

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

Master of Science in Computer Science

Research Project Report

Cloud Computing: Assessing the Impact of Application Architecture on the

Performance of Cloud-Based Applications

Ciirah, Stephen Mburu

P58/9219/2006

Supervisors: Dr. Elisha Abade & Dr. Andrew Kahonge

Submitted in partial fulfilment of the requirements for the award of the

Degree of Master of Science in Computer Science of the University of

Nairobi.

March 2018

i

DECLARATION OF AUTHENTICITY

I, Stephen Mburu Ciirah, hereby declare that this project report entitled “Cloud Computing:

Assessing The Impact of Application Architecture on the Performance of Cloud-Based

Applications,” submitted to the University of Nairobi, School of Computing and Informatics,

is my original work and has not been presented for the award of a degree in any other

university.

……………………… ………………………

Signature Date

Stephen Mburu Ciirah

P58/9219/2006

This research project has been submitted for examination with our approval as the University

Supervisors.

……………………… ………………………

Signature Date

Dr. Elisha Abade

University of Nairobi

……………………… ………………………

Signature Date

Dr. Andrew Kahonge

University of Nairobi

ii

DEDICATION

Dedicated to my dear wife Elizabeth and our lovely children Joshua, Lily and Wema.

iii

ACKNOWLEDGEMENTS

It is now 10 years since I registered to undertake this degree course at the School of

Computing and Informatics, University of Nairobi. To quote Nelson Mandela, it always

seems impossible until it is over.

The successful completion of this research and the master’s degree program could not have

been possible without the profound support and contributions by many people over the years.

First and foremost, I would like to thank God for His grace that has been multiplied upon me

to persistently pursue the completion of this course in spite of the many challenges

encountered over the years. By Him, I have overcome, to the glory, praise and honor of God

the most High.

My most sincere gratitude to my supervisors Dr. Elisha Abade and Dr. Andrew Kahonge,

who stepped in to rescue me from despair through timely and candid feedback on my work

and for challenging me to be systematic in my approach and insisting on good quality work.

Without this intervention, this work would not have been completed and I would have been

struck off from the university register as a post graduate student. Thank you very much sirs.

I also wish to thank other members of the faculty who have played a significant supporting

role over the years. These include the late Prof. Okello Odongo, Prof. Timothy Waema, Prof.

Peter Wagacha, Prof. Muthoni Masinde, Dr. Dan Orwa, Dr. Wanjiku Ng’ang’a and Mr.

Christopher Moturi.

Finally, I thank the Director of the School of Computing and Informatics, Dr. Agnes Wausi,

and all the support staff at the Director’s office for facilitating the approval of extension of

my registration with the Board of Post Graduate Studies to enable me complete this course.

iv

ABSTRACT

Cloud Computing, which involves over-the-Internet provision of dynamically scalable and

often virtualized computing resources has very quickly become one of the hottest topics for

practicing engineers and academics in domains related to engineering, science and art for

building large-scale networks and Internet applications.

The goal of this research was to investigate how application architecture impacts the

performance of applications in a cloud computing environment. The specific objectives of the

study were one: to identify factors driving the adoption of cloud computing for delivery

computing services; two: to discover architectures used for the development of cloud based

applications; three: to determine the correlation between throughput and scalability of

applications and finally, to determine the moderating effect of architecture to the relationship

between load and the performance of applications in a cloud computing environment.

Through a detailed literature search and review, both historical and current perspective of

cloud computing were examined. A conceptual framework for the research was development

based on the Gartner Conceptual Framework for Application Performance Management. The

experimental research methodology was adopted for the study. Microsoft Azure cloud

platform and Microsoft Visual Studio Team Services was used to conduct graduated load

performance tests for a convenience sample of web based applications. Data analysis was

conducted by using the Pearson product-moment correlation coefficient and moderation

multiple regression analysis.

The literature search and review findings concurred with the observations made by that there

has been limited academic research in this area of study. The findings of the study showed

that there was a strong positive correlation between throughput and scalability of applications

which was statistically significant, therefore the alternative hypothesis was accepted. On the

other hand, the results showed that while there was a positive moderating effect of

architecture on the relationship between load and performance, the moderating effect was not

statistically significant, hence the null hypothesis was accepted.

v

TABLE OF CONTENTS

DECLARATION OF AUTHENTICITY ... i

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem statement ... 2

1.3 Research objectives ... 2

1.4 Research questions .. 3

1.5 Research outcomes .. 3

1.6 Limitations of the study... 4

1.7 Glossary of terms .. 4

2 LITERATURE REVIEW .. 8

2.1 Chapter overview .. 8

2.2 Cloud computing ... 8

2.2.1 What is cloud computing? ... 8

2.2.2 Essential characteristics of cloud computing ... 12

2.2.3 Cloud computing service models ... 13

2.2.4 Cloud computing deployment models ... 15

2.2.5 Components of Cloud Computing Infrastructure .. 16

2.2.6 Properties of Cloud Computing Infrastructure .. 21

2.3 Application architectures... 24

2.3.1 Definitions.. 24

2.3.2 Application architecture styles ... 25

2.3.3 Monolithic architecture .. 25

2.3.4 Microservices architecture ... 30

2.4 Application architecture and performance .. 33

2.5 Summary of the Literatures ... 35

2.6 Conceptual Framework ... 36

2.6.1 Definition ... 36

vi

2.6.2 Gartner’s Application Performance Management Conceptual Framework 36

Analytics/Reporting ... 40

2.6.3 Performance and scalability ... 41

2.6.4 Proposed conceptual framework .. 43

2.6.5 Hypotheses ... 45

2.6.6 Operational definitions... 47

2.6.7 Graduated Load Test .. 48

2.6.8 Enterprise application behavior pattern ... 49

3 RESEARCH METHODOLOGY... 50

3.1 Research design ... 50

3.1.1 Independent variable .. 50

3.1.2 Dependent variables ... 50

3.1.3 Sampling technique .. 51

3.1.4 Experimental group .. 51

3.1.5 Control group ... 51

3.1.6 Factors held constant.. 51

3.1.7 Cause and effect ... 52

3.1.8 Data collection ... 52

3.2 Experiment laboratory environment.. 52

3.2.1 Cloud scalability testing ... 53

3.2.2 Functionality testing... 53

3.2.3 Deep reporting and analytics ... 54

3.2.4 Location based testing.. 54

3.3 Data analysis ... 55

3.3.1 Pearson Correlation Coefficient analysis ... 55

3.3.2 Moderation Multiple Regression analysis ... 55

3.4 Strengths and limitations of the methodology... 56

4 RESULTS AND DISCUSSIONS .. 58

4.1 Chapter overview .. 58

4.2 Test applications .. 58

4.3 Graduated load test parameters ... 59

4.4 Graduated load test pattern .. 59

4.5 Application test results .. 60

4.5.1 Test Application WebApp_1 ... 60

4.5.2 Test Application WebApp_2 ... 64

vii

4.5.3 Test Application WebApp_3 ... 68

4.5.4 Test Application WebApp_4 ... 72

4.5.5 Test Application WebApp_5 ... 76

4.5.6 Test Application WebApp_6 ... 80

4.5.7 Test Application WebApp_7 ... 84

4.5.8 Test Application WebApp_8 ... 88

4.5.9 Test Application WebApp_9 ... 92

4.5.10 Test Application WebApp_10 ... 96

4.5.11 Test Application WebApp_11 ... 100

4.5.12 Test Application WebApp_12 ... 104

4.5.13 Test Application WebApp_13 ... 108

4.5.14 Test Application WebApp_14 ... 112

4.5.15 Test Application WebApp_15 ... 116

4.5.16 Test Application WebApp_16 ... 120

4.5.17 Test Application WebApp_17 ... 124

4.6 Summary of application test results .. 128

4.7 Pearson Correlation Coefficient Analysis ... 130

4.7.1 Pearson Correlation Coefficient Analysis for 1 test application 130

4.7.2 Pearson Correlation Coefficient analysis for all test applications 135

4.7.3 Discussions .. 141

4.8 Moderation Multiple Regression Analysis .. 142

4.8.1 Regression analysis for individual test applications .. 143

4.8.2 Regression analysis for all test applications .. 147

4.9 Discussions .. 150

5 CONCLUSION AND RECOMMENDATIONS .. 151

5.1 Research objectives ... 151

5.2 Conclusions ... 151

5.2.1 Hypothesis 1... 152

5.2.2 Hypothesis 2... 152

5.3 Limitations of the investigation... 152

5.3.1 True experimental design ... 152

5.3.2 Direct study of application architecture factors ... 152

5.3.3 Application load level .. 153

5.3.4 Range of tests ... 153

5.4 Recommendations for further research ... 153

viii

5.5 Implications to practitioners .. 153

BIBLIOGRAPHY .. 155

ix

LIST OF TABLES

Table 2.1: Summary of architecture styles .. 25

Table 4.1: List of web applications used in the experiment .. 58

Table 4.2: Test parameters used in the graduated load tests .. 59

Table 4.3: Graduated load test results for WebApp_1 ... 60

Table 5.4: Graduated load test results for WebApp_2 ... 64

Table 4.5: Graduated load test results for WebApp_3 ... 68

Table 4.6: Graduated load test results for WebApp_4 ... 72

Table 4.7: Graduated load test for WebApp_5 .. 76

Table 4.8: Graduated load test results for WebApp_6 ... 80

Table 4.9: Graduated load test results for WebApp_7 ... 84

Table 4.10: Graduated load test results for WebApp_8 ... 88

Table 4.11: Graduated test results for WebApp_9 ... 92

Table 4.12: Graduated load test results for WebApp_10 ... 96

Table 4.13: Graduated load test results for WebApp_11 ... 100

Table 4.14: Graduated test results for WebApp_12 ... 104

Table 4.15: Graduated test results for WebApp_13 ... 108

Table 4.16: Graduated load test results for WebApp_14 ... 112

Table 4.17: Graduated load test results for WebApp_15 ... 116

Table 4.18: Graduated load test results for WebApp_16 ... 120

Table 4.19: Graduated load test results for WebApp_17 ... 124

Table 4.20: Characteristics of observed application behavior ... 128

Table 4.21: Classification of test applications by architectural design 128

Table 4.22: X and Y values used for Correlation Coefficient analysis 131

Table 4.23: Normality test results for Throughput and Scalability 133

Table 4.24: Correlation analysis output showing coefficient values 134

Table 4.25: Coefficient values and strength of association ... 134

Table 4.26: Correlation analysis output showing statistical significance 135

Table 4.27: Consolidated X and Y values used for r computation .. 136

Table 4.28: Normality test results for Throughput and Scalability 139

Table 4.29: Correlation analysis output showing coefficient values 139

Table 4.30: Correlation analysis output showing statistical significance 140

Table 4.31: X, Y and Z values used regression analysis ... 144

Table 4.32: Moderated multiple regression variables .. 144

x

Table 4.33: Moderated multiple regression model summary .. 145

Table 4.34: X, Y and Z values used for regression analysis .. 146

Table 4.35: Moderated multiple regression variables .. 146

Table 4.36: Moderated multiple regression model summary .. 147

Table 4.37: Consolidated X, Y and Z values used for regression analysis 148

Table 4.38: Moderation multiple regression variables .. 148

Table 4.39: Moderated multiple regression model summary .. 149

xi

LIST OF FIGURES

Figure 2.1: Cloud computing conceptual diagram (Johnston, 2017) 11

Figure 2.2: Essential characteristics of cloud computing (Somepalle, 2015) 12

Figure 2.3: Cloud computing layers "as a Service" components (Walker, 2012). 15

Figure 2.4: Cloud computing service models .. 15

Figure 2.5: Rows of servers inside an Amazon data centre (Amazon Web Services, 2015) ... 17

Figure 2.6: How the Virtual Machine Monitor (VMM) works ... 18

Figure 2.7: Cloud Storage System ... 19

Figure 2.8: Cloud computing networks ... 21

Figure 2.9: Module monolith (Annett, 2014)... 27

Figure 2.10: Allocation monolith (Annette, 2014) .. 28

Figure 2.11: Runtime monolith (Annette, 2014) ... 28

Figure 2.12: Gartner's APM conceptual model ... 37

Figure 2.13: Research paradigm diagram for the conceptual model 44

Figure 2.14: Graduated load test .. 48

Figure 2.15: A loaded enterprise application follows this typical pattern 49

Figure 3.1: Load settings for performance testing ... 53

Figure 3.2: Function testing using Apache JMeter test file ... 53

Figure 3.3: Real-time application performance charts and graphs .. 54

Figure 3.4: Microsoft Azure data centers locations around the world 54

Figure 3.5: Conceptual diagram ... 55

Figure 3.6: Statistical diagram ... 55

Figure 4.1: Graduated load test pattern achieved ... 59

Figure 4.2: Graduated load test “Performance” data for WebApp_1 61

Figure 4.3: Graduated load test “Throughput” data for WebApp_1 .. 61

Figure 4.4: Graduated load test “Errors” data for WebApp_1 ... 62

Figure 4.5: Graduated load test “Tests” data for WebApp_1 .. 62

Figure 4.6: Graduated load test “Performance” data for WebApp_2 65

Figure 4.7: Graduated load test “Throughput” data for WebApp_2 .. 65

Figure 4.8: Graduated load test “Errors” data for WebApp_2 ... 66

Figure 4.9: Graduated load test “Tests” data for WebApp_2 .. 66

Figure 4.10: Graduated load test “Performance” data for WebApp_3 69

Figure 4.11: Graduated load test “Throughput” data for WebApp_3 69

Figure 4.12: Graduated load test “Errors” data for WebApp_3 ... 70

xii

Figure 4.13: Graduated load test “Tests” data for WebApp_3 .. 70

Figure 4.14: Graduated load test “Performance” data for WebApp_4 73

Figure 4.15: Graduated load test “Throughput” data for WebApp_4 73

Figure 4.16: Graduated load test “Errors” data for WebApp_4 ... 74

Figure 4.17: Graduated load test “Tests” data for WebApp_4 .. 74

Figure 4.18: Graduated load test “Performance” data for WebApp_5 77

Figure 4.19: Graduated load test “Throughput” data for WebApp_5 77

Figure 4.20: Graduated load test “Errors” data for WebApp_5 ... 78

Figure 4.21: Graduated load test “Tests” data for WebApp_5 .. 78

Figure 4.22: Graduated load test “Performance” data for WebApp_6 81

Figure 4.23: Graduated load test “Throughout” data for WebApp_6 81

Figure 4.24: Graduated load test “Errors” data for WebApp_6 ... 82

Figure 4.25: Graduated load test “Tests” data for WebApp_6 .. 82

Figure 4.26: Graduated load test “Performance” data for WebApp_7 85

Figure 4.27: Graduated load test “Throughput” data for WebApp_7 85

Figure 4.28: Graduated load test “Errors” data for WebApp_7 ... 86

Figure 4.29: Graduated load test “Tests” data for WebApp_7 .. 86

Figure 4.30: Graduated load test “Performance” data for WebApp_8 89

Figure 4.31: Graduated load test “Throughput” data for WebApp_8 89

Figure 4.32: Graduated load test “Errors” data for WebApp_8 ... 90

Figure 4.33: Graduated load test “Tests” data for WebApp_8 .. 90

Figure 4.34: Graduated load test “Performance” data for WebApp_9 93

Figure 4.35: Graduated load test “Throughput” data for WebApp_9 93

Figure 4.36: Graduated load test “Errors” data for WebApp_9 ... 94

Figure 4.37: Graduated load test “Tests” data for WebApp_9 .. 94

Figure 4.38: Graduated load test “Performance” data for WebApp_10 97

Figure 4.39: Graduated load test “Throughput” data for WebApp_10 97

Figure 4.40: Graduated load test “Errors” data for WebApp_10 ... 98

Figure 4.41: Graduated load test “Tests” data for WebApp_10 .. 98

Figure 4.42: Graduated load test “Performance” data for WebApp_11 101

Figure 4.43: Graduated load test “Throughput” data for WebApp_11 101

Figure 4.44: Graduated load test “Errors” data for WebApp_11 ... 102

Figure 4.45: Graduated load test “Tests” data for WebApp_11 .. 102

Figure 4.46: Graduated load test “Performance” data for WebApp_12 105

Figure 4.47: Graduated load test “Throughput” data for WebApp_12 105

xiii

Figure 4.48: Graduated load test “Errors” data for WebApp_12 ... 106

Figure 4.49: Graduated load test “Tests” data for WebApp_12 .. 106

Figure 4.50: Graduated load test “Performance” data for WebApp_13 109

Figure 4.51: Graduated load test “Throughput” data for WebApp_13 109

Figure 4.52: Graduated load test “Errors” data for WebApp_13 ... 110

Figure 4.53: Graduated load test “Tests” data for WebApp_13 .. 110

Figure 4.54: Graduated load test “Performance” data for WebApp_14 113

Figure 4.55: Graduated load test “Throughput” data for WebApp_14 113

Figure 4.56: Graduated load test “Errors” data for WebApp_14 ... 114

Figure 4.57: Graduated load test “Tests” data for WebApp_14 .. 114

Figure 4.58: Graduated load test “Performance” data for WebApp_15 117

Figure 4.59: Graduated load test “Throughput” data for WebApp_15 117

Figure 4.60: Graduated load test “Errors” data for WebApp_15 ... 118

Figure 4.61: Graduated load test “Tests” data for WebApp_15 .. 118

Figure 4.62: Graduated load test “Performance” data for WebApp_16 121

Figure 4.63: Graduated load test “Throughput” data for WebApp_16 121

Figure 4.64: Graduated load test “Errors” data for WebApp_16 ... 122

Figure 4.65: Graduated load test “Tests” data for WebApp_16 .. 122

Figure 4.66: Graduated load test “Performance” data for WebApp_17 125

Figure 4.67: Graduated load test “Throughput” data for WebApp_17 125

Figure 4.68: Graduated load test “Errors” data for WebApp_17 ... 126

Figure 4.69: Graduated load test “Tests” data for WebApp_17 .. 126

Figure 4.70: Scatterplot 1 showing relationship between Throughput and Scalability 132

Figure 4.71: Scatterplot 2 showing relationship between Throughput and Scalability 137

Figure 4.72: Scatterplot 3 showing outliers ... 138

Figure 4.73: Conceptual diagram for moderation regression analysis 143

Figure 4.74: Statistical diagram for moderation regression analysis 143

xiv

LIST OF ABBREVIATIONS

Abbreviation Meaning

3G Third Generation of wireless mobile telecommunications

ABAP Advanced Business Application Programming

API Application Programming Interface

APM Application Performance Management

Avg. Average

CIFS Common Internet File System

CMS Content Management System

DDD Domain Driven Design

DSL Digital Subscriber Line

E1 2.048 Mbps line

EA Enterprise Architecture

EC2 Elastic Compute Cloud

e-Commerce Electronic Commerce

EECS Electrical Engineering and Computer Science

EUE End User Experience

HQ Headquarters

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

I/O Input / Output

IaaS Infrastructure as a Service

IBM International Business Machines

ICT Information and Communication Technology

xv

IP Internet Protocol

iSCSI Internet Small Computer System Interface

ISDN Integrated Services Digital Network

IT Information Technology

J2EE Java 2 Platform, Enterprise Edition

LAN Local Area Network

Mbps Megabits per second

NFS Network File Storage

NIST National Institute of Standards and Technology

No. Number

OS Operating System

PaaS Platform as a Service

REST Representative State Transfer

SaaS Software as a Service

SAP Session Announcement Protocol

SLA Service Level Agreement

SMB Server Message Block

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

T1 1,544 Mbps line

TCO Total Cost of Ownership

TCP/IP Transmission Control Protocol/Internet Protocol

UI User Interface

xvi

UK United Kingdom

URL Universal Resource Locator

VM Virtual Machine

VMM Virtual Machine Monitoring

VPN Virtual Private Network

VSTS Visual Studio Team Services

WAN Wide Area Network

WIFI Wireless Fidelity

WWW World Wide Web

XML Extensible Markup Language

1

1 INTRODUCTION

1.1 Background

Cloud computing is a type of Internet-based computing that provides shared computer

processing resources and data to computers and other devices on demand. It is a model for

enabling ubiquitous, on-demand access to a shared pool of configurable computing resources

(e.g. computer networks, servers, storage, applications and services) which can be rapidly

provisioned and released with minimal management effort (Yu and Chen, 2011).

Cloud computing has very quickly become one of the hottest topics – if not the hottest one –

for practising engineers and academics in domains related to engineering, science, and art for

building large-scale networks and Internet applications (Pallis, 2010).

The increased availability and reliability of the Internet, even in the developing economies

like Africa, is driving businesses around the world to consider the cloud computing as the

preferred model of delivery of Information Technology (IT) services and solutions. The

emergence of Cloud computing in Africa is a natural extension of the deployment of

advanced IT technologies by high-end users in both the consumer and enterprise services

markets (Research ICT Africa, 2013).

It is predictable that in the immediate and near future, more enterprises will be migrating their

existing applications to the cloud and implementing new cloud-based applications. According

to Forrester Research predictions for technology trends in 2017, Cloud computing has been

the most exciting and disruptive force in the tech market in the last decade, and it will

continue to disrupt traditional computing models at least through 2020. From the beginning

of 2017, large commercial institutions will move to cloud in a big way, and that will

supercharge the market. It is predicted that the influx of industry dollars will push the global

public cloud market to $236 billion in 2020, up from $146 billion in 2017 (Dai, 2017).

On the other hand, although the industry has made significant progress in the development of

Cloud Computing technologies, products and services, there is very limited academic

research on the subject of Cloud Computing.

While Cloud computing is gaining growing popularity in the IT industry; academia appeared

to be lagging behind the rapid developments in this field. While the industry has been

2

pushing the Cloud research agenda at a high pace, academia has only recently joined, as can

be seen through the sharp rise in workshops and conferences focussing on Cloud Computing

(Sriram and Khajeh-Hosseini, 2010).

1.2 Problem statement

Based on the defined benefits and the risks of cloud computing (Linthcum, 2016), enterprises

are considering migrating their existing applications to the cloud or implementing new cloud-

based applications.

The cloud computing model is attractive to smaller organisations that are looking to remain

flexible in a challenging economic climate and contain costs. Price alone is only one

component of the total cost of ownership (TCO). Larger organisations are looking at factors

such as adoption costs, training, downtime, regulatory implications, data security risks and

how a change might jeopardise trade secrets. As a result, many larger organisations are more

reluctant to move to the cloud (Turner, 2012).

Migration to cloud computing is a strategic organisational decision that can affect

performance, productivity, growth, as well as increase competitiveness. The decision to

migrate is usually complicated and dynamic due to the immaturity and the still evolving

nature of the cloud computing environment (Alkhalil, Sahandi and John, 2016).

The problem is that, to the knowledge of the researcher, there is currently no readily available

information, methodologies and tools for evaluating the performance of cloud based

applications from their architecture point of view. By understanding how architecture relates

to the performance of applications, organisations can make better informed decisions on the

adoption of cloud computing. It would be possible to identify application architecture

patterns that satisfy the performance expectations when enterprises are considering migrating

existing applications to the cloud or developing new cloud based applications.

1.3 Research objectives

The overall objective of this project is to assess how the architecture of applications impacts

the performance of applications in a cloud computing environment.

3

Specific objectives were:

i. Identify factors driving the adoption of cloud computing as the new way of

delivering computing services

ii. Discover the main application architectures used in the development of cloud

based applications

iii. Conduct an experiment to measure and compare the performance of applications

when subjected to different levels of load

iv. Analyse the data to determine the correlation between throughput and scalability

v. Analyse the data to determine the moderating effect of architecture on the

relationship between load and performance of the cloud-based applications.

1.4 Research questions

i. What factors are driving the adoption of cloud computing as the new way of

delivering computing services?

ii. What are the main application architectures used for the development of cloud-based

applications?

iii. What is the correlation between the throughput and scalability of application?

iv. What is the moderating effect of architecture on the relationship between load and

performance of the cloud-based applications?

1.5 Research outcomes

First, the research findings show how the architecture of applications impacts the

performance of cloud based applications by determining the correlation between architecture

and the performance of applications in a cloud computing environment.

Then, the results provide a basis for recommending application architecture considerations

for migrating existing applications to the cloud and for developing new cloud based

applications.

The results will also form a good foundation for further research into this relatively new area

of academic study in cloud computing.

4

1.6 Limitations of the study

Due to the current state of research in this field of cloud computing, the following and

highlighted as limitations for this research work:

 Limited academic research in the area of Cloud Computing

 Internal and extenal validity of the experiment design due to the limited control of the

cloud computing environment used in the study

Further study and research on this subject should be carried out beyond the partial fulfilment

of the requirements for the Master of Science degree program.

1.7 Glossary of terms

i. Application architecture - Application architecture is the discipline that guides

application design. Application architecture paradigms, such as service-oriented

architecture (SOA), provide principles that influence design decisions and patterns that

provide proven design solutions.

ii. Application performance - Performance refers to the capability of a system to provide

a certain response time, serve a defined number of users or process a certain amount of

data. So performance is a software quality metric. Unlike to what many people think it

is not vague, but can be defined in number (Reitbauer, 2008).

iii. Application throughput – measures the volume of requests/responses or volume of

transactions in relation to time, for example, average requests per second or number of

transactions per second (Haines, 2006).

iv. Application scalability – measures the ability of an application to maintain its

performance under increasing load (Haines, 2006).

v. Application Performance Management - In the fields of information technology and

systems management, application performance management (APM) is the monitoring

and management of performance and availability of software applications.

vi. Cloud computing - Cloud computing is a type of Internet-based computing that

provides shared computer processing resources and data to computers and other devices

on demand. It is a model for enabling ubiquitous, on-demand access to a shared pool of

configurable computing resources (e.g., computer networks, servers, storage,

applications and services), which can be rapidly provisioned and released with minimal

5

management effort. Cloud computing and storage solutions provide users and

enterprises with various capabilities to store and process their data in either privately

owned or third-party data centres that may be located far from the user, ranging in

distance from across a city to across the world. Cloud computing relies on sharing of

resources to achieve coherence and economy of scale, similar to a utility (like the

electricity grid) over an electricity network.

vii. Internet - The Internet is the global system of interconnected computer networks that

use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of

networks that consists of private, public, academic, business, and government networks

of local to global scope, linked by a broad array of electronic, wireless, and optical

networking technologies. The Internet carries an extensive range of information

resources and services, such as the inter-linked hypertext documents and applications of

the World Wide Web (WWW), electronic mail, telephony, and peer-to-peer networks

for file sharing.

viii. Microservices architecture - Microservices architecture is an approach to application

development in which a large application is built as a suite of modular services. Each

module supports a specific business goal and uses a simple, well-defined interface to

communicate with other sets of services.

ix. Monolithic architecture - A software system is called "monolithic" if it has a

monolithic architecture, in which functionally distinguishable aspects (for example data

input and output, data processing, error handling, and the user interface) are all

interwoven, rather than containing architecturally separate components.

x. Service Oriented Architecture (SOA) - A service-oriented architecture (SOA) is a

style of software design where services are provided to the other components by

application components, through a communication protocol over a network. The basic

principles of service-oriented architecture are independent of vendors, products and

technologies

xi. Correlation – Correlation is a statistical measure that indicates the extent to which two

or more variables fluctuate together. A positive correlation indicates the extent to which

those variables increase or decrease in parallel; a negative correlation indicates the

extent to which one variable increases as the other decreases.

xii. Inductive reasoning - Inductive reasoning is a logical process in which multiple

premises, all believed true or found true most of the time, are combined to obtain a

6

specific conclusion. Inductive reasoning is often used in applications that involve

prediction, forecasting, or behaviour.

xiii. Academic research - the careful study of a given subject, field, or problem, undertaken

to discover facts or principles.

xiv. Best practices - industry or professional procedures that are accepted or prescribed as

being correct or most effective.

xv. Wikipedia - is a free online encyclopaedia, created and edited by volunteers around the

world and hosted by the Wikimedia Foundation.

xvi. Grid computing – can be defined as the use of computer resources from multiple

administrative domains to reach a common goal. It can be considered as a distributed

system with non-interactive workloads involving a large number of files, yet more

loosely coupled, heterogeneous, and geographically dispersed as compared to cluster

computing. In its simplest form, grid computing may be represented as a “super virtual

computer” composed of many networked loosely coupled computers acting together to

perform humongous tasks (Biswas, 2011).

xvii. Utility computing - involves the renting of computing resources such as hardware,

software and network bandwidth on an as-required, on-demand basis. In other words,

what were earlier considered products, are treated as services in utility computing

(Biswas, 2011).

xviii. Cloud infrastructure - A cloud infrastructure is the collection of hardware and

software that enables the five essential characteristics of cloud computing. The cloud

infrastructure can be viewed as containing both a physical layer and an abstraction

layer. The physical layer consists of the hardware resources that are necessary to

support the cloud services being provided and typically includes server, storage and

network components. The abstraction layer consists of the software deployed across the

physical layer, which manifests the essential cloud characteristics. Conceptually the

abstraction layer sits above the physical layer (Mell and Grance, 2011).

xix. Virtual Machine (VM) - is a software implementation of a machine (i.e. a computer)

that executes programs like a physical machine.

xx. Application Program Interface (API) - is code that allows two software programs to

communicate with each other. The API defines the correct way for a developer to write

a program that requests services from an operating system (OS) or other application.

APIs are implemented by function calls composed of verbs and nouns. The required

7

syntax is described in the documentation of the application being called (Rouse, Nolle

and Li, 2017).

xxi. Experimental research method - is a systematic and scientific approach to research in

which the researcher manipulates one or more variables, and controls and measures any

change in other variables (Explorable, 2009).

xxii. Non-probability sampling - is a sampling technique where the samples are gathered in

a process that does not give all the individuals in the population equal chances of being

selected (Explorable, 2009).

8

2 LITERATURE REVIEW

2.1 Chapter overview

This chapter explores the literature on the three key concepts that underpin this research

work, which include cloud computing, application architecture and application performance

management. The chapter begins by examining the meaning of cloud computing and defining

the key terminologies used in the subject and key developments in the area.

In discussing application architecture and performance, the chapter highlights two

architectures, looking at their advantages and disadvantages with respect to performance in a

cloud computing environment.

2.2 Cloud computing

2.2.1 What is cloud computing?

The definition of Cloud Computing has been evolving with time and has been a subject of

rigorous consultation between government, industry and academia over many years. This

section explores the various definitions that have emerged and are now widely used in the

contemporary literature on Cloud Computing.

In an attempt to understand the definition of Cloud Computing, it is argued that "Cloud

computing" is increasingly becoming one of those buzz words of the moment. As tends to

happen with buzz words (or phrases, in this case), it can be confusing to understand exactly

what everything is and how the various technologies differ from one another. In an interview

with a utility computing industry expert, an old definition emerged which stated that Cloud

computing enables users and developers to utilise services without knowledge of, expertise

with, nor control over the technology infrastructure that supports them (Danielson, 2017).

This definition appeared in early versions of Wikipedia which defined Cloud computing as

location-independent computing, whereby shared servers provide resources, software, and

data to computers and other devices on demand, as with the electricity grid. Or more simply,

remote computing. Cloud computing is a natural evolution of the widespread adoption of

virtualization, service-oriented architecture and utility computing. Details are abstracted from

consumers, who no longer have need for expertise in, or control over, the technology

infrastructure "in the cloud" that supports them (En.wikipedia.org, 2011).

9

In yet another early definition of Cloud computing, it was described as a new supplement,

consumption and delivery model for IT services based on the Internet, and it typically

involves the over-the-Internet provision of dynamically scalable and often virtualized

resources (Gartner., 2008) and (Knorr, 2008).

It is a byproduct and consequence of the ease-of-access to remote computing sites provided

by the Internet. This frequently takes the form of web-based tools or applications that users

can access and use through a web browser as if it were a program installed locally on their

computer (The Economist, 2009).

In another effort from the academia, Cloud Computing was described as the long-held dream

of computing as a utility, which has the potential to transform a large part of the Information

Technology (IT) industry, making software even more attractive as a service and shaping the

way IT hardware is designed and purchased. Developers with innovative ideas for new

Internet services no longer require the large capital outlays in hardware to deploy their

service or the human expertise to operate it. They need not be concerned about over-

provisioning for a service whose popularity does not meet their predictions, thus wasting

costly resources, or under-provisioning for one that becomes wildly popular, thus missing

potential customers and revenue. Moreover, companies with large batch-oriented tasks can

get results as quickly as their programs can scale, since using 1000 servers for one hour costs

no more than using one server for 1000 hours. (EECS Department, University of California,

Berkeley, 2009).

After years in the works and 15 drafts, the American National Institute of Standards and

Technology's (NIST) working definition of cloud computing, the 16th and final definition

was published as The NIST Definition of Cloud Computing, NIST Special Publication 800-

145 (Brown, 2011).

According to NIST, Cloud Computing is defined a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction (Mell and

Grance, 2011).

10

This definition by NIST has been adopted and expanded in Wikipedia, which defines Cloud

computing as a type of Internet-based computing that provides shared computer processing

resources and data to computers and other devices on demand. It is a model for enabling

ubiquitous, on-demand access to a shared pool of configurable computing resources (e.g.,

computer networks, servers, storage, applications and services), which can be rapidly

provisioned and released with minimal management effort. Cloud computing and storage

solutions provide users and enterprises with various capabilities to store and process their

data in either privately owned or third-party data centres located far from the user–ranging in

distance from across a city to across the world. Cloud computing relies on sharing of

resources to achieve coherence and economy of scale, similar to a utility (like the electricity

grid) over an electricity network (Wikipedia.com, 2017).

In cloud computing, the word cloud (also phrased as "the cloud") is used as a metaphor for

"the Internet," so the phrase cloud computing means "a type of Internet-based computing,"

where different services — such as servers, storage and applications — are delivered to an

organization's computers and devices through the Internet (Beal, 2017).

The metaphor of the cloud may be loosely based on the cloud shaped diagram used in

marketing and architectural diagrams to denote the Internet. In this sense the metaphor of a

cloud is something that is ubiquitous yet obscure; everywhere, yet abstracting its inner

technical workings from the less sophisticated, less interested, or less privileged user

(Cuttitta, 2013).

In more simplified terms, the Cloud computing metaphor suggests that for a user, the network

elements representing the provider rendered services are invisible, as if obscured by a cloud

(En.wikipedia.org, 2017).

11

The figure below illustrates the concept of cloud computing.

Figure 2.1: Cloud computing conceptual diagram (Johnston, 2017)

While discussing the subject of Cloud Computing, one must distinguish Cloud Computing

from other closely related terminology which may easily be confused to be synonymous with

cloud computing. These words include grid computing and utility computing, which are

described in the glossary of terms.

According to NIST, the Cloud computing model is composed of five essential characteristics,

three service models, and four deployment models (Mell and Grance, 2011).

Each of these components of the cloud model is explained in the sections that follow.

12

2.2.2 Essential characteristics of cloud computing

There are the five key characteristics that are enshrined in the cloud computing model (Mell

and Grance, 2011).

These characteristics are illustrated in the figure below:

Figure 2.2: Essential characteristics of cloud computing (Somepalle, 2015)

i. On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically without

requiring human interaction with each service provider.

ii. Broad network access. Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick client

platforms (e.g., mobile phones, tablets, laptops, and workstations).

iii. Resource pooling. The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources

dynamically assigned and reassigned according to consumer demand. There is a sense

of location-independence in that the customer has no control or knowledge over the

exact location of the provided resources but may be able to specify location at a

higher level of abstraction (e.g., country, state, or datacenter). Examples of resources

include storage, processing, memory, and network bandwidth.

iv. Rapid elasticity. Capabilities can be elastically provisioned and released, in some

cases automatically, to scale rapidly outward and inward commensurate with demand.

To the consumer, the capabilities available for provisioning often appear to be

unlimited and can be appropriated in any quantity at any time.

13

v. Measured service. Cloud systems automatically control and optimise resource use by

leveraging a metering capability at some level of abstraction for the type of service

(e.g., storage, processing, bandwidth, and active user accounts). Resource usage can

be monitored, controlled, and reported, providing transparency for both the provider

and consumer of the utilised service. Typically, the metering capability is based on a

pay-per-use or charge-per-use basis.

2.2.3 Cloud computing service models

The early description of the components of Cloud Computing argued that the Cloud model

has layers, with each providing a distinct level of functionality. This stratification of the

Cloud's components has provided a means for the layers of Cloud computing to become a

commodity just like electricity, telephone service, or natural gas. The commodity that cloud

computing sells is computing power at a lower cost and expense to the user (Walker, 2012).

However, in later years, there appears to be a general acceptance to describe the layers of the

Cloud model as the Cloud Service Models as outlined below:

i. Software as a Service (SaaS). The capability provided to the consumer is to use the

provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin client interface, such as a

web browser (e.g., web-based email), or a program interface. The consumer does not

manage or control the underlying cloud infrastructure including network, servers,

operating systems, storage, or even individual application capabilities, with the

possible exception of limited user-specific application configuration settings (Mell

and Grance, 2011).

The SaaS model is also described as the top layer of the Cloud service model, and it is

the layer that is most visualised as the Cloud. Applications run here and are provided

on demand to users. Software as a Service (SaaS) has providers such as Google Pack

which includes Internet accessible applications, tools such as Calendar, Gmail,

Google Talk, Docs, and much more (Walker, 2012).

ii. Platform as a Service (PaaS). The capability provided to the consumer is to deploy

onto the cloud infrastructure consumer-created or acquired applications created using

14

programming languages, libraries, services, and tools supported by the provider. The

consumer does not manage or control the underlying cloud infrastructure including

network, servers, operating systems, or storage, but has control over the deployed

applications and possibly configuration settings for the application-hosting

environment (Mell and Grance, 2011).

The PaaS model is also described as a middle layer of the Cloud, service model. It

provides the application infrastructure. Platform as a Service (PaaS) provides access

to operating systems and associated services. It provides a way to deploy applications

to the cloud using programming languages and tools supported by the provider. You

do not have to manage or control the underlying infrastructure, but you do have

control over the deployed applications and, to some degree over application hosting

environment configurations.

PaaS has providers such as Amazon's Elastic Compute Cloud (EC2). The small

entrepreneur software house is an ideal enterprise for PaaS. With the elaborated

platform, world-class products can be created without the overhead of in-house

production (Walker, 2012).

iii. Infrastructure as a Service (IaaS). The capability provided to the consumer is to

provision processing, storage, networks, and other fundamental computing resources

where the consumer can deploy and run arbitrary software, which can include

operating systems and applications. The consumer does not manage or control the

underlying cloud infrastructure but has control over operating systems, storage, and

deployed applications; and possibly limited control of select networking components

(e.g., host firewalls), (Mell and Grance, 2011).

IaaS is also described as the bottom layer and foundation of the Cloud, service model.

It consists of the physical assets — servers, network devices, storage disks, etc.

Infrastructure as a Service (IaaS) has providers such as the IBM® Cloud. Using IaaS

one has no control of the underlying infrastructure, but has complete management of

the operating systems, storage, deployment applications, and, to a limited degree,

control over select networking components (Walker, 2012).

15

The figure below depicts the cloud computing layers embedded in the “as Service”

components:

Figure 2.3: Cloud computing layers "as a Service" components (Walker, 2012).

The figure below depicts further details of the Cloud Computing service models:

Software as a Service (SaaS)

Business

Service

IT

Service

Business

Service

Business

Service

Community

Service

IT

Service

Business

Service

Business

Service

IT

Service

IT

Service

Community

Service

Community

Service

Business

Service

Business

Service

IT

Service

IT

Service

Community

Service

Community

Service

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 2.4: Cloud computing service models

2.2.4 Cloud computing deployment models

Whereas most literature discusses three models for deploying Cloud computing, there are

four deployment models as described below:

16

i. Private cloud. The cloud infrastructure provisioned for exclusive use by a single

organisation comprising multiple consumers (e.g., business units). It may be owned,

managed, and operated by the organisation, a third party, or some combination of

them, and it may exist on or off premises.

ii. Community cloud. The cloud infrastructure provisioned for exclusive use by a

specific community of consumers from organisations that have shared concerns (e.g.,

mission, security requirements, policy, and compliance considerations). It is owned,

managed, and operated by one or more of the organisations in the community, a third

party, or some combination of them, and it may exist on or off premises.

iii. Public cloud. The cloud infrastructure provisioned for open use by the general public.

It is owned, managed, and operated by a business, academic, or government

organisation, or some combination of them. It exists on the premises of the cloud

provider.

iv. Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud

infrastructures (private, community, or public) that remain unique entities, but are

bound together by standardised or proprietary technology that enables data and

application portability (e.g., cloud bursting for load-balancing between clouds).

2.2.5 Components of Cloud Computing Infrastructure

This section takes a deeper examination into the Infrastructure as a Service (IaaS) service

model and describes the major components of this layer which include: computing, storage

and network.

For each of these components, regardless of whether a cloud provider sells services at a low

level of abstraction like EC2 or a higher level like AppEngine, computing, storage, and

networking must all focus on horizontal scalability of virtualized resources rather than on

single node performance (Armbrust et al., 2010).

The sections below discuss the characteristics of these components.

i. Computing (processing)

Cloud infrastructure services, also known as "Infrastructure as a Service (IaaS)", delivers

computer infrastructure - typically a platform virtualization environment - as a service.

17

Rather than purchasing servers, software, data-center space or network equipment, clients

instead buy those resources as a fully outsourced service. Cloud infrastructure often takes the

form of a Tier-3 data centre with many Tier-4 attributes, assembled from hundreds of virtual

machines (Arias, 2011).

A data centre is a facility used to house computer systems and associated components, such

as telecommunications and storage systems. It includes redundant or backup power supplies,

redundant data communications connections, environmental controls (e.g., air conditioning,

fire suppression) and security devices. Large data centres are industrial scale operations using

as much electricity as a small town (En.wikipedia.org, 2015).

The figure below shows multiple racks of servers and how a data centre commonly looks.

Figure 2.5: Rows of servers inside an Amazon data centre (Amazon Web Services, 2015)

 According to the Uptime Institute, the most stringent level is a Tier 4 data centre, which is

designed to host mission critical computer systems, with fully redundant subsystems and

compartmentalised security zones controlled by biometric access control methods. Another

consideration is the placement of the data centre in a subterranean context, of data security as

well as environmental factors such as cooling requirements (Turner, P., Seader, J. and

Renaud, V., 2010).

As already pointed out, the cloud infrastructure derives computing power from hundreds of

virtual machines in a data centre. A virtual machine (VM) is a software implementation of a

machine (i.e. a computer) that executes programs like a physical machine.

Virtual machines are classified into two major categories, based on their use and degree of

correspondence to any real machine. A system virtual machine provides a complete system

18

platform which supports the execution of a complete operating system (OS). In contrast, a

process virtual machine is designed to run a single program, which means that it supports a

single process.

System virtual machines (sometimes called hardware virtual machines) allow the sharing of

the underlying physical machine resources between different virtual machines, each running

its independent operating system. The software layer providing the virtualization is called a

virtual machine monitor or hypervisor. A hypervisor can run on bare hardware (Type 1 or

native VM) or top of an operating system (Type 2 or hosted VM).

Below is an outline of the operation of the hypervisor in a cloud computing environment.

Virtual Machine Monitor (VMM)

The virtual machine monitor (VMM) or the hypervisor provides the means for simultaneous

use of cloud facilities as illustrated in the figure below.

Figure 2.6: How the Virtual Machine Monitor (VMM) works

VMM is a program on a host system that lets one computer support multiple, identical

execution environments. From the user's point of view, the system is a self-contained

computer which is isolated from other users.

In reality, every user is being served by the same machine. A virtual machine is one operating

system (OS) that is managed by an underlying control program allowing it to appear to be

multiple operating systems. In cloud computing, VMM enables users to monitor and thus

manage aspects of the process such as data access, data storage, encryption, topology,

addressing and workload movement.

19

ii. Storage

Storage is known as the warehouse of cloud computing.

Cloud storage is a model of networked online storage where data is stored on multiple virtual

servers, generally hosted by third parties, rather than being hosted on dedicated servers.

Hosting companies operate large data centres; and people who require their data to be hosted

buy or lease storage capacity from them and use it for their storage needs. The data centre

operators, in the background, virtualize the resources according to the requirements of the

customer and expose them as storage pools, which the customers can themselves use to store

files or data objects. Physically, the resource may span across multiple servers.

Cloud storage services are accessed either through a web service Application Programming

Interface (API) or a web-based user interface.

A cloud storage gateway can be optionally used at the customer premises, which expose

cloud storage services as if they were local storage devices. Cloud storage gateways are

network appliances or servers which translate standard cloud storage APIs such as Simple

Object Access Protocol (SOAP) or Representative State Transfer (REST) to either block-

based data storage protocols such as iSCSI or Fibre Channel, or file-based network storage

protocols such as Network File System (NFS) or Common Internet File System (CIFS) also

commonly known as Server Message Block (SMB).

The figure below illustrates the typical architecture of a cloud storage system which includes

a master control server (storage gateway) and multiple storage servers (Strickland, J., 2008).

Client Computer

Control Node

Database

(Storage)

Database

(Storage)

Database

(Storage)

auto
HP L1945w

input

HP rp5700

Figure 2.7: Cloud Storage System

20

iii. Network

Communications in data centres, which house the computing power of cloud computing, are

based on networks running the IP protocol suite. Data centres contain a set of routers and

switches that transport traffic between the servers and to the outside world. Redundancy of

the Internet connection is provided by using two or more upstream service providers.

Network security elements are also usually deployed: firewalls, VPN gateways, intrusion

detection systems, etc. Also common are monitoring systems for the network and some of the

applications. Additional off-site monitoring systems are also typical, in the case of a failure of

communications inside the data centre (Wikipedia, 2011).

Based on the various definitions of cloud computing, ultimately, the goal of cloud computing

– regardless of model – is to create a fluid pool of resources across servers and data centres

that enable users to access stored data and applications on an as-needed basis. Cloud

computing networks, therefore, have two missions:

a) to support the movement of that pool resources as a single virtual resource, and

b) to connect users to these resources regardless of location

To make that happen, cloud computing networks -- whether they support public, private or

hybrid clouds – must be able to:

a) Burst up and turn down bandwidth on demand

b) Provide extremely low latency throughput among storage networks, the data centre

and the LAN

c) Allow for non-blocked connections between servers for automated movement of

virtual machines (VMs).

d) Function within a management plane that stretches across enterprise and service

provider networks.

e) Provide visibility despite this constantly changing environment.

Cloud computing networks can be seen as three interdependent structures: the front-end,

which connects users to applications; a horizontal aspect, which interconnects physical

servers and the movement of their VMs; and storage networks. The larger cloud can be built

as either a Layer 2 or a Layer 3 network.

21

The figure below shows the different levels of cloud computing networks.

Coffee Shop

Hotel

Airport

Remote Office

Remote Office

Remote Office

Remote Office

Remote Office

Cable/DSL

T1/E1

Satellite

ISDN

56k
Home

Cable/DSL

3G

WiFi

WiFi

Internet

WAN

Data Center

Customer HQ

Cloud Service Provider

DS-C9513

STATUS

FAN

2

1

3

4

5

6

7

8

9

10

11

12

13

DS-13SLT-FAN-F

MDS 9500 SERIES

SUPERVISOR 2

DS-X9530-SF2-K9

CONSOLE

MGMT

10/100 LINK

ACT

COM1

CFST
AT

US

SY
ST

EM

AC
TIV

E

PW
R M

GM
T

RE
SE

T

USB 1

USB 2

SUPERVISOR 2

DS-X9530-SF2-K9

CONSOLE

MGMT

10/100 LINK

ACT

COM1

CFST
AT

US

SY
ST

EM

AC
TIV

E

PW
R M

GM
T

RE
SE

T

USB 1

USB 2

Figure 2.8: Cloud computing networks

2.2.6 Properties of Cloud Computing Infrastructure

Cloud computing is, at its core, about delivering applications or services in an on-demand

environment. Cloud computing providers will need to support hundreds of thousands of users

and applications/services and ensure that they are fast, secure, and available. To accomplish

this goal, they'll need to build a dynamic, intelligent infrastructure with four core properties

in mind: transparency, scalability, monitoring/management, and security (MacVittie, 2008).

i. Transparency

One of the premises of Cloud Computing is that services are delivered transparently

regardless of the physical implementation of the "cloud". Transparency is one of the

foundational concepts of cloud computing, in that the actual implementation of services in the

"cloud" are obscured from the user. Transparency, therefore, describes another version of

virtualization, where multiple resources appear to the user as a single resource.

It is unlikely that a single server or resource will always be enough to satisfy the demand for

a given provisioned resource, which means transparent load-balancing and application

delivery will be required to enable the transparent horizontal scaling of applications on-

demand. The application delivery solution used to provide open load-balancing services will

22

need to be automated and integrated into the provisioning workflow process such that

resources can be provisioned on-demand at any time.

For example, provisioning a service to a user or an organisation, it may need only a single

server (real or virtual) to handle demand at the beginning, but as more users access the

service, additional servers (real or virtual) are required. Transparency avails additional

servers to the provisioned service without interrupting the service or requiring

reconfiguration of the application delivery solution. With an integrated application delivery

solution, for example, via a management API with the provisioning workflow system, then

transparency is also achieved through the automated provisioning and de-provisioning of

resources.

ii. Scalability

Obviously, cloud computing service providers are going to need to scale up and build out

"mega data centres". Scalability is easy enough if you've deployed the proper application

delivery solution, but what about scaling the application delivery solution? That is often not

so easy, and it usually isn't a transparent process; there's configuration work and in many

cases, re-architecting of the network. The potential to interrupt services is high and assuming

that cloud computing service providers are supporting hundreds of thousands of customers,

unacceptable.

The application delivery solution is going to need not only to provide the ability to scale the

service infrastructure transparently but itself, as well. That is a tall order and something rarely

seen in an application delivery solution.

Making things even more difficult will be the need to scale on-demand in real-time to

optimise the use of application infrastructure resources. Analysts suggest that scalability will

require a virtualized infrastructure such that resources are provisioned and de-provisioned

quickly, easily and one hopes, automatically. The "control node" often depicted in high-level

diagrams of the "Cloud Computing mega data centre" will need to provide on-demand

dynamic application scalability. The control node will, therefore, require integration with the

virtualization solution and the workflow or process responsible for provisioning.

23

iii. Intelligent Monitoring

To achieve the on-demand scalability and transparency required of a mega data centre in the

cloud, the control node, i.e. application delivery solution, will need to have intelligent

monitoring capabilities. It will need to understand when a particular server is overwhelmed

and when network conditions are adversely affecting application performance. It needs to

know the applications and services being served from the cloud and understand when

behaviour is outside accepted norms. While this functionality can confidently be

implemented externally in a massive management monitoring system, if the control node sees

clients, the network, and the state of the applications it is in the best position to understand

the real-time conditions and performance of all involved parties without requiring the heavy

lifting of correlation that would be required by an external monitoring system.

But more than just knowing when an application or service is in trouble, the application

delivery mechanism should be able to take action based on that information. If an application

is responding slowly and is detected by the monitoring system, then the delivery solution

should adjust application requests accordingly. If the number of concurrent users accessing a

service is reaching capacity, then the application delivery solution should be able to not only

detect that through intelligent monitoring but participate in the provisioning of another

instance of the service to ensure service to all clients.

iv. Security

Security in Cloud Computing is critical, especially when you consider that if the cloud is

compromised, potentially all services and associated data in the cloud are at risk. That means

that the mega data centre must be architected with security in mind and it must be considered

a priority for every application, service, and network infrastructure solution deployed.

The application delivery solution, as the "control node" in the mega data centre, is necessarily

one of the first entry points into the cloud data centre and must itself be secure.

It should also provide full application security - from layer 2 to layer 7 - to thwart potential

attacks at the edge. Network security, protocol security, transport layer security, and

application security should be prime candidates for implementation at the perimeter of the

cloud, in the control node. While there certainly will be and should be, additional security

24

measures deployed within the data centre, stopping as many potential threats as possible at

the edge of the cloud will alleviate much of the risk to the internal service infrastructure.

2.3 Application architectures

2.3.1 Definitions

Application architecture is the organizational design of an entire software application,

including all sub-components and external applications interchanges. There are several

design patterns that are used to define this type of architecture, and these patterns help to

communicate how an application will complete the necessary business processes as defined

in the system requirements (Holmes, 2017).

The application architecture is used as a blueprint to ensure that the underlying modules of an

application will support future growth. Growth can come in the areas of future

interoperability, increased resource demand, or increased reliability requirements. With a

completed architecture, stakeholders understand the complexities of the underlying

components should changes be necessary in the future.

Microsoft on the other hand defines software application architecture as the process of

defining a structured solution that meets all of the technical and operational requirements,

while optimizing common quality attributes such as performance, security, and

manageability. It involves a series of decisions based on a wide range of factors, and each of

these decisions can have considerable impact on the quality, performance, maintainability,

and overall success of the application (Microsoft Patterns and Practices Team, 2009).

Application architecture is the discipline that guides application design. Application

architecture paradigms, such as service-oriented architecture (SOA), provide principles that

influence design decisions and patterns that provide proven design solutions.

One of the realities of application development is that there are a lot of factors that go into its

underlying architecture.

25

2.3.2 Application architecture styles

In their early work, David and Mary introduce a discusson on common architectural styles

upon which many systems are currently based and show how different styles can be

combined in a single design (Garlan and Shaw, 1994).

The table below shows a summary of architecture styles (Patterns & Practices Team, 2009).

Table 2.1: Summary of architecture styles

Architecture style Description

Client/Server Segregates the system into two applications, where the client makes requests to the

server. In many cases, the server is a database with application logic represented as

stored procedures.

Component-Based

Architecture

Decomposes application design into reusable functional or logical components that

expose well-defined communication interfaces.

Domain Driven

Design

An object-oriented architectural style focused on modeling a business domain and

defining business objects based on entities within the business domain.

Layered Architecture Partitions the concerns of the application into stacked groups (layers).

Message Bus An architecture style that prescribes use of a software system that can receive and

send messages using one or more communication channels, so that applications can

interact without needing to know specific details about each other.

N-Tier / 3-Tier Segregates functionality into separate segments in much the same way as the

layered style, but with each segment being a tier located on a physically separate

computer.

Object-Oriented A design paradigm based on division of responsibilities for an application or system

into individual reusable and self-sufficient objects, each containing the data and the

behavior relevant to the object.

Service-Oriented

Architecture (SOA)

Refers to applications that expose and consume functionality as a service using

contracts and messages

2.3.3 Monolithic architecture

In software engineering, a monolithic application describes a single-tiered software

application in which the user interface and data access code are combined into a single

program from a single platform. A monolithic application is self-contained and independent

from other computing applications.

26

A monolithic architecture is the traditional unified model for the design of a software

program.

Monolithic, in this context, means composed all in one piece. Monolithic software is

designed to be self-contained; components of the program are interconnected and

interdependent rather than loosely coupled as is the case with modular software programs. In

a tightly-coupled architecture, each component and its associated components must be

present in order for code to be executed or compiled (Rouse and Wigmore, 2016).

In a different approach to the definition of the monilithic architecture, it is argued that a

monolith is an architectural style or a software development pattern that fits into three

viewtypes that include module, allocation and runtime monoliths (Annett, 2014).

These viewtypes are discussed below.

 Module - The code units and their relation to each other at compile time.

 Allocation - The mapping of the software onto its environment.

 Runtime - The static structure of the software elements and how they interact at

runtime.

A monolith could refer to any of the basic viewtypes above.

Module monolith

In the case of a module monolith then all of the code for a system is in a single codebase that

is compiled together and produces a single artifact. The code may still be well structured

(classes and packages that are coherent and decoupled at a source level rather than a big-ball-

of-mud) but it is not split into separate modules for compilation.

Conversely a non-monolithic module design may have code split into multiple modules or

libraries that can be compiled separately, stored in repositories and referenced when required.

There are advantages and disadvantages to both. However, the module monolith gives little

insight into how the code is used as it is primarily done for development management.

27

Figure 2.9: Module monolith (Annett, 2014)

Allocation Monolith

For an allocation monolith, all of the code is shipped/deployed at the same time. Once the

compiled code is 'ready for release' then a single version is shipped to all nodes. All running

components have the same version of the software running at any point in time. This is

independent of whether the module structure is a monolith. The entire codebase can either be

compiled at once for deployment or may be compiled as a set of deployment artifacts from

multiple sources and versions. Either way this version for the system is deployed everywhere

at once, often by stopping the entire system, rolling out the software and then restarting.

A non-monolithic allocation would involve deploying different versions to individual nodes

at different times. This is again independent of the module structure as different versions of a

module monolith could be deployed individually.

28

Figure 2.10: Allocation monolith (Annette, 2014)

Runtime Monolith

A runtime monolith will have a single application or process performing the work for the

system, although the system may have multiple external dependencies. Many systems have

traditionally been written as runtime monolithis, especially for line-of-business systems such

as Payroll, Accounts Payable, Content Management Systems (CMS), etc.

Whether the runtime is a monolith is independent of whether the system code is a module

monolith or not. A runtime monolith often implies an allocation monolith if there is only one

main node/component to be deployed. However, this may not be the case if a new version of

software is rolled out across regions, with separate users, over a period of time.

Figure 2.11: Runtime monolith (Annette, 2014)

Note that in these examples above are slightly forced for the viewtypes and it won't be as

hard-and-fast in the real world.

29

Pros and cons of monilithic architecture

Here are the pros and cons of monolithic applications (Gooen, 2014):

Pros

 Faster initial development: With one application, it would be relatively easy to add

additional features, especially when the application is relatively small. Several features

were added to the 80,000 Hours codebase relatively easily (it would have taken more

code to have separate applications for each one).

 Little user confusion: Users wouldn't have to learn about different applications, but would

be focussed towards one application. For example, new applications on the same platform

would be more easily found by users to the existing applications.

 Improved integration: Features could integrate with each other well and easily, as there is

only one user table.

 User interface similarity: All of the pieces of the application would look very similar, so it

would be obvious it's all part of one system.

 Power centralization (the good parts): If we have someone who is significantly better than

average in charge, and it stays that way, then this would be a way to possibly improve

development on average.

Cons

 Substantially less iteration: The larger a website is, the more difficult it is to change it. It

would be incredibly tough, for example, to change the theme or UI or a monolith

application. The means that we would have significantly less experimentation. This is

one reason why the 80,000 Hours social network was put on hold after the redesign; it

would have vastly increased the time to actually make that happen.

 Maintenance: The larger a website is, the more difficult it becomes to maintain the entire

thing. Maintenance costs may go up exponentially with site size. This is one reason why

many startups, with large amounts of funding (1-20 million dollars) have relatively

simple websites. Large ones, especially large ones with large feature sets, typically don't

have good reputations for stability.

 Power centralization: Obviously if there's one monolith application, it would ultimately

be owned by one person or organization. If all application uses would be put into this

30

application, then this is a lot of power to trust in one organization. There's currently a

decent level of distrust and conflicting goals between EA organizations. Thus, to have

one EA organization in charge of all EA applications (one large one) would present a

situation that could create controversy.

 Bureacracy: Even with power centralization being accepted, what would ownership of the

site look like? If one wanted to take control of the 'volunteering' portion, would they have

to ask the person in charge of the entire application?

 High set-up costs: In order to get each new volunteer up and running, the larger the

application, the more difficult this would be. The volunteer would have to understand the

infrastructure of whatever they do, so this could be a pretty big issue.

 Less chance of outside popularity: With a hive of web applications, if any single one does

well (money tracker, less-wrong-blog, etc), it can spin out and become popular among

more than EAs. With only one, we would have to hope that the entire thing would be

popular, and also that this would not have happened anyone.

 Less ownership by volunteers: With an ecosystem of projects, we can encourage

individuals to take ownership of their own projects. The projects would be like 'mini-

startups' and individual motivation would be very much linked to project success.

Motivation would be expected to go down substantially if it's a small part of someone

else's project. Typically a good open source project has 1 main maintainer who does 80%

of the work.

2.3.4 Microservices architecture

Microservices - also known as the microservices architecture - is an architectural style that

structures an application as a collection of loosely coupled services, which implement

business capabilities. The microservices architecture enables the continuous

delivery/deployment of large, complex applications. It also enables an organization to evolve

its technology stack (Richardson, 2017).

Essentially, microservices architecture is a method of developing software applications as a

suite of independently deployable, small, modular services in which each service runs a

unique process and communicates through a well-defined, lightweight mechanism to serve a

business goal (Huston, 2017).

31

Thanks to its scalability, this architectural method is considered particularly ideal when you

have to enable support for a range of platforms and devices—spanning web, mobile, Internet

of Things and wearables or simply when you’re not sure what kind of devices you’ll need to

support in an increasingly cloudy future.

Out of their experience in working with microservices, James and Martin (Lewis and Fowler,

2014) argue that while there is no precise definition of this architectural style, there are

certain common characteristics around organization around business capability, automated

deployment, intelligence in the endpoints, and decentralized control of languages and data.

They therefore propose that the microservices architectural style is an approach to developing

a single application as a suite of small services, each running in its own process and

communicating with lightweight mechanisms, often an HTTP resource API. These services

are built around business capabilities and independently deployable by fully automated

deployment machinery. There is a bare minimum of centralized management of these

services, which may be written in different programming languages and use different data

storage technologies.

With yet another perspective of microservices architecture, a microservice is defined as a

tightly scoped, strongly encapsulated, loosely coupled, independently deployable and

independently scalable application component. Based on a combination of Services Oriented

Architecture (SOA) and domain-driven design (DDD), microservices architecture is a design

paradigm that has three core objectives: development agility, deployment flexibility and

precise scalability (Thomas and Gupta, 2017).

Pros and Cons

Whether or not microservices architecture is the right architecture depends on the

requirements, because they all have their pros and cons. Below is an outline of some of the

good and bad:

Pros

 Microservices architecture gives developers the freedom to independently develop

and deploy services

 A microservice can be developed by a fairly small team

32

 Code for different services can be written in different languages (though many

practitioners discourage it)

 Easy integration and automatic deployment (using open-source continuous integration

tools such as Jenkins, Hudson, etc.)

 Easy to understand and modify for developers, thus can help a new team member

become productive quickly

 The developers can make use of the latest technologies

 The code is organized around business capabilities

 Starts the web container more quickly, so the deployment is also faster

 When change is required in a certain part of the application, only the related service

can be modified and redeployed—no need to modify and redeploy the entire

application

 Better fault isolation: if one microservice fails, the other will continue to work

(although one problematic area of a monolith application can jeopardize the entire

system)

 Easy to scale and integrate with third-party services

 No long-term commitment to technology stack

Cons

 Due to distributed deployment, testing can become complicated and tedious

 Increasing number of services can result in information barriers

 The architecture brings additional complexity as the developers have to mitigate fault

tolerance, network latency, and deal with a variety of message formats as well as load

balancing

 Being a distributed system, it can result in duplication of effort

 When number of services increases, integration and managing whole products can

become complicated

 In addition to several complexities of monolithic architecture, the developers have to

deal with the additional complexity of a distributed system

 Developers have to put additional effort into implementing the mechanism of

communication between the services

33

 Handling use cases that span more than one service without using distributed

transactions is not only tough but also requires communication and cooperation

between different teams

 The architecture usually results in increased memory consumption

 Partitioning the application into microservices is very much an art

Examples of microservices applications in industry

As Martin Fowler points out, Netflix, eBay, Amazon, the UK Government Digital Service,

realestate.com.au, Forward, Twitter, PayPal, Gilt, Bluemix, Soundcloud, The Guardian, and

many other large-scale websites and applications have all evolved from monolithic to

microservices architecture (Lewis and Fowler, 2014).

Netflix has a widespread microservices architecture that has evolved from monolithic to what

has been described by the architect of Netflix as fine grain SOA. It receives more than one

billion calls every day, from more than 800 different types of devices, to its streaming-video

API. Each API call then prompts around five additional calls to the backend service

(Wetherill, 2014).

Amazon has also migrated to microservices. They get countless calls from a variety of

applications—including applications that manage the web service API as well as the website

itself—which would have been simply impossible for their old, two-tiered architecture to

handle.

The auction site eBay is yet another example that has gone through the same transition. Their

core application comprises several autonomous applications, with each one executing the

business logic for different function areas.

2.4 Application architecture and performance

There are diverse factors that can impact the performance of applications implemented in a

Cloud computing environment.

A research conducted by APMdigest (APMdigest - Application Performance Management,

2013), involving many of the Application Performance Management (APM) industry's

experts — from analysts and consultants to users and the top vendors — reveals their

34

perspectives on the root causes of application performance problems. Based on the research,

APMdigest compiled a list of 15 factors that impact application performance. In their

conclusion, the list provides a broad picture of the many factors out there impacting

application performance, which must be must be considered when managing application

performance.

In an updated version of the APMdigest research report (APMdigest - Application

Performance Management, 2016), 3 years later after the first research, due to the rapid

changes in technology and the emergence of more experts in the APM field, the listed

number of factors impacting application performance had doubled.

Broadly, these factors that impact application performance fall into one of two major groups:

factors that are part of the environment, or factors within the application itself.

Out of the diverse factors, it has been pointed out that the top factor that impacts application

performance is the architecture of the application itself. Often times you see this when an

application is moved or migrated to another environment. For example, the impact of a

"chatty" application can be hidden or mitigated on a high speed local LAN, but once moved

to the cloud, the slower telecom speeds expose this design flaw in the form of high latency

(APMDigest, 2016).

From yet another perspective, application design/architecture/complexity has been identified

as the top factor that impacts application performance. It can be quite difficult to mitigate the

effects of poor design, even with a great deal of additional work. Poorly designed

applications may suffer from poor performance even with relatively low traffic (APMDigest,

2016).

A bad design/architecture decision will affect the performance of an application throughout

its life time. Applications are complex, often comprised of shared services and deployed on

shared infrastructure, like the Cloud computing environment. A good architecture requires

understanding the relationships and interactions between the various components, and doing

so without sacrificing user experience.

35

2.5 Summary of the Literatures

The literature research shows the complexity of the issues relating to cloud computing,

application architectures and application performance. Most of the research work referenced

in this study is from industry experts and is complemented by limited academic literature on

the subjects.

It can however be inferred that the performance of cloud based applications will be affected

by the design of the applications and how the design enables the application to take

advantage of the capabilities of the cloud computing environment which provides

dynamically scalable and virtualized computing resources.

The intent of this study is to assess the relationship between application architecture and the

performance of applications in a cloud computing environment.

36

2.6 Conceptual Framework

2.6.1 Definition

This research seeks to discover the relationship between application architecture and the

performance of applications in a cloud computing environment.

The conceptual framework represents the researcher’s synthesis of literature on how to

explain a phenomenon. It maps out the actions required in the course of the study to realize

the research objectives (Regoniel, 2016). The conceptual framework therefore identifies the

variables required in the research investigation and clarifies the relationships among the

particular variables (McGaghie, Bordage and Shea, 2001).

In this section therefore, the conceptual framework for the research is presented. To begin

with, a conceptual framework for Application Performance Management (APM) is presented.

It is followed by a careful examination of various definitions of performance and scalability.

The conceptual framework used for this study and the hypotheses tested are then discussed.

2.6.2 Gartner’s Application Performance Management Conceptual Framework

In order to develop the conceptual framework for this research, a review of the Gartner APM

conceptual framework was conducted.

In this conceptual framework, (Gartner, 2010) has defined five distinct dimensions of, or

perspectives on, end-to-end application performance, which are essential to application

performance management. Gartner points out that although each of these five dimensions are

distinct, and often deployed by different stakeholders, there is a high-level, circular workflow

that weaves the five dimensions together (Goldin, 2011).

37

The conceptual framework is illustrated in the figure below:

Dimensions Areas of Focus

 Agentless (RUM) – [First]

 Multiple Protocol Analytics

 Synthentic Probes & Robots

 Transaction Path Snapshots

 Bottom Up / Top Down

 Monitor Cloud Apps

 User Defined Transactions

 URL / Page Definitions

 8 – 12 High Level Groups

 Middleware (Apps &

Message)

 Runtime (J2EE & .NET)

 See 2nd Dimension ADDM

 Collect Raw Data

 Common Set of Metrics

 Averages & Percentiles

Potential Benefits

 APM Value: 80% Value comes from EUE

 Agentless is low risk (Port Mirroring)

 Quick implementation (< 2 days)

 Robots – availability & low vol. trends

 Better service dependency mappings

 Understanding how network topologies

interact with application architecture

 Change impact assessment

 Meaningful SLAs to the Business

 Strengthen trust with Business

 Provide early warning trend reports

 Better code reviews and resolution

 Increase accuracy of quality testing

 Fast RCA on performance slow downs

 Service Level Management

 Application Profiling (Building

Baselines)

 Capacity Planning / Trend Analysis

Application Performance

Management (APM)

End User

Experience

Run Time

Architecture

 Business

Transactions

Deep Dive

Component

Monitoring

Analytics /

Reporting

Figure 2.12: Gartner's APM conceptual model

The five dimensions of the framework are discussed below.

End User Experience (EUE)

End-user experience monitoring is the first step, which captures data on how end-to-end

performance impacts the user and identifies the problem.

In his view of how to prioritize Gartner’s model, (Dragich, 2012) asserts that Real-time

Application Monitoring, also referred to as Top Down monitoring, is the cornerstone that

gives the EUE its tangible value. Based on experience it is considered that Real User

Monitoring (RUM) technology provides at least 80% of the APM value in terms of

application visibility for the business and helps lay the foundation for performance trending

and predictive analysis.

This approach of Top Down monitoring has two components, Passive and Active. Passive

monitoring is usually an agentless appliance and low risk to implement using network port

mirroring. In general, this can be up and running providing details of the application

performance in less than two days. When considering an agentless solution, a key feature to

look for is the ability to support multiple protocol analytics (e.g. XML, SAP ABAP, SQL)

since most companies have more than just web-based applications to support.

38

Active monitoring, on the other hand, consists of synthetic probes and web robots which help

report on system availability and predefined business transactions. This is a good

complement when used with passive monitoring that together will help provide visibility on

application health during off peak hours when transaction volume is low.

In their analysis of the model, (Xangati, 2016), present the passive and active methods of

EUE monitoring as Agentless Monitoring and Synthetic Monitoring respectively. They also

outline the advantages and disadvantages of each method.

i) Agentless Monitoring

Network traffic is tapped as it passes through switches and load balancers, and analyzed with

data probes. The analysis reveals the performance of transactions across the entire IT

infrastructure.

Advantages of this method:

 Data is presented quickly, since there are no complex scripts

 It is possible to get user-specific information such as the browser, geographical

location, OS, and the like.

Disadvantages:

 Performance can only be tracked from the IT landscape to the end-user and not vice-

versa

 Monitoring will not work without users or if there is an interruption just before the

point whereby network traffic is being tapped

ii) Synthetic Monitoring

This involves running scripts using robots/probes to create a simulated end-user. One can

therefore simulate several users at the same time using multiple monitoring robots, to create a

constant flow of monitored traffic. One can also respond to possible faults quickly and in

real-time without any real users.

39

Advantages of this method:

 There is always data available, with or without real users

 Results are never subjected to outside influences, since the pattern you run on the

application is fixed

 Application errors can be detected before the application is opened

 Method can also be used to monitor the SLAs for applications

Runtime Application Architecture

This is the second dimension of the model, in which the software and hardware components

involved in application execution and their communication paths are studied to establish the

potential scope of the problem.

This is also referred to as Bottom Up monitoring. This will become a critical component to

build on when working on event correlation to help implement an overall runtime

architecture solution.

Providing the transaction path snapshots will also help bring together the Top Down and

Bottom Up monitoring. This will give better service dependency mappings and an

understanding on how the network topologies interact with the application architecture.

Runtime views become an important area to focus on after one has built a solid application

profile with the EUE, Business Transactions and Reporting/Analytics dimensions.

From their perspective, (Xangati, 2016), argue that this second dimension of the APM model

helps to avoid errors while making changes, by performing a thorough Impact Analysis

beforehand. With the ability to monitor the underlying IT infrastructure using a signal, then

one can detect and clear faults much faster.

They contend, however, that a thorough understanding of IT infrastructure is required at this

stage, or one could set up a chain reaction of unfavorable events. Human error can be

minimized with tools that ensure information is accurate, by periodically scanning the IT

infrastructure.

40

Business transaction

This is the third dimension which involves examining user-defined transactions, as they move

across the paths defined in second dimension.

Using a subset of this dimension, the focus is on the user defined transactions or the URL

page definition that has some meaning to the Business community. There may be 200 to 300

unique pages definitions for any given application however; these can be grouped together

into 8-12 high level business transaction categories. This helps begin the process of

articulating meaningful SLAs to the business and provides early warning trend reports on

performance degradation before it becomes apparent to the majority of the user population.

Since synthetic monitoring uses predefined transactions implemented at known intervals,

they are the most suitable data source.

Deep dive component monitoring

This dimension is generally targeted in the middleware space focusing on the Web,

application and messaging Servers. It provides the runtime view of the J2EE and .NET

stacks, tying them back to the user defined business transactions. Component monitoring

covers every element within the IT infrastructure periodically, enabling faults that affect end

user experience to be detected and resolved as soon as possible.

A robust solution will give a clear path from the code execution standpoint (e.g. springs,

struts, etc.), to the URL rendered, to the user request and where it came from.

Analytics/Reporting

There is a lot of data generated by these tools from the other dimensions. The key to

maximizing returns lies in translating this big data correctly. It also enables better forecasting,

and more importantly, information about current trends.

A good practice therefore is to collect the raw data from the other tool sets that will enable

one to answer a wide variety of performance questions as they arise.

41

2.6.3 Performance and scalability

To define the conceptual framework for this research, the following definitions and

distinction between performance and scalability were considered.

In his book, (Haines, 2006), seeks to clarify the difference between performance and

scalability by asserting that the terms “performance” and “scalability” are commonly used

interchangeably, but the two are distinct: performance measures the speed with which a

single request can be executed, while scalability measures the ability of a request to maintain

its performance under increasing load.

He illustrates this definition with an example that the performance of a request may be

reported as generating a valid response within three seconds, but the scalability of the request

measures the request’s ability to maintain that three-second response time as the user load

increases.

Referencing the example above, he adds that scalability asks the following questions about

the request:

• At the expected usage, does the request still respond within three seconds?

• For what percentage of requests does it respond in less than three seconds?

• What is the response time distribution for requests that do not respond within three seconds?

In his blog, (Vogels, 2006), proposes that a service is said to be scalable if when there is an

increase in the resources in a system, it results in increased performance in a manner

proportional to resources added. He further explains that increasing performance in general

means serving more units of work, but it can also be to handle larger units of work, such as

when datasets grow.

While giving a critique to this definition, (Cecchet, 2006), argues that statement "A service is

said to be scalable if when we increase the resources in a system, it results in increased

performance in a manner proportional to resources added" is ambiguous. He further explains

that, one can have a perfectly scalable system but if no resource is maxed out before adding

new resources, it is unlikely that to see any performance improvement.

42

From his point of view, (Cecchet, 2006), postulates the definition of scalability as constant

ratio between workload and throughput. By this definition, he explains that if workload

increases proportionally to the resources added, then the throughput should increase in that

same proportion.

In yet another effort to define scalability, (Kersey, 2000) posits that:

Scalability for a given application A on a platform P is

S(A,P) = R(A,P) / C(A,P)

where

R = Maximum number of requests processed per second by application A on platform P

C = Cost of hardware and software to develop and support application A on platform P

This definition assumes 100% availability for the purposes of the discussion, but adds that

availability could be added as an input to the definition, if desired.

By this definition, (Kersey, 2000), states that term displays the expected behavior shown by

common usage of the term "scalability" as follows:

 As throughput R increases, scalability increases

 As cost C increases, scalability decreases

In addition, he makes the following assertions:

 Different platforms and different software may be compared using this definition

 The definition can be used to estimate costs of a proposed system, given an

anticipated user load.

 Both R and C can be estimated using known techniques.

He summarizes the definition by stating that scalability's dimensions would be "requests

processed per second per dollar".

The use of this definition is illustrated in the example below, which compares the scalability

of an application on 2 different platforms as follows:

43

Given the following known values for a single application Z,

Option 1: running on platform X:

R(Z) = 1000 requests/second,

C(Z) = $40,000

S(Z) = 1000 requests/second / $40,000 = 0.025

Option 2: running on not-so-fast but less expensive platform Y:

R(Z) = 500 requests/second,

C(Z) = $10,000

S(Z) = 500 requests/second / $10,000 = 0.05

While platform Y's throughput (performance) is much less than that of platform X, Y is much

more scalable than (in fact is twice as scalable as) platform X when running application Z.

In conclusion, (Kersey, 2000), suggests that this definition can also be used to estimate the

utility of using various software methodologies. For example, heavy use of components or

object technology may or may not change each factor in the definition, however, the degree

to which each factor is changed determines whether the resultant system is more or less

scalable.

2.6.4 Proposed conceptual framework

Referencing the Gartner conceptual framework for Application Performance Monitoring

(APM), the research considers the first and second dimensions of APM model. The research

will examine the first dimension of End User Experience (EUE), which captures data on how

end-to-end performance impacts the user.

In order to understand the relationship between the architecture of an application and its

performance, the research will also examine the second dimension of the APM model which

is focused on the runtime architecture of applications.

44

The conceptual framework is illustrated in the research paradigm diagram below showing the

relationship between the independent variable (Load), dependent variables (Performance and

Throughput) and the moderating variable (Architecture).

Performance
Cloud Based

Application
Load

Architecture

Throughput Scalability

Hypothesis 1: Correlation model

Hypothesis 2: Moderation model

Figure 2.13: Research paradigm diagram for the conceptual model

For this conceptual framework, the definition by (Kersey, 2000) is adopted as follows:

Scalability for a given application A on a platform P is

Scalability S(A,P) =
Throughput T(A,P)

Cost C(A,P)

where

Throughput T(A,P) = maximum number of requests processed per second by application A

on platform P

Cost C(A,P) = Cost of hardware and software to develop and support application A on

platform P

45

Using this definition, the variables that were to be measured in the study were:

Independent variable - Load

 Load L(A,P), measured by number of concurrent users using application A on

platform P

Dependent variable - Performance

 Performance R(A,P) measured by the average response time to process a single

request by application A on platform P

Dependent variable - Throughput

 Throughput T(A,P) measured by the maximum number of requests processed per

second by application A on platform P

Moderating variable - Architecture

 The application A and platform P together constitute the application architecture in a

cloud computing environment which affects the strength of the relationship between

load L(A,P) and throughput T(A,P). Application architecture was therefore considered

as the moderating variable.

2.6.5 Hypotheses

The following hypotheses were postulated for testing.

Hypothesis 1

Using the definition of scalability by (Kersey, 2000), the following thesis statement was

postulated: As throughput increases, scalability increases. Therefore, there is a positive

relationship between throughput and scalability, such that high values of throughput are

associated with high values of scalability.

The study therefore sought to answer the question: What is the correlation between

throughput and scalability of cloud based applications?

46

The following hypothesis was tested:

Null hypothesis:

H0: ρ = 0; the correlation coefficient for the population is zero. There is no statistically

significant relationship between throughput and scalability of applications.

Alternative hypothesis:

H1: ρ ≠ 0; the correlation coefficient for the population is not equal to zero. There is a

statistically significant relationship between throughput and scalability of applications.

Hypothesis 2

Based on the conceptual framework, the following thesis statement was postulated: The

architecture of a software application controls how the application utilizes computing

resources and therefore impacts the performance of the application when processing load.

The study therefore sought to answer the question: Does application architecture moderate

the relationship between load and application performance?

The following hypothesis was tested:

Null hypothesis:

H0: Application architecture does not moderate the relationship between load and

performance.

Alternative hypothesis:

H1: Architecture does moderate the relationship between load and performance.

47

2.6.6 Operational definitions

Independent variable - Load

The values of the following indicators control the independent variable Load:

i) Number of concurrent users

ii) Number of requests

iii) Number of transactions

iv) Number of database queries

Dependent variable - Performance

The values of the following indicators are examined to show the effect on the dependent

variable Performance:

i) Response time for a single request

ii) Response time for a single transaction

iii) Response time for a single database query

Dependent variable - Throughput

The values of the following indicators are examined to show the effect on the dependent

variable Throughput:

i) Number of requests processed within a specific timeframe

ii) Number of transactions processed within a specific timeframe

iii) Number of database queries processed within a specific timeframe

Moderating Variable - Architecture

For the moderating variable Architecture, the following indicators show the utilization of

computing resources (Haines, 2006) in the duration of the study:

i) CPU utilization

ii) Physical memory utilization

iii) Operating system disk I/O rates

48

iv) Operating system thread/process utilization

v) Application server thread pool utilization

vi) Application server connection pool utilization

vii) Application server heap utilization and garbage collection rates (frequency and

duration)

viii) Application server cache and pool utilizations

ix) Messaging system utilizations

x) Network traffic sent between application nodes

2.6.7 Graduated Load Test

A graduated load tester proposed by (Haines, 2006) is configured to climb to the expected

usage in a regular and predefined pattern and then increase load in graduated steps. The

purpose behind this configuration is to allow the researcher to capture and analyze

performance metrics at discrete units of load. The behavior of graduated load generation is

illustrated in the figure below:

Figure 2.14: Graduated load test

49

2.6.8 Enterprise application behavior pattern

By following the graduated load test approach, the behavior of a loaded enterprise application

follows the typical pattern illustrated in the figure below (Haines, 2006).

Figure 2.15: A loaded enterprise application follows this typical pattern

50

3 RESEARCH METHODOLOGY

3.1 Research design

Experimental research method (Explorable, 2008), was used in this study.

This study sought to find answers to the following questions:

 How does changing work load affect the response time of an application request?

 How does changing work load affect the throughput of an application?

 How does changing work load affect utilization of computing resources?

In order to answer these questions, an experiment was setup using a cloud based platform

with computing resources to conduct various application performance tests in line with the

research hypotheses and the conceptual framework.

Due to the sampling method used to select the test applications and the fact that there was no

control group, this research method fell in the category of quasi-experiment design.

3.1.1 Independent variable

The independent variable that was manipulated, or treatment variable was load. The

treatment was administered by following the graduated load test approach (Haines, 2006).

The actual load conditions that were manipulated in the experiment included:

 Number of concurrent users

 Number of requests

 Number of transactions

 Number of database queries

3.1.2 Dependent variables

The effect of treatment applied to the independent variable was measured by the dependent

variable performance and throughput.

51

In particular the following factors were measured:

 Response time for a single request

 Response time for a single transaction

 Response time for a single database query

 Number of requests processed within a specific timeframe

 Number of transactions processed within a specific timeframe

 Number of database queries processed within a specific timeframe

3.1.3 Sampling technique

For this experiment, convenience sampling technique was used. This is non-probability

sampling technique where subjects are selected because of their convenient accessibility and

proximity to the researcher (Explorable, 2009). With this technique, 17 web applications

were identified as available and accessible for performing graduated load tests.

3.1.4 Experimental group

This was the set of 17 web based applications that were selected using the convenience

sampling technique. These applications were subjected to the same treatment by conducting

the graduated load test and observing their performance.

3.1.5 Control group

For this experiment, there was no control group. The effects of the treatment, the graduated

load tests, could only be observed in the applications in the sample group.

3.1.6 Factors held constant

The cloud computing test platform, provided a consistent environment for conducting the

experiment. The platform provided access to the consistent level of computing resources

throughout the experimentation process. These computing resources included CPU, memory,

storage and network.

52

3.1.7 Cause and effect

This experiment was concerned with determining the effect of manipulating the independent

variable (load) on the dependent variable (performance and throughput).

At the same time, the experiment was to determine how the moderating variable

(architecture) was affecting the relationship between the independent variable (load) and the

dependent variable (performance).

3.1.8 Data collection

The data collection process started by identifying web based applications that were already

developed and made available for public testing which formed the treatment group of

applications.

For each application, the graduated load test was conducted and the performance data

recorded. The graduated load test process was repeated for each application in the sample

population.

Throughout the experiment, values of the independent variable were recorded and the effects

on the dependent variable observed and recorded using the tools available in the laboratory

cloud computing environment.

3.2 Experiment laboratory environment

A cloud simulator platform was used to test the performance of different applications.

The cloud simulator was based on Microsoft Visual Studio Teams Service

(www.visualstudio.com) on Microsoft Azure portal (https://azure.microsoft.com). This is a

Cloud-based load testing environment leveraging Microsoft Azure cloud computing

resources and services. The following performance testing capabilities are provided on this

platform.

http://www.visualstudio.com/
https://azure.microsoft.com/

53

3.2.1 Cloud scalability testing

Using the platform, one can generate hundreds of thousands of connections in minutes and

therefore test the performance of applications before they are launched or before updates are

deployed to production.

Test load settings can be configured on the platform as illustrated in the figure below.

Figure 3.1: Load settings for performance testing

3.2.2 Functionality testing

With authoring experiences in Visual Studio, Azure and VSTS the platform enables one to

create load tests by specifying a website, referencing Apache JMeter test file or recording and

replaying user actions in an application. The load tests are then run using Visual Studio.

There are also pre-existing unit or functional tests that can be used to generate load for the

performance tests as illustrated in the figure below.

Figure 3.2: Function testing using Apache JMeter test file

54

3.2.3 Deep reporting and analytics

The platform also enables one to view application performance with real-time charts and

graphs as illustrated below.

Figure 3.3: Real-time application performance charts and graphs

In addition, the platform provides application insights and correlate test results with server

diagnostics.

3.2.4 Location based testing

Using the Azure cloud platform, one can run tests from one of many global Azure data center

locations located around the world to minimize latency and simulate users’ real-world

conditions as illustrated below.

Figure 3.4: Microsoft Azure data centers locations around the world

55

3.3 Data analysis

3.3.1 Pearson Correlation Coefficient analysis

Data analysis was conducted using the Pearson product-moment correlation coefficient (or

Pearson correlation coefficient, for short), which is a measure of the strength of a linear

association between two variables and is denoted by r. Basically, a Pearson product-moment

correlation attempts to draw a line of best fit through the data of two variables, and the

Pearson correlation coefficient, r, indicates how far away all these data points are to this line

of best fit (i.e., how well the data points fit this new model/line of best fit)

(Statistics.laerd.com, 2013).

3.3.2 Moderation Multiple Regression analysis

The moderation multiple regression analysis by (Hayes, 2017) and discussed by (Cooper,

2015) was used to quantify the effect of the moderating variable (architecture) on the

strength and/or direction of the relationship between the independent variable (load) and the

dependent variable (performance).

X Y

M

Figure 3.5: Conceptual diagram

X

M

XM

Y

b1

b2

b3

ey

1

Figure 3.6: Statistical diagram

The conditional effect of X on Y at a given value of M is defined as:

Y = b1 + b3M

Moderated regression equation is defined as:

Y = b0 + b1X + b2M + b3XM + e

56

3.4 Strengths and limitations of the methodology

Following is a detailed discussion regarding both the advantages and the limitations or

disadvantages of experimental research (Cirt.gcu.edu, 2017).

Strengths

 Experimental research is the most appropriate way for drawing causal conclusions,

regarding interventions or treatments and establishing whether or not one or more

factors causes a change in an outcome. This is largely due to the emphasis in

controlling extraneous variables. If other variables are controlled, the researcher can

say with confidence that manipulation independent variable caused a changed in the

dependent variable.

 It is a basic, straightforward, efficient type of research that can be applied across a

variety of disciplines.

 Experimental research designs are repeatable and therefore, results can be checked

and verified.

 Due to the controlled environment of experimental research, better results are often

achieved.

 In the case of laboratory research, conditions not found in a natural setting can be

created in an experimental setting that allows for greater control of extraneous

variables. Conditions that may take longer to occur in a natural environment may

occur more quickly in an experimental setting.

 There are many variations of experimental research and the researcher can tailor the

experiment while still maintaining the validity of the design.

Limitations

 Experimental research can create artificial situations that do not always represent real-

life situations. This is largely due to fact that all other variables are tightly controlled

which may not create a fully realistic situation.

 Because the situations are very controlled and do not often represent real life, the

reactions of the test subjects may not be true indicators of their behaviors in a non-

experimental environment.

57

 Human error also plays a key role in the validity of the project as discussed in

previous modules.

 It may not be really possible to control all extraneous variables. The health, mood,

and life experiences of the test subjects may influence their reactions and those

variables may not even be known to the researcher.

 The research must adhere to ethical standards in order to be valid. These will be

discussed in the next module of this series.

 Experimental research designs help to ensure internal validity but sometimes at the

expense of external validity. When this happens, the results may not be generalizable

to the larger population.

 If an experimental study is conducted in its natural environment, such as a hospital or

community, it may not be possible to control the extraneous variables.

 Experimental research is a powerful tool for determining or verifying causation, but it

typically cannot specify “why” the outcome occurred.

58

4 RESULTS AND DISCUSSIONS

4.1 Chapter overview

The findings of the study are presented and discussed in this chapter.

Attempts have been made to extract common trends that exist in support of or in

contradiction to the hypotheses stated in the conceptual framework.

Inferential statistical analysis on the results has also been incorporated.

4.2 Test applications

The table below outlines the web applications that formed the experiment group.

Table 4.1: List of web applications used in the experiment

No. Application ID Web application URL Description

1 WebApp_1 http://automationpractice.com End-to-end e-commerce website

2 WebApp_2 http://newtours.demoaut.com Tours & Travel booking web application

3 WebApp_3 http://www.practiceselenium.com Generic website with static html pages

4 WebApp_4 http://zero.webappsecurity.com Online banking application

5 WebApp_5 http://demo.nopcommerce.com Fully functional e-Commerce site

6 WebApp_6 http://www.globalsqa.com Generic website with HTML Modules

7 WebApp_7 http://store.demoqa.com Basic e-commerce web application

8 WebApp_8 http://awful-valentine.com Basic e-commerce web application

9 WebApp_9 http://demo.borland.com Insurance company web application

10 WebApp_10 http://phptravels.com Online Travel operations web application

11 WebApp_11 http://demoqa.com Generic website with rich UI functions

12 WebApp_12 http://thedemosite.co.uk Generic website

13 WebApp_13 http://www.way2automation.com Generic website

14 WebApp_14 https://www.ultimateqa.com Generic website

15 WebApp_15 https://www.qtptutorial.net Generic website

16 WebApp_16 http://ibm.github.io Portal for IBM open source at GitHub

17 WebApp_17 http://square.github.io A simple, static portal

http://automationpractice.com/
http://newtours.demoaut.com/
http://www.practiceselenium.com/
http://zero.webappsecurity.com/
http://demo.nopcommerce.com/
http://www.globalsqa.com/
http://store.demoqa.com/
http://awful-valentine.com/
http://demo.borland.com/
http://phptravels.com/
http://demoqa.com/
http://thedemosite.co.uk/
http://www.way2automation.com/
https://www.ultimateqa.com/
https://www.qtptutorial.net/
http://ibm.github.io/
http://square.github.io/

59

4.3 Graduated load test parameters

For each web application, the graduated load test was conducted with the following

parameters:

Table 4.2: Test parameters used in the graduated load tests

Test Parameter Value

Run duration (minutes) 5

Load pattern Step

Max v-users 200

Start user count 10

Step duration (seconds) 10

Step user count (users/step) 10

Warmup duration (seconds) 0

Browser mix IE – 60%, Chrome – 40%

Geo-location West US (California)

4.4 Graduated load test pattern

The graph below shows the graduated load test pattern achieved with the test parameters

above. From the graph, it was observed that the number of concurrent users increased steadily

by 10 users every 10 seconds from the initial 10 users to the set maximum of 200 concurrent

users. The maximum number of concurrent users was achieved after 3 minutes and 10

seconds. The test continued up to the set period of 5 minutes.

Figure 4.1: Graduated load test pattern achieved

60

4.5 Application test results

The section below discusses the test results for each of the web applications that were tested.

The results show 4 dimensions of the results that include: performance, throughput, errors

and the tests conducted.

4.5.1 Test Application WebApp_1

This website is an end-to-end e-commerce web application. Its operation provides back and

forth interactions between server and client.

The table below shows the test results for the graduated load test for this application:

Table 4.3: Graduated load test results for WebApp_1

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 6.000000 1.922222 - 23.437500 2,834

0:30 30 13.733330 1.796116 - 26.875000 2,833

0:45 50 22.066670 1.858006 - 38.125000 2,839

1:00 60 24.133330 1.872928 - 29.895830 2,874

1:15 80 29.933330 2.167038 0.066667 42.812500 2,858

1:30 90 37.266670 1.919499 - 36.666670 2,846

1:45 110 44.533330 1.697605 - 37.604170 2,813

2:00 120 49.533330 1.776581 0.066667 37.500000 2,778

2:15 140 55.933330 1.722288 - 35.520830 2,774

2:30 150 59.466670 1.791480 - 22.187500 2,766

2:45 170 62.533330 1.826226 - 19.479170 2,782

3:00 180 66.866670 1.794616 - 23.020830 2,768

3:15 200 75.933330 1.828797 0.200000 18.020830 2,750

3:30 200 78.000000 1.815385 0.066667 20.520830 2,752

3:45 200 76.866670 1.869037 - 16.041670 2,751

4:00 200 77.333340 1.859483 - 15.625000 2,749

4:15 200 72.400000 1.988950 0.066667 11.145830 2,746

4:30 200 75.133330 1.913931 - 13.437500 2,752

4:45 200 81.800000 1.740016 - 16.458330 2,758

5:00 200 74.800000 1.850267 - 13.541670 2,759

These test results are further represented in the graphs below and discussed in the respective

sections next to each graph.

61

Performance

It was notable that the average response time remains relatively steady throughout the test in

spite of the increasing user load. Similarly, the average page load time increases only

marginally through the test.

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 4.2: Graduated load test “Performance” data for WebApp_1

Throughput

It was notable that the number of requests processed per second increased at the initial stage

of the test then decreased consistently as the user load increased. On the other hand, the

number of pages loaded per second increased marginally throughout the test period.

Key:

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

Figure 4.3: Graduated load test “Throughput” data for WebApp_1

62

Errors

From the errors graph below, it was notable that failed requests were recorded at 5 points

during the test, though the rate remained relative low.

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

Key:

Figure 4.4: Graduated load test “Errors” data for WebApp_1

Tests

From the graph below, it was notable that the number of tests processed per second was

consistent with the increasing user load throughout the test period. At the same time, the

average test time remained consistently low throughout the test period.

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

Key:

Figure 4.5: Graduated load test “Tests” data for WebApp_1

63

Discussion

The results showed that the test application, WebApp_1 (http://automationpractice.com),

which is an end-to-end e-commerce web application, has a constrained architectural design

that provided high average page load time throughout the test period, even though the

average response time increased only marginally with increase in user load.

The application design exhibited low scalability as throughput decreased with increasing user

load and page load errors were recorded at several points during the test.

http://automationpractice.com/

64

4.5.2 Test Application WebApp_2

The table below shows the test results for the graduated load test for the Tours & Travel

booking web application:

Table 5.4: Graduated load test results for WebApp_2

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 9.800000 0.530612 19.866670 7.812500 2,748

0:30 30 20.266670 0.378290 40.600000 8.229167 2,738

0:45 50 30.000000 0.426667 60.666670 11.875000 2,708

1:00 60 30.333330 1.032967 61.733330 11.458330 2,704

1:15 80 24.000000 2.322222 47.466670 8.333333 2,709

1:30 90 23.800000 2.378151 48.800000 9.270833 2,704

1:45 110 21.533330 3.690403 43.333330 6.458333 2,704

2:00 120 19.866670 4.104027 40.866660 9.687500 2,700

2:15 140 22.800000 4.514620 47.400000 8.229167 2,693

2:30 150 17.800000 6.101124 36.933330 6.979167 2,692

2:45 170 21.866670 5.923780 43.066670 14.270830 2,688

3:00 180 21.266670 5.789968 44.400000 8.229167 2,690

3:15 200 21.400000 7.461059 44.466670 10.208330 2,682

3:30 200 19.466670 8.890411 39.800000 7.916667 2,681

3:45 200 23.000000 7.965218 44.733330 8.229167 2,684

4:00 200 25.466670 7.664921 49.933330 12.083330 2,683

4:15 200 21.133330 7.842271 44.400000 11.145830 2,686

4:30 200 22.866670 8.865890 45.000000 9.270833 2,691

4:45 200 26.866670 6.848635 53.266670 9.687500 2,692

5:00 200 25.600000 7.541667 51.866660 10.937500 2,693

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that the average response time increased

with the increase in user load. Similarly, it was observed that the average page load time

increased consistently with the increase in user load.

5

65

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.6: Graduated load test “Performance” data for WebApp_2

Throughput

From the throughput results graphed below, it was notable that the number of requests that

are successfully processed per second increases steadily from an initial rate of about 160

requests per second to a peak of about 300 requests per second, when the user load of about

50 concurrent users. However, from this point, the rate of requests drops steadily with every

increase in the user load. It can be argued that that the success rate of processing requests

decreases with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.7: Graduated load test “Throughput” data for WebApp_2

On the other hand, the number of pages loaded per second increases marginally from the

starting rate of about 9 pages per second to a peak rate of about 30 pages per second.

66

Errors

From the errors graph below, it was notable that failed requests were recorded right from the

start of the test and the rate remained high throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

Elapsed time (minutes)

Key:

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Figure 4.8: Graduated load test “Errors” data for WebApp_2

Tests

From the graph below, it was notable that the number of tests processed per second was not

consistent with the number of concurrent users as observed with the previous test application.

On the other hand, the average test time increased marginally with the increasing user load.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.9: Graduated load test “Tests” data for WebApp_2

67

Discussion

The results showed that the test application, WebApp_2 (http://newtours.demoaut.com),

which is a Tours & Travel booking web application, has a constrained architectural design

that affected user experience depending on the number of concurrent users used during the

test, up to the maximum level of 200 concurrent users.

The application design exhibited low scalability as throughput decreased with increasing user

load and page load errors were recorded at several points during the test.

With increasing user load, the number of failed requests increased and remained high

throughout the test period.

http://newtours.demoaut.com/

68

4.5.3 Test Application WebApp_3

This website has static html pages, so it was expected to handle load very effectively. The

application does not have any back and forth interactions between client and server.

The table below shows the test results for the graduated load test for this application:

Table 4.5: Graduated load test results for WebApp_3

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 11.800000 0.237288 - 17.916670 2,846.0

0:30 30 24.000000 0.177778 - 16.770830 2,853.0

0:45 50 40.200000 0.182421 - 23.229170 2,856.0

1:00 60 51.733330 0.179124 - 34.583330 2,882.0

1:15 80 67.000000 0.183085 - 40.625000 2,837.0

1:30 90 77.733330 0.187822 - 50.312500 2,717.0

1:45 110 91.600000 0.194323 - 60.520830 2,750.0

2:00 120 103.466700 0.192655 - 66.666660 2,707.0

2:15 140 116.133300 0.228473 - 71.458340 2,699.0

2:30 150 126.066700 0.231095 - 70.208340 2,626.0

2:45 170 139.133300 0.263057 - 75.520840 2,646.0

3:00 180 141.400000 0.327204 - 80.208340 2,632.0

3:15 200 149.600000 0.408645 - 87.708340 2,634.0

3:30 200 155.666700 0.425268 - 84.791660 2,619.0

3:45 200 159.733300 0.417780 - 85.000000 2,618.0

4:00 200 155.000000 0.434409 - 84.687500 2,612.0

4:15 200 151.800000 0.458498 - 83.645840 2,623.0

4:30 200 152.133300 0.444785 - 85.312500 2,660.0

4:45 200 155.000000 0.447742 - 84.895840 2,654.0

5:00 200 148.000000 0.416667 - 83.437500 2,649.0

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained consistently low throughout the test period, as depicted

by the Y-Axis scale of between 0 and 0.6 seconds. The average page load time increased

consistently with the increase in user load in a similar pattern like the average response time.

69

T
im

e
 (

s
e

c
o

n
d

s
)

Elapsed time (minutes)

Key:

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Figure 4.10: Graduated load test “Performance” data for WebApp_3

Throughput

From the throughput results graphed below, it was notable that the number of requests

processed per second increased consistently with the increase in the number of concurrent

users. It can be argued that that throughput increased with increase in user load.

On the other hand, the number of pages loaded per second increased marginally throughout

the test period.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

Elapsed time (minutes)

Key:

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Figure 4.11: Graduated load test “Throughput” data for WebApp_3

http://www.practiceselenium.com/

70

Errors

From the errors graph below, it was notable that no failed requests were recorded throughout

the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.12: Graduated load test “Errors” data for WebApp_3

Tests

From the graph below, it was notable that the number of tests processed per second was

consistent with the increasing user load throughout the test period. At the same time, the

average test time remained consistently low throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.13: Graduated load test “Tests” data for WebApp_3

71

Discussion

The results show that the test application, WebApp_3 (http://www.practiceselenium.com),

which is a static HTML website, has a good architectural design and was able to provide a

consistent user experience at all levels of user load used during the test, up to the maximum

level of 200 concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load and no page load errors were recorded during the test.

http://www.practiceselenium.com/

72

4.5.4 Test Application WebApp_4

The Free Online Bank Web site is published by Hewlett-Packard, Company for the sole

purpose of demonstrating the functionality and effectiveness of Hewlett-Packard Fortify’s

WebInspect products in detecting and reporting Web application vulnerabilities.

The table below shows the test results for the graduated load test for this application:

Table 4.6: Graduated load test results for WebApp_4

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 12.200000 0.054645 - 9.270833 2,735

0:30 30 26.666670 0.017500 - 4.687500 2,728

0:45 50 43.133340 0.021638 - 6.562500 2,715

1:00 60 55.733330 0.017943 - 5.312500 2,689

1:15 80 71.800000 0.020427 - 8.020833 2,676

1:30 90 85.800000 0.018648 - 9.687500 2,678

1:45 110 98.933330 0.020889 - 13.437500 2,643

2:00 120 116.400000 0.020046 - 12.083330 2,644

2:15 140 128.733300 0.020715 - 17.395830 2,634

2:30 150 144.200000 0.019880 - 15.312500 2,598

2:45 170 156.333300 0.021748 - 17.291670 2,610

3:00 180 173.133300 0.020793 - 17.083330 2,607

3:15 200 187.800000 0.022009 - 23.125000 2,598

3:30 200 193.933300 0.019938 - 18.645830 2,597

3:45 200 193.066700 0.024517 - 19.583330 2,589

4:00 200 194.133300 0.018887 - 23.645830 2,592

4:15 200 193.866700 0.051238 - 16.770830 2,585

4:30 200 186.666700 0.022500 - 19.062500 2,586

4:45 200 196.733300 0.019993 - 15.937500 2,599

5:00 200 193.533300 0.018601 - 14.895830 2,601

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

73

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained consistently low throughout the test period, as depicted

by the Y-Axis scale of between 0 and 0.06 seconds.

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)
Key:

Figure 4.14: Graduated load test “Performance” data for WebApp_4

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that are successfully processed per second increased consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.15: Graduated load test “Throughput” data for WebApp_4

http://zero.webappsecurity.com/

74

Errors

From the errors graph below, was notable that no failed requests were recorded throughout

the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Key:

Figure 4.16: Graduated load test “Errors” data for WebApp_4

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained steady throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Key:

Figure 4.17: Graduated load test “Tests” data for WebApp_4

75

Discussion

The results showed that the test application, WebApp_4 (http://zero.webappsecurity.com),

which is an online banking application, has a good architectural designed and was able to

provide a consistent user experience at all levels of user load used during the test, up to the

maximum level of 200 concurrent users. No failed page requests were experienced

throughout the test period.

The application design also exhibited high scalability as throughput increased with increasing

user load and no page load errors were recorded during the test.

http://zero.webappsecurity.com/

76

4.5.5 Test Application WebApp_5

Fully functional e-Commerce site allowing performance testing for an e-Commerce

application that supports interactions between client and server.

The table below shows the test results for the graduated load test for this application:

Table 4.7: Graduated load test for WebApp_5

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 12.200000 0.114754 5.333333 15.520830 2,900

0:30 30 25.933330 0.046272 10.666670 5.625000 2,906

0:45 50 41.600000 0.046474 17.200000 15.833330 2,904

1:00 60 54.000000 0.049383 22.666670 11.666670 2,866

1:15 80 66.933330 0.108566 29.333330 20.312500 2,842

1:30 90 76.266670 0.085664 34.600000 21.354170 2,778

1:45 110 89.800000 0.170007 41.133340 26.666670 2,755

2:00 120 100.266700 0.174202 46.000000 17.187500 2,746

2:15 140 118.466700 0.129994 53.266670 19.895830 2,745

2:30 150 132.466700 0.099648 57.666670 18.750000 2,740

2:45 170 139.533300 0.164835 64.933330 21.458330 2,739

3:00 180 134.866700 0.281265 69.733330 17.708330 2,727

3:15 200 137.200000 0.411565 76.200000 17.083330 2,713

3:30 200 145.600000 0.390568 80.000000 15.520830 2,718

3:45 200 141.866700 0.388158 79.933330 15.312500 2,718

4:00 200 139.800000 0.442537 78.333340 14.375000 2,718

4:15 200 147.666700 0.342212 79.800000 17.708330 2,725

4:30 200 153.000000 0.307625 79.066670 17.916670 2,722

4:45 200 154.266700 0.299481 79.066670 18.645830 2,720

5:00 200 143.000000 0.355711 78.866670 16.458330 2,723

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased in an irregular pattern as the user load increased.

However, the values for the two metrics remained relatively low throughout the test period,

as depicted by the y-axis scale of between 0 and 0.06 seconds.

77

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.18: Graduated load test “Performance” data for WebApp_5

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second increased consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

increased with increase in user load.

Key:

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Figure 4.19: Graduated load test “Throughput” data for WebApp_5

78

Errors

From the errors graph below, was notable that rate of failed requests per second increased

consistently with the increased in user load.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.20: Graduated load test “Errors” data for WebApp_5

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained consistently low throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.21: Graduated load test “Tests” data for WebApp_5

79

Discussion

The results showed that the test application, WebApp_5 (http://demo.nopcommerce.com),

which is an end-to-end e-commerce application, has a good architectural designed and was

able to provide a consistent user experience at all levels of user load used during the test, up

to the maximum level of 200 concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load.

It was however worth noting that while page load errors were observed to increase

consistently with the increase in user load, these did not seem to affect either the performance

or the throughput of the application.

http://demo.nopcommerce.com/

80

4.5.6 Test Application WebApp_6

This is a static website that allows for testing HTML website application modules that

include dropdown, tabs, windows, date picker etc.

The table below shows the test results for the graduated load test for this application:

Table 4.8: Graduated load test results for WebApp_6

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 0.800000 6.916667 - 13.33333 2,861

0:30 30 4.000000 3.533333 3.200000 5.83333 2,867

0:45 50 0.933333 7.714286 0.466667 4.37500 2,868

1:00 60 1.466667 13.181820 - 8.95833 2,900

1:15 80 2.266667 30.205880 3.000000 7.18750 2,866

1:30 90 5.066667 14.460530 6.466667 5.93750 2,867

1:45 110 7.666667 11.182610 7.466667 10.62500 2,832

2:00 120 5.933333 10.741570 5.666667 13.95833 2,792

2:15 140 7.133333 17.009350 7.533333 13.12500 2,793

2:30 150 8.266666 12.782260 9.066667 4.37500 2,792

2:45 170 6.333333 20.652630 6.200000 2.29167 2,819

3:00 180 6.733333 23.445550 6.533333 4.58333 2,816

3:15 200 7.733333 18.025860 7.466667 4.79167 2,801

3:30 200 6.400000 32.312500 6.800000 0.62500 2,800

3:45 200 5.333333 33.325000 5.000000 1.56250 2,799

4:00 200 5.600000 34.488090 5.000000 1.04167 2,798

4:15 200 5.666667 37.835290 4.933333 1.35417 2,801

4:30 200 4.733333 38.309860 4.400000 2.39583 2,813

4:45 200 5.000000 34.973330 4.400000 0.93750 2,813

5:00 200 6.533333 37.142860 5.600000 1.66667 2,811

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

81

Performance

From the performance graph below, it was notable that the average response time and the

average page load time increased in a pattern consistent with the increase in user load.

However, the values for the two metrics remained relatively low as depicted by the y-axis

scale of between 0 and 0.36 seconds.

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.22: Graduated load test “Performance” data for WebApp_6

Throughput

From the throughput results graphed below, it was notable that the number of requests and

pages per second increased consistently with the increase in the number of concurrent users.

It can therefore be argued that throughput increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.23: Graduated load test “Throughout” data for WebApp_6

82

Errors

From the errors graph below, was notable that rate of failed requests per second increased

consistently with the increase in user load.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.24: Graduated load test “Errors” data for WebApp_6

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. At the same time, the average test time

remained consistently low throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.25: Graduated load test “Tests” data for WebApp_6

83

Discussion

The results showed that the test application, WebApp_6 (http://www.globalsqa.com), which

is static HTML web site, has a good architectural designed and was able to provide a

consistent user experience at all levels of user load used during the test, up to the maximum

level of 200 concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load.

It was however worth noting that while page load errors were observed to increase

consistently with the increase in user load, these did not seem to affect either the performance

or the throughput of the application.

http://www.globalsqa.com/

84

4.5.7 Test Application WebApp_7

This is a basic e-commerce site for testing e-commerce applications with interactions

between client and server.

The table below shows the test results for the graduated load test for this application:

Table 4.9: Graduated load test results for WebApp_7

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 0.400000 9.500000 2.200000 13.750000 2,906

0:30 30 2.733333 3.243902 3.200000 3.125000 2,911

0:45 50 8.133333 2.647541 13.333330 8.229167 2,943

1:00 60 3.800000 2.894737 6.466667 9.583333 2,888

1:15 80 1.133333 13.529410 6.333333 6.666667 2,880

1:30 90 2.666667 31.400000 7.066667 12.083330 2,836

1:45 110 4.266667 23.500000 7.333333 17.812500 2,809

2:00 120 4.933333 15.513510 10.266670 9.791667 2,803

2:15 140 4.933333 24.635140 7.733333 2.291667 2,815

2:30 150 3.933333 29.745760 7.600000 1.145833 2,822

2:45 170 3.600000 34.333330 6.000000 4.791667 2,815

3:00 180 6.200000 30.107530 9.266666 5.000000 2,801

3:15 200 7.000000 23.866670 10.466670 1.041667 2,796

3:30 200 5.466667 30.268290 7.666667 1.458333 2,790

3:45 200 5.266667 35.506330 7.733333 1.250000 2,790

4:00 200 6.333333 34.484210 7.266667 0.833333 2,787

4:15 200 4.133333 40.967740 7.333333 0.729167 2,786

4:30 200 7.066667 29.537730 8.600000 1.354167 2,785

4:45 200 5.600000 36.988090 7.333333 1.666667 2,779

5:00 200 3.533333 42.264150 5.000000 0.833333 2,775

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased in an irregular pattern as the user load increased. At the

same time, the values for the two metrics remained relatively high throughout the test period,

as depicted by the y-axis scale of between 0 and 45 seconds.

85

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.26: Graduated load test “Performance” data for WebApp_7

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second reduced consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

decreased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.27: Graduated load test “Throughput” data for WebApp_7

86

Errors

From the errors graph below, was notable that rate of failed requests per second increased

with the increased in user load and remained high throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Key:

Figure 4.28: Graduated load test “Errors” data for WebApp_7

Tests

From the tests graph below, it was notable that the number of tests processed per second

remained low throughout the test period in spite of the increase in user load. On the other

hand, the average test time increased consistently with increase in user load.

T
e

s
ts

/S
e

c
,

A
v
g
.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.29: Graduated load test “Tests” data for WebApp_7

87

Discussion

The results show that the test application, WebApp_7 (http://store.demoqa.com), which is an

e-commerce application, has a constrained architectural design that affected user experience

depending on the number of concurrent users used during the test, up to the maximum level

of 200 concurrent users.

With increasing user load, the number of failed requests increased as well as the average page

load time, lending the application to provide an inconsistent user experience with changes in

user load.

Compared to applications examined in previous tests, this application showed that throughput

decreased with increase in user load as opposed to throughput increasing with increasing user

load.

http://store.demoqa.com/

88

4.5.8 Test Application WebApp_8

This is a basic e-commerce site for testing e-commerce applications with interactions

between client and server.

The table below shows the test results for the graduated load test for this application:

Table 4.10: Graduated load test results for WebApp_8

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 7.733333 1.146552 - 23.854170 2,866

0:30 30 14.800000 1.117117 - 20.000000 2,869

0:45 50 21.400000 1.411215 - 36.875000 2,890

1:00 60 27.200000 1.568627 2.733333 35.729170 2,838

1:15 80 34.733330 1.685221 4.533333 45.000000 2,804

1:30 90 34.333330 1.817476 54.733330 46.979170 2,760

1:45 110 17.733330 5.142857 93.466670 39.479170 2,732

2:00 120 21.800000 5.305810 55.400000 35.104170 2,655

2:15 140 28.066670 4.375297 64.600000 36.145830 2,672

2:30 150 22.600000 5.719764 18.400000 33.333330 2,626

2:45 170 36.333330 4.354128 22.733330 41.041670 2,588

3:00 180 23.866670 6.365922 22.266670 36.145830 2,576

3:15 200 34.600000 5.741811 6.533333 43.020830 2,591

3:30 200 19.466670 7.660959 35.066670 29.375000 2,583

3:45 200 20.000000 8.743333 58.333330 28.437500 2,560

4:00 200 42.733330 6.238689 40.266670 30.625000 2,559

4:15 200 23.333330 5.082857 47.200000 34.583330 2,585

4:30 200 26.400000 8.000000 27.266670 29.895830 2,580

4:45 200 38.600000 4.680484 22.600000 38.229170 2,581

5:00 200 54.066670 3.204686 114.600000 33.854170 2,583

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

89

Performance

From the performance graph below, it was notable that both the average response time

increased marginally with the increase in user load. On the other hand, the average page load

time increased steadily as the user load increased. The values for the two metrics remained

high throughout the test period, as depicted by the y-axis scale of between 0 and 12 seconds.

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.30: Graduated load test “Performance” data for WebApp_8

Throughput

From the throughput results graphed below, it was notable that the number of requests

processed per second was not consistent with the increase in user load. The number of pages

that were successfully processed per second increased marginally throughout the test period.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.31: Graduated load test “Throughput” data for WebApp_8

90

Errors

From the errors graph below, an irregular of rate of failed requests per second was recorded

throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.32: Graduated load test “Errors” data for WebApp_8

Tests

From the tests graph below, it was notable that the number of tests processed per second was

irregular and not consistent with the number of concurrent users. On the other hand, the

average test time increased marginally throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g
.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.33: Graduated load test “Tests” data for WebApp_8

91

Discussion

The results show that the test application, WebApp_8 (http://awful-valentine.com), which is

an e-commerce application with client-server interactions, has a constrained design that

affected user experience depending on the number of concurrent users used during the test,

up to the maximum level of 200 concurrent users.

Compared to other applications examined previously, this application exhibited an irregular

pattern in performance, throughput, errors and tests graphs indicating an unpredictable

application behaviour when subjected to different levels of user load.

In this case, the association between throughput and user load was not clearly visualised.

http://awful-valentine.com/

92

4.5.9 Test Application WebApp_9

This is a sample insurance company web application.

The table below shows the test results for the graduated load test for this application:

Table 4.11: Graduated test results for WebApp_9

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 10.666670 0.662500 - 14.583330 2,882

0:30 30 22.666670 0.511765 - 9.895833 2,886

0:45 50 37.333330 0.526786 - 12.291670 2,884

1:00 60 48.000000 0.491667 - 20.312500 2,897

1:15 80 63.400000 0.502629 - 20.625000 2,868

1:30 90 73.000000 0.488585 - 32.187500 2,819

1:45 110 86.933330 0.519172 - 37.395830 2,797

2:00 120 99.000000 0.519865 - 36.354170 2,769

2:15 140 111.400000 0.539797 - 32.812500 2,762

2:30 150 125.200000 0.507455 - 34.375000 2,782

2:45 170 137.600000 0.520833 - 36.354170 2,751

3:00 180 141.133300 0.635805 - 39.166670 2,741

3:15 200 161.866700 0.556425 - 44.687500 2,735

3:30 200 167.533300 0.538400 - 43.854170 2,732

3:45 200 168.733300 0.512446 - 40.937500 2,728

4:00 200 170.333300 0.504501 - 41.041670 2,729

4:15 200 165.733300 0.549477 - 42.083330 2,742

4:30 200 170.466700 0.524052 - 41.354170 2,744

4:45 200 167.800000 0.522447 - 41.145830 2,743

5:00 200 168.200000 0.522394 - 40.833330 2,747

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained steady throughout the test period in spite of the increase

in user load. The values for the two metrics remained relatively low throughout the test

period, as depicted by the y-axis scale of between 0 and 0.75 seconds.

93

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.34: Graduated load test “Performance” data for WebApp_9

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second increased consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.35: Graduated load test “Throughput” data for WebApp_9

94

Errors

From the errors graph below, was notable that no failed requests were recorded throughout

the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.36: Graduated load test “Errors” data for WebApp_9

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained steady throughout the test period.

T
e

s
ts

/S
e

c
,

A
v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.37: Graduated load test “Tests” data for WebApp_9

95

Discussion

The results show that the test application, WebApp_9 (http://demo.borland.com), which is an

insurance web application, has a good architectural design which provided a consistent user

experience at all levels of user load used during the test, up to the maximum level of 200

concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load and no page load errors were recorded during the test.

http://demo.borland.com/

96

4.5.10 Test Application WebApp_10

This is a sample Tours & Travel booking web application.

The table below shows the test results for the graduated load test for this application:

Table 4.12: Graduated load test results for WebApp_10

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 12.666670 0.284211 - 21.666670 2,872

0:30 30 18.666670 0.228571 - 9.062500 2,877

0:45 50 18.666670 0.235714 - 15.625000 2,880

1:00 60 18.333330 0.225455 - 12.604170 2,876

1:15 80 19.066670 3.209790 1.333333 14.062500 2,852

1:30 90 18.733330 1.782918 0.733333 18.229170 2,817

1:45 110 19.000000 3.312281 1.666667 17.604170 2,805

2:00 120 8.466666 9.763780 1.933333 7.812500 2,807

2:15 140 2.266667 40.176470 2.266667 1.666667 2,829

2:30 150 3.066667 42.043480 3.266667 1.666667 2,803

2:45 170 3.333333 42.040000 3.333333 5.729167 2,812

3:00 180 3.666667 42.036370 3.800000 0.312500 2,812

3:15 200 4.333333 38.800000 4.333333 0.208333 2,811

3:30 200 4.666667 42.042860 4.666667 0.312500 2,811

3:45 200 3.666667 42.054550 3.733333 0.520833 2,811

4:00 200 5.666667 42.035290 5.666667 0.520833 2,811

4:15 200 4.800000 42.041670 4.800000 0.729167 2,816

4:30 200 4.000000 37.516670 3.600000 0.312500 2,822

4:45 200 6.666667 36.180000 5.733333 0.729167 2,823

5:00 200 5.200000 34.269230 4.266667 0.208333 2,827

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased significantly when the user load exceeds 100 users and

remained high for the rest of the test period.

97

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.38: Graduated load test “Performance” data for WebApp_10

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second dropped to near zero when the

user load exceeded 100 users and remained low for the rest of the test period.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.39: Graduated load test “Throughput” data for WebApp_10

98

Errors

From the errors graph below, it was notable that rate of failed requests per second increased

consistently with the increased in user load.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

Elapsed time (minutes)

Key:

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Figure 4.40: Graduated load test “Errors” data for WebApp_10

Tests

From the tests graph below, it was notable that the number of tests processed per second was

dropped to near zero when the user load exceeded 100 users and remained low for the rest of

the test period. On the other hand, the average test time increased significantly and remained

high after the user load exceeded 100 users.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.41: Graduated load test “Tests” data for WebApp_10

99

Discussion

The results show that the test application, WebApp_10 (http://phptravels.com), which is

Tours and Travel booking application with client-server interactions, has constrained

architectural design that the application stops responding to user requests when the user load

exceeds relatively low number of concurrent users about 100.

Compared to other applications examined previously, this application exhibited an irregular

pattern in performance, throughput, errors and tests graphs indicating an unpredictable

application behaviour when subjected to different levels of user load. In this case, the

association between throughput and user load was not clearly visualised.

The application may be considered to have crashed at this user point of user load.

http://phptravels.com/

100

4.5.11 Test Application WebApp_11

A generic website with rich set of web UI functions specially designed to the needs of testing

of web application of all types.

The table below shows the test results for the graduated load test for this application:

Table 4.13: Graduated load test results for WebApp_11

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 0.800000 6.916667 - 13.33333 2,861

0:30 30 4.000000 3.533333 3.200000 5.83333 2,867

0:45 50 0.933333 7.714286 0.466667 4.37500 2,868

1:00 60 1.466667 13.181820 - 8.95833 2,900

1:15 80 2.266667 30.205880 3.000000 7.18750 2,866

1:30 90 5.066667 14.460530 6.466667 5.93750 2,867

1:45 110 7.666667 11.182610 7.466667 10.62500 2,832

2:00 120 5.933333 10.741570 5.666667 13.95833 2,792

2:15 140 7.133333 17.009350 7.533333 13.12500 2,793

2:30 150 8.266666 12.782260 9.066667 4.37500 2,792

2:45 170 6.333333 20.652630 6.200000 2.29167 2,819

3:00 180 6.733333 23.445550 6.533333 4.58333 2,816

3:15 200 7.733333 18.025860 7.466667 4.79167 2,801

3:30 200 6.400000 32.312500 6.800000 0.62500 2,800

3:45 200 5.333333 33.325000 5.000000 1.56250 2,799

4:00 200 5.600000 34.488090 5.000000 1.04167 2,798

4:15 200 5.666667 37.835290 4.933333 1.35417 2,801

4:30 200 4.733333 38.309860 4.400000 2.39583 2,813

4:45 200 5.000000 34.973330 4.400000 0.93750 2,813

5:00 200 6.533333 37.142860 5.600000 1.66667 2,811

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased significantly after the user load reached 50 users and

continued to increase in an irregular pattern for the rest of the test period.

101

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.42: Graduated load test “Performance” data for WebApp_11

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second dropped to near zero when the

user load exceeded 50 users and remained low for the rest of the test period.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.43: Graduated load test “Throughput” data for WebApp_11

102

Errors

From the errors graph below, it was notable that rate of failed requests per second increased

in an irregular patter as the user load increased and remained high throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.44: Graduated load test “Errors” data for WebApp_11

Tests

From the tests graph below, it was notable that the number of tests processed per second

remained low throughout the test period. On the other hand, the average test time increased in

an irregular pattern as the user load increased.

T
e

s
ts

/S
e

c
,

A
v
g
.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.45: Graduated load test “Tests” data for WebApp_11

103

Discussion

The results show that the test application, WebApp_11 (http://demoqa.com), which is generic

website with rich set of web UI functions, has constrained architectural design that affected

user experience depending on the number of concurrent users used during the test, up to the

maximum level of 200 concurrent users.

Compared to other applications examined previously, this application exhibited an irregular

pattern in performance, throughput, errors and tests graphs indicating an unpredictable

application behaviour when subjected to different levels of user load.

In this case, the association between throughput and user load was not clearly visualised.

http://demoqa.com/

104

4.5.12 Test Application WebApp_12

This is a static website that allows for testing HTML website application modules that

include dropdown, tabs, windows, date picker etc.

The table below shows the test results for the graduated load test for this application:

Table 4.14: Graduated test results for WebApp_12

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 8.733334 0.732824 9.733334 13.541670 2,890

0:30 30 18.400000 0.739130 22.000000 6.041667 2,890

0:45 50 27.800000 0.726619 30.266670 7.291667 2,926

1:00 60 36.266670 0.777574 40.333330 20.937500 2,911

1:15 80 47.800000 0.778243 55.466670 14.791670 2,892

1:30 90 56.733330 0.781434 68.066670 24.375000 2,836

1:45 110 67.666660 0.785222 82.666660 25.416670 2,790

2:00 120 77.133330 0.766638 90.466670 31.666670 2,748

2:15 140 86.800000 0.768049 103.066700 25.000000 2,743

2:30 150 96.933330 0.747593 112.733300 22.500000 2,750

2:45 170 107.533300 0.748915 124.333300 22.604170 2,778

3:00 180 115.666700 0.731412 131.466700 26.041670 2,775

3:15 200 125.600000 0.739915 141.533300 27.395830 2,735

3:30 200 130.933300 0.726069 143.266700 23.645830 2,752

3:45 200 131.200000 0.727134 142.866700 27.812500 2,740

4:00 200 134.333300 0.716129 145.933300 26.666670 2,745

4:15 200 132.333300 0.725441 147.400000 28.958330 2,724

4:30 200 134.533300 0.735877 150.200000 25.104170 2,766

4:45 200 133.466700 0.758741 151.133300 28.020830 2,684

5:00 200 136.933300 0.730769 153.400000 28.854170 2,756

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained steady throughout the test period in spite of the increase

in user load. The values for the two metrics remained relatively low throughout the test

period, as depicted by the y-axis scale of between 0 and 0.9 seconds.

105

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.46: Graduated load test “Performance” data for WebApp_12

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second increased consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.47: Graduated load test “Throughput” data for WebApp_12

106

Errors

From the errors graph below, was notable that rate of failed requests per second increased

consistently with the increased in user load.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.48: Graduated load test “Errors” data for WebApp_12

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained steady throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.49: Graduated load test “Tests” data for WebApp_12

107

Discussion

The results show that the test application, WebApp_12 (http://thedemosite.co.uk), which is an

online banking application, has a good architectural design that provided a consistent user

experience at all levels of user load used during the test, up to the maximum level of 200

concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load.

It was however worth noting that while page load errors were observed to increase

consistently with the increase in user load, these did not seem to affect either the performance

or the throughput of the application.

http://thedemosite.co.uk/

108

4.5.13 Test Application WebApp_13

This is a generic web application for testing automated performance tests.

The table below shows the test results for the graduated load test for this application:

Table 4.15: Graduated test results for WebApp_13

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 4.866667 1.534247 - 14.687500 2,872

0:30 30 14.666670 0.981818 - 8.854167 2,864

0:45 50 23.000000 1.228986 0.133333 11.354170 2,894

1:00 60 34.066670 1.021526 0.066667 26.458330 2,859

1:15 80 41.600000 1.011218 0.133333 21.354170 2,824

1:30 90 51.466670 0.979275 0.133333 18.125000 2,818

1:45 110 59.066670 1.056433 0.266667 30.104170 2,778

2:00 120 72.733330 0.974336 0.200000 36.458330 2,706

2:15 140 79.466670 0.958893 0.200000 33.333330 2,697

2:30 150 90.866670 0.866471 0.066667 29.062500 2,695

2:45 170 101.333300 1.012500 0.466667 31.875000 2,714

3:00 180 111.333300 0.887425 0.133333 36.145830 2,696

3:15 200 119.000000 0.864426 0.066667 40.729170 2,682

3:30 200 126.666700 0.886842 0.200000 38.125000 2,670

3:45 200 130.733300 0.893422 0.266667 37.291670 2,678

4:00 200 128.733300 0.828586 0.066667 35.520830 2,707

4:15 200 130.466700 0.827798 0.066667 33.958330 2,716

4:30 200 132.466700 0.818319 0.066667 37.083330 2,725

4:45 200 129.733300 0.801644 - 36.875000 2,724

5:00 200 131.600000 0.814590 - 40.937500 2,724

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained steady throughout the test period in spite of the increase

in user load. The values for the two metrics remained relatively low throughout the test

period, as depicted by the y-axis scale of between 0 and 1.8 seconds.

109

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.50: Graduated load test “Performance” data for WebApp_13

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second increased consistently with the

increase in the number of concurrent users. The number of pages loaded per second increased

marginally throughout the test period.

It can therefore be argued that throughput increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.51: Graduated load test “Throughput” data for WebApp_13

110

Errors

From the errors graph below, an irregular rate of failed requests per second was recorded at

certain points during the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.52: Graduated load test “Errors” data for WebApp_13

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained steady throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.53: Graduated load test “Tests” data for WebApp_13

111

Discussion

The results show that the test application, WebApp_13 (http://www.way2automation.com),

which is a generic web application for conducting automated performance tests, has a good

architectural design that provided a consistent user experience at all levels of user load used

during the test, up to the maximum level of 200 concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load.

It was however worth noting that while page load errors were observed a certain points

during the test, these did not seem to affect either the performance or the throughput of the

application.

http://www.way2automation.com/

112

4.5.14 Test Application WebApp_14

A generic website with rich set of web user interface (UI) functions specially designed to the

needs of testing of web application of all types.

The table below shows the test results for the graduated load test for this application:

Table 4.16: Graduated load test results for WebApp_14

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 8.000000 0.766667 7.333333 17.187500 2,846

0:30 30 25.333330 0.071053 25.333330 3.020833 2,862

0:45 50 40.666670 0.075410 40.666670 3.020833 2,889

1:00 60 7.600000 0.561404 6.733333 14.479170 2,818

1:15 80 0.133333 25.000000 0.133333 4.791667 2,813

1:30 90 11.800000 6.050848 11.800000 9.479167 2,785

1:45 110 31.666670 1.957895 31.666670 14.166670 2,752

2:00 120 38.400000 2.059028 38.133340 11.770830 2,752

2:15 140 116.266700 1.264335 114.400000 19.270830 2,698

2:30 150 136.533300 0.077148 136.533300 11.770830 2,688

2:45 170 149.733300 0.077026 149.733300 16.145830 2,668

3:00 180 5.333333 0.075000 5.333333 3.645833 2,658

3:15 200 8.466666 18.677170 8.466666 0.416667 2,660

3:30 200 42.466670 4.411303 42.466670 1.250000 2,661

3:45 200 64.600000 1.728586 64.600000 3.020833 2,661

4:00 200 52.733330 2.102402 52.733330 2.187500 2,661

4:15 200 120.600000 2.571034 120.600000 4.062500 2,667

4:30 200 184.666700 0.069675 184.666700 6.562500 2,668

4:45 200 187.866700 0.059262 187.866700 5.729167 2,673

5:00 200 105.066700 0.372462 104.533300 7.291667 2,671

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased in an irregular pattern as the user load increased.

However, the values for the two metrics varied significantly throughout the test period,

oscillating between the values on the y-axis between 0 and 30 seconds.

113

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.54: Graduated load test “Performance” data for WebApp_14

Throughput

From the throughput results graphed below, it was notable that the number of requests

processed per second and the number of pages that were successfully processed per second

was not consistent with the increase in user load. In this case, the association between the

throughput and user load could not be visualised.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.55: Graduated load test “Throughput” data for WebApp_14

114

Errors

From the errors graph below, an irregular of rate of failed requests per second was recorded

throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.56: Graduated load test “Errors” data for WebApp_14

Tests

From the tests graph below, it was notable that the number of tests processed per second was

irregular and not consistent with the number of concurrent users. On the other hand, the

average test time increased marginally throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.57: Graduated load test “Tests” data for WebApp_14

115

Discussion

The results show that the test application, WebApp_14 (https://www.ultimateqa.com), which

is generic website with rich set of web UI functions, has constrained architectural design that

affected user experience depending on the number of concurrent users used during the test,

up to the maximum level of 200 concurrent users.

The application design exhibited an irregular pattern in performance, throughput, errors and

tests graphs indicating an unpredictable application behaviour when subjected to different

levels of user load.

In this case, the association between throughput and user load was not clearly visualised.

https://www.ultimateqa.com/

116

4.5.15 Test Application WebApp_15

A generic website with rich set of web UI functions specially designed to the needs of testing

of web application of all types.

The table below shows the test results for the graduated load test for this application:

Table 4.17: Graduated load test results for WebApp_15

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 - - 16.354170 2,861

0:30 30 15.866670 1.617647 15.533330 2.708333 2,883

0:45 50 41.066670 0.064935 41.066670 1.875000 2,901

1:00 60 33.533330 0.063618 33.533330 13.854170 2,869

1:15 80 1.800000 9.259259 1.800000 5.416667 2,863

1:30 90 11.000000 4.272727 11.000000 10.625000 2,833

1:45 110 29.266670 2.154897 29.266670 14.479170 2,801

2:00 120 93.133330 1.532570 94.333340 20.208330 2,740

2:15 140 124.866700 0.071543 124.866700 9.270833 2,764

2:30 150 137.333300 0.080583 137.333300 10.312500 2,745

2:45 170 2.200000 1.606061 2.200000 5.833333 2,738

3:00 180 6.600000 18.414140 6.600000 4.583333 2,726

3:15 200 20.533330 8.961039 20.533330 0.833333 2,727

3:30 200 41.000000 3.617886 41.000000 1.979167 2,727

3:45 200 95.600000 3.262901 95.600000 2.500000 2,724

4:00 200 189.000000 0.065961 189.000000 10.937500 2,725

4:15 200 184.533300 0.065751 184.533300 14.062500 2,729

4:30 200 30.733330 0.088937 30.733330 1.979167 2,733

4:45 200 8.266666 15.629030 8.266666 0.625000 2,734

5:00 200 18.733330 11.946620 18.733330 0.729167 2,735

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time increased in an irregular pattern as the user load increased.

However, the values for the two metrics varied significantly throughout the test period,

oscillating between the values on the y-axis between 0 and 24 seconds.

117

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.58: Graduated load test “Performance” data for WebApp_15

Throughput

From the throughput results graphed below, it was notable that the number of requests

processed per second and the number of pages that were successfully processed per second

was not consistent with the increase in user load. In this case, the association between the

throughput and user load could not be visualised.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.59: Graduated load test “Throughput” data for WebApp_15

118

Errors

From the errors graph below, an irregular of rate of failed requests per second was recorded

throughout the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.60: Graduated load test “Errors” data for WebApp_15

Tests

From the tests graph below, it was notable that the number of tests processed per second was

irregular and not consistent with the number of concurrent users. On the other hand, the

average test time increased marginally throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

Elapsed time (minutes)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Key:

Figure 4.61: Graduated load test “Tests” data for WebApp_15

119

Discussion

The results show that the test application, WebApp_15 (https://www.qtptutorial.net), which is

generic website with rich set of web UI functions, has constrained architectural design that

affected user experience depending on the number of concurrent users used during the test,

up to the maximum level of 200 concurrent users.

The application design exhibited an irregular pattern in performance, throughput, errors and

tests graphs indicating an unpredictable application behaviour when subjected to different

levels of user load.

In this case, the association between throughput and user load was not clearly visualised.

https://www.qtptutorial.net/

120

4.5.16 Test Application WebApp_16

Portal for IBM open source at GitHub which his based on microservices.

The table below shows the test results for the graduated load test for this application:

Table 4.18: Graduated load test results for WebApp_16

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 13.333330 0.085000 - 22.604170 2,812

0:30 30 26.666670 0.017500 - 5.312500 2,769

0:45 50 42.666670 0.021875 - 15.000000 2,679

1:00 60 56.666670 0.012941 - 15.208330 2,606

1:15 80 72.400000 0.012891 - 14.062500 2,515

1:30 90 84.866670 0.012569 - 24.062500 2,426

1:45 110 101.400000 0.019066 - 33.125000 2,333

2:00 120 112.400000 0.013642 - 28.541670 2,231

2:15 140 130.800000 0.020387 - 23.958330 2,164

2:30 150 143.533300 0.012076 - 19.791670 2,165

2:45 170 157.266700 0.020772 - 30.833330 2,148

3:00 180 169.866700 0.014521 - 27.187500 2,143

3:15 200 183.600000 0.027596 - 33.750000 2,142

3:30 200 198.600000 0.009399 - 21.979170 2,145

3:45 200 192.133300 0.011450 - 24.583330 2,143

4:00 200 197.000000 0.013536 - 33.437500 2,146

4:15 200 195.533300 0.012274 - 29.270830 2,150

4:30 200 191.866700 0.011466 - 28.333330 2,157

4:45 200 197.533300 0.014175 - 31.354170 2,168

5:00 200 193.600000 0.011019 - 29.375000 2,203

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time and

the average page load time remained steady throughout the test period in spite of the increase

in user load. The values for the two metrics remained relatively low throughout the test

period, as depicted by the y-axis scale of between 0 and 0.18 seconds.

121

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.62: Graduated load test “Performance” data for WebApp_16

Throughput

From the throughput results graphed below, it was notable that the number of requests and

number of pages that were successfully processed per second increased consistently with the

increase in the number of concurrent users. It can therefore be argued that throughput

increased with increase in user load.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.63: Graduated load test “Throughput” data for WebApp_16

122

Errors

From the errors graph below, was notable that no failed requests were recorded throughout

the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.64: Graduated load test “Errors” data for WebApp_16

Tests

From the tests graph below, it was notable that the number of tests processed per second was

consistent with the number of concurrent users. On the other hand, the average test time

remained steady throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.65: Graduated load test “Tests” data for WebApp_16

123

Discussion

The results show that the test application, WebApp_16 (http://ibm.github.io), which is an

insurance web application, has a good architectural design that provided a consistent user

experience at all levels of user load used during the test, up to the maximum level of 200

concurrent users.

The application design also exhibited high scalability as throughput increased with increasing

user load and no page load errors were recorded during the test.

http://ibm.github.io/

124

4.5.17 Test Application WebApp_17

This is a simple, static portal which is based on microservices.

The table below shows the test results for the graduated load test for this application:

Table 4.19: Graduated load test results for WebApp_17

Elapsed
Time

No. of
users

 Pages/Sec Avg. Page
Time

 Errors/Sec % Processor
Time

 Available
Mbytes

0:00

0:15 20 13.333330 0.050000 - 26.145830 2,850

0:30 30 26.666670 0.025000 - 21.250000 2,867

0:45 50 43.333330 0.032308 - 36.250000 2,836

1:00 60 48.133340 0.292244 - 56.458330 2,869

1:15 80 72.000000 0.041667 - 68.229160 2,829

1:30 90 79.466670 0.103188 - 89.375000 2,808

1:45 110 77.266670 0.421053 - 100.000000 2,724

2:00 120 73.666660 0.914932 - 98.854160 2,668

2:15 140 68.200000 1.552297 - 100.000000 2,630

2:30 150 78.866670 1.622992 - 100.000000 2,606

2:45 170 80.333340 1.791701 - 100.000000 2,536

3:00 180 52.066670 2.354673 - 100.000000 2,480

3:15 200 62.600000 2.536741 - 95.625000 2,471

3:30 200 69.533330 2.619367 - 100.000000 2,395

3:45 200 77.666660 2.242060 - 100.000000 2,468

4:00 200 66.866670 2.658026 - 100.000000 2,437

4:15 200 72.533330 2.476103 - 100.000000 2,436

4:30 200 76.600000 2.408181 - 100.000000 2,444

4:45 200 80.733330 2.415359 - 100.000000 2,439

5:00 200 67.066670 2.692843 - 100.000000 2,441

These test results are further represented in the graphs below and discussed in the respective

sections next to the graph.

Performance

From the performance graph below, it was notable that both the average response time

increased marginally as the user load increased. The average page load time however,

increased in an irregular pattern as the user load increased.

125

T
im

e
 (

s
e

c
o

n
d

s
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Key:

Elapsed time (minutes)

Figure 4.66: Graduated load test “Performance” data for WebApp_17

Throughput

From the throughput results graphed below, it was notable that the number of requests

processed per second was not consistent with the increase in user load, increasing steadily to

the peak at user load of about 50 users and remaining consistently high for the rest of the test

period. The number of pages that were successfully processed per second increased

marginally throughout the test period.

The association between throughput and user load could not be clearly visualised.

P
a

g
e

s
/R

e
q

u
e

s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.67: Graduated load test “Throughput” data for WebApp_17

126

Errors

From the errors graph below, was notable that no failed requests were recorded throughout

the test period.

F
a

ile
d

 R
e

q
u

e
s
ts

 p
e

r
S

e
c

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.68: Graduated load test “Errors” data for WebApp_17

Tests

From the tests graph below, it was notable that the number of tests processed per second was

irregular and not consistent with the number of concurrent users. On the other hand, the

average test time increased marginally throughout the test period.

T
e

s
ts

/S
e

c
,
A

v
g

.
T

e
s
t
T

im
e

 (
S

e
c
)

C
o

n
c
u

rr
e

n
t
u

s
e

rs

Elapsed time (minutes)

Key:

Figure 4.69: Graduated load test “Tests” data for WebApp_17

127

Discussion

The results show that the test application, WebApp_17 (http://square.github.io), which is a

static portal that is based on microservices, has a constrained architectural design that

affected user experience depending on the number of concurrent users used during the test,

up to the maximum level of 200 concurrent users.

The application design exhibited an irregular pattern in performance, throughput, errors and

tests graphs indicating an unpredictable application behaviour when subjected to different

levels of user load.

In this case, the association between throughput and user load was not clearly visualised.

http://square.github.io/

128

4.6 Summary of application test results

The graduated load test results have shown the difference in the behaviour of the test

applications when subjected to the treatment of increasing user load.

After analysing the graphs, the applications were grouped into two categories - applications

considered have a good architectural design and those with a constrained architectural design.

The characteristics of the two categories of applications are outlined below:

Table 4.20: Characteristics of observed application behavior

Good architectural design application

characteristics

Constrained architectural design application

characteristics

Performance was consistent throughout the test

period in spite of increasing user load

Performance increased and varied in an irregular

pattern as user load increased

Throughput increased consistently with increase in

user load, illustrating a clear relationship between

throughput and user load

Throughput increased in an irregular patter as user

load increased such that the relationship between

throughput and user load could not be visualised

No errors were recorded Errors were recorded throughout the test period

Going by these characteristics, the test applications were classified into the two categories as

shown in the table below:

Table 4.21: Classification of test applications by architectural design

Good architectural design applications Constrained architectural design applications

WebApp_3 (http://www.practiceselenium.com) WebApp_1 (http://automationpractice.com)

WebApp_4 (http://zero.webappsecurity.com) WebApp_2 (http://newtours.demoaut.com)

WebApp_5 (http://demo.nopcommerce.com) WebApp_7 (http://store.demoqa.com)

WebApp_6 (http://www.globalsqa.com) WebApp_8 (http://awful-valentine.com)

WebApp_9 (http://demo.borland.com) WebApp_10 (http://phptravels.com)

WebApp_12 (http://thedemosite.co.uk) WebApp_11 (http://demoqa.com)

WebApp_13 (http://www.way2automation.com) WebApp_14 (https://www.ultimateqa.com)

WebApp_16 (http://ibm.github.io) WebApp_15 (https://www.qtptutorial.net)

 WebApp_17 (http://square.github.io)

http://www.practiceselenium.com/
http://automationpractice.com/
http://zero.webappsecurity.com/
http://newtours.demoaut.com/
http://demo.nopcommerce.com/
http://store.demoqa.com/
http://www.globalsqa.com/
http://awful-valentine.com/
http://demo.borland.com/
http://phptravels.com/
http://thedemosite.co.uk/
http://demoqa.com/
http://www.way2automation.com/
https://www.ultimateqa.com/
http://ibm.github.io/
https://www.qtptutorial.net/
http://square.github.io/

129

The analysis of these graphical results provided a good basis for conducting a high level

evaluation of the performance of the test applications. However, this level of analysis was not

adequate for testing the research hypotheses. In order to test the hypotheses, inferential

statistical analysis was required. The statistical analysis was conducted using Pearson

Correlation Coefficient analysis and Moderation Multiple Regression analysis as discussed in

the sections that follow.

130

4.7 Pearson Correlation Coefficient Analysis

Inferential statistics, is used to make inferences or to project characteristics from a sample to

an entire population (Zikmund et al., 2013).

In this study, Pearson Correlation Coefficient (Statistics.laerd.com, 2015) was used to

determine the correlation between throughput and scalability of applications.

From the conceptual framework, scalability for a given application A on a platform P was

defined as:

Scalability S(A,P) =
Throughput T(A,P)

Cost C(A,P)

The following thesis statement was postulated: As throughput increases, scalability

increases. Therefore, there is a positive relationship between throughput and scalability, such

that high values of throughput are associated with high values of scalability.

The null hypothesis for this test was:

H0: ρ = 0; the correlation coefficient for the population is zero. There is no statistically

significant relationship between throughput and scalability of applications.

The alternative hypothesis for this test was:

H1: ρ ≠ 0; the correlation coefficient for the population is not equal to zero. There is a

statistically significant relationship between throughput and scalability of applications.

4.7.1 Pearson Correlation Coefficient Analysis for 1 test application

SPSS Statistics correlational analysis was used to test the hypothesis by determining the

strength and direction of the relationship between throughput and scalability. Data for the test

application WebApp_1 (http://automationpractice.com) was used to illustrate the

computation process in the sections below.

http://automationpractice.com/

131

The table below shows the values used for calculating r for throughput and scalability.

Table 4.22: X and Y values used for Correlation Coefficient analysis

Elapsed
Time

No. of users Pages/Sec % Processor Time Throughput (T)
X-Values

 Scalability (S)
Y-Values

0:15 20 6.000000 23.437500 6.00 0.26

0:30 30 13.733330 26.875000 13.73 0.51

0:45 50 22.066670 38.125000 22.07 0.58

1:00 60 24.133330 29.895830 24.13 0.81

1:15 80 29.933330 42.812500 29.93 0.70

1:30 90 37.266670 36.666670 37.27 1.02

1:45 110 44.533330 37.604170 44.53 1.18

2:00 120 49.533330 37.500000 49.53 1.32

2:15 140 55.933330 35.520830 55.93 1.57

2:30 150 59.466670 22.187500 59.47 2.68

2:45 170 62.533330 19.479170 62.53 3.21

3:00 180 66.866670 23.020830 66.87 2.90

3:15 200 75.933330 18.020830 75.93 4.21

The step by step analysis process in explained in the sections below.

Step 1: Test for linear relationship between the variables

Pearson's correlation is only appropriate when there is a linear relationship between two

variables. The scatter graph was used to visually determine if there was a linear relationship

between throughput and scalability as shown below.

From visual inspection of the scatterplot below, it was determined that there was a linear

relationship between throughput and scalability.

132

Figure 4.70: Scatterplot 1 showing relationship between Throughput and Scalability

Step 2: Test for outliers

When conducting a Pearson's correlation analysis, outliers are data points that do not fit the

pattern of the rest of the data set (Statistics.laerd.com, 2015). These data points can often be

identified from the scatterplot which was plotted when testing for linearity. By examining the

scatterplot above, it was determined that there were no outliers in the data set.

Step 3: Test for normality

To assess the statistical significance of Pearson's correlation coefficient, you need to have

bivariate normality, but this assumption is difficult to assess. Therefore, in practice, a

property of bivariate normality is relied upon; that is, if bivariate normality exists, both

variables will be normally distributed. However, this does not work in reverse; two normally

distributed variables do not mean there is bivariate normality, but it is a level of assurance

that can be lived with (Statistics.laerd.com, 2015).

133

SPSS Statistics was used to test both variables (throughput and scalability) for normality with

the following results:

Table 4.23: Normality test results for Throughput and Scalability

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Throughput .120 13 .200* .967 13 .855

Scalability .208 13 .127 .879 13 .070

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

From the results table above, it was observed that a Shapiro-Wilk test was ran for each

variable. The significance value for this test for each variable, as highlighted above are:

throughput = 0.855; scalability = 0.070.

If the assumption of normality has been violated, the "Sig." value will be less than .05 (i.e.,

the test is significant at the p < .05 level). If the assumption of normality has not been

violated, the "Sig." value will be greater than .05 (i.e., p > .05). This is because the Shapiro-

Wilk test is testing the null hypothesis that your data's distribution is equal to a normal

distribution. Rejecting the null hypothesis means that your data's distribution is not equal to a

normal distribution.

By this definition, both the “Sig.” values are greater than 0.05 (being 0.855 and 0.070),

therefore the variables throughput and scalability are normally distributed, as assessed by

Shapiro-Wilk's test (p > .05).

Step 4: Pearson correlation coefficient analysis

Since the data fulfilled the criteria for Pearson Correlation Coefficient analysis, the analysis

was conducted, and the results obtained as shown in the output table below:

134

Table 4.24: Correlation analysis output showing coefficient values

 Throughput Scalability

Throughput Pearson Correlation 1 .915**

Sig. (2-tailed) .000

N 13 13

Scalability Pearson Correlation .915** 1

Sig. (2-tailed) .000

N 13 13

**. Correlation is significant at the 0.01 level (2-tailed).

From the table above, it was determined that the Pearson correlation coefficient, r, is .951,

which is positive, meaning, there is a positive correlation between throughput and scalability.

The magnitude of the Pearson correlation coefficient determines the strength of the

correlation. (Cohen, 1988) provides general guidelines for assigning strength of association

with different values for r as shown in the table below:

Table 4.25: Coefficient values and strength of association

Coefficient Value Strength of Association

0.1 < | r | < .3 small correlation

0.3 < | r | < .5 medium/moderate correlation

| r | > .5 large/strong correlation

where | r | means the absolute value or r (e.g., | r | > .5 means r > .5 and r < -.5).

Therefore, the Pearson correlation coefficient for this test (r = .951) suggests a strong

correlation. The Pearson correlation analysis therefore shows there was a strong positive

correlation between throughput and scalability, r = .951.

Step 5: Coefficient of determination

The coefficient of determination is the proportion of variance in one variable that is

"explained" by the other variable and is calculated as the square of the correlation coefficient

(r2). In this analysis, the coefficient of determination, r2, is equal to (0.951)2 = 0.837225. This

can also be expressed as a percentage (i.e., 83.72%).

This means that throughput statistically explained 83.72% of the variability in scalability.

135

Step 6: Determining statistical significance

The Pearson correlation coefficient obtained from the analysis described the relationship

between the two variables in the sample. A test for statistical significance is conducted to test

the hypotheses about the linear relationship between the variables in the population the

sample is from.

Table 4.26: Correlation analysis output showing statistical significance

 Throughput Scalability

Throughput Pearson Correlation 1 .915**

Sig. (2-tailed) .000

N 13 13

Scalability Pearson Correlation .915** 1

Sig. (2-tailed) .000

N 13 13

**. Correlation is significant at the 0.01 level (2-tailed).

From the output table above, the statistical significance (p-value) of the correlation

coefficient in this analysis would appear to be .000 (obtained from the "Sig. (2-tailed)" row).

However, SPSS Statistics p-value of .000, indicates that p < .0005. Since p < .05 in this case

(it is p < .0005), it can be concluded that the correlation coefficient is statistically

significantly different from zero.

The Pearson correlation analysis shows there was a strong positive correlation between

throughput and scalability, r = .951, p < .0005.

4.7.2 Pearson Correlation Coefficient analysis for all test applications

Pearson correlation coefficient analysis was conducted to determine r for the consolidated

data for all the test applications.

The consolidated data in the table below was used for the analysis:

136

Table 4.27: Consolidated X and Y values used for r computation

Pearson Correlation Coefficient Analysis

 Throughput
(X-Values)

 Scalability
(Y-Values)

8.4471 0.5299

19.1176 2.8232

30.6314 3.9319

34.1647 2.1752

39.9922 2.1439

47.3098 2.1238

55.1020 2.1032

64.3333 2.6065

77.1843 3.5742

84.8667 4.5394

84.4039 3.3079

76.9922 3.6803

85.0118 6.9434

The step by step analysis process is explained in the sections below.

Step 1: Test for linear relationship between the variables

Pearson's correlation is only appropriate when there is a linear relationship between two

variables. The scatterplot was used to visually determine if there was a linear relationship

between throughput and scalability as shown below:

137

Figure 4.71: Scatterplot 2 showing relationship between Throughput and Scalability

From visual inspection of the scatterplot above, it was determined that there was a linear

relationship between throughput and scalability.

Step 2: Test for outliers

When conducting a Pearson's correlation analysis, outliers are data points that do not fit the

pattern of the rest of the data set (Statistics.laerd.com, 2015). These data points can often be

identified from the scatterplot above, which was plotted when testing for linearity. By

examining the scatterplot, it was determined that there were 3 outliers in this data set which

are denoted by the 3 black dots on the scatterplot below.

138

Figure 4.72: Scatterplot 3 showing outliers

A further examination of the data showed that the outliers were contributed by data for 3 test

applications which had results that were not consistent with the results of other applications.

These applications included:

 Test application WebApp_7 (http://store.demoqa.com)

 Test application WebApp_10 (http://phptravels.com)

 Test application WebApp_11 (http://demoqa.com)

The three applications had low values for throughput and high values of average page load

time compared to the other test applications. Since these were valid test results, the outliers

were retained in the Pearson correlation analysis.

http://store.demoqa.com/
http://phptravels.com/
http://demoqa.com/

139

Step 3: Test for normality

To assess the statistical significance of Pearson's correlation coefficient, you need to have

bivariate normality, but this assumption is difficult to assess. Therefore, in practice, a

property of bivariate normality is relied upon; that is, if bivariate normality exists, both

variables will be normally distributed. However, this does not work in reverse; two normally

distributed variables do not mean you have bivariate normality, but it is a level of assurance

that can be lived with (Statistics.laerd.com, 2015).

SPSS Statistics was used to test both variables (throughput and scalability) for normality with

the following results:

Table 4.28: Normality test results for Throughput and Scalability

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Throughput .187 13 .200* .917 13 .228
Scalability .180 13 .200* .917 13 .227

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

From the results table above, it was observed that a Shapiro-Wilk test was ran for each

variable. The significance value for each variable was: Throughput = 0.228; Scalability =

0.227. Since both the “Sig.” values are greater than 0.05 (being 0.228 and 0.227), the

variables were normally distributed, as assessed by Shapiro-Wilk's test (p > .05).

Step 4: Pearson correlation coefficient analysis

Since the data fulfilled the criteria for Pearson Correlation Coefficient analysis, the analysis

was conducted, and the results obtained as shown in the output table below:

Table 4.29: Correlation analysis output showing coefficient values

 Throughput Scalability

Throughput Pearson Correlation 1 .675*

Sig. (2-tailed) .011

N 13 13

Scalability Pearson Correlation .675* 1

Sig. (2-tailed) .011
N 13 13

*. Correlation is significant at the 0.05 level (2-tailed).

140

From the table above, it was determined that the Pearson correlation coefficient, r, was .675.

Since the sign of the Pearson correlation coefficient is positive and |r| > 0.5, there was a

strong positive correlation between throughput and scalability.

The Pearson correlation analysis showed there was a strong positive correlation between

throughput and scalability, r = .675.

Step 5: Coefficient of determination

The coefficient of determination is the proportion of variance in one variable that is

"explained" by the other variable and is calculated as the square of the correlation coefficient

(r2). In this analysis, the coefficient of determination, r2, is equal to (0.675)2 = 0.455625. This

can also be expressed as a percentage (i.e., 45.56%). This means that throughput statistically

explained 45.56% of the variability in scalability.

Step 6: Determining statistical significance

The Pearson correlation coefficient obtained from the analysis described the relationship

between the two variables in the sample. A test for statistical significance was conducted to

test the hypotheses about the linear relationship between the variables in the population the

sample is from.

Table 4.30: Correlation analysis output showing statistical significance

 Throughput Scalability

Throughput Pearson Correlation 1 .675*

Sig. (2-tailed) .011

N 13 13

Scalability Pearson Correlation .675* 1

Sig. (2-tailed) .011

N 13 13

 *. Correlation is significant at the 0.05 level (2-tailed).

From the output table above, the statistical significance (p-value) of the correlation

coefficient in this analysis was .011. Since p < .05, in this case (p = .011), it was determined

that the correlation coefficient was statistically significantly different from zero.

The Pearson correlation analysis therefore showed there was a strong positive correlation

between throughput and scalability, r = .0.675, p = 0.011.

141

4.7.3 Discussions

At first, a Pearson Correlation Coefficient analysis was run to assess the relationship between

throughput and scalability for the graduated load test results for one test application.

Preliminary analyses showed the relationship to be linear, with both variables normally

distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no outliers. There

was a strong positive correlation between throughput and scalability, r(11) = .915, p < .0005,

with throughput explaining 83.72% of the variation in scalability.

On the second instance, a Pearson Correlation Coefficient analysis was run to assess the

relationship between throughput and scalability for the graduated load test results for all test

applications used in the experiment.

Preliminary analyses showed the relationship to be linear with both variables normally

distributed, as assessed by Shapiro-Wilk's test (p > .05), with 3 outliers. Correlation analysis

results showed that there was a strong positive correlation between throughput and

scalability, r(11) = .675, p = 0.011, with throughput explaining 45.56% of the variation in

scalability.

Through the Pearson Correlation Coefficient analysis for the graduated load test results, it

was determined that there was a strong positive correlation between throughput and

scalability, which was statistically significant. Therefore, the null hypothesis is rejected, and

the alternative hypothesis is accepted.

142

4.8 Moderation Multiple Regression Analysis

In the conceptual framework, the following thesis statement was postulated: The architecture

of a software application controls how the application utilizes computing resources and

therefore impacts the performance of the application when processing load.

The study sought to answer the question: Does application architecture moderate the

relationship between load and application performance?

The following hypotheses were tested:

Null hypothesis:

H0: Application architecture does not moderate the relationship between load and

performance.

Alternative hypothesis:

H1: Architecture does moderate the relationship between load and performance.

To examine the research question, moderation regression analysis by (Hayes, 2017) and

discussed by (Cooper, 2015) was used to asses if the moderating variable (architecture)

moderates the relationship between the independent variable (load) and the dependent

variable (performance).

To test for moderation, a multiple linear regression was conducted using SPSS Statistics.

The independent variables of the regression were load, architecture and the interaction

between load and architecture. The interaction was created by multiplying independent

variable (load) and moderator (architecture) together. The dependent variable of the

regression was performance.

To test the hypothesis, the interaction was evaluated for statistical significance, whereby

moderation is supported when the interaction is statistically significant.

143

This moderation regression model is summarised in the conceptual and statistical diagrams

below:

X Y

Independent Variable

(load)

Dependent Variable

(Performance)

Moderating Variable

(Architecture)

Z

Figure 4.73: Conceptual diagram for moderation regression analysis

X

Z

XZ

Y

b1

b2

b3

ey

1

Figure 4.74: Statistical diagram for moderation regression analysis

The conditional effect of X on Y at a given value of Z is defined as: Y = b1 + b3Z

Moderated regression equation is defined as: Y = b0 + b1X + b2Z + b3XZ + e

4.8.1 Regression analysis for individual test applications

Test application WebApp_1 (http://automationpractice.com)

Data for the test application WebApp_1 (http://automationpractice.com) was used to illustrate

the step by step computation process of the moderated multiple regression analysis in the

sections below.

The table below shows the values used for calculating the conditional effect of X (Load) on Y

(Performance) at a given value of Z (Architecture):

http://automationpractice.com/
http://automationpractice.com/

144

Table 4.31: X, Y and Z values used regression analysis

No. of
users

 Pages/Sec Avg. Page
Time

 % Processor
Time

 Load
(X-Value)

 Performance
(Y-Value)

 Architecture
(Z-Value)

20 6.000000 1.922222 23.437500 20 1.922 0.256

30 13.733330 1.796116 26.875000 30 1.796 0.511

50 22.066670 1.858006 38.125000 50 1.858 0.579

60 24.133330 1.872928 29.895830 60 1.873 0.807

80 29.933330 2.167038 42.812500 80 2.167 0.699

90 37.266670 1.919499 36.666670 90 1.919 1.016

110 44.533330 1.697605 37.604170 110 1.698 1.184

120 49.533330 1.776581 37.500000 120 1.777 1.321

140 55.933330 1.722288 35.520830 140 1.722 1.575

150 59.466670 1.791480 22.187500 150 1.791 2.680

170 62.533330 1.826226 19.479170 170 1.826 3.210

180 66.866670 1.794616 23.020830 180 1.795 2.905

200 75.933330 1.828797 18.020830 200 1.829 4.214

Using SPSS Statistics, moderation multiple regression analysis for this data yielded the

following results:

Table 4.32: Moderated multiple regression variables

Model Variables Entered Variables Removed Method

1 Arch, Loadb . Enter

2 Load*Archb . Enter

a. Dependent Variable: Performance

b. All requested variables entered.

The output table above shows that two regressions were ran.

The first regression, Model 1, contained the independent variable Load and Arch. The second

regression, Model 2, is Model 1 plus the interaction term Load*Arch added to the model.

Thus, Model 2 contains all three terms in the regression model – load, Arch and Load*Arch –

and is the moderated multiple regression.

The table below shows the model summary:

145

Table 4.33: Moderated multiple regression model summary

Model R

R

Square

Adjusted R

Square

Std. Error of the

Estimate

Change Statistics

R Square

Change

F

Change df1 df2

Sig. F

Change

1 .495a .245 .095 .1119296 .245 1.626 2 10 .245

2 .577b .333 .111 .1109176 .088 1.183 1 9 .305

a. Predictors: (Constant), Arch, Load

b. Predictors: (Constant), Arch, Load, Load*Arch

c. Dependent Variable: Performance

Looking at results for Model 2, "R Square Change", shows the increase in variation explained

by the addition of the interaction term (i.e., the change in R2). The change in R2 is reported as

.088, which is a proportion. More usually, this measure is reported as a percentage (Laerd

Statistics), therefore the change in R2 was 8.8% (i.e., .088 x 100 = 8.8%). This represents the

percentage increase in the variation explained by the addition of the interaction term.

It should be noted that a low R2 value is a somewhat common feature of an interaction term.

As such, one should always consider whether the interaction is practically important (Lund

and Lund, 2015).

The next step in the process was to determine if the change in R2 was statistically significant

by examining the result in “Sig. F Change” column. If, the change in R2 is not statistically

significant (i.e., p > .05), there is no moderator effect (Lund and Lund, 2015). In this case, the

value of “Sig. F Change” p = 0.305, which means that the moderator effect was not

statistically significant and therefore there was no moderator effect.

In other words, for this specific application performance test, the moderator variable

architecture does not statistically significantly moderate the relationship between load and

performance.

Test application WebApp_2 (http://demo.nopcommerce.com)

Data for the test application WebApp_2 (http://demo.nopcommerce.com) was used as another

example to illustrate the moderated multiple regression analysis in the sections below.

http://demo.nopcommerce.com/
http://demo.nopcommerce.com/

146

Table 4.34: X, Y and Z values used for regression analysis

No. of
users

 Pages/Sec Avg. Page
Time

 % Processor
Time

 Load
(X-Value)

 Performance
(Y-Value)

 Architecture
(Z-Value)

20 12.2000 0.1148 15.5208 20 0.1148 0.7860

30 25.9333 0.0463 5.6250 30 0.0463 4.6104

50 41.6000 0.0465 15.8333 50 0.0465 2.6274

60 54.0000 0.0494 11.6667 60 0.0494 4.6286

80 66.9333 0.1086 20.3125 80 0.1086 3.2952

90 76.2667 0.0857 21.3542 90 0.0857 3.5715

110 89.8000 0.1700 26.6667 110 0.1700 3.3675

120 100.2667 0.1742 17.1875 120 0.1742 5.8337

140 118.4667 0.1300 19.8958 140 0.1300 5.9543

150 132.4667 0.0996 18.7500 150 0.0996 7.0649

170 139.5333 0.1648 21.4583 170 0.1648 6.5025

180 134.8667 0.2813 17.7083 180 0.2813 7.6160

200 137.2000 0.4116 17.0833 200 0.4116 8.0312

Using SPSS, moderation multiple regression analysis for this data yielded the following

results:

Table 4.35: Moderated multiple regression variables

Model Variables Entered Variables Removed Method

1 Arch, Loadb . Enter

2 Load*Archb . Enter

a. Dependent Variable: Performance

b. All requested variables entered.

The first regression, Model 1, contained the independent variable Load and Arch. The second

regression, Model 2 is Model 1 plus the interaction term Load*Arch added to the model.

Thus, Model 2 contains all three terms in the regression model – load, Arch and Load*Arch –

and is the moderated multiple regression.

The table below shows the model summary:

147

Table 4.36: Moderated multiple regression model summary

Model R

R

Square

Adjusted R

Square

Std. Error of the

Estimate

Change Statistics

R Square

Change

F

Change df1 df2

Sig. F

Change

1 .929a .864 .836 .0417900 .864 31.686 2 10 .000

2 .981b .963 .951 .0229265 .099 24.225 1 9 .001

a. Predictors: (Constant), Arch, Load

b. Predictors: (Constant), Arch, Load, Load*Arch

c. Dependent Variable: Performance

Looking at results for Model 2, "R Square Change", shows the increase in variation explained

by the addition of the interaction term (i.e., the change in R2). The change in R2 is reported as

.099, which is a proportion. More usually, this measure is reported as a percentage (Laerd

Statistics), therefore the change in R2 was 9.9% (i.e., .099 x 100 = 9.9%). This represents the

percentage increase in the variation explained by the addition of the interaction term.

It should be noted that a low R2 value is a somewhat common feature of an interaction term.

As such, one should always consider whether the interaction is practically important (Lund

and Lund, 2015).

The next step in the process was to determine if the change in R2 was statistically significant

by examining the result in “Sig. F Change” column. If, the change in R2 is statistically

significant (i.e., p < .05), there is moderation effect (Lund and Lund, 2015). In this case, the

value of “Sig. F Change” p = 0.001, which means that the moderator effect was statistically

significant and therefore there was moderation effect.

In other words, for this specific application performance test, the moderator variable

architecture statistically significantly moderates the relationship between load and

performance.

4.8.2 Regression analysis for all test applications

Moderation multiple regression analysis was conducted to examine the moderation effect

using the consolidated data for all the test applications. The consolidated data in the table

below was used for the analysis:

148

Table 4.37: Consolidated X, Y and Z values used for regression analysis

Moderation Regression Analysis

 Load
(X-Value)

 Performance
(Y-Value)

 Architecture
(Z-Value)

20 1.4555 0.5299

30 0.8620 2.8232

50 1.0219 3.9319

60 1.4350 2.1752

80 5.3058 2.1439

90 3.9354 2.1238

110 3.2939 2.1032

120 3.2099 2.6065

140 5.7761 3.5742

150 6.0392 4.5394

170 6.7998 3.3079

180 7.8558 3.6803

200 7.6021 6.9434

Using SPSS Statistics, moderation multiple regression analysis for this data yielded the

following results:

Table 4.38: Moderation multiple regression variables

Model Variables Entered Variables Removed Method

1 Arch, Loadb . Enter

2 Load*Archb . Enter

a. Dependent Variable: Performance

b. All requested variables entered.

The first regression, Model 1, contained the independent variable Load and Arch. The second

regression, Model 2, is Model 1 plus the interaction term Load*Arch added to the model.

Thus, Model 2 contains all three terms in the regression model – load, Arch and Load*Arch –

and is the moderated multiple regression.

The table below shows the model summary:

149

Table 4.39: Moderated multiple regression model summary

Model R

R

Square

Adjusted R

Square

Std. Error of the

Estimate

Change Statistics

R Square

Change

F

Change df1 df2

Sig. F

Change

1 .929a .863 .835 1.0284217 .863 31.439 2 10 .000

2 .933b .871 .828 1.0500131 .008 .593 1 9 .461

a. Predictors: (Constant), Arch, Load

b. Predictors: (Constant), Arch, Load, Load*Arch

c. Dependent Variable: Performance

Looking at results for Model 2, "R Square Change", shows the increase in variation explained

by the addition of the interaction term (i.e., the change in R2). The change in R2 is reported as

.008, which is a proportion. More usually, this measure is reported as a percentage (Laerd

Statistics), therefore the change in R2 was 0.8% (i.e., .008 x 100 = 0.8%). This represents the

percentage increase in the variation explained by the addition of the interaction term.

It should be noted that a low R2 value is a somewhat common feature of an interaction term.

As such, one should always consider whether the interaction is practically important (Lund

and Lund, 2015).

The next step in the process was to determine if the change in R2 was statistically significant

by examining the result in “Sig. F Change” column. If, the change in R2 is statistically

significant (i.e., p < .05), there is moderation effect (Lund and Lund, 2015). In this case, the

value of “Sig. F Change” p = 0.461, which means that the moderator effect was not

statistically significant and therefore there was no moderation effect.

In other words, running the moderation multiple regressing using the consolidated application

performance test data, it was determined that moderator variable architecture does not

statistically significantly moderate the relationship between load and performance.

150

4.9 Discussions

At first, moderation multiple regression analysis was ran using test results for one application

to assess if the architecture moderates the relationship between the load and performance.

The results for the first test application showed that there was no statistical significance of the

interaction term between architecture and load with change in R2 reported as .088 and

significance reported as p = 0.305 (p > 0.05).

The results for the second test application showed that there was statistical significance of the

interaction term between architecture and load with change in R2 reported as .099 and

significance reported as p = 0.001 (p < 0.05).

Finally, moderation multiple regression analysis was ran using the consolidated test results

for all applications to assess if the architecture moderates the relationship between the load

and performance.

The results showed that there was no statistical significance of the interaction term between

architecture and load with change in R2 reported as .008 and significance reported as p =

0.461 (p > 0.05).

Through the moderation multiple regression analysis for the graduated load test results, it was

determined that there no statistically significant moderator effect of architecture on the

relationship between load and performance.

Therefore, the null hypothesis was accepted, and the alternative hypothesis was rejected.

151

5 CONCLUSION AND RECOMMENDATIONS

5.1 Research objectives

The objectives of this research had been outlined as follows:

 Identify factors driving the adoption of cloud computing as the new way of delivering

computing services

 Discover the main application architectures used in the development of cloud based

applications

 Conduct an experiment to measure and compare the performance of applications when

subjected to different levels of load

 Analyse the data to determine the correlation between throughput and scalability

 Analyse the data to determine the moderating effect of architecture on the relationship

between load and performance of the cloud-based applications.

5.2 Conclusions

Through a detailed literature search and review, development of a conceptual framework,

using a quasi-experimental methodology for testing and data collection and using inferential

statistical analysis tools, the research objectives were achieved.

Factors driving the adoption of cloud computing as the new way of delivering computing

services were identified, primarily being the access to highly elastic computing resources that

are costed based on usage.

The main application architectures used for cloud based applications were identified as

Services Oriented Architecture and microservices architecture.

Using Microsoft Visual Studio Team Services on Microsoft Azure cloud platform, graduated

load tests were conducted and performance data recorded for all applications in the sample

population.

Two hypotheses were tested, whereby with the first hypothesis, the Alternative hypothesis

(H1) was accepted and in the second case, the Null hypothesis (H0) was accepted.

152

5.2.1 Hypothesis 1

Through the Pearson Correlation Coefficient analysis for the graduated load test results, it

was determined that there was a strong positive correlation between throughput and

scalability, which was statistically significant.

Therefore, the null hypothesis was rejected, and the alternative hypothesis was accepted.

5.2.2 Hypothesis 2

Through the moderation multiple regression analysis for the graduated load test results, it was

determined that there was no statistically significant moderator effect of architecture on the

relationship between load and performance.

Therefore, the null hypothesis was accepted, and the alternative hypothesis was rejected.

5.3 Limitations of the investigation

There were several limitations in this study that are worth noting, as discussed in the sections

below. Addressing these limitations in future investigations will increase the level of internal

and external validity of the research findings and therefore the possibility to generalize the

findings to the general population of cloud based applications.

5.3.1 True experimental design

A quasi-experimental methodology was used for this study, with convenience sampling and

without a control group. This limited the internal validity of the experimental results. For a

true experiment design, a random sample selected method should be used.

5.3.2 Direct study of application architecture factors

This study took an indirect approach to evaluate the relationship between architecture and

performance by measuring the utilization of cloud computing resources during the graduated

load test. A direct methodology of testing the actual application architecture factors should be

considered. An ordinal scale may be considered to group various architecture factors to

describe an architecture pattern as “good”, “fair”, or “bad”. This can then be used as a

moderating variable for regression analysis.

153

5.3.3 Application load level

For the graduated load test, light load levels were used. The experiment therefore did not the

test application performance at high load and the buckle zone. This limited the understanding

of the performance characteristics of these applications at high load level and therefore how

the performance characteristics related to the architecture of the applications.

5.3.4 Range of tests

On the other hand, the performance tests conducted were limited to web access and page

response times. These tests can be diversified to include online business transactions such as

e-commerce and financial transactions. The tests can also be diversified to test data base

query processing transactions.

5.4 Recommendations for further research

This has been a very foundation study in the area of application architecture and performance

management of cloud based applications, where there has been limited academic research,

according to the literature search and review conducted.

Future studies in this area of cloud computing are therefore encouraged, particularly to

improve on the conceptual framework and the experimental design so as to increase the

internal and external validity of the research findings.

5.5 Implications to practitioners

The subject of cloud computing, application architecture and application performance are

very important to cloud computing practitioners, who include cloud computing consultants,

cloud services design professionals, solution architects, application performance management

solution providers and professionals, business leaders among others.

This study has brought out very important factors that should be considered when businesses

are developing a cloud computing strategy for business applications:

 Applications should be designed for high scalability, which translates to high

throughput and therefore the ability to process more transactions for more users

without impacting performance.

154

 It is important to check the performance of an application before it is launched or

before deploying updates to production.

 Through such performance tests, key decisions regarding the application readiness to

meet the performance expectations for the targeted user base can be determined,

avoiding frustration from users and potential loss of business due to failure of services

at peak loads.

 With test performance data available, businesses can make well informed decisions

regarding whether to migrate existing applications to the cloud or to develop new

cloud based applications, or even, to maintain their existing on premise applications.

155

BIBLIOGRAPHY

1 EECS Department, University of California, Berkeley (2009). Above the Clouds: A

Berkeley View of Cloud Computing. [online] Available at:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html [Accessed 7

May 2017].

2 Pallis, G. (2010). Cloud Computing: The New Frontier of Internet Computing. IEEE

Internet Computing, 14(5), pp.70-73.

3 Yu, W. and Chen, J. (2011). Semantic Service in Cloud Computing. In: Advances in

Information Technology and Education. Communications in Computer and Information

Science, vol 201. [online] Berlin, Heidelberg: Springer, Berlin, Heidelberg, p.156.

Available at: https://link.springer.com/chapter/10.1007/978-3-642-22418-8_23

[Accessed 9 May 2017].

4 Research ICT Africa (2013). The cloud over Africa. [online] Cape Town: Research

ICT Africa, pp.1-2. Available at:

https://www.researchictafrica.net/publications/Evidence_for_ICT_Policy_Action/Policy

_Paper_20_-_The_cloud_over_Africa.pdf [Accessed 12 May 2017].

5 Sriram, I. and Khajeh-Hosseini, A. (2010). Research Agenda in Cloud Technologies. In:

1st ACM Symposium on Cloud Computing, SOCC 2010. [online] pp.1-2. Available at:

https://arxiv.org/ftp/arxiv/papers/1001/1001.3259.pdf [Accessed 12 May 2017].

6 Dai, C. (2017). Forrester Predictions: Ten Key Developments In Cloud Computing

Shape The Industry In 2017. [Blog] Charlie Dai's Blog. Available at:

http://blogs.forrester.com/charlie_dai/16-11-03-

forrester_predictions_ten_key_developments_in_cloud_computing_shape_the_industry_

in_2017 [Accessed 14 May 2017].

7 Linthcum, D. (2016). The Benefits of Cloud Computing for the Enterprise. [Blog]

CloudAcademy Blog. Available at: http://cloudacademy.com/blog/the-benefits-of-cloud-

computing-for-the-enterprise/ [Accessed 14 May 2017].

8 Turner, S. (2012). Journal of Technology Research. [online] Academic and Business

Research Institute (ABRI), p.2. Available at:

http://www.aabri.com/OC2012Manuscripts/OC12079.pdf [Accessed 14 May 2017].

9 Alkhalil, A., Sahandi, R. and John, D. (2016). A decision process model to support

migration to cloud computing. International Journal of Business Information Systems,

156

[online] 24(1), pp.102-126. Available at: https://dl.acm.org/citation.cfm?id=3031057

[Accessed 22 Oct. 2017].

10 Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special

Publication 800-145. [online] Gaithersburg, MD: National Institute of Standards and

Technology (NIST), pp.2-3. Available at:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf [Accessed

17 May 2017].

11 Danielson, K. (2008). Distinguishing Cloud Computing from Utility Computing. [Blog]

SaaS Week. Available at:

http://www.ebizq.net/blogs/saasweek/2008/03/distinguishing_cloud_computing/

[Accessed 17 May 2017].

12 En.wikipedia.org. (2011). Cloud computing. [online] Available at:

https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=411184904

[Accessed 18 May 2017].

13 Gartner. (2008). Gartner Says Cloud Computing Will Be As Influential As E-business.

[online] Available at: http://www.gartner.com/newsroom/id/707508 [Accessed 18 May

2017].

14 Knorr, E. (2008). What cloud computing really means. [Blog] Infoworld. Available at:

http://www.infoworld.com/article/2683784/cloud-computing/what-cloud-computing-

really-means.html [Accessed 18 May 2017].

15 The Economist. (2009). Cloud computing: Clash of the clouds. [online] Available at:

http://www.economist.com/node/14637206 [Accessed 18 May 2017].

16 Beal, V. (2017). What is Cloud Computing? Webopedia Definition. [online]

Webopedia.com. Available at:

http://www.webopedia.com/TERM/C/cloud_computing.html [Accessed 18 May 2017].

17 Cuttitta, A. (2013). Talking about technology: A metaphoric analysis of Cloud

computing and Web 2.0. Masters Degree. Northern Arizona University.

18 En.wikipedia.org. (2017). Cloud computing. [online] Available at:

https://en.wikipedia.org/wiki/Cloud_computing [Accessed 18 May 2017].

19 Johnston, S. (2017). Cloud computing conceptual diagram. [image] Available at:

https://en.wikipedia.org/wiki/Cloud_computing#/media/File:Cloud_computing.svg

[Accessed 18 May 2017].

20 Biswas, S. (2011). Cloud Computing vs. Utility Computing vs. Grid Computing: Sorting

The Differences. [online] Cloudtweaks.com. Available at:

157

https://cloudtweaks.com/2011/02/cloud-computing-vs-utility-computing-vs-grid-

computing-sorting-the-differences/ [Accessed 18 May 2017].

21 Walker, G. (2012). Cloud computing fundamentals - A different way to deliver computer

resources. [online] Ibm.com. Available at:

https://www.ibm.com/developerworks/cloud/library/cl-cloudintro [Accessed 18 May

2017].

22 Walker, G. (2012). Cloud computing layers embedded in the "as a Service" components.

[image] Available at: https://www.ibm.com/developerworks/cloud/library/cl-

cloudintro/figure2.gif [Accessed 18 May 2017].

23 Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., LEE, G.,

Patterson, D., Rabkin, A., Stoica, I. and Zaharia, M. (2010). A View of Cloud

Computing. Communications of the ACM, [online] (Volume 53 Issue 4), pp.50-58.

Available at: http://dl.acm.org/citation.cfm?id=1721672 [Accessed 19 May 2017].

24 En.wikipedia.org. (2015). Data center. [online] Available at:

https://en.wikipedia.org/wiki/Data_center [Accessed 19 May 2017].

25 Arias, T. (2011). The cloud computing infrastructure handbook. 1st ed. Emereo

Publishing, p.1.

26 Amazon Web Services (2015). Inside Amazon’s Cloud Computing Infrastructure.

[image] Available at: http://datacenterfrontier.com/wp-content/uploads/2015/09/amazon-

dc-hamilton.jpg [Accessed 19 May 2017].

27 Somepalle, S. (2015). Five Essential Characteristics of Cloud Computing. [image]

Available at:

https://media.licdn.com/mpr/mpr/shrinknp_400_400/AAEAAQAAAAAAAAJuAAAAJ

DdlOTVkMmZhLTQ4MTUtNDFlNy1hOTcxLTM2ZDljYzNlZjNhMg.png [Accessed

27 May 2017].

28 MacVittie, L. (2008). 4 Things You Need in a Cloud Computing Infrastructure. [online]

Devcentral.f5.com. Available at: https://devcentral.f5.com/articles/4-things-you-need-in-

a-cloud-computing-infrastructure [Accessed 27 May 2017].

29 MacVittie, L. (2013). Next Generation Application Architecture. [Blog] F5 DevCentral.

Available at: https://devcentral.f5.com/articles/next-generation-application-architecture

[Accessed 27 May 2017].

30 MacVittie, L. (2013). Next Generation Application Architecture. [image] Available at:

http://file:///C:/Users/macvittie/AppData/Local/Temp/WindowsLiveWriter1286139640/s

upfiles1DF55BB3/evolvingapparchitecture6.png [Accessed 27 May 2017].

158

31 Garlan, D. and Shaw, M. (1994). An Introduction to Software Architecture. Advances in

Software Engineering and Knowledge Engineering, [online] Volume I. Available at:

http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

[Accessed 27 May 2017].

32 Patterns & Practices Team, M. (2009). Microsoft® Application Architecture Guide

(Patterns & Practices) Second Edition. 2nd ed. [ebook] Microsoft Press. Available at:

https://msdn.microsoft.com/en-us/library/ff650706.aspx [Accessed 27 May 2017].

33 Rouse, M., Nolle, T. and Li, T. (2017). What is application program interface (API)? -

Definition from WhatIs.com. [online] SearchMicroservices. Available at:

http://searchmicroservices.techtarget.com/definition/application-program-interface-API

[Accessed 27 May 2017].

34 Rouse, M. and Wigmore, I. (2016). What is monolithic architecture? - Definition from

WhatIs.com. [online] WhatIs.com. Available at:

http://whatis.techtarget.com/definition/monolithic-architecture [Accessed 27 May 2017].

35 Annett, R. (2014). What is a Monolith? - Coding the Architecture. [online]

Codingthearchitecture.com. Available at:

http://www.codingthearchitecture.com/2014/11/19/what_is_a_monolith.html [Accessed

27 May 2017].

36 Annette, R. (2014). Module monolith. [image] Available at:

http://www.codingthearchitecture.com/images/monolith/module.png [Accessed 27 May

2017].

37 Annette, R. (2014). Allocation monolith. [image] Available at:

http://www.codingthearchitecture.com/images/monolith/allocation.png [Accessed 27

May 2017].

38 Annette, R. (2014). Runtime monolith. [image] Available at:

http://www.codingthearchitecture.com/images/monolith/runtime.png [Accessed 27 May

2017].

39 Richardson, C. (2017). What are microservices?. [online] Microservices.io. Available at:

http://microservices.io/ [Accessed 1 Jun. 2017].

40 Huston, T. (2017). What is Microservices Architecture?. [online] Smartbear.com.

Available at: https://smartbear.com/learn/api-design/what-are-microservices/ [Accessed

2 Jun. 2017].

41 Lewis, J. and Fowler, M. (2014). Microservices. [online] martinfowler.com. Available

at: https://martinfowler.com/articles/microservices.html [Accessed 2 Jun. 2017].

159

42 Thomas, A. and Gupta, A. (2017). Innovation Insight for Microservices. [online]

Gartner.com. Available at: https://www.gartner.com/doc/3579057?plc=ddc [Accessed 6

Jun. 2017].

43 Wetherill, J. (2014). Microservices and PaaS (Part I) - DZone Integration. [online]

dzone.com. Available at: https://dzone.com/articles/microservices-and-paas-part-1

[Accessed 2 Jun. 2017].

44 Gooen, O. (2014). Advantages and Disadvantages of a Monolith Application. [online]

Impact.hackpad.com. Available at: https://impact.hackpad.com/Advantages-and-

Disadvantages-of-a-Monolith-Application-ZlrQRl3LHCg [Accessed 2 Jun. 2017].

45 APMdigest - Application Performance Management. (2016). Top Factors That Impact

Application Performance 2016 - Part 1. [online] Available at:

http://www.apmdigest.com/top-factors-that-impact-application-performance-2016-1

[Accessed 6 Jun. 2017].

46 APMdigest - Application Performance Management. (2016). Top Factors That Impact

Application Performance 2016 - Part 1. [online] Available at:

http://www.apmdigest.com/top-factors-that-impact-application-performance-2016-1

[Accessed 6 Jun. 2017].

47 En.wikipedia.org. (2017). Application performance management. [online] Available at:

https://en.wikipedia.org/wiki/Application_performance_management [Accessed 6 Jun.

2017].

48 APMDigest (2016). Top Factors That Impact Application Performance 2016 - Part 4.

Top Factors That Impact Application Performance 2016. [online] APMDigest, p.1.

Available at: http://www.apmdigest.com/top-factors-that-impact-application-

performance-2016-4 [Accessed 9 Jun. 2017].

49 Bordens, K. and Abbott, B. (2011). Research design and methods. 8th ed. New York:

McGraw-Hill, p.125.

50 Statistics.laerd.com. (2013). Pearson Product-Moment Correlation. [online] Available

at: https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-

guide.php [Accessed 12 Jun. 2017].

51 Richardson, C. (2017). Microservices Pattern: Microservice Architecture pattern.

[online] microservices.io. Available at:

http://microservices.io/patterns/microservices.html [Accessed 22 Jul. 2017].

160

52 Guiding Metrics. (2017). Cloud Services Industry's 10 Most Critical Metrics - Guiding

Metrics. [online] Available at: http://guidingmetrics.com/content/cloud-services-

industrys-10-most-critical-metrics/ [Accessed 16 Aug. 2017].

53 Sobel, W., Nguyen, J., Wong, H., Klepchukov, A., Fox, A., Patterson, D., Subramanyam,

S., Sucharitakul, A. and Pati, S. (2017). Cloudstone: Multi-Platform, Multi-Language

Benchmark and Measurement Tools for Web 2.0. [online] p.6. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.7403&rep=rep1&type=pd

f [Accessed 16 Aug. 2017].

54 Cloudharmony.com. (2017). Provider Directory | CloudHarmony. [online] Available at:

https://cloudharmony.com/cloudsquare/cloud-cdn-and-compute-and-dns-and-storage

[Accessed 18 Aug. 2017].

55 Regoniel, P. (2016). CONCEPTUAL FRAMEWORK DEVELOPMENT HANDBOOK. 1st

ed. [ebook] Simplyeducate.me. Available at:

http://simplyeducate.me/2015/01/05/conceptual-framework-guide/ [Accessed 6 Nov.

2017].

56 McGaghie, W., Bordage, G. and Shea, J. (2001). Problem Statement, Conceptual

Framework, and Research Question. Academic Medicine, [online] 76(9), pp.923-924.

Available at:

http://journals.lww.com/academicmedicine/Fulltext/2001/09000/Problem_Statement,_Co

nceptual_Framework,_and.21.aspx [Accessed 6 Nov. 2017].

57 Reitbauer, A. (2008). Performance vs. Scalability. [Blog] Dayntrace. Available at:

https://www.dynatrace.com/blog/performance-vs-scalability/ [Accessed 6 Nov. 2017].

58 Haines, S. (2006). Pro Java EE 5 performance management and optimization. Berkeley,

Calif: Apress, p.224.

59 Gartner (2010). Keep the Five Functional Dimensions of APM Distinct. [online] Gartner,

pp.1-4. Available at: https://www.gartner.com/doc/1436734?ref=g_sitelink [Accessed 19

Nov. 2017].

60 Goldin, P. (2011). Gartner's 5 Dimensions of APM. [Blog] APM Digest. Available at:

http://www.apmdigest.com/gartners-5-dimensions-of-apm [Accessed 19 Nov. 2017].

61 Xangati (2016). Gartner APM: 5 Key Aspects of Application Performance Monitoring.

[Blog] xangati. Available at: https://www.xangati.com/blog/gartner-apm-5-key-aspects-

application-performance-monitoring/ [Accessed 19 Nov. 2017].

161

62 Kersey, M. (2000). Scalability vs OOD. [Blog] Google Groups. Available at:

https://groups.google.com/forum/?hl=en#!msg/microsoft.public.inetserver.asp.componen

ts/c4G5Ehcr86c/FY9nj5BrhNkJ [Accessed 21 Nov. 2017].

63 Explorable (2009). Non-Probability Sampling. [Blog] Explorable. Available at:

https://explorable.com/non-probability-sampling [Accessed 30 Nov. 2017].

64 Explorable (2008). Experimental Research. [Blog] Explorable. Available at:

https://explorable.com/experimental-research [Accessed 30 Nov. 2017].

65 Bass, L., Clements, P. and Kazman, R. (2010). Software architecture in practice. Boston,

Mass. [u.a.]: Addison-Wesley.

66 Cooper, B. (2015). An Introduction to Moderated Mediation.

67 Hayes, A. (2017). Introduction to Mediation, Moderation, and Conditional Process

Analysis, Second Edition. New York: Guilford Publications.

68 Cirt.gcu.edu. (2017). Benefits and Limitations of Experimental Research - Center for

Innovation in Research and Teaching. [online] Available at:

https://cirt.gcu.edu/research/developmentresources/research_ready/experimental/benefits

_limits [Accessed 5 Dec. 2017].

69 Zikmund, W., Babin, B., Carr, J. and Griffin, M. (2013). Business research methods. 9th

ed. Mason, OH: South-Western, p.486.

70 Stangroom, J. (2017). Pearson Correlation Coefficient Calculator. [online]

Socscistatistics.com. Available at:

http://www.socscistatistics.com/tests/pearson/Default2.aspx [Accessed 21 Dec. 2017].

71 Vogels, W. (2006). A Word on Scalability. [Blog] All Things Distributed. Available at:

http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html [Accessed 22

Nov. 2017].

