HS 31.65732 80687.03 1 0.0000
Joint 1120357 6 0.0000

Series JB statistic df p− value
CF 5114.026 2 0.0000
CS 962586.6 2 0.0000
GF 19956.53 2 0.0000
GS 15106.67 2 0.0000
HF 44758.07 2 0.0000
HS 80693.18 2 0.0000
Joint 1128215 12 0.0000

determine causality. Specifically, two AR models are fitted to the first time series, in the

first instance, with and in the second instance, without including the second time series,

and any improvement on the forecasts is measured by the ratio of the variance of the error

terms. A ratio bigger than one signifies an improvement, and hence a causal relationship.

In the worst case scenario, the ratio is 1, implying causal independence from the second

time series to the first. Particularly, if the variance of the AR forecasting error of the

first time series is reduced by including past measurements from the second time series,

then the second series has a causal influence on the first one. A variable x is said to

Granger-causes y if the variable y is better predicted using the the past values of both x

and y than it can be predicted, using its past values alone.

Definition 4.5.1 (Granger-Causality). Given an information set Ω, taking the form
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Table 4.4: Test for ARCH effects on residual series

Joint test:

χ2 statistic df p− value

6278.398 1176 0.0000

Individual components:
Dependent R2 F(56,2301) p− value χ2(56) p− value
res1*res1 0.233479 12.51559 0.0000 550.5426 0.0000
res2*res2 0.211971 11.05254 0.0000 499.8271 0.0000
res3*res3 0.085742 3.853501 0.0000 202.1805 0.0000
res4*res4 0.260093 14.44374 0.0000 613.2987 0.0000
res5*res5 0.142756 6.842568 0.0000 336.6190 0.0000
res6*res6 0.100405 4.586018 0.0000 236.7544 0.0000
res2*res1 0.222538 11.76124 0.0000 524.7442 0.0000
res3*res1 0.145531 6.998214 0.0000 343.1617 0.0000
res3*res2 0.146352 7.044489 0.0000 345.0987 0.0000
res4*res1 0.134115 6.364236 0.0000 316.2435 0.0000
res4*res2 0.131406 6.216239 0.0000 309.8558 0.0000
res4*res3 0.097981 4.463300 0.0000 231.0398 0.0000
res5*res1 0.127599 6.009785 0.0000 300.8780 0.0000
res5*res2 0.126302 5.939869 0.0000 297.8197 0.0000
res5*res3 0.133311 6.320207 0.0000 314.3473 0.0000
res5*res4 0.119110 5.555916 0.0000 280.8617 0.0000
res6*res1 0.100783 4.605250 0.0000 237.6472 0.0000
res6*res2 0.100042 4.567614 0.0000 235.8994 0.0000
res6*res3 0.101842 4.659118 0.0000 240.1439 0.0000
res6*res4 0.107252 4.936366 0.0000 252.9014 0.0000
res6*res5 0.100744 4.603270 0.0000 237.5553 0.0000

xt, . . . , xt−j; yt, . . . , yt−i for i and j = 1, 2, 3, . . . , n, we say that xt Granger-causes yt w.r.t

Ω if the variance of the optimal linear predictor of yt+h, based on Ω, has a smaller vari-

ance compared to the optimal linear predictor of yt+h based only on the lagged values of

yt for any h. Thus x Granger causes y if and only if σ2
1 (yt : yt − j, xt−i) < σ2

2 (yt : yt−j),

where σ2 represents the variance of the forecast errors (Foresti, 2006).

Granger causality tests aid in understanding short-term interdependencies among varia-

bles. Granger-causality tests can be applied in three different kinds of situations. In the

first case where a simple Granger-causality test is considered, it is applied on two variables

and their lags. In the second case where we consider more than two variables on the sup-
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position that more than one variable can influence the results of another, a multivariate

Granger-causality test is applied. Finally, if the multivariate model is extended so that

the simultaneity of all included variables is considered, then Granger-causality is tested in

a VAR framework. The standard F-test, which seeks to establish whether changing one

variable can result in changes in another variable, is the basis of the Granger-causality

test. The test statistic is formulated as

F = RSSE − USSE
USSE

(
T − k
q

)
(4.48)

where RSSE denotes the sum of squared errors from the restricted model, USSE de-

notes the sum of squared errors the unrestricted model, T represents the sample size, k

represents the number of lags and q represents the number of restrictions put in place.

Under the null hypothesis, test statistic is distributed as χ2 with k degrees of freedom.

Considering a simple VAR model,

yt = φ0 +
p∑
i=1
φiyt−i +

q∑
i=1
θjxt−j + at (4.49)

If all the values of θ are significantly different from zero, then X Granger-causes Y . After

obtaining the VAR, restrictions are imposed and the hypotheses are such that for the null

hypothesis, X does not Granger-cause Y or H0 : θ1 = θ2 = . . . = 0 against the alternative

that X Granger-causes Y or H1 : at least one θ 6= 0. Based on the OLS coefficients

estimated from the AR equations in a simple Granger-causality test, the results can uni-

directional causality, bidirectional causality and independence between x and y. For any

set of co-integrated time-series, there must be Granger-causality between them but, the

converse is however not true.

For this study, the results for Granger-causality in levels are reported in table 4.5 and

results for causality in differences are recorded in table 4.6. From table 4.5, we see

bidirectional causality between almost all the series except for gasoline futures which

doesn’t Granger cause gasoline spot though gasoline spot granger causes gasoline futures.
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This result is confirmed by the joint test also. This actually shows the presence of spillover

effects across the series. From table 4.6, we see, returns from gasoline futures do not

granger cause gasoline spot returns and we also not that gasoline spot returns only Granger

causes heating oil futures and maybe heating oil spot returns.

Table 4.5: Results obtained from Granger-causality (F ) test in levels

CF CS GF GS HF HS Joint
CF 2356 254 239 195 1044 951 1819.2

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
CS 321 382 293 159 833 732 1564

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
GF 40 46 33369 6 54 40 146.6

(< 0.001) (< 0.001) (< 0.001) (0.2132) (< 0.001) (< 0.001) (< 0.001)
GS 25 19 49 6077 36 34 103

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
HF 61 125 110 109 13655 148 458.9

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
HS 102 122 78 104 48 14178 455.3

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
p-values are indicated in the parenthesis.

Table 4.6: Results obtained from Granger-causality (F ) test in differences

∆CF ∆CS ∆GF ∆GS ∆HF ∆HS Joint
∆CF 51.5493 81.5114 158.8971 231.7504 871.1525 598.9422 1463.8

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
∆CS 37.6260 28.3827 210.8375 176.4722 857.9510 579.0799 1212.4

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
∆GF 23.9313 32.1628 22.5417 3.8876 51.2044 30.3673 175

(< 0.001) (< 0.001) (< 0.001) (0.4214) (< 0.001) (< 0.001) (< 0.001)
∆GS 6.3281 2.8095 13.2817 6.7035 21.7478 14.5890 72.2

(0.176) (0.5902) (0.1) (0.1524) (< 0.001) (0.0056) (< 0.001)
∆HF 61.3676 192.8939 45.3097 122.6379 173.5127 112.1761 498.4

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
∆HS 34.5446 90.3696 61.5954 114.1517 30.1818 27.3170 451.6

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
p-values are indicated in the parenthesis.

4.6 Multivariate ARCH and GARCH Models

MGARCH models are multivariate parametric error distribution models which resemble

univariate GARCH models in principle, except that for the multivariate case, the condi-
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tional mean is allowed to follow a VAR structure and the conditional covariance matrix

of the dependent variables are allowed the to follow a flexible dynamic structure. Finan-

cial market volatilities move simultaneously over time across both assets and markets.

Viewing these commonalities through a multivariate modelling framework improves effi-

ciency and creates opportunities for better decision making in areas like asset pricing and

portfolio selection (Bauwens et al., 2012, 2006).

Let rt denote a column vector of k asset returns, µt denote a column vector of the condi-

tional means of rt and Σt = σt,ij be the conditional variance-covariance matrix of rt. The

elements of µt and Σt must be measurable with respect to the sigma-field Ft−1 generated

by the past information (here the rt’s) and possibly by any other variables available up

to time t− 1. In other words the sigma field generated by rt−j for j ≥ 1.

An MGARCH model for rt can then be defined by

rt = µt + atand at = Σ1/2
t εt (4.50)

where Σ1/2
t which is the square root, or Cholesky decomposition, of the covariance matrix,

is a k×k positive definite (PD) matrix such that Σt = Σ1/2
t

[
Σ1/2
t

]′
and εt is an unobservable

k × 1 random vector whose moments are as shown below.

E [εt] = 0 and Var(εt) = E [εtε′t] = Ik where Ik is an identity matrix of order k

This means εt is an unobservable random vector which is an i.i.d process whose mean

equal to zero and variance-covariance matrix is an identity matrix.

Note that Et−1(at) = 0, so that Σt = Var (rt|Ft−1) = Vart−1(rt) so that Vart−1(at) = Σt.
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The conditional variance matrix of rt can be calculated as

Var (rt|Ft−1) = Vart−1(rt)

= Vart−1(at)

= Σ1/2
t Vart−1 (εt)

(
Σ1/2
t

)′
= Σt.

(4.51)

Notice also that

at|Ft−1 ∼ N (0,Σt) (4.52)

The conditional covariance matrix Σt has many possible specifications, but the parame-

ters increase rapidly with the increase in the dimension of at, creating a difficulty during

model estimation. When constructing MGARCH model, it is important to ensure parsi-

mony is attained while still maintaining flexibility. In addition to this, we must ensure

that the conditional covariance matrix Σt is PD.

The first form of specification involves the direct Generalization of univariate GARCH

models as done by Bollerslev (1986). These include the full VEC and BEKK models

(Engle and Kroner, 1995), flexible MGARCH, Factor models, Cholesky & Full factor

GARCH models and Riskmetrics. Linear combinations of univariate GARCH models can

also be considered. These include latent factor models and generalized orthogonal models.

Finally, non-linear combinations of univariate GARCH can also be specified. They include

CCC and DCC models, general dynamic covariance models and Copula based GARCH

models.

4.6.1 V ech Representation

Let vech(.) denote the vector half operator which converts the unique upper triangular

elements of a k×k matrix into a
[1
2k(k + 1)

]
×1 vector. Since the conditional covariance
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matrix Σt is symmetric, vech (Σt) contains all the unique elements in Σt. For instance

vech


σ11,t σ12,t

σ21,t σ22,t


 =


σ11,t

σ12,t

σ22,t.



The direct generalization of a univariate GARCH(p, q) model gives

vech(Σt) = W +
p∑
i=1

A∗i vech(εt−i, ε′t−i) +
q∑
j=1

B∗j vech(Σt−j)

= W + A∗(L)vech(εt, ε′t) +B∗(L)vech(Σt),
(4.53)

where, L is the lag operator, W is a
[1
2k(k + 1)

]
×1 vector, A∗i and B∗j are

[1
2k(k + 1)

]
×[1

2k(k + 1)
]
matrices. This gives the vech representation (Engle and Kroner, 1995). Each

element in Σt−1 may affect each element in Σt, meaning the number of parameters will

be
[

1
2k(k + 1) + (p+ q)

[1
2k(k + 1)

]2]
.

Since for MGARCHmodels there are k(k+1)/2 variances and covariances for a k−dimensional

process, they usually, suffer from the curse of dimensionality since, as estimating this many

free parameters is obviously infeasible, both in terms of data availability and in numerical

terms. Moreover, these parameters, need to be restricted for them to yield forecasts of the

covariance matrix that are eventually positive semi-definite. This restriction is very diffi-

cult to check, let alone impose during parameter estimation. However, most MGARCH

models reduce this dimensionality in some way.

4.6.2 Diagonal vech Representation

Under this representation, a restriction is imposed on the model such that every element

in the covariance matrix only depends on it’s past values, and εi,t, εj,t. A∗i and B∗j matrices
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are all taken to be diagonal, for instance for k = 2 and p = q = 1, we have


σ11,t

σ12,t

σ22,t

 =


ω1

ω2

ω3

+


a∗11 0 0

0 a∗12 0

0 0 a∗33




ε2

1,t−1

ε1,t−1, ε2,t−1

ε2,t−1

+


b∗11 0 0

0 b∗12 0

0 0 b∗33




σ11,t−1

σ12,t−1

σ22,t−1



This trims down the number of parameters to be estimated to
[1
2k(k + 1)

]
(1 + p+ q) but

it does not allow for causality in variance, co-persistence in variance and asymmetries.

4.6.3 BEKK Representation

This parametrization was proposed by Engle and Kroner, 1995, and is named after Baba,

Engle, Kraft and Kroner (BEKK). Consider the model

Σt = CC ′ +
N∑
n=1

p∑
i=1

Ai,Nεt−i, ε
′
t−iA

′
i,N +

N∑
n=1

q∑
j=1

Bj,NΣt−jB
′
j,N , (4.54)

where C, Ai,N and Bj,N are k×k coefficient matrices. The intercept matrix is decomposed

into CC ′ where C is the upper triangular matrix. This ensures that the conditional cova-

riance matrix is PD, and this is one of the advantages of this model, though the number

of parameters still remains quite high. For N = 1, the model in (4.54) is represented as

Σt = CC ′ + Aεt−1, ε
′
t−1A

′ +BΣt−1B
′, (4.55)

and in this case,the number of parameters becomes (p + q)k2 + 1
2k(k + 1). A diagonal

BEKK reduced the parameters to be estimated further, but this is still infeasible for large

k. Even though there are a number of MGARCH models, the BEKK is more widely used.

4.6.4 Conditional Correlation Representation

Conditional correlation models are based on the concept of modelling correlations and con-

ditional variances as opposed to modelling the conditional covariance matrix Σt. They

were proposed by Bollerslev (1990), and they parametrize the dynamic conditional cova-

riances as being proportional to the product of the corresponding conditional standard
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deviations. With this assumption the computational burden of estimation in MGARCH

models is greatly simplified, and the positive definiteness of Σt is assured. The conditio-

nal covariance matrix is decomposed into a correlation matrix and conditional standard

deviation matrices as shown below.

Σt = DtRtDt (4.56)

where Dt = diag (σ1,t, σ2,t, . . . , σk,t) is a diagonal matrix with σi,t as the ith diagonal ele-

ment. Dt is the conditional standard deviation and Rt = ρij,t = σi,j,t√
σ2
i,tσ

2
j,t

is the dynamic

conditional correlation matrix of order k. σ2
i,t and σ2

j,t follow univariate GARCH proces-

ses. Notice that ρii,t = 1 ∀i and ∀t. Σt is PD if σ2
i,t is positive ∀i and Rt is PD. In

these models therefore, the specification of Σt falls into two independent components.

The first component is on the model of choice for the conditional variance matrix. This

is obtained from quasi-maximum likelihood (QML) estimation of conditional variances

as in a GARCH(1, 1) framework. The second component is on the model choice for the

conditional correlation matrix. Conditional correlation models are either constant, CCC

or dynamic, DCC.

For the CCC model, the conditional correlation is assumed to be constant, i.e. Rt = R,

so that (4.56) can be given as

Σt = DtRDt (4.57)

For k = 2 for instance, (4.57) can be represented as

Σt =

σ11,t σ12,t

σ21,t σ22,t

 =

σ1,t 0

0 σ2,t


 1 ρ12

ρ21 1


σ1,t 0

0 σ2,t

 =

 σ11,t ρ12σ12,t

ρ21σ21,t σ22,t



The correlation matrix, R = ρij is PD with ρii = 1 ∀i. The off diagonal elements of

Σt, given by [Σt]ij = ρijσij,t for i 6= j are the conditional covariances. The assumption

of constant correlations over time is unrealistic, and this process excludes any volatility
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transmission or spill over across markets since the conditional correlation is constant.

The innovation process {ai,t} is modelled as a univariate GARCH so that the conditional

variances can be expressed in form of a vector as

σt = c+
p∑
i=1

Aia
2
t−i +

q∑
j=i

Bjσt−j (4.58)

where, c is a k × 1 vector, Ai and Bj are diagonal k × k matrices and a2
t−i = at−i � at−i

is the element wise product given that � is the Hadamard product operator. since R is

PD, Σt is bound to be PD when he elements of c, Ai, and Bj are positive.

For the DCC, the conditional correlation matrix Rt is a function of t. This class of

models was introduced by Engle and Sheppard (2001) and here, the covariance matrix

is represented by the equation Σt = DtRtDt as in (4.56). For this case however, Dt is a

k× k diagonal matrix of conditional standard deviations of the process {at} at time t, Rt

is a k× k conditional correlation matrix of {at} at time t, while Σ1/2
t is any k× k matrix

at time t such that Σt is the conditional covariance matrix of {at}. It may be obtained by

Cholesky decomposition of Σt. With Rt varying, Σt is PD only if Rt is PD at each point

in time and the conditional standard deviations σi,t are well defined. This implies that

during estimation, the correlation matrix has to be inverted for each time t and hence the

advantage of numerical simplicity during estimation is lost. With this model however,

volatility transmission or spill over across markets can be incorporated.

4.6.5 MGARCH analysis of energy markets

Analysis begins by checking the energy price returns for the presence of heteroscedasticity.

If the process {at} does not exhibit conditional heteroscedasticity, then it’s conditional

covariance matrix Σt will be constant, implying that Σt and hence at does not depend on

at−1. This can be done using the LB statistic, which for this case, is be given by

Q∗N(m) = k2
m∑
i=1

1
k − i

b′i
(
ρ̂−1

0 ⊗ ρ̂−1
0

)
bi (4.59)
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where k is the sample size, N denotes the dimension of at, bi = vec(ρ̂′i) and ρ̂j is the

sample cross correlation matrix of at at lag−j. The test hypothesizes that

H0 : ρ1 = ρ2 = . . . = ρm = 0 against Ha : ρi 6= 0.

Under this null hypothesis, Q∗N(m) is asymptotically distributed as χ2
N2m.

For our case the test statistic = 91252.83 and the p− value < 0.00. This provides evidence

that heteroscedasticity is present. Fitting a bivariate full BEKK on the crude futures and

crude spot and gasoline futures and gasoline spot returns gives the results shown in Tables

4.7 and 4.8.

Table 4.7: Parameter estimates for BEKK(11) for crude futures and spot.

Coefficient(s): Estimate Std. Error t−value Pr(> |t|)
µCF −1.84× 10−4 3.64× 10−4 −0.51 0.612
µCS −7.41× 10−5 3.64× 10−4 −0.20 0.839
A011 4.72× 10−3 5.11× 10−4 9.23 < 0.001
A021 4.53× 10−3 5.08× 10−4 8.91 < 0.001
A022 1.61× 10−3 6.23× 10−5 25.8 < 0.001
A11 0.797 0.12 6.48 < 0.001
A21 −0.412 0.12 −3.45 < 0.001
A12 −0.451 0.12 −3.78 < 0.001
A22 0.746 0.12 6.39 < 0.001
B11 0.693 5.75× 10−2 12.1 < 0.001
B21 0.130 5.68× 10−2 2.3 0.022
B12 0.237 5.67× 10−2 4.18 < 0.001
B22 0.797 5.58× 10−2 14.3 < 0.001

However because of the problem that the BEKK model has in terms of dimensionality,

a model for the entire six series under consideration doesn’t converge and as such lacks

parsimony. Since in this work, we want to consider a dynamic hedge, we fit CCC and

DCC models and they give the following results.

For the CCC, the correlation matrix of the returns is as shown in table 4.9

This is kept constant through out. Table 4.10 shows the constants, ARCH and GARCH

parameters after fitting theCCC-GARCH to the six return series of the energies. For this



4. Multivariate Analysis and co-integration in Energy Markets 127

Table 4.8: Parameter estimates for BEKK(11) for gasoline futures and spot.

Coefficient(s): Estimate Std. Error t−value Pr(> |t|)
µGF −3.02× 10−4 4× 10−4 −0.75 0.45
µGS −3.06× 10−4 4.86× 10−4 −0.63 0.53
A011 4.83× 10−3 2.12× 10−4 22.73 < 0.001
A021 3.8× 10−3 8.27× 10−4 4.593 < 0.001
A022 5.67× 10−3 5.95× 10−4 9.53 < 0.001
A11 0.299 2.67× 10−2 11.23 < 0.001
A21 −0.109 4.72× 10−2 −2.31 0.02
A22 2.202× 10−2 2.120× 10−2 1.04 0.3
A22 0.385 3.36× 10−2 11.5 < 0.001
B11 0.946 1.46× 10−2 64.7 < 0.001
B21 6.33× 10−2 2.30× 10−2 2.74 0.006
B12 −2.35× 10−2 1.07× 10−2 −2.2 0.03
B22 0.882 2.02× 10−2 43.7 < 0.001

Table 4.9: Correlation matrix for the energy returns

∆CF ∆CS ∆GF ∆GS ∆HF ∆HS
∆CF 1 0.94 0.72 0.53 0.77 0.73
∆CS 0.94 1 0.72 0.54 0.76 0.72
∆GF 0.72 0.72 1 0.65 0.75 0.72
∆GS 0.53 0.54 0.65 1 0.57 0.61
∆HF 0.77 0.76 0.75 0.57 1 0.89
∆HS 0.73 0.72 0.72 0.61 0.89 1

model, a total of 18 parameters are estimated using MLE. Figure 4.8 shows a plot of the

estimated conditional variances for the series and Figure 4.9 is a plot of the standardised

residuals after the fit.

Table 4.10: CCC-GARCH parameter estimates.

Panel A: Constants
Parameter a1 a2 a3 a4 a5 a6
Estimate 1.24× 10−6 2.17× 10−6 1.78× 10−5 3.08× 10−5 2.47× 10−6 1.46× 10−6

Std. error 4.55× 10−7 5.67× 10−3 4.74× 10−3 1.35× 10−3 6.67× 10−4 2.66× 10−3

Panel B: ARCH parameters
Parameter A11 A22 A33 A44 A55 A66
Estimate 6.34× 10−2 6.89× 10−2 9.57× 10−2 8.88× 10−2 5.67× 10−2 4.81× 10−2

Std. error 2.34× 10−3 5.32× 10−7 2.35× 10−3 7.37× 10−3 7.24× 10−3 8.51× 10−3

Panel C: GARCH parameters
Parameter B11 B22 B33 B44 B55 B66
Estimate 0.93 0.92 0.87 0.87 0.94 0.95
Std. error 9.36× 10−3 5.86× 10−3 4.70× 10−4 1.90× 10−3 0.003 0.003
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Figure 4.8: Estimated conditional variances

Figure 4.9: Standardized residuals

In order to take care of interdependencies in the series and any volatility spill overs, we

also fit the DCC-GARCH and obtain the parameters displayed in Table 4.11. A total

of 26 parameters are estimated by MLE, 4 corresponding to each return series and 2

corresponding to the DCC. Focus should be on the joint significance of the ARCH (Aii)
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and GARCH (Bii) for each of the series, and the joint significance of the dynamic ARCH

(dcca1) and dynamic GARCH (dccb1) parameters. If Aii and Bii are jointly insignificant, a

constant conditional variance rather than GARCH(1,1) should be considered. The dcca1

and dccb1 represent the DCC parameters for the joint models. They provide information as

to whether fitting a DCC for a system of series makes sense. If dcca1 and dccb1 are jointly

insignificant, we may be better off using a CCC model rather than the DCC(1,1). Since

they are significant, the DCC model is appropriate for this data. Figure 4.10 shows plots

of the estimated dynamic conditional variances and the estimated dynamic conditional

correlations are represented in Figure 4.11 while the estimated conditional covariances are

in Figure 4.12.

Figure 4.10: Estimated dynamic conditional variances for the six series
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Table 4.11: DCC-GARCH parameter estimates.

Parameter Estimate Std. Error t value Pr(>|t|)
µ1 -0.000317 0.000384 -0.82547 0.409107
a1 0.000003 0.000007 0.42512 0.670749
A11 0.063728 0.045161 1.41114 0.158202
B11 0.931956 0.047999 19.41625 0.000000
µ2 -0.000424 0.000373 -1.13609 0.255918
a2 0.000004 0.000004 1.01727 0.309027
A22 0.069460 0.022602 3.07322 0.002118
B22 0.923814 0.024906 37.09147 0.000000
µ3 -0.000205 0.000424 -0.48506 0.627635
a3 0.000017 0.000009 2.00104 0.045388
A33 0.096072 0.026142 3.67495 0.000238
B33 0.874159 0.017736 49.28633 0.000000
µ4 -0.000439 0.000532 -0.82442 0.409703
a4 0.000030 0.000010 2.99635 0.002732
A44 0.089269 0.016844 5.29981 0.000000
B44 0.873938 0.025470 34.31274 0.000000
µ5 -0.000062 0.000350 -0.17616 0.860171
a5 0.000003 0.000015 0.20020 0.841325
A55 0.056911 0.094688 0.60103 0.547819
B55 0.936265 0.106665 8.77763 0.000000
µ6 -0.000261 0.000432 -0.60390 0.545912
a6 0.000002 0.000017 0.11682 0.906999
A66 0.048404 0.106032 0.45650 0.648027
B66 0.947380 0.114022 8.30872 0.000000
dcca1 0.053812 0.007595 7.08494 0.000000
dccb1 0.910125 0.025082 36.28634 0.000000
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Figure 4.11: Estimated dynamic conditional correlations for the six series
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Figure 4.12: Estimated dynamic conditional covariances for the six series



5. CRACK SPREAD TRADING AND DYNAMIC HEDGING IN

ENERGY MARKETS

Energy markets the world over are experiencing more competition and increased price

volatility as a result of globalization coupled with the expanding regional integration

through modern financial systems and international trade. This has increased the expo-

sure of market players to potentially greater risks. As a result, the need for appropriate

risk management models and techniques has emerged. The use of Crack spread hedging

by refiners is one such initiative. In order to be able to build these models and employ

these techniques, a clear understanding of the market dynamics through data is needed.

This can be achieved by modelling and understanding the DGP, which is characterized

by a non-stationary process and follows a stochastic trend.

Refiners, just as oil producers and consumers of refined products, also have the ability

to hedge their exposure to price volatility. In fact, it could be argued that more than

producers and consumers, refiners are faced with an even greater need to hedge since

their profit margins are based on the prices of several commodities, namely the prices of

their raw input (crude oil) and their refined outputs (gasoline, heating oil, fuel oil, gasoil,

diesel fuel, jet fuel, etc). A refinery therefore straddles between the raw materials it buys

and the finished products it sells and crack spreads represent the refiners theoretical mar-

gin. A refiner (crack spread seller) goes “short the crack" by buying crude oil futures and

selling gasoline and heating oil futures.

According to Hunjra et al. (2011), volatility is the time variation in market prices due to

various market forces. It does play a pivotal role in pricing portfolio selection, hedging,
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and risk management. The dynamism of price change variability for various commodities

has been accorded considerable attention in the field of finance (Haigh and Holt, 2002).

Stock market and commodity returns exhibit clustered and asymmetric time varying vo-

latilities, as discussed by Hunjra et al. (2011). Commodity markets are for the most part

highly volatile, and this volatility itself fluctuates over time. Pindyck (2004) has showed

that changes in volatility affect the prices of futures and spot contracts, as well as inven-

tories.

The crack spread, also known as a paper refinery, is a good approximation of the refi-

nery margins. It consists of a position that entails the simultaneous purchase and sale of

futures contracts on crude oil and petroleum products. This allows the refiner to secure

any price differentials between refinery input and output products. The refiner can use

the crack spread to “lock in" the gross profit margin. The primary use of Crack spread

contracts are speculation and hedging. The refiner who is a crack spread seller would

buy crude oil contracts and sell gasoline or any other distillate fuel contracts in certain

ratios. A major determinant of these ratios is how much crude oil gets processed into

different refined petroleum products, since each type of crude oil yields different products

with different values, and in different proportions due to their composition. These ratios

therefore vary by region due to the product combination. For a brief discussion on the

common crack spread ratios, see the technical reports by Cross et al. (2013) and Dash

and Skyba (2011).

The naming of a crack spread is based on the number of futures contracts on crude oil,

gasoline and heating oil, held in that order. The most common ratios are the 1:1:0 also

known as the gasoline crack spread), 1:0:1 also called the heating oil crack spread, 2:1:1,

3:2:1, 5:3:2 and 6:3:2:1 where residual fuels are also considered (Cross et al., 2013; Dash

and Skyba, 2011; Girma, Paulson, et al., 1999). The most common ratio in the US is

the 3:2:1, whereas, in Europe including the Atlantic Basin covering Eastern Canadian

refineries, a 6:3:2:1 ratio is the most common.
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In order to calculate the theoretical refining margin, the combined value of the refined

output products is first calculated and then compared with the price of the crude. In the

US, crude oil prices are quoted in dollars per barrel and prices for the distillate products

are quoted in cents per gallon, so for purposes of comparison, the product prices are

converted to dollars per barrel by multiplying them by 42 (there are 42 gallons in a

barrel). Some of the crack spread ratios are calculated as follows:

1 : 1 : 0 crack spread = Gt − Ct

1 : 0 : 1 crack spread = Ht − Ct

3 : 2 : 1 crack spread = 2
3Gt + 1

3Ht − Ct

5 : 3 : 2 crack spread = 3
5Gt + 2

5Ht − Ct

(5.1)

where Gt, Ht and Ct are prices per barrel of gasoline, heating and crude oil at time t.

After putting a hedge in place, the refiner does not have to worry about any movements

in the absolute futures prices. The demand for crude oil derives from that of refined

products such as gasoline or heating oil. If the value of a crack spread is positive, then

the refined products or outputs have higher prices than the raw materials or inputs, and

the spread is profitable and vice versa. Refiners trade on the spreads petroleum futures

so as to hedge their anticipated cash positions or enhance profitability (Girma, Paulson,

et al., 1999).

Crack spreads are also mean reverting just like most energy price series are, since the

long term pricing relationship between the input prices and the output revenue will tend

to converge to the long term average (Girma, Paulson, et al., 1999). This study uses

co-integration theory to investigate the underlying long term equilibrium relationships

among the prices of crude oil and the distillate fuels. Economic theory suggests a long

term relationship between input prices and output revenues and spreads will tend to con-

verge to a long term average.
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The remainder of this chapter is organised as follows. In section 5.1, we briefly review

the concept of dynamic hedging in energy markets, specifically using crack spreads on

oil futures prices. In section 5.2 We discuss various optimal hedge ratios and hedge

effectiveness.

5.1 Hedging in energy markets

In financial risk management, the idea to reduce uncertainty, where possible, has always

seemed good. Hedging describes a risk management strategy applied in order to limit

or offset the probability of loss that is as a result of fluctuations in commodity prices,

currencies, or securities by transferring risk without actually buying an insurance policy.

To hedge an investor would invest in two securities with negative correlations, or simul-

taneously take equal and opposite positions in both the spot and the derivatives market.

When considering a portfolio of stocks, management of risk becomes even more challen-

ging for two reasons: (1) the conditional variances of stock returns will co-evolve; (2)

the correlations between the returns may also vary. MGARCH models have the ability

accommodate these effects.

Chen et al. (2003) discuss that in hedging, we construct a portfolio that combines in-

vestments both in the spot and futures market, geared at reducing the fluctuations in

it’s value. The level of performance of the hedging strategy relies on the construction of

an optimal portfolio. According to portfolio theory, a rational decision maker is able to

sketch an efficient frontier, given a set of risky assets, so that every portfolio lying on the

efficient frontier is efficient (Ding et al., 2009; Markowitz, 1952).

A futures contract is an agreement between two parties to trade a given asset at an

agreed upon date, an agreed price and a a specified location in the future. Futures are

designed in a way that minimizes exposure to risk so that, a change in the value of a cash

position offsets a change in the value of an opposite futures position and vice versa. In

addition to this, futures contracts are also preferred for hedging because they are liquid,
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and the ttract lower transaction costs (Chang et al., 2011). Hedging strategies reduce

price volatility substantially without reducing returns significantly. Firms usually only

hedge the downside risk since they are only concerned with exposure to unwanted risk that

arises from price fluctuations. Hedging involves the determination of the optimal hedge

ratios which can be classified as either risk-minimizing or utility maximizing (Cecchetti

et al., 1988; Chen et al., 2001, 2003). For a detailed discussion on hedging using futures,

see Chen et al. (2003).

5.1.1 Hedging the 3:2:1 crack spread

One of the most widely used hedging strategies is based on portfolio variance minimiza-

tion of the . However, this method has been largely criticized for ignoring the expected

return on the hedged portfolio, which then makes it inconsistent with the mean-variance

framework, unless investors are infinitely risk averse. The hedge ratio can be calculated

using the returns of the hedged portfolio or the profit of the hedged portfolio. Using the

3:2:1 ratio, the gross cracking refiner margin is calculated as follows:

(2×G× 42) + (1×H × 42)− (3× C)
3 (5.2)

where G and H are the prices of gasoline and heating oil per gallon and C is the price of

crude oil per barrel. Consider a refiner who has an obligation to purchase crude oil and

sell the refined products and he wishes to hedge his commitments since he is exposed to

the risk of crude oil prices increasing while at the same time refined product prices are

falling, thereby resulting in a considerable reduction his refiner margins. He decides to

use the 3:2:1 crack spread strategy to secure the current favourable cracking profits, so

that his portfolio consists of a long position on 3 units of crude futures and short positions

on 2 units gasoline futures and 1 unit of heating oil futures respectively. At maturity, the

refiner buys crude oil in the spot market, cracks it and sells the gasoline and heating oil

in the spot market. The refiner concurrently closes the long position on the crude and

the corresponding short positions in the gasoline and heating contracts.
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Suppose the spot prices in dollars per barrel for the crude, gasoline and heating contracts

at time t are Cs,t, Gs,t and Hs,t and the futures prices are Cf,t, Gf,t and Hf,t respectively,

and that the transaction cost at time t per barrel are given by yt, and the refiner’s profit

at time t is given by πt. Suppose further that at time t − 1, the refiner makes all the

decisions about the futures positions and at time t, all futures positions are liquidated

and all the spot transactions occur. Then, since the futures market closely reflects the

spot market and assuming an optimal hedge position of γi taken on each commodity i, it

means the refiner will make a profit in dollars per barrel of:

πt = 2
3Gs,t + 1

3Hs,t − Cs,t + 2
3γ1 (Gf,t−1 −Gf,t) + 1

3γ2 (Hf,t−1 −Hf,t)

+ γ3 (Cf,t − Cf,t−1)− yt
(5.3)

with a variance of

σ2
πt = 4

9σ
2
Gs,t + 1

9σ
2
Hs,t + σ2

Cs,t + 4
9γ

2
1σ

2
Gf,t

+ 1
9γ

2
2σ

2
Hf,t

+ γ2
3σ

2
Cf,t

+ 4
9σGs,tHs,t

− 4
3σGs,tCs,t −

8
9γ1σGs,tGf,t −

4
9γ2σGs,tHf,t + 4

3γ3σGs,tCf,t −
2
3σHs,tCs,t

− 4
9γ1σHs,tGf,t −

2
9γ2σHs,tHf,t + 2

3γ3σHs,tCf,t + 4
3γ1σCs,tGf,t + 2

3γ2σCs,tHf,t

− 2γ3σCs,tCf,t + 4
9γ1γ2σGf,tHf,t −

4
3γ1γ3σGf,tCf,t −

2
3γ2γ3σHf,tCf,t

(5.4)

obtained using the formula

σ2
π =

n∑
i=1

ωiσ
2
i +

n∑
i=1

n∑
j=i+1

2ωiωjρijσiσj (5.5)

where ωi represents the weight of investment in security i and ρijσiσj is the covariance

between securities i and j where we have n securities in total.

At time t, the refiner liquidates the crude futures contracts at Cf,t and purchases the

crude spot position at Cs,t. For the gasoline and heating contracts, the refiner goes short

at time t− 1 and offsets (buys back) these contracts at time t. The scenarios depicted in

table 5.1 could play out depending on which direction the market moves.
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Table 5.1: Possible Outcomes at time t

Position Scenario Result
Long on crude Cf,t−1 > Cf,t loss on futures

Cf,t−1 ≤ Cf,t break even or profit on futures
Short on gasoline Gf,t−1 < Gf,t gain on futures

Gf,t−1 ≥ Gf,t break even or loss on futures
Short on heating oil Hf,t−1 < Hf,t gain on futures

Hf,t−1 ≥ Hf,t break even or loss on futures

5.2 Optimal hedge ratios

Hedging involves determining the optimal hedge ratio which depends on a particular

objective function to be optimized (Chang et al., 2011; Chen et al., 2003). From exis-

ting literature, it is suggested that various hedge ratios can be classified as either being

utility-maximizing or risk-minimizing (Chen et al., 2001). The hedge ratios that are risk-

minimizing, proposed by Ederington (1979), involve a specific risk measure such as the

variance, the semi-variance or the mean-Gini coefficient of return being minimized. The

utility-maximizing hedge ratios proposed by Cecchetti et al. (1988) incorporate both the

expected return and the variance of the hedged portfolio.

However, for these strategies to be consistent with the principle of expected utility maxi-

mization, either the utility function needs to be quadratic or the returns should be jointly

normally distributed, otherwise, either specific utility function or a specific returns distri-

bution must be used (Chen et al., 2003). For the estimation of hedge ratios, researchers

have used various methods from the simple OLS technique to more complex methods such

as conditional heteroscedastic or cointegration heteroscedastic methods. Hedge ratios can

also be classified as being static or dynamic (where the hedge ratio is adjusted based on

new information received).

Once these ratios are established, it’s important to check if they are effective. According

to De Jong et al. (1997), hedge effectiveness is defined as the percentage reduction in the

portfolio variance. It is the percentage reduction in risk criterion with hedging versus

without hedging (Ederington, 1979). Specifically, the hedging effectiveness for minimum
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variance is determined as

HE = 1− Variance of hedged portfolio
variance of unhedged portfolio (5.6)

5.2.1 The full or naive hedge

This is the simplest and oldest method used to determining the number of futures con-

tracts to be used in a specific hedging strategy. It simply measures the position taken

in the underlying asset and takes an equal but opposite position in futures contracts (De

Jong et al., 1997).

Consider a portfolio consisting of a long spot position on Cs units and a short futures

position on Cf units, and let St and Ft denote spot and futures prices at time t respectively,

then the return on the resulting hedged portfolio, denoted by rh can be given by

rh = CsStrs − CfFtrf
CsSt

= rs − γrf (5.7)

where rs = St − St−1

St−1
and rf = Ft − Ft−1

Ft−1
are one period simple returns on the spot and

futures positions respectively and γ = CfFt
CsSt

is the hedge ratio. In the situation where

γ = 1, meaning CfFt = CsSt, then, we have a naive or a full hedge. If the value of the

hedged portfolio is an exact match with the value of the underlying contract, then, a

hedger who wants to close out his position at maturity of the contract would simply buy

contracts covering the entire position.

The hedge ratio can also be considered in terms of profits in which case, the profit on the

hedged portfolio πh at time t is given by

πh,t = Cs∆St − γCf∆Ft (5.8)

where ∆St = St − St−1, ∆Ft = Ft − Ft−1 are profits on one period spot and futures

contracts respectively and γ = Cf
Cs

.
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If the investors hedged position has to be closed out at time t, before to maturity, then

the hedger would be exposed to the basis risk bt, which describes the difference between

the spot and futures price at time t and is defined as

bt = St − Ft (5.9)

5.2.2 Minimum-Variance Criterion

A hedge has one main objective, to minimise the risk of a given position. Hedging ef-

fectiveness is the reduction of the variance of the value of a position hedged with futures

(Ederington, 1979). From equation (5.7), if the investor hedges a fraction γ of his cash

position in the futures market and leaves a fraction (1− γ) unhedged, then the expected

return of the hedged position will be given by

E [rh] = E [rs]− γE [rf ] (5.10)

and the variance of the return on the hedged portfolio would be given by

σ2
rh

= E
[
r2
h

]
− E [rh]2

= E
[
r2
s − 2γrsrf + γ2r2

f

]
− E [rs]2 − γE [rf ]2

= E
[
r2
s

]
− E [rs]2 + γ2E

[
r2
f

]
− γ2E [rf ]2 − 2γE [rsrf ]

= σ2
rs + γ2σ2

rf
− 2γσrsrf

(5.11)

We can see therefore that the expected return as well as the variance will vary with the

hedge position. The return on the hedged position will always be exposed the basis risk,

and hence, no hedging strategy can completely eliminate risk. We can however get the

risk minimizing hedge position by differentiating equation (5.11) with respect to γ and
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equating the resulting function to zero and solving for γ as shown in equation (5.12).

σ2
rh

= σ2
rs + γ2σ2

rf
− 2γσrsrf

∂σ2
rh

∂γ
= 2γσ2

rf
− 2σrsrf = 0

γ =
σrsrf
σ2
rf

= ρ
σrs
σrf

(5.12)

where −1 < ρ < 1 measures the correlation between spot and futures market returns.

From this we can see that an estimate for γ can be derived from historical data by simply

regressing rs on rf . If however the hedge position is time varying, so that there is time

variation in the joint distribution of rs and rf , then, regression cannot accurately estimate

the hedge ratio.

For the dynamic case where the hedge ratio is changed based on the current or conditional

information, the hedge ratio is represented by

γt|Ft−1 =
σrs,trf,t|Ft−1

σ2
rf,t
|Ft−1

(5.13)

where Ft−1 represents the set of information available at time t− 1

For the 3:2:1 crack hedge described by equation (5.2), the first order conditions for max-

imization are then given as equations (5.14) to (5.16)

∂σ2
πt

∂γ1
= 8

9γ1σ
2
Gf,t
− 8

9σGs,tGf,t −
4
9σHs,tGf,t + 4

3σCs,tGf,t + 4
9γ2σGf,tHf,t

− 4
3γ3σGf,tCf,t

(5.14)

∂σ2
πt

∂γ2
= 2

9γ2σ
2
Hf,t
− 4

9σGs,tHf,t −
2
9σHs,tHf,t + 2

3σCs,tHf,t + 4
9γ1σGf,tHf,t

− 2
3γ3σHf,tCf,t

(5.15)
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∂σ2
πt

∂γ3
= −2γ3σ

2
Cf,t

+ 4
3σGs,tCf,t + 2

3σHs,tCf,t − 2σCs,tCf,t −
4
3γ1σGf,tCf,t

− 2
3γ2σHf,tCf,t

(5.16)

Equating these to zero and rearranging these equations gives

8
9γ1σ

2
Gf,t

+ 4
9γ2σGf,tHf,t − 4

3γ3σGf,tCf,t = 8
9σGs,tGf,t + 4

9σHs,tGf,t −
4
3σCs,tGf,t

4
9γ1σGf,tHf,t + 2

9γ2σ
2
Hf,t
− 2

3γ3σHf,tCf,t = 4
9σGs,tHf,t + 2

9σHs,tHf,t −
2
3σCs,tHf,t

4
3γ1σGf,tCf,t + 2

3γ2σHf,tCf,t + 2γ3σ
2
Cf,t

= 4
3σGs,tCf,t + 2

3σHs,tCf,t − 2σCs,tCf,t

which can be expressed in matrix form as shown in equation (5.17)


8
9σ

2
Gf,t

4
9σGf,tHf,t −

4
3σGf,tCf,t

4
9σGf,tHf,t

2
9σ

2
Hf,t

−2
3σHf,tCf,t

4
3σGf,tCf,t

2
3σHf,tCf,t 2σ2

Cf,t




γ1

γ2

γ3



=


8
9σGs,tGf,t + 4

9σHs,tGf,t −
4
3σCs,tGf,t

4
9σGs,tHf,t + 2

9σHs,tHf,t −
2
3σCs,tHf,t

4
3σGs,tCf,t + 2

3σHs,tCf,t − 2σCs,tCf,t



(5.17)

Solving for the γ′is yields the optimal hedge positions that minimise the variance. Usually

these γ′is are less that the full hedge. For γ1 = γ2 = γ3 = 0 there is no hedge in place.

For γ1 = γ2 = γ3 = 1, we have a full hedge or a naive hedge.

Equation (5.17) can compactly be expressed in the inform

Aγ = B (5.18)
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so that

γ = A−1B (5.19)

where

A =


8
9σ

2
Gf,t

4
9σGf,tHf,t −

4
3σGf,tCf,t

4
9σGf,tHf,t

2
9σ

2
Hf,t

−2
3σHf,tCf,t

4
3σGf,tCf,t

2
3σHf,tCf,t 2σ2

Cf,t

 ,

B =


8
9σGs,tGf,t + 4

9σHs,tGf,t −
4
3σCs,tGf,t

4
9σGs,tHf,t + 2

9σHs,tHf,t −
2
3σCs,tHf,t

4
3σGs,tCf,t + 2

3σHs,tCf,t − 2σCs,tCf,t


and

γ′ = [γ1 γ2 γ3]

5.2.3 Certainty Equivalence and the Mean-Variance Criterion

If a hedger minimises risk without any regard to the effects of expected returns, the hedge

cannot be optimal unless the investor is totally risk averse. This is due to the fact that

high risk is usually associated with high returns and therefore at equilibrium, the risky

assets are priced such that they earn an expected return which is over and above the

risk-free rate of return. This implies that hedging away the risk also must in the same

way hedge away the expected return of bearing that risk (Cecchetti et al., 1988). The

mean-variance criterion for the optimal hedge incorporates both risk and return in deri-

ving the hedge ratio (Chen et al., 2003). It is related the expected utility hypothesis under

the assumptions that the investor is risk averse (Ding et al., 2009) and that investment

returns are normally distributed (Featherstone and Moss, 1990). The utility functions

that represent risk aversion are assumed to be differentiable, increasing and concave, such

as exponential and quadratic functions. Under this approach, the optimal hedge is the

one that maximises the expected utility. We can use these when deriving the certainty

equivalent of an investment opportunity, so that different hedge positions can be compa-
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red differently by examining their certainty equivalent returns.

The certainty equivalent describes a certain wealth level for which a decision maker is in-

different as concerns the risky alternatives. It is the minimum sum of money an investor

would accept, to forego the opportunity to participate in an event for which the outcome

is uncertain. To compute the certainty equivalent for a risky opportunity, an expenditure

function or an inverse utility function is equated to the expected utility.

Under the mean-variance criterion, we use the optimum mean variance hedge ratio to

establish the number of contracts that should be trade in each market. The investor

maximises his expected profits adjusted for risk. In this situation, the investor seeks to

maximize select γi in order to maximize the utility at the end of the period. The objective

function to be optimised is thus given by:

Max
γi,(i=1,2,3)

[
E (πt|Ft−1)− 1

2λ Var (πt|Ft−1)− yt
]

(5.20)

where πt is defined in equation (5.3), λ is the risk aversion coefficient of the refiner or

trader in question and Ft−1 denotes the set of information that is available at time t− 1,

which is important if the hedge is to be dynamic. λ < 1 denotes risk seeking attributes,

λ = 1 denotes risk neutral attributes and λ > 1 denotes risk aversion.

Suppose we have a negative exponential utility function u [w(x)] = − exp [−λw(x)] where

the wealth w is a function of an investment bundle x and λ is the Arrow-Pratt measure

of risk aversion. Suppose the returns on x follow a multivariate normal distribution, i.e.

w(x) ∼ N (µ, σ2) and the density function corresponding w(x) is

f(w(x)) = 1
σ
√

2π
exp

(
−(w(x)− µ)2

2σ2

)
, then, the expected utility function would be given



5. Crack spread trading and Dynamic Hedging in Energy Markets 146

by

E [u(w)] = −E [exp(−λw)]

= −
∫ ∞
−∞

exp(−λw)f(w)dw

= −
∫ ∞
−∞

exp(−λw) 1
σ
√

2π
exp

(
−(w − µ)2

2σ2

)
dw

= −
∫ ∞
−∞

1
σ
√

2π
exp

(
−λw − (w − µ)2

2σ2

)
dw

(5.21)

Notice from the last part of equation (5.21) that

−λw − (w − µ)2

2σ2 = −λw − (w − µ)2

2σ2 + λµ− λµ+ λ2σ2

2 − λµ+ λ2σ2

2

= −
(
λµ+ (w − µ)2

2σ2 − λµ+ λ2σ2

2

)
− λµ+ λ2σ2

2

= −1
2

(
(w − µ)2

2σ2 + 2λ(w − µ) + λ2σ2
)
− λµ+ λ2σ2

2

= − 1
2σ2

(
(w − µ) + λσ2

)2
− λµ+ λ2σ2

2

Substituting this in equation (5.21), we have

E [u(w)] = −
∫ ∞
−∞

1
σ
√

2π
exp

(
−λw − (w − µ)2

2σ2

)
dw

= −
∫ ∞
−∞

1
σ
√

2π
exp

(
− 1

2σ2

(
(w − µ) + λσ2

)2
− λµ+ λ2σ2

2

)
dw

= − exp
(
−λµ+ λ2σ2

2

)∫ ∞
−∞

1
σ
√

2π
exp

(
− 1

2σ2

(
(w − µ) + λσ2

)2
)

(5.22)

Notice from equation (5.22), we can define a density function of a normally distributed

random variable with a mean of (µ− λσ2) and variance σ2 as g(w) = 1
σ
√

2π
exp

(
− 1

2σ2 ((w − µ) + λσ2)2
)
.

This means ∫ ∞
−∞

1
σ
√

2π
exp

(
− 1

2σ2

(
(w − µ) + λσ2

)2
)
dw = 1
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and therefore we have

E [u(w)] = − exp
(
−λµ+ λ2σ2

2

)

= − exp
(
−λ

(
µ− λσ2

2

))

= − exp (−λCE)

(5.23)

where CE = µ − λσ2

2 is the mean-variance certainty equivalent function based on the

exponential utility function. From equation (5.23), we notice that CE is a monotonic

transformation of E [u(w)], and hence CE represents the same preference as E [u(w)].

Maximizing the CE translate to maximizing expected utility of wealth. Comparing this

with equation (5.20), we see the similarity except we are considering the profit at time

t, πt instead of the return µt. We can further note that in the mean-variance coordinate

plane, the certainty equivalent function is a straight line and as such, this gives an effective

selection procedure when constructing the preference orderings for the combinations of

portfolios on the efficient frontier.

From the objective function given in equation (5.20), we want to maximize

Max
γi,(i=1,2,3)

CEIt = Max
γi,(i=1,2,3)

[
E (πt|Ft−1)− 1

2λ
(
σ2
πt|Ft−1

)
− yt

]
(5.24)

where πt is given by equation (5.3) and σ2
πt is given by equation (5.4). This objective

function in equation (5.24) is similar to a quadratic utility function to be maximized.

The first order conditions for maximization are then given as equations (5.25) to (5.27)

∂CEIt
∂γ1

= 2
3E [Gf,t−1 −Gf,t]− λ

{4
9γ1σ

2
Gf,t
− 4

9σGs,tGf,t −
2
9σHs,tGf,t

+2
3σCs,tGf,t + 2

9γ2σGf,tHf,t −
2
3γ3σGf,tCf,t

} (5.25)
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∂CEIt
∂γ2

= 1
3E [Hf,t−1 −Hf,t]− λ

{1
9γ2σ

2
Hf,t
− 2

9σGs,tHf,t −
1
9σHs,tHf,t

+1
3σCs,tHf,t + 2

9γ1σGf,tHf,t −
1
3γ3σHf,tCf,t

} (5.26)

∂CEIt
∂γ3

= E [Cf,t − Cf,t−1]− λ
{
γ3σ

2
Cf,t

+ 2
3σGs,tCf,t + 1

3σHs,tCf,t

−σCs,tCf,t −
2
3γ1σGf,tCf,t −

1
3γ2σHf,tCf,t

} (5.27)

These, are then equated to zero, divided by λ and equation (5.25) and (5.26) multiplied

by 3
2 and 3 respectively, giving

E [Gf,t−1 −Gf,t]
λ

− 2
3γ1σ

2
Gf,t

+ 2
3σGs,tGf,t + 1

3σHs,tGf,t − σCs,tGf,t

− 1
3γ2σGf,tHf,t + γ3σGf,tCf,t = 0

(5.28)

E [Hf,t−1 −Hf,t]
λ

− 1
3γ2σ

2
Hf,t

+ 2
3σGs,tHf,t + 1

3σHs,tHf,t − σCs,tHf,t

− 2
3γ1σGf,tHf,t + γ3σHf,tCf,t = 0

(5.29)

E [Cf,t − Cf,t−1]
λ

− γ3σ
2
Cf,t
− 2

3σGs,tCf,t −
1
3σHs,tCf,t + σCs,tCf,t

+ 2
3γ1σGf,tCf,t + 1

3γ2σHf,tCf,t = 0
(5.30)

and since we are interested in the γ′is, we rearrange equations (5.28) to (5.30) as follows

2
3γ1σ

2
Gf,t

+ 1
3γ2σGf,tHf,t − γ3σGf,tCf,t

= E [Gf,t−1 −Gf,t]
λ

+ 2
3σGs,tGf,t + 1

3σHs,tGf,t − σCs,tGf,t
(5.31)

2
3γ1σGf,tHf,t + 1

3γ2σ
2
Hf,t
− γ3σHf,tCf,t

= E [Hf,t−1 −Hf,t]
λ

+ 2
3σGs,tHf,t + 1

3σHs,tHf,t − σCs,tHf,t
(5.32)
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2
3γ1σGf,tCf,t + 1

3γ2σHf,tCf,t − γ3σ
2
Cf,t

= −E [Cf,t − Cf,t−1]
λ

+ 2
3σGs,tCf,t + 1

3σHs,tCf,t − σCs,tCf,t
(5.33)

Equation (5.31) to (5.33) can be expressed in matrix form as shown in equation (5.34)


2
3σ

2
Gf,t

1
3σGf,tHf,t −σGf,tCf,t

2
3σGf,tHf,t

1
3σ

2
Hf,t

−σHf,tCf,t
2
3σGf,tCf,t

1
3σHf,tCf,t −σ2

Cf,t




γ1

γ2

γ3



=


E[Gf,t−1−Gf,t]

λ
+ 2

3σGs,tGf,t + 1
3σHs,tGf,t − σCs,tGf,t

E[Hf,t−1−Hf,t]
λ

+ 2
3σGs,tHf,t + 1

3σHs,tHf,t − σCs,tHf,t

−E[Cf,t−Cf,t−1]
λ

+ 2
3σGs,tCf,t + 1

3σHs,tCf,t − σCs,tCf,t



(5.34)

Solving for the γ′is yields the optimal hedge positions for the optimal hedge.

5.2.4 Dynamic hedge ratios

We consider monthly spot and futures contract 1 prices for Cushing OK WTI, RBOB

gasoline and No. 1 heating oil as well as the spot prices since energy contracts for the

period running from 2nd of January 2006 to 22nd of May 2015. Energy contracts gene-

rally mature after one month. The static OLS hedge ratios obtained from the formula

γ =
σrsrf
σ2
rf

are γ′ = [0.9173771 0.903419 1.004232], and the dynamic OLS ratios obtai-

ned from the dynamic conditional covariances after fitting the DCC-GARCH are shown

in Figure 5.1. In as much as these hedge ratios are dynamic, they do not account for

the interdependence within markets and as such they do not take care of any volatility

spillovers in the energy markets.

Given the refining profits shown below, we seek to explore various hedge ratios, both
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Figure 5.1: Dynamic OLS hedge ratios

static and dynamic.

πt = 2
3Gs,t + 1

3Hs,t − Cs,t + 2
3γ1 (Gf,t−1 −Gf,t) + 1

3γ2 (Hf,t−1 −Hf,t)

+ γ3 (Cf,t − Cf,t−1)− yt,

For the static case, with no assumption on the agents utility preferences, the respective

values of A and B defined in equation (5.19) are obtained from the variance covariance

matrix represented in table 5.2.

Table 5.2: Variance covariance matrix for log returns of energy spot and futures contracts

∆σCf ∆σCs ∆σGf ∆σGs ∆σHf ∆σHs
∆σCf 8.753 8.79 8.498 8.423 6.777 6.725
∆σCs 8.79 8.856 8.532 8.426 6.867 6.816
∆σGf 8.498 8.532 13.554 12.434 7.948 7.754
∆σGs 8.423 8.427 12.434 14.938 8.122 7.840
∆σHf 6.777 6.867 7.948 8.122 8.178 7.388
∆σHs 6.725 6.816 7.754 7.840 7.388 7.338
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From table 5.2 and equations (5.17) to (5.19), we find that

A =


0.012048262 0.003532519 −0.011330396

0.003532519 0.001817262 −0.004518203

0.003532519 0.004518203 0.017505868

 ,

B =


0.0031242763

0.0006740192

−0.0018662056

 and γ =


0.31807891

−0.40935395

−0.06513709

 .

and

Figure 5.2 shows plots of dynamic hedge ratios under the mean variance criterion where

the returns are fitted using the DCC-GARCH model. Here, utiliy preferences are not

considered, but volatility spillovers are accounted for.

For the dynamic hedge which takes care of utility maximisation as well as volatility spill

overs, we have

At =


2
3σ

2
Gf,t

1
3σGf,tHf,t −σGf,tCf,t

2
3σGf,tHf,t

1
3σ

2
Hf,t

−σHf,tCf,t
2
3σGf,tCf,t

1
3σHf,tCf,t −σ2

Cf,t

 ,

Bt =


E[Gf,t−1−Gf,t]

λ
+ 2

3σGs,tGf,t + 1
3σHs,tGf,t − σCs,tGf,t

E[Hf,t−1−Hf,t]
λ

+ 2
3σGs,tHf,t + 1

3σHs,tHf,t − σCs,tHf,t

−E[Cf,t−Cf,t−1]
λ

+ 2
3σGs,tCf,t + 1

3σHs,tCf,t − σCs,tCf,t


and

γ′t = [γ1,t γ2,t γ3,t] ,

and the dynamic values of A and B are obtained from the dynamic correlation models

fitted in section 4.6.5.

Figure 5.3 and 5.4, we consider two cases, a risk seeker and a risk averse agent or investor

respectively. For Figures 5.2, 5.3 and 5.4, the first panel gives the values of dynamic γ1
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Figure 5.2: Dynamic hedge ratios for 3:2:1 crack spread with no utility

which represents the positions held on the gasoline futures, the second panel represents

the values of γ2 representing the positions held on the heating oil futures and the last pa-

nel displays the values of γ3 which are the dynamic hedge ratios for the crude oil futures.

From figures 5.2, 5.3 and 5.4, it is clear that a dynamic hedge does give a representation of

what actually happens through time in terms of price fluctuations. The hedge ratios are

rebalanced every time with respect to various occurrences in the market and this would

give more realistic hedge scenarios. The dynamic ratios reflect the volatilities experienced

in the market through time. The difficulty with application of dynamic ratios would be

with respect to the cost of rebalancing the portfolio each time to reflect the dynamic

hedge ratios.

The respective profits are as shown in Figure 5.5 where panel one represents profits

from spot trading, panel two shows profits arising from a naive or full hedge where

γ1 = γ2 = γ3 = 1. This kind od scenario is very volatile and records some of the

highest profits and losses. Panel three gives profits from a dynamic OLS hedge ratio, and
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Figure 5.3: 3:2:1 crack dynamic hedge ratios with λ = 2

Figure 5.4: 3:2:1 crack dynamic hedge ratios with λ = −2
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Figure 5.5: Profits across various hedging strategies

panel four and five give the profits from variances minimising hedge ratio under minimum

variance. For panel five , we assume the investor is maximising utility, subject to a nega-

tive exponential utility function. This gives the exact same results are those obtained by

applying mean-variance portfolio theory.

Table 5.3 gives a summary of the hedge ratios, portfolio variances and hedge effectiveness

measures.

From this Table, we see the naive hedge gives the weakest hedge effectiveness and lar-

gest portfolio variance after the case with no hedge. However, the static mean variance
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Table 5.3: Average hedge ratios and hedge effectiveness

Hedge Method γ1 γ2 γ3 Portfolio
variance

Hedge
effectiveness

No hedge 0 0 0 380.99 0
Naive hedge 1 1 1 285.65 0.2502
Static OLS 0.9174 0.9034 1.0042 265.55 0.303
Dynamic OLS 0.8982 0.9175 1.0043 240.01 0.37
Static MV 0.3181 -0.4094 -0.0651 80.018 0.79
Dynamic MV 0.2898 -0.286 0.0302 87.111 0.7714
Dynamic utility
maximizing

26.123 -34.048 0.1223 87.111 0.7714

Spot market 0 0 0 82.776 0.7827

hedge still looks stronger than any other strategy though the dynamic hedge is a very

clear improvement from the cases where we use the naive hedge or the OLS hedge ra-

tio. Both these two do not account for interdependencies or spillovers present across the

energy markets. The dynamic minimum variance hedge and the dynamic utility maxi-

mising hedge both give the exact same results with respect to the portfolio variance and

hedge effectiveness implying that incorporating the risk aversion coefficient for the trader

has no effect on the portfolio variance as well as the hedge effectiveness, it only affects

the positions taken by the trader. This means incorporating the spillover effects is very

effective. Introducing multivariate heteroscedasticity may not seem to produce better

results compared to the static hedge where we already improve the trading strategy by

trading a crack spread, however, considering that it gives a different hedge ratio at every

time point, it definitely improves the hedging strategy for the refiner over time.. It seems

that having taken care of the interdependencies, all we need is to take a position on the

input and output products and the trader wil be adequately covered.

Considering the profits shown in table 5.5, there are more opportunities for loss under the

full hedge, followed by the OLS hedge ratios. For the last two panels on the graph where we

consider the mean variance hedge and the mean variance hedge with risk aversion, profits

present in exactly the same way. This shows that with the minimum variance hedge, the

refiner is adequately covered even if the risk aversion parameter is not considered.
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6.1 Conclusions

This work employs statistical and econometric techniques to investigate and model finan-

cial time series trends in energy markets. To do this, daily closing prices for a period of

about 10 years for Cushing OK WTI, RBOB and number 1 heating oil spot and futures

contracts traded in the NYMEX are considered. The work also investigates the existence

of stylised facts in these series, in order to fit an appropriate model that adequately des-

cribes the market dynamics.

Price data are generally heteroscedastic and co-evolve with occasional spikes and jumps.

The price series have a strong positive correlation. The series are tested for stationarity

using the DF test and results show the existence of unit roots. Normality is tested for

using the JB test and non-normality is established. Return series are then generated from

the price series through differencing, and then tested for stationarity using the DF test.

The results reveal that return series are indeed mean stationary, but are definitely not va-

riance stationary. Several ARMA models are fit to the return series and the standardised

residuals analysed. For the crude futures return series, the best model turns out to be an

ARMA(6, 11) and for the crude spot it is an ARMA(7, 11) among others, based on their

AICs. These resultant models however contravene the Gaussian innovation assumption.

We then propose a combined ARMA(p, q)−GARCH(P,Q) model to capture the ARCH

effects in the variance, then find that the best model under these circumstances is the

ARMA(0, 0) − GARCH(1, 1), implying a constant mean conditional variance equation.

We finally find that for example, for the crude futures return series, the GARCH(16, 19)
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is the best model based on the AIC, although a GARCH(1, 1) does quite well for this

and all the other six series with the residual analysis conforming to the assumption of

Gaussian Innovations. GARCH models can therefore adequately model the trends and

patterns in the energy markets. The trends also depict time varying variability and high

persistence of oil price shocks. These shocks therefore have a significant impact on the

prices of these energy prices.

There is evidence of co-integration and co-evolution after carrying out tests. All the series

are integrated of order one and both the E-G and Johansen’s cointegration test reveal

co-integration relations. From the Johansen’s test for co-integration, we obtain a rank of

4, making this the optimal number of lags. The trace test also reveals 4 co-integrating

relations. After fitting a VECM, the residuals are not multivariate normal, and this is

confirmed by the results of the multivariate extension of the JB residuals normality test.

The null hypothesis of no ARCH effects is also rejected, meaning the noise is MGARCH.

This means we end up with a vector error correction (VEC) model with GARCH noise

which can be fitted as a seemingly unrelated regression (SUR)-GARCH model. Howe-

ver, given that in Chapter 3, the most parsimonious model for the univariate analysis

had a zero mean and GARCH variance, i.e. ARMA(0,0)-GARCH(1,1), we proceed to fit

MGARCH models to price data to capture the source and magnitude of volatility spill

overs. We find that the volatility spillover between crude oil, gasoline and heating oil price

series is obvious. Specifically, we fit the BEKK, CCC and DCC variants of multivariate

GARCH. For the BEKK model, convergence is achieved only for the bivariate case due

to the curse of high dimensionality.

The DCC-GARCH(1,1) turns out to be the most parsimonious since the joint ARCH and

GARCH parameters are significant. Conditional variance and conditional correlations

across crude oil and distillate fuel markets are time varying and dynamic in conformity

with the arguments in most literature. The parameters are estimated using MLE and

the dynamic conditional correlations and covariances are obtained. These parameters are
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then used in the estimation of the dynamic hedge ratios. A comparison of the naive hedge,

OLS hedge, both static and dynamic and mean variance hedge, both static and dynamic

is carried out and the static minimum variance using the crack spread emerges the best

with the highest hedge effectiveness and lowest portfolio variance. It should be noted that

on the crack, taking care of interdependencies is just enough to achieve better hedge ratios.

Bringing in dynamic hedges improves the hedge ratios, but not above what is achieved

by the static model in the long run, but given the fact that volatility is time varying, the

dynamic hedge ratios are by far more realistic as they give a true representation of the

variance dynamics of the day. For shorter maturities, they would most definitely emerge

superior. It should be further noted that for the dynamic hedge, there is loss of simplicity

and an additional cost implication brought about by the need to constantly rebalance the

hedge ratios. With respect to OLS hedge ratios, it should be noted that they perform very

poorly on the crack spread and in cases where volatility spillover has to be considered. In

any hedge scenario however, the spill over effects are important to consider as they give

a significant improvement to the hedge ratios.

6.2 Recommendations

Given the evidence of the existence of co–integration, and hence the implication of rever-

sion to a long term mean, mean reverting factor models can be employed to investigate the

spill over effect in the volatilities of energy prices and other stochastic volatility models

can be used to capture and explain the interdependencies.

6.3 Areas for Further Research

In this work, the investor’s utility preferences are assumed to follow a negative exponential

function and this implies a mean variance framework with constant risk aversion. Other

utility functions and portfolio optimization techniques such as generalized semi-variance

(GSV) can also be employed to investigate how different the dynamic hedge ratios would
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be. In the same respect, other measures of risk such as the semi-variance or the mean-Gini

coefficient of return can also be minimized to determine the optimal hedge ratio.

Portfolios constructed from other cracking ratios or other hedging strategies can also be

considered. The same analysis can also be carried out for emerging markets. To study

dynamic hedge ratios, Flexible Dynamic Conditional Correlation (FDCC) models which

generalize the DCC and relax the assumption of common dynamics among all assets can

be considered. Similarly, SUR models can be used to fit VECM models with MGARCH

errors. VECM with GARCH errors can be represented by fitting a VEC-GARCH model

by rewriting the VEC-GARCH model as a seemingly unrelated regression (SUR)-GARCH

model.
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Appendix A

ARMA MODEL SELECTION MATLAB CODE

%% Estimation

%This code estimates all ARMA models with p=0,1,...,15 and q=0,1,...15,

%and then looks at AICs.

MAX_AR = 15;

MAX_MA = 15;

% Use a cell array to hold results from the models. Cell arrays allow

%arbitrary data to be stored.

models = cell(MAX_AR+1,MAX_MA+1);

% Options to suppress display. ARMA models are estimated using lsqnonlin

options = optimset(’lsqnonlin’);

options.MaxIter = 1000;

options.Display=’none’;

% Setup arrays to hold values

AICs = zeros(MAX_AR,MAX_MA);

% Get the effective T since MAX_AR will be held back

T = length(Ddata(:,1)) - MAX_AR;

% Loop over AR and MA order

for i=0:MAX_AR

for j=0:MAX_MA

disp([’AR: ’ num2str(i) ’ MA: ’ num2str(j)])
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% The MAX_AR term below enforces the holdbac, which is requires

% when comparing AR models with different lag lengths. Failing to

% use this will produce log-likelihods base don different number of

% observations.

[p,ll,ser] = armaxfilter(Ddata(:,1),1,1:i,1:j,[],[],options,MAX_AR);

% Use a struct to store results

model = struct();

model.parameters = p;

model.LL = ll; % log likelihoods

model.SER = ser;

models{i+1,j+1} = model;

% Store other values for use later

AICs(i+1,j+1) = ll - 2*(1+i+j);

end

end



Appendix B

AIC VALUES FOR THE ARMA MODELS FITTED TO

DIFFERENCED CRUDE FUTURES DATA

Figure B.1: Plot for the AICs for the various ARMA models fitted for the differenced crude
futures price data
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Appendix C

AICS AND BEST MODEL FIT FOR CRUDE SPOT PRICES

Figure C.1: Plot for the AICs for the various ARMA models fitted for the differenced crude spot
price data
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Table C.2: Results from the ARIMA(7, 0, 11) Model fitted to the differenced crude spot price
series:

Parameter Value Standard Error t− Statistic
Constant -0.0002 0.0034 -0.0725
AR(1) 0.7286 0.28254 2.5787
AR(2) 0.1615 0.2815 0.5737
AR(3) 0.0541 0.1576 0.3433
AR(4) -0.1605 0.1569 -1.0225
AR(5) -0.7468 0.1711 -4.3644
AR(6) 0.7983 0.213 3.7487
AR(7) 0.1019 0.2376 0.428
MA(1) -0.7793 0.2834 -2.7501
MA(2) -0.1498 0.2961 -0.506
MA(3) 0.0075 0.1645 0.0458
MA(4) 0.1658 0.1577 1.052
MA(5) 0.6659 0.1718 3.876
MA(6) -0.7881 0.2099 -3.755
MA(7) -0.1036 0.2461 -0.4209
MA(8) 0.0726 0.0226 3.212
MA(9) 0.0108 0.0316 0.3408
MA(10) -0.0711 0.0227 -3.1339
MA(11) 0.0563 0.0186 3.0357
Variance 3.1344 0.049 63.9692



Appendix D

AICS AND BEST MODEL FOR GASOLINE FUTURES PRICES

Figure D.1: Plot for the AICs for the various ARMA models fitted for the differenced gasoline
futures price data
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Figure D.2: Plot for the AICs for the various ARMA models fitted for the differenced gasoline
spot price data
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Table D.1: Results from the ARIMA(12, 0, 12) Model fitted to the differenced crude spot price
series:

Parameter Value Standard Error t− Statistic
Constant 0.0024 0.0239 0.0997
AR(1) -0.1342 0.1512 -0.8873
AR(2) -0.0482 0.1187 -0.4064
AR(3) -0.0493 0.1054 -0.4675
AR(4) 0.1852 0.0716 2.588
AR(5) -0.2060 0.0714 -2.8842
AR(6) -0.0047 0.0724 -0.0656
AR(7) 0.0564 0.0755 0.747
AR(8) -0.199 0.0722 -2.757
AR(9) 0.4822 0.0658 7.3252
AR(10) 0.5027 0.1059 4.7471
AR(11) 0.2889 0.1232 2.3454
AR(12) -0.2534 0.1264 -2.0057
MA(1) 0.1055 0.1482 0.7119
MA(2) -0.0072 0.1172 -0.061
MA(3) 0.0208 0.105 0.1979
MA(3) -0.152 0.0721 -2.109
MA(5) 0.2303 0.0698 3.2991
MA(6) 0.0136 0.0751 0.1813
MA(7) -0.0666 0.0771 -0.8648
MA(8) 0.198 0.0746 2.6551
MA(9) -0.4718 0.0693 -6.8054
MA(10) -0.4476 0.1075 -4.1639
MA(11) -0.2526 0.1207 -2.0931
MA(12) 0.3474 0.1232 2.8196
Variance 4.5267 0.0869 52.1162



Appendix E

AIC VALUES FOR THE GARCH MODELS FITTED TO

DIFFERENCED CRUDE FUTURES DATA

Table E.1: Results from the GARCH Models fitted to the differenced crude futures price series:

ARCH
GARCH 1 2 3 4 5 6 7

1. 8.8102 8.8102 8.8102 8.8102 8.8102 8.8102 8.8102
2. 8.8080 8.8080 8.8080 8.8089 8.8080 8.8080 8.8101
3. 8.8020 8.8020 8.8020 8.8020 8.8020 8.8020 8.8020
4. 8.7925 8.7922 8.7922 8.7913 8.7913 8.7927 8.7927
5. 8.7923 8.7912 8.7912 8.7912 8.7912 8.7912 8.7912
6. 8.7923 8.7912 8.7912 8.7912 8.7912 8.7877 8.7877
7. 8.7923 8.7891 8.7891 8.7863 8.7863 8.7874 8.7874
8. 8.7962 8.7874 8.7874 8.7874 8.7874 8.7901 8.7901
9. 8.7908 8.7910 8.7910 8.7930 8.7926 8.7896 8.7896
10. 8.7908 8.7909 8.7909 8.7929 8.7946 8.7856 8.7915
11. 8.7908 8.7909 8.7909 8.7855 8.7946 8.7856 8.7856
12. 8.7908 8.7836 8.7836 8.7877 8.7946 8.7856 8.7856
13. 8.7908 8.7836 8.7836 8.7855 8.7946 8.7856 8.7856
14. 8.7908 8.7854 8.7854 8.7874 8.7874 8.7849 8.7849
15. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7801 8.7801
16. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7801 8.7801
17. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7801 8.7801
18. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7849 8.7849
19. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7801 8.7801
20. 8.7921 8.7837 8.7837 8.7837 8.7837 8.7801 8.7801

all values multiplied by 103
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Table E.2: Results from the GARCH Models fitted to the differenced crude futures price series:

ARCH
GARCH 8 9 10 11 12 13

1. 8.8102 8.8102 8.8122 8.8122 8.8122 8.8122
2. 8.8101 8.8080 8.8105 8.8105 8.8105 8.8105
3. 8.8020 8.8020 8.8029 8.8029 8.8029 8.8029
4. 8.7941 8.7941 8.7959 8.7959 8.7911 8.7911
5. 8.7887 8.7887 8.7919 8.7919 8.7919 8.7919
6. 8.8009 8.7887 8.7866 8.7866 8.7866 8.7866
7. 8.7874 8.7874 8.7866 8.7866 8.7866 8.7866
8. 8.7917 8.7917 8.7901 8.7901 8.7901 8.7882
9. 8.7922 8.7922 8.7884 8.7884 8.7884 8.7901
10. 8.7848 8.7848 8.7855 8.7855 8.7855 8.7855
11. 8.7848 8.7848 8.7855 8.7855 8.7855 8.7855
12. 8.7848 8.7848 8.7871 8.7871 8.7871 8.7871
13. 8.7848 8.7848 8.7871 8.7871 8.7871 8.7871
14. 8.7835 8.7835 8.7854 8.7854 8.7854 8.7854
15. 8.7808 8.7808 8.7801 8.7801 8.7821 8.7800
16. 8.7808 8.7808 8.7801 8.7801 8.7821 8.7800
17. 8.7808 8.7808 8.7801 8.7801 8.7821 8.7800
18. 8.7835 8.7808 8.7801 8.7801 8.7821 8.7800
19. 8.7808 8.7808 8.7835 8.7801 8.7835 8.7855
20. 8.7855 8.7808 8.7835 8.7835 8.7835 8.7855

all values multiplied by 103
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Table E.3: Results from the GARCH Models fitted to the differenced crude futures price series:

ARCH
GARCH 14 15 16 17 18 19 20

1. 8.8117 8.8198 8.8231 8.8265 8.8301 8.8202 8.8098
2. 8.8111 8.8111 8.8145 8.8141 8.8176 8.8191 8.8098
3. 8.8029 8.8049 8.8103 8.8143 8.8163 8.8163 8.8097
4. 8.7911 8.7931 8.7882 8.7882 8.7882 8.7882 8.7951
5. 8.7919 8.7919 8.7827 8.7827 8.7827 8.7827 8.7853
6. 8.7866 8.7866 8.7842 8.7842 8.7842 8.7842 8.7890
7. 8.7866 8.7866 8.7831 8.7831 8.7831 8.7831 8.7879
8. 8.7901 8.7901 8.7851 8.7851 8.7851 8.7851 8.7877
9. 8.7901 8.7901 8.7839 8.7839 8.7839 8.7839 8.7869
10. 8.7855 8.7855 8.7823 8.7823 8.7823 8.7823 8.7869
11. 8.7855 8.7855 8.7813 8.7813 8.7813 8.7813 8.7853
12. 8.7889 8.7909 8.7801 8.7801 8.7801 8.7801 8.7818
13. 8.7889 8.7909 8.7829 8.7829 8.7829 8.7829 8.7858
14. 8.7892 8.7892 8.7776 8.7776 8.7776 8.7776 8.7794
15. 8.7829 8.7847 8.7842 8.7862 8.7862 8.7862 8.7794
16. 8.7829 8.7847 8.7862 8.7862 8.7862 8.7862 8.7821
17. 8.7829 8.7847 8.7789 8.7789 8.7789 8.7789 8.7821
18. 8.7829 8.7847 8.7785 8.7785 8.7785 8.7785 8.7807
19. 8.7837 8.7852 8.7764 8.7764 8.7764 8.7764 8.7799
20. 8.7837 8.7852 8.7764 8.7764 8.7764 8.7764 8.7789

all values multiplied by 103
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GARCH MODEL SELECTION CODE IN MATLAB

Ddata=diff(data,1);

% Lag values to use in model selection

n=20;

options = optimset(’fmincon’);

options.MaxIter = 1000;

options.Display=’none’;

AICs = zeros(n,n);

for i=1:n;

for j=1:n;

Mdl = garch(i,j);

[EstMdl,EstParamCov,logL,info] = estimate(Mdl,Ddata(:,1));

params=length(info.X); %number of parameters

[aic] = aicbic(logL,params);

AICs(i,j)=aic;

end

AICs(i,j)= AICs(i,j)+1;

end
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%% Fit the specific GARCH model

Model = garch(19,16)

[EstModel,EstParamCov,logL,info] = estimate(Model,Ddata(:,1));

params=length(info.X); %number of parameters

[aic] = aicbic(logL,params);

%% Residual Analysis

V=infer(EstModel,Ddata(:,1));% infer conditional variances

T=length(Ddata(:,1));

figure

subplot(2,1,1)

plot(V)

grid on

xlim([0,T])

title(’Infered Conditional variances’)

% computing standardized residuals

res = (Ddata(:,1)-EstModel.Offset)./sqrt(V);

title(’Standardized Residuals’)

subplot(2,1,2)

histfit(res,40)

title(’Standardized Residuals’)

figure

subplot(2,1,1)

qqplot(res) % testing normality of residuals

subplot(2,1,2)

boxplot(res)

figure

subplot(2,1,1)

autocorr(res,40)
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ylim([-0.1 0.1])

subplot(2,1,2)

parcorr(res,40)

ylim([-0.1 0.1])



Appendix G

GARCH(1, 1) RESIDUAL ANALYSIS

Figure G.1: GARCH(1, 1) Conditional variances plot and standardized residuals histogram
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Figure G.2: GARCH(1, 1) Standardized residuals QQ-plot and boxplot

Figure G.3: GARCH(1, 1) ACF and PACF of standardized residuals
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GARCH MODEL FORECASTING MATLAB CODE

%% Fit the GARCH(19,16) model

Model = garch(19,16)

[EstModel,EstParamCov,logL,info] = estimate(Model,Ddata(:,1));

params=length(info.X); %number of parameters

[aic] = aicbic(logL,params);

%% extract alphas

alphas=[];

for i=1:1:length(EstModel.ARCH);

alpha=cell2mat(EstModel.ARCH(i));

alpha(i)=alpha;

alphas=[alphas alpha(i)]

end

%% extract betas

betas=[];

for j=1:1:length(EstModel.GARCH);

beta=cell2mat(EstModel.GARCH(j));

beta(j)=beta;

betas=[betas beta(j)]

end

%% Fitting model to forecast differenced series

fut_ret=zeros(300,1);% vector for storing recursive values of returns

fut_var=zeros(300,1)% vector for storing recursive values of variance
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fut_at=zeros(300,1)% vector for storing recursive values of innovations

ret=Ddata(1:end-300,1);

F_ret=[ret;fut_ret];

var=v;

F_var=[var;fut_var]% vector storing forcasted variances

Inn=Ddata(1:end-300,1);

F_at=[Inn;fut_at] % vector storing forecasted innovations

for t=2063:2362

F_var(t)=EstModel.Constant+alphas(1)*F_at(t-1)^2+alphas(2)*F_at(t-2)^2+...

alphas(5)*F_at(t-5)^2+alphas(6)*F_at(t-6)^2+alphas(8)*F_at(t-8)^2+...

alphas(9)*F_at(t-9)^2+alphas(10)*F_at(t-10)^2+alphas(13)*F_at(t-13)^2+...

alphas(14)*F_at(t-14)^2+alphas(15)*F_at(t-15)^2+alphas(16)*F_at(t-16)^2+...

betas(16)*F_var(t-16)+ betas(19)*F_var(t-19);

F_at(t)=sqrt(F_var(t))*randn;

F_ret(t)=F_at(t);

end

F_ret

F_var

%% plot forecasted differenced series and variances from the GARCH(19,16)

figure

subplot(2,1,1)

plot(dates(2:end-300),Ddata(1:end-300,1))

hold on

plot(dates(end-300:end-1),F_ret(end-300:end-1),’r’)

hold off

datetick(’x’,’yyyy’,’keeplimits’)

grid on

subplot(2,1,2)

plot(dates(2:end-300),F_var(1:end-300,1))
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hold on

plot(dates(end-300:end-1),F_var(end-300:end-1),’r’)

hold off

datetick(’x’,’yyyy’,’keeplimits’)

grid on

axis tight

%% forecast crude futures prices using GARCH (19,16)

fut_price=zeros(length(Ddata(end-300:end)),1)

CF_F=[data(1:2062,1);fut_price]

for t=2063:2362

CF_F(t)=F_ret(t)+CF_F(t-1);

end

figure

plot(dates,data(:,1))

hold on

plot(dates(end-300:end),CF_F(end-300:end),’r’)

hold off

datetick(’x’,’yyyy’,’keeplimits’)

grid on

axis tight

%% Measuring forecasting ability

new_F_var=F_var(2063:end);

Sigma_Rt=sqrt(1/length(new_F_var)*sum(new_F_var)); % ralised volatility

dev=zeros(300,1);

for i=1:length(new_F_var);

dev(i)=sqrt(new_F_var(i))-Sigma_Rt;

end

RMSFE=sqrt(1/length(new_F_var)*sum(dev.^2));
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ENGLE-GRANGER TEST FOR CO-INTEGRATION MATLAB CODE

%% Import data from spreadsheet

% Script for importing data from the following spreadsheet:

%

% Workbook: C:\Users\aduda\Dropbox\2015\Main\analysis\DATA.xlsx

% Worksheet: DATA

%

% To extend the code for use with different selected data or a different

% spreadsheet, generate a function instead of a script.

% Auto-generated by MATLAB on 2015/02/03 19:47:16

%% Import the data, extracting spreadsheet dates in MATLAB serial date number format (datenum)

[~, ~, raw, dateNums] = xlsread(’C:\Users\user.IDEA-PC\Dropbox\2015\Main\analysis\timeseries\DATA1.xlsx’,’DATA’,’A2:O2364’,’’,@convertSpreadsheetDates);

%% Replace date strings by MATLAB serial date numbers (datenum)

R = ~cellfun(@isequalwithequalnans,dateNums,raw) & cellfun(’isclass’,raw,’char’); % Find spreadsheet dates

raw(R) = dateNums(R);

%% Create output variable

DATA = reshape([raw{:}],size(raw));
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%% Clear temporary variables

clearvars raw dateNums R;

%% create a financial time series object and plot a series for the entire

%data set

format short

dates = DATA(:,1);

data = DATA(:,[2:15]);

freq = 1;

tsobj= fints(dates, data,{’CF’,’CS’,’GF’,’GS’,’HF’,’HS’,’A_crkF’,’B_crkF’,...

’C_crkF’,’D_crkF’,’A_crkS’,’B_crkS’,’C_crkS’,’D_crkS’}, freq);

figure(1)

plot(tsobj)

%% create a financial time series object and plot a series of the raw data

%for the spot and futures markets

format short

dates = DATA(:,1);

raw = DATA(:,[2:7]);

freq = 1;

raw_tsobj = fints(dates, raw,{’CF’,’CS’,’GF’,’GS’,’HF’,’HS’}, freq);

figure(1)

plot(raw_tsobj)

grid on

%% create a financial time series object and plot a series of the crack

%spread for the spot and futures markets

format short

dates = DATA(:,1);

spread = DATA(:,[8:15]);
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freq = 1;

spread_tsobj = fints(dates, spread,{’A_crkF’,’B_crkF’,’C_crkF’,’D_crkF’,...

’A_crkS’,’B_crkS’,’C_crkS’,’D_crkS’}, freq);

figure(1)

plot(spread_tsobj)

grid on

%% Convert object to matrix and extract each series. This is necesarry for

%the individual plots. This is for the raw series

CF=fts2mat(raw_tsobj.CF);

CS=fts2mat(raw_tsobj.CS);

GF=fts2mat(raw_tsobj.GF);

GS=fts2mat(raw_tsobj.GS);

HF=fts2mat(raw_tsobj.HF);

HS=fts2mat(raw_tsobj.HS);

%%Convert object to matrix and extract each series. This is necesarry for

%the individual plots. This is for the the 3:2:1

%crack spread series

crkF=fts2mat(spread_tsobj.C_crkF);

crkS=fts2mat(spread_tsobj.C_crkS);

%% choosing optimal lag length for cointegrated model

%Selection of lag length is challenging to automate. Instead, this code

% estimates all cointegration regression models with p=0,1,...,4 and then

% looks at AICs.

% P = 15;

% AICs = zeros;

% for i=0:P;

% [~,~,~,~,reg1,~] = egcitest(spread(:,[3 7]),’lags’,i);

% AICs(i+1) = reg1.AIC

% end



Appendix I. Engle-Granger test for co-integration matlab code 193

%% Engle-Granger test for cointegration on the raw price series

[h,pValue,stat,cValue,reg1,reg2] = egcitest(raw,’test’,’t2’);

h

pValue

%%

a = reg1.coeff(1);

b = reg1.coeff(2:6);

beta=[1;-b];

%dates = datestr(dates)

plot(dates,raw*beta-a)

datetick(’x’,’yyyy’,’keeplimits’)

grid on

axis tight

%% Test if the residuals are stationary

[h,pValue] = adftest(raw*beta-a);

%% Multiple Cointegrating Relations

% Permutations of the data variables:

P0 = perms([1 2 3 4 5 6]);

[~,idx] = unique(P0(:,1)); % Rows of P0 with unique regressand y1

P = P0(idx,:); % Unique regressions

numPerms = size(P,1);

Y = raw;

% Preallocate:

T0 = size(Y,1);

HEG = zeros(1,numPerms);

PValEG = zeros(1,numPerms);

CIR = zeros(T0,numPerms);
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%% Run all tests:

for i = 1:numPerms

YPerm = Y(:,P(i,:));

[h,pVal,~,~,reg] = egcitest(YPerm,’test’,’t2’);

HEG(i) = h;

PValEG(i) = pVal;

c0i = reg.coeff(1);

bi = reg.coeff(2:6);

CIR(:,i) = YPerm*[1;-bi]-c0i;

end

fprintf(’\n=== Different Engle-Granger tests, same data ===\n\n’)

HEG,PValEG

% Plot the cointegrating relations:

figure

C = get(gca,’ColorOrder’);

set(gca,’NextPlot’,’ReplaceChildren’,’ColorOrder’,circshift(C,3))

plot(dates,CIR,’LineWidth’,1)

title(’{\bf Multiple Cointegrating Relations}’)

legend(strcat({’Cointegrating relation ’}, ...

num2str((1:numPerms)’)),’location’,’NW’);

datetick(’x’,’yyyy’,’keeplimits’)

axis tight

grid on
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JOHANSEN’S TEST FOR CO-INTEGRATION MATLAB CODE

clear all

close all

clc

%% Import data from spreadsheet

% Script for importing data from the following spreadsheet:

%

% Workbook: C:\Users\aduda\Dropbox\2015\Main\analysis\DATA.xlsx

% Worksheet: DATA

%

% To extend the code for use with different selected data or a different

% spreadsheet, generate a function instead of a script.

% Auto-generated by MATLAB on 2015/02/03 19:47:16

%% Import the data, extracting spreadsheet dates in MATLAB serial date number format (datenum)

[~, ~, raw, dateNums] = xlsread(’C:\Users\user.IDEA-PC\Dropbox\2015\Main\analysis\timeseries\DATA1.xlsx’,’DATA’,’A2:O2364’,’’,@convertSpreadsheetDates);

%% Replace date strings by MATLAB serial date numbers (datenum)

R = ~cellfun(@isequalwithequalnans,dateNums,raw) & cellfun(’isclass’,raw,’char’); % Find spreadsheet dates

raw(R) = dateNums(R);
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%% Create output variable

DATA = reshape([raw{:}],size(raw));

%% Clear temporary variables

clearvars raw dateNums R;

%% create a financial time series object and plot a series for the entire

% data set

format short

dates = DATA(:,1);

data = DATA(:,[2:15]);

freq = 1;

tsobj= fints(dates, data,{’CF’,’CS’,’GF’,’GS’,’HF’,’HS’,’A_crkF’,’B_crkF’,...

’C_crkF’,’D_crkF’,’A_crkS’,’B_crkS’,’C_crkS’,’D_crkS’}, freq);

figure(1)

plot(tsobj)

%% create a financial time series object and plot a series of the raw data

% for the spot and futures markets

format short

dates = DATA(:,1);

raw = DATA(:,[2:7]);

freq = 1;

raw_tsobj = fints(dates, raw,{’CF’,’CS’,’GF’,’GS’,’HF’,’HS’}, freq);

figure(1)

plot(raw_tsobj)

grid on

%% create a financial time series object and plot a series of the crack

%spread for the spot and futures markets
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format short

dates = DATA(:,1);

spread = DATA(:,[8:15]);

freq = 1;

spread_tsobj = fints(dates, spread,{’A_crkF’,’B_crkF’,’C_crkF’,’D_crkF’,...

’A_crkS’,’B_crkS’,’C_crkS’,’D_crkS’}, freq);

figure(1)

plot(spread_tsobj)

grid on

%% Convert object to matrix and extract each series. This is necesarry for

%the individual plots. This is for the raw series

CF=fts2mat(raw_tsobj.CF);

CS=fts2mat(raw_tsobj.CS);

GF=fts2mat(raw_tsobj.GF);

GS=fts2mat(raw_tsobj.GS);

HF=fts2mat(raw_tsobj.HF);

HS=fts2mat(raw_tsobj.HS);

%%Convert object to matrix and extract each series. This is necesarry for

%the individual plots. This is for the the 3:2:1

%crack spread series

crkF=fts2mat(spread_tsobj.C_crkF);

crkS=fts2mat(spread_tsobj.C_crkS);

%% Johansen trace test for cointegration on the raw price series

[h,pV,stat,cV,mles] = jcitest(raw,’model’,’H1’,’lags’,4);

h

pV

%%

Y=raw;

YLag = Y(4:end,:);
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T = size(YLag,1);

B = mles.r4.paramVals.B;

c0 = mles.r4.paramVals.c0;

plot(dates(4:end),YLag*B+repmat(c0’,T,1))

title(’{\bf Cointegrating Relations from Johansens co-integration test}’)

legend(strcat({’Cointegrating relation ’}, ...

num2str((1:4)’)),’location’,’NE’);

datetick(’x’,’yyyy’,’keeplimits’)

grid on

axis tight
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