UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

IN MEMORY DATA WAREHOUSING TO IMPROVE ON DATA
ANALYTICS LATENCY

MBURU JOHN KAMAU

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE IN COMPUTATIONAL
INTELLIGENCE OF THE UNIVERSITY OF NAIROBI.

DECEMBER 2017.

Declaration

This project report is my original work and has not been presented for any other award in any

university.

Signature: Date:

MBURU JOHN KAMAU

P52/72897/2014

Project Supervisor
This project report has been submitted in partial fulfillment of requirements of the award of
Master of Science degree in Computer Science of the School of computing and Informatics of

the University of Nairobi, with my approval as the University supervisor.

Signature: Date:

Ms. PAULINE WAMBUI

School of Computing and Informatics

Dedication
| dedicate this project to my family who were very supportive throughout the project for

allowing me to stay up late to push through the tight timelines. Special thanks to my wife and

kids Zahari, Shanice for being part of the motivation to this project thesis.

Acknowledge ments
I would like to acknowledge Ms. Pauline Wambui and Dr. Elisha O. Opiyo for their great

assistance and direction. Ms. Pauline’s recommendations and suggestions led to a large extent,

the realization of this project report.

Abstract
Most of the banks in the Kenyan banking industry are still using traditional reporting methods

that involves querying data from different transactional databases that are not interconnected.
Some business teams download reports from core transaction processing systems (TPS). The
data is then subjected to tools such as Microsoft excel to analyze the raw data and use of various
excel functions to report what the top business executives need. Every time these executives
request for a report, the reporting team, if any, must put a request to the technical information
technology teams to generate the raw data with the requested fields and forward it to possibly
some shared folder where the reporting team can access in preparation for data analysis and

reporting.

This is time consuming, prone to errors and it requires the availability of the technical teams to
ensure the process is complete. Some of the results that are produced using such traditional
methods are not accurate and are at times wrong. There is also no way to combine results from
all systems to get a complete view of a concept (a customer for example). Use of the entire
databases for reporting instead of some few attributes of the database in form of a modelled

fact/dimension means it takes more time to process or mine data.

The research was aimed at establishing if this problem could be solved by replacing the
traditional reporting mechanisms with a modern in-memory data warehousing prototype. This
involved development of various data analytics components that created a new set of processes
of data collection, cleaning/transformation and analysis. Apache Spark in-memory solution was
used to store more summarized data by organizing data into dimension and measures for easier
and faster retrieval. At the presentation layer, Apache Zeppelin was used to showcase data

visualization.

Sampling method was based on purposive sampling technique by studying the way data analysis
is done by a selected banking analytics professionals. The research was done using the case study
approach where data was collected from the business reporting, technical and manageme nt teams
that were involved in the reporting process. The prototype was evaluated to show what
improvements were realized using the new in-memory system by using sample data that was

large enough to compare with other options.

Table of Contents

DB AICALION. ... ettt b i
ACKNOWIE AGEIMEINITS ...ttt e e e e e e e e e e s e et a e e e e e e s s st tb e b e e eeaeeeesssssnanreeeaeenaans iv
F N o 5] 1 72 Tod S O PP TP PPPRTOPPPRTPRN %
LI o] (o) O] 1 (-] | F ST PP PP RO PPR PP Vi
LI Lo (o) T U (L O TRPP R UPR PP iX
TaDIE OF TADIES ...ttt e et e e e et X
CHAPTER 1: INTRODUCTION ...ttt sttt nae e 1
I R = - o1 (o {01 o P SPUUPPPURPPR 1
1.2 Business intelligence and data analytiCs...........cooueeiiuiieiiiiieniieeeiee e 2
1.3 Need for Emerging ANAIYLICS.eeieiiuiiiee ittt e ettt e e e s e e e e e e e e earaeeeens 2
1.4 Problem StAEMENL.....c.c..oi i 4
15 GENEral ODJECLIVEeeiiiieiiiee et sttt e e e e sanee e 5
1.6 SPECITIC ODJECLIVESveeieieiiie ettt e e e e s et e e e e sata e e e e s abaeeaeeesnaeeeeans 5
17 RESEAICH QUESTIONScc i iiiiieeeee e e ettt e e e e e et e e e e e e e e e e st ba e e e e e e e e e seanbtbaeeeeaaeeeesennsrens 5
1.8 SIignificance Of the STUTYccueiiiiiiiiiie ettt e s ee e 5
1.9 SCOPE OF the STULYveieeeeieie et e e e et e e e e sarr e e e e sabaeeeeesasaeeeeans 5
L.10 CONIIDULIONSeeeieeeitie ettt ettt e s e e sb et e s e e sane e e saneeeas 6
CHAPTER 2: LITERATURE REVIEW ...ttt 7
P22 R 11 (o (1703 4 o] o O POV OPPPPRRRPO 7
2.2 BUSINESS INEEIIGENCE....cc it e e e e e e e e e e s st be e e e e eeaeeeaennnns 7
2.3 Business Intelligence Maturity MOGEISocueiiiiiiiiiee e e 7
23.1 IT=CRNIIIC .ttt et ettt e st e et e e rab e e e bt e sab e e sbbeeesabeeesabeeeaee 7
2.3.2 INfOrmation ManagEMENTuvieiieeeii i e s e e e e e s e e e e e e e s eanrrraeeaaeens 7
2.3.3 PrediCtivVe TNSIGNT.......c.vviiee et e e e e e e e s naeeeean 8

2.4 Business Intelligence VS DECISION SUPPOITcceureeruieeiiieeiitieeesiiee et et et siree e s 9
2.5 Steps to achieving a Business INtelligence SYStEM............evvevieiiiiiciiiiieeiee e e 9
2.5.1 Transaction processing systems as a Bl data SOUICE........c..eveevvviieeeiiiiiee e 9
252 DAt WAIBNOUSES.oueeetierieieieeeee ettt 10
2.5.3 Extracting, Transforming and Loading (ETL) Data..........cccccveeeeiiiiieeecciiiee e, 10
254 Multidimensional Data ANAIYZE..........cocveiei i 11

2.6 Review of Business Intelligence, Data warehousing in Bankingcccecceeevveennieenniieeennen. 11
2.7 IN-MEMOTY ANAIYTICS ...t e e e e e st e e e e e e e s snatraeeeeaeaeeeeannnnes 13
2.7.1 In-Memory Technological AQVANCESc.c.uvveeeieee et e e e e 13

2.7.2 Benefits of IN-MemOory ANAIYLICS........cocviiieiiiiie e e 13

2.7.3 Apache Spark as In-Memory Analytics SOIULIONccccvvveiiriiiiie e 14
2.7.4 Architecture of In-Memory AnalytiCs SYSIEMScceveeieiiiiiiiiiee e 14
2.8 Proposed ArchiteCture fOr Bl.........uuieeiiiiiie et e e e 15
2.9 Related work on the Problem of LatenCyccccvveeiiiiiiiee i 16
O T ol o) (oL o (0% | I o SRR PSURR 16
2.11 Overall System Architecture/Model for a Business Intelligence System............ccceeevvvvevnnnnenn. 17
CHAPTER 3: RESEARCH METHODOLOGYoiiiiiiiiiiiiiiiiiee et n e e e e 18
I R 1011 0o (1 o3 o PP TP PP PTUPPTRTPTPPRPP 18
3.2 RESEAICN DESION ...eeeeiiiiiie ettt ettt ettt e e et e e e et e e e et e e e e anbaeaeeennes 18
3.3 ReSEArCh POPUILION.eiiiiiiiiie e et 18
KB 1 1] 2o PSSP 18
3.5 Data Collection MENOGSccoouiiiiiiiiiiieerii e 18
3.3.1 ProtOtype Datd SOUICES.vveeeiiiiiiee ettt e st e e eeeineee s 18
332 RESEAICN DAA ... 19
3.6 Relating Research Objectives to Research Methodology...........coooeeiiiiieiiiiiin e, 19
37 DAtBANAIYSIS ...ttt et eaneas 21
3.4 Prototype Development Methodologyccocveieiiiiiiiieeieiiiee e 24
34.1 PlanNiNg PRasecoooiiiiiiiiiie e e e e e 24
3.4.2 DISCOVEING PNASE ..ttt ettt et e ettt e et e bt e e et eesabeeesaneee s 28
3.5 Prototype Implementation and Evaluationccceeeeeiiiire i 30
351 COoNFIGUIATION PRASE. ... viiie ettt e e et e e s sabee e e s sabaaeeeenaes 30
3.5.2 Data Validation and Simulation Phase.............cceeriieiiiiiiniiiieieceee e 35
353 CUSEOMIZALION PRESE........eiiiiiiiiiiie ettt 37
3.5.4 Deployment and EValUALIONcoeviiiiiiiiiiiiiiieeeee e e e 37
CHAPTER 4 RESUL T Sttt e et e e e e e e e et e e e e e e e e e e enneeees 39
A1 ProCess EVAIUALIONcccuiiiiiiiiiiie ettt et et 39
411 Multi User Data ACCESS IMPrOVEMENL........ccciirieeeiiiieeeeiiieeeeeeiee e e et e e e eirre e e e saaeea e 39
412 Open Source TECANOIOGYc..vveieiiiiiie et e e e 39
413 Flexible Visualization OPtiONS...........ooiueeiiiieiriie ettt 40
4.2 Performance IMPrOVEMENTcccuuiieiiiiieee et e et e e e et e e e et e e e e e are e e e e eaaaeeas 40
421 Do v= 0= Lo |1 o R UUUUPRR 40
422 Prototype EVAIUATION.......ccoueiiiiieiiie e 41

vii

CHAPTER 5 CONCLUSIONS ...ttt ettt e e e e 45

5.1 LatenCy REAUCTIONcoiuuiiiiiiieiiieeitte ettt ettt et e st sib e et e e abee e sabeeesaneas 45
52 Generalization to Other INAUSTIIES.eiitririieieiie e 45
CHAPTER 6: RECOMMENDATIONSoitiiitiieiteie ettt 46
6.1 RECOMMENUALIONS.eeiiutiieiiieeiite ettt et ettt et e e st e e e bt e e s bee e e sabeeesaneas 46
6.2 Limitations Of the STUAYoeiiiiiiiieeeee e e e 46
6.3 FUINEE STUAY.......ueiiieiiii e e e e e e e e e e e sttt b e e e e e e e e eesesnanabaneeeaeaeeeanns 46

L L TR 47
APPENDICES. oottt e e ettt et e e e e s e ettt eeae e e e e ettt e e e e e e e e a e aaaeens 50
7.1 ApPendiX 11 USEr ManUalcocuvveieeiiiiie et e et e e s e e e ennae s 50
7.2 APPendixX H1: Prototype COUBuvviiiei e ettt e e e e e e e e s srearar e e e e e e e eenes 56
7.3 Appendix HH1: ObSErvation SNEET.........cccuiiiiiiiiiie et 103
7.3.1 General INFOrMALION.ooiiuiiiiiee e s 103
7.3.2 DAtA SOUICES......eeiiiiiiiiieiiiie ettt rae s 103
7.3.3 Data CIBANUP. ... eeee ettt ettt e e et e e e ettt e e e st e e e esbaeeessnsbeeeeeannnaeeas 103
7.34 DAtA ANAIYSIS ...ttt et et e 103
7.35 Data ViISUBHZATIONeeiiiiiiiiiiiiiceee e 104
7.3.6 Dashboards ProdUCET.eeieiiieiee ettt e e e e et e e e st e e e e snaaeee s 104

viii

Table of Figures

Figure 1 Business Intelligence Model, Gartner (2015)cccuvvvieiieeeee i 9
Figure 2 Benefits of In-Memory Analytics, Nayem etal (2014)cccoovveeiiiieiiieeiiiie e 13
Figure 3 Apache Spark Computing Architechure, Depali (2016)ccccvvieeiiiieeeeiiiieee e, 14
Figure 4 In-Memory Architecture, source: (Garg, at al 2013).covueieiiiiriieeeeeeee e 15
Figure 5 Business Intelligence Architecture/ Model, Nguyen Manh et al. (2005)...........ccccovveeeviiiieeeennns 17
Figure 6 Data Analysis, YEars iN ANAIYTICS.eeiiiiuiiee ettt e e e e s e e e s e e e seeeeeeens 21
Figure 7 Data Analysis, ReSpondents DY GENUEr..........vviii e e 21
Figure 8 Data Analysis, Respondents per JOb FOIEooooviiiee i 22
Figure 9 Data Analysis, JOD ROIe ANAIYLICSoeeiiiiiiiiccee e e e 22
Figure 11 BIM Methodology phases, Bl MiNdS (2014)ueveeriurieeeeiiiieeeeeiieeeeesiveeeesieeee e sieeeee s e 24
Figure 12 Traditional Data ANAlYtiCS PrOCESSeeiiiiviiieeeiiiieeecitee et e e ee e e e e e e e are e e e e eareeaens 25
Figure 13 ProjeCt GANTE CRAI.........vviieiiiiiiee ettt e e e s e e e sttt e e e s e e e e snneeeeens 27
Figure 14 Architecture of the in-memory analytics engine, E Bay Technologies (2014)............cccveee.n. 29
Figure 15 Current Data ANAIYTICS PrOCESSccivuvviieiiiiiiee ettt et e e s e e e siaeee e e 30
Figure 16 Apache Spark HOME PagE........coiuiiiiiiiiiiie ittt ettt et e e 33
Figure 17Apache Zeppelin HOME PAgEeiiiiiiiiie ittt e e e e e e ee e e 35
Figure 18 Apache Spark’s - Zeppelin Scala Sample COdecoccuiiiiiiiiiiiiniie e 37
Figure 30 DBMS Data LOAG.........ccevviiieiee ettt e ettt e e e e e e e s ttrre e e e e e e e s s naataaeeeeeeeeeeeennnnnnnns 40
Figure 31 Apache Zeppelin/Spark Data LOAd.............ceeieieiiiiieiiiii e 41
Figure 32 Zeppelin LOAAceeeei ittt ettt e e e e st e e e e e e e e e s et r e e e e e e e e s ssnaataaeeseeeeaeessnnsnnnens 41
Figure 33 DBMS ANAIYSIScoueiiiiiiiiiiee ittt ettt ettt ettt e e ebt e s bt e e nane e e 42
Figure 34 Zeppelin ANAIYSIS........ceeiiiieeiee et e e e e s e e e e e e e st r e e e e e e e e e e nnneees 42
Figure 35 Zeppelin ANalySis DELAIISccccueiiiiiiiiiie i 43
Figure 36 Performance CompariSOn Chat.............ociiiuiiiioiiiiie et e e e e e eanaee e 44
Figure 19 Zeppelin Banking Analytics Notebook — Loan fact per branch dimension analysis................. 50
Figure 20 Zeppelin Banking Analytics Notebook — Loan fact per branch dimension analysis................. 51
Figure 21 Zeppelin Banking Analytics Notebook — Loan fact per branch, productype, and currency
AIMENSIONS ANAIYSIS. ...eeiiiieiiit ettt et ettt ettt e e sab e e bt e e s bt e e sabeeesabeeesaneeens 51
Figure 22 Zeppelin Banking Analytics Notebook — Measuring transactions fact by channel type
(01100757 0157 o] o USSR 52
Figure 23 Zeppelin Banking Analytics NOteboOK — HR.........coooiiiiiiiiiiee e 52
Figure 24 Zeppelin banking Analytics NOtebooK — HR.........c.coiiiiiiiiiiiiii e 53
Figure 25 Zeppelin Banking Analytics NOteboOK - HR..........coooiiiiiiiiiiee et 53
FIQUIE 26 SPArK EXECULETS......eeieeiiiiieeeeiiteeeeeiiiteeeestieeeesiteeeesstaeeeeeesnsaeeeessntaeeesassaeeeannsssneessnnsseeenans 53
Figure 27 Spark SQL Completed QUEKIES........c..viiiiieieee e ettt e e e e e st e e e e e e e s neraa e e e e e e e e s eeneneaees 54
Figure 28 Spark - ZepPelin STAGESeeeivreeeeriiiieeeeiiiee e e eeeee e e sttt e e et e e e et ar e e e sabe e e e ennbreeeeenteeeeeanes 54
Figure 29 Spark - Zeppelin JODSooo i e a e 55

Table of Tables

Table 1 Relating Research Objectives to Research methodologyccveeeeeeeiiiiiiiiieiiee e, 20
Table 2 Raw Data from ODServation SHEETScovuuiieiiiiiie e e e 20
Table 3 Data Analysis, CIasSIfICAtIONcccuiiiiiiiiie e eare e e e e 21
Table 4 Data Analysis, Data OBSErvation SUMMAIYcccueeeriieirieeeiieeeniee et 23
Table 5 List of activities and their timelines for the ProjeCt.........c..eeevviiiee i, 26
Table 6 PropoSed BULGETccoi ettt ettt e e s et e e e et e e e st eeesennaeeeeeennnseeeeennees 27
Table 7 Prototype Requirements, List Of DIMENSIONSc.vvviiiiiiiiieieiiee e e 28
Table 8 Prototype Requirements, LiSt OF IMEASUIES.........cccuviiieiiiiiee e et e e e e e 28
Table 9 Apache Spark ConfigUIAtIONccuviiiiiiiiie e e e e e etraeeeennes 32
Table 10 Apache Zeppelin CoNFIQUIAtIONeeiiiiiiie it e e et e e e eereeeeeenees 34
Table 11 Data Validation and Simulation USING Rcccuviiieiiiiiii e 36
Table 12 Process Improvement EVAIUALIONocuuiiiiiiiiiieiniieie e e e 39
Table 13 Performance COMPAIISONuvieieiieeeeeiiieeeeeeeteeeeeeieeeeesabeeeessareeeeeessnaeeessssseeessssaeesansnes 44

CHAPTER 1: INTRODUCTION

1.1 Background

Business intelligence can be looked at as analytical, technology supported tools and processes
that are used in gathering, transforming and analyzing large volumes of data. These processes
changes data to information and information to knowledge about the opportunities, objectives
and the position that an organization is compared to the competition. It supports the entire
business decision making process by the management team through insights into data (Bernhard
and Maria ,2015).

Data analytics which comes under business intelligence can be defined as use of sophisticated
techniques and tools which are more advanced than the traditional business intelligence to
examine data with the aim of discovering deeper insights, make predictions or to generate a
recommendation (Gartner, 2017). These techniques include data forecasting, semantic analysis,
sentiment analysis, pattern matching, visualization, neural networks and graph analysis.

Big data comes in to resolve the velocity, volume and variety issue that large amounts of data
presents. Velocity issue comes when there are no machines that are fast enough to gather and
store the huge amounts of data while volume problem is when there are no machines that can
handle the volume of data being pushed into the storage systems. Variety on the other hand is
when the data comes in many types (Chun et al, 2015).

In memory analytics has been developed and is driven by the need to do more analytics that are
beyond OLAP analysis by exploiting the potential of hardware innovations whose prices have
gone down in recent years. This falls under big data analytics which enables organizations to
quickly access and track real time data. In memory analytics as studied by Santhosh et al (2013)
will be the next frontier in business intelligence and analytics.

Kenyan financial industry has over the past few years enjoyed exponential growth in deposits,
loans, assets, profitability, regional expansion and came up with innovative mobile products for
their customers. Due to stiff competition among banks, we have seen that banks are now
innovating around customer needs instead of traditional banking products. This means banks
have had to invest in digital systems such as mobile banking, internet banking and other
alternative channel systems that generate a lot of data. These systems generate a lot of data but
they are operated as separate databases posing a need to apply new data warehousing techniques

in solving analytical problems associated with data for decision making by using in memory data
warehouse.

1.2 Business intelligence and data analytics

Data analytics, business intelligence and big data analytics have been identified as very crucial in
both the academic research and the business communities over the past two decades. Industry
studies have highlighted this significant development (Hsinchun, Roger and Veda 2012). A
survey of over 4,000 information technology professionals from 93 countries and 25 industries
by the International Business Machines (IBM) Tech Trends Report (2011) supports the
importance of these areas by identifying business analytics as one of the four major technology
trends in the 21% century.

Some of the ways that big data analytics can be used in the banking sector as listed by Utkarsh
and Santosh (2015) to include analysis of channels usage, customer segmentation and profiling,
sentiment and customer feedback analysis, security and fraud management, customer spending
patterns. Their journal article established the that fact that it is possible to use analytics to answer
a question such as why there was a drop in-terms of customer satisfaction index by analyzing the
data that customers had submitted.

1.3 Need for Emerging Analytics

There are about 13 capabilities that can be achieved using modern business intelligence and
analytics platforms (Hsinchun, Roger and Veda 2012). These capabilities make emerging
business intelligence and analytics field important to modern organizations; dashboards, ad hoc
queries, search-based business intelligence, reporting, online analytical processing (OLAP),
predictive modeling, interactive visualization, data mining and scorecards. A few business
intelligence and analytics areas are under research and development based on a report from
Gartner Business Intelligence Hype Cycle (2015) analysis for upcoming business intelligence
trends. These include data mining workbenches, column-based database management systems
(DBMS), in-memory database management systems (DBMS) and real-time decision support
tools.

1.4 Proble m State ment
Most banks have core banking systems, digital banking/omni channels systems, customer

relationship systems, enterprise resource planning systems and credit scoring systems that runon
different databases. A journal article by Xinhui et al (2015) show latency in financial
organizations as a major problem that such organizations face when processing large volumes of
data. Their research indicated some traditional solutions that these financial organizations
implement such as high-performance machines with more processing capabilities to achieve low
latency. They also indicated that adding more central processing units or addition of more
memory to scale up the performance of computers. Scaling using traditional methods involved
adding more computational nodes that have high performance networking devices. Over the last
few years, the article by Xinhui et al (2015) show that there has been a lot of growth in terms of
the amount of data to be analyzed which directly impacts the performance of traditional storage
systems meaning that latency is significantly impacted by huge volume of data that is being
processed. This is called a big data problem which asks for new tools that can handle the huge

and complex for traditional tools.

Another problem on dirty data has been studied by Nikhil, Gautam, Hillol (2013). They have
defined this problem as any kind of impurity or anomaly in data which could affect the effective
utilization of data by slowing down performance or reducing the accuracy of final analysis which
IS in turn used to make management decisions. This would mean that direct data interpretation
and analysis could lead to faulty decisions if the data is polluted with bad data. The problem on
inaccurate reporting has been illustrated by The Data Warehousing Institute (2010) that while IT
shops are reeling under demands for real-time, continuous availability of data and systems, most

internal data quality remains poor.

1.5 General Objective
The general objective of this research was to develop an enhanced data warehousing prototype

that would improve on data visualization, speed of reporting and accuracy of conclusions by

exploiting in-memory data mining algorithms.

1.6 Specific Objectives
The specific objectives that would assist in delivering the general objectives were as follows:

1. Todevelop an in-memory data warehousing prototype for use in banking analytics.
2. To evaluate the developed data warehouse prototype and show evidence how banking

analytics are improved.

1.7 Research Questions
1. What state of the art systems are available for use in banking analytics?

2. Which technologies can be used to incorporate in-memory algorithms in a modern data
warehouse?

3. Which methodology can be used to develop an enhanced data warehouse using in-memory
data mining algorithms?

4. How can an in-memory data warehouse prototype performance and accuracy of conclusions

arrived using it be evaluated to show improvement in banking analytics?

1.8 Significance of the Study

This research was considered important because it would give important results regarding in-
memory data warehouse by exploit various in-memory algorithms to show if there would be
improvements in the current state of banking analytics and decision making in the banking
industry. These results can be generalized to other fields as well since the underlying architecture
of IT systems in the banking industry is like other fields.

1.9 Scope of the Study

The study involved an investigation into modern data analytics tools that can be applied in the
banking sector. A prototype would be developed to show how in-memory algorithms can be used
to solve performance related issues when handling data warehouse setups. This was to be
evaluated by selected sample users in the banking industry to confirm if the performance was
improved. The study did not involve developing an actual data warehouse due to privacy and
ethical issues that would come up when handling banking industry data.

1.10 Contributions

This study contributed its findings to the field of in-memory analytics by showing evidence that
there was an improvement in performance when data was stored in memory compared to
traditional disks storage systems. The research was aiming at helping organizations make
informed decisions when implementing data analytics initiatives by designing their analytics
solutions based on performance and accuracy of analytical results.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction
This chapter is about related work on business intelligence and data warehousing by looking at

research that has been done into these fields. The chapter also considers some of the recent

developments in in-memory analytics.

2.2 Business Intelligence
Business intelligence is an analytical, technology supported process that is used in gathering and

transforming fragmented data for an enterprise. Bl changes data to information and later to
knowledge about the opportunities, objectives and the position that an organization is among the
competition. Business intelligence is not merely about the applications since it supports the entire
decision-making process of management. There is a clear distinction between software, tools a
Bl solution. A software can be readily available from different software vendors as a standard
ready to use solution. A firms’ applications and tools on the other hand are software products
which have been installed, configured and are used to meet a purpose such as business planning.
A business intelligence solution can be viewed as a collection of applications which would
include the underlying IT infrastructure in terms of servers, integration platforms, operating

systems and networking appliances (Bernhard and Maria, 2015).

2.3 Business Intelligence Maturity Models
There are three stages through which organizations go through in business analytics maturity as

their business needs and demands continue to evolve (Gartner, 2015):

2.3.1 IT-Centric
This is the lowest level where organizations usually approach business intelligence as an IT

driven project that, mainly focused on selection of analytical tools and data collection. Questions
at this level would be “What happened?’. The key focus is analysis of historical data to assist in

making better business decisions.

2.3.2 Information Management
This is the middle level which involves checking an organization’s growth against some preset

parameters. A key question would be ‘what can be changed for us to meet the target or how are
we doing as compared to the strategic objective?’ Organizations at this level are aware that better

business decisions can be reached by using business intelligence solutions that can push

information to people who utilize them to make informed decisions. Most IT teams would be
integrating several internal and external systems such as online order processing solutions, CRM

systems and ERP systems.

2.3.3 Predictive Insight
There are very few organizations that have managed to reach this level where businesses deploy

advanced solutions that can deliver predictive modeling and advanced analytics to anticipate
likely outcomes of future business outcome. This is achieved by modeling the expected trends or
future market opportunities. A key question at this level would be ‘what outcome will be present

at a future date and how do can a firm use the results for maximum returns on investment?’.

To implement a business intelligence solution, it is necessary to first establish where an
organization is on the maturity model which in turn helps to understand the likely efforts that
need to be made for maximum value of Bl to be realized by the organization. For midsized
companies who are in their early stages of Bl they can start by showing how the business is
performing using some simple reports and dashboards. Go to the next level of trying to gain
insight into why certain events or conditions are occurring through addition of analysis
capabilities. Third level is trying to link the insights gained from analysis by incorporating some
planning functionality. Lastly is to ensure that action is immediate across the organization by
integrating what-if scenario modeling to the planning and analysis capabilities in the second and
third levels.

The figure below shows these levels.

Analytics Human Input

Descriptive
What happened?

Diagnostic
Why did it happen?

Predictive

What will happen? Decision

Decision Support
Prescriptive
What should | do?

Decision Automation

Figure 1 Business Intelligence Model, Gartner (2015)

2.4 Business Intelligence Vs Decision Support
Traditional business intelligence systems are different from earlier types of Decision Support
System in some of the following ways (Bernhard and Maria, 2015):

e They enable the development of DSS that are based on facts by integrating, aggregating
and managing any form of data in a near real-time data warehouse.

e Bl solutions have led to creation of new openings such as data mining by utilizing
algorithms that deal with huge data volumes and use in-memory technologies to deliver
high processing capacities.

e Bl solutions can achieve automated reports/dashboard delivery to or self-service from
several devices by utilizing modern ways of information delivery and data interrogation.

Bernhard and Maria (2015) considers all these advances and claims that the new generation of
DSS can be compared to modern BI solutions if they solve some of the issues that were
associated with previous forms of management information systems. Their research point to
questions like: How can BI solutions be used to overcome the issue of getting lost in data while
trying to understand the underlying patterns in data? Do Bl solutions lead to effective decision

making? What components of a Bl solution are essential to ensure a Bl project success?

2.5 Steps to achieving a Business Intelligence System

Bogdan (2013) says that a company needs to know that Bl platform implementations are very
long and time consuming given the kind of technology that is involved. The analysis stage alone
can take around one year depending on the size of the organizationand process complexity in its

data generating operations.

2.5.1 Transaction processing systems as a Bl data source

This is usually the initial stage for most Bl systems and it’s called the requirements analysis
stage which ensures that the objectives of the business intelligence system are captured. Online
transactional processing systems that maintain day to day records of transactions are usually
maintained by most data centric organizations. These systems are used to track the day to day
transactions of an organization such as managing clients, sales or suppliers, processing loans and

other day to day automated processes. The setup is usually that these transactional systems

maintain the data using different database technologies which are usually pushed to a backup

location for archival.

Bogdan (2013) study shows that use of transactional data yields important data for business
analysis which shows that this data becomes a major source for the data warehouse which is a
key component of the business intelligence solution. Some External sources of data such as
competition data or data about a regulator can be considered as reliable data source but it varies

from one organization to another.

2.5.2 Data Warehouses

This is the most important phase when developing a business intelligence system. This phase
seeks to establish how the extraction, transformation and loading processes will be achieved. A
data warehouse development phase describes what technology will be used to come up with the
reports. It is also a database but it usually implemented differently than the traditional transaction
oriented database since it is meant to contain historical data of a certain interest. Most designs
involve data warehouses that are divided into an enterprise warehouse, a virtual warehouse and a
data mart. The enterprise warehouse will be for collecting all the information for the entire
organization. This means it provides very big volumes of data. The grouping can be done into
detailed data, aggregate data, and dimensions. A data concentration or data mart contain usually
contains a subset of the entire data warehouse’s data from the organization. In other cases, a data
mart is designed to hold data for a certain department such as sales unit which means it’s
possible for a data mart to be limited to specific subjects. The virtual warehouse on the other
hand is a set of perspectives from the operational databases that are usually simple to develop but
would require additional capacities on the storage infrastructure. Aggregate data in a data
warehouse is essential because it can be used to improve the average response time even though
most people argue that they lead to redundancy in data. They have features such as for data

summarization, consolidation, totalization.

2.5.3 Extracting, Transforming and Loading (ETL) Data
The ETL (Extract, Load and Transform) represents a core process or component of a business
intelligence solution. This process is initiated by extracting data from the various sources that an

organization needs to analyze. Most researchers say this process can be labor intensive and

10

challenging to many developers depending on the variety of the data sources. Data that is
extracted in this stage is usually pushed to a staging database for clean up or directly to the data
warehouse. The data extraction stage it is very important since data must be correctly retrieved
from the source files for the other phases of the data warehouse to be correct. Extraction of data
is usually done from multiples data sources which can be in different formats such as flat files,
relational databases. Another major challenge is the transformation process where it is expected
that all the data resources will be transformed into one single type which can be easily integrated
into the data warehouse. The ETL process usually resolves this problem by inspecting the data
files, confirming if they are in a certain format, loading the data in a staging database and
automatically removing all the incorrect data. There is an initial data filter at this extraction stage
to eliminate some minor data issues. Some logic that is then applied to the data that was
extracted in the first step to make up the data transformation phase. This ensures that the data is
ready for the loading stage. This stage can lead to very complex transformations of the extracted
data depending on the business intelligence solution needs. The last of the three ETL subsystem
stages which entails loading data in the data warehouse tables is called the data loading stage.
Data loading can be made at certain time frequencies such daily, monthly, quarterly or even
annually depending on organization’s needs. Most common data warehouse designs allow for an
initial loading or only pushing of updates to some few tables.

2.5.4 Multidimensional Data Analyze

Online Analytical Processing (OLAP) is a common term in business intelligence referring to
they are a collection of hierarchical, dimensions, and interrelated measures by aggregating data
as a multidimensional cube. OLAP helps in achieving complex analysis and processing of data
without compromising on system performances. Another key feature of OLAP is ability to

present analysis instruments which allow for explanation of complex reports.

2.6 Reviewof Business Intelligence, Data ware housing in Banking

Adrian and Ovidiu (2012) suggested that several activities, procedures and applications makes
up banking intelligence. These include tools for extraction, transformation, and loading (ETL) of
data, data warehousing, information portals, OLAP tools, data Marts, business modeling and data
mining. Their article explain that the concept of data warehousing came up from the activities to

collect and unify the data from disparate sources. Given the contribution Bl gives to banking

11

executives to make decisions, banking intelligence has been identified as one of the most
developing fields in information technology. Bank executives need to analyze details such as the
bank's customers in different dimensions before they propose a product to them and to also assist
in managing various banking risks and to ensure they can compete effectively. Some of these
challenges have led to an area called banking intelligence. Adrian and Ovidiu (2012) defines
banking intelligence as a set of applications, technologies and the processes of collecting,
integrating, analyzing and presenting data patterns. Banking intelligence can use data that has
been gathered into a data warehouse or a data mart to provide historical, current and predictive
views of banking operations. Some of the key tasks that most information technology
professionals go through when building banking intelligence systems can be summed up into
intelligent exploration (data extraction), integration, aggregation (data transformation) and a
multidimensional analysis of data that originates from various data sources (Mansmann et al
2007).

A study done by Srimani Et al (2014) to show some of the problems that would arise if reporting
designs in banks report involve reporting directly from the transactional systems: Analysis time
was greatly increased, analysis options were limited, few report generation options, insufficient
reports lacking key features such as business forecasting and reports could not support some
applications. Their research led to recommendation of having of big data to improve on
performance in the analytical process of banking analytics. In their research, they implemented a
data warehouse architecture which involved integration of different formats of data sets. They
developed a data warehouse, some few dimensions, fact tables and then mapped these with the

source and target data marts.

Sunil et al (2015) did some research on banking intelligence and established that banks need a
diversity of solutions ranging from a fully integrated global data warehouse to integrated data
marts for the rising needs of the divisions. They mention that both extreme solutions have very
important disadvantages along with their advantages. Their research looked at the various data
sources (RDMS and flat files), a staging area, a warehouse, some data marts and the various
users that would mine the data as the main elements of a banking business intelligence support

system.

12

2.7 In-Memory Analytics

Physical hard disk drives in a traditional database is used to store data. The data from physical
hard drive is sent to main memory (RAM) for further processing when a query is requested. On
the other hand, the in-memory DBMS usually store data permanently in the main memory
(RAM) of the available hardware. A central processing unit can directly access the random-
access memory content which is made up of some summarized data, stored in RAM.
Development of Multidimensional cubes is avoided for In-Memory analytics. Compared to
caching, data in in-memory databases are usually huge, at times growing to be the same size as

an entire data mart (Garg, at al 2013).

2.7.1 In-Memory Technological Advances

Some of the hardware and software technological advances that have led to in-memory
technology can be summarized by looking at each of them individually. Hardware developments
include new multi-core central processing units and parallel scaling across blades. Software
developments are row and column store technology, data compression, partitioning, removal of
aggregate tables, use of insert only data design patterns and on the fly extensibility. Others

include bulk loading, use ofany attribute as index, active/passive data store among others.

2.7.2 Benefits of In-Memory Analytics

Other than direct improvement in performance and latency reduction, there are other benefits that
can be achieved using in-memory technologies as compared to traditional disk storage systems.
Some of these are mentioned by Nayem, et al (2014) in their research on emerging Bl and

advanced analytics. Figure below summarizes these benefits as shown below.

Read and Write Capabilities
Centrally Managed Data, Business Hierarchies, Rules and Calculations
Empower Business Users to Analyze any Combination of Data

High Impact Visualizations

Extend and Transform Excel
Designed for Modern 64 bit Architectures
Easy to Insall and Easy to Use

Figure 2 Benefits of In-Memory Analytics, Nayem et al (2014)

13

2.7.3 Apache Spark as In-Memory Analytics Solution

Apache Spark in an open source tool that can be used for data analytics or big data analytics by
using in-memory cluster computing technology. It is built from Hadoop distributed file system
which uses map reduce algorithm. The tool supports any platform (Windows, Linux and Mac
OS) and can be used to develop apps through use of Java, Python, R and Scala interpreters.
Depali (2016) lists a number of case studies where analytics have been done using apache spark
to include use of cluster technology in computing to map brain activity, engaging shoppers real-
time at a shopping counter, analyzing the occupancy of retail shelf on a real-time basis and use of

wearable monitors that could be used to track body activities.

The figure below shows Apache Spark’s modules and general computing architecture.

Data Sources Big Data Application stack User
|
10T Batch ETL processing (Spark, Mapreduce Hive) DashBoard
= j Stream processing {Spark Streaming) T
Machine Learning (Spark, MLib) :> Warehouse
Web Services Query Advanced

Queries (Spark SQL,Orill)

Analytics

Graph processing (Spark GraphX,

Data Storage HDFS, MAPR-FS

Figure 3 Apache Spark Computing Architechure, Depali (2016)

2.7.4 Architecture of In-Memory Analytics Systems

Garg et al (2013) shows that there are different approaches that can be considered when
developing an architecture for in-memory analytics. These are: in-memory OLAP, excel in-
memory add-in, associative model, in-memory visual analytics and in-memory accelerator. Some
of the main differences between the current/traditional Bl systems in relation to the futuristic in-
memory systems can be looked at by establishing the storage methods. Whereas the conventional

Bl tools query data that is residing on disk, in-memory systems on the other hand query data

14

directly from random access memory (RAM). When a user executes a query in a traditional data
warehouse which usually holds data from several databases whose storage is in disk. All
information is initially loaded into random-access memory for an in-memory database from
where users can directly interact with the data by pushing queries into the machine’s memory.
Comparing performance of these two shows exponential improvements when using data that is
stored in the random-access memory as opposed to accessing that same data from disk. The

figure below shows a sample in-memory architecture.

; ' D ﬁ D i
UsMess Ma H;O!u'.
Caiculation Engine

« Lolency Detween
cata creabon ang
analytics usage Aggregates : . -<l

+ Expemaive and : Indexes l
Data n enferprise
DuUNMeSS
appucations

infrastricture
Figure 4 In-Memory Architecture, source: (Garg, atal 2013).

wiisnsive
! Data Warehouse

» Duplicatve and sioy

Operational Data Store

Data in enterprise
DUSINeSS
sppicabons

2.8 Proposed Architecture for Bl

For a near real-time Bl system to be complete, a researcher needs a detailed analysis of the
requirement which is required to determine the level of response time that would best serve a
given business purpose. This is referred to as right Bl in which case a delay of even a day will
not adversely affect the quality of business decisions (Dale, Tara, and Nayem, 2012). A near real
time business intelligence that can be achieved using in-memory algorithms is described as any
of the following (Azvine, Cui and Nauck, 2005):

v' That access to information by a given process is guaranteed at any time.
v" That whenever information is required by management, the process can provide.

v' That a process can have a reduced latency as a requirement.

15

v Ability to provide key performance measures based on not only historic data but also
current data.

Janina (2012) defines real-time business intelligence as the process of delivering insights about

certain business concepts as they occur with minimum latency. This therefore means that an in-

memory data warehouse can provide the same functionality as a traditional business intelligence

solution. The key difference is that in-memory data warehouse operates on data that is extracted

from operational data sources with zero or minimal latency. In-memory solutions can also

provide a means to propagate actions back into business processes in real time.

2.9 Related work on the Problem of Latency
Latency is the time taken from something happening or changing to the moment when we can

do something about it (Zeljko, 2007). He declares that this issue is a major problem that many
organizations face today when they are designing Bl and data warehouse systems. This is a
critical concept in Bl and in-memory analytics since it can be grouped into analysis latency, data
latency, action latency and decision latency. Most studies geared towards in-memory research
has been directed towards data latency by feeding data faster into the data warehouse. Storing
real-time data in the same location that the historical data is stored in the fact tables is also

another way to handle the problem of latency.

2.10 Technological Gap
The Gartner Bl Hype Cycle for 2016 analysis for emerging business intelligence trends shows

that most areas in business intelligence and analytics are still under active research and
development. These are summarized under data mining workbenches, column-based database
management systems, in-memory database management systems and real-time decision tools. A
few companies have developed workbenches for their customer to allow data modelling and
other configurations that are necessary when developing data warehousing solutions. Column-
based database management systems are used to improve on performance when read data from
the hard disk and are more suitable for OLAP based work which is related to data warehousing.
In-memory database management systems store data in memory instead of disk which improves
performance of data access. These areas have not been studied to evaluate how these
technologies can enhance the data analytics in the organizations such as the banking industry.
Most of the commonly used algorithms are selection scans, hash tables, linear probing, double

hashing, cuckoo hashing and bloom filters (Orestis Et. al, 2015)

16

2.11 Overall System Architecture/Model for a Business Intelligence System

Figure 2 below shows a sample Bl architecture which is adopted from Robinson (2002) and it
generally shows a three-tier frame. A centralized data integration platform in tier one is realized
in real time by having a collections of real time ETL tools that can collect operational data from
different heterogeneous sources. For tier 3, the business rules are analyzed using real time query
and reporting tools. Another proposal of handling real time Bl by Nguyen Manh et al. (2005) is
based on service-oriented architecture. Heavy investments in hardware is required to achieve

requirements for high availability, scalability and performance for organizations seeking to

incorporate intelligence into business processes.

ey User
i “” Interface

- g e af o e o - -
Notification of Queries byfihe Proactive ’ -
the User Userl Response to &
Jser -
Notification Z
_ Services Analytical =z
|® Services fp 1o g

Tier 2

Scheduled
update
—-— Real Time i
@ Data Ca
Tier 1
Batch ETL
Loading Real Time
Transformation ETL
Extraction
Bt N
Ecomerce Operational CRM Web
System System System System
- -

Figure 5 Business Intelligence Architecture/ Model, Nguyen Manh et al. (2005)

17

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

This chapter covers the methodology that was used to carry out the research and development of
the prototype for an in-memory data warehouse. The research methodology used combined both

the research elements and the prototype development work of the project.

3.2 Research Design
The research was done using the case study approach where data was collected from the business

reporting, technical and management teams that were involved in the reporting process.

3.3 Research Population
The research population included banking sector professionals that are involved in day to day

reporting.

3.4 Sampling

The study used purposeful sampling method to get a sample that was used for the study by
observing several banking professionals that were involved in banking analytics. Convenience
sampling was used to determine the sample by getting all the users that are involved in data
analysis by either directly analyzing the data, supporting the analyst or by consuming the results

of the analysis.

Observation to collect the functional, analytical and reporting requirements from the banking
reporting teams. Most of the functional requirements led to the development of data cubes, data
marts by exploiting the dimensions and measures that were also identified in this stage. Since the
main purpose of the project was to show that performance would be improved after
implementing the new tools as compared to the traditional setup, the project then narrowed the

requirements to a subset that could form part of the prototype.

3.5 Data Collection Methods

3.3.1 Prototype Data Sources
Data was available from sample data that had been stored in the databases ofa sample bank over

a period of about 5 years and from Lending Club statistics website which offer data freely for
research purposes. This provided enough data that was used in building the prototype for the in-

memory warehouse support system.

18

3.3.2 Research Data
The second part of the project which involved carrying out research to uncover the current state

(challenges) of analytics in the banking sector. The sample population covered professionals who
were working as business analysts, technical users and top executives. Filled observations sheets
are in the appendix section of this report. The sample was selected based on purposive sampling
technique which represented the entire population of data analytics team from banking

institutions.

The researcher made a visit to the premises of the target audience to observe and record the
different processes that formed data analytics in those organizations. This was after the necessary
approval was obtained from the management to allow the study with instructions on how to
ensure privacy of the customers and institutions involved. The observation sheets aimed at

getting the following information:

» A list of data sources that the banks had and the data formats for each of the sources
identified.

A detailed explanation of the extraction process from the sources identified.

A list of data cleanup tools and a description of the process for cleaning up data.

A list of data visualization tools and a description of the process of visualizing data.

A list of dashboards that the management team get from the whole data analytics process.

YV V. V V VY

The timelines that the data analytics process take for each of the processes above.

3.6 Relating Research Objectives to Research Methodology

Research Objective How it was achieved

1. What state of the art systems are | Literature review
available for wuse in banking

analytics?

2. Which technologies can be used to | Literature review
incorporate in-memory algorithms

in a modern data warehouse?

3. Which methodology can be used | Literature review
to dewvelop an enhanced data | Prototype development

warehouse using in-memory data

19

mining algorithms?

4. How can an in-memory data | Prototype development
warehouse prototype performance | Evaluation of the prototype
and accuracy of conclusions | Report on results
arrived using it be evaluated to
show improvement in banking

analytics?

Table 1 Relating Research Objectives to Research methodology

The raw data that was collected can be summarized into the table below to show how the various
respondents were observed and the various variables that were recorded by the researcher.

Job Role Years in Analysis No. of Reports | Gender
Analytics time Per Analyzed
Report

CHANNELS 5 8 13 F
IT 7 6 8 M
MANAGEMENT 6 7 6 M
CHANNELS 4 8 16 F
HR 3 10 11 F
HR 3 9 10 M
LOANS 1 14 10 F
RECOVERY 3 10 9 M
BRANCH 4 9 12 F
LEASING 6 8 11 M
MANAGEMENT 1 11 10 M
LEASING 4 9 13 F
BUSINESS 1 14 9 M
IT 3 9 8 M
RECOVERY 5 8 10 F
TEEASURY 1.5 12 13 M
LOANS 3 9 9 M
LOANS 4 8 7 M
MANAGEMENT 4 9 9 M
IT 3 10 13 M
BRANCH 5.5 7 16 M
MANAGEMENT 7 6 12 M
TEEASURY 3 9 10 M
BRANCH 4 8 9 M
MANAGEMENT 2 11 11 M

Table 2 Raw Data from Observation sheets

20

3.7 Data Analysis

The Data that was collected had to be analyzed so that various elements of the study can be
easily interpreted using Excel. The data was analyzed by classification of the data into groups
with similar characteristics. The table and figures that follow show how the data from the

observation sheets was analyzed.

1-3 3-5 >5

Years in Analytics 12 8 5
Male Female

Gender 18 7

Average number of Reports Average time per report
Data analysis

10 9
timelines

Table 3 Data Analysis, Classification

Figure 6 shows how the count of experience in years in analytics from the respondents with

classification into 1-3, 3-5, 5-8 classes to make the data easy to interpret.
Summary of years in Analytics

M Years in Analytics

20 12

. I

11, 3.1] (3.1, 5.2] (5.2, 7.3]

Count

Years in Analytics

Figure 6 Data Analysis, Years in Analytics

Figure 7 shows some analysis of the data that was collected bases on the gender of the
respondents.
Respondents by Gender

7

18

= Female = Male
Figure 7 Data Analysis, Respondents by gender

21

Figure 8 shows the composition of the departments from where the respondents came from.

Repondents per job role

B CHANNELS BT B MANAGEMENT® HR B LOANS
B RECOVERY B BRANCH W LEASING B TREASURY

Figure 8 Data Analysis, Respondents per job role

Figure 9 shows how various the average experience that various departments have been handling
data analytics, the analysis time per report and the number of reports they analyzed.

Job Role Analytics Analysis

TREASURY
RECOVERY
MANAGEMENT
LOANS
LEASING

IT

HR

BRANCH
BRANCH

Job Roe

0 5 10 15 20 25 30

Measure

W Years in Analytics M Analysis time Per Report M No. of Reports Analysed

Figure 9 Data Analysis, Job Role Analytics
In summary, the observation sheets showed the following information regarding the banks that

were involved in the study.

Item Observation Results

Data Sources Oracle/SQL server/PostgreSQL — core banking system, human resources
data, Channels.
Excel

22

Credit/Loan origination/approval Data
Share Point Data

Most of the data was stored in structured database management systems
such as Oracle, SQL server and PostgreSQL. This represented transactional
processing systems data. Excel was also used to store data that was obtained
from systems that had not been automated. Share point was used to store
data that was from workflow based systems such as employee scorecards

for performance management.

Data Extraction Process

The technical team were required to login into the databases in each of the
transactional systems to run complex SQL queries that would generate data
required. The data was then saved in excel sheets and placed in shared
folders to allow the analysis team to access.

Data Cleanup

SQL Query Filtering
Excel Filtering

Manual Editing

Data Cleanup Process

Data extracted was cleaned by filtering SQL using where clauses before
extracting into excel. A second step involved manual editing and using

various excel tools to remove what was looked at as dirty data.

Data Analysis

Time per report: 15 Minutes
Reports Analyzed: 20
Analysis Tools: Excel (Charts, Pivot table)

Data Analysis Process

Analysts were required to clean up the data by implementing the data
transformation rules identified under data cleanup section. Analysis was
done by using various excel built-in tools that allow various analysis to be
done on data such as power pivot and pivot table.

Data Visualization

Tools Identified: Excel charts, Power Point

Data Visualization
Process

The clean/transformed data in excel sheets was ready to be applied various
excel formulas which could assist in arriving at results desired. For
example, they used pivot table to get value of loans that had gone to each

customer sectors which in turn produced charts.

Table 4 Data Analysis, Data Observation Summary

23

3.4 Prototype Development Methodology
The prototype was developed using the business intelligence model (BIM) methodology that is

broken into 6 phases and is best suited for analytics applications development. Since most
analytics applications come with prebuilt designs, they are designed to maximize their value by
avoiding development from scratch but instead reusing some existing designs with minimal
customizations during early development phases. All other customizations are differed to later

phases of the implementation when it is clear if the application will meet the expected benefits.

W

Project Management and Knowledge Transfer / 4

Change Management B

Figure 10 BIM Methodology phases, Bl Minds (2014)

The phases covered when developing the prototype were as follows:

» Planning phase
Discovering phase
Configuration phase

Data validation phase

YV V VYV V

Customization phase

» Deployment phase
3.4.1 Planning phase
The objectives of the planning phase included:

v Getting an understanding and evaluation of the current state
To geta clear understanding of the current state, an observation was done into the processes that
are involved in current banking analytics. The data was collected by filling in observation sheets
showing the steps and procedures performed in each stage. These sheets are as attached in the

appendix section of this report. Some of the banking professionals involved in the study showed

24

that they did not have any business intelligence solution in place while others had solutions in
place but were not meeting the expected business objectives. The data collected also indicated
the time it took to complete the analysis process using the current tools. From the observation in
a selected institution, the data collected can be summarized as shown below.

The Processes in table 1 for data extraction, data cleanup, data analysis and data visualization

were also explained and their visual representations drawn as shown below.

——
""—'—I" Data
Login Extraction
— Foun 80L Quass o
Ty S0QL Cleanup
B L. Csv Files

™

II\-I!—J

IT
0 Excel Tools Data Data
i .Iirjl Cleanup Cleanup
Business Analysts
¥
ExcelTools Data | Data
ﬁ{:l‘litl Analysis Amnalysis
Business Analysts

100 Data
90 Wisnalization
QO
@

Business Analysts

Figure 11 Traditional Data Analytics Process
From the figure, the processes involved getting data from the different source systems such as CRM and

CBS using SQL queries and saving them to some flat files. The data was then subjected to data cleanup
tools and finally analyzed by the business analysts.

v' Defining the project scope and the overall project approach

25

The project scope involved getting an understanding of the issues that banking analytics
professionals faced and developing a prototype that would resolve most of these issues. The
scope also covered evaluation of the prototype which was done to check if there would be any

improvements into the banking analytics process.

The prototype was developed using in-memory stools which was expected to show performance
improvements on time taken to carryout data analytics by showing how in-memory algorithms in

Apache Spark can lead to lower data analytics latency.

For visualization, Apache Zeppelin which is also open source was picked since it can integrate
seamlessly with Spark. The data warehouse prototype involved looking at the various

dimensions and measures ina typical banking setup.

v Deweloping the project implementation and resource plans
The project implementation plan was developed using Microsoft project planning tool that

showed the different activities that were covered during the project along with their timelines.
Table 1 below shows the list of activities and their timelines for the project.

Task Name Start Finish Duration(days)
Requirements Review and Environment Setup ~ 7/14/17 7/25/17 11

Review Current Reporting Environment 7/14/17 7/18/17 4
Prepare MIS Requirements 7/21/17 7/25/17 4
Build Data Integration Engine - ETL 7/21/17 9/27/17 68
Incorporate in-memory Engine 8/29/17 10/9/17 41
Prototype Testing 9/9/17 9/20/17 11
Production Server setup 9/2/17 9/13/17 11
Go live 9/30/17 10/24/17 24
Normal Data Analysis Process Evaluation 9/30/17 10/24/17 24
In memory prototype Evaluation 9/30/17 10/24/17 24
Project Closure 9/30/17 10/24/17 24
Documentation 7/14/17 10/24/17 102

Table 5 List of activities and their timelines for the project

26

The figure below shows the project Gantt chart that was used to plan the various activities of the

project.
5/5/17 5/25/17 6/14/17 7/4/17 7/24/17 8/13/17 9/2/17 9/22/1710/12/1711/1/17
Requirements Review and Environment Setup
Review Current Reporting Environment

Prepare MIS Requirements

Build Data Integration Engine - ETL
Incorporate in-memory Engine
Prototype Testing

Production Server setup

Golive

Normal Data analysis Process Evaluation
In memory prototype Evaluation

Project Closure

Documentation

Figure 12 Project Gantt chart

There were no costs for the items/resources since all the tools selected were open source as
shown below.

Resource Name Pricing

Apache Spark 2

Hadoop Open Source Tools

Hive

Apache Zeppelin — Data visualization tool

Development Server/PC

Table 6 Proposed Budget

v Collecting the functional, analytical and reporting requirements.
Table 7 and 8 represents the requirements that were to be met by the prototype. This means that
outstanding balance could be looked at in terms of date, branch, product, currency and so on
from the list of dimensions. Apache Zeppelin was used to visualize the dimension-measure

relationship of the loan module.

27

PERSPECTIVES(FACT)

No DIMENSION

Date

<JTransaction
2 | <G L
<! <{Channel
Staff

Branch

<4 <-Budget

Product

<! <2 <{ <JLoan Book

oo o o1l W| -

Relationship Officer / Staff

=~ < < < <{Deposits

Product Type

10 | Currency

2]

11 | Loan Classification

12 | Channel Type

13 | Gender

14 | Education

Table 7 Prototype Requirements, List of Dimensions

Measure Name

Description

Outstanding Balance

Total Loan Amount Due

Arrears Amount

Loan Amount that is in Arrears

Arrears Days

Number of days Loan is in Arrears

Non-Performing Book Balance

Loan Amount that is in Arrears > 60 Days

No of Loans

Number of Loans

Average Salary

Average salary amount

Value of Loan Payments

Sum of Loan Re-Payments

Table 8 Prototype Requirements, List of Measures

3.4.2 Discovering phase

The phase involved listing of the business requirements/rules such as ETL logic changes or
identifying the modifications that had to be made to the basic functionality. These included

addition of more dimensional attributes, definition of the transactional systems of data which
included loan origination, CRM, share point, core banking and other digital banking systems that

all needed to be integrated into one central database. A look at the historical data requirements

28

was handled by the data that had been availed for use in this study from the identified

transactional systems and online from sites that provide banking data for analysis.

The architecture of the in-memory analytics engine that was developed had the components
shown in figure 14 below. This utilize the RDDs (resilient distributed datasets) which are fault-
tolerant, many server machines in a cluster to allow programmers to persist intermediate results
in memory by controlling how they are partitioned. This leads to an optimized data placement
and manipulation using a list of operators. The use of RDDs has become more popular based on
two issues that other computing frameworks are not able to resolve: interactive data mining tools
and iterative algorithms (Matei et al,).

@D)

RDD(1) /—\ ﬁ P
Memory
Resi

Input Data 1 esident G RDD(2 f\ RDD({n] Output

HDFS Text/ | Map O [Iteration 1) Iteration A Map HDFS Text/

Memory Memory
Sequence 4 : l/ : Sequence
< Resident Resident T
Files Files
RDD(1)
NO[K—/ ;} L_/
Memory \ ; ;
Resident ~—_| Can be spilled to disk
\ J \ J or recreated on read

Figure 13 Architecture of the in-memory analytics engine, E Bay Technologies (2014)

After gaining a full understanding of the requirements, the data flow design of the data analytics
prototype was changed to show the improvements that were made as shown in figure 15.

29

o) (2]

CSVY Files f————| Extractdata ‘

e

Other Data Sources Data Load

to RDD
ohjects \

Apphy

Transformation

Rules \
Analyze and
Visualize data \

100 | 5o

Apply
Transformation
Rules

2%

ﬁ?i';’;

Business Analysts

Figure 14 Current Data Analytics Process
From the figure, the processes involved getting data from the different source systems such as CRM and

CBS using code that is written on Apache Zeppelin directly. RDD objects are then created from the data.
This was then subjected to data any transformational rules. The results are finally analyzed by the
business from the Apache Zeppelin interface.

3.5 Prototype Imple mentation and Evaluation
This section covers the activities that were done during the prototype implementation and

evaluation.

3.5.1 Configuration Phase

This phase was focused on setting up the analytics environment by installing the required

components and configuring the basic analytics tools that Apache Spark and Apache Zeppelin

need. The following tools were installed for the in-memory platform to be fully operational:
3.5.1.1 Java Development Kit (JDK)

Apache Spark is built on Java and so it had to be installed for Spark to work. Java can also be

used to develop applications that are based on Spark. For this project, java is used only to

30

support Spark but no application was developed using it. After installation, there was a need to

setup its access from the environmental variables.

3.5.1.2 Scala
Scala is provided as one of the options that one can use to build analytics applications. Some of

the items developed and presented on Zeppelin were done using Scala.

3.5.1.3 Apache Spark
Apache Spark is the core engine that hosts the in-memory logic that all the other components

rely on. It also has its own built-in Hadoop File System which meant that there was no need to
install and configure a standalone Hadoop system. Apache Spark was selected as a better choice
due to its ability to process in memory compared to MapReduce which is strictly based on the
disk. It required setting up environmental variables for it to work as expected. The table below

shows the configurations done to Apache Spark.

Name Value

spark.app.id local-1497418834330

spark.app.name Spark shell

spark.driver.host 10.0.1.237

spark.driver.port 1706

spark.executor. id driver

spark.home D:\Research_ML\Tools\spark\spark\bin\.

spark.master local[*]

spark.repl.class.outputDir C:\Users\john.mburu\AppData\Local\Temp\spark-
bb2fc74c-993a-4686-ab2e-bb5fd5916694\repl-99205864-
e957-4fae-8216-34fe64c8e741

spark.repl.class.uri spark://localhost:1706/classes

spark.scheduler.mode FIFO

spark.sql.cataloglmplementation | hive

31

spark.submit.deployMode

client

SPARK_SUBMIT

true

awt.toolkit sun.awt.windows.W Too kit
file.encoding Cpl252

file.encoding.pkg sun.io

file.separator \

i0. netty. maxDirectMemory 0

java.awt.graphicsenv

sun.awt.Win32GraphicsEnvironment

java.awt.printerjob

sun.awt.windows.WPrinterJob

java.class.version

52.0

java.endorsed.dirs

C:\Java\jre\lib\endorsed

Table 9 Apache Spark Configuration

The figure below shows the home page after configuring the Spark instance.

32

Spc"i\z . Jobs Stages Storage Environment Executors saL Spark shell application U

Press 1o exit full screen

Spark Jobs ()

User: John.Mburu
Total Uptime: 122.8 h
Scheduling Mode: FIFO

» Event Timsling

Figure 15 Apache Spark Home Page

3.5.1.4 Apache Zeppelin
This is a close relative of Apache Spark since they are both provided as open source products by

Apache software foundation. It was primarily used to achieve data visualization in an in-memory
environment. It works by having interpreters that work like compilers. Some of the supported
platforms are Scala, R, Python, file among other platforms. It required setting their

environmental variables for it to work.

The table below shows the configurations that were done to Zeppelin to allow it to work as a

visualization tool for Apache Spark in-memory system.

Name Value
namevaluezeppelin.anonym | TRUE

ous.allowed

zeppelin.conf.dir C:\zeppelin-0.7.0-bin-all\conf
zeppelin.credentials.persist | TRUE
zeppelin.dep.localrepo local-repo
zeppelin.encoding UTF-8
zeppelin.helium.localregistr | helium

y.default

zeppelin.home C:\zeppelin-0.7.0-bin-all
zeppelin.interpreter.connect. | 30000

33

timeout

zeppelin.interpreter.dir

interpreter

zeppelin.interpreter.group.or
der

spark, md, angular, sh, livy, alluxio, file, psql, flink, python,
ignite, lens, Cassandra, geode, kylin, elasticsearch, scalding,
JDBC, HBase, big query, beam, pig, Scio

zeppelin.interpreter.localRe | local-repo
po
zeppelin.interpreter.max.po | 10

olsize

zeppelin.interpreter.remoter
unner

bin\interpreter.cmd

zeppelin.notebook.autoInter | TRUE
preterBinding
zeppelin.notebook.azure.sha | zeppelin
re

zeppelin.notebook.azure.use | user

r

zeppelin.notebook.dir notebook
zeppelin.notebook.homescre | FALSE
en.hide

zeppelin.notebook.one.way. | FALSE
sync

zeppelin.notebook.public TRUE
zeppelin.server.addr 0.0.0.0
zeppelin.server.allowed.orig | *

ins

zeppelin.server.context.path | /
zeppelin.server.port 8080
zeppelin.server.ssl.port 8443
zeppelin.ssl FALSE
zeppelin.ssl.client.auth FALSE
zeppelin.ssl.keystore.path keystore
zeppelin.ssl.keystore.type JKS
zeppelin.war C:\zeppelin-0.7.0-bin-all\zeppelin-web-0.7.0.war
zeppelin.war.tempdir webapps
zeppelin.websocket.max.tex | 1024000

t.message.size

Table 10 Apache Zeppelin Configuration

34

The home page for Apache Zeppelin showing a few notebooks after the configurations was done,

is shown in the figure below.

&P Zeppelin Nowbook - Job Soarch your Notoe a
Press @ to exit full screen

Welcome to Zeppelin!

Zeppslin is wab-bassd notebaok that enables interactive data analytios.
You can make beautiful data-driven, interactive, collaborative document with SQL, code and sven more!

Notebook & Help
L. Import note Get started with Zsppslin documentation

{1 create new note Community

Please fesl free to help us ta improve Zeppslin,
Any contribution are welcoms!

& Mailing list
¥ Issues tracking

O cithub

Figure 16Apache Zeppelin Home Page

3.5.1.5 Python
Python was supported as one of the programming languages in Zeppelin that can allow custom

development of visualization items on Zeppelin notebooks.

3.5.1.6 Simple Build Tool (SBT)
It was used to allow compiling of java and Scala code. It required setting its environmental

variable for it to work.

3.5.1.7 Win Utils
Apache Spark by defaults works better on Linux. Win Utils was required to allow a user to run

Linux commands on windows.

3.5.2 Data Validation and Simulation Phase
Some of the activities that were done in this phase include testing and validation of the data that

was being populated, presenting the solution to the target population to ensure they developed
interest. This also allowed them to discover any customizations that were not unearthed in the

early stages.

35

Most tests focused on verifying if all the data that was to be moved from a source to the target
had been done and if the transformation rules had been applied as expected. This formed the
ETL/warehouse testing. Since Apache Spark supports R, it was used to test that data was clean
by implementing various R packages that are used to cleanup data. Some of these tests include
removal of NA’s or NaN’s from the raw data which would have otherwise led to misleading

results.

The second data validation technique involved using simple calculations on the data by writing
some R codes to calculate the count of loans, average loan amounts for a specific period from

which results were compared to what was expected. The table below gives a summary of these

tests.

Data R Commands issued Expected Actual Results

Validation Results

Exercise

Remove >testDaia<-read.csv("C:/zeppelin-0.7.0-bin- Before cleanup: | Before cleanup:
all/bin/loans.csv") 2 2

NA/NaNs and >sum (sapply(testData, length)) 429114 429114

Confirm >completeData<-complete. cases(testData) After Cleanup: | After Cleanup:
>sum (sapply(completeData, length))

Record count 25242 25242

Table 11 Data Validation and Simulation Using R

Load/performance testing which was the main objective of this project formed the last form of
validation done. The results or output was used to gauge the performance, scalability of the

system under different loads.

For the implementation stage, loans data that had already been transformed and loaded into
Apache Spark for use by Zeppelin to implement various analysis to the data. The sample code on
figure 18 was used to extract the data for the loans using Apache Spark’s Scala interpreter. More

code can be found under the appendix section of this report.

36

&D Zeppelin Notevook - uop Searth your Notes a

Banking Analytics > x@ls @x Bo tw |- 0O o = B @ | derauit -

>3

wval bankText = sc.textFile("loans.csv™)

case class Bank(OurBranchID:String, AccountID: String, ProductID:String, CurrencyID:String, ExchangeRate:String, Classification:String, AmountFinanced:Double,
InstallmentAmount:Double, Frequency:String, OutstandingBalance:Double, OutstandingBalance_Local:Double, ArrearsAmount:Double, ArrearsAmount_Local:Double, Arrearsbays
:Integer, OfficerName:String, ProductTypeID:String, LastCreditDate:String

J

val bank = bankText.map(s=-s.s|
s=-Bank(s(@).replaceAll("\
s(1).replaceAll("\

(", ")) . Filter(s=-s(@) !="\"0urBranchID\"").map(

5(2). replaceAll("
5(3). replaceAll("™

s(5).replaceAll("™\"",
s(6).tostring. tobouble,
s(7).tostring. toDouble,

5(9). tostri
5(18). toStr
s(11). to!
s(12). to!
s(13). tolInt,
s5(14).replaceAll(™
5(15).replaceAll(” D,
5(16). replaceAll("\"", ")

dd.RDD[String] = loans.csv MapPartitionsRDD[1294] at textFile at <consolex:40

bank: org.apache.spark.rdd.ROD[Bank] — MapPartitionsRDD[1297] at map at <consoles:54
warning: there was one deprecation warning; re-run with -deprecation for details

Figure 17 Apache Spark's - Zeppelin Scala Sample code

3.5.3 Customization Phase
During the plan, discovery, and validation phases, additional requirements that could be

identified but were not achieved on earlier stages were handled on this phase by extending the
solution through customizations. Some new dimensions or facts were added to the list at this
stage to allow more visualization options in Apache Zeppelin. Another activity in this phase
involved conclusion into the development of the final prototype that was to confirm that the in-
memory data mining algorithms are in place and working as per the expectation. Customizations
were also done to allow the control environment to be the same as the project setup by ensuring
that the amount of memory that was used in both setups was the same. This therefore could allow
an evaluation to be done to the prototype by pushing the same job to the control environment and
the prototype.

3.5.4 Deployment and Evaluation

This phase was focused on migrating all the components to the live environment, creation of
users and their role profiles, establishing data recovery plans and finally conducting training
sessions to the end users and IT support users. The Spark production engine was as shown in the
figures that follow that show the executers, completed queries, stages and jobs that were done

pushed by Zeppelin to Apache Spark.

Since this was a prototype, there was no need to create users after the deployment was done. The

visualization platform allowed anonymous login of users if they could be able to access the

37

server that was hosting the notebooks from a browser. The Apache Zeppelin was accessible on

port 8080 from the server that was picked as the live environment.

This also marked the evaluation stage where analytics users would get to evaluate if there will be

any performance improvements to their analytics process.

38

CHAPTER 4: RESULTS

This section is about the results of the evaluation that was done by comparing prototype against
the traditional processes that were used for data analytics processes.

4.1 Process Evaluation
This was done by first comparing the processes that were involved in both cases (traditional and

prototype) to achieve data analysis from the raw data. The table below was used to compare

these processes.

Traditional Processes Prototype Processes

1. Fetchdata from transactional system 1. Refresh on Visualization page to
2. Apply cleanup and transformation update/refresh all the data.

3. Apply visualization

Table 12 Process Improvement Evaluation

From table 12, there was notable process improvement since the number of processes had
reduced from a total of three to only one after automation. This therefore directly translated to a

reduction in the amount of time it took to understand the pattern that is hidden in a data sample.

4.1.1 Multi User Data Access Improveme nt

The prototype developed used a web based visualization framework that can be accessed on any
browser in a networked environment. In the traditional setup where data was accessed using
excel sheets means that this was an improvement since excel sheets are not accessible on the
web. Controlled access to Zeppelin environment can be done by ensuring that only authenticated
users can access the dashboards. Changes to the data that is being visualized can lead to different
presentations to consumers of the data in the traditional setup. Using Zeppelin this is eliminated
directly by using temporary data that is deleted after a session has been terminated which means
there is no way that users can be able to make changes to the data without the necessary

organizational procedures.

4.1.2 Open Source Technology

All the tools that were used to develop this prototype are open source which means if a company
was to decide on them as an in-memory analytics solution, they would be of less cost. The costs
will mostly go to the developers who will be paid to develop the solution in accordance with the

requirements of that company.

39

4.1.3 Flexible Visualization Options

Apache Zeppelin allowed built-in support for many languages and options compared to what was
available in the traditional setup using excel. It allowed ODBC connection to databases, R, Spark
using Scala and many others.

4.2 Performance Improve ment

Testing the performance of the prototype involved setting up various test options. First one was

loading data that was ina CSV format of about 26 million rows.

4.2.1 Data Loading
To start with, the data loading was done to a database management system and logged to

compare the time it took to load the data. The logs are as shown on figure 30.

View Report

3
File Edit

The execution was successful
— Initializing Data FHlow Task (Success)
— Initializing Connections {Success)
- Setting SAL Command {Success)
- Settimg Souwrce Comnneclion (Success)
- Settimg Destination Comnection {(Success)
- Validating (Success)
- Prepare for Execute (Success)
- Pre-execute (Success)
» Information Ged02090dc: Data Flow Task 1: The processing of file "D Data TR>X.cev" has started.
(SGL Server Import and Export Wizard)
- Executing {(Success)
- Copying to [dbo].-Rransactions] (Success)
= 26431034 rows transfered
ﬂ:‘:‘nﬁn 4 02090de . Data Flow Task 1: The total number of data rows processed for file "D\ Data“TRX.csv™ is 26431035,
(SQL Server Import and Export Wizard)

= Information (cd02090df: Data Flow Task 1: The final commit for the data inserion in “Destination - transactions™ has started.
(SGL Server Import and Export Wizard)

= Information kx40205%0=0: Data Flow Task 1: The final commit for the data inserion in " Destination - transactions" has ended.
I[SQL Server Import and Export Wizard)
- Post-execute (Success)

= Information Tbed02050dd: Data Flow Task 1: The processing of file "D \Data TRX csv" has ended
(SAL Server Import and Export Wizard)

= Information (4 0043000: Data Flow Task 1: "Destination - transactions™ wrote 26431034 rows.
(SQL Server Import and Export Wizard)

Figure 18 DBMS Data Load

The process took about 4 minutes and 34 seconds.
The same data was loaded and converted into Spark, converted into RDD by running Scala code
on Apache Zeppelin notebook’s page. After loading the RDD object, it was converted to a data

frame from where a table was created. Data loading was as shown on the figure 31 below.

40

SPEKS ... Jobs Steges Storage Enwin onment Executors | SQL

Details for Query 0

\e: 2017/08/22 11:25:42

7% @m0 e 0

» Details

Figure 19 Apache Zeppelin/Spark Data Load

Zeppelin applicstion Ul

It is from the table that we could be able to run various analytic commands. The process took

about 1 minute 38 seconds. Figure 32 below captured this.

€) (i) | localhost:8080/%/notebook/2CNBNKGEK @ || Q search

wBe ¥ &# @ 0

Search your Notes

& Zeppelin Notebook - Job

Q anonymous -

Performance Analysis > xa@sax Bolwu- @ o

transactionsText: org.apache.spark.rdd.RDD[String] = TRX.csv MapPartitionsRDD[1] at textFile at <console=:28
defined class Transactions

transactions: org.apache.spark.rdd.RDD[Transactions] = MapPartitionsRDD[4] at map at <console>:31

warning: there was one deprecation warning; re-run with -deprecation for details

Figure 20 Zeppelin Load
4.2.2 Prototype Evaluation

& @ defauit~

The next level of test was on the analysis engine by pushing some queries to analyze the data

using a selected dimension from the dimension list. At first the data that was already loaded into

atable ina database was queried to get the total amounts per branch for the 26 million rows. The

results showed that it took SQL server about 3 minutes and 38 seconds. The results are as shown

on figure 33.

41

100% -

(No column name)

1
2

3 6602
4 o

5 138
6 205
7 -801
8 310
9 5498
10 5294
noo
20

13 0

14 41055
15 370

Siselect sum(convert(numeric(18,8),amount)) accountid from transactions group by accountid

EF Resuhs | Messages

accountid

2101715204001

3101797986003
5021564765004
1011764772001
1021814977002
5071735173003
1071687693002
5071675144004
3061757570001

0011600323007
3061057234006
4021757821001

2101812413003
1051730824003
1011699262001

@ Query executed successfully.

-

JBBHQ22\SQLEXPRESS (13.0SP1) | JAMIBORABANK\ohn.Mbu... ' master 00:03:38 = 243326 rows

Figure 21 DBMS Analysis

The same analysis was done on Apache Zeppelin notebook and the results showed that it took
about 1 minute and 3 seconds to execute. The output is as shown on figure 34 below.

€) (0| localhost:203072/notebook/2CNENKGEK C || Q Search

wa ¥ & © 0

_@ Zeppelin Notebook ~ Job Search your Notes Q

Performance Analysis @7 2+ B - (8] o

B b @ e 2

ourbranchid
1031004482002
2111559293007
5031088622003
4011052007002
1011001889009
2101696477001
5031109729003
4011052467001

5031109919004

Results are limited by 100@.

2 £ @ defauli~

. FINISHED D I BB &
sum(amount) -
-2560.0
3095.78
880.84
-2220.0
17875
210174.64999990007
-1000
-120.0

-6990.56

Figure 22 Zeppelin Analysis

The code behind the analysis on figure 34 is as shown on figure 35 below.

42

B0B (0,08, 00 B, 005} A
aggregate time total {min, med, max):
301 ms (0 ms, 0 ms, 267 ms)

CollectLimit

~ Details

— Parsed Logical Plan —
Globollimit 1901
+- Locallinit 1001
+- Aggregote [ourbranchid#18], [ourbrenchid#1B, sum(amount#13) AS sum{amount}#27]
+- SubgueryAlias transactions
+- SerializeFromDbject [staticinvoke(class org.apache.spark.unsafe. types.UTFEString, StringType, fronString, assertnotnull(input[8, S1inelé272447119.SreadS$in§$inSTransactions, truel, top Level Product input object).A
ceountID, trus) AS AccountIDEI7, staticinvoke(class org.apache.spark.unsafe.types.UTFBString, StringType, fronString, assertnotnull(input[d, Slinel4272447119.SreodS$inSSinSTransactions, truel, top level Product input chject).0
urBranchl, true) AS OurranchIDF18, assertnotnull(input[8, $1inel4272447119.$read$SindSindTransactions, true], top level Product input obiect).Amount AS Amount#19]
+- ExternalRDD [ob3#16]

= Analyzed Logical Plan =
ourbranchid: string, sum(omount): double
GlobalLimit 1001
+- Locallimit 1081
+- Aggregate [ourbranchid#18], [ourbranchid#18, sur(amourt#19) AS sun(amount}#27]
+- SubgueryAlias transactions
+ SerializeFraniloject [staticinvoke(class org.apache.spark.unsafe. types, UTFBString, StringType, fronString, assertnotnull(input[d, $1inel4272447119.Sread$$insSinSTransactions, truel, top level Product input abject).A
ccountID, true) AS AccountID#17, staticinvoke(class org.apache.spark.unsafs. types. UTFEString, StringType, fronString, assertnotmull(input[d, Slinel4272447119.5recdS$insSinSTransactions, truel, top level Product input abject).0
urBranchlD, true) AS OurranchID#L8, assertnotmullCinput[l, $linel4272447119.$read$SinsSindTransactions, truel, top level Product input object).Amount AS Amount#19]
+- ExternalROD [obj#16]

— Optimized Logical Plan —
Globallimit 1001
+- Locallinit 1001
+- Aggregote [ourbranchid#18], [ourbranchid#18, sun(amount#19) AS sum{amourt)#27]
+- Project [OurBranchID#18, Amount#19]

+- SerializeFromDbject [staticinvoke(class org.apache.spark.unsafe. types.UTFEString, StringType, fronString, assertnotnull(input[8, S1inelé272447119.SreadS$in§$inSTransactions, truel, top level Product input object).A
ccountID, true) AS AccountIDEI7, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fronString, assertnotnull(input[®, Slinel4272447119.Sread$$insSinSTransactions, truel, top level Product input ohject).0
urBranchD, true) AS OurBranchID#L8, assertnotnull(input[8, $lineld272447119.$read$SindSindTransactions, truel, top level Product input object).Amount AS Amount#19]

+- ExternalRDD [ob3#16]

= Physical Plan ==
Collectlimit 1001
+- SHashAggregate(keys=[ourbronchid#18], functions=[sum(amount#19)], output=[ourbronchid#18, sum(anount}#27])
+- Exchange hashpartitioning(ourbranchid®18, 20)
+- *HoshAggregate(keys=[ourbranchid#18], functions=[partial_sun(omount#19)], output=[ourbranchid#18, surd36])
+- Project [DurBranchID#18, Amount#13]

+- ¥SeriglizeFromDbject [staticinvoke(class org.apoche.spark.unsafe.types.UTF8String, StringType, fromString, assertnotnull(input[®, $1inel4272447119.5recd$$inSSinSTransactions, truel, top level Product input objec
+).AccountID, true) AS AccountID#L7, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, essertnotnull(input[®, Slinel4272447119,SrecdS$inSSinSTransactions, truel, top level Product input objec
+).0urBronchID, true) AS DurBranchID#18, ossertnotnull(input[@, $1inel4272447119. SreadiSindSindTransactions, truel, top level Product input chiect).Amourt AS Anount#19]

+- Sean ExternglRDDScon[obi#16]

Figure 23 Zeppelin Analysis Details

The analysis was repeated and recorded with different dimensions and recorded as shown on the

table 13 which were labeled as query 1 all through to 3.

Process/Activity Native DBMS | Apache Spark | Ratio

Time (Seconds) | Time (Seconds)

Data Loading
274 98 2.795918

Q1 - Data Analysis — Measuring
Value of transactions by account 218 63
dimension 3.460317

Q2 - Data Analysis — Measuring
the number of transactions by 234 57

account dimension 4.105263

Q3 - Data Analysis — Measuring

the average value of transactions 4811321

43

using the account dimension 255 53

Table 13 Performance Comparison

Some analysis of the performance in form of a chart is as shown in figure 36 that plots a line

graph comparing the time in seconds of a traditional tool (DBMS) against Spark.

Performance Analysis - Spark Vs DBMS

EDBMS M SPARK

o

From the literature that was reviewed/synthesized, it showed possibilities of carrying out the

300

250
200
150
100
50
0

LOADING Q1

Figure 24 Performance Comparison Chat

experiment to test if banking analytics could be improved using an in-memory data warehouse
prototype. The project was therefore recommended to test this hypothesis and show the results

which were to either agree or disagree with the literature.

CHAPTER 5 CONCLUSIONS

From the evaluation results of the prototype, it was clear that there were improvements in data
analytics if Apache Spark and Zeppelin were to be decided on as tools to aid in analytics. The
processes were improved from three stages to one stage. Visualization tools that could be
accessed by multiple users on the web with an ability to allow authentication gave a plus to
Apache tools compared to excel as an analysis tool. Costs that would be associated with an
Apache implementation would present a cheaper alternative as compared to other commercial in-

memory alternatives since Apache is open source.

The project has achieved its objectives of developing a prototype that can reduce the latency of
handling analytics data in a banking setup. The prototype was evaluated and the results
compared to a traditional tool which showed improvements in latency reduction when using an
in-memory system as compared to a traditional tool. The results were tried in another fields that
was not necessarily banking to show that these results could be generalized to other industries.
These results therefore show that in-memory tools can be used to improve performance of data
analytics tools.

5.1 Latency Reduction

A major improvement which was the main purpose of this research was on performance
improvement or latency reduction. The details of these improvements are shown in the figures
under the performance evaluations section. From the experiment, therefore, it can be observed
that spark was 3 times faster in data loading and Q1, 4 times faster in Q2 and 5 times faster in Q3
as compared to DBMS.

5.2 Generalization to other Industries

These results can be generalized to other industries if the amount of data that would be loaded is

less than the amount of memory allocated to Apache Spark for analysis.

45

CHAPTER 6: RECOMMENDATIONS

This chapter describes the achievements that the project made in relation to what other
researchers have done in this field of study. Some recommendations as also discussed to show
how other researchers can improve on the results of this study by giving out a list of limitations

that were identified and that can be considered by other researchers.

6.1 Recommendations
From the study, it can be recommended that the in-memory tools can be used to improve on the

latency issues that are common with use of the traditional analytics tools that store data in disk.

6.2 Limitations of the Study
The study was limited to only performance of the tools but other areas were not compared such

as drill down which Apache Zeppelin is yet to avalil.

6.3 Further Study
More studies need to be in this area to show how in-memory tools are better that traditional tools

other than in performance or speed of execution. For example, it needs to be clear if Spark can be
used to replace a normal database for a transaction processing system. There is also a need to
evaluate if addition of more clusters to the Apache spark system would lead to direct

performance improvements since this report was based on a single cluster setup.

46

REFERENCES

1.

Xinhui T., Rui H., LeiW., Gang L., Jianfeng Z. (2015). Latency Critical Big Data
Computing in Finance. The Journal of Finance and Data Science. Vol 1, Issue 1, pp. 33-
41,

Utkarsh S., Santosh G. (2015). Impact of Big Data Analytics on Banking Sector:
Learning for Indian Banks. Procedia Computer Science. Vol 50. pp. 643-652.

Orestis p., Arun R., Kenneth A., (2015). Rethinking SIMD Vectorization for In-Memory
Databases. Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. pp. 1493-1508.

Matei Z., Mosharaf C., Et al (2012). Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. Association of Computing and Machinery
Digital Library. Pp. 2-2

Santhosh B., Renjith P. (2013). Next Generation Data Warehouse Design with Big Data
for Big Analytics and Better Insights. Global Journal of Computer Science and
Technology Software & Data Engineering. Vol 12, No. 7

Dale, R., Tara, N., Nayem R. (2012). Practical Implications of Real Time Business
Intelligence. Journal of Computing and Information Technology. Vol 20, No. 4, pp. 257—
264.

Nayem R., Dale R., Shameem A., Fahad A. (2014). Emerging Technologies in Business
Intelligence and Advanced Analytics. ULAB Journal of Science and Engineering. Vol. 5
No. 1.

Depali D. (2016). Apache Spark and Big Data Analytics for Solving Real World
Problems. International Journal of Computer Science Trends and technology. Vol. 4 No.
2.

Hsinchun C., Roger H., Veda C. (2012). Business Intelligence and Analytics: From Big
Data to Big Impact. MIS Quarterly. Vol. 36 No. 4, pp. 1165-1188.

10. Janina P., lon L. (2012). Real- Time Business Intelligence for The Utilities Industry.

Database Systems Journal. Vol. 3, No. 4.

11. Adrian M., Ovidiu R. (2012). Banking Intelligence Accelerator - Decision Support.

Database Systems Journal. vol. 3, No. 2.

47

http://www.sciencedirect.com/science/article/pii/S1877050915005992#!
http://www.sciencedirect.com/science/article/pii/S1877050915005992#!

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Haug, A., Zachariassen, F., Liempd, D. (2011). The cost of poor data quality. Journal of
Industrial Engineering and Management, Vol. 4, No. 2, pp 168-193

Hossein M., Ardeshir B. (2010). A New Framework for Evaluating the Functional
Capabilities of Intra-EAI Technologies. Journal of Systems Integration. Vol. 1, No. 4, pp.
50-62.

James E., Jennifer A., (2010). MS in Business Intelligence. Business Intelligence Journal.
Vol. 15, No. 1.

Nikhil D., Gautam N., Hillol D. (2013). Analysis of Data Quality and Performance Issues
in Data Warehousing and Business Intelligence. International Journal of Computer
Applications. Vol. 79, No. 15.

Berendt, B. (2007). Intelligent business intelligence and privacy: More knowledge
through less data? Business Intelligence: Methods and Applications (pp. 63-79).
Bernhard, W. & Maria O. (2015). The Impact of Business Intelligence on the Quality of
Decision Making — A Mediation Model. Paper presented at the Conference on enterprise
Information Systems / Centeris. Vol 64, No. 1 2015, pp 20-35.

Bogdan N., (2013). Business Intelligence Systems. University of Economic Studies,
Bucharest, Romania. Database Systems Journal. Vol. 4, No. 4, pp 40-70.

Mayank G., Rana M., Et al (2013). Turn Hours into Seconds: Bl Paradigm with In-
Memory Analytics. International Journal of Software and Web Sciences (IJSWS). Vol 1.
No. 6. Pp 24 - 27.

Nur Z., Suraya M., Haslina H., Etal (2015). Conceptual Framework of Business
Intelligence Analysis in Academic Environment Using Birt. ARPN Journal of
Engineering and Applied Sciences. Vol. 10, No. 23.

Muriithi, G. M., Kotzé, J. E. (2013). A conceptual framework for delivering cost
effective business intelligence solutions as a service. In Proceedings of the South African
Institute for Computer Scientists and Information Technologists Conference. Vol. 45 No.
1, pp. 96-100.

Azvin, B., Cui, Z., Nauck D. (2005). Towards real-time business intelligence. BT
Technology Journal. Vol. 23, No. 3, pp 214-225.

48

23.

24.

25.

26.

Celina, M., Ewa, Z., etal (2002). Approach to Building and Implementing Business
Intelligence Systems. Interdisciplinary Journal of Information, Knowledge, and
Management. Vol. 2, pp 50-85.

Sahay, B., Jayanthi, R. (2008). Real time business intelligence in supply chain analytics.
Information Management & Computer Security. VVol. 16 No. 1, pp. 28-48.

Zeljko, P. (2007). Just-in-Time Business Intelligence and Real-Time Decisioning.
International Journal of Applied Mathematics and Informatics. Vol. 1, No. 1, pp 106-
111.

Mansmann S., Neumuth M., (2007). An OLAP Technology for Business Process
Intelligence: Challenges and Solutions. Data Warehousing and Knowledge Discovery,
Vol. 4654, pp 111-122.

49

APPENDICES
7.1 Appendix I: User Manual

The system can be hosted on a server running either on windows or Linux operating system
which makes it accessible froma browser or over the internet. Sample figures 19 to 29 represents
the combination of several measures and dimensions whose output simulate some few analyses

on the loan fact.

They capture the various measures (outstanding loan balances, Arrears amount, arrears days,

non-performing loans, number of loans) against dimensions (branch, Product type, currency,

loan classification and date). These were identified as key reports by the business users that were
identified.

,a Zeppelin Notebook - Search your Notes
Analytics o @e] [Blo mx - [0 |o
‘Outstanding balances per Branch FnisHED > 31 88 &
Bl e | M| & || settings ~
@stacked OStream O Expanded ® OutstandingBalance

3.908,
3.008

2.008|

1.008

[
() 550 603
Arrears Amount per Branch FINSHED D> 25 B8 & Arrears Days per Branch FINISHED [> 24 BB &
E | e @& e & - settings = B e @ e 2 & ~ ceftings v
@Groupes O Stacked ‘@ Arrearsamount @Grouped OStackes @ arearsbays
1438 1,480
1.008 1,000
s00M I 00
o e N —— . | — I I I] -
107 210 08 202 603 o
107 210 306 a2 603
Number of Loans per Branch FrsHED [> 188 @

Figure 25 Zeppelin Banking Analytics Notebook — Loan fact per branch dimension analysis

50

& Zeppelin Notebook - Job Search your Notes w

Banking Analytics ©istmsa s @elws- 0 (o

= & & default -

Outstanding balances per Branch FuSHED [> 3 B @
@Ell: o || [&]-] setings~

®Grouped O Stacked

@ OutstandingBalance

3.908

2.008

2008

o — — —— [] | I — — e
101 105 s 16 210 301 305 307 310 402 502 507 1

Took & min 39 sec. Last updated by ancaymous at June 20 2017, 11:31:06 AM. (outdated)
Arrears Amount per Branch

FINISHED [> 388 & Arrears Days per Branch

o w e Ig\i & [+ seftings o w e g& & [-| settings~

FNISHED [> 2{ 88 &

@ ArrearsAmount

@ArrearsDays.
1438 1,480
1.008
1,000
' 507
500M = ArearsDays 774.995
500 lv
17,510.184
0 100 200 300 400 s00 603 195.182
0 100 200 300 400 500 603

Took 1 sec. Last updated by anonymeus at June 20 2017, 11:42:01 AM.

Number of Loans per Branch FuisHED D> 23 EE &

Figure 26 Zeppelin Banking Analytics Notebook — Loan fact per branch dimension analysis

Zeppelin Notebook -~ Job Search your Notes w

Banking Analytics ©=ms/as @o ma - (0 o

E 4 A default~

Outstanding Balance per Branch FsHED [2B & Number of Loans per Product Type FiekED [2B &
@Elc Wb &+ sstingsw P uEllg b lx | & || setings~
OGrouped @ Stacked @ NonPerformingBalance @l ©BD @CA
2988,
2008
1008 I
|| U N “Uj——
107 210 306 402 603
Tool 202017, 11:31:10 AM. (outdated)

Took D sec. Last updated by nonymous st June 20 2017, 11:35:12 Al

Outstanding Balances per Product Type FNISHED [> 57 B8 & Outstanding balance by Currency

@Elc o ||| | &[-] settings~ Ee o |l | & .| setingsw

@Grouped O Stacked @ OutsStandingBalanceByProduct @Grouped O Stacked

FNISHED [21 EB &

@ OutStandingBalanceByProduct

) .
0 I
KES uso

Took 1 sec. Last updated by anonymeous at June 20 2017, 11:36:36 AM.

9.53B

5.00B

0.72°

BD CA

11:40:31 AM. (outdated)

Figure 27 Zeppelin Banking Analytics Notebook — Loan fact per branch, productype, and
currency dimensions analysis.

51

Figure 22 shows a graph that visualizes channel transactions by branch code dimension for each

of the channels and the code that was used to load the data into Zeppelin.

azeppelin Notebook - Job

Channel Transactions vigsoe 2o - 0 o YIS

channelText: org.apache.spark.rad.ROD[String] = Channels.csv MapPartitionsROD[201] at textFile at <console»:27 FHSHED D X B 8
defined class Cnannel

channel: org.apache.spark.rdd.RDD[Channel] = MapPartitionsRDD[204] at map ot <consolex:3L

narning: there mas one deprecation warning; re-run with -deprecation for details

E oW ¢ M & |~ seffingsv FNISHED D B &

@101 109 @14 016 @211 301 @306 310 §316 H409 @502 $503 G507

wum
B0.0M|
B0.0M|
00
/ /\\ s
2008 / ™ ///
/ o : AN .
/ // -
101.ELMA 109 ELMA 114 ELMA MEELMA 11618 211ELMA 301ELMA 306 ELMA 30618 310 ELMA 31618 409 ELMA 5021B S03ELMA 507.ELM

Figure 28 Zeppelin Banking Analytics Notebook — Measuring transactions fact by channel type

dimension.

Figure 23 measures the average pay per department dimension from the human resource data.

Average Monthly Pay by Department Dimension FINISHED D> 32 63 &
@G [N &« setlings =
@Grouped O Stacked []
663
| -
o - I
Gales.depariment(sum) Research & Development.department{sum) Human Resources.department(sum)

Figure 29 Zeppelin Banking Analytics Notebook — HR

Figure 24 shows the relationship between gender, age and employee attrition which means that
one measure (attrition) was analyzed by looking at the gender and age dimensions.

52

Average Employee Attrition on Gender
& -

Bl ¢ e 2 [settings «
@ Grouped (Stacked
33

30

25

o

=

@Female

0lll 1 | [lll [
21 25 29 33 37 41 45 49 53

FINISHED [> 23 B8 &

Male @ Gender

57 Age

Figure 30 Zeppelin banking Analytics Notebook — HR

Figure 25 looked at the average pay per employee by their education level and job level at the

company.

FINISHED [> 2 B8 &

Showing 1 to 1 of 1 entries

Bl ¢ M [& | seffings~
@ Grouped O Stacked @®College Below College @ Master Bachelor @ Doctor
625,841
400,000
200,000 I
0 — I - L —
1 3 4 5
Spor N Jobs Stages Storage Environment Executors sal Zeppelin application Ul
Executors
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC Shuffle Shuffle
Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write
Active(1) S5 B8O 9O KB /4288 ooB a o 275 279 12 min (14 s) 23GB 00B 13.5 MB
mB
Dead(0) © 00B/00B 00B 0 0 0 0 0 0 ms (0 ms) 00B 008 00B
Total(1) 5 899KB/4288 00B 4 4 0 275 279 12 min (14 s) 23GB 008 13.6 MB
MB
Executors
Show | 20 v | entries Search
Executor RDD Storage Disk Active Failed Complete Total Task Time Shurfle Shuffie Thread
1D Address Status Blocks Memory Used Cores Tasks Tasks Tasks Tasks (GC Time) Input Read Write Dump
driver 10.0.1.97:17556 Actlive 5 B899 KB/ ooB 4 4 o 275 279 12 min (14 23cGB o0B 13.5 MB Thread
428 .8 MB s) Dump
Previous 1 Next

Figure 32 Spark Executers

53

Spc"- S40 Jobs Stages Storage Environment Executors saL Zeppelin application Ul
Completed Queries
D Description Submitted Duratien Jobs
4 take at NativeMethodAccessorimpl java:0 +details 2017/06/23 12:51:34 1.9 min 8
3 take at NativeMethodAccessorimpl java 0 +details 2017/06/23 11:33:45 52s 7
2 take at NativeMethodAccessorimpl java 0 +details | 2017/06/23 11:32:01 §7s 6
1 take at NativeMethodAccessorimpl java:0 +details | 2017/06/23 11:30:33 40s 5
0 take at NativeMethodAccessorimpl java:0 +details 2017/06/23 11:25:42 1.0 min 0
2
4
Spaﬁ? T Stages Execu saL Zeppelin
Stages for All Jobs
Completed Stages: 14
2 Fair Scheduler Pools
Pool Name Minimum Share Pool Weight Active Stages Running Tasks SchedulingMode
ault o 1 a o FIFO
fair 0 1 a 0 FAIR
Completed Stages (14)
Stage Id ~ Pool Name Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
17 default Zzppelin 201708123 12:53:26 0.3s in 26.5K8
take at NativeMef
18 default Zeppelin 2017/068/23 12:51:26 1.8 min 18/18 548.8 MB 43 MB
take st Nati
15 default Zeppelin 2017/08/23 11:34:38 T4ms n 265 KB
t: &t Nati
14 default Zeppelin 2017/08/23 11:33:46 525 18/18 549.9 MB 4.9 MB
take at Native
12 default Zeppelin 2017/08/23 11:32:57 68 ms 1 201 KB
take st Nati
12 default Zeppelin 2017/08/23 11:32:02 555 18/18 549.9 MB 3.7 mMB
take at NativeMethodAccessorimpl_java:-0
n default Zeppelin 2017/08/23 11:31:12 75 ms. " 228 KB
take at NativeMethodAccessorimpl_java:-0
10 default Zzppelin 201708123 11:30:33 R 18118 549.9 MB 42MB
take at NativeMethodAccessorimpl java:-0
5 default Zappelin 2017/08/23 11:28:40 07s 7575 8.4 KB
take at NativeMethodAccessorimpl_java:-0
T default Zeppelin 2017/08/23 11:26:28 1s 100/100 6.8 KB
take st NativeMethodAcoessormpl.jave:0
5 default Zeppelin 2017/08/23 11:28:38 03s 20/20 Z1KB
take at NativeMethodAccessorimpl.java:0
3 default Zeppelin 2017/08/23 11:26:38 06s 44 22808
take st NativeMethodAccessormpl.java:0
1 default Zeppelin 2017/068/23 11:268:33 3s 1
take st NativeMethodAcosssorimpl. java:0
0 default Zeppelin 2017/08/23 11:25:45 48s 18/18 549.9 MB 17.5 KB

take st NativeMethodAccessorlmpl. java:0

Figure 34 Spark - Zeppelin Stages

54

sﬁa&zun Jobs Stsges Storsge Environment Executos SOL Zeppelin spplication Ul

Spark Jobs (7

User: John. Mburu

Total Uptime: 1.7 h
Scheduling Mode: FAIR
Completed Jobs: 3

» Event Timeline

Completed Jobs (9)

Job 1d [Job Group) ~ Description Submitied Duration Stages: Succeeded/Total Tasks {for all stages): Succeeded/Total

8 {z2ppelin-20170821-202125_1526260084) Zeppelin 2017/08/23 12:51:26 1.8 min 22 e tems
teke at NativeMethodAccessorlmpl jave:0

7 (zeppelin-20170821-203125_1526280084) Zzppelin 2017/08/22 11:32:48 525 22 e =8
take at NativeMethodAcoessorimpl java:0

8 feppelin 0170621203128 1 zeppeiin 20170823 113202 555 » [= S
take st NativeldethodAcosssorimpl jeve:0

5 (eeppelin Z0170821.203120_1 zepgein 20170823 113033 s » [= S
teke at NativeMethodAccessorlmpl jave:0

4 {zeppelin-20170821-203128_1526280084) Zeppelin 2017/08/23 11:26:40 07s 111 {1 skipped) .. 7adB(isckipped)
take st NativeldethodAcoessorimpl jave:0

2 (zeppelin-20170821-203126_1 Zeppelin 2017/08/22 11:28:28 13 71 {1 shipped) . looi0O(i8skippedy
take st NativeMethodAccessorimpl.jave:0

2 {zeppelin-20170621-203128_1526260064) Zeppelin 201706723 11:26:38 03s 171 {1 skipped) . ocomo(sskppedy
take st Nativalethoda

1 (zeppelin-20170821-203128_15262680084) Zeppelin 2017/08/23 11:26:38 105 171 {1 skipped) . s(iBsipped)
take st NativelethodA

0 (zeppelin-20170621-203128_1526280064) Zeppelin 2017/06/23 11:25:45 S1s 2z e s

take st Nativellethada

Figure 35 Spark - Zeppelin Jobs

55

7.2 Appendix Il: Prototype Code

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001
+- Aggregate [OurBranchID#19], [OurBranchID#19,
sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutstandingBalance#56]
+- SubgueryAlias bank
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sread$Siws$SiwsSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyIlD#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$sSiwSs$iwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true]l, top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.5reads$S$SiwsSsSiwSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS

56

OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object) .ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadS$siwsSiwsBank, true], top level Product
input object).LlLastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Analyzed Logical Plan ==
OurBranchID: string, OutstandingBalance: double
GlobalLimit 1001
+- LocalLimit 1001
+- Aggregate [OurBranchID#19], [OurBranchID#19,
sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutstandingBalance#56]
+- SubgueryAlias bank
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.Sreads$siwssiwsBank, true]l, top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencylD#22,

57

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.Sreads$$iwsSiwSBank, true], top level Product
input object) .ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$sSiwsSs$iwsSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.S%reads$SsiwSSiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input|[O0,
$1ine66882925615.Sreads$SiwsSiwsSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwssiwsBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.S%reads$siwSSiwsBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputlO0,
$1ine66882925615.5read$S$iwsSiwsSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object) .ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.SreadsSiwssSiwSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== QOptimized Logical Plan ==

GlobalLimit 1001
+- Locallimit 1001

58

+- Aggregate [OurBranchID#19], [OurBranchID#19,

sum((OutstandingBalance Local#29 * -1.0)) AS
OutstandingBalance#56]

+- Project [OurBranchID#19, OutstandingBalance Local#29]

+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiws$SiwsBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.Sread$SiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%reads$siwsSsiwsBank,

59

true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31l, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Physical Plan ==
CollectLimit 1001
+- *HashAggregate (keys=[OurBranchID#19],
functions=[sum((OutstandingBalance Local#29 * -1.0))1,
output=[OurBranchID#19, OutstandingBalance#56])
+- Exchange hashpartitioning(OurBranchID#19, 200)

+- *HashAggregate (keys=[OurBranchID#19],
functions=[partial sum((OutstandingBalance Local#29 * -1.0))],
output=[OurBranchID#19, sum#66])

+- *Project [OurBranchID#19,
OutstandingBalance Local#29]
+- *SerializeFromObject [staticinvoke(class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwssiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

60

StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.SreadssiwsSsiwsBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$sSiwSsSiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.8%reads$siwSsSiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsS$SiwsBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%readssiwSsiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925615.SreadS$siwsSiwsBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- Scan ExternalRDDScan[obj#18]

61

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocallLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, Joblevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- Filter NOT education#1ll LIKE Education
+- SubgueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readS$S$iwSSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l1ll,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class

62

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).JobLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#1l17,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$S$iwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Analyzed Logical Plan ==
Age: string, Attrition: string, BusinessTravel: string,
DailyRate: string, Department: string, DistanceFromHome: string,
Education: string, EducationField: string, Gender: string,
JobLevel: string, JobSatisfaction: string, MaritalStatus:
string, MonthlyIncome: string, MonthlyRate: string,
EmployeeNumber: string
GlobalLimit 1001
+- LocalLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JoblLevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- Filter NOT education#111l LIKE Education
+- SubqueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class

63

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Education, true) AS Education#l11l,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.Sreads$SiwsSSiwsHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).JoblLevel, true) AS JoblLevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5readsSiwsSS$SiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product

64

input object).MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== QOptimized Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001
+- Filter (isnotnull (education#11l) && NOT (education#lll =

Education))

+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925623.5read$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sreads$SiwSSiwSHR, true], top level Product
input object).Education, true) AS Education#l11,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

65

$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925623.5readsSiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .JobLevel, true) AS JoblLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSS$SiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5readS$$iwsSiwsSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Physical Plan ==
CollectLimit 1001
+- *Filter (isnotnull(education#11l) && NOT (education#l1ll =
Education))

+- *SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSS$SiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputlO,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product

66

input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sreads$S$iwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputlO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.Sreads$$iwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

67

$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- Scan ExternalRDDScan[obj#104]

== Parsed Logical Plan ==
GlobalLimit 1001
+- Locallimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JobLevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- Filter NOT education#1ll LIKE Education
+- SubgueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readS$S$iwSSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSS$SiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5read$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

68

StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$Siws$SiwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object) .JobLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sread$SiwS$SiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#1l5,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#1l17,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Analyzed Logical Plan ==
Age: string, Attrition: string, BusinessTravel: string,
DailyRate: string, Department: string, DistanceFromHome: string,
Education: string, EducationField: string, Gender: string,
JobLevel: string, JobSatisfaction: string, MaritalStatus:
string, MonthlyIncome: string, MonthlyRate: string,
EmployeeNumber: string
GlobalLimit 1001
+- LocallLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, Joblevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- Filter NOT education#11l LIKE Education
+- SubqueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,

69

fromString, assertnotnull (input[0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$SiwS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sread$SiwS$SiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Education, true) AS Education#l111l,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object) .Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JoblLevel, true) AS Joblevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,

70

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#l117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obJj#104]

== QOptimized Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001
+- Filter (isnotnull (education#11l) && NOT (education#lll =

Education))

+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl[0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwSSiwSHR, true], top level Product

71

input object) .Education, true) AS Education#l111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).JobLevel, true) AS JoblLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.$readS$SiwsSiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.Sread$SiwSS$SiwSHR, true], top level Product
input object).EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Physical Plan ==
CollectLimit 1001
+- *Filter (isnotnull(education#111l) && NOT (education#l1lll =
Education))

+- *SerializeFromObject [staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,

72

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.Sreads$S$iwsSiwsSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputlO,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object) .JobLevel, true) AS JoblLevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.Sreads$$iwsSiwsSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#1l5,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiws$SiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5readsSiwsSS$SiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product

73

input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- Scan ExternalRDDScan[obj#104]

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JobLevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- SubgueryAlias where
+- SubgueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5read$S$iwsSiwsSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l11,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

74

$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623. $readS$SiwsSiwSHR, true], top level Product
input object) .JobLevel, true) AS JoblLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sreads$SiwSS$SiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$S$iwsSS$SiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Analyzed Logical Plan ==
Age: string, Attrition: string, BusinessTravel: string,
DailyRate: string, Department: string, DistanceFromHome: string,
Education: string, EducationField: string, Gender: string,
JobLevel: string, JobSatisfaction: string, MaritalStatus:
string, MonthlyIncome: string, MonthlyRate: string,
EmployeeNumber: string
GlobalLimit 1001
+- LocallLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JoblLevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- SubgueryAlias where

75

+- SubqueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsS$iwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sreads$SiwsSSiwsSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$S$iwsSS$SiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Education, true) AS Education#l111l,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5read$S$iwsSSiwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5readS$$iwsS$SiwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

76

StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#l117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sread$SiwS$SiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== QOptimized Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001

+- SerializeFromObject [staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5readS$$iwsS$SiwsSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

77

$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Education, true) AS Education#l1ll,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925623.5readsSiwsS$iwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .Gender, true) AS Gender#113, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSS$SiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5read$SiwsSiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Physical Plan ==

CollectLimit 1001

+- *SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsSS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,

78

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#l111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#11l5,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5readsSiwsSS$SiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#1l17,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product

79

input object).MonthlyRate, true) AS MonthlyRate#118,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

StringType, fromString, assertnotnull (input [0,

$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product

input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- Scan ExternalRDDScan[obj#104]

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocallLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JoblLevel#114,
JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]

+- SubgueryAlias where
+- SubgueryAlias hr
+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputlO,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.Sreads$S$iwSSiwSHR, true], top level Product
input object).Education, true) AS Education#l111,

80

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object) .Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).JobLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).MonthlyIncome, true) AS MonthlyIncome#l117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.Sreads$sSiwSSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Analyzed Logical Plan ==
Age: string, Attrition: string, BusinessTravel: string,

DailyRate: string, Department: string, DistanceFromHome: string,

Education: string, EducationField: string, Gender: string,
JobLevel: string, JobSatisfaction: string, MaritalStatus:
string, MonthlyIncome: string, MonthlyRate: string,
EmployeeNumber: string
GlobalLimit 1001
+- LocalLimit 1001

+- Project [Age#105, Attrition#106, BusinessTravel#107,
DailyRate#108, Department#109, DistanceFromHome#110,
Education#111, EducationField#112, Gender#113, JobLevel#114,

81

JobSatisfaction#115, MaritalStatus#116, MonthlyIncome#117,
MonthlyRate#118, EmployeeNumber#119]
+- SubgueryAlias where
+- SubgueryAlias hr
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.SreadS$S$iwsSSiwSHR, true], top level Product
input object).Education, true) AS Education#lll,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object) .EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

82

$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925623.5readsSiwsS$iwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#lle,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwsSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== QOptimized Logical Plan ==
GlobalLimit 1001
+- LocalLimit 1001

+- SerializeFromObject [staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl[0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925623.5readS$SiwsSSiwsSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiws$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5readsSiwsSS$SiwSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product

83

input object).DistanceFromHome, true) AS DistanceFromHome#110,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).Education, true) AS Education#l11ll,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).JoblLevel, true) AS JobLevel#114,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#116,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).MonthlyIncome, true) AS MonthlyIncome#117,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object) .EmployeeNumber, true) AS EmployeeNumber#119]
+- ExternalRDD [obj#104]

== Physical Plan ==

CollectLimit 1001

+- *SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$SiwsSiwSHR, true], top level Product
input object).Age, true) AS Age#105, staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,

84

fromString, assertnotnull (input[0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).Attrition, true) AS Attrition#106,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).BusinessTravel, true) AS BusinessTravel#107,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.Sread$SiwS$SiwSHR, true], top level Product
input object).DailyRate, true) AS DailyRate#108,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$S$iwSS$SiwsSHR, true], top level Product
input object) .Department, true) AS Department#109,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925623.5reads$SiwsSSiwSHR, true], top level Product
input object).DistanceFromHome, true) AS DistanceFromHome#110,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).Education, true) AS Education#111,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5readsSiwsSiwSHR, true], top level Product
input object).EducationField, true) AS EducationField#112,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$SiwsS$iwSHR, true], top level Product
input object).Gender, true) AS Gender#113, staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object) .JobLevel, true) AS JoblLevel#114,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwS$iwSHR, true], top level Product
input object).JobSatisfaction, true) AS JobSatisfaction#115,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5reads$S$SiwsS$SiwSHR, true], top level Product
input object).MaritalStatus, true) AS MaritalStatus#ll6,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925623.Sread$S$iwsSiwSHR, true], top level Product
input object) .MonthlyIncome, true) AS MonthlyIncome#117,

85

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925623.5reads$S$iwsSSiwSHR, true], top level Product
input object).MonthlyRate, true) AS MonthlyRate#118,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925623.5read$SiwSS$SiwSHR, true], top level Product
input object).EmployeeNumber, true) AS EmployeeNumber#119]
+- Scan ExternalRDDScan[obj#104]

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocallLimit 1001
+- Aggregate [Classification#24], [Classification#24,
sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutStandingBalanceByProduct#289]
+- SubgueryAlias bank
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputlO,
$1ine66882925615.SreadssSiwsSsiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputlO,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO0,
$1ine66882925615.Sreads$SiwsSiwsSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.8%reads$siwSsiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input|O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product

86

input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadS$siwsSiwsBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.%readssiwSsiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (input[O0,
$1ine66882925615.5reads$SiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object) .ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925615.SreadssiwssiwsBank, truel], top level Product
input object).ProductTypelID, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Analyzed Logical Plan ==
Classification: string, OutStandingBalanceByProduct: double
GloballLimit 1001
+- LocalLimit 1001
+- Aggregate [Classification#24], [Classification#24,

sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutStandingBalanceByProduct#289]

+- SubgueryAlias bank

+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925615.SreadssiwssiwsBank, truel], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

87

$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.5reads$SiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyIlD#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, truel], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsiwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input|[O0,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sread$SiwsSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,

assertnotnull (input[0, $1ine66882925615.S%reads$SiwSSiwsBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (input[O,
$1ine66882925615.SreadssSiwsSsiwsBank, true], top level Product
input object) .OutstandingBalance Local AS

OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.8%reads$siwSsiwsBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product

88

input object).ProductTypelID, true) AS ProductTypelID#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Optimized Logical Plan ==
GlobalLimit 1001
+- LocallLimit 1001
+- Aggregate [Classification#24], [Classification#24,
sum((OutstandingBalance Local#29 * -1.0)) AS
OutStandingBalanceByProduct#289]
+- Project [Classification#24,
OutstandingBalance Local#29]
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadssSiwsSsiwsBank, true], top level Product
input object).CurrencyID, true) AS CurrencylD#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.5readsSiwsSsiwsBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsiwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true]l, top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

89

$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.S%reads$SiwSSiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.5readS$siwsSiwsBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.5reads$SiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.8%reads$siwsSsiwsBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product
input object).ProductTypelID, true) AS ProductTypelID#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Physical Plan ==
CollectLimit 1001
+- *HashAggregate (keys=[Classification#24],
functions=[sum((OutstandingBalance Local#29 * -1.0))1,
output=[Classification#24, OutStandingBalanceByProduct#289])

+- Exchange hashpartitioning(Classification#24, 200)

+- *HashAggregate (keys=[Classification#24],
functions=[partial sum((OutstandingBalance Local#29 * -1.0))],
output=[Classification#24, sum#299])
+- *Project [Classification#24,
OutstandingBalance Local#29]
+- *SerializeFromObject [staticinvoke(class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (input[O0,
$1ine66882925615.SreadssiwssiwsBank, truel], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O,

90

$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,

staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.5reads$siwsSiwsBank, true], top level Product
input object).CurrencyID, true) AS CurrencyIlD#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.$reads$SiwSsiwsSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsiwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,

assertnotnull (input[0, $1ine66882925615.S%reads$SiwSSiwsBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadssSiwsSsiwsBank, true], top level Product
input object) .OutstandingBalance Local AS

OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.8%reads$siwSsiwsBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadssiwssiwsBank, true]l, top level Product

91

input object).ProductTypelID, true) AS ProductTypelID#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- Scan ExternalRDDScan[obj#18]

92

== Parsed Logical Plan ==
GlobalLimit 1001
+- LocallLimit 1001
+- Aggregate [CurrencyID#22], [CurrencyID#22,
sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutStandingBalanceByProduct#300]
+- SubgueryAlias bank

+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssSiwsSs$iwsSBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object) .ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O0,
$1ine66882925615.SreadssSiwsSsiwsBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%read$sSiwsSiwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $11ine66882925615.%readS$siwsSsSiwsBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,

93

$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.S%reads$SiwSSiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.SreadssiwsSsiwsBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwsSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input|O0,
$1ine66882925615.5readsSiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Analyzed Logical Plan ==
CurrencyID: string, OutStandingBalanceByProduct: double
GlobalLimit 1001
+- LocallLimit 1001
+- Aggregate [CurrencyID#22], [CurrencyIlD#22,
sum((OutstandingBalance Local#29 * cast(-1 as double))) AS
OutStandingBalanceByProduct#300]
+- SubgueryAlias bank
+- SerializeFromObject [staticinvoke (class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwsSs$SiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

94

StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.SreadssiwsSsiwsBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siws$SiwsSBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $11ine66882925615. SreadS$siwSsiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%readssiwSsiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiws$SiwsSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Optimized Logical Plan ==

GlobalLimit 1001
+- Locallimit 1001

95

+- Aggregate [CurrencyID#22], [CurrencyID#22,

sum((OutstandingBalance Local#29 * -1.0)) AS
OutStandingBalanceByProduct#300]

+- Project [CurrencyID#22, OutstandingBalance Local#29]

+- SerializeFromObject [staticinvoke (class

org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[0,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input][O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.%reads$siwSsSiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%readssiwSsiwsSBank,

96

true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31l, assertnotnull (input [0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.Sreads$siwssiwsBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- ExternalRDD [obj#18]

== Physical Plan ==
CollectLimit 1001
+- *HashAggregate (keys=[CurrencyID#22],
functions=[sum((OutstandingBalance Local#29 * -1.0))1,
output=[CurrencyID#22, OutStandingBalanceByProduct#300])
+- Exchange hashpartitioning(CurrencyID#22, 200)
+- *HashAggregate (keys=[CurrencyID#22],
functions=[partial sum((OutstandingBalance Local#29 * -1.0))],
output=[CurrencyID#22, sum#310])
+- *Project [CurrencyID#22,
OutstandingBalance Local#29]
+- *SerializeFromObject [staticinvoke(class
org.apache.spark.unsafe.types.UTF8String, StringType,
fromString, assertnotnull (inputl0,
$1ine66882925615.5reads$S$iwsS$SiwsBank, true], top level Product
input object).OurBranchID, true) AS OurBranchID#19,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.Sreads$S$iwsSiwSBank, true], top level Product
input object).AccountID, true) AS AccountID#20,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadssiwssSiwsBank, true], top level Product
input object).ProductID, true) AS ProductID#21,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]O,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).CurrencyID, true) AS CurrencyID#22,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,

97

StringType, fromString, assertnotnull (input[O0,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).ExchangeRate, true) AS ExchangeRate#23,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input |0,
$1ine66882925615.SreadssiwsSsiwsBank, true], top level Product
input object).Classification, true) AS Classification#24,
assertnotnull (input[0, $1ine66882925615.%reads$sSiwSsSiwsBank,
true], top level Product input object) .AmountFinanced AS
AmountFinanced#25, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).InstallmentAmount AS InstallmentAmount#26,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]lO,
$1ine66882925615.SreadsSiwssSiwSBank, true], top level Product
input object).Frequency, true) AS Frequency#27,
assertnotnull (input[0, $1ine66882925615.8%reads$siwSsSiwsSBank,
true], top level Product input object) .OutstandingBalance AS
OutstandingBalance#28, assertnotnull (inputl[O0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object) .OutstandingBalance Local AS
OutstandingBalance Local#29, assertnotnull (input [0,
$1ine66882925615.SreadsSiwssiwsBank, true], top level Product
input object).ArrearsAmount AS ArrearsAmount#30,
assertnotnull (input[0, $1ine66882925615.%readssiwSsiwsSBank,
true], top level Product input object) .ArrearsAmount Local AS
ArrearsAmount Local#31, assertnotnull (input [0,
$1ine66882925615.Sreads$S$iwsSiwSBank, true], top level Product
input object).ArrearsDays.intValue AS ArrearsDays#32,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (inputl[O0,
$1ine66882925615.Sreads$sSiwsSs$iwsSBank, true], top level Product
input object).OfficerName, true) AS OfficerName#33,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input [0,
$1ine66882925615.SreadsSiwsSiwSBank, true], top level Product
input object).ProductTypelD, true) AS ProductTypelD#34,
staticinvoke (class org.apache.spark.unsafe.types.UTF8String,
StringType, fromString, assertnotnull (input]|O0,
$1ine66882925615.Sreads$SiwsSiwSBank, true], top level Product
input object).LastCreditDate, true) AS LastCreditDate#35]

+- Scan ExternalRDDScan[obj#18]

98

val bankText = sc.textFile("loans.csv")

case class Bank(OurBranchID:String, AccountID: String, ProductID:String, CurrencyID:String,
ExchangeRate:String, Classification:String, AmountFinanced:Double,
InstallmentAmount:Double, Frequency:String, OutstandingBalance:Double,
OutstandingBalance_Local:Double, ArrearsAmount:Double, ArrearsAmount_Local:Double,
ArrearsDays:Integer, OfficerName:String, ProductTypelD:String, LastCreditDate:String

)

val bank = bankText.map(s=>s.split(",")).filter(s=>s(0)!="\"OurBranchID\"").map(
s=>Bank(s(0).replaceAll("\"", ""),

s(1).replaceAll("\"", ""),
s(2).replaceAll("\"", "),
s(3).replaceAll("\"", ""),
s(4).replaceAll("\"",""),
s(5).replaceAll("\"",""),
s(6).toString.toDouble,
s(7).toString.toDouble,
s(8).replaceAll("\"", "),
s(9).toString.toDouble,
s(10).toString.toDouble,
s(11).toString.toDouble,
s(12).toString.toDouble,
s(13).tolnt,
s(14).replaceAll("\"", ""),
s(15).replaceAll("\"", ""),

s(16).replaceAll("\"", "")

99

// convert to DataFrame and create temporal table

bank.toDF().registerTempTable("bank")

100

val channelText = sc.textFile("Channels.csv")

case class Channel(Channel:String, OurBranchID: String, Value:String)

nn

val channel = channelText.map(s=>s.split(",")).filter(s=>s(0)!="\"Channel\"").map(
s=>Channel(s(0).replaceAll("\"", "),
s(1).replaceAll("\"",""),

s(2).replaceAll("\"", ")

// convert to DataFrame and create temporal table

channel.toDF().registerTempTable("channel")

101

val HRText =sc.textFile("HR.csv")

case class HR(Age:String, Attrition: String, BusinessTravel:String, DailyRate:String,
Department:String, DistanceFromHome :String, Education:String, EducationField:String,

Gender:String, JobLevel:String, JobSatisfaction:String, MaritalStatus:String,
Monthlylncome:String, MonthlyRate:String, EmployeeNumber:String)

val hr = HRText.map(s=>s.split(",")).filter(s=>s(0)1="\"Age\""). map(
s=>HR(s(0).replaceAll("\"", "),
s(1).replaceAll("\"", ""),
s(2).replaceAll("\"", ""),
s(3).replaceAll("\"", ""),
s(4).replaceAll("\"", ""),
s(5).replaceAll("\"", "),
s(6).replaceAll("\"", ""),
s(7).replaceAll("\"", ""),
s(8).replaceAll("\"", ""),
s(9).replaceAll("\"", "),
s(10).replaceAll("\"", ""),
s(11).replaceAll("\"", ""),
s(12).replaceAll("\"", ""),
s(13).replaceAll("\"", "),
s(13).replaceAll("\"", "")

// convert to DataFrame and create temporal table

hr.toDF().registerTempTable("hr")

102

7.3 Appendix I11: Observation Sheet

This section covers that data collection tools that were used to collect the data that informed this
research and prototype development.

7.3.1 General Information

Name: Date:

Job Role: Time: Start Stop

Years in Analytics:

Gender: Male Female

7.3.2 Data Sources
Data Sources ldentified: 1. 2. 3.

4. 5. 6.

Briefexplanation of the data extraction process

7.3.3 Data Cleanup

Data cleanup Tools used: 1. 2.
3. 5. 6.

Briefexplanation of the data cleanup steps

7.3.4 Data Analysis

Time to analyze one report: Minutes.

of reports analyzed:

Data analysis Tools used: 1. 2.
3. 5. 6.

103

Briefexplanation of the data analysis steps

7.3.5 Data Visualization

Data visualization Tools used: 1.

3. S.

Briefexplanation of the visualization Details

7.3.6 Dashboards produced
1.

Details

2.

Details

3.

Details

104

5.

Details

105

