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Abstract

The dissertation applies the Markov chain theory to four types of random walks
namely; simple random walk, random walk with reflecting barriers, random walks
with absorbing barriers and cyclic random walks. Various methods of determining the
nth power are employed where all methods yield the same results. The Computation
of 2 x 2 transition probabilities provides results which are easily generalized. However,
using the direct method of multiplication, it is difficult come up with a generalized
pattern. The 3 x 3 transition probability matrices onwards give complex patterns
which are not easy to generalize especially in the case of the cyclic random walks. The
method of multiplication gives a visible pattern similar to that of the Pascal triangle,
but the generalization of the nth term is difficult.
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Introduction

The aim of this dissertation is to apply the Markov chain theory to four types of random
walks namely; simple random walk, random walk with reflecting barriers, random walks
with absorbing barriers and cyclic random walks.

The outline of the thesis is as follows:

Chapter 1: provides background information, literature review and significance of random
walks.

Chapter 2:introduces the theory of Markov chains.

Chapter 3:provides a general discussion on classification of Markov chains with a focus
on two state models.

Chapter 4: applies the random walk theory to the simple random walk.

Chapter 5: applies the random walk theory to random walk with barriers.

Chapter 6: applies the random walk theory to cyclic random walks studied as doubly
stochastic markov chains.
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Background information

Ideally, the study of Random Walks is the study of random variables. These variables
vary in complexity from simple independent distributions in one dimension to random
variables of much more complicated character; with their sums subject to further conditions
[Bailey60].

A random walk is a mathematical formalization of a path that consists of a succession of
random steps [Kennedy60]. For example the path traced by a molecule as it travels in a
liquid or gas, the search path of a foraging animal, price of a fluctuating stock and the
financial status of a gambler can all be modeled as random walks, although they may not
be truly random in reality.

Physical application and analogies suggest the more flexible interpretation in terms of the
motion of a variable or “particle” on the x-axis [Medhi96]. The particle starts from the
initial position and moves at regular time intervals unit step in the positive or negative
direction depending on whether the corresponding trial resulted in success or failure.

The trials terminate when the particle for the first time reaches either o or N . We describe
this by saying that the particle performs a random walk with absorbing barriers 0 or N .
This walk is restricted to possible position 1,2,3,..., N —1 . In the absence of absorbing
barriers, the random walk is called unrestricted. A particle starting at ¢ > 0 performs a
random walk up to the moment when it for the first time reaches the origin [Lawler10].
In this formulation we recognize the first-passage time problem which is solved by use of
generating functions in chapter Ill. Both the absorbing and reflecting barriers are special
cases of the so called elastic barrier [Feller68].

Literature Review

A Markov chain is a randomized process where the next states is only dependent on the
current one. Markov chains are intrinsic in statistical modelings and most areas of applied
mathematics in the modern day [Lawler10].

The theory of Markov Chains, which is a special case of Markov processes, is named after
A.A Markov, who in 1906 introduced the concept of the chains with discrete parameter
and finite number of states.

A generalization to countably infinite state spaces was given by Kolmogorov in 1936.
Markov chains are related Brownian motion and argotic hypothesis, two topics in physics,
but Markov appears to have pursued this out of a mathematical motivation, namely the
extension of the law of large numbers to dependent events. In 1913, he applied his findings
for the first time to the first 20 000 letters of Pushkin's Eugene Onegin.
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Kolmogorov in 1937 extended the theory for denumerable case, J.Doob in 1945 and Paul
Levy in 1951 introduced continuous parameter chains. While many others have contributed
to the advancement of Markov theory, Feller and K.L. Chung are among those are among
those who are responsible for the present status in probability theory that the Markov
chain enjoys. [Chung60] gave a comprehensive theoretical treatment of the subject and
[Feller68] made a most lucid account of Markov chains for both a theoretical interest and
practical point of view.

The term “random walk" was originally proposed by Karl Pearson in 1905 [Ross83]. In
a letter to nature, he gave a simple model to describe a mosquito infestation in a forest.
At each time step, a single mosquito moves a fixed length , at a randomly chosen angle.
Pearson wanted to know the distribution of the mosquitoes after many steps had been
taken. The letter was answered by Lord Rayleigh, who had already solved a more general
form of this problem in 1880, in the context of sound waves in heterogeneous materials
[Feller68]. Modeling a sound wave travelling through the material can be thought of as
summing up a sequence of random wave-vectors of constant amplitude but random phase.

The theory of random walks was also developed by Louis Bachelier in his truly remarkable
doctorial thesis, La Theorie de la Speculation, published in 1900. Bachelier proposed the
random walk as the fundamental model for financial time series.

Problem statement

William Feller has described and introduced the theory of Markov Chain and has given
twelve illustrative examples namely: Two state model, Random Walks with absorbing
barriers, Random Walks with reflecting barriers, Cyclic Random Walks, Ehrenfest model
of diffusion, Bernoulli-Laplace model of diffusion, Random placement of balls, Example
from population genetics, Breeding problem, Recurrent events and residual waiting times,
Another chain connected with recurrent events and Success runs. However no in-depth
analysis has been done based on the theory of Markov Chains for these examples.

Objectives

The main objective of the study is to apply the Markov Chain Theory to four types of
random walksnamely; simple random walks, random walks with reflecting barriers, random
walks with absorbing barriers, and cyclic random walks. The specific objectives are;

(i) To classify the states of random walks

(ii) To find the asymptotic behavior of the states

(iii) To determine the n'’-step transition probabilities
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Significance of the Study

The study of random walks and Markov chains is significant in various fields. There are
many practical instances of random walks. Many processes in physics involve atomic and
sub-atomic particles which migrate about the space which they inhabit, and we may often
model such motion in random walk processes.

Random walks may also often be detected in non physical disguises such as in models for
gambling, epidemic spread and stock market indices. We are interested in solving these
problems using methods of Markov Chain technique and sums of independent identically
distributed random variables technique.

A brief description and illustration of the significances of the study in various fields are
given below:

In financial economics, the “random walk hypothesis” is used to model shares prices and
other factors.

In population genetics, random walk describes the statistical properties of genetic drift.

In physics, random walks are used as simplified models of physical Brownian motion and
diffusion such as the random movement of molecules in liquids and gases. Also in physics
random walks and some of the self interacting walks play a role in quantum field theory.

In mathematical ecology, random walks are used to describe individual animal movements,
to empirically support processes of biodiffusion, and occasionally to model population
dynamics.

The study of Markov chains is significant in various fields. These include:

Physics in which the Markovian systems appear extensively in thermodynamics and statisti-
cal mechanics, whenever probabilities are used to represent unknown or unmodelled details
of the system, if it can be assumed that the dynamics are time-invariant, and that no
relevant history need be considered which is not already included in the state description.

Chemistry is often a place where Markov chains and continuous time Markov processes are
especially useful because these simple physical systems tend to satisfy the Markov property
quite well.

In speech recognition, hidden Markov models are the basis for most modern automatic
speech recognition systems.



Markov chans are also utilized in information science, all through information processing.
In his famous paper in 1948, A Mathematical Theory of Communication, Claude Shannon
created the field of information theory using single steps. He opens by introducing the
concept of entropy through Markov modeling of the English language. Such idealized
models can capture many of the statistical regularities systems. Even without describing
the full structure of the system perfectly, such signal models can make possible very
effective data compression through entropy encoding techniques such as arithmetic coding.
They allow effective state estimation and pattern recognition. Markov chains also play an
important role in reinforcing learning.

Markov chains are also the basis for hidden Markov models, which are an important tool
in such fields as telephone networks, speech recognition and bioinformatics.

In queuing theory, Markov chains are the basis for analytical treatment. (Queuing theory).
Agner Krarup Erlang initiated the subject in 1917. This makes them critical for optimizing
the performance of telecommunications networks, where messages must often complete
for limited resources.

In internet applications, the Page Rank of a webpage as used by Google is defined by
a Markov chain. It is the probability to be at page in the stationary distribution on the
following Markov chain on all (known) WebPages.

Markov models have also been used to analyze web navigation behavior of users. A user's
web link transition on a particular website can be modeled using first or second order
Markov models and can be used to make predictions regarding future navigation and to
personalize the web page for an individual user.

In statistics, Markov chain models have also become very important for generating sequences
of random numbers to accurately reflect very complicated desired probability distributions,
via a process called Markov chain Monte Carlo.

In Economics and finance, Markov chains are used in finance and economics to model
a variety of different phenomenon, including asset prices and market crashes. The first
financial model to use a Markov chain was from Prasad et al. in 1974. Another was the
regime-switching model of James D. Hamilton (1989), in which Markov chain is used to
model switches between periods of high volatility of asset returns.

Dynamic macroeconomics uses Markov chains intensively. An example is the use of Markov
chains to exogenously model prices of equity (stock) in general equilibrium setting.

In social sciences Markov chains are generally used in describing path-dependant arguments,
where current structural configurations condition future outcomes. An example is the



reformulation of the idea, originally due to Karl Max's Das Kapital, tying economic
development to the rise of capitalism. In current research, it is common to use a Markov
chain to model how once a country reaches a specific level of economic development, the
configuration of structural factors, such as size of the commercial bourgeoisie the ratio
of urban to rural residence, the rate of political mobilization e.t.c., will generate a higher
probability of transitioning from authoritarian to democratic regime.

In Mathematical biology, Markov chains also have many applications in biological modeling,
particularly population processes, which are useful in modeling processes that are at (at
least) analogous to biological populations. The Leslie matrix is one such example, though
some entries are not probabilities (they may be greater than 1). Another example is the
modeling of a cell shape in dividing sheets of epithelial cells. Yet another example is the
state of ion channels in cell membranes.

In genetics, Markov chains have been used in population genetics in order to describe the
change in gene frequencies in small populations affected by genetic drift, for example in
diffusion equation method described by Motoo Kimura.

In many games of chance, Markov chains can be employed in createing models. The
children’s games snakes and ladder are represented exactly by Markov chains. At each urn,
the player starts in a given state (on a given square) and from there has fixed odds of
moving to certain other state (squares).
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2.2

2.3

THEORY OF MARKOV CHAINS

Introduction

In this chapter various aspects of Markov chain are studied, namely: Markov property,
order of Markov chain, state transition probability, and classification of states, classification
of Markov chains, the Fundamental matrix and invariant (stationary) distribution.

Conditional Probability

Consider the events Ejand Es such that

Pr(Ey, E?)
PI‘(El)
Pr(El , EQ) = Pr(EQ/El) Pr(El)

PI“(EQ/El)

In the case of three events F, E5, and Ej

Pr(Ey, Ey, E3)
Pr(Ey, Ey)
Pr(E\,Es,E3) = Pr(E3/Fs, E1)Pr(Ey, Es)
= Pr(Es/Ey, E1)Pr(Ey/E1) Pr(E))

Pl"(Eg/EQ, El) =

In the case of four events Ey, Eo, E3, and Ey

Pr(E\, Ey, Es, Ey)

Pr(Ey, Ey, E3)

Pr(E\,Es,Es,Es) = Pr(Ey4/Es, By, E\)Pr(E1, By, Es)

= Pr(Ey4/Es, Ey, E1)Pr(Es/Es, Ey) Pr(Ey/ E1) Pr(E))

Pr(E4/E3,E9, Eq)

Markov Property

Informally, a Markov property simply means that the future depends on the immediate
past and not the remote past.
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2.5

Therefore

Pr(F3/Ey, E) = Pr(Es/Es)
Pr(Ey/Es, By, E1) = Pr(Ei/E3)
PI‘(El,EQ,Eg,E4) = PI‘(El)PI‘(EQ/El)PI‘(Eg/EQ)PI‘(E4/E3)

Notations and Terminologies
Events are called states.
The set of events is called the space states.

Pr(E})/Ej) = the transitional probability of moving from state £ to E; and is denoted
by pjk-

Therefore

Pr{E1,Es,E3,E4} = Pr(E1)piap2spsa
= P1P12P23P34

Let Pr{E1} = a;. In general, Pr{E;} = a; being the initial or absolute probability.
Therefore,
Pr{E1, By, E3, Ex} = a1p12p23p3a

Markov Chain - Definition

A sequence of states {F1, E2, E3, ..., E,, } is called a Markov chain if the probabilities of
the sample sequences are defined by

Pr{ElaE27E37 sy En} = Uj,Pj50751 - Pin—17in

where aj, = Pr[E},] , the probability of the initial trial and p;, = Pr{E}/E;} is the
probability that £, occurs given that F; has already occurred. In particular;

Pr{E1, Ey, E3,..., En} = a1p12P23 - - - P(n—1)n



2.6 Order of a Markov Chain

A Markov chain {X,,} is said to be of order s (s =1,2,3...) if V n,

Pr{En = k/Enfl :jaEan :jla"wEnfs :jsfla--'}
= Pr{En = k/En—l = j17...,En—s =Js—1,-- }

whenever the LHS is defined.

A Markov chain {E,,} is said to be of order one (or simply a Markov chain) if

Pl”{En = ]{?/En_l :j,En_Q :jl,...}
= Pr{E,=k/E,_1=j}

= DPjk

whenever
PI‘{En,1 :j,En,Q =7J1,.. } >0

A chain is said to be of order zero if V j;

Pjk = Pk

This implies independence of and E,, and E,,_; . For example, for the Bernoulli coin
tossing experiment, the transitional probability matrix is



2.7 Matrix Form

In matrix form, the transitional probabilities can be represented by P as follows;

E, Ey E3 Ey

Ey | pi1 p12 pi3s pus

Ey | p21 p22 p23 pa
P= FE3 | ps1 ps2 p33 p34
Ey | pa1 pa2 paz paa

P= ((p]k)) in short form notation

(ii) Each row adds up to 1. i.e. > ;p;r = 1. The rows do not change, only the columns.
(iii) (iii) The transition matrix can be finite or infinite.

A matrix whose elements are between 0 and 1 (inclusive) and each row adds up to one is
called a stochastic matrix.

Any stochastic matrix can serve as a matrix of transition probabilities; together with our
initial distribution of {ay}, it completely defines a Markov chain with states Ey, E», .. ..

If in addition each column adds up to one, then we have doubly stochastic matrix. That
is, not only does the each row sum to 1, each column also sums to 1. Thus, for every
column of a doubly stochastic matrix, we have >>;p;; = 1.

Doubly stochastic matrices have interesting limiting state probabilities, as the following
theorem:
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2.8 State Transition Probability

2.9

It is customary to display the transition probabilities as the entries of a n x n matrix P,
where p;; is the entry in the i’ row of the j column

P11 P12 - Pin
pP_ p.21 p.22 T p?n
i Pnl DPn2 *°° Dnn ]

P is called the transition probability matrix. It is a stochastic matrix because for any row
> oipij =1

Higher Orders of Transition Probabilities

2.9.1 Two order transition probabilities

Let p§2) be the probability of moving from state £ to state £}, in two steps. Consider

any four events F1, Fo, F3, and Fy,

P2 = Pr(BEy — By — Ey) +Pr(Ey — By — Ey)
—f-Pr(El — FE3— E4) +Pr(E1 — By — E4)

= P11P14 + P12P24 + P13P34 + D14P44

4
= Z P1vPov4
v=1
In general
2
) =3 pjupn
v

2.9.2 Multiplication of matrices

To obtain the 2-step transition probability of moving from state £ to Fj4 using matrices,
we proceed as follows;
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P11 P12 P13 Pi4 P11 P12 P13 Pi4
P21 P22 P23 P24 P21 P22 P23 P24
P31 P32 P33 P34 P31 P32 P33 P34

P41 P42 P43 P44 P41 P42 P43 P44

P14

P24
= P11 P12 P13 Pi4
D34

Paq

4
- Z P1vPov4
v=1

Therefore, it can be concluded that the elements of a transition matrix multiplied by itself
give the probabilities of moving from one state to the other state or returning to the state
in two steps. Therefore;

P = ()
P2 — <(pﬁ)))
@) = S pjepen

2.9.3 Three step transition probability

Write

P? = P?P (1)
P? = PP? 2)

where P3 = <(pﬁ)))

2)

. Dvk and using (2.2) we can write

Using (2.1) we can write pﬁ) = Zypg

25 =3 pun'?) 3)
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Using (2.1),(2.2), and (2.3) a general form can be written that

-1 —1
P =\ Vg, = puply (4)

where P" = <(p§2))> which implies that a more general form can be written as

Pm+n — PmPn

where
G )

and
Pl = Sl

The above formulas are referred to as the Chapman-Kolmogorov formula.

Classification of States

A state j is said to be accessible (or can be reached) from state i if, starting from state 4,
it is possible that the process will ever enter state j. This implies pz(-;l) > 0 that for some
n > 0. Thus, the n—step probability enables us to obtain reachability information between

any two states of the process.

Two states that are accessible from each other are said to communicate with each other.
The concept of communication divides the state space into different classes. Two states
that communicate are said to be in the same class. All members of one class communicate
with one another. If a class is not accessible from any state outside the class, we define
the class to be a closed communicating class.

2.10.1 Return probabilities

Let be the proba fj(?)bility of returning to state £j in n steps for the first time and pg”) the

probability of returning to state in n steps but not necessarily for the first time. Therefore

(n) (n)
pij 2 Jji'-

The relationship between p(-?) and f](?) with the assumption that p(o-) =1and fj(?) =0

J Jj

A= e o



In terms of the probability generating function, let

Fs) = > f7s"
n=0

0 N pmen
= L2 his
SRk
= 27
since ](?) =0.
P(s) = > pj;’s"
n=0
0 > n n
= pg’j)JF;p;j)S
= 1+;p§?)5”
e o
S Pl =P(s)— 1 (6)
n=1

Therefore multiplying (2.4) by S™ and summing the result over n

= (Men _ = N p0) (n-v)en
;pﬁs = ;;fjjpjj S
S S

I
K
hE

(V) ev, (n—v)cn—v
f3°S"pj; 7S

3
I
—_
S
Il
—_

Therefore

P(s)-1 = % f§§)S“Zp§?”)S””]
L n=1

v=1

I
M8

5 (95 4245+
1 L

(2)¢2
Pste.)]
- S sy

v=1
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2.10.2 Persistency

A state IJ; is said to be persistent if

fi= Zlf](?) =1

Note:

[j =321}, is the probability of ever (or eventually) returning to state £j. When f; =1,
then

> £ =1

n=1

but
0<fV<1

{f;;) : n=1,2,3...} is a probability mass function.

Since the f](?) is the probability of returning to £ in n steps for the first time we call

{f;f) :n=1,2,3...} a first passage distribution. Its mean is refferred to as the mean

recuurence time given by;
o0

RPN

n=1
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A state Ij is persisitent if f; = Zf](?) = 1. If the mean recurrence time p; < oo (finite),
then E; is a non-null persistent state. If 1; = oo (infinite), then E; is a null persistent
state.

2.10.3 Transiency

Ej is said to be a transient state if

fi=X 5 <1
n=1

In this case, no further investigations are carried out. In terms of 2p§?) the following
formula is used;

1
P(s) = i.e.
=1 Fw
ip(ﬂ)sn — 1
i 1— ?zozofj(?)sn
Setting S =1,
1
P(1) = ie.
(1) 1-F1) €
[0.9]
(n) 1
n=0 o 1-30% f;?)
B 1
11
JR— 1 JR—
= 0 =00
If F; is transient, then f; <1 hence
©.9]
(n) 1
dop = < 00
= 1-<1

Therefore, state F; is persistent if

oo

S 01 o Sl oo
n=0 n=0
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and L is transient if

Z ;;L)<1 or Zp§?)<oo
n=0 n=0
1-—s
(1_3)P<8)_ 1—F(S)
. 1—s
lm(=s)P(s) = =5

oy 0g0, (gl | )2 (-Dgn-1 (Mon
=l {(1-5) [pS0 4 pl))S 4SS S )

— 0o, (Mgl 4 (2)g2 (n=Dgn-1,  (n)gn

st s st plp Vs psme

My,

LHS = [p(-o) +p;

(2)c2 | . (3)c3 (n—1)en—1 (n)en

©_ M, 2 _ 6 (n—1)
Pjj — Py TP TP TR

— Tim ™

= P

Therefore
lim(1—s)P(s) = limp(n)

s—1 s—1 Ji

RES = I35
1—1
1—F(1)

If E; is persistent, then F(1) =1 hence

1-1
RHS = T-1 = 8 undetermined
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Using L 'Hospital 's rule;

d
d(_
lim(1—s)P(s) = dds(is)
s—1 s—1 s {1 — F(S)]
— 1 —1
T SS1I-F(s)
1
Hj
If E; is transient, then F(1) < 1 therefore
1-1
0 =0

1—F(1) " a finite number

Thertefore,
lim p(™ — 0, when (i) Ej is transient and (i) E; is nullpersisitent
e i, if E is non-null persistent
J

called the limiting theorem.

2.10.4 Periodicity

A state Ejis said to be of period d if d = GC’D{n :p(?) > O}

J
If dis 1, then E; is said to be aperiodic.
2.10.5 Ergodicity
If a state F; is
(i) Persistent
(ii) Non-null
(iii) Aperiodic
then it is Ergodic.

lllustrative example
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Let P be the following matrix;

Consider the state Eq, to show that f1 =37 f1(711) =1 or < 1, we proceed as follows;

4
iR

In general

Ey By Ej
CREEE
P=5 |} 0
By |+ L0

Y= oie 1V =pi[E; — B =0
@ = PrE, - By — B\ +Pr[E) — By — Ey

1 1 1 1 1 Cf
= —X—4-"X-—-==—=|=
2792 2792 2 2

9 = Pr[E\— By — B3y — E\|+Pr[E)| — E3 — Ey — E)
1

1 1 1 1 1 1 (1)2
— —X*X*—F*X*X*:*: -
27272 272792 4 2

Pr[E1 — Fy — K3 — Fy — El] +PI[E1 — K3 — Fy — F3 — El]

L, 1 __1__(1)3
16 16 8 \2
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which is a geometric series
11 (1
“91-17 917!
2 2

therefore, F; is persistent since fi =1

o0

mo= Ynffy

n=2

ROEORIORORS

= (1-2)2=1+2z+3"

1+1+2<1)+3(1>2
2 2

= 3
hence the mean recurrence time p is finite and therefore Ey is non-null.

Periodicity

GCD {n:pg-?) > o}

sneesfy) = 3y
v=1
n—1

_ (v), (n=v) | ¢(n) (0)
= 2 Jijpi ey

- Sy

3
I
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(n)

if >0 = plY >0

i = GCD{n > o}

J
= GCD{n:f}j>>o}
= {2,34,..}, d=1

1
since J(]”) = (%)n > 0, for n > 2 and f;]l.) =0.

Since the state ; has been found to be persistent, non-null, and aperiodic it follows that
it is ergodic.

Lemma 2.1

Let {f.} be a sequence such that f,, >0, > f, =1, and ¢(> 1) be the greatest common
divisor of those n for which f,, > 0.

Let {u,} be another sequence such that u, =1 and

n
Up = Zfrunfr n=>1
r=1

then

. t =
nh_%lou”—t = ; where = E:Infn
n=

the limit being zero as y — oo and

lim uny =0
N—o0

where N is not divisible by t.
Theorem 2.1

Let a;; denote the probability that the chain starting with a transient state i eventually
gets absorbed in an absorbing state k. If we denote the absorption probability matrix by

A=(ay), i€eT, keS—T
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then
A=(I-Q)'R=NR, N=(I-Q)"" (7)

Proof

ai = Fie =Y _ fi}
n

Since transitions between absorbing states is impossible. Now

Fik = PI’[U {Xn = anl’XO = Z}]

Since state k is an absorbing state, once the chain reaches an absorbing state k after n
steps, it remains there after steps (n+1),(n+2),...

Thus
{Xn = k} C {Xn—H = k,’} C {Xn_|_2 = k‘}

and using the result A; C Ay C As...

Pr{Ui>14:} = Jim Pr[A,]

to obtain

n>1p§Z)‘ = lim pEZ) (8)

a;r. = F;. = Pr
ik ik o

Chapman-Kolmogorov equation can be written as;

(nt+1) _ (n)
Pik = D DijPjk
jes

using p,({:n) =1and pj; #0 only when j €T, k€S, and k € S—T we obtain

(n+1) )

Dir = DPikT Z pz’jpgz
jeT

taking limits on both sides and as n — oo and using (2.8) we obtain

@ik = Dik + Z DijQjk
jerT
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therefore, the matrix notation is as follows;

A =(1-v) 'R
= NR

(i) The matrix N = (1-V)~! is known as the fundamental matrix.

(ii) As n — oo, the limits p%) exists but are not independent of the initial state i.

Theorem 2.2

If state 7 is persistent and non-null, then as n — oo

(i)

when state 7 is periodic with period ¢, and

(ii)
(nt) 1
P = —
7 o

when state j is aperiodic. In the case that j is persistent and null, (whether periodic or

aperiodic), then

pg?)%o as n — o0

Proof

Let stat ¢ be persistnet. Then we define

M < an;?)

since "
(n) _ (r) (n—r)
Pjj’ = Z:ijj Pjj
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for u, and g5 in lemma (2.1) above.

Applying the lemma we obtain;

1
p§?t) — —  asn— 00
Hjj

In case state j is persistent-null, 1;; = oo and p§?)
Note:

(i) If j is persistent non-null, then

> ()

lim p\"
n—>oop3]

and

(i) If j is persistent null or transient, then

(n)

hm 0 Py = 0
Theorem 2.3
If state k is persistent null, then for every j
hm (n) 0
0 P

and if state k is aperiodic, persistent, and non-null then

Proof

We have
ij ngk Prk

—0 asn— 0.
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Let n > m, then

py;? = ng(k Prk e Z fjk i

v=1 V= m+1
o~ 4(r)

< ijk Prk "4 Z fjk: (9)
v=1 v=m+1

Since k is persistent null,

pg{r) —0asn— oo

furhther, since

oo n

Zf]k < 00, Z fj(?—>0asn,m—>oo

m=1 v=m+1
hence as n — oo,

pg.z) —0
from (2.9)
1) o N~ )
pjk: ngk P S D0 sz (10)
v=m+1

since j is aperiodic, poersistent, and non-null, then by theorem (2.2)

(n—r) 1
Pr  — —— asn— 00

Hkk

hence from (2.10), we get that as n,m — oo

Fjy,
HEk

Theorem 2.4

If a state j is persistent, then for every state k that can be reached from state j, Fj, =1
Proof

Let aj, be the probability that starting from state 7, the state k is reached without previously

returning to state j. The probability of returning to state j once state k is reached is
(1—Fpj).
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The probability of the compound event that starting from state j, the system reaches
state k (without returning to state j) and never returns to state j is aj(1 — F};)

If there are some other states say, 7, s, ..., then we get similar terms as a,(1 — F};),as(1 —
Fgj), ...

Thus probability ) that starting from state j the system never returns to state j is given

by
Q:ak(l—ij)+ar(1—Frj)+a5(1—st)+...

But since the state j is persistent, F;; = 1 and the probability of never returning to state
Jis1—=Fj; =0. Thus @ = 0. This implies each term is zero, so that Fj, = 1.

Theorem 2.5 (Ergodic theorem)
For a finite irreducible, aperiodic chain with transition probability matrix P = (p;z.)

the limits

v = lim pgz) (11)

n—oo

exist and are independent of the initial state j. The limits v, are such that v, >0, > v =1
i.e. the limits vy define a probability distribution.

Furthermore, the limiting probability distribution {vy} is identical with stationary distribu-
tion for the given chain, so that

Uk =D UiDjk, D Uk =1 (12)
J
Writing
V/:(Ul,UQ,...,Uk,...), ka: (13)

the relation (2.) may be written as

V. = VP
VP-1) = 0 (14)

Proof
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Since the states are aperiodic, persistent non-null, for each pair of j,k,limnﬁoopg.z) exists

and is equal to (Theorem 2.4). Since k is persistent, Fj =1, so that

(ORI
Uk_nll—>n<>lopk _Mkk>0

and is independent of j. Since

Zpﬁ) <1, VN
k

thus
N
Znh_{gop]k <1 ie. ];vk <1

since it holds that vz]k\le v < 1, we have

n+m
p]k Zp]z pzk

and
_ . (n+m
veo= Nl = Jim S
= Z{T}g%opgi)}pz(k) by Fatou’s lemma
(3

= Zvipglzn), Ym
i
Vg 2 Zvipl(-;fn)
i

i.e. suppose, if possible, that

o= vipyy”
7

then summing overall k£ we obtain

Soe >SS =Y
k ki 7

which is impossible. Hence the equality sign holds i.e.

o= vipyy”
7
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when m is large we have
V. = Zvivk = (Z UZ') Uk
hence

Zvi:1
1

This shows that {v} is a probability distribution: the distribution is unique.
The distribution is known as stationary (or equilibrium) probabilities.

We state, without proof, the converse which also holds. If a chain is irreducible and
aperiodic and if there exist a unique stationary distribution {v;} for the chain, then the
chain is ergodic and

1
V= —
Hik

Thus ergodicity is a necessary and sufficient condition for the existence of {v;} satisfying
(2.) in case of an irreducible and aperiodic chain.

The distribution is known as stationary or (equilibrium) distribution of the chain and the
probabilities known as stationary (or equilibrium) probabilities.

We state, without proof, the converse which also holds. If a chain is irreducible and
aperiodic and if there exist a unique stationary distribution {v;} for the chain, then the

chain is ergodic and v = Tik

Thus ergodicity is a necessary sufficient condition for the existence of {v;} satisfying (2.)
in case of an irreducible and aperiodic chain

Classification of Markov Chains

2.11.1 Reachability

E}, can be reached from EJ; if there exist an integer n such that pg-?) > 0. Ej and E}, and
are communicating if £}, can be reached from E; and E; can be reached from Ej,.

In restricted random walk each state can be reached from every other state, but from an
absorbing barrier no other state can be reached.

Theorem 2.6
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E}, can be reached from E; and E; can be reached from E;, then Ej, can be reached
from L.

Proof

(n)

If E}, can be reached from E;, there exists n : p-Z

j > 0.

(n)

Similarly if E; can be reached from Fj, then there exists n : P > 0.
let
N
N=m+n,  py) =3 p"pl > plpl) >0
J
hence p%\f) >0
—

3 N: >0

This means that we have a Markov chain defined on a set C and this sub-chain can be
studied independently of all other states.

2.11.2 Closure and closed sets

A set C of states is closed if no state outside C' can be reached from any state F; € C.

Thus C'is closed <= pj;, =0 whenever E; € C and Ej, ¢ C. ie. if £; € C and Ej, ¢ C,

then pg-z) =0,n=1,2,3,...

= p(z) = Evpjqu(j/z) =0if £j € C and £}, ¢C

J

lllustartive example
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Let the matrix P be given by

123 45 6 789
Exlooo0«0000 %]
Eys [0 x x 0 x 0 0 0 =
Es {0 00 O0O0O0O0 %0
Ey |« 000 O0O0O0O0O0

P=FE|1000O0x*0000
Es {0 x 00 0O0O0O0O0
E; 10 x 00 0 %« %« 0 0
Es |0 0 x 000000
Eg_OOO*OOOO*_

Finding closed sets

S1={E1,E4,Ey} is a closed set

So ={FE3,FEg} is a closed set

It is also a class of a closed set whose elements communicate.

S3 = {Ej5} is a closed set of a single element. It is an absorbing state, that is, once entered
you cannot come out.

FEs, Eg, E7 are not closed.

Note:

In the matrix P implies a non-zero probability.
Theorem 2.7

If in the matrix P, all rows and all columns corresponding to states outside the closed set
C are detected, there remain stochastic matrices for which the fundamental relations.

+1
PEZ = > Djoluk
v
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_|_
and ng =Sl
v

again holds.

This means that we have a Markov chain defined on C, and this sub-chain can be studied
independently of all other states. The state F, is absorbing iff piz. = 1; in this case the
matrix of theorem (2.7) reduces to a single element. In general it is clear that the totality
of all states Ej, that can be reached from a given state E;jforms a closed set. (Since the
closure of E; cannot be smaller, it coincides with this set).

2.11.3 Partitioning a matrix block

Let us rearrange the transition matrix P by starting with absorbing state Fs followed by
the other closed sets. We will get any of the following matrices:

Case 1: Partitioning the matrix P into two blocks

538149 2 6 1
B [|+00000 000 |
Es 00 «x 000 0 00
Eg 0« 0000 000
p_ Eq 0000 = = 000
Ey 000 00 0 0 0
Ey 0000 % = 000
FEy * x 0 0 0 = *x 0 0
Eg 00 0O0O00O0 x 0 0
Ey | 000000 * kK |
P can be written in canonical form as follows
Q6x6  O6x3

P p—
Usxe V3xs



32

P4

P2 _ Q 0] QO
U V||lUV
_ Q’ 0
UQ+VU V2
= PP?’=P°P
B Q? 0 Q 0
UQ+VU V? U Vv
_ Q’ 0
UQ*+VvVUQ+V?U V3
_ Q’ 0
ViUQ?+VvVUQ+Vv2uQ? v3

Q’ 0
 VUQi+vuQ+viuQ® v?
- o .
_ UQ+VUQ*+V2UQ+V3U V4
- " ;

Q O
U Vv

ViUQ*+VUQ?*+V2UQ+V3UQ" V4

Case 2: Partioning of the matrix P into three blocks



P can be partinioned into blocks of three as follows

538 1409 26 7
Bs[|+«o00] o000 |oo0o]]
Es |00 000 |[000
Es ||o«0| o000 |0o0o0

b Ei [ 000 [0« 000
Ex| 000 |«x00| 000
Eo| 000 |0 | 000
Es * x 0 0 0 = * 0 0
Es||l0oo0o0] 000 |%00
Er[|ooo0] 000 |x x|

Therefore, P can be written in canonical form as;

Q 0 0
P=|0 U
A D
‘'Q o ol[Q oo
P2 = |0 UoO0||lO U O
ADT||A
@ 0 0
= 0 U? 0
| AQ+TA DU+TD T?

P’ = 0 U? 0 0 U O
| AQ+TA DU+TD T? A DT

Q3 0 0
= 0 U3 0
| AQ’+TAQ+T?A DU*+TDU+TD T3
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Which can be generalized as follows;

Q" 0 0
0 U 0
A, D, T"

Pn

where

n—1 )
A, = ZTAQ(”*I)’J

§=0

n—1

D, = Y TDUM D
7=0

Case 3: Partioning of the matrix P into four blocks

5 3 8 1 49 2 67
Bs ||+ 00 ‘0 0 0’ 000 |
E3 | 0 |0 = 000 |000
Ex 0 x 0 000 0 0 0
p_ Ey 0 0 0 0 * = 0 00
Ey 0 0 0 * 0 0 0 00
Ey 0 0 0 0 * % 0 0 0
Es * x 0 0 0 =% * 0 0
Es | 0 |00 00O * 0 0
Er 0 0 0 0 00 * ok k|
which can be written in canonical fomr as followa;
—A 0 0 O_
p_ 0 B 0O O
0 0 C O
D E F G




A 0 0 O A 0 0 O
) 0 B O O 0 B O O
P =
0 0C O 0 0C O
D ETF G D EF G
A2 0 0 0
0 B2 0 0
0 0 C? 0
DA+GD EB+GE FC+GF G2
A2 0 0 0 A 0 0 O
5 0 B? 0 0 0 B0 O
P =
0 0 C? 0 0 0C O
DA+GD EB+GE FC+GF G2 D EF G
A3 0 0 0
B 0 B3 0 0
0 0 C3 0
DA%2+GDA +G?D EB?+GEB+G2E FC?+GFC+G2F G3
In general ) )
A" 0 0 O
— 0 B 0 0
0 0 C* 0
D, E, F, G~
where
n—1
D, = Y G/DAD-I
j=0
n—1
E, = > G/EBC" DI
j=0
n—1

F, = Y G/FC(r 1
=0
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In a more gfeneral fomr, we have

pr—| ¥ °
U, Vv»
n—1 ]
where Uy, = ) viuQn—-
j=0

hence

lim P" = Asymptotic behavior
n—oo

Remarks on P"
1. pgz) =0 for E; € C and Ej, ¢ C' where C'is the closed set.

2. The appearance of the power A" indicates that when both E; and E}, are in C the
(n)

transition probabilities pjz are obtained from the recursion formula

n+1 n
P =3 gl

with the summation restricted to the states of the closed set C.

3. The appearance of Q" indicates that the statement given in (2) remains true when
C'is replaced by its compliment C7, say.

n—1

B,=)Y Q/BA" /!
j=0

Note that, we have not assumed A to be irreducible. If C' decomposes into several closed
subsets, then A admits further portioning. There exist chains with infinitely many closed
subsets.

2.11.4 Absorbing Markov chain

A Markov chain is absorbing if it has at least one absorbing state.

E}. is an absorbing state if
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consider the 2 x 2 blocks partitioned matrix

Q0
UV

P =

Let

is an absorbing Markov chain, therefore

Q" 0
U, v»

P-

where
n—1

U,=> viuqQ it
=0
becomes Q and U matrices where

n—=1 )
U, = Y. viuQr/!
=0

n—1
- Y ViU
j=0

)

= (VO Vvi4evivige... o vihu
= I+V'+V*4Vit. 4V hu

Recall from ordinary algebra that

1-X"

1+ X+ X241 xn 1=
+ X+ X4+ T

in matrix form

I-V)I+VI 4+ VV3p o Vi) = (1-VY)
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1 2 I-v"
I+ V4 V24v3p. vl =
I-V
therefore
U, =(I-V")(I-V)"'U
lim (T4+ V' 4 V24Vi4 4 ve ) = dim (I-V) T (I-V7)
n—0o0 n—oo
lim (I+ VI 4+ V2V3 4 v ) = 1-V) " (I- lim V")
n—o0 n—oo
but
I-V)I+VI+V24Vv3ie.) = T+VI4EViEvig ...
= I
theerfore
I+ VI +V2vig. . —1-v)!
“1_ -l 1 n
(I-V)" =(1-V) (I~ lim V")
I=I- lim V"
n—o0
lim V" =0
n—oo
if
I 0
if P =
U V
P" = 1 0
(I-v) '(I-vmu v~
] : .
lim P"* = .
oo limy 00 (I— V) (I= V™) U  limy_ss V"
B I 0
I-v)"'u o

The matrix (I—V)f1 is called the Fundamental Matrix of an absorbing Markov chain.
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2.11.5 lllustrative example

reorganize the transition probability matrix P below;

1 2 3 45
[ 1 1 1 1
Ey |7 0 3 71 1
Eo 01 0 0 O
b= E oo 1 L1 1
3 3 3 3
Ey 0O 0 0 1 0
1 1 1
Es |0 7 0 7 3
FEs and Ej are absorbing states

24 1 3 5
Eoy 1 00 0 O
p_ B |0 1000
g o 1111
1 4 4 41 14
1 1 1
B3 10 35 0 3 3
11 1
Es |1 1 0 0 5
1 1 1
U 11
_ 1 _ 1
U=|0 3 and V=10 3
13 0 0
I 0

lim P" = )
e (I-v)'u
(1.0 0 1
I-V) = |o10|—|o0
(001 0

(3 1 1

1 1 1

_ 2 1

= 10 3 -3

1

|00 3

O Wl R

N— Wl i

NI— Wl [
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N O _ (@) _ e

<
I I =N m —<f I N _1|2_
—
| — <t —t D |m. oo e o
— —Ie 00 ™o O
_ _ | | < N min O
—n © O A . O O
c 2 oF e e e 1,.& Fln O O
d <t I — |
_ + _ I
< [ I I
4
<t
—| 1_, N <t D c -
B —— 5 |
| | o o [ - ._\V/
—Ie
—I<t
ANen O _ O < <C |
| QN O oo i !
AT _ ~—

—|n —jo0 <t

Cofactor matrix

Let
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4 1 1
3 2 L[]0 g
—1y7 _ 3 1
I-V)7U = j0 5 1]|0 3
00 2]}
1 3
4 4
— |1 3
4 4
11
L 2 2
Therefore ) ;
1 0000
01 000
o Ppn |13
nh_{goP_ZZOOO
1 3
75000
1 1
3 3 000

2.11.6 Irreducible Markov chain

In the example of the 9 x 9 transition matrix, we partitioned the matrix into closed sets
and non-closed sets.

Definition (i)

A Markov chain is irreducible if there exists no closed set other than itself.
Definition (ii)

A Markov chain is irreducible if every state can be reached from every other state.
Remark

In classifying states of a Markov chain the first thing to do is to find out whether or not
the Markov chain is irreducible.

Definition of same type
Two states are of the same type if

(i) They are both persistent or both transient
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(ii) If persistent, they are either both null or both non-null

(iii) They are of the same period

Theorem 2.1

In an irreducible Markov chain, all states are of the same types
Proof

Let £; and E}, be two arbitrary states of an irreducible chain.

Every state can be reached from every other state and so there exists integers r and s
such that

pik =a >0 andpﬁ):6>0

it follows that

n+r-+s r n S n
Pg'j ) > pgk)pggk)plgj) = aﬁp](ck)

Here, j,k, and s are fixed whereas n is arbitrary.

For transient [}, the left side is the term of a convergent series, and therefore the same is

true of p,(g,?. If further more, if pg-?) — 0, then also p,(ﬁc) — 0.

then also

The same statements remain true when the roles of j and £ are interchanged, and also
either F; and Ej}. are transient or neither is; if one is a null state, so is the other.

Finally, suppose that E; has period ¢. For n =0, the right side in

n+r+s r n S n
pg-j ) > pgk)p/(ck)p](cj) = Oéﬂp](ck)

is positive, and hence 7+ s is a multiple of ¢.

But then the left side vanishes unless n is a multiple of ¢, and so Ej. has a period which is
a multiple of £. Interchanging the roles of 7 and k we see that these states have the same
period.

Theorem 2.11
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2.12

For a persistent I}, there exists a unique irreducible closed set C' containing Ej, and such
that for every pair F;, E}. of states in C

fir="1and fi; =1

In other words starting from an arbitrary state F; in C, the system is certain to pass
through every other state of C', by the definition of closure no exit from C' is possible.

Proof

Let £ be a state that can be reached from E;. It is then obviously possible to reach Ej,
without previously returning to E;, and we denote the probability of the event by «.

Once L, is reached, the probability of never returning to £ is (1 — f3;) . The probability

that, starting from E;, the system never returns to £}, is therefore at least a(l —fkj).

But for a persistent E; the probability of no return is zero, and so fi; =1 for every £,
that can be reached from FEj.

Denote by C' the aggregate of all states that can be reached from F;. If E; and Ej, are in
C, Ej can be reached from Ej, and hence also E; can be reached from Ej,. Thus every

state in C' can be reached from every other state in C', and so C' is irreducible.

It follows that all states in C' are persistent, and so every FE; can be assigned the role of
Ej in the first part of the argument.

This means that f; =1 for all £}, in C' and so f;;, =1 and f; =1 is true. The preceding

theorem implies that the closure of a persistent state is irreducible. This is not necessarily
true of transient states.

Invariant (Stationary) Distribution
Definition
A distribution {7, : k =1,2,3...} is called invariant or stationary if it satisfies

T = Zﬂ'jpjk; 5, k=1,2,3...
j=1

such that

D M=) Tiipij
7
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therefore
T = > TkDjk
J
= > Amipij} vk
o
hence

T = 2.3 TiDijPjk
7 1
= Z{ﬂ'izpijpjk}

( J

= Yl

By Chapman-Kolgomorov equation

=> {ﬂhpmpgi)}

7

therefore
_ (2
Tk = Y. ThDhibj
i h
2
_ z{wthm-pgk)}
h i
3
= Zﬂhpz('k:)
h
In general

T = ) _TiDjk
J

J

In matrix form

4
Tk = Z?ijjk, k= 1,2,3...

j=1
For k=1

T = T1P11 +T2P21 + T3P31 + T4P41



For k=2
T = M1P2 + ToP22 + M3P32 + T4P42

For k=3
T3 = M1P13 + T2P23 + M3P33 + T4P43
For k=3
T4 = T1P14 + T2P24 + T3P34 + TT4P4a4
1 P11 P21 P31 p4a1 T
T2 | | P12 P22 P32 P42 2
3 P13 P23 P33 D43 3
| T4 | | P14 P2 P34 Pad | | T4 |

7 =P'm for finite case

/ /
T~ = P'rm

= 7'P for infinite case
Theorem 2.12
In an irreducible ergodic Markov chain, the limits

— lim »™
=P 3

and are independent of the initial state £;. Furthermore, 7, >0, "7, =1, and Y7, =
2§ TjPjk-

Proof

(i) Suppose the chain is irreducible and ergodic, and define 7y by

1

M= —
Tk

where 11, is the mean recurrence time of state [..For a persistent E; there exist a unique
irreducible closed set C' containing E; and such that for every pair F;, I}, of states in C

fir="1and fr; =1
which guarantees that f;; = 1 for every pair of states , and so the assertion

— lim ™
T = 0P
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reduces to

pg?) — fz'jﬂj_l

Now
P =30 e
J

As n — oo, the left side approaches 7 while the general term of teh sum on the RHS
tends to m;pji. Taking only finitely many terms we infer that

WkZZijjk
j

for a fixed 7 and n the left sides in
1
i =3 o
J

add up to unity and hence

s=m, <1
summing over k in
T > Y TPk
J

we get the relation s > s in which the inequality sign is not possible. We conclude therefore
that in the equation above, the inequality sign holds for all k, and so the first part of the
theorem is true.

(i) Assume gy, >0 and (Y j—1) — (7 = X2; mipi;) - By induction

T = Zmpgy), for every n > 1

7

Since the chain is assumed to be irreducible, all states are of the same type. If they were
transient or null states, the right side in 7. =>; Wipg;l) would tend to zero as n — oo, and
this cannot be true for all k because the 75 adds to unity. Periodic chains being excluded,

this means that the chain is ergodic and so the first part of the theorem applies. Thus,
letting n — oo,
T = Zmﬂlzl
i

Accordingly, the probability distribution {7} is proportional to the probability distribution
{ﬂ'k_l} and so m;, = 7rk_1 as asserted.

Conversely
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2.13

Suppose that the chain is irreducible and aperiodic and that there exist numbers 73 > 0

satisfying
Zﬂ'k =1and = ij‘p%)
i
Then the chain is ergodic and ms are given by

lim p(-n)

n—00 Jk
and
1
T = —
i

Where 15 is the mean recurrence time for Ej.

For any numbers a;, and pj;, satisfying these conditions, the assignment

P{(Ejo, Ej1,Eja; ..., Ejn)} = ajoPjoj1Pj1j2P5243 * ** Pin—2jn—1Pjn—1jn
is a permissible definition of probabilities in the sample space corresponding to n+ 1 trials.

The numbers defined in P {(E]’O, Ejl,Ejg, ceey E]n)} = ajopjojlpjljgpjzjg .. -pjn,anflpjnfljn

being non-negative, we need only to prove that they add to unity.

Fix first 70, 91,72, -, Jn—1 and add the numbers P{(Ejo, Ejl,EjQ, .- ,Ejn)} = UjoPjoj1Pj152Pj253
for all possible j,. Using the fact that pj, +pj1 +pjo--- =1 with j = j, 1, we see imme-

diately that the sum equals

Aj0Pjoj1Pj152P5243 " Pjn—2jn—1Pjn—1jn

Pjn—:

Thus the sum over all the numbers P {(Ejo, Ejl,EjQ, . ,Ejn)} =0QjoPjoj1Pj152P5253 * ' Pin—2jn—1Pjn—1jn

does not depend on n, and since >~ a;, = 1, the sum equals unity for all n.

To obtain the probability of the event “first two trials results in (E;, E}), we have to fix jo =
k, and add the probabilities P {(Ej,, Ej1, Ejo, ..., Ejn)} = @joDjoj1Pj1j2P523 * - * Pin—2jn—1Pjn—1jn
for all possible jo,j3,...,jn. This shows that the sum is a;p;; and is independent of n.

Determining the n'" Power of a Transition Matrix
2.13.1 Use of generating function in determining P"

Recall

P =((p;j)) = P" = ((Pg-l)))
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Let
pij(s) = i)p,(-?)sn
= P(s) = ((pij(5)s))

By Chapman-Kolgomorov equation
(n41) _ N~ ()
D;; = Zpikpkj
k=1

therefore

—  (n+1) ()

n n
Zpij "= Z Zpikpkj s"
n=0 n=0k=1

I & (n41) pet A (n)
=y s =YY papyys"
=0

s n n=0%k=1
= D Pk { > pg})sn}
k=1 =0
= Z {pikpk:j(5>}
k=1

and in matrix form we have

()= (Eroms)

— v
i <(pij(5) —p%)))) = ((gpikpkj(s))>
~wieom-((»9))] = ((; pikpms)))
i [P(s)—1] =PP(s)
Therefore
[P(s)—1] = sPP(s)

P(s)—PP(s) =1

I-sP|P(s) = I
Therefore
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Suppose an n x n matrix P is partitioned as follows;

I 0
R Q

with I -r xr and Q- (n—r) x (n—r), then

P(s) = [I-sP]*
= [I,—sP]""

Using the relation

T 0 B T 0
V W ~w-ivTt ! w!
then
P(s) = [I,—sP]*
_ -1
I O I. 0
= —s
0 I, R Q
- ~1
B I.—sI, 0
—-sR I,_,—sQ
Suppose
-1
I, —sI, 0 A B
—-sR I,_,—sQ C D
then
A B I, —sI, 0 | o
C D —-sR I,_,—sQ o 1I,_,
Therefore
A(l-s)I,—BsR = 1, (i)
B(L,—»—sQ) = 0 (ii)
C(l-s)I, —DsR = 0 (iii)
DI, —sQ) = I, (iv)
From (ii)
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since (I,—, —sQ) # 0. Therefore, (i) becomes

(1-s)A =1,
~ A= L I
(-9
From (iv)
D=(T,_,—sQ)"
and from (iii)
(1-s)C = sDR
s
C = (L sQ) 'R
Therefore
(1 - S)Ir 0 _ (1_5) Ir 0
—sR Lr—sQ ﬁ(ln—r_SQ)_lR (In—r_SQ)_l
2.13.2 lllustrative examples
Example 1
Reorganize the transition matrix below
1 2 3 45
IEEEEE
Esy |01 0 0 O
b= 11 1
Es 0O 0 0 1 O
Es [0 7 0§ 35

FEy and Ej are absorbing states hence P can be written as
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241 3 5

Ey [ 1T 0 0 0 O
P_E4 01000
B |o 1111
1 4 4 14 1

1 1 1

B3 |0 5 0 3 3

1 1 1

Es |+ 100 3|
1 1 1 1
U 11 1
R:O%anszo%%
1 1 1
11 0 0 35

Using the result that

T a c yz —Qz ab—cy
0y b 0 zz —bx =ayzl
0 0 z 0 0 Ty

We can find an expression for

lim P"
n—oo
But we are given that
-1
T a c yz —Qz ab—cy
1
0 =— zx —bx
TYz
z 0 0 Ty
In this case;
1 L 1 L d 1 L
x 15 Y 35, z 55
1 1
— 5 b=—- de=——
a 1 s, and ¢ 1
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[(1=(1—a)s)(1—(1=b)s)—abs®| = [1—( (1—b)s+(1—a)(1— 5)52—ab52}
= [1 s+as— s+bs—|—(1 a—b+ab)s asz]
:[1 1abs—|—(1ab)}
= [(1-s)—(1-a=b)s(1—s)]
= (1-s)[1—(1—a—0b)s]
= (1—s)[1—cs]
where
c=1—-a—-»
hence
B 1 1—(1-0b)s as
POTTSIE | ke 10w
 1-(1-b)s
Puls) = G-5izes

= [1-(1-0b) H1+s+s-+s—% sl b s }
[ +(cs)+ (es) + (cs)® 4+ (es)"F + (cs)" —%---}
1+ (cs)+ (es)' + (es)” +---(cs)" 1 "

s+es?+23 42 enl
= [1—-(1-b)s]
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P = T e et ]
1_Cn+1
N 1-c
+1
m _ 1=
P12 1—c
 1-c 1—cntl
 1—c 1-c
_ l—c—14ctt
- 1—c
Cn—l—l_c
a 1—c

2.13.3 Applying the relation P(s) = 17}(5) in determining P”

Ey By
P= Ey | agg ap1 | 5 @o+ag=1and ajpta;=1

Er | a0 ann

Y = Pr[Ey— Ey) = ago

f(%) = Pr[Ey — E1 — Ep] = agiaig

9 = Pr[By— By — By — Ey = apio11010

Y = Pr[Ey— By — By — By — Eo] = agia?,010

9 = Pr[By— By — B — By — Ei — Ey] = anadang

In general
fﬁg)==ao1(a11YT‘2a10;7z::1,2,3.”

Multiplying both sides by S™ and summing the result over n we get

n _
S foo’s™ = D aoi ()" “aies”
e —2
= apiai Y (oq1)" 8"
n=2
e 2
= a01a1052 Z (Ozll)n s 2
n=2

2
= 0401041082 [14—04118-1-(0&118) +]
ap1a08>
1—04118



55

but -
(n) n _ F .
> foo's" = Foo(s) — aoo(s)
n=2
thus
s)—agy(s) = ———
00 00 I —ans
2
Q1105
F = —_—
00(8) Ozoo(S) + 1— s
but we know that ]
P I
) = 1=F @)
—
1
P()()(S) =
1 — agos — Gpoins
B 1
T l—ag1s—ago)(l—a118)—apraips?
1—(1115
o 1— 118
 l—aq1s— agos(1 —a118) — apraps?
but
a1 +ap=1
—
a1 =1—aqg
and
appt+agr = 1
agp = l—apr
thus we have
1—(1— «10)S
Poo(s) = ( ) 5
1 — (11 +ago) s+ (agorin — apravig) s
B 1—(1—agp)s
1— (1 —app+1-— 0401) S+ [(1 — Oé()l) (1 — 041()) — 04010410] 52
B 1-— (1 — Ozlo) S
1—(2—a10—ao1) s+ [1 — ap1 — @10 + apraio — apraap) 2
1— (1 — 041()) S

= 15
1—(2—0410—0401)8—1—[1—0(01—a10]82 (15)



Now, s is solved for by factorizing in the denominator. Let

a = l—ag—ajp

= —(2—a0—aon)

c = 1
using the quadratic formula
—b+Vb?% —4ac
S =
2a
b = ——(2—-a10—a0)=(2—a10—ao1)
B = (2—ain—aon)’=2-(a10+an))’

= 4—4(a19+ao1)+ (a1 +0401)2

— 4—4da1g—4ag + (a01)? + 2010001 + (@10)?

dac = 4(1 — Q1 —041()) 1

= 4-— 40501 — 40510

therefore
52 —4ac = 4—4oq9—4ag1 + (0401)2 + 210001 + (0410)2 — (4 — 4o — 4@10)
= (a01)?+ 2010001 + (10)?
2a =2 (1 — Q01 — 041())
hence
—b+Vb?—4ac
s =
2a
_ (2—ag—ae)* \/(Oéo1)2 +2a10001 + (010)”
2(1—ap1 —aio)
(2—a10—ap1) £ (o1 + 10)
2 (1 — Q1 — 0410)
hence

(2 —a10—ap1) — apr + a1
2(1 — Q01 —0110)
2—20410 —20{01
2(1—0401 —0410)
2(1—ap; — a10)
2(1—ap; — aio)
=1
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or
_ a1+ — 2+ (a0 + a0)
2(1—&01—0110)
B 2
2(1—0401—0410)
B 1
(1—ap1 — o)
In summary
1
s=1ors=
(1—ag1 — o)
1—s=0or (1—@01—@10)821
—
1-(1—ap—aig)s=0
thus
1—(2—0401—0410)8—0—(1—0501—0410)82:(1—8)[1—(1—@01—&10)5]
hence

1—(1—&10)8
(1—5) [1—(1—&01—&10)8]

Poo(s) =
using partial fractions, we obtain

A B
Poo(s) = —s [1—(1— g —aig) 9]

hence
1—(1—0410)8 . A + B
(1—8)[1—(1—&01—&10)8] 1—s [1—(1—&01—&10)8]

I1—(1—ai0)s = A[l—(1—ap1 —a1g)s]+B(1—s)
l1—-(1—apg)s = A-—A(l—ap1—aip)s+B—Bs
15— (1—a10)s' = (A+B)s"+[-B—A(1—ag —ayo)] st

from the coefficients, it follows that
A+B=1
and
[—B—A(1—ap1 —ao)]
[B—i-A(l —ap1 —al())] (
B+A—|—A(—a01 —Oqo) = (1—0410
) (
) (

(B—i-A) — A(Ozm + aqp
1—A (o1 + a0
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A(ag+a19) = 1—(1—ao)

A(apgi+a19) = aio
_ Q0
Qg1 + Q1o
and
B = 1-A
_ o __ @0
Qg1 + Q1o
_ Qo
ap1 + oo
hence
(s) A N B
Poo(s) =
1—s [1—(1—0(01—0410)8]
_aig _aopl
_  apitaig + Qo1+010
1—s5 [1—(1—@01—&10)8]
a1 1 Qo1 1
- i)
agr+aio \1—s/  ap1+a10 \ [1—(1—ap1 — o) ]
1 2
= 1l+s+s"+---
1—s
o0
n=0
1 o0
— 1—0[01—061[)nsn
[1—(1—ap —ai10)$] nZ::O( )
Therefore
a1 = g, apl n n
pools) = ——— s+ —— 1—ag1 —a10) s
(5) 0401+Oé1onz::0 0401+0410nz::0( )
o0 [ee]
_ %0 s”+&(1—a01—a10)”25”
a1 + a0 ;.= Qg1 + 1o oo
but pgé) is the coefficient of s™ in poo(s) hence
(n) Q10 Q01 n
Poo = + I —ap1 —aig
00 ap1 +a10 Qo1+ Q1o ( )
but

#9157 =1

)
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—
(n) ()
Po1’ = 1—poo
hence
(n) a10 Qo1 n
= 1- + I —apr —aio
Po1 Qo1 +a10 Qo1+ Q10 ( )
a1 n
= ——1—-(0—an—a
0401+0410{ ( ) }
Similarly
Vo= PrE - By =
fir = Pr[E1— Er]=an
2
fl(l) = Pl"[El — E() — El] = 010001
fl(i)) = Pr [El — E() — Eo — El] = 100001
f(4) = Pr E1 — E() — Eo — Eo — El = Oqoa2 a0l
11 00
fl(?) = Pr [El — E() — E() — E() — E() — El] = 0410048’00401
In general

£V = 1o (ago)" a0 n=2,3,...

Multiplying both sides by S™ and summing the result over n we get

o~ 4(n) = )
n _
SoArs" = D o) “ans”
n=2 n=2
- 2
= apnai Y ()" "
n=2
. 2
= amaies® Y (ag)" 78"
n=2

= agraps’ [1 + apos + (a003)2 + .. ]

_ anaps’
1—04008
but
o (n) n
Y fir's" = Fu(s) —ani(s)
n=2
thus
F ( ) ( ) O~/01041032
S)— S — - -
11 11 [
aniangs”

F _
11(s) an(s)+ 5 p—

but we know that
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=
1
Pi(s) = 5
1—a115— %%ig%i
B 1
- l-oqis—ago)(1—ai1s)—agiaios?
1—agos
B 1—agps
1 —agos —a115(1 — agps) — agraps?
but
ago+apr =1
=
apo =1 —ap
and
ajrtapg = 1
a1 = l—aqo
thus we have
1—(1-— a10)S
1 —(a11+ago) s+ (o011 — ap1a10) S
. 1— (1 — 0410) S
1—(I=aig+1—ag1)s+[(1—ao1) (1 —a1) —agaig] s*
B 1—(1—a10)s
1—(2—aip—ao1)s+[1—ap1 — a0+ apiaio — apraig) s2
1—(1—aq0)s

16
1—(2—0(10—0[01)8—1—[1—0401—041()]82 (16)

Now, s is solved for by factorizing in the denominator. Let

a = l—ap —aj
= —(2—aip—on)
c = 1

using the quadratic formula

bk Vb% —4ac

2a

S

= ——(2—ap—ap)=(2—a10—a0)
(2— a1 —ao1)? = (2 — (a10+ao1))?
4—4 (o1 + ao1) + (10 + o1 )

= 4—day—4ag + (ao1)* + 2a10001 + (10)?



dac = 4(1—apr—agp)l
= 4—4ap; — 4o

therefore

b2 —4ac = 4-— 4o — 4ol + (0401)2 + 2a901 + (0410)2 — (4 —4ap1 — 4aqo)

= (a01)? + 2010001 + (2110)?

2a = 2(1—0401 —Oq())

hence

—b4 Vb2 —dac
2a
(2—a10—ap1) + \/(a01)2 +2a19001 + (a19)?
2(1—ap; — aio)
(2—a10 —ao1) £ (ao1 +a1o)
2 (1 — Qa1 — 0410)

hence

(2 — 10 —ap1) — agr +a1g
2 (1 — Q1 — 0410)
2—2a10 — 2001
2(1—ap; — aio)
2(1 — Q01 —Oqo)
2(1—ap1 —aio)
=1

or

a1 + ao1 — 2+ (o1 + a1p)

2(1—ap; — aio)
2

2 (1 — Q01 — Ozl())
1

(1—ap1 —aio)

In summary
1

(1 —ap1 —aap)

l—s=0or (1—ap—ay)s=1

s=1ors=

1—(1—&01—&10)820



thus
1—(2—0401—()41())84—(1—@01—0510)82:(1—8)[1—(1—&01—&10)8]
hence

1—(1—(101)8
(1—38)[1—(1— o1 —a1p) $]

Pii(s) =
using partial fractions, we obtain

A B
P =
11(s) 1_8+[1_(1—a01—0410)5]

hence
1—(1—0401)8 . A + B
(1—8)[1—(1—&01—@10)8] 1—s [1—(1—@01—&10)8]

1—(1—@10)8 = A[l—(l—oz()l—ozlo)s]—}-B(l—S)
I1—(1—agg)s = A—A(1—ap —aig)s+ B—Bs
150—(1—a10)51 = (A—I—B) 50+[—B—A(1—a01—a10)]51

from the coefficients, it follows that

A+B=1
and
[—B—A(1—ap—aip)] = —(1—ap)
[B—i-A(l—Oé()l—Oél())] = (1—0401)
B+ A+ A(—-amn —ai) = (1-ae)
(B+A)—A(ap1 +a10) = (1—ao1)
1—-A(aor +a10) = (1—ao1)
Alapgr+ai) = 1—(1-ao)
A(apr +a10) = ao1
_ %01
a1 + Q1o
and
B = 1-A
_ o, on
Qg1 + Q19
a10

ap1 +aio



hence

() = 24 :
Po0%S N 1—s [1—(1—&01—&10)8]
@01 Q10
_  ap1taio ap1taip
1—s  [1—(1—ap —ai)s]
a1 ( 1 > 10 ( 1 )
= +
apr +a10 \1 =5/ apr+aip \ [1—(1—ag1 —a10) ]
1
= 1454524
1—s

o0
g Z Sn
n=0

1
[1—(1—ap; —ai10) 8]

o0
= Z (1—ap1 — Oq())n s"

n=0
Therefore
oo 0.9]
Qo1 Q10
pll(s) = — s — Z (1—&01—@10)”8”
Qo1 + Q10 ;, 5 Qo1 + Q10,5
o [0.9]
Q1 Q10
= Y st ———(l—ag—a1)" ) s"
a1+ Q10,5 a1+ Q10 =0

but pﬁb) is the coefficient of s™ in p11(s) hence

(n) Q01 Q10 n
= + 1 —ap1 —aio
P ap1 +a10 Qo1+ 10 ( )
but
Pty + iy =1
—
iy =1-pi})
hence
(n) 1 Qo1 a10 n
= 1- + 1l —ap —aio
P1o apr +a10  ap1+ 1o ( )
a1 n
= —1-0—-an—ap
a1 + Q1o { ( ) }
In summary
[ () )
pn _ Poy P
(n)  (n)

| P10 P11

aig Qg1 _ _ n Qo1 {_ _ _ n}
_ C¥01+0410+O¢01+C¥10 (1 @o1 0410) ap1taio 1 (1 @o1 alo)

a1 - _ _ n ap1 aj0 _ _ n
ap1+0i0 {1 (1 @01 CYlO)} Oco1+0é1o+a01+oc1o (1 @01 0410)
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Consider a special case

app = l—a, apn =«
app = B, an=1-4
agl+alg = a+p

l—apr—ap = 1—a—p

pr _ | atatsi-a=0)" 5 {1-0-a-p)"}
g{1-(1-a=8)"} F#g+i50-a-p)"
1 | Bra(l-—a=B)" a{l-(1-a-p)"}
atB | p{1-(1-a=p)"} a+p(l-a-p)"

+ | =

2.13.4 Applying the Eigen values and Eigen vectors in determining P"

The higher transition probabilities pl(-;-l) can be computed from p;; by repeated multiplications
and summations, but the work involved is prohibitive even for a chain with a small number
of states and for a moderate number n. For every square matrix A, a scalar A and a

non-zero vector x can be found such that
Ax = )\x

IA—\|=0

To determine A and x, we solve the characteristic function. For a finite Markov chain
having states 1,2,3,...,n and a stochastic matrix

P11 P12 --- Pin
P— p.21 p.22 cee p?n
i Pnl Pn2 --- Dnn ]

with
n
Zpij:L i:1,2,3,...,n
j=1
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we intorduce a characteristic matrix

(A—=pn1)  —pi2 ...  —pin
— A —
A =(r-p)= | P Grpml e
i —Pni1 —Pn2 ()\_pnn) ]

where I is the n x n identity matrix. The characteristic equation

[A(A)] = [A=P| =0
is a polynomial in \ of degree n. The characteristic equation has n roots given by the
equation A, A2, A3, ..., \,.They are known as the eigenvalues of the matrix P. These

eigenvalues may be real or complex numbers and some of them may be equal.

Conclusion

The three methods of determining the nth power give the same results, however the direct

multiplication method is more challenging and tedious compared to the rest of the methods.

Both methods give the same results as required.
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3.1

3.2

TWO STATE MODELS

Introduction

In this chapter the random walk is studied as a Markov chain. Various cases of the two
state models shall be considered; namely: simple random walk, random walk with absorbing
barriers, random walks with reflecting barriers and cyclic random walks.

A Transition probability matrix for a Simple Random Walk

0<a<land 0<p<1
Ey Eq
P= FEFy |1-a «
Fy g 1-p

3.2.1 Classification of Markov chains

Every state can be reached from every other state hence the Markov Chain is irreducible.
Thus all the states are of the same type.

3.2.2 Classification of states
Consider £,

Y = pr[Ey — By
2 = pr(Ey — By — Ey

£ = ap(1-p)
S = apa
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hence

0, elsewhere

For n > 3, the first return to state Ey occurs in n transitions if

a) First transition probability is from 0 to 1, and

b) next (n —2) transitions are from 1 to 1, and
c) nth transition is from 1 to 0.
—

hence persistent

Ho

let z = (1—0)

oo

i) =B -p)"?

fo = > &
n=0

= 1—a+ia6(1—ﬁ)n_2

n=2

= l-a+af) (1-5)"

n=0
o
1-(1-75)
= l-a+a

S nfsy)

n=1

1—a+a6§n<1—6)"‘2
n=2

(1—a)+aB[2+3(1-B)+4(1—B)*+5(1—-B)*+-]

Ho

(1—a)+ap [2—|—3a:+4x2—|—5a:3+---}

(1—a)+a—5x {2+3x+4x2+5x3+-~-}
T

(1—a)+

af
T

[2x+3x2+4x3+5m4—|—---}
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but

hence

but

and

hence

therefore

= 1+a+a?+a8 42t +-

1 2
( > = 142¢432% +423 + 52 + -

T 11—z

fo = (1—a)+a5_< ! )2—1]

045'1—(1—1:)21
v | (1-2)?

af [1—(1—-2z+2?%)
N R |

B . %:Zx—wQ)
= (1-a)+ . _(1_36)2]

= (1-a)+

= (1-a)

=

l—z = 1-(1-p)=5
(1-2)* = 5°

2—2 = 2—(1—5)
= 148

po = (I—a)+ap [1;26]

= (1—04)—1—04[1—;5]
= 1—oz+g—|—oz

= 14—

Mo < 00
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is finite and Ejy is non-null. Now,

hence Ej is aperiodic.

Consider F;

in general

f

(1)
11

2
f1(1)
3
iR

3
f1(1)

(n) _

fi =

to determine the periodicity of Ej

= GCD{n :p(-?) > O}
= GCD{1,2,3...}
=1

= Pr[E, — B
1-p5
Pr[Ey — Ey — Ei]
af

— af(l—a)

= aB(1-a)’

0, Elsewhere

Sy

n=0

1-6+> a(l—a)" 8
n=2

1—5—1—046%0:(1—04)"

n=0

af
1_B+1—ﬂ—a)

1-5+p
1



hence F is opersistent

P = Z"ff?)

n=1

- 1—B+a5§ (1—a)" 2

= (1—5)+a;[22+3(1—a>+4(1—a>2+5(1—a)3+---]
let x = (1 —«)
mo= (1-B)+ap[2+30+42"+52% 4]
_ (1—6)+af:c[2+3x+4x2+5x3+~-~]
_ (1—6)+Of[2x+3x2+4x3+5x4+--~}
but

= l4a+2?+23+at -

1 2
( > = 14224322 +423 +52 +- -

hence

p = (1—5)+aﬂ-< ! >2—1]

11—z
aﬁzl—fl—ﬁQQ

v (1-a) 1

af [1—(1—2z+a2?)
v (-2 ]

but

and

2—z = 2—(1—-«)
= l+4+a
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hence

po= (1-5)+ap {1;261

= 1—ﬂ+§+6
(67
B

= 1+4—<x
a

hence py is finite. Since Ey and F; are communicating states, it holds that £ is alos
ergodic. Therefore, Ey and Ej are persistent, non-null, and aperiodic and hence rgodic.
However, the mean recurrence times are different

o s
po=1+—-%# p=1+—
I} «
3.2.3 The stationary distribution
Consider
lim P"=P'n
n—oo
m | l-a « T
m go1-p || m
m = mo(l—a)+mf
™ = 7T()Oz+7T1(1—6)
mo+m = 1
m = 1l—mg
—

o = m(l—a)+(1—m)p
7o — o+ 3 —mo 8

moa+mS = [
T = b
a+p
m = 1—mg
_q__F
a+p
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lim P" =

n—oo

o
T o

Ho =

Q

R +=
™
[—

by theorem 2.12

3
o

mo= —

3.2.4 The n!* power P" using the Eigen value technique

l—-a «

g 1-p
Using the Eigen value approach, we first determine the Eigen values of P. We solve the
characteristic equation

P=

IP—AI|=0

(I—a)—AX o o

B (1=p5)—A

[(1—a)=A[1=8)=AN—-af =
(I=a)[(1=8)= A =A[(1=5) = A -
(1-a)(1=5)=A(1—a)=A(1-5)+ A2—aﬁ
N-A(l-a)=A(1-B)+(1—a)(1-8)—ap

NN+ a— A+ \8+1—-a—fF+af—af =

|
© © © o ©

NN+ a+\—-A+1l—-a—53 = 0
AA=1+a+B)—(A-1+a+p)
A=1)A=14+a+3) = 0
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hence
)\1:1 and )\2:1—C¥—ﬂ

when \; =1

P-AX = 0

l—a—1 Qo T
B 1-5-1 )

—azr1tazry = 0
ary = ax9
T4 = I9
taking, say r1 =12 =1
1]
Vi =
1
when
)\2:1—Oé—ﬁ
we have
[P— I X
(1—a)—(1—a-7) a 3
B (1-8)-(1=B8-a) || 24
ﬁ « T3 . 0
b « T4 0
pry = —ary
T3 = _—ax
3 = 6 4

but x4 is a free vraible. Suppose x4 = 3, then
r3 = —«

Therefore, the Eigen vector is




Recall that by spectral decomposition

P=VDV!

where D is teh diagonal matrix of the Eigen values of P

hence

but

but

hence

PTL

Pn

1

:

B
1 —a(l—a—pB)"
Bl—a-p)"

b
a+p
b
a+p

V = [ Vi Vy ]

B 1 —«
= .

1 —« 1

|

0 1
1 5 0 1—a—72 1
1 —a 1 0 1
1 B 0 1—a—p 1
P"=VvD"V~!

5l

1 —a
0 (l—a=p)" || 1 8

[)

—1
—Q B 1
g |  Bta

1 —a(l—a-p3)"

1 Bl-a-p)"

b«
-1 1

5]

B+a(l—a—-pB)" a—a(l—a-p4)"

| B-B1-a=B)" a+B(l-a-p)"

4
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which can be expressed as

1
a+p

fal (l-a—p"| a -a
_|_—
B a a+p -8 B

From this, it follows that the asymptotic behavior is given by

n —
TN e I B
n—00 n—00 oy + 3 8 a a+p -8 B
1 ]sa
at+B| B3 a
3.2.5 The n!" power P" using Chapman-Kolgomorov tehcnique
l-a «
P:
E 1—6]
by using Chapman-Kolgomorov equation
P"=pP"'P
i.e.
-1 -1
PP o e eV [ 1-a a
- -1 -1
sy by ps Y Y B1-5
therefore
-1 -1
Ay =pi (1 —a)+pi5 s
but
Pty -+l =1
hence
iy = 1-piy
= iy V=1-pY
and

Y = PV —a)+pl Vs

= i -a+ (1-p7) 8

B A

(17)
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Using the probability generating function technique, equation (3.1) is multiplied by s™ and
the result summed over n to obtain

St =(1—a—p) > pli Vs 453 8"
n=1 n=1 n=1

but
6l = 3 pfper
e Saf
= 1+§:1p§7)8”
Therefore _
Tiﬁ?ﬂ — Gls)-1
= (I—a- 6)5)1 i ”s”+6§jls”
= (—a-s i e s S e
= (1-a—-p)sG n_(l) 68[1+s+s +55 4]
= (1—a—B)sC(s) + 1
Gls) 1= (1—a—B)sG{s) + 1
G(s)—(l—a—ﬁ)sG(s)zl—l—lB_SS
G- (1—a-p) =15
.
66 = T e
_ 1+p8s—s
T—sll-(1-a—5)s
1+s(8-1)

T Tosi-(-a-p) (18)

Using partial fractions

1+5(8—1) A C
1-s]l-(1-a=p)s] [I—-s] [1-(1-a-p)s]
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we now determine the values of A and C

1+s(B—1) = Al—-(1—a—p)s|+C[1—s]
= A-As(l—a—-p)+C—-Cs
= (A+0)s"+[-A(1—a—-B)—C]s

Equating to the corresponding powers of s
A+C=1

(f-1)=-Al-a=p)-C (19)

cC = 1-A
—-C = A-1

(B-1) = —A(l—a—B)+(A-1)
= A-A(l—-a-p)—-1
= All-(1-a-p5)]-1
= Ala+pg]-1

5 = Ala+d)
5
a+p

Therefore

B8 o
s _ a+f3 a+
6 = Tt i —a s
_ 1 15} . «
atB|[1-s] [I-(1-a-p)s]

= 14s+s?t+sd4--

oo
g Z Sn
n=0
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let
z=(1—a—p)
s (o)t (29 -
1—uzxs
[ee]
n=0
Therefore
1 — Y (1—a—p)"s"
I-(1-a-8)s ‘=,
and

G(s) = S pips"
n=0

1

_ {6§S"+@(1—a—6)”§sn

n=0 n=0

a+p

but pg’{) is the coefficient of s in G(s)

) _ g al-a-p)"

}

Py = a+ﬁ+ y ,  fora+pB#0
1 n
= a+ﬂ[5+a(1—a—ﬁ)]
but
Pty +ply = 1
piy = 1-p
Case Il
If a4+ 5 =0, then from (3.)
B 1+s(6-1)
= Ia-—a-B)
_ 1+s(f—1)
[1—s][1—(1—]a+p])s]
 14s(B-1)
- [1=s][1 =]

1+s(B—1
o (1-s)

=

»
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Using partial fractions

lts(B-) _ A ¢

1-s)? (1=s) (1-s)

multiplying across by (1 —5)2, we obtain

1+s(8—-1) = (1-s)A+C
A—As+C
= (A+0)s" - As

hence

but

= lts+s+s+-

00
- Y
n=0




hence

(0.9] oo
G(s)=(1-0)> s"+8> ns"!
n=0 n=1
but pﬁb) is the coefficient of s™ in G(s), hence

Y = (1=8)+B(n+1)
= 1—0(n

Similarly, from

S I B e o B R
Pr=1 o o |~ o
Da1” Do D1 D22 B 1-p
—
sy = apSi ™V + (1—B)phy Y
but
Py +phy = 1
Py = 1-ply
—
n—1
po Y =
Thus
pey) = (1 e 1)>+(1—5)p§3_1)
— a—apyy V4 (1-8)ps Y
— at+[l—a—glpk Y (20)

Multiplying equation (3.) by s™ and summing over n we get

o
Zp225 —ozZs +[1—a—/4] Zp s”

=1

Define
Gls) = S plas"
n=0

= P+ > ps”

n=1

— (n)

n=1
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> phys" = Gls)—1
n=1

thus we have

G(s)—1 = as {1+s—|—s2—|—---] ~|—[1—a—5]szp$_l)sn_1
n=1

as

= 17+[1—04—ﬁ]3G(5)

G(s)~[1—a—plsGls) =
l1—s+as
GE)1-s(-a=p)] =
B 1+ (a—1)s
C6) = AoE-(=a-ps
Using partial fractions
A C

G(s) =

(1-s5) "I—(l-a-p)3

1+ (a—1)s A C

(-s)1-(1—-a=B)s] (-s) [O-(1—a-p)s

I+(a—1)s = [1-(1—a—p)s]A+(1—s)C
= A-—(1—a—-p)sA+C—-Cs

194 (a—1)s=(A+ )"+ [-C—A(1—a—p)]s

hence

A+C =1

(a—1) = =C—-A(l—a—p)
= A—1-A+Aa+ ApB
= A(a+8)—1




82

«o
C = 1—-
(a+p3)
_ 5
(a+p)
hence
_a _B
G(S) _ (a+P) + (a+P)

(1=s) [I-(-a=p)s

B <ai@> [(1:)*[1—(1—%—@81]

o0 o0

1
= o sS"+(1—a—-p)" E s"
(a+6)[ 2t ), ]

oo [0.9]

Kad (n) n __ 1 [ n n n
Doy’ 8" = ay s"+(1—a—-p)" 8> s ]
S T Ry
but pg;) is the coefficient of s" in G(s)

(n) « (1—04—6)”6
P = a+6+ a+

_ atB(l-a-p)"

— o

and

Py = 1-py

a+B(1l—a-p3)"

B a+f
(a+8)—|a+B(1—a—pB)"]
a+p
B-B(1-a-p)"

a+f

=1

Case 2

When a+ =0,

B I+(a—1)s
 (1=s)[I-(1-a=p)s]
l+(a—1)s
(1=s)[1=(1=[a+p])s]

1+ (a—1)s
(=5)[1=(D)s

I+ (a—1)s

(s
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l+(a—1)s A N C
(1-5°  (1-35) (1-s)
—
I+(a—1)s = A(l—s)+C
1594 (a—1)s = (A+0)s"—As
—
A+C =1
Cc = 1-A
A=1-«
C 1-1+4«
a
Hence
-« o}
G(s) = +
() 0= 1 s
= —a)23”+a23”_1
n=0 n=1
= (1-a)) s"+ad (n+1)s
n=0 n=0
ZPQQS =(1—a)Y_ s"+ad (n+1)s
n=0 n=0

but‘pgg)is the coefficient of s™ in G(s)

sy =

Sy

(1—a)+a(n+1)
I+an

1—ply

1—-1—an

—an

In summary, using the Chapman-Kolgomorov equations we obtain

1
a+6

pn B-p(l—a=p)"

B+a(l—a—p8)"

1— bn

—an l+4+an

a—a(l—a—p)"

, ifa+pB#0
a+ﬂﬂaﬁﬁ]

, ifa+p5=0
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3.2.6 Applying the relation P(s) =

P=
Here

Qo0
a10
ap1 + Q1o
1 — a1 — a1

hence

n — 1
a+p

1—F(s)
11—« a

g 1-p

= l—a, aqp=«
= B, an=1-p
= l—-a-0

B+a(l—a-8)" a—a(l—a-p3)"
B=B(l-a=p)" at+pf(l-a-p)"

3.2.7 Using the normal multiplication method

11—« a
P=
S
p2 — l-a « 1l—« Q
g1-p B 1-5
_ (1-a)P+af  a(l—a)+all—7p)
| Bl-a)+(1-5)  af+(1-p)
p3 l-a « (1—a)+ap a(l—a)+a(l—pB)
g 1-p B(1l—a)+B(1-p) af+(1—B)?
(1—@)3+2a6(1—a) a(1—a)+a2B+a(l—a)(1—B)
+aB(1- ) +af(l _5)2

+4(1—5)?

Bl—a)+a?f+B(1-a)(l-P)

+af(l—a)

(1-5)° +2aB(1-B)




85

pt_ l—a «
po1-p
_ (1—a)®+208(1—a) a(l—a)?+a?3 _
+ap(1-p) +a(l—a)(1-B)+a(l-p)?

g B(1—a)? a8 (1-B) 2081 B)
| A —a)(1=p)+B(1-pB) +ap(l-a)

(1—a)+3a8(1—a)? a(l—a)+2a26(1—a)
+2a8(1 —a)(1—B) +2023(1 =) +a(l—a)*(1-p)
_ +a?82 +aB(1 - p)>? +a(l—a)(1-B)*+a(l-5)?
B(1—a)3+2a82(1—aq) (1—B3)* +3aB(1— )
+208%(1— )+ (1l —a)2(1 =) +2ap(1—a)(1-5)
+a(l—a)(1-B)2+A(1- B)? +a?f2 +aB(l-a)’
from P2 above,
P = (1-0)+aB
— Zig:(l—af—kaﬂ}
_ Oéiﬁ (a+B8)(1-2a+0a®+ap)]
— ozj—ﬁ a—2a2+a3+a25+ﬁ—2a5+0¢2ﬁ+0¢52}
= aiﬁ B—I—oz—2a2+a3+a2ﬁ—2aﬂ+a25+aﬁz]
— }rﬁ[ﬁ+a(1 20 —2B+0”+2053+ )]
- —5pra(i-20@+8)+a+p?)]
_ }FB[BJFOK (1—( a+5)]
=




Py = a(l—a)+a(l-p)

a+p

= S le(1-a)+a(1- )

= [(a+5)(a(l—a)+a(l-7))]

= :(a+ﬁ)<a—a2+a—aﬁ)}
1 -

(a+5) <2a —a?- aﬁ)]

= :2(12—043—@25—1—2@5—0426—0462}

= —2042—043—204264—2045—0462}

= _04—04—1—2(12—043—20426%—2045—@62}

= :a—a(1+2a—a2+2aﬁ+25—52)}

= :a—a<1—|—2(a—|—6)—|—2a5—(oz—f—,B)z)}

= a—a(l—(a+p))’]

= :a—a(l—a—ﬁ)ﬂ

ps) = B(1—a)+B(1-5)
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and

2
pgl)

Py

= 0

—a)+5(1-7)

[B(1—a)+B(1-5)]
[(a+8) (B(1 =)+ (1= B))]
(a+P) (8- +5-aB)]|

(a+8) (28— ap—3)]

282 —ap? - B3+ 208 — 0?3 — af’]
267 - 208% — 8+ 208 — o*f]
B—B+28°—2a8” - B°+ 208 — o]
B—B(1+28-2a8— B> +2a—a?)]
B=B(1+2(a+p)—208—(a+8)")]
B-B(1—(a+5))
B—B(1—a—-p)

(1-8)°+ap

a+f
a+p

(1-8)*+ap]

(a+8) (1284 +aB)]

3282+ 3%+ Fa+a—208+ Fa+ ]
a+p3—26%+ 8%+ B2 — 203+ Fa+ fo?|
a+p(1-28-20+ 3 +20+0?)]
a+B(1-2(a+p8)+(a+p)?)]
a+B(1—(a+8))]

a+B(1—a—p)
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3.3

Thus
o (a—iﬂ);ﬁ—ka(l—a—ﬁ)ﬂ
a7 BB —a=pB)]
1 | B+a(l—-a-p)?
(a+pB) _B—B(l—a—ﬂ)Q
Remark

It is not easy to identify the pattern by multiplication approach to enable us to have the

general pattern formed.

Transition Probability Matrix for a Random Walk with Absorbing

Barriers
By By
Ey 1 0
P-
Es 0 1

P is the identity matrix
3.3.1 Classification of the Markov chain
Both Ey and Es are absorbing Markov chains.

3.3.2 Classification of states

E; Es
Eq 10

P—
Es 01

Consider £ and Es in the above Markov chain, For E;

1 =
i =
m =
=

o O = O



In general

(n) 1, n = 1
f11 =
0, elsewhere

Hence F is persistent.

hence 1 is finite and therefore non-null.

i = G(JD{n:f}f)>0}
~

The same analysis applies to Fy. Therefore, £ and E5 are
(i) Persistent

(ii) Non-null

(i) Aperiodic

and are theerfore ergodic.

3.3.3 The n!* power P”

g
3
|

10
01

3.3.4 The asymptotic behavior
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lim P"

n—oo

3.4 Transition probability matrix
barrier

I 0
(1-Vv"~ U 1
10
01

random walk with one reflecting

Ei FEs
Eq D
Es P

3.4.1 Classification of the Markov chain

All states can be reached from every other state; hence the Markov Chain is irreducible.

All the states are of the same type.

3.4.2 Classification of the states

Consider Ey
Y = Pr[Er— Bl ="
2 = Pr[E > By — B =pq
O = Pr[E] = By — By — Ei] = p%q
fl(lll) = Pr[E) — Ey — Ey — E2 — B :p3q
In general

bil
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Hence E; is persistent

1 [e.9]

— Z npn—l

(1—]7)2 n=1

hence

In general,

<oo, 0O0<qg<1
M1 =
o0, ¢=0

and hence E7 is non null when 0 < ¢ <1 and null when ¢ =0.

Periodicity

d = GCD{n:f}j>>o}
— GOD{1,2,3..}
~

Hence E; is aperiodic and hence ergodic when 0 < ¢ < 1.

d (1
() = 14+2p+3p* +4p° + -
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Consider E»
1
1 =
2
15 =
3
5 =
4
5 =

generally

Hence Es is persistent

hence

Pr[Ey — Es| = qop

Pr[Ey — E1 — Eo) =q'p

PrEy — E1 — E1 — Fy=¢*p

Pr[E; — Ey — Ey — E1 — Fo]l = ¢%p

f2 > o
n=1

I
S
2
3

I
S
g =
3

()

S

L

1
) = 14+2¢+3¢* +4¢ +---

l1—¢q

1 i 1

n—

= np
(1 _p)2 n=1
p

H2 = 5

(1—q)
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In general,

<oo, O0<p<Ll1
H2 =
oo, p=0

and hence E7 is non null when 0 < p <1 and null when p =0.

Periodicity

d = Gep{n:f) >0}
— GCD{1,2,3..}
~ 1

Hence Es is aperiodic and therefore ergodic when 0 < p < 1.

3.4.3 The asymptotic behavior of the states

lim P"=P'n
n—oo
m| e a||m
™2 p p 2

Tl =qm1 +qm2

but

m+m = 1

m = qm+q(l—m)

mg = pm1+pm2
= pm+p(l—m)
=D
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hence

My

By theorem 2.12,

1
H1 = —
t
_ 1
4q
and
1
H2 = —
9
1
p
3.4.4 The n'" step transition probability
Method 1: Eigen Value Approach
Finding the Eigen values of the matrix P
IP—A|=0

-
q P 0o
q p—A

[(g=A)(p—A)—qp] =0

gp—Ag—Ap+ A —gp=0

N-\—\p =
AA=qg-p) = 0

A =0

and

{33}0
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since
qt+p=1

When A\ =0 the corresponding Eigen vectors ar

Px=)Mx
x
q p 1 —0
q p €2
qr1+pre =0
qr1 = —px2
—pI2
r1 =
q
Supposing 9 =1
D
r]1 = —
q
—
-
V1 = q
1
1 =2
V= q
1 1
When A =1
Px=)Mx
T T
q p 1 _q 1
q p Z2 x2
qr1i+pr2 = 21
qr1+pr2 = T2
pr2 = X1 —(qr]
= (1-q)n
= pr1
—
Ir1 =92
Suppose

331:332:1



P" = VDV

P"=P" P
—
n n n—1 n—1
pg1) P§2) - pgl ) pgz ) q p
n n - n—1 n—1
p§1) Péz) pgl ) ng ) q p
Therefore
pY = pYg+ply Vg
A = (i el Y)
but
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=
Y =g
but
iy +piy = 1
W - 1o
1—g¢q
=D
Similarly
pSy = pS T Vppby Vp
n n—1 n—1
pgl) = p<p§1 )+p§2 )
but
A+l =1
—
Py =p
but
Py o5 = 1
psy) = 1-ply)
I-p
= (g
Therefore
pr_ W |
- (n) (n) |
Pa1” P22 q

Method 3: Direct Multiplication

)
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p2 _ |4 P|laP
a p|[a P
| @Hpg gp+p?
| @*+pg ap+p?
| a(g+p) pla+p)
| a(¢+p) plg+p)
e
P’ = PP
lawplar
ap a0
which = )
( (
P — Pﬁ) pf%) _
s vy

Method 4: Applying the relation P(s) = 1—1%“(3)

Using the relation arrived at in section 2.1.3 that

[ (n)  (n)
P — Poo Por
(n) _(n)
| P10 Pu
- 0401a+1%!1o - ozo1a£1a10 (1—ao —a1)" ao?ﬂkm {1 — (a0~ alo)n}
o n (67 o n
st (- (oo —an)"} e+ 5 (1- ag — o)
Qpp = «10 =4, apr =11 =P
apgrt+ayp = pt+g=1
l—app—a9 = 1—-p—q

1—(p+q)
= 0
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3.5

Hence subsituting to equation (3.) we have

P" =

q p
qg p

Transition Probability Matrix for Random Walks with Two
Reflecting Barriers

3.5.1 Classification of the Markov chain

All states can be reached from every other state; hence the Markov Chain is irreducible.
Thus all the states are of the same type.

3.5.2 Classification of the states
Consider Ej
D) priEy — By =
Joo r[Ey — Eo)=a
2 = Pr[By— Ey— Eo) = (1—a)(1—0)
3 = Pr[By— By — By — Eg) = (1—a)b(1—b)
[
[

f&o) = Pr[Ey— E1— Ei — By — Eg) = (1—a)b* (1-b)
& = Pr|Ey— By — By — B1 — By — Eg) = (1—a)b3(1—b)

On general

f(n) _ a, Nn= 1
v (1—a)b"2(1—b), n>?2
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Hence E) is persistent.

wo = Y nfy

= 0+a—|—§:n(1—a)(1—b)bn_2

D) [2+3b+ 45+ |
= ot b+ 30 4+

B l-a)=b[ 1

= a+ b _(1—b)2 11

(1—ax1—m'1—(y—mj
b L (1-0b)

_ . 0-9 [1—(1—2b+b2)

b (1-0)
(1—a) [b(2—b)]
b (1-0)
(1—a)(2—0)
(1-0)
2—a—2>b
1-0b

= a+

State Ej is non-null iff b# 1

Periodicity

(1—a)(1-b)+3(1—a)(1—b)b+4(1—a)(1—b)b>+---
1—a)(1—
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d = Gep{n: f) >0}
— GCD{1,2,3..}
— 1

Thus Ej is aperiodic and persistent, hence ergodic.

(o]

pr = Z”Jﬁ(?)

n=0
oo

= 0+b+ > n(l—a)(1-b)a"?
n=2

= b+2(1—a)(1-0)+3(1—a)(1—b)a+4(1—a)(1—b)a®+---
= b+(1—a)(1-b)[2+3a+4a®+ ]
_ b+(1—a)a(1—b)
B 1-a)a-b[ 1
e 1]
(1—a)(1—b) _1—(1—a)2]
a | (1-a)?
B (1—a) [1-(1-2a+a?)
b a [ (1—a)
(1—a) [a(2—a)
a [(1—@]
(1—a)(2—0)

(1-a)
2—a—>b
1—a

_2a+3a2—|—4a3—|—---}

= b+

— b+

= b+

State Ej is non-null iff @ # 1.

Periodicity

d = cepfu: g > o
— GCD{1,2,3..}
~ 1

Thus Ej is aperiodic, and persistent, hence ergodic when a # 1.
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3.56.3 The asymptotic behavior

™1 a 1—a ™1

T = a7T1+(1—(1)7T2
To = (1—b>7T1+b7T2

but
m+m = 1
m™ = 1—m
m = am+(1l—a)(l—m)
a7r1—|—(1—7n)—a(1—7rl)
= am+1—m —a+am
2m —2ami=1—a
2m(1—a)=(1—a)
2m = 1
1
T o= =
! 2
1 1
Ty = 1—=
2 2
1
2
T - 0.5
T 0.5
Therefore
1
Hg = —
Tk
1
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Since p is finite and thus E; is non-null.

Periodicity

d = Gop{n: 1 >0}
— GCD{1,2,3..)
— 1

Thus E7 and E5 are persistent, aperiodic, and non-null hence ergodic.

3.5.4 The n'" power P"

Method 1: Eigen values approach

IP—AI|=0

e THS il°

[(a=A)(b=A)-(1-b)(1-a)]=

ab—Xa—Ab+N? —[1 —a—b+ab|
ab—Xa—No+X2—1+a+b—ab
—Aa—A+ X —1+a+b

M —(a+b)A+(a+b—1)
M_X—(a+b—1)A+(a+b—1)
AA=1]—(a+b—1)[A—1]
A=1][A=(a+b—1)]

A=1 o A=a+b-1

when A =1
Px=)\x

o O O o o o o
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ax;+(1—a)rs = x;
(1=b)x1+bry = x2

ar1+xro—axrs = I

ari+(l—a)xze = 2
(1—a)zy = x1—ax;
(I1—a)zy = (1—a)xy

T9 = I

Taking a case, say 19 =21 =1

1
vy =
1
When A=a+b—1
Px = \x
1—
¢ U =laro—1] "
1-b b 9 2
ar1+(1—a)ra = [a+b—1]z;
(1=b)x1+bry = Ja+b—1]xo
(1—a)xy = Jla+b—1—a]x;
(1—a)xy = (b—1)x
1—
ml:ib—igl?
(1—6)8):63172—1—6@:[a+b—1]x2

lu_(l?_(ll)_a)—Fb] To = (a—i—b—l)xg

lw+b] rg = (a+b—1)xy

[a—1+blza = (a+b—1)z
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therefore 9 is a free variable and therefore can take any value. Suppose

hence
vl
Therefore
P = VvDV!
b—1

(a—1)+(b+1)

b—1
(a—1)+(b+1)

b—1
(a—1)+(b+1)

1
(a—1)+(b+1)

P'=—
ap1 + 1o

xro = 1
(1—a)
T -
(1—a)
vy = (b—1)
1
VvV = { V1 V2

1 10+ a1 (1 —agr —a10)” a1 — a1 (1 —apr —ago)” ]

a1p—a10(1—apr —ai19)” a1 +a10 (1 —apr —aig)”
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here
apo
1 —ap1 —ao
Hence
1
P" =
(I1—a)+(1-0)
B 1
N (a—1)+(b—1)

ajp=1-b, apr=1—a, a1 =>

IL(L—w—%l—M

1-1+a—1+0D
= a+b—1
1-b)+(1—a)(a+b—1)" (1—-a)—(1—a)(a+b—1)"
(1=b)—(1=b)(a+b—1)" (1—a)+(1-=b)(a+b—1)"
b—1)+(@a—1D(a+b-1)" (a—1)—(a—1)(a+b—1)"
b—1)—0—-1)(a+b-1)" (a—1)+(b—-1)(a+b—1)"

Method 3: Chapman-Kolmogorov approach

p
;)

Therefore

but

Py

Piy

Py

P"=P"'P

n—1
pgl )
n—1
P

n—1
pgz )
n—1
P "

Py -

PEY -

aPl(;Lfl)

aP" Y+ (1-b)— (1-b)
(a+b—1)PU V4 (1-0)

a
1-b

aP" Y (1 —p)pHY

1—a
b

1-prY

+(1-b) (1 —Pl(?”)

n—1
(21)

Using the probability generating function technique, equation (3.) is multiplied by s and

the result summed over n

ZPH s"

=(a+b—1) ZPﬁL Dgn 4
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but

5 pip
n=0

0 > n) n
= P1(1)+ZP1(1)5
n=1

— () n
1—|—ZP11 S

n=1

(a+b—1)sG S)+(1—b)8[1+8+82 }

(a+b—1)sG(s) + (11__1)5
[1—(a+b—1)s]G(s) = 1+ (11—_68)3
l=s+(1-b)s
B 1—s
B 1 l1—s+s5—10s
- [1—(a+b—1)s] 1—s
1—bs

Using partial fractions

- (22)

[1—(at+b—1)s](1—s)

1—bs A B

[1—(a+b—1)s](1—2s)

1—1bs

(1—s) [=(atb=1D)3

= [1—(a+b—1)s]A+(1—5s)B
= A—(a+b—1)sA+B—Bs
= (A+B)s"+[-B—(a+b—1)A]s



108

A+B=1

and
—b=—-B—(a+b—1)A

B=A-1

b = A-1—(a+b-1)A
Al = (a+b—1)]—1
= AR2—a-b)]-1

1-b

S N—)

B = 1-A
= 1—

1-0b
(2—a—"0)

1—a
(2—a—"0)

Therefore
1-b l1—a
(2—a—b) (2—a—b)
(I1-s) [I—(a+b—1)s]
1 1-0 1—a
2—a=b) |(1=s) [I—(atb=1)s]

= 14s5+52+s3+--
o0
n=0

Let
r=(a+b—1)

= l+as+as’+asd+--

00
— Z l,nsn
n=0

1—2xs

hence
1 o0

u-4a+b—1p]:nzéa+b_”n§
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and

G(s) = (2—2—1)){(1_19) isn—f—(l—a)g(a—i-b—l)"sn}

o0 n 1 o0
Zpl(l)sn:(gab{ Zs +(1—a)d (a+b—1)"s }
n=0

n=0

P is the coefficient of s"

1
el
1 n
e vl CRDRKIBOICER Y
1 n

= @on+@-p P e Dlarb=1)

P = 1-b)+(1—a)(a+b—1)"}

but
A+ -1

"
1 n
= 1_(a—1)—|—(b—1) (b—1)+(a—1)(a+b—1)"]
(a—D)4+0b-1)=[(b—1)+(a—1)(a+b—1)"]
(a—1)+(b—1)
(a—1)+b-1)—(b—=1)—(a—1)(a+b—1)"
(

a—1)+(b—-1)

Similarly, from

n n n—1 n—1
{pgl) pj(lQ) ] _ |:ng ) pgz )

a 1—a
1-0 b

sy by oY Y
Therefore
Py = (1-a)Py Y +bPy Y
but

R
n—1 n—1
P~ 1ol
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P = (1-a) (1—P§§‘1))+5P§;“”
= P Vi (1—a)—(1—a)PPY
= (a+b—1)P2(§_1)+(1—a) (23)

Using the probability generating function technique, equation (3.) is multiplied by s™ and
the result summed over n

ZPQQS (a+b— 1ZP2 +(1—a)d "
n=1 n=1
but
Gls) = S Pys"
n=0
- S
n=1
= 1+ZP2(£L)3”
n=1
ZPQ(S)Sn:G(S)—l
n=1
ZPQ(S)SH = G(s)—1
= (a+b—1)s ZPQ +(1—a)d "
n=1
= (a+b—1)sG(s) (1—(1)3{1%—3—1—32—1—---}
— (atb—1)sG(s) + LY
1—s
[1—(a+b—1)s]G(s) = 1+(11__a8)3
 1=s+(1—a)s
B 1—s
1 l-s+s—as
Gls) = [1—(a+b—1)s] 1—s

1—as
T = (atb—1)s(1—s) (24)
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Using partial fractions

1—as B A n B
1—(a+b—1)s](1—5) (1—s) [1—(a+b—1)s]
—
l—as = [1—(a+b—1)s]A+(1—s)B
= A—(a+b—1)sA+B—Bs
= (A+B)s"+[-B—(a+b—1)A]s
—
A+B=1
and
—a=—-B—(a+b—1)A
—B=A-1
—a = A-1—(a+b—-1)A
= A[l—(a+b-1)]—1
= A[2—a-b)]-1
1—a
A_(Q—a—b)
B = 1-A
_ q__1=a
N (2—a—"0)
B 1-0b
 (2—a—b)
Therefore
l—a 1-b

=) @b
G = G5 TA(aro—Ds]

1 1-0 L 1—a
(2—a—-0b)|(1—s) [1—(a+b—1)s]

= 14s+s?t+sd4--

oo
g an
n=0

—
|
VA
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Let
r=(a+b-1)
1 2 3
s l+zs+as +xs”+---
[ee]
— ansn
n=0
hence
! 3 b—1)"
a—+
1—(a+b—1)s nZ:O
and

G(s)—(z_i_b){a—@) S (1—b) i(aer—l)”s"}

n=0 n=0
S Pst = 1{(1—a) 35"+ (1—b) Z(a—l—b—l)”s”}
n=0 (2—a—b) n=0 n=0
Pz(g) is the coefficient of s
() _ 1 _ _ _q)n
Py = Gy (-0 (-1

(1—a)i(1—b) [(1—a)+(1=b)(a+b—1)"]

1 n
= aoD)T o) [(a—1)+(b—1)(a+b—1)"]
but
Py 1
Ay -l
1 n
= 1_(a—1)+(b—1) [(a—1)+(b—1)(a+b—1)"]
_ (a—1)+0b-1)—[(a=1)+(B—-1)(a+b—1)"]
(a—1)+(b-1)
_ (a—1)+(b-1)—(a—1)—(a—1)(a+b—1)"
(a=1)+(-1)
-1 (b-1)(a+b—-1)"
B (a—1)+(b—1)
Therefore
pn_ 1 (b—1)—(a—1)(a+b—1)" (a—1)—(a—1)(a+b—1)"

@=D+0=1 ] b-1)=(b-1)(a+b-1)" (a=1)—(b—1)(a+b—1)"
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4.1

SIMPLE RANDOM WALKS

Introduction

In this chapter the Simple random walk is studied as a Markov chain. We will look at
the classification of states, asymptotic behaviour and the nth power of the transition
probability matrix.

Let (X;:7>1) be a collection of independent and identically distributed random variables
taking the values +1 and —1 with probabilities p and ¢ = 1 — p respectively. Then the
collection (Sn > 0) where

Sn=3S,+ ZXZ
=1

is called a simple random walk when S, = 0. The random walk is said to be simpe if

X; =41, with Pr[X; =1]=p and Pr[X;=-1]=1—-p=gq

Consider a coin tossing experiment consisting of an infinite series of coin tosses. Each
coin toss lands heads up with probability p and causes a player to win one dollar. With
probability 1 —p the player loses a dollar with the provision that the net worth of the
player cannot drop below zero. We can think of the game as being played by a “benign
adversary” who does not debit the player one dollar when tails lands up and the player has
a state of zero.

If we let

X,,n=0,1,2...

be the total amount of money that the player has at the n'" game, where we set

Xo=0

then X, is a Markov chain. The state space of the chain is given by

5=1{0,1,2...}
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and the transition matrix is given by

1—p p 0 00
1-p O p 00
P = 0O 1-p 0 p O
0 0 1—p 0 p

This matrix is tridiagonal and although it is infinite, it can be solved with ease.

oo
(ﬂ-kzzﬂ-jpjk7 ]:1,2,3,)

k=0

To = (1—p)me+(1—p)m
o[l = (1 —p)] (1—p)m
Top = (L—p)m
S €t O
p

T =pri-1+(1=p)mit1, i=1,2,3,...

(25)

(26)

A simpler method for solving these equations involves expressing the state probabilities in

terms of 1, and determining its value by using the fact that the sum of the probabilities

adds up to one, Hence from (4.1) above

and (4.2) can be expressed as follows

Tl =TT (1_p)7Tze1

setting ¢ = 1 on equation (4.4) and using (4.3)

Ty = no__P g
1-p (1-p)°
= L
(1-p)2"° (1-p)°

Comparing (4.3) and (4.5) suggests that

m=a't,,  1=1,2,3...

(27)

(28)

(29)

(30)
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where
a=—r
(1-p)
To check that this is correct, we substitute (4.6) into (4.4)
i
it _ AT P i—1_
S e T R (e L

Cancelling common terms shows that this is satisfied if

a?(1—p)—a+p=0

1+4/1—4p(1—p)
2(1-p)
1+ (1—2p)
2(1-p)

the positiove radical yielding
a=1

which is eliminated since there is no way the probabilities can sum to 1 with this solution.
Taking the negative radical implies that

D
a _ —_—,—,———
1-p
as hypothesized, summing (4.6) yields

m .
1 = WOZO/

i=0

 l-«

and hence the solution is given by
m=01-a)', i=1273...

The stationary probabilities are thus geometric with parameter (1 —«).
4.2 A 3 x 3 Transition Probability Matrix

Ey Ev E
Ey | 1—-a « 0
P=F |1-«a 0 «
FEs 0 l—a «
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4.2.1 Clasiification of the states

Every state can be reached from every other state hence the Markov Chain is irreducible.
Thus all the states are of the same type.

4.2.2 Classification of the states
Consider E,,

f(g(l)) = PI[E()—>E0]:1—05
2 = Pr[Ey— E1— Bl =a(l—a)

3
foo = 0
Y = PelEy o By By = Eol = 02(1—)?
38) = Pr[Ey— E1 — B2 — By — By — Eo] = a* (1 - a)’

9 = Pr[Ey— By — By — By — Ey — By — Ey|
—|—P1"[E0—>E1—)E2—>E1—>E2—)E1—>E0]
= o*(1-a)*+a’(1-a)

0 = Pr[Ey— Ey — By — Ey — By — By — By — Ey
+Pr[Ey— Ey — Ey — Ey — FEy — Es — By — Ey
+Pr|[Ey— Ey — Ey — Ey — E1 — E» — By — Ey

= o’(1—a)’+22'(1—a)
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fo = ;fég’
= (1—a)—l—a(l—a)—{—a2(1—a)2+a3(1—a)2+a4(1—a)2+a3(1—a)3
+a®(1—a)’+20*(1—a) +af(1-a)?+3a°(1—a)*+a" (1—a)?
+4a6(1—a)3---

+ab(1—a)+a”(1—a)*--

= {(1a)+a(1a)}+{

042(1—a)2+a3(1—04)2+044(1—04)2+a5(1—a)2 }

+{a3(1—a)3+2a4(1—a)3+3a5(1—a)3+4a6(1—a)?’---}
= {(1—a)}+a2(1—a)2{1—|—a~|—a2+a3+a4+a5+---}
+a3(1—a)3{1+204+3a2+4a3+--'}

1 1
= (1-a)+a? 1—a27+a3 1-a)
(1-a)+a*(1-a) i +a* (-0
= (l—a)[l—l—oﬂ(l—oz)1+a3(1—a)2 ! ]
l-—a (1—a)?
= (1-a)[1+a”+0”|
1— 4
)
(1-a)
= (1—a)4
hence
fo<1
hence E, is transient
4.2.3 Asymptotic behavior
lim P" =P'r
n—oo
To l—-a 1—«a 0 To
m | = o 0 1-a m
9 0 o (0% P
To = (1—a)m+(1—a)m (i)
T = am,+(l—a)m (ii)

To = Qm+ams (iii)
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From (i)
ar, = (I1—a)m
T = a To
(1-a)
from (ii)
(1fa)7ro = am,+(l—a)m
a—a+a?
Wﬂ'o = (1—CK)7T2

a 2
m = (1—(1) To

Deriving an expression in terms of a only for the value 7,

o0
Z m =1
k=0

let N
S
from | g
1+$+x2++xn_1:ﬁ
hence 3
- (%)
T To=1
11—«
—
__(1-a)(1-2a)
’ (1-a)—a
=
B Q
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and

o? " (1—a)(1-2a)
(1—a)? (1-a)—a
a?(1-2a)
(1—a) {(1—@)3—04}
a?(1—2a)
(1-a)'—a(l-a)

4.2.4 The n'" power P"

11—« a 0
P=|1-a 0 «
0 l—-ao «

Eigen values are obtained by solving

IP—AI|=0

P-M| = | 1-a -\ «a

l-a «

l—a a—AX 0 a—2A

= (I—a=N[-AMa=N)-a(l-a)]-a[(l-a)(a=N)]

= (1—a—)\){—AOH—)\Q—OH-&Q}—a{oz—)\—oz2+oz/\]

= X+ —a+a?+ - Na+ai—ad+ 2 a -\
+Aa— A —a® +ar+a’ — Ao

= M-da+x?-N+a-ad?

= (I—a-=2\)

—

solving
Moda+ra?-—Nt+a—a?=0

/\()\2—a+oz2) —(/\2—oz—|—042> =0
(A=1) ()\Z—a~|—02> =0
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hence

and the Eigen values are A\ =1, o= +Va—a?2, and \3 = —va?2—a. When A =1

from (i),

from (ii)

hence 1 = 1o = x3. Suppose 1 = 1o = x3 = 1 then

When A = +va? —a

A=1 or \=+\/a—a?

Px = )\x

11—« o 0
11—« 0 o

0 l—-a «

(1-—a)r1+ary =
(1-o)r1+ars =

(1-—a)rg+ars =

Tr1—Qxr1 +axs
ar]

T

(1—a)x; +axs
(1—a)ze+ axs
To — Qo+ axs

axy

T2

1

n=11

1
l—«o I} 0 T
11—« 0 o' D)
0 l—a « T3

T
T2

T3

L1

3

I
AT

T2

x2
x2
x2
axs

3
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(1-o)r1+ary =

Va—a2 0
i

+ T
(1—a)z1+axrs = +/a—alx (i)
+ya—a’xs (iii)

(1-a)ro+ars =

from (iii)

Tro =

from (ii)

(1—a)ry = —a$3+\/0z2—a(a_ ‘a(a_1)>x3

r1 =

(1-a) (a—1)
1 —a(a—1)+a\/a2—a—(a2—a>

" (a-1) (a—1) 8

_ [aV a?—a .

- -2 )7

but x3 is a free variable. Suppose that x5 =t, where ¢ is a real number, then
o/ Tia)a
(1)
Vg = —atay/—(-l+a)a |4
(—14+a)

1
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assuming that ¢t =1,

o/ e
—(Citef
vy = | —otoy/~(“lta)a
(—1+a)
1
For A = Va—a?
l-a o 0 T 1
1—a 0 « 9 Z—\/Oé—Oé2 T
0 l1-a « x3 x3
(1—a)zi+ary = —ya—aoz (i)
(1—a)zi+ars = —ya—alr (ii)
(1—a)ze+ars = —\a—alr3 (iii)
from (iii)
(1—a)zs = —azz—\/ a—aixs
= (—a—\/a—a2>x3
_ [(—a—Va—a?
[ —a—Va-—a?
(- )"
from (ii)
(1—a)r; = —arg—\/a—a?r

_ (—a O‘m+a_a2>x3
-«
_ (—a(l—a)—i—a\/m—l—a—aQ)xS
oo —a? o
} (—@4+aﬂ”3
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ava —a?
(—1+a)?
but x3 is a free variable. Suppose that x3 =1, then

Tl =

ay/—(—1+a)a

(~Tia)?
_ —a—y/—(—1+a)a
BT e
1
hence
vV = v1 V2 VU3
[ 1 _ay/—(=1+a)a ay/—(—1+a)a
(—14a)? (—1+a)?
_ |, ceyClrak _—a-y-Clrae
(—1+w) (—1+w)
1 1 1

using the spectral decomposition matrix

P"=VDV!

1 _ay/—(=1+a)a ay/—(—1+a)a

(—14a)? (—1+a)? L
pro= | zey Tl ey Chiak | x| (Va—a?)"
(—14a) (—1+a)
1 1 1 0 ’
(—1+a)? (—1+a)?
|| ooy Cliaa _ oy (Tiak
(—14a) (—1+a)

1 1 1
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—at+va—a? at+va—a? a+va—a?
v = 1| @1 -1 |, ova—ao?l T o
1 1 (=12 |1
ava—a?| 1 017(217 J(:;)O‘Q
to 7
(a=1)% | 1 1
B [a—oz\/a—cﬂ_a—i—oz\/a—a? N ava—a? fa—1—a—vVa—a?
B (a—1) (a—1) (a—1) (a—1)
ava—a? fa—1—a—vVa—a?
_|_
(a—1) (a—1)
B —2\/a—oz2+—a\/a—a2—a(a—a2)+oz\/04—042—04(oz—oz2)
a—1 (a—1)° (a—1)°
B —2\/a—a2+—2a\/0z—0z2
a—1 (@—1)°

cofactor matrix.
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Let

ail

a12

a13

a21

a22

a23

asi

as2

as3

a—Va—a? at+vVa—a?
(a—1) (a—1)
1 1
1 a+vVa—a?
(a—1)
1 1
o a—a?
(a—1)
1 1
—ava—a?  avoa—o
(a—1)2 (a—1)2
1 1
ava—a?
(a—1)2
1 1
—ava—a?
=
1 1
—ava—a? ava—a?
12 (a-1)?
a—ava—ao?  atava—o?
(a—1) (a—1)
1 ava—a?
(a—1)2
1 atava—a?
(172
1 —ava—ao?
(a—1)?
1 a—ava—a?
(172
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ail

a12

ai3

a1

a2

a23

asi

asz2

ass

(a—1)31
202V —a
(—1)3
a+\/a—a2 a\/a—a2
(a—1)  (a—1)2

(a—1) (a+\/a—a2) —ava—a?

(a—1)2
a?—a—va—a?
(a—1)2
a—vVa—a?2 ava—a?
(=1 " (a—1p?

(a—1) (a—\/a—a2>+a\/a—a2

(a—1)2

a?—a+va—a2—ava—aZ+ava—a2

(a—1)?

'aY T
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Cofactor matrix of V

—2Va—a? —Va—a?-1 a1
(@—1) (a—1) (a—1)
—2av/a—a® ] _ava—a® 1 aVa—o?
(a—1) (a—1)? (a—1)2
202vVa—a2  o?—a—va—a? o?—at+va—ao?
(a—1)3 (a—1)2 (a—1)2

adjoint of V is
—2vVa—a? 2av/a—a? 202V a—a?
(a—1) (a—1)2 (@a—1)3
a—a?+1 1— aa—=a? _ dP—a—va—a?
(a—1) (a—1)2 (a—1)2

hence from ,
1= detVadjoint A\
—2Va—a? 205@ 20[2 —a2
(a—1) (a—1)2 (a—1)3
—2va—a? | —2ava—a? | (a-]) (a1 (a-1)?
a—1 (a—1)3 Va—a?-1 _{_ava—a® o’~atvVa—a?
a—1) (a—1)2 (a—1)2
| /TR oy
—lto —1+4a)
P? = 1 ]z —(—1+a)a —a—y/—(—1+a)a
—2vVa—a? | —2ava—o? (—T+a) - v
a—1 (a—1)3
1 1 1
1 0 0
X1 0 (\/a—a2)n 0
0 0 <_ a_a2)”
—2Va—a? 20V a—a? 202Va—a?
(a—1) (a—1)2 (a—1)3
X Ot—oz2—|—1 1_0{\/@ _0(2—06— a_a2
(a—1) (a—1)2 (a—1)2
Va—a?-1 1 avoa—a? QQ—OH—W
(a—1) (a—1)2 (a—1)2
let
bs1 b3z b33 1 1 1
1 0 0
X 10 ( 04—042)” 0
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b12

b13

bo1

bao

ba3

b31

b32

b33

(a—1)2
—at ((12 —a);l
(a—1)2
ava —a? / n
(a—1)2 <_ a-a
—aiva—a? .
(a—1)2 a—a2)§

1 (a—1)?
—a+vVa—a?
(@—1)

)
—a(a—aQ)Z—z(a—a?) a—a?
) (a—1)
Oz(Oz—OL2)§—Z<042 a) 8
(a—1)
—(a— N % a+Va—a?
) e
—a(a—a2)§—i<a2—a
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Let

C11

C11
€21

€31

. bi1 b2 b3
no_
P = e | —20va—a? b2 a2 bas
ot (a=1) ba1 b3z b33
—QW 2a\/m 202V a—a?
(a—1) (a—1)2 (a—1)3
X Va—a?+1 1— ava—a? _ oa*—a—va—a?
(a—1) (a—1)2 (a—1)2
Va—a2-1 1 ava—a?  o’—atVa—a?
(a—1) (a—1)2 (a—1)2
—az(ag—a)nTl _m(a2_a)nTl
C12 (€13 1 (a_1)2 » (a_1)2 »
C22 (23 = a(ana)%fi(oﬂfa) 2 fa(aZfa gfi(ana)T
! @=1) @1
32 €33 1 (az _ a) 7 _ (ag _ a) ]
—2vVa—a? 20V a—a2 202V a—a?
(a—1) (a—1)2 (a—1)3
% Va—a2+1 1— ava—a2 _a2—a— a—a?
(a—1) (a—1)2 (a—1)2
a—ao?-1 11— ava—a?  o®—at+va—a?
(a—1) (a—1)2 (a—1)2
—2 a—a2_ Oli(OéQ—Oé> a—a?+1 B —az’(aQ—a> Va—a2-—1
(a—1) (a—1)2 (a—1) (a—1)2 (a—1)
Vaa _eifo—e)
“NWa—a2 ala—« oy oy
(a—1) — (@—1) [z(a —a)+1—z<a —a)+1}
n+l
—%ivVa—a2 2o <a2—a) 2
-1 (a-1p
S WG Gl
(@=1) (-1
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C12

—2ava—a? ai(a’—a) © | ava—a? Cai(a’-a) T ava—a?
(a—1) (a—1)2 (a—1)2 (a—1)2 (a—1)2

2ava—a? _ai(e’-a) * l<a—1>2—am]+“i(a2—a)z<1+am>

(a=1)  (a—1)? (a—1)2 (a—1)2 1)
20‘\/@ at (042—00%

(a—1)  (a—1)2 {0‘2—2O‘+1_0‘m}

()éi(aQ_a)n-QH a2_2a+1+am
e )

ai(a? —a =R _

206(\:?)6!2_ ((oz_l)z _a2_2a+1—am_a2+2a_l_am]
20va—a? m(az_aﬁl_

(a—1) B (a— 1)4 __QQM}
20V —a2 i <a2_a)n?1 -

(a—1) + (a—1)4 _QZCV\/E]
= 2ileta) ¥ (=)

(05—1) + (04—1)4
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n+l
—202Va—a? «i (aQ—a) ’ 2 V/
S a <a —a— a—a2>

(a—1* (a—1) (a—1)°

—“"fi ‘5‘312 (“‘a‘_@

n+1

 —2a%Va— a—a R
—~ (a —a—\/a—az—az—i—a—\/a—az)

n+1

B —2a2m a —a
— ( 2 04—042)

—2a2\/a—a2+20ﬂ (Oé —a> \/04—042
3
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C21

—ava—a? (a?—a)?
2

2
@ 1) " o 1) [20+20% - 20]

—2/a—a? N 202 (a2 — a) :

(a—1) (a—1)

1 2&2(042—@)%
)| (e Wero
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= —Qam+ {O&Oﬁa) i(a2a>n;ﬂ]

Va—a? a(aQ—a)%—i@cQ— ) :
1_ B a a—a?
[ (1) (@—1) [” <a—1>1

(a—1)?

a(a—a2)2—z’(a2—a)n;1] [a2_2a+1—am]

o(02—a)? ti(02=0)T | (a2 2041 4ava—a?
(@—1) [ (a—1) ]

N3

 “2ava—a?  (a-a? !
- +( ) Ka—i(aQ—a>2>(a2—2a+1—am>]

(a—1)° (a—1)°
+ Kaﬂ'(af—a)%) (a2—2@+1+am)]
oaa—a? (a—aQ)%

= (Oc—l)z + (a_1>3 :2a3_4a2+2a+204i\/a_a2\/a2_a}
— _Zam (Oz—a2)% )
(=1)* i (a—1)° 20(a® —20+1) +20i (o” — a)]
— _2am (O[—O[2)% )
(a—1)2 + (a_1>3 _204 (a2_2a—|—1) _2043—2042}
_ _Qam (oz—oﬂ)% )
(Oé—l)2 + (04—1)3 _204—2a2}

= 2 [fama?- (a2 -a)]

(@—1)
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€23

a?—a—+va—a? oz(ozz—oz)%—i(cﬂ—oo%
(a—1)° (a—1) (a—1)
a?—a—vVa—a? —04(042—04>%—i<042—04)¢
(05—1)2 (Oé—l)

202V — a2 1 o —a—va—a? a(oﬂ—oz)g—z'(oﬂ—a)Q]

(a—1)3 (a_l)g —a?—a—+va—-a? —oz(ozz—oz)%j%(oc -«
—2a%Va —a? 1 (az_a_”a_QQ) (aQ_a)2[a_i(

3 3 n 1
(a—1) (a—1) —(—az—a—m>(a2—a) [—&—H’(a?—a)]

|

o?—a?Va—aZ—ao’+ava—a?
—am+(a2—a>

B +a?Va—aZ—a?—ava—a?
—l—am—l—(oﬂ—a)

(@-1°  (a—1) |
_satva—a? (a?=a)? (2ava—a?)
(—1)* (a=1)"

—920%va —a?2 (042—a)%2ai\/m
(a—1)° (a—1)°

—9202vV o — a2 2az<a2—a +
(a—1)° (a—1)°

_2a%iVaZ—a 20i(a?-a +
(a—1)° (a—1)°

2

|

!

a” —
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€31

€32

(a—1) (a—1) (a—1)
W (042—04)7 04—042+(o<2—04>§_((342—04)5\/04—0424—((342—04)j
(a—1) (a—1) (1-a)

20/ o (042—&)3( m>+(a2—a)g <1+m>

(a—1) (a—1)7 (a—1)°
20V a0 — a? W2 a)? a?—2a+1—ava—a?
(a—1)° + ) ( (a—1)* )

+(a2—a)% <a2—2a—é—a1jgm>

— 2 \2
2a a—a2+(04 a)2 <a2—2a+1—am+a2—2a+l+am)

(o1 P
20/ a0 — o 2(a2—a>§(04—1)2
(—1)* (a—1)"
20/ a0 — a2 n
@-pp 20 )
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€33

and

(=1  (a—1)
—2a2Va —a? (042—06)j 5
3 5 (—2 oa—« )
(a—1) (a—1)
202V o —a? 22’(042—04 042—04)7
(a—1)° (a—1)"
2020 (a2 04) 21 <a2 — a) (a2 — Oz)7
(a=1)° (a—1)°
—20%i (a—1) 20(a—1) (a2 —oz)7
(a—1)° (a—1)]
—2a1 9 3 o?
(a—1) [(0‘ @) +a—1]
) €11 €12 €13
P! = s avaar | 1 2
a-T T (a—1)
€31 C32 (33
—2iva—a? 14 012—04)%
C11 (a—1) (a—1)2
— 1 2a2(a2—o¢)2
21 D) [ oo —2Va a?
& n
[ €31 0431[(0‘2—002 04—042]
9 n—i—l_
2am+ i a(a *04) 2
€12 (a—1) (a—1)2
€22 = 2a —9 (.2 V)
(a_l)g—i—[ a—« (a a) ]
c
| pleve@ea-1? (@ -a)
n41
—202Va—a2 . (a ) 2
€13 ((Xa—fé)Sa [az+ (a—T) ]
co3 | = —20%iVa?—a {1+ az_(y)’ﬂ
. (a—1) N )
33 (OéQ—Oé)z—i-O?}

)g<a2—a+m>

where
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4.3 A 4 x4 Transition Probability Matrix

Ey £y Es Es
Ey _1—04 « 0 O_
Ey 11—« 0 « 0
Ey 0 l—«o 0 «

Es 0 0 l—a «

4.3.1 Classification of the Markov Chain

Every state can be reached from every other state hence the Markov Chain is irreducible.
Thus all the states are of the same type.

4.3.2 Classification of the states

Consider E,,
C%) - Pr[EoﬁEo]:l—O[
2 = Pr[E,— E1 = E)=a(l—a)
o(g) Pr[E, — E1 — E2 — E,] =0
9 = Pr[E,— By — By — By — Bl =a*(1-a)?
59 =0
f9 = Pr[By— Ey— Ey— By — By — By — B)| =a® (1-a)’
In general

l—a, n=1

n

fég)z a3(1—a)2, nis even

0, elsewhere

o (1)
fo = > foo
n=1
2 2 9 2
= l—at+a(l—a)+a*(1—a)’ +a*(1—a)'+--- <1
hence E, is transient.

4.3.3 Asymptotic behavior
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_7r0_ _1—Oz o 0 0__7r0_
| 1—a 0 « 0 ™
T a 0 l—a 0 o T
3 0 0 l—-o « 3

solving for 7; in terms of

o = (I—a)m+(1—a)m (i)
T = a7r0+(1—a)7r2 (ii)
mp = am+(l—a)ms (iii)
T3 = Qmy+ams (iv)
From (i)
arg = (I1—a)m
T o= (1_a)71'()
from (ii)
(1fa)70 = amp+(1—a)m
[(1604)_061#0 = (1—05)7T2
a—a—a?
T - a-am
o \2
m = ()
from (iii)

o= (1ia) [<1fa>2_(1012a)17r0

= 3 [OzQ—a2—|—a3] o
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Deriving 7, in terms of a only

0. 9]
Z m, = 1
k=0

— | (25) () (5

let
(0%
r=-—
11—«
and recall -
Ia+a?tadoopa ="
1—x
hence 4
=
— =1
=
_ 1)
™™ = N 1
- (%)
l—a—«
_ 11—«
(1—a)*—a4
(1-a)*
o (1-20)(1-)*
(1-a)[(1-a)' —at]
(1-2a)(1—a)
T = 1
(1—a)"—at
hence

U —— 1

Y ( a )2(1—2a)(1—a)3
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4.4 A 6 x6 Transition Probability Matrix

Ey Eq Es Es Ey
Eo [1-a a0 0 0 0
Ey | 1—-a 0 « 0 0 0
Es 0 1—« 0 « 0 0
P-
Es 0 0 11—« 0 « 0
Ey 0 0 0 11—« «
Es 0 0 0 0 l—-a «

4.4.1 Classification of the Markov chain

Every state can be reached from every other state hence the Markov Chain is irreducible.
Thus all the states are of the same type.

4.4.2 Asymptotic behavior

_7r0_ [1-a o
T 1—« 0
T | 0 1—a
| | 00
Ty 0 0

| 75 | .0 0

solving for 7; in terms of mg

0 0 0
o 0 0
0 o) 0

11—« «
0 l—a

m = (1—a)mp+(1—a)m

)

m = am+(l—a
(
(

(
)
m = am+(l—a)
3 = am+(l—a)

)

Ty = amg+(l—a

Ty = QT4+ QTs

From (i)

o o o O

0
m
o
3
4

5
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from (ii)

from (iii)

T3 =

From (iv)

from (v)

3
a
a 570+ (1 —a) 7y
—«
(1—05)7T4
a 4
1—a> o
4
a
-yt m
(1—a)ms
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Deriving 7, in terms of a only

00
Zﬂ'k:1
k=0

hence
(75 (55) + (55) + (55) < (55) |-
= P—
11—« 11—« l—«o 11—« l—«o 0
let
Q
.1'27
11—«
and recall . "
ltata+adt gl =20
1—z
hence 6
1-(s%)
o\ 70 =1
1= (%)
1- (%)
Ty = 5
- (%)
. (1-20)(1-a)°
(1-a)[(1-a)’~af]
(1—2a)(1—a)’
T = 5
(1—a)’—ab
hence
1-2a)(1—a)’
L. o (1-20)(1-q)

(I-a) (1-—a)®—af
a(l-2a)(1—a)!
(1—a)®—ab

a \2(1-20)(1—a)
2 (1—a> (1—a)’—ab
a?(1-2a)(1—a)
(1—a)’—ab

/a1 -20)(1—a)

" (1—a> (1—a)—ab
a3 (1-2a)?
(1-a)®—ab
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S ( a )4(1—2a)(1—a)5

-« (1—a)®—ab
 at(1-20)
 (1—a)f—af

e ( a )5(1—2a)(1—a)5

-« (1—a)’—af
_ o’(1-2a)
(1—a)’—ab
In general
a1 —-2a)

"= {—ay—an
This analysis can help the insurance company to set higher premiums for clients who
have more claims and lower premiums for those who have fewer or no claims at all. A
simple random walk is systematic if the particle has the same probability for each of the
neighbours. That is when p=¢q = % the random walk is systematic. We assume 0 < p <1,

that otherwise the simple random walk becomes trivial.
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5.1

5.2

RANDOM WALKS WITH BARRIERS

Introduction

Sometimes the walker cannot go outside some defined boundaries, in which case the
walk is said to be a restricted random walk and the boundaries are called barriers. These
barriers can impose different characteristics on the walk process. For example, they can be

reflecting barriers, which mean that on hitting them the walk turns around and continues.
They can also be absorbing barriers, which means that the walk ends when a barrier is hit.

Random Walks with Absorbing Barriers

Let the possible states be F, Fs, ..., ), and consider the matrix of transition probabilities.

5.2.1 A 3 x 3 transition probability matrix

For a 3 x 3 transition probability matrix, we have

Ey Ey Ej

EFir |1 0 0
P=FE | ¢ 0 p
Es 0 0 1

Rearranging and partioning the matrix, we obtain

By E3 Es
Ey |1 0 0

where
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Classification of the Markov chain

FE1 and FE are absorbing Markov chains.

Classification of the states

FEiand E3 are absorbing states and are trivially persistent, non-null and aperiodic and

hence Ergodic.

Consider E»
£V = pr[Ey - By
= r
2
5 =0
3
1 =0
In general
r, n=1
135 =
0, elsewhere

fa = Zfz(g)
n=1

= r<l1

Hence Es is transient. In this case, there is no further investigation on Fjs.

The n!" power P"

Since we are dealing with a reducible Markov chain, P can be expressed as

I O
U v
where
|t U[ } dV=0
= , _qp’an =
0 1
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Therefore
o _ | 10
U, Vv©
I 0
I-v) 'a-vhHu v»
But
V=0 =— V"=0
v=l¢ ]
I-V) =(1-0)
= I
I-v)™' = o
I-V") =0
Therefore
1 0 0
P'=1 0 1 0
g p O
Asymptotic behavior
[ I 0
lim P" = .
e (I-V) (I-limy .ox VYU V7
(1 0 0
= 0 1 0
¢ p O

5.2.2 A 4 x4 transition probability matrix
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Ey E3 Ly Ey

Ey 1 0 0 0

E 0 0
pP— 3 q p

Ex | 0 ¢ 0 p

Ey 0 0 1

The matrix can be rearranged and partioned as follows

E, Ey Ly E3

Ey |1 0 0 O

P=
Es g 0 0
B | p g 0]
where
10 0 0
1= cu=|? 7] adv=] "7
01 0 p q 0

Classification of the states

E4 and Ej are absorbing states. They are trivially persistent, non-null and aperiodic and
hence they are ergodic. We now consider the remaining states E5 and Ej.

1
£ =0
fég) = Pr[Ey — E3 — E3] =pq
3
£33 =0
4
5 =0
In general
22" =
0, elsewhere

fa=3 3
n=1

butO0<p<land 0<g<1 = fo2=pg<1 hence Es is transient, thus no further
investigation is required.
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Let us consider E3

=0
f?f?,) = Pr[E3— FEy— E3] =pq
1y =0

In general

f33" =
0, elsewhere

f5o= XA
n=1
= pg<l1

Hence Ej is transient thus no further investigation is required. We now wish to determine
P" and the asymptotic behaviour lim,,_,oo P". Since we are dealing with a reducible
Markov chain, P can be expressed as

I 0
U V
where
I{lO],U{q Cand V= Op]
0 1 0 p qg 0
o 1 0
U, Vn
| I 0
T la-wta-vyu v
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In general

Vn

v |0°P p’¢* 0
g 0] 0 p¢

)

0 pP¢

| PP ]

N3

N3

{ (pq) 0

0 (pg)
{ 0 p(pg)" T
q(p

el , when n is odd
Q) % 0

] . when n is even
A
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The asymptotic behavior

I 0
lim P" = )
no0 1-v)'u vr
a-vyl= Lt |17
—Pq q 1
t-vylu = Lt
L=pa|q 1(]0 p
L=pa| ¢* p

APt = p
1—;%1 1—pq 0 0
q p
| 1-pg 1-—pg 0 0 i
1—pq 0 0 0
B 1 0 1—=pg 0 O
1—pq q P 0 0
7 p 0 0
but
l—-pg = 1-p(1-p)
1—p+p°
= q+p°
hence ;

lim P" = 5
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5.2.3 A 5 x5 Transition probability matrix

E, Ey E; E, FEs

El1 0o o o o ]
Es|l q 0 p 0 0
P=FEs| 0 ¢q 0 p 0
Ey 0 0 qg 0 »p
Es[0 0 0 0 1|

The matrix can be rearranged and partioned as follows

By Es Ey E3 Ey

El1 0 0o o o |
Ex 0 1 0 O 0
P= FE q 0 0 »p 0
Es 0 0 qg 0 »p
Ey I 0 P 0 ¢ 0 |
where
qg 0 0 p O
I Lo U 00 dV 0
= , = ’an = q p
0 1
0 p 0 g O

Classification of the states

FE1 and Ej5 are absorbing states. They are trivially persistent, non-null and aperiodic and
hence they are ergodic. We now consider the remaining states E5, F3 and E4. Consider
Es

£ =0
9 = Pr[By— Es— Ey =pg
m =0

n pqg, n=2

3 =

0, elsewhere
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fo= > 3y
n=1

= pg<l
Hence E is transient. Now Consider E’3
1
f:§3) =0
fi’g) = Pr[E?) — By — E3]+PI'[E3 — By — Eg] = 2pq
3
fzgs) =0
(n) 2pq, n=2
f33" =
0, elsewhere

fs = S
n=1

— pg<1
Hence FE5 is transient. Now Consider Fy
1
fi =0
2 = Pr[Ey— Ey— Eq = pq
3
m =0

(n) pg, n=2
fag® =
0, elsewhere

fi = > £
n=1

= pg<1
The asymptotic behavior

(100 0 p 0
I-V = 01 0|—]q 0 p
1001 0 ¢g O

[ 1 —p O

= | —¢ 1 -p

0 —q¢ 1
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I —p —q —p
1-V| = +
—q 1 0 1
= l—qp—qp
= 1—2qp
but
(p+9)? =p* +¢*+2pq
—
1—2pg=p*+¢°
since
ptqg=1
hence
1-V|=p?+¢°

N = I-Vv)!

N +¢2 p P
= 1
q q p " +q
p+q? p p?
p2+q2 p2+q2 p2+q2
N = q 1 P
p2+q2 p2+q2 p2+q2

q q p’+q
p2 +q2 p2 +q2 p2 +q2

[ p+d® p p’ g 0
p2+q2 p2+q2 p2+q2
NU = q 1 p
p2_zq2 p2+q2 p22+q2
q p~+q 0
| 212 p2+qZ  pP1q? b
(p+4*)q 3
pZEqQ pZEqZ
— q P
pia® plta?
7 (P*+q)p
p2+q2 p2+q2
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I 0
lim P" = )
n—00 I-Vv)™'u o
L 0 0
0 1 0
1
— 2
N (p+;1)q pz;) 0
q P 0
¢ (PHa)p 0

5.2.4 A 6 x6 transition probability matrix

Ey By B3 Ey Es5 Eg

Eyr |1 0 0 0 O 0
Es|l ¢ 0O p 0 0 0
P Es | 0 ¢ 0 p 0 O
Ey 0 0 qg 0 p 0
Es 0O 0 0 ¢ 0 p
Es |1 0 0 0 0 0 1

The matrix can be rearranged and partioned as follows

El E6 E2 E3 E4 E5

Etl1t o o 0o o0 o0
Es 0 1 0O 0 0 O
p_ By g 0 0 p 0 0
Es 0 O qg 0 p 0
Ey 0O 0 0 ¢g 0 p
Es{ 0 p 0 0 ¢ O

where ) i} _
q 0 0
10 00 q

= , = , and V=

01 0 0 0
0 p 0

o

o o o O
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1
1-v=| !
0
0
Asymptotic behavior
1 —p 0 —q
-Vl = 1|~ 1 —p|+p| 0
| 0 —¢ 1
1 = —
= 1|1 b +p 1
—q 1 0

= 1—pg—pg+—pq(1—pq)
1—2pq — pq —p*¢*
= P+ —pg—p*¢

Minor matrices

<
o]
]
—_
aw]
]

S
|
()
—
e}
|
=

1

|

L)
—_

[

i
]
—

|

i

1 —p 0 || —q —p O
-q 1 —pyil 0 1 -—p
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to obtain
P+¢ pi*—q q q
pi*—q l—pg —q ¢

Co-factor matrix

P*+¢® pid—q PP K
pi?—q l-pg  —p p?
q° —q 1 —p
G ¢ pi*—q PP+d* |
P+a piP—q PP P’
vy 1 _ pi*—q l-pg —p P
P +q*—pq—pq ¢ —q 1 —p
B ¢ piP—q PP+¢*
P+¢® pid—q PP p* q 0
R R 1 _ p*—q l—pg  —p p? 00
P2+ 4% —pg—p*q e —q 1 —p 00
B ¢ pi*—q PP+¢ | |0 p
(P+¢*)a P
_ 1 (r?-q)a  1°
P*+¢* = pq—p*q? & —p
L Pre)r
lim P" = ! 0
oo 1-v)"'u o
o 0 0 0 0 0]
0 1 0 0 0 0
~ 1 P+ ot 0 0 0 0
p?+¢* —pq—p*e® (r*—q)q P’ 0 0 0 0
¢ —p 0 0 0 0
¢ (P+¢))p 0 0 0 0]




157

5.2.5 General form, p x p transition probability matrix

In general, the transition probability matrix is given by

Ey E1 Ey E3 ... Ep—l

Ey 10 0 0 0

Eq 0O p 0 ... O

E 0 0 0

p_ 2 q

E3 0 q 0 0

E, 1 0O 0 0 0 1

From each of “interior” states Fy, E)q,..., £, 1 transitions are possible to the right and to

the left neighbours (with p; j+1 =p, and p; j_1 = ¢, and p+ ¢ = 1). However no transition
is possible from either £ or E, | to any other state. The system may move from one

state to another but once in I or F,_1 is reached; the system stays there fixed forever.

This Markov chain differs from terminologically from the model of random walk with the
absorbing barriers at 0 and p.

The fundamental matrix

The fundamental matrix gives the expected number of visits to each state before absorption
occurs. For an absorbing Markov chain we define the fundamental matrix to be

N=(I-V)!

we now derive the probabilistic interpretation of N.We define n;; to be the function giving
the total number of times that a process starting from E; is in E; (this is defined only for

transient states £; and Ej). X is defined as the function that is 1 if the process is in

7
state I; after k steps and zero otherwise. i.e.

n;j =The number of times that a process starting from Ej; is in £ and

(k) 1, if the process is in state £; after k steps starting form

0, otherwise

— (k)
Nij = Z Xij
k=0
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thus

by definition

In matrix form, we have

since F; and L are transient

matrix N = (I- V).

Remark

The mean of the total number of times the process is in a given transient state is always
finite and that these means are given by N. Alternatively, to compute E'[n;;] we may add

= S QF
k=0
I+V+Vit...
I-v)™!

((E(nij))) =N
Thus E'[n;}] is the average number of times that the system takes in state E; before the
absorption given that it starts in state F; and this means are the entry of fundamental

up the original position contribution plus each state’s contribution.

Let

1, ifi=j
0, if i # j
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Thus d;; is the contribution to the original position. After one step, we move to £}, say

with probability p;.. Let Xi(fﬂ) be a function that is 1 if the process is in state £; after

steps (n+ 1) and 0 otherwise.

Then by Chapman-Kolmogorov equations

n
1
X =3 X xyY

k=1
S X0 3 [z X]
n=0 n=0 [ k=1
—
oy (nt1) o — ()
DX = X ) Xy
n=0 k=1 n=>0
[ee]
ZXikE [nk]]
k=1
then

3 X}j’f‘“) _ X,S;) — kz X [g]
=1

with the conventions that

hence equation (3.1) becomes

00 (n+1) 00
Z Xij - 51]’ == Z XikE [nk]}
n=0 k=1

and in matrix form

((Engl)) = ((655)) = ((i X B {nkj}

k=1

(31)
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Thus

(#l)) - 1w

Theorem 3.1

If b;; is the probability that the process starting in transient state ends up in absorbing
state F, then

bij:B

Proof

Define

(i) E;; occurs iff a one-step transition E; — E; occurs
(ii) A occurs iff absorption into k& from j occurs

Here E; and E; and are transient while E}, is an absorbing state. The event A;; can occur
in two mutually exclusive ways.

(i) A direct transition occurs E; — Ej, or

(ii) Some direct absorption occurs via first transition event Ej;; transient and then
Ay, occurs for some j.

Hence
A = Ey, U {U]Eij ﬂAjk} (7 transient)
and
Pr[Ag] = Pr[Ey]+Pr|U;jEyn Ay
= Pr[Ey|+ ZPI {EZ‘]‘ ﬂAjk,}
J
= Pr[Ey]+ Y Pr[Ey]Pr|Aj)
J
Now let

bik =Pr |:A]k‘:|
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then we have
bik = pik + Zpijbjk (7 transient)
J
In matrix form

Since both i and j are transient and k is absorbing

((bir)) = ((pix)) + ( (ZP@%) )

—
B=U+VB
hence
B-VB = U
= I-V
—
B=(I-V)'U

which is interpretable as the matrix of absorption probabilities.

Application of the fundamental matrix

A number of quantities can be expressed in terms of fundamental matrix. This result will
be illustrated in terms of random walk.

Theorem 3.2

((var(ng))) =N [2ng—1} —Nyq(s X s) matrix

where Ny, is a matrix that results from N by offsetting the diagonal entries equal to
zero.Ng, is the matrix that results from IN by squaring each entry.N = (I—V)_1
fundamental matrix.

is a

Proof

By definition, ((var(n;j))) =E {nQ} —[E (n”)]2 Assume that these means are finite.

ij
Since ((E(ni;))) = N, then we note that (([E(nm)]Q)) =Ny,. To compute £ [nm we
again ask where the process can go in one step from its starting position F;. We note that
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it can go to E. with probability p;i. If the new state is absorbing, then we can never reach
E; again. The only possible contribution is from the initial state which is ¢;; defined as

i
5= LI
0, if i # j

If the new state is transient, we will be in E; ¢;; times from the original position and n;;
times from the later steps. Hence

(([E(”z’j)]2)) = > ikl + Y _pikE (nkj +5z‘j)2))

Ey Ey

= Zpik {ngj +20;;E (nk])} +5ij>) where 5%- = 0;j

= Zm)) ((n3)) +2((E (ni)) ((6:3)) + ((535))

k

= V((E(n}))) +2(VN) 4, +1

((E (n%))) I-V]=2(VN),, +I

+1|N (32)

but

= V[I+V+Vi+..

= V+V24Vig...
I-V)'-1

= N-I

hence (3.2) becomes
2(VN) ,, +1| N = 2Ny, 1|

and therefore

(var (nij))) = E|nd]| —[E (ny)]?
- N[Qng—I]—NSq
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5.2.6 The fundamental matrix for Markov chain
Consider a Markov chain with transitional probability matrix

Case 1

Consider a 2 x 2 transitional probability matrix

E, E,
Eo |1 0
p- "
E | o 1

This is an identity matrix. We observe that {Ey} forms an absorbing state and {E;}
forms a closed set. Fjp and FE; are absorbing states. They are trivially persistent, non-null
and aperiodic and hence they are ergodic. Next we determine n!"* power P™.

pr_ 1 0

0 1

The asymptotic behavior
0
lim P" =

Case 2
Consider a 3 x 3 transitional probability matrix

Ey E1 Es

Eg|1 0 0
P=FE |q r p

where

ptagt+r =1
0 < p<1, O0<g<l1, O0<r<l,
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We observe that {Ey, F} forms an absorbing state { £1} and forms a closed set. We can
rearrange and partition the matrix in the following order

Ey Eo Ej
Ey |1 0 0

where

Classification of the states
Ey and FE5 are trivially

(i) Persistent

(ii) Non null

(iii) Aperiodic

Hence they are Ergodic

Consider Ey
O = Pr[Ey = By =r
2
A =0
3
Ay =0
In general
(n) r, whenn=1
fir' =

0, elsewhere

A= 3 AY
n=1

= r <l

hence Ej is transient.
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Case 3

Consider a 4 x 4 transitional probability matrix

Ey B LBy Ej

Ey | 1
P Ev | ¢
Ey
Es 0
where
p+q+r = 1

0 < p<l1, 0<g<l, 0<r<l,

We observe that { £y, 3} forms an absorbing state { £, E2} and forms a closed set. We

0

0

0

0
p
1

can rearrange and partition the matrix in the following order

Ey E3 E1 Es

Ey | 1
E 0
p- °
Eq
)
where
1 0
I: y U:
0 1

Classification of the states
Ey and Ej3 are trivially

(i) Persistent

(ii) Non null

(iii) Aperiodic

Hence they are Ergodic

0

0

0
0

p
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Consider £y
M~ prE = By =
fii = Pr[E1— Ey]=r
fl(%) = Pr[E1_>E2—>E1]:pq
fl(i)’) = PT[E1—>E2—>E2_>E1]:qu
Y = Pr[Bi— By — Ey — By — Ey) = pgr®
(n) r, whenn=1
' =
pgr" =2, n>2

o (n)
A= >
n=1
= r+pg+pgr+pgr’ 4.

= rHpgtpgr[L4r4ri4

|
— rpg+ <
1—r

hence Ej is transient. Now, consider Ey

55 = Pr[By— By =r
2 = Pr[By— By — By =pq
3 = Pr[By— E1 = Ei — By = pgr
32 = Pr[By— By — By — Ey — By = pqr®
In general
fQ(S) A when n =1

pgr"=2, n>2

o~ 4(n)
n
for = > fon
n=1
= r+pg+pgr+pgr’+--

= rpgtpgr [Tt

’
= rpgt <1
1—r
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hence Fs is transient. In general, the transition probability matrix is

01234 ... p=2 p—-1p
Ey 10 000 0 0O
Eq g r p 0 0 0 00
p_ L?Q 0 g » p O 0 00
E, 1 00 000 0 r
E, 00000 - 001

We observe that { Ey, E/,} forms an absorbing state { £, Ea, ..., F,_1} and forms a closed
set. We can rearrange and partition the matrix in the following order

0 p 123 4 ... p—=4 p=3 p=2 p-—1

B [1 0 0 0o 0 0o .0 0 0 0 |

E, 0 1 0 0 0 O 0O 0 0 O

Ey g 0 r p 0 0 0 0 0 0

Eo 0O 0 ¢ r p 0 0O 0 0 0

P= Fj 0 0 qg 1 p 0O 0 0 0
E, 3 0 O 0 0 0 O r p 0
E,o| 0 0 0 0 0 0 rop

E, 0O p O 0O 0 O 0 0 ¢ r |

I O
P—
U Vv
where
10
I=
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Eq
)
Es
U
E,_s
Ep_s
Ey, 1
and
1 2 3 4
B [r p 0 0
Eo q r p 0
E3 qg r P
vV _ .
E,5] 0 0 0 0
E,o| 0 0 0 0
E,qi | 0 0 0 0

and 0 is a 2 X (p—2) matrix. Then the fundamental matrix N is given by

o
o o o <

0

N=(I-V)!

thus
N =

~adj(I-V)

-V

To solve for (I—V)~! from (I—V), consider a 2 x 2 matrix i.e.

P+q

-D

—q p+tgq

then

det(I — V)ng

(p+9)* —pg
= P’ +pg+q’
p?q° +pg+p°g?

2

Zp27iqi

=0

b

r

q
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=
_ 1 p+q —p
1 _
1=V T prtpgt P
| —q¢ pta
B 1 ptq —p
Siop* i | ¢ pta |

For a 3 x 3 transition probability matrix

p+q —p 0

I-V) =
( ) =] —q p+q -p
0 —q p+q

p+q —p 0
det(I-V)sxs = | —¢ p+q -p
0 —q p+q

p+q —p —-q -p
= (p+q) +p
—q p+q 0 p+gq

p+9)|(p+9)° —pg| —pa(p+4)
p+9)|[(p+9)* —pg—pq|
p+q) [p*+q*+2pg — 2pq]
p+a) [p°+¢°]

= P’ +p’a+pi+ ¢’

3
3—1 1
= E P q
1=0

(
(
(
(

2
(p+q)°"—pg plp+q) P’

qip+q)  (+9)®  p+q)
¢ a(p+q) (p+q)’—pg

1

I-V) = 5——
Zz 0p3 zz

Considering a 4 x 4 matrix

p+q —p O 0
-q p+q —p O
0 —¢ ptqg -»p
0 0  -¢ ptq

(I=V)axsa=
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then

det(I — V)4><4 =

Therefore

(I- V)i

Now

but

p+q —p O 0
-q¢ p+q —p 0
0O —¢ ptqg -—»p
0 0 —q p+gq

(
= (+9* (P’ +¢°) —pa|(0+a)* —pd]
(p+9)° (0*+4*) —pa [p* +¢* +pa]
= (P+pa+d®) (0°+¢*) —ap*—1*d* — g
= ' +0’a+ 0’ +pd’ + 4

4

4—i i

= EP q
i=0

1

Z;L:O p4—iqi

(r+9) (P+3®)  p|+a)’—pd PP+
q|(p+9)*—pa] (+9)[p+9)—rd pp+9)*
¢ (p+q) q(p+q)* (p+q)°

q ¢ (p+q)

l—r —p 0 0 0 0 0 0
—q 1—r —p 0 0 0 0 0
0 —q 1—r —p O 0 0 0
0 0 —q 1—r —p 0 0 0
0 0 0 0 0 —q 1—r —p
0 0 0 0 0 0 —qg 1-—r
0 0 0 0 0 0 0 —q

3

p+a)(p+9) (°+4¢°) +p{—a|(p+9)° —pa}

p3

P (p+9q)
p(p+q)°

¢(p+a)° (0+a) (P +¢*) |

o O o O
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hence

l—r=p+gq

p+tq —p 0 0 0 0 0 0 0
-q p+q —p 0 0 0 0 0 0
0 -q p+tq —-p O 0 0 0 0
0 0 0 0 0 0

—q p+q —p 0
0 0 0 0 0O ... 0 —q p+tq —p
0 0 0 0 0 ... 0 0 —q p+gq

For general case, the fundamental matrix is goven by N = (I—-V)~! = ((n;;)) where

1 (rﬂ'—1)(r"—i—1), if j <
n..: . . . .
Tt =1 (1) () i 2
where
T
q
I 0
lim P" = .
noee I-V)"U 0
-1
_ 10 rop qg 0
-V)" U2z = 01 0
q p
B 1 p+q p q 0
Pt g piq || 0 p
1 (r+a)g P
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(I- V) 'Usys Z?:o;?’iqi
(p+a)°—pg pp+q) P’ g 0
x| qlp+a)  +a’  p+9) 0 0
¢ ¢(p+9) (p+9)°—pg || 0 p
X (p+9)* —pa| q ®
= ST g ¢ (p+4q) P*(p+q)
¢’ (p+9)* —pa|p
. 1
I-v)"'u = ST
(p+a) (P +¢*)  plo+a)’-pd P r+9) P
y ¢[(p+a)?—pa] +ap+9)—pd pp+a0)® P+
¢ (p+q) q(p+q)° r+a9°  plp+q)”
i ¢ ¢ (p+q) ¢(p+a)° 0+a9) (P +4*) |
o
0 0
X
0 0
0 p
a(p+q) (r*+%) p*
_ 1 ¢*|(p+a)* —pd] P’ (p+4q)
Yiop' ' ¢* (p+q) P* (p+q)*
i q* p(p+a)(p*+¢*) |

5.3 Application of the Fundamental Matrix to Random Walks

lllustrative Eaxample (i)

Consider a typical example from a random walk. Let's take the case of five states FEj
and Ey being the absorbing states and {E, Fy, E3} forms a closed set (“interior state”).
Consider p; i+1 =p and p; ;1 =¢q, © =0,1,2,3,4. Then the transitional probability matrix
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is given as
Ey E1 Ey E3 Ey4

El1 o o 0o o]
Ex|l ¢ 0 p 0 0
P= E, 0 ¢qg 0 p O
Es 0 qg 0 »p
E/[0 0 0 0 1|

hence the matrix can be rearranged in the following manner

Ey E1 Ey E3 Ey

El1 0o o o0 0]
Eq 0 1 0O 0 0
P= F, 0 0O p O
Es 0 ¢ 0 p
Ey _O P 0 ¢ O_
In canonical form
I 0
P=
U Vv
where 0 is the zero matrix and
0 0 p O
1 0
1= . U= 0 0 andV=|¢q 0 p
0 1
0 P 0 g O
then
(10 0 0p 0
I-V = 01 0|—]qg 0 p
_0 01 0 g O
| 1 —p O
= | —¢ 1 —p
i 0 —q 1
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I —p —q —p
1-V| = +
—q 1 0 1
= l—qp—qp
= 1—-2qp
but
(p+9)? =p* +¢*+2pq
—
1—2pq = p*+¢°
since
ptqg=1
hence
1-V|=p*+¢°

N = 1-Vv)!

2 2
p+q° p p
! 1
= q p
P+
2 2
q q p°+q
p+q? p p?
p2 +q2 p2+q2 p2+q2
N = q 1 p
p2 —qu p2 +q2 p22—|—q2
q q p°+tq
p2+q2 p2+q2 p2+q2

We see that the process starts from Fs (the middle state), then it will be in the middle
state an average of ﬁ times. This quantity is always between 1 and 2. The minimum
of 1 is achieved if p =0 or 1. The maximum of 2 is achieved if p = % In the former case
the process starts at Fy and goes directly to one of the boundaries, hence it will be in
state E> only at the beginning. But even in the case p = % we will expect the process to

return only once on average.

lllustrative example (ii)

We will give the fundamental matrix for the case p = % i.e. when it is twice as likely to

move to the right as to the left. Then

I
U= Ol U

gw oo U

U] Uy Ul
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from theorem 2.4, we have
((var(ngj))) = N [2Ngy—1] =Ny,
where
Ny is the matrix that results from N by setting off diagonal entries equal to zero
Ny, is the matrix that results from N by squaring each entry and

N = (I-V)~!is the fundamental matrix.

Therefore
49 36 16 7
2% 25 25 5 00
_ 9 81 36 9
qu 95 925 95 |- ng—Og()
1 9 49 7
% 2B 25 00 g
oo 100
2Ngg—I = 2|0 2 0[—-]0 10
00 00 1
9
2.0 0
_ 13
=10 2 0
0o 0 2
[ 49 36 16 9
% 25 3 ||5 00
N[2Ng-1| = [ & 8 36 )¢ B g
1 9 49 9
35 25 25110 0 3
[ 63 78 36
25 25 25
— | 21 17 54
25 25 25
9 39 63
L 25 25 25
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54

Therefore
(var(nij))) = N[2Ngy—I| -Ny,
[ 63 78 36 49
25 25 25 25
— |2t u7r 54 | _| 9
25 25 25 25
9 39 63 1
L 25 25 25 25
[14 42 20
25 25 25
— | 18 36 18
25 25 25
18 30 14
L 25 25 25
i.e
Ey Es Es3
14 42 20
Eyv | 55 25 %5

((var(nij)) = E, | 3£ 38 18
18 30 14
B3 | 55 %5 2

Thus we see that for any state as an initial state, the variance is largest for the middle
state. We also note that ((var(n;;))) is quite large compared to Ng,. Hence the means

are fairly unreliable estimates for this Markov chain.
Random Walks with Reflecting Barriers
5.4.1 Random walks with one reflecting barrier

Consider a random walk matrix with

36
25
81
25

25

Pij+1 = Dipjj-1=q for j=2.34...

P12 = PpPip11=4¢g

Considering a 3 x 3 transition probability matrix

Ey, E, Es
Ey | g p O
P=F |q¢00p
Es 0 ¢gp

16
25
36
25

49
25

and
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Classification of the Markov chain

Every state can be reached from every other state hence the Markov Chain is irreducible.

Thus all the states are of the same type.

Classification of the states

Every state can be reached from every other state hence the Markov Chain is irreducible.

Thus all the states are of the same type.

Consider Ej

15
15
15
15
1§
15

7
f éo)

8
£

Pr[Ey — Eo]l=¢

Pr[Ey — E1 — Ep] = pq

0

Pr[Ey — E1 — Ey — Ey — Ey| = p*¢

Pr[Ey — E1 — Ey — By — E1 — Fy| = p°¢?

Pr[Fy — E1 — Es — Ey — Ey — E1 — Ey)

+Pr[Ey — E1 — By — Ey — FEy — B — Ey)

P +p’e

Pr[Ey — E1 — Ey — Fy — FEy — Ey — Ey — Ej
+Pr[Ey — E1 — By — Ey — FEy — Ey — B — Ep
+Pr[Ey — E1 — By — Ey — E1 — Es — B — Ep
PP+ 2

Pr{FEy — E1 — E2 — Ey — Fy — Fy — Es — By — Ey
+Pr[Ey— E1 — Ey — Ey — E1 — Ey — Ey — Ey — Ey|
+Pr[Ey— By — Ey — Ey — Ey — Ey — Ey — Ey — Ey|
+Pr[Ey— By — Ey — Ey — Ey — By — Ey — Ey — Ey|

[o/e]
fo = Y q+pa+p*+p°p? +p'd +p°d + 2P

n=0
+4p5q3+p6q2+5p6q3—l—p4q4+p5q4+p7q2
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Asymptotic behavior

P"=P'r
0 g p O o
m|=]q 0p 1
(w 0 g p T
T = qmo+qm (i)
™ = pmo+qme (if)
Ty = pmw+pmo (iii)
mo+m+me = 1

T = (1—p)mo+qm

m = (1_>7T0

p

pro+ (1 —p)ma
9
0
p
0

1—
Deriving 7 in terms of p only
Z T = 1
k=0

2
p p
1+ _ =1
+<1—p>+<1—p> }WO
let
x:i
l—p
[H—x—%xz}m =1
1—2a3
=1
(i)
1—2z

(=)

1—23
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(1-p)* (1-2p)
T = 3 3
(I1—=p)"—»p
o= ( p )(1—29)2(1—219)
1-p) (1-p)°—p?
_ p(l-p)(1-2p)
(1-p)°—p?
2 2
Y — ( p > (1-p)" (1 —2p)
1-p) (1-p)’-p?
_ (-2
(1-p)°—p?
The n'" power P"
Determining the eigen values
g p O
P=1q 0p
0 ¢qgp
IP—AI =0
g p O A0 0
g 0O0p|l—]10 X O0]|=0
0 g p 0 0 A
g—A p 0
A p |=0
qg p—A

(=M [=A(p—A) —pg]—pla(p— )]
(=) [=Ap+A* = pg| —plap— o]
(=N [=Ap+A* = pa| — qp® + pg)
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q[=Ap+ 22 =pg| = N[~ Ap+\* = pg| — qp® + pa
—Apg+ g\ — pg* + Np— N’ + Apg — qp® + pg

— A3+ g%+ N2+ Apg — Apg + pgh — pg® — qp®

AP — g\ = Np+pg® + qp” — pa)

N (A=q—p)+pe(g+p—N)

N (A—q—p)—pg(A\—q—p)

(M —pa) A—q—p)

—
A =pqg
A==£y/pq
or
A = q+p
=1

Determining the corresponding eigen vectors. For A =1
Px=)Xx

q p 0 T 1
q 0 p x| =1 a9

0 g p x3 x3

qri+pry = 11 (i)
qri+prs = T2 (ii)
qra+prs = x3 (i)

from (i)

gre = X1 —px1
(1-p)xy
= qr

ry = I2
from (iii)
qra = T3 —Ppr3

(1—-p)zs

qr3

o O O o o o o
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Tl =T92 =13

Let x1=29=23=1

1
v = 1
1
when A\ = 4, /pq
q p 0 ] 1
qg 0 p To | = +VPq| xo
0 ¢ p x3 73
qr1+pr2 = ++/pgr1 (i)
qr1+pr3 = +4/pqro (if)
qra+pr3 = +/pqr3 (iii)
from (i)
pr2 = £/pPqri—qri
= (VPa—q) 1
vy = qu_qxl
p
using (iii)
VP4 —4q
qr1+pr3 = » T
VP49 —4q
pbr3 = xr1—4qr1
p
VPq—
= [(\/pQ) ; —q] 1
pPq—q—pgq
vy = (V 2 )
D
—> let x3 =1, say then
1
Vg = \/’T;_q
\/P4—q—pq
p2



182

when A = —.,/pq
g p 0|z Ty
q 0 p o | = —VPq| x2
0 g p|| = T3
qr1+pre = —ypgr1 (i)
qr1+pr3 = —/Pqr2 (i)
qra+prs = —/pgrs (i)
from (i)
pr2 = —4/P4r1 —qr]
= (=vpPi—q)m
vy = VP74,
p
—vPqd—q
Tﬂﬁl = qr1+pT3
—VP4q—q
oo (),
p
B (—\/pq—q—pq>
p
let 1 =1, say then
1
—/P94—q—Dpq
p2
hence
1 1 1
V=|1 VPa—4q —/Pa—4q
p p
1 VP4—4—P9  —+/Pd—9—pq
p? p?
by spectral decomposition
P"=VD"V~!
-1
1 1 1 1 0 0 1 1 1
P = | 1 \/zTg—q - Zq—q 0 (pg)? 0 1 \/ZTg—q - zq—q
1 \/qug g \/ZTqPQq Pq 0 0 (—pq)® 1 \/qug Pq \/pzzq Pq
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VPa4—q —/P9—4 —/P4—q 1 VPa4—q
V| = P P P P
VP4—q—pq  —/P4—q—pq 1 —/P4—q—pq 1 V/P4—q—pq
p? p? p? p?
[ —2pq\/pPq —q/Pq—q 4/P4—1q
B T B p? * p?
_ 2pg
P
_ 2
P2
Minor matrices
\V/Pq4—q —/P4—q 1 —/Pq4—q vPq4—q
p p P P
VP4—q9—pq  —+/Pq—q—pq 1 —VPa—a—pg /P4—q—pq
p? p? p? p?
1 1 1 1 1 1
VP4—q9—pq  —+/P4—q—pq SIA L i e \/P4—q9—pq
p? p? p? p?
1 1 1 1 1 1
VPI—q  —/Pq—q 1 —/P4—¢ 1 VPI—q
D P p P
=2pq/Pq  —2v/Dq —2/pq
p3 p?
—q\/Pq—q —/Pq—1 —\/pg—1
p? p?
q+/Pq—q V/Pg—1 NT
p? p?
[ —2pq/Pq  —2v/Pq —2/pq
1 1 1 1 0 0 3 2 >
pPr — 1 \/ZT;—q - z;q—q 0 (pg)? 0 —qg—q —\/g—l - z;q—l
o— _ —— n — —1 -1
_ 1 \/qupg Pq \/1722(] Pq 0 0 (—pq)® q\/g q \/IZqQ \/ITg
[ n n -2 -2 -2
1 (pg)> (—pg)> Pk yp M
- —/Pg— n - —q —pg—-1 —/pg—1
= |1 L)t VP (—pg) Dt S/
- no - —q— n — -1 -1
|1 LI (pg)s LI (pgyd || B VL SR
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Consider a 4 x 4 transition probability matrix

01 2 3
Eo |q p 00
P:El q 0p O
Ey |0 g 0 p
Es |0 0 g p

Classification of the Markov chain

Every state can be reached from every other state hence the Markov Chain is irreducible.
Thus all the states are of the same type.

Classification of the states

Y = prEy— Byl =¢
2 = pr(Ey— By — Eo) = pq

3
fog =0
S = Pr[By— By — By — By — Eo| = p*¢
9 = Pr[Ey— By — By — By — Ey — Ey] = p*¢?

f&8) = Pr[Bo— By — B — Ey — Ey — Ey — Ey
+Pr[Ey — E1 — By — Ey — Ey — B — Ey)
= p'¢+p°¢
f§) = Pr[Eo— By — By — Ey — Ey — By — By — Ey
+Pr[Ey — E1 — Fy — Ey — Ey — Es — E1 — Ey
+Pr[Ey — E1 — By — Ey — E1 — Es — By — Ep
P W
f§o) = Pr[Eo— Ey— Ey — Ey — By — By — By — Ey — [
+Pr[Ey— E1 — Ey » Ey — E1 — Es — By — E1 — Ey|
+Pr[Ey— E1 — Ey — Ey — FEy — Ey — By — Ey — Ey|
+Pr[Ey— E1 — Ey — Ey — FEy — E) — Ey — Ey — Ey|

Asymptotic behavior
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lim P"=P'n
n—oo
u g g 0 0] m
m p 0 q 0 1
9 0 p 0 g¢q o)
3 00 pop 3
T = qmo+qm ()
T = pmo+qm2 (if)
Ty = pr1+qm3 (iif)
T3 = pmy+pm3 (iv)
mo+m +me+my = 1 (v)
7o = (1=-p)mo+(1—p)m
T = P M
1 1—p 0
T = Pmo+qm
p
()Wo = pmo+qm2
l—p
2
Ty = P mm
2 1—p 0
2
mo= (L) (-2 &
3 1—p)\1=p 0
3
1—p 0
Deriving 7 in terms of p only
0
Z?Tk—l
k=0
p p ? p ’
1+ =1
+<1—p>+<1—p> +<1—p> }Wo
let
D
€r=——
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In general

The n!" power

g p O

g 0 p
0 ¢qgq O
0 0 q

0

p
p

[1+x+x2+x3}7ro = 1
11—zt
<1—x>ﬁ0 =1
11—z
"= (1—x4>
S (1—p)* (1—2p)
(1-p)' —p*
o= ( p )(1—19)3( —2p)
1-p) (1-p)*—p*
_ p(l-p)*(1-2p)
o (1-p)tpt
= (or >2<1—p>3<1—2p>
L=p)  (1-p)'—p*
~ p*(1=p)(1-2p)
- -pt-p
_ ( p )2(1—29)3(1—219)
’ I=p) (1-p)*—p!
_ r(1-2p)
(1-p)' —p
i (1=2p)
" (L=p)—pt
A\ =P -l
A0 O 0 —A+q p O
g X 0 0 | q - p
0 ¢ x 0] | o Y
0 0 ¢ A 0 0 q

0

—A+p

We determine the corresponding eigen values by solving the charactersitic function

P —\|=0
—A+q p O 0
q -\ D 0
0 q —A P
0 0 q —X+p
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(=A+p+aq) =0

=0
A
A p 0 1 »p 0
1 q —A p —pl1l =X\ P =0
0 q p_/\ 1 q p—)\
~ Y .

A p _1a P o1 D . P _
¢ p=A 0 p=A g p—A 1 p—2A
_)‘{_Ap+>\2—pq}—p[—)\p+A2—pq}_p[p_)\_p] S

N 42Xpg =
M=A242\pg) = 0
hence
)\:OOF)\:\/2pq0r)\:_\/%
Therefore

M =1, da=0o0r \3=1+/2pq or \y = —/2pq
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when A =1
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—-q —p 0
1 —p 0 —p 3
0 1 —pl=—¢ +p =—q(q—pg) = —¢q
—q q 0 g¢q
0 —q ¢
—q 1 0
—-q —p —q —p
0 —¢ —p|=-d| 1o =—q(-»)=¢
q q
0 0 ¢
—-q 1 —p
—q —p 0 —p 9 3
0 —¢ 1 |=—¢q . 1, =—q(q°)=—q
q q
0 0 —gq
-p 0 0
—q 1 —p|=-p —p(q—pqg) = —pq
—q q
0 —q¢ ¢
p 0 0 )
0 1 —p|=p =p(q—pq) = —pq*
—-q q
0 —q ¢
p —p O
—q —p 0 —p 9
0 —q —-p|=p 0 +p 0 = —pq
q q
0 O q
p —p 0
—q 1 0 1 9
0 —gq 1 |=p 0 +p 0 =Dpq
—q —q
0 O —q
—p 0 0
1 —p 0 |=-—p =pyq
—q q
0 —q¢ ¢
p 0 0
—q q
0 —q ¢
p —-p O
—q 1 0 |=p +p =pq—pq =p°q
0 ¢ 0 ¢
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p -p O .
—q 1 —p|=p +p = —pq+pg* = —p’q
0 —q 0 —gq
0 0 —q
—p 0 0
_p O 3
1 -p 0 |=-p =—p
I —p
-q 1 —p
p 0 0 0
—p
I —p
0 1 —p
p -p O
1 0 —q 0 9 9 3
¢ 1 0 |=p +p =—p°+pig=—p
—q —p 0 —-p
0 —qg -p
p -p O .
—p —q —p
—-q 1 —p| =7 : +p 0 =p(1—gp) —pq=p—p*q—pq
—q
0 —q 1
= p—pg—pia=p(1—q)—p*e=1p>—-p’q
= p*(1—q)=p’
¢ ¢ ¢ -
2 2 2 2
-p¢* pi®  —pi®  pg
AN[=P=AT = | . )
r’a -p*q¢ p¢ —p’q
A A A
adjoint ) )
¢  —-pi* pq PP
| = p? g PP
¢ —-pi* pq PP
- i —pla P
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AN = [P—=Al
Vv2pg—q -p 0 0
3 -q  2pqg —p 0
a 0 —q  V2pq —p
0 0  —q¢ 2pg—»p
V2pg  —p 0 -q -p 0 —q 2pq 0
—q 2pg  -p 0 V2pg  —p 0 —q —p
0 —q¢ V2pq—p|| 0 —q¢ ~2pq—p || 0 0 2pg—p
-q 2pg —p ||-p O 0
0 —q 2pq|| —¢ V2pqg  —p
0 0 —q 0  —q 2pg—p
V2pg—q 0 0 V2p4—q —p 0
0 V2pq —p 0 —q —p
0 —q  V2pg—p 0 0  V2pg—p
V2pg—q —p 0 —p 0 0
0 —q  V2pq || V2pqg —p 0
0 0 —q 0  —q V2pg—p
V2pg—q 0 0 V2pg—q —p 0 V2pg—q —p 0
—q P 0 -q¢  V2pq 0 —q  V2pg —p
0 —q V2pg—p 1 0 V2pg—p 1 0 —q
-p 0 0 vV2pg—q 0 0 V2pg—q —-p O
V2pg —p O —q -p 0 —q¢  V2pg O
—q  V2pg —p 0 V2pqg —p 0 -q —p
V2pg—q —p 0
—q¢  V2pqg —p
0 —q  V2pq



192

V2pq

—-q

V2pq  —p
—q
0

—q —p
0 V2pq
0 —q

—q /2pq

0 —q
0 0
—p
—q
0

0
V/2pq —p —q —p
—p = V2pq o +p 0 I
—q pq—p pq—p
V2pq—p
= V2pq (\/2pq (\/2pq—p) —pq) —Pq (\/2pq—p)
= —p’q
0
ql V/2pq —p +p 0 —p
—p -
—q  2pq—0p 0 V2pq—p
V2pq—p
= —Q(\/2PQ<\/2 q—p)—pq)
= —q(pq—px/2pq)
0 0
—q -p
p | = - V25
0 V2pg—p 0 V2pq—0p
V2pq—p
= —q(—q(v2pq—p) = —¢* (p— vV2pq)
—q /2pq —p
—q /2pq 3
0 —q 2pg|=- P
0 0 —q
0 0 5
V2pq —p
V2pg  —p = -p
—q  2pq—p
—q  2pq—p

= —p|V2pa(v2pg—p) — |
= —p*(¢—v2pq)
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V2pqg—q 0 0

V2pg  —p
| Ve - (V=g —q¢  V2pg—p

0 —q¢  V2pg—p
(v2pa—a) [vV2pa (v2pa—p) - pa]
= (v2pa—a) |(2pa- Wﬁ ) ~pa]
p(v2pa-g) 1 2]

= p( 2pq — )

= —p(2pg—20v2pq+¢°)

= —pq(2p—2v2pq+4q)

= —pq(p—2v2pq+p+q)

= —pq(—-2v2pg+p+1)

—q /2pq—p

VE=a ’ -q P 0 -p
P = (Vo) 0 V2pg—p K V2pq—p
0 v2pg—p
= —a(v2pa—a) (Vapa—»)
= —q(2pg—qv2pa—pv2pq+pa)
= —q(3pa—(q+p)v2pq)
= —q(3pg— v2pq) = a(v/2pg — 3pq)
2pg—q —p 0
mgq@(@a)oq@wgﬁ?
0 —q
= ¢*(V2pg—q)
\/% —p =-p _Z \/%_p " (v2pg—p)
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—q —p 0 = (V2pg—q - ’
0 —q¢ V2pq—p ( vy
= —»(Vapa—a) (V-
= —p(2pa—pV2pa— 4v/2pq+pq)
= —p(3pg—(p+9)v2pq)
= p(v2pa—3pq)
2pq—q —p 0
o 0 = (V2pg—q) e 0 B
0 \/%_p 0 V2pq—p 0 V2pg—p
= v2pq(V2pa—a) (vV2pa—p) —pa(v2pa—p)
= V2pq(V2pa-p) [V20q— g pd]
= (V2pa—p) |2p0— av/2pq — pa/2pq|
= q(V2pa—p) 20— v2pq—pV2pq|
= pa(2v2pq—q—1
V2pg—q —p O
\/%—p :(\/%_q)\/%—p +p —-q —p
0 g 0 —q 0 —q
= —av2pq(V2pq—q) +pd*
= —20¢* +¢*V2pq+pd’
= ¢’ +*V2pq
= ¢ (VZpg-p)
V2pq —p 0 |=p°
—q¢  V2pq —p
V2pq—q O 0
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V2pq—q —p 0O
v2pq 0 —q 0
V2pq 0 = (v2pq—Q)
-q —p 0 —-p
—-q —p
= —pV2pq (\/ )+pq
= —2p°q+pgv/2pq+pq
= pq(v2pq—p)
B D ’ 2pq  —p -q D
Vg —» | = (VZa—q) +p
—q  /2pq 0 V2pq
—q  /2pq
= (v2pa—q) 1204 — pa) — pav/2pq
= pq(\/2p ) Pav2pq
= —pg°
—p?q —pg(v/2pq —q) ¢*(v/2pq —p) P’

P*(V2pa—q) —pa(2v2pq—1—p)  a(\/2pqa—3pq)  —p*(V/2pq—q)
P(V2pa—p)  —p(V2pqa—3pq)  pa(2v2pq—1—q) pa(v/2pq—p)
& —¢*(v/2pq —p) —pq(v/2pg —p) —pg?

When X\ = —/2pq

AN = [P=Al
2pg—q —p 0 0
B —q —V2pg  —p 0
- 0 —q¢  —V2pq —p
0 0 —q  —V2pg—p
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—v/2pq

—-q

—V2pqg  —p 0 —-q —p 0
-q¢  —/2pq —p 0 —v2pq —p
0 —q¢  —\2pg-p|| 0 —q¢ —2pg-p
—q —V/2pgq 0 —q¢ —V2pqg  -p
0 —q —p 0 —q —V2pg
0 0 —V2pg—p || O 0 —q
—-p 0 0 —V2pg—q 0 0
—q  —V2pgq —p 0 —V/2pq —p
0 —q¢  —V2pg—p 0 —q¢  —V2pg—p
—V2pg—q —p 0 ~V2pg—q —p 0
0 —q —p 0 —q  —/2pq
0 0 —2pqg—p 0 0 —q
—p 0 0 —V2pg—q 0 0
—V2pq —p 0 —q —p 0
0 —q —V2pq—p 0 —q —2pg—p
—2pg—q —p 0 —2pg—q —p 0
—q —V/2pq 0 —q —V2pq —p
0 0 —2pq—p 0 0 —q
—p 0 0 —2pg—q O 0
—V2pqg  —p 0 —q —p 0
—q¢  —V2pq -p 0 —V2pq —p
—2pg—q¢ -p O —V2pqg—q —p 0
—q —V2pg 0 —q —V2pq  —p
0 -q P 0 —q¢  —V2pq
—V/2pgq —p = —V2pq Ve - +p| *
e —VTip —q  —V2pg—p 0

2pq (—v/2pq—p) — pa — pa(—v/2pg — p)

—p*q
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—V/2pq —p
0 —v2pq —p =
—q  —\/2pqg—p
0  —q¢ —V2pg—p
= —q|—v2p4(—v2pa—p) —ap|
= —q(pg+v2pq)
—q —/2pq 0 .
—q —p —p
0 —q —p = —q +v/2pq
0 —v2pg—p 0 —v2pq—0p
0 0 —v2pg—p
= —¢*(-v2p1-)
= ¢ (V2pq+p)
—q —/2pq  —p
—q —/2pq
0  —¢ —V2pq| = — .
—q
0 0 —q
—p 0 0 5
—V/2pq —p
—q  —\/2pq —p = —p
—q  —\/2pq—p

0 —¢ —V2pg—p
= —p|—v2pa(—v/2pq—p) —pd]
= —p|2pg+pv2pa—pa|
= —p*[q+v2pd]
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—v2pg—q 0O 0

o v | = (Vg VP

. e —Ta-» —q¢  —2pg—p
= (=v2pg—q) |~v2pa(—v2pa—p) — pd|
= (~v2pi—q) [(2pq+p\/%)—pq}
= p(éﬂr@)
= —p(¢*+2v2pq+2pq)
= —pq(q+2v2pg+2p)
= —pq(2vZpg+p+1)

—V2pq—q —p 0 e

0 —q —p = (—\/%—Q) 0 —Zpg—p

0 0  —v2pg—p
= —q(-v2p1—q) (-v2Zpi-p)
= —q(2pq +pV2pq+qv/2pq+pq)
= —q(2pq+ (p+q)V2pq+pq)
= —q(v2pq+3pq)

—V2pq—q —p 0
—q —/2pq
0 —q¢ —V2pq| = (—\/22%1—(1) .
—q
0 0 —q
= —*(—v2pg—q)
—p 0 0
7 0 - ’
—V2pq —p = —p
—q —/2pq—p
0 —q —/2pq—p
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—V2pg—q 0
0 —q —V2pg—p
V2pg—q p 0
—1 q V2pq 0 =
0 0  2pg—p

— 0
—VZpg— p
( H q) —q —2pg—p

~p(~v2pq—q) (—v2pa—p)
—p(—=v/2pg —3pq)

—/2pq 0
(—\/2pq—q)
0 —V2pq—p
— 0
+p 1
0 —v2pq—p

~v2pq (—v2pq—aq) (—v2pa—p) = pa (—v2pq—p)

)|
(- 2pq—129) P+ \/%}

q[p+v2pq|

¢ (p* +2pv/2pq + 2pq)
ap (p+2v/2pq +2q)
pg(2v2pq+q+1)

—V2pq—q —p 0

—-q
0

Vi p | =

0 —q

—V2pq—q —p

—q —/2pq

—q|~v2pq(—v2pa—q) — pd]
—q[2pq+qv/2pq — pq]
¢’ [p+v2pq|
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—V2pg—q 0 0
—V2pg—q 0
—q —p 0 = P
—q —p
0 —V2pq —p
= p*(~VZpi—q)
—V2pg—q —p 0
—V2pq—q —p
—q —V2pq 0 —P
—q —V/2pq
0 —-q D
= P _(—x/2pq) (—x/2pq—q) —pq}
= —p(2pq+qv2pq—pq)
= —pg (p+ \/2pq)
—V2pg—q —p 0
—V2pqg—q O —V2pqg—q —p
—q —V2pq  —p = —V2pq
—q —p —q —v/2pq
0 —q  —V/2pq
= pq(v2pa+a) — V2pq[2pg — pd]
= pq[\/2pq—\/2pq+q}
= pg?
—pq —pq(v/2pq —q) ¢*(v/2pq—p) P’
_ | P(V2ra-q) —pa2v2pq—1-p) a(v2pq-3pg)  —p*(V2pa—q)
p*(V2pq—p)  —p(vV2pe—3pq)  pe(2v2pg—1—q) pe(v/2pq— D)
7 —*(V2a—p)  —pa(vV2Zpi—p) ~pg’

Therefore.eigen values are

A =0, a=1o0r A\3=+/2pq or \y = —+/2pq
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Therefore
nf_gm— = (0-1)(0—v2p0)(0+vZpa) = (v2pq)” =2pa
. f[nﬁw—x ) = (1-0)(1-vZp)(1+VZpg) = (1 - 2pg) = p* +4°
mzﬁlﬁ(&—xm) (V- 03— (V)

= 2(vap) (Vapa-1)
= —4pq(1—+/2pq)

[I Qa=2m) = (=v2pg—0)(=v2pg—1)(=v2pq — V2pq)

= —2(~v2Za) (~vapi-1)
= —4pq(1+v2pq)

The adjoint of A(\y) = A(A1) has the identical row
{ ¢ pi® PP oqp? }
This means that
L Au() An() As() Au() |=| @ s P ar? |

Using

3 2 3 2
= q pq p qp
( mo oMy T T ) ( P12 P+ PP+ P42 >

Since

> Aw(l) = {qi” +pg® +p? +qp2]
k=1

= P+ (1—q) +p*+p*(1-p)

The mean recurrence times is

2 2 2 2 2 2 2 2
— | p°H+q¢" pt¢° pH+q¢° pHq
(ﬂl s 25 13, ,U4) ( P Y P P )



202

then

(momomom )= (

and
(1, pe2, 3, pta) =

)

el

!
747

o |

Y

1 =

(4,4,4,4)

The adjoint matrices of the roots A3 = 1/2pq and \y = —/2pq are alike

—p?q —pg(A—q)

pP*(A=p)  —p(A=3pqg)  pq
7 —*(A—p)

Using the foprmula

P’ (A—q) —pg(2A—1—p)  q(A—3pq)

—pq(A—p) —pq

*(A—p) P’

—p*(A—q)

(2A=1-¢q) pg(A—p)
2

1

() (n)
Dij :ZAji<>‘t))‘t
t=1

(n

we obtain the transition probability matrices Dij

P = [Pl P2 P3 P4}

[ &+ pRgAk-1
b - ¢ +pg® (p—q) AR by —
¢ +pg* (p—q) AF!
q3 (1 _Ak—l)
p?+p*(p—q) AR
p2q (1 _Ak:—l)
P2q+pq|(p—q)*+q| AF!

Hmzl,m;ét()‘t - )\m)

)forn:2k and forn =2k +1

pa* +p*q(p—g) A
pg* +pg |(p—q)*+p| AR

pq2 (1 B Ak—l)
pa® —3(p—q) A1
[ . (1 _ Ak—l)

p®—p?q(p—q) Ak
p?—p?q(p—q) AF1

g —pg?(p—q)AF!
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For k=1,2,3... and A =2pq and

1
p2k+l [ }
1_—2pq P1 P2 P3_ P4 _ _
¢*+pPg Ak pa* +p*a(p—q) A
¢*+pg* (p—q) A* pg* +pq |(p—q)*+p| AF
L k| 0P2T 2 k
¢ +pg* (p—q) A pg® (1-AF)
e || wdeast
pg* +p*(p—q) A* P’ (1-Ak)
pq(1- AF) P’ —p*q(p—q) AF
ps = 2 2 kP s o k
P*a+pg|(p—a)*+q|A p’—pqlp—q)A
| Pa-pip—g)At PP pAR
for k=0,1,2,3...

Consider a chain with possible states Ey, F'1, Eo,...,E,_1 and transition probabilities

0 1 234 ... p—4 p—=3 p—2 p—1
Eo [¢ p O 0 0 0 ..0 0 0 0 |
Eq g 0 p 0 0 O 0O 0 0 0
By 0 g O p p 0 0O 0 0 0
p_ Es 0O 0 g 0 p O 0O 0 0 0
Ey 0 O 0 q 0 »p O 0 0 O
E, 210 0 0 0O 0 O 0 0 »p
E, v+ 10 0 0 o 0 0 ... 0 0 ¢ |

This can be interpreted in gambling language by considering two players for unit stakes
with agreement that every time a player loses his last dollar his adversary returns it so
that the game can continue forever. We suppose that the players own between them

p+ 1 dollars and say that the system is in state Ej, if the two capitals are k and p—k+1,

respectively. The transition probabilities are then given by our matrix .Our chain represents
a random walk with reflecting barriers at the points % and p—i—%.

For 2 <k <p—1 we have pj ;41 =p and pi r—1 = ¢; the first and the last rows are
defined by (¢,p,0,0,...,0) and (0,...,q,p).
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5.5 Random Walks with Two Reflecting Barriers: General Case
Consider that a particle may be at any position r,r =0,1,2...,k(> 1) of the x-axis. From
state 7 it moves to state r+1, 1 <r < k —1 with probability a and is reflected to state 1
with probability (1 —a),(0 < a < 1); if it reaches state k it remains there with probability
b and is reflected to & — 1 with probability (1 —b) with state space S = {0,1,2...,k}.

5.56.1 A 3 x 3 transitional probability matrix

0 a 1—a 0O

'-U
I
—

L)
]

D
1-b b

[\
(e

Classification of the states Consider Ej

9 = PriEy— Eol=a

2 = pr[By— By — Eg) = q(1—a)
3 _

Jooo = 0

In general

a, n=1
5 =13 q—a), n=2

0, elsewhere

fo = 3 I
n=1
= a+q(l—a)<1

Hence Ej is transient.
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Consider E4

fl(}) = Pr[fy — E1]=0
fg) = Pr[Ey — Ey — E1|+Pr[E) — By — Ey]
= q(1—a)+p(1-0)

fﬁ)) = Pr(Ey — Ey — Eoy — E1|+Pr[Ey — Ey — By — F]
= qa(l—a)+pb(1—0)
Y = Pr[Bi— Ey — By — By — B+ Pr[Ey — E» — By — Ey — Ei]

= qa®(1—a) +pb*(1—0)

In general,

(n) 0, n=1
i = g 5
qa"*(1—a)+pb" 4 (1-b), n=2

qa®(1—a) 4+ pb°(1 —b) +ga* (1 — a) + pb' (1 — b) + ga' (1 — a) + pb' (1 —b)
+qa®(1—a) +pb*(1—b) +---

= q(l—a)+p(l—>b)+qa(l—a) {1+a+a2+--~} +

pb(1—b) [1+b+0"+ -]

= q(l—a)+p(1-b)+ qal( l__aa) +£ bf__bb)

= q(1—a)+p(1—0b)+qa+pb
= qg—qa+p—pb+qga+pb

q+p
=1

1

Consider
fz(%) = Pr [EQ — E2] =P
f2(§) = Pr{Ey — E1 — B =p(1-b)
fa =0
In general
b, n=1
f2(g) =4 p(1-b), n=2

0, elsewhere

fo= Y f
n=1
= b+p(l-b)<1
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Hence E5 is transient.

Asymptotic behavior

) a q )
m | =] 1—a 1-0b T
o 0O p b 0
Ty = amy+qm
m = (1—a)mo+(1—b)m
my = pm+bma

5.5.2 A 4 x4 transition probability matrix

i<
o
oS8 o o

w N o= O
[a)

Classification of the states

V= prBy— Byl =a

2 = PriBy— By — Byl =q(1—a)

fog =0

In general

a, n=1
& =4 ql—a), n=2

0, elsewhere



207

S
fo = Z Joo
n=1
= a+q(l—a)<1
Hence Ej is transient. Now consider E;

U = prE — B =0

& = pr[B — By — Ey|+Pr[B, — Ey — Ey]
= q(1—a)+pg

9 = Pr[E) — By — Ey — B]
= qa(l—a)

f9° = pr[B — By — Ey — Ey — B
= ga*(1-a)

In general
0, n=1

=3 g0 —a)+pg, n=2
qa" Y(1—a), n>3

— (n)
i = > i
n=1
= pq+q(l—a)+qa(1—a)+qa2(l—a)+qa3(1—a)+~-~
= pq+q(1—a){1+a+a2+~-~}
qg(1—a
= pq+<1 )
—a
= pgtg<l

hence Ej is transient. Consider Ey

Y = Pr[By— By =0

[
2 = Pr[Ey — By —> Ey]+Pr[Ey — By — Es] = pg+p(1—b)
fz(g) = Pr[by — Ey — By — Ea] = pb(1-b)
fa) = Pr[By— By — E1 — E| — Es] = pb*(1-1)
Consider Ej3

f:g) = Pr [Eg — Eg] =b

2 = Pr(By— By —s B3] =p(1—b)
PG

33
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5.6

In general
b, n=1
£33 =14 (1=b)p, n=2
0, elsewhere

Hence Fs5 is transient. In general, the transition probability matrix

0 [a 1= 0 0 0 0 0 0 0 0
1 ¢ 0O p 0 0 0 0 0 0 0
2 |0 ¢ 0 p 0 0 0 0 0 0

b_ 3 [0 0 g 0 p 0 0 0 0 0
4 0 0 0 ¢ 0 p 0 0 0 0
k=110 0 0 0 0 0 .. 0 g 0 p
kLo 0 0 0 0 0 .. 0 0 1-b b |

If a =1, then 0 is an absorbing barrier and if a =0, 0 is a reflecting barrier, if 0 < a < 1,
0 is an elastic barrier. Similar is the case with state £ . The case when both 0 and k
are absorbing barriers corresponds to the familiar Gambler’s ruin problem (with the total
capital between the two gamblers amounting to & ).

Invariant Distributions for Random Walks with Reflecting Barriers
5.6.1 Two reflecting Barriers

The application of Markov chains will now be illustrated by discussion of a random walk
with states 1,2, ..., p with two reflecting barriers.

Consider a chain with states 0,1,2,...,p— 1 whose first and last rows are (¢,p,0,0,...,0)
and (0,0,...,0,q,p) respectively. In all other rows py 11 =p;pri—1=¢q for 2<k <p
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and pgr = 0. Then we have the transitional probability matrix as

0 12345 ... p—4 p—3 p—2 p—-1
E [¢ p 0 0 0o 0 ...0 0 0 0 |
Ei |¢q 0 p 0 0 0 0 0 0 0
By 0 g O p p 0 0O 0 0 0

p_ B[00 ¢ 0 p 0 0 0 0 0

E, |0 0 0 ¢ 0 p 0 0 0 0
E,2[ 0 0 0 0 0 0 0 0 p
E,. {0 0 0 0 0 0 .. 0 0 ¢ |

By definition, invarinat distribution is given by

Tj =Y Tipij (33)

Writing (2.3) in matrix form we have

r=P'r
—
o =7P
Then
q p O 0 0 O
0 0 0 0
q O P 0 O
(M0, 1,5, Tp—1) = (M0, M1, .., Tp—1) _
0 O 0 0 0 »p
0 O 0 0 q
then we have
T = QqTmo+qmi (34)
Tp—1 = PTp—2+DPTp—1 (35)
Tk = PTg—1+qTgs1, for 2<k<p—2 (36)

Solving for 7r1in terms of m

T =\|-]70
q
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From
T = PTj—1 + qTk+1
1
Th1 = (7% — prg—1]
when k=1 1
Ty = — [m1 — pro|
q
but
m=|=]m0
q
hence
m = —||—|70—pmo
q1\9
q1\9
1
S —1]%0
q14
2
= — 7]'0
q
for k=2
1
T3 = —[my—pmi]
q
2
= —||=] mo—p(— |70
q q q
3
= _— 7'('0
q
In general
k
T = <p> T, k=1,2,3,....p—1
q
Tp—1 = PTp—2+PTp—1
—

(1_p)7Tp—1 = PTp-2

)
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hence

—2
P q\q
—1
q

We require that } ;. 7 = 1 for it to be a probability distribution. Then

p—1 p—1 P k
S = Z() -
k=0

k=0

Hence )
ESI) ]1
1= (%)
1)
Ty
Hence

which is the stationary distribution.
We observe that

If p> q, then {7} decreases geometrically away from the upper barrier, then the states
are transient.

If p <gq, then {7} decreases geometrically away from the lower barrier, hence the states
are ergodic.

If p=gq, then
3

MY =T = —
P
Hence the states are persistent null.
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5.6.2 One reflecting barrier

Consider a random walk matrix with p; ;11 =p;p;j—1=¢qfor j=2,3,4,... where p+q=1.

We have
0 1 2 3 4 5
Eilqg p 0 0 o0
Es | ¢ 0 0 0
P=[|0 g 0
Ey | O q 0 »p

By definition, the invariant distribution is given by

mj = D TiDij

Writing (2.3) in matrix form we have

Then

(71,m2,...) =

then we have

™2
3

T —

Solving for myin terms of m;

From

r=P'n
7 =7'P
g p 0 0
q 0 0
(71,72,...)
0 ¢ 0 p
qmo +qm1
P +q73
P2+ QT4

pPrg—1+qmgs1, for k=2,3,4...

mo=|=]m
q

T = P11+ qTk4+1

(37)

(38)
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1
Tk+1 = 5 [7% —pﬂkfl]
when k=2 1
73 = — [m1 — pmi]
q
but
(%)
mo=|=]m
q
hence
2 (5)m-rm]
M = — || = |7m1—pm
q|\q
1)1
= ~\Z]—PmM
q|\q
1
=P —1]#1
q 14
2
- ()
= — 7y
q
for k=3
1
Ty = —[m3—pmo]
q
2
-5 |(5) ()
= —||=] m—p(=|m
q q q
3
- ()
= —_ 7'('1
q
In general
k—1
7rk2<p> mo, k=2,3,...,p—1
q

Tp—1 = PTp—2 +PTTp—1

We require that } .. 7 = 1 for it to be a probability distribution. Then

q
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but
1 2
)
q q q
Hence
_q-p
mT=—"
q
and
o k
Tk = 1—r <p> , k=1,2,3,
q q

which is the stationary distribution.

—_
|
ISR

<
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6.1

6.2

CYCLIC RANDOM WALKS AS DOUBLY
STOCHASTIC MARKOV CHAINS

Introduction

In this chapter we are going to look at the definition of a double stochastic matrix,
classification of the states of a cyclic random walk, the asymptotic behaviour of a cyclic
random walk and its n'" power. A matrix whose elements are between 0 and 1(inclusive)
and each row adds up to one is called a stochastic matrix. Any stochastic matrix can
serve as a matrix of transition probabilities; together with our initial distribution {a;} it
completely defines a Markov chain with states E1, Fo,....

If in addition to the above each column adds up to one, then we have a doubly stochastic
matrix. This implies that, not only does the each row add to 1, each column also adds to
1. Thus, for every column j of a doubly stochastic matrix, we have

> pij=1
j

Let the possible states be £y, E»,...E, but order them cyclically so that £, has the
neighbours £, 1 and Ey . If as before the system always passes either to the right or to
the left neighbours. The rows of the matrix P are as in 3.1 except that the first and the
last rows are (0,p,0,0,...,q) and (p,0,0,...,q,0) respectively. More generally, we may
permit transitions between any two states. Let qo,q1,q2,...,q,—1 be, respectively, the
probability of staying fixed or moving 1,2,...,p—1 units to the right (where k units to
the right is the same as p — k units to the left), then P is the cyclical matrix.

Transition Probability Matrix

The matrix below is a 3 x 3 transitional probability matrix of a cyclic random walk. The
sum of the rows and columns is one and is therefore a doubly stochastic matrix.
Ey E1 Ey
Eo |0 p ¢
P=F |q¢ 0 p
Exylp ¢ O

The figure below shows the diagrammatic representation of the states in the 3 x 3 transition
probability matrix P above.
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6.2.1 Classification of the Markov chain

All the states can be reached from every other state. The Markov chain is therefore

irreducible. Hence all the states are of the same type.

6.2.2 Classification of the states

Consider Ej

B = PriEy— Byl =0

2 = Pr[By— By — Eo)+Pr[Ey — By — Eo) = pg+qp = 2pq

3 = Pr[By — By — By —> Eg|+Pr[Ey — By — Ey — Eo| = p*+ ¢3

9 = Pr(By — By — By — Ey —» Eo|+Pr[Ey — By — By — By — B
2p°q°

9 = Pr[By — By — By — Ey — By — By

6
J (go)

7
[ (go)

s

In general

+Pr[Ey — Ey — Fy — Ey — E1 — Ep

= plat+q'p

Pr[Ey — E1 — Ey — Ey — Ey — By — Ey]
+Pr[Ey — Fy — Fy — FEy — F1 — Ey — Ejp

20343

Pr[Ey — F1 — Ey — Ey — Ey — By — Ey — Ey]

+Pr[Ey — Fy — Fy — FEy — Fy — Fy — F — Ej

¢ +q°p

Pr[Ey — FEy — Ey — Ey — Ey — By — By — B} — Ey]
+Pr[Ey — Fy — Fy — Ey — Ey — Ey — By — By — Ey]
g

0, n=0,1

(pq)%, n is even
n—3

2
(v*+4*) (0g)"7, n >3 and odd
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— (n)
fo = > foo
n=1
= 2q+20°C +20°C + 2" PP DY+ PP+ P PP+
— g1 202 L33 4+ 31 2,24 ... 311 2,24 ...
pq |1 +pg+p°c* +p°¢ +-- | +0° |1 +pg+p* + - | +¢° |1+ ap+ ¢ +
2 P N ¢
I-pg 1-pg 1-—pq
2p(1—p)+ (1—p)> +p?
1—p(1—p)

Hence Ej is transient.

6.2.3 The asymptotic behavior

T=P'r
0 0 ¢ »p o
m|=|p 0 ¢ m
2 g p O 2

mo = gqm+pre (i)
m = pmot+qme (i)
Ty = qmo+pm (iii)

1 = mo+m+m2 (iv)

Let
mo=1—myg—m

using equations (i) and (ii)

m = plgm +pme]+qm
pgm1 + PP+ g
(1-pgm = (p*+q)m
P’ +q

m™ o = i)
1—pq

hence

oo et
I—pq

q(p*+4q)

(1—pq) o

T2
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but
m = l—myg—m
qQP+q)+> P +q
= 1- p|m— 9
(1-pq) 1—pq
2
q{p”+gq 24
m [ 1+ (>+p F Ty
(1—-pq) 1—pq
1—pg+p—p’q+p°e+q* +p° +
W2l pa+p—p*q+pq+q°+p q] _
(1—pq)
but
P H¢*=1-2pq
[1—pq+p+q+1—2m{
2 =1
(1—pq) ]
[1—pq—|—1+1—2pq_
T = 1
(1—pq) ]
[3-—3pq B
9 =1
(1—pq) |
1_
372( Pq) )
(1—pq)
1
Ty = =
2 3
therefore

™ =

(=)
1—pq

(i)
1-p(1-p)

Wl W+~ Wk
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_qp2+—q2_+ ]
(1—pq)
'wﬁ+q”+pﬂ—ﬂww
I (1—pq)
'%9+q2+p—p%]
(1—pq)
'q2+p]
(1-pq)
[ #+1—q¢ ]
(1-(1-q)q)
@2+1—q]
1—q+¢?

W= Wik W~ Wk W~ Wk Wl

In general
0
™1 -

T2

W= W= Wl

no = . nfiy

hence 1 is finite and hence Ey is non-null.

Periodicity

d = Gop{n: 1 >0}
~ 1

thus Ey, E'1, and E» are persistent, non-null, and aperiodic therefore ergodic.
6.2.4 The n'" power P"

Using the Eigen value technique



220

We determine the corresponding eigenvalues by solbing teh characteristic function

IP—AI|=0
0 p g A0 0 A p q
O p |—1 0 X O = q -\ p
p q O 0 0 A P q X
-A p q —Atp+q —A+pt+q —A+p+gq
A p |= q —A p =0
p g —A p q —A
1 1 1 1 0 0
(=A+p+a)| ¢ =X p |[=(EEA+p+d)|q¢ -A—q¢ p—q |=0
pog A p q—p —A-p
(=A+p+@)[(-A=q¢)(=A=p)—(p—q) (¢—p)] =0
(A +p+q) =0

or
(=A=q@)(=A=p)—(p-9)(¢—p)=0
M =1

(A=) (-A=p)—(p—a) (g—p) = N +A+pg—|pg—p"—¢*+ap|
= M+ A +pg—2pg+p°+¢
= N4+ A+pg—2pg+1—2pq
= M+A-3pg+1=0

\ —144/1—4(1—3pq)
B 2
—1+1—-4+12pq
2
—1+12pg—3
2
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6.2.5 Special case when p=1

Ey 10 1 0
P=FE |0 0 1
Es |1 0 O

Classification of the Markov chain

P is an irreducible Markov Chain since all the states can be reached from every other

state; hence all the states are of the same type.

Classification of the states

Y = PrBE = E)=0

Ay =0
O = Pr(By > Ey— Ey— By =1
iy =0
AY =0

d = GCD{n:p{Y >0
GOD{3} = 3

Hence the Markov chain has a period of 3.

The n!"* power

(o0 1 Jlo 1 o ] |
PP=PP=|1 0 0 0 0 1 |=
o1 o0 ][t 0 o] |
(10 0o Jfo1 o | |
P'=PP=|0 1 0 0 0 1 |=
o0 1 ||1 0o o |
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0 1 0 01 0 00 1
P> = PP=|0 0 1 00 1 |=]|1 0 o0
10 0|1 0o o] |0 1 0]
‘o0 1 JJo1 o ] [1 0 o ]
P = PPP=|1 0 o0 0 0 1 |=]0 1 0
01 0 [T o o] |0 0 1|
In general
(001 0 |
0 0 1 |,wheren=1+3z, x=0,1,2...
1 0 0 |
(000 1 |
P" = 1 0 0 |,wheren=2+3x, x=0,1,2...
(0 1 0 |
(10 o0 |
0 1 0 |,wheren=3+3z, x=0,1,2...
0 0 1 |

6.2.6 Special case when p =g :%
E;1 FEy FEj
B0}
AR
L4
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Consider F1, to show that f; =>>°, fl(?) <1

1
f1(1)
i

3
i

iR

In general

since it is a geometric series. Therefore, E is persistent since f; = 1.

0

1 2
Pr[El—>E2—>E1]—|—P1"[E1—>E3—>E1]: <2> —l—(

PI‘[El—>E2—>E3—>E1]+P1‘[E1—>E3%E2—>E1]

() () =(

12
>)

1)2_1
2) 2

Pr[E1—>E2—>E3—>E2—>E1]—|—Pr[E1—>E3—>E2—>E3—>E1]

() +(2)

M1

dx

bil

-

13
>)

M8
==
~3

i
L

o

+
M2
=
-3

3
[
o

3
10778
/N
N | —
N \—/:
AN

I N Y
N = N =N

[0.9]

Snfi)

n=2

11—z

()23 o)

) - oo

= ddx (1+z+27 +2%+)
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1 2
(1—x
1 1\2 1\3
1
- 1+ .
1-3)
— 4-1
- 3
Periodicity
since
) _ N ) (n—v)
pjj = Zlfjj Py
n—1
_ (v), (n—v) (n), (0)
= ;fm‘ pjj -t 135 Py
n—1
_ (v), (n—v) (n)
= 2
if
(n) (n)
_ . (n)
d = GCD{n:p;; >0
= GCD{n: [} >0
— GCD{2,3,4...}
= 1
since
m) _ (1" (1)
fi; :<2> >0, forn>2and f;;7=0
then Ej is

(i) persistent
(i) non-null
(iii) aperiodic

Hence E is ergodic
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The nt" power

1 1
0 3 3
_ 1 1
P=13 0 3
1 1
2 3 O
1 1 1 1
0 5 3 0 3 3
2 _ 1 1 1 1 _
P°=PP=1 35 0 ;5 2 0 5 |7
1 1 1 1
3 2 U 3 2 0
11 1] 1 1
3 1 1 0 3 3
3 2p 1 1 1 1 1
P*=PP= 1 35 1 2 0 3
1 1 1 1 1
i1 21l2 3 O
1 3 3 I 1 1
18 38 0 3 3
4 __ p3p _ 3 1 3 1 1 _
PP=PP=3 1 3 3 0 5 |7
3 3 1 1 1
s 8§ 1]Jlz 2 O
3 5 5 0 1 1
8 16 16 2 2
S_pidp _| 5 3 5 1 1 _
PP=PP=| 5% 5 % 2 0 9 |=
5 5 3 11
16 16 8 2 2
5 1L 1 0 1 1
16 32 32 2 2
6 _ pbd _ 11 5 11 1 1 _
PP=PP=| 5% % 5 2 0 5 | =
1 1 5 11
32 32 16 2 2
121 21 0 1 1
32 64 64 2 2
7T _ pbp _ 21 11 21 1 1 _
P'=PP=|5 £ & 2 0 5 | =
21 21 11 11
64 64 32 2 2

In general, when n is odd

and when n is even

P" =

P'I’L

2’”_"_1

| —— |

00| 00| x|

NSNS

Slov Glow *

5nx3, for the diagonal elements

2" -2
2mx 3

2"—1

for the other elements

573, for the diagonal elements

2" 42
2" x 37

for the other elements

—
— o oole N
Slor ooleo sl oleo i & N e

128
21
64
43
128

IS

—| ool
—_ oot = 00leo DO
wieo St
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6.3 A 4 x4 Transition Probability Matrix

Ey E1v Es Ej

Eo {0 p O q
P: E1 q 0 P 0
Ey 0 0
Es | p g 0
6.3.1 Classification of the states
D) pr[Ey— Byl =0
foo© = Pr[Ey— Ey] =
fég) = Pr[Ey — Ey — Eo|+Pr[Ey — E3 — Ey| = pg+ qp = 2pq
3
i =0
S = Pr[Ey— By — By — By — Eo)+Pr[Ey — E1 — By — E3 — Ey]
+PY[E0—>E3—>E2—)E3—>E0]+PY[E0—)E3—>E2—>E1—)Eo]
— 224 p g
5
i =0
9 = Pr[By— By — By — By — By — By — B

+Pr|[Ey— E1 — Ey — E3 — Es — B — Ep
+Pr|[Ey— By — Ey — E3 — Es — E3 — Ep
+Pr|[Ey— E3 — Ey — E3 — Es — E3 — Ep
+Pr|Ey— E3 — Ey — Fy — E2 — E3 — Ep
+Pr[Ey — E3 — Ey — E3 — Ey — B — Ey|
+Pr|[Ey— E1 — Ey — Ey — Ey — E3 — Ep
+Pr|[Ey— E3 — Ey — E1 — Es — By — Ep
= 4p°¢* +2p°¢* + 2pg°
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8 = Pr[Ey— Ey— Ey— By — By — By — Ey — By — Ey|
+Pr[Ey— E1 — Ey — Fy — Fa — Ey — Ey — E3 — Ey
+Pr[Ey— By — Ey — Ey — Fy — E3 — Ey — F3 — Ey
+Pr[Ey— E1 — Ey - Ey — FEy — E3 — Ey — Ey — Ey
+Pr[Ey— E1 — Ey — F3 — Fy — E3 — Ey — Fy — Ey
+Pr[Ey— E1 — By — E3 — Fo — E3 — By — E3 — Fy
+Pr[Ey— E1 — Ey — E3 — Fy — E) — Ey — E1 — Ey
+Pr[Ey— E) — Ey — E3 — Fy — E) — By — E3 — Ey

+Pr[Ey— E3 — Ey — E3 — Fy — E3 — Ey — F1 — Ey

[
[
[
[
[
[

+Pr|Ey— E3— FEy — E3— FEy — B — Ey — By — Ey
+Pr|Ey— E3— Ey — E3— FEy — B — Ey — E3 — Ey
+Pr|Ey— E3s— FEy— E1 — FEy— E) — Ey— B — Ey
+Pr|ky—> FE3—>FEy > FE — FEy— B — Ey— B3 — Ej
+Pr|ky— FE3—>FEy—> 1 — FEy— By — Ey— B — E)
+Pr[Ey— E3 — Ey — Ey — Fy — E3 — Ey — E3 — Ey

= 8ptgt + 4pP? 4 4p2y

fo = > &y
n=1

= 2pq+ 2102q2 —|—p4 + q4 + 4p3q3 + 2p5q + 2pq5 + 8]94(14 + 4106(]2 + 4p2q4 4+

= pg+p'+q
+pq+20°¢" +4p°¢° +8p'q* +- -
+2p°q+4p°* +8p" ¢’ + - -
+2¢°p+44°p* +8¢"p° + - -

~ 1

The asymptotic behavior

r=P'n
_7T0 1 o p 0 ¢ h
o 0 P 0
| |0 g 0 p
m3 p 0 ¢ O

E0—>E3—>E2%E3—>E2—>E3%E2—>E3—>E0

0
m
o

3
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Using (i)

but from (ii)

but

using (iv)

using (i)

T = qm+p7m3

T = pmo+qm2

Ty = PW1+Qqm3

T3 = (qmo+pm2
mo+m +me+m3 = 1

Ty = g1 + P73

T = pmo +qm2

o = q(pmo+qme)+pms

= CIP7T0+Q27T2 +p73

T3 = qmo + P72

To = qpmo + ¢*m2 + p (qmo + pra)

(P +pH)m = mo(1—2pq)

T = T
T3 = QT+ Ppmo
(p+q)mo
Ty = qm+p7m3
qm1 + pTo
(1—p)my = qm
Ty = ™1

My =T =Ty =73 = —
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that is ) ) ) }
1
0 1
| :
™ :
1
3 1
—  ¢(n)
n
Ho = anoo
n=1
1
— -
= 4<

1 is finite and hence E7 is non-null.

Periodicity

d = GCD{n: [ >0}
-1

Thus Ey, E1, E2, and E3 are persistent, non-null, and aperiodic hence they are ergodic.

In general, the asymptotic behavior of an n x n transition probability matrix of a cyclic
random walk is given by

1
0 n
1
1 n
_ 1
) — n
1
L™ ] Ll
. ()
n
Ho = anoo
n=1
1
= -
= n<o0

6.3.2 The n!"* power
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We determine the corresponding eigenvalues by solving the characteristic function

kN oo e <9

P —\I|=0
p 0 q A0 0 0
0 p 0 0 A 0
0 0 A
g O 0 0 A
-A p 0 gq
g —X p 0
-\ p
D q —A
—A+p+q =X +p+q =X +p+gq
q —A P
0 -
D q
1 1 1
q —A p
(=X +p+q)
0 g =X
D q
1 0 0
q —A p
(=X +p+q)
0 qg =\
p 0 ¢
ptq=1
A =1
1 0 0 0
qg =X p 0
qg —XA p
P q —A

-A p 0 ¢
qg —X p 0
0O g X »p
p q —A
—A +p+gq
0
=0
D
Y
=0
=0
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- -
(“A—1) Pools] ?
q—p —A—p -p q—p
Ay =—1
.\ .\
b + 1 =0
q—p —A—p -p q—p

M 4+p?+¢*—2pqg

using
—b+ Vb2 —4ac
2a
we have

—0/—4(p? +¢2 — 2pq)

2
2
_ *2y—(¢—p)
2
A3 = \/(=)(g—p)
Moo= —/(=)(a—p)
The corresponding eigenvalues are
M =1 =-1A=/(-)(g—p), and \s=—/(—)(¢—p)
AN = AP
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When \ =1,

Minors of the matrix are

I =—p 0} —-¢ —p 0 |l—¢ 1 0 |- 1 -—p

-¢ 1 —pj| 0 1T —p|| 0 —¢ —p|| 0 —¢ 1

O —¢ 1 ||-—p —¢ 1 ||-p 0 1 |- 0 —¢

-p 0 —q 1 0 —q 1 —-p —q 1 —-p O

-¢ 1 —p O 1 —p 0O —¢ -—» 0 —q¢ 1
0 —-¢ 1 -» —q 1 -p 0 1 -» 0 —q
-p 0 —q 1 0 —q 1 —-p —q 1 —-p O

1 —p 0 —q —p 0 —q 1 0 —q 1 —p
0 —¢ 1 -p —q 1 -p 0 1 -» 0 —q
-p 0 —q 1 0 —q 1 —-p —q 1 -p O

1 —p 0 —q —p 0 —q 1 0 —q 1 —p
-q¢ 1 —p 0o 1 —p 0 —¢ —p 0 —q 1

1 —p O .
—p —q —p
—q 1 0 1
0 —q 1
= (1-pg)+(—pq) =1-2pg=p*+¢*
—-q —p O
I —p 0 -»p
0 1 —p = —q +p
—q 1 -p 1
-p —q 1

= —q(1-pq) +p(—p*) = q¢+pg*p* = pg* — ¢ —p°
= pli*—p)—q=plg—p)(g+p)—q=—(*+¢%)
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—-q

=—q —1 =p’+q°
0 1 —p
—q 1 0 1 0 —gq
—q —1 —p
0 —q -p —q -p 0

—P—p+pPa=1*¢-p—=—-*+)

—q 1 -p —q

= -+
—q 1 0 1
=1 +p =+
0 —q 2
—p 0 1 —
=—p —q = (P’ +4¢%)
—q 1 0 —q
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—-q

-p 0 —q —p

—q 1 -p —q

—p—q(@—p) = Pg—p—¢=-0*+4%
10 —q 0
01 —p 1

P

0 —q¢ —P —q

— 0 -
_ 4| P _q q
1 —p 0
= (P*+4%)
1 0 —q 0
1 +p -
—q —p 0 —-p

= 1-pg—pg=(P*+¢°)
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Hence

the adjoint of |A(\)| =

When \ = —1,

Minors of the m
~1 —p
—q -1

0 —q
—p 0
g 1

0 —q
—p 0
-1 —p

0 —q
—p 0
-1 —p
—q -1

(P*+¢%)
—(p*+¢%
(P*+4¢%)
—(p*+¢%)

[A(M)]
atrix are
0 —q —p
—p 0 -1
1] —p —q
—q -1
p 0
—1 -p
—q —1
0 —q
—1 -p
—q —1
0 —-q
—p 0

—(P*+4%)
(P*+¢%)
—(P*+¢%)
(P*+¢%)

(P*+4¢%)
—(pP*+¢%
(P*+4¢%)
-(*+q%

P*+¢*) -0 +4)
-+ @+
P*+¢*) —(*+¢*)
-+ @+
— [AI-P|
-1 —p O
_ ¢ 1 -p
0 —q -1
—-p 0 —q
0 —q -1 0
-p|l 0 —¢ —p
~1|l-p 0 -1
0 —q¢ ||-1 —p
-1 —p 0 —q
—q -1 -p 0
0 —q -1 —p
—p 0 —q -1
—q -1 -p 0
0 —q -1 -p
—-p 0 —q -1
-1 —p 0 —q

—(P*+4?)
(P*+4%)
—(P*+¢%)
(P*+¢%)
P*+¢*) -’ +4¢*)

-+ PP+
P*+¢*) - +¢)

-’ +¢*) P+
0

—p

1

p 0 —gq

—q -1 —p
| -
-1 -p 0
g ~1 —p
0 —q -1
—1 -p 0
4 =1 =
0 —q¢ -1
|l 0 —g
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-1 —p 0
—q —1 —p
0 —q -1
-¢ —p O
0 -1 —p
- —q —1
—q -1 0
0 —¢ —p
-p 0 -1
—q -1 —p
0 —¢ -1
-» 0 —q
-» 0 —q
-¢ -1 —p
0 —qg -1
-1 0
0 -1
—-p —q

-1 —p —q —p

= —(1-pg)+(pa) = —(1—2pg) = — (1" +¢°)

-1 —p 0 —p
= —q +p

—q —1 —-p —1
= —q(1-pq) +p(—p*) = q+pg*p* = pg* — ¢ —p°
= pli*—p)—q=plg—p)(g+p) —q=—(*+¢%)

—q —p 0 —p
=—q +1 z—(p2+q2)
0 -1 -p —1
—q —1 0 -1 0 —gq
= —q +1 —p
0 —q -p —q -p 0

= @ —p+p*=1"0-p-F=—-0*+¢)

—q -1 - —q

= —(1-pg—pg)=—(P*+¢°)
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-1 —p —q
—-q —p -»  —q
0 —¢ —-p | = -1 +p
0 -1 —-q —p
-p 0 -1
= q+p(P*— ") =q+(1-q)(0° — ¢*)
= —(P*+4%)
o 0 1 0 —1
_q — JR—
0 —¢ -1 )=-1 +p =—(*+4%)
0 —q -P —q
-» 0 —q
-» 0 —q 0 .
—p -1 —p
1 —p 0 |=-p —q =—(p*+¢%)
—q -1 0 —¢
0 —q -1
-1 0 —q
-p 0 —q —p
-q¢ -p 0 = —1 —q
—q —1 - —q
-p —q -1
—p—q(@*-p) = Pa-p—¢=-p*+7)
-1 - —q
-1 0 —q 0 —q -1
—q -1 0 | = -1 +p —q
0 -1 —p -1 -p 0
-p 0 -1
= —(1+p(—=9)—q(p)) = —(P*+¢°)
-1 —p 0 |
-1 —p —q —p
0 —q -p —q
-» 0 —q
= —q+p(@® 1)) =p* —q-p* = (0’ + )
-» 0 —q
-p 0 -1 —p
-1 -p 0 = - —q
-1 —p —q —1
—q¢ -1 —p

= p*—q-p’=—p*+4*)



238

~1 0
—q —p
0 -1
-1 —-p —q
g -1 0
0 —q —p
g -1
0 —q
—(p*+q
| (P +g
—(p*+q
(P +a

Hence

the adjoint of |A()\)| =

~*+d*) —0+d?)
~(’+¢*) ~*+4")
~(P*+¢*) —(*+4*)
-+ -+
p 0 —q
ilg=p)  —p 0
—q ilg—p) -p
0 —q  i(g—p)

-p 0 —q —Pp
0 = -1 -
—p
= —(p*+¢*)
10 —q 0 —q¢ —1
= —1 +p —4q
—q —p 0 -p 0 —q
= Pq—p— =" +¢)
0 1
-1 —-p -q —p
1 —q —1 0 -1
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Minors of the matrix are

ilg—p)  -p 0 -q P 0 —q i(g—p) 0
-q ilg—p) -p 0 ilg—p) —p 0 —q —p
0 —q ilg=p)||-» —q ig-p)||-p 0 i(g—p)
—q i(g—p) —p -p 0 —q ilg—p) O —q
0 —q¢ ilg—p) || —q¢ ilg—p) -p 0 ilg—p) —p
-p 0 —q 0 —q  i(g—p) -p —q i(g—p)
ilg—=p) -p  —q ilg=p) -p 0 -p 0 —q
0 -q  —p 0 —q i(q—p) || ilg—p) —-p O
—p 0 i(¢g—p) —p 0 —q 0  —q ilg—p)
ilg—p) 0  —q ilg—p) —p —q ilg—p) -p 0
-¢ -p 0 —q i(lg—p) O —q ilg—p) -p
-p —q i(g—p) —p 0 ilg—p) —p 0 —q
—p 0 —q ilg—p) 0 —q ilg—p)  —p  —q
ilg—p) -p 0 —q —p 0 —q ilg—p) O
-q ilg—p) -p 0 ilg—p) —p 0 -q¢  -p
i(g—p) —p 0
—q ilg—p) —p
0 —q i(g—p)
ilg—p) —p 0 ,
—q ilg—p) -p = i(q—p) He-r) , T , -
. —q  i(g—p) 0 i(g—p)
0 —q i(g—p)

L)
|
3
R
—_
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ilg—p) —p 0 —p
—q , +p ,
—q i(qg—p) —p i(qg—p)

—q[-1(¢—p) —pg — p* = —q[—1(¢* — 2pg +p*) — pq] — p*

(@® —p® +p2q—1*)(p+q)
¢ —p + ¢ — pPa+pg® - p P +pPg—p?
—(p*—q"

-q D 4 0 —p
= —q , —i(qg—p) .

0 i(g—p) —p i(q—p)
= —q[—i¢® +ipq) +ip*q—ip®
= i —pP+1%—p*)(p+q)
= —i(p*—q¢")

—q —i(g—p) . —p

—¢* —p[—(q—p)* — pq]
(—¢* +pd® —p*q+p*)(p+q)
(' —q")
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ilg=p) O —q
0 ilg—=p) -p
—p —q i(lg—p)
ilg=p) —-p  —q
0 —q —p
—p 0 i(¢g—p)

ilg—p) —»p 0

0 —q i(g—p)
—p 0 —q
—p 0 —q
ilqg—p) —p 0
0 —q i(q—p)

(
(
= i(g—p)[— q +2pg—p* —pq] —
(—
(

= i(lg—p)[-
= —iq(q—p)’
= q(g—p)?

= —i(~¢’+pq’
= —i(p'—q")

—-q i(g—p)

q—p)[—(q—p)* —pql — plig(q —p)]
q—p)[— (2 2pq+p) pa] — lipg(g—p)]
ipg® +ip*q)]
—p’q+p°)(p+q)

0 i(g—p)

iq(q—p)l —pp” — ¢*)
—p®+pq°
—p*+pq’
—(=¢*+pa® —p*q+1*)(p+4q)
—(p"—q")

—q i(q—p)
—q

i(q—p) +p

= i¢*(¢—p)+ip'(¢—p)

—i(—¢* +pg® — PP+ 1) (p+q)

—i(p* —¢*)

—q i(g—p)

—p*q+p*)(p+q)
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i(g—p) O —q
-p  —q i(lg—p)
i(qg—p) —p —q
—q  i(g—p) 0
—p 0 ig—p)
ilg—p) —-p O
—q ilg—p) —-p
—p 0 —q
—p 0 —q
ilg=p) —p 0O
—q¢ ilg=p) -p

= i(g—p)

—p 0
—q i(q—p)

-q D
—4q

-p —q

= —ip(g—p)li(a—p)—a(d® —p?)
= (p—p*q¢+1*— ) (p+9)

= (p*—qh
z(q—p) Z<q_p) ) ’ TP I . |
0  i(lg—p) —p i(g—p)
| —q ilg—p)
—p 0

= —ip(q—p)lilg—p)[ila—p) —al¢® —p*)
= plg—p)° =" +p’q
= (= +pq®—p*q+1°)(p+q)

= (*—¢Y
= itg-p) T P ey 0
—q -p —q

= —ig(q—p)ilg—p) +p(p* - %)

= qlq—p)*+ps* —p*

= (@ —pP+p*—p*)p+q)

= —(p'—q"

. —p 0 _ i(g—p) -Pp
i(g—p) —p —q  i(g—p)

= —p*—q[—(q—p)*—pq]
= PP+ (¢ —pd+1%)

- 32 2. .3

= ("—p¢"+p°q—p°)(p+q)
= —(p*—¢"
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('Y

it — Y

(p*—q*)
—i(p*—q*)

—i(p*=q")  '-d¢") -0'-d")

: - 0 -q¢  —p
= i(¢g—p) , —q .
i(g—p) —p 0 i(g—p)
= ip*(q—p) —ig*(¢—p)
= i(®—pl+p2—p*)(p+q)
= —i(p*'—q"
‘ ilg—p) 0 —q 0
= i(g—p) +p
—-q D 0 —-p
| —q ilg—p)
0 —q

= i(g—p)[—ip(¢—p) +a(p* — )
= —(*-p@+p’q—p")(p+q)
= (p*—¢Y

i(g—p) —p
—q  i(g—p)

—-q —p
0 i(g—p)

+p

= i(q—p)[—(¢*>—2pq+p*) — pa] — ipg* +ip°q
= —i(¢®—p®+p*q—p®)(p+9q)
= i(p*—q"

—t-gh) —ipi—qY)  i-qh) |
ilpt—q*)  —O*—qh —ilp*—¢")
=g i —q¢b)  ip*—gh)
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When A = —i(q—p),

AN = |M-P|
—i(g—p)  —p 0 —q
B —q  —ilg=p) P 0
- 0 -q  —ilg—p)  -p
—p 0 —q¢  —ilg—p)
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Minors of the matrix are

—i(g—p)  —» 0 -q P 0
-q  —ilg—p)  —p 0 —ilg—p)  -p
0 —q  —ilg—p) ||-p —q  —ilg—Dp)
—q —i(g—p) 0 —q —i(lg—p)  -p
0 —q —p 0 —q¢  —ilg—p)
—p 0 —i(g—p) || —p 0 —q
—p 0 —q —i(q—p) 0 —q
—q —ilg=p) b 0 —ilg—p) P
0 —q¢  —i(g—p) —p —q  —i(g—p)
—i(l¢g—p) - —q —i(g—p) -p 0
0 —q —p 0 —q —i(g—p)
—p 0 —i(¢g—p) —p 0 —q
—p 0 —q —i(g—p) 0 —q
—i(g—p) -p 0 —q —p 0
0 —q —i(g—p) —p —q —i(g—p)
—i(g—p)  —p —q —i(g—p)  —p 0
—q¢  —ilg—p) 0 —q¢  —ilg=p) —p
—p 0 —i(g—p) —p 0 —q
—p 0 —q —i(g—p) 0 —q
—i(g—p)  —p 0 —q —p 0
—q  —ilg—p) -p 0 —i(g—p) —p
—il¢g—p)  —p —q —ilg—p)  —p 0
-q¢  —ilg=p) O —q  —ilg—p)  -p
0 —q —p 0 —q  —i(g—p)
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—i(g—p)  —p 0

—q —i(q—p) —p

0 —-q  —i(g—p)
—q —p 0

0 —i(g—p) —p =
-p —q —i(q—p)

—q —i(g—p) 0

0 —q —p =
—p 0 —i(q—p)

—q —i(q—p)

—q -D

0 —p

+p .
—p —i(q—p)

o —q —i(q—p)

—q[~1(g—p) —pq] - p’

—q[~1(¢* = 2pq +p*) — pq] — 1*

= (@ -pl+%-p*)(p+q)
= ¢ —p 4’ —pPq+pd - PP +pPg—pt

—(p* —q")

0 —p
—p —i(q—Dp)

—-q —-p

0 —ilg—p) +i(q—p)

q[—iq® +ipq) +ip*q —ip®
—i(¢® = pi® +p*q—p*)(p+9q)
i(p* —q*)
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—q —i(g—p) —p
0 -q  —ilg—p) | =
—p 0 —q
—p 0 —q
—q —i(g—p) —p =
0 —q (¢—p)
(¢—p) 0 —q
0 —i(q—p) —p
—p -q  —i(g—p)
—i(g—p) —p —q
0 —q —p
—p 0 —i(g—p)

e —i(g—p) Lilg—p) 0 —i(¢g—p)
0 —q —-p —q
0 —q
—p
—¢* —pl—(¢—p)* - pd]
= (¢ +pg* —p*q+1%)(p+q)
(' —q")
L —ilg=p)  —p | | —q¢ —ilg—p)
—q —i(q—p) 0 —q
—pl—(g—p)* —pg —¢* = (p* — ¢*)
— ilg—p) —i(g—p) P
—q  —i(g—p)
0 —i(g—p)
—q
-p —q

i(q—p)[—
= —i*q(g—p)?
a(¢—p)*
—(—¢’ +pg*

—i(q—p)[—(q—p)* — pal +plig(q—p)]
—i(g—p)[— (2 2pq+p°) — pa] + [ipa(q — p)]
—i(g—p)[— / ?+2pq —p° — pg] +ipg” — ip*q))]
(— 2—p*q+10°)(p+q)

(

0 —i(g—p)

iq(q—p)] —p(” — ¢*)
—p®+pq°
—p*+pq’
—p’q+p)(p+0q)

—(p*—q%
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—i(g—p) —p 0
0 —q —ilg—p) | =
—p 0 —q
—p 0 —q
—i(¢g—p) -p 0
0 —q —i(g—p)
—i(g—p) O —q
—q —p 0
—p —q —i(qg—p)
—i(q—p) —p —q
—q —i(qg—p) 0
—p 0 —i(q—p)

. —q —i(qg—p) 0 —i(g—p)
—i(qg—p) +p
—q —p —q
—ig*(g—p) —ip' (¢—p)
. 3 2 2 3
= i(—¢"+pg"—p°q+p°)(p+q)
i(p* — ¢
—p 0 —i(q—p) —p
—p , —q
—q —i(g—p) 0 —q
= i(—¢+pi® —p*qg+1*)(p+0q)
i(p* —qh)
. —p 0 —q —p
—i(q—p) ‘ —q
—q —i(g—p) -p —q

= —ip(¢—p)[i(g—p) —qal¢®> = p*)
= (p¢® —p*q¢+p*—*)(p+q)

(' —q")
_ (e THa=P) 0
(q—p) . _ilgp)
P e —i(¢—p)
—p —i(g—p) —p 0

= —i(qg—p)[i(g—p)il¢—p) —ipglqg—p)
= plg—p)° -’ +p’q

= (—+p¢® —p*a+10*)(p+0)

= —i(p'—q")
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—i(g—p)  —p 0
—q —i(q—p) —p
—p 0 _q
—i(g—p)  —p 0
—q  —ilg—p) -p
g —p 0
0 —i(g—p) —p
—i(g—p)  -p —q
—q —i(g—p) O
0 —q —-p

— ig-p)| TP Ty, T
—q —p —q
= —ig(g—p)ilg—p) +p(0* — %)
= q(q—p)2+pq2_p3
= (¢*—pd®+p*a—p")(p+q)
= —(p*—¢"
L —p 0 B —Z(q_p) -p
—i(g—p) —p —q —i(q—p)
= —p’—ql-(q—p)* —pd]
= PP+ (¢ —pd+1%)
= (@ —pP+p*a—p*)(p+q)
= —('—q"
' —p 0 —q Y
—ilg-p)| —q .
—@(q—p) —p 0 _Z(q_p)
~ (ip*(a—p) —ig*(g—p))
— —i(®—p+p*a—pP)(p+q)
= i(p*—¢Y
= —i(g—p) e o +p| ’
—q —p 0 —p
| —q ilg—p)
0 —q

= i(g—p)[—ip(a—p)] +a(p* — &)
= —(=pd+1q—1*)(p+q)
= (p*—q%
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—i(qg—p) —p 0

—q —i(g—p)  -p = —i(¢g—p) ~ie-p) ‘_p
0 —q  —ilg—p) o ey
P
0 —i(g—p)
= —i(qg—p)[—(¢* — 2pq+p*) — pq] +ipg® —ip°q
= i(¢®—pi* +p%a—p*)(p+q)
= —i(p'—q"
—ipt—¢") -0'-¢" i'-¢")  0'-dY
| =g i) -0t -qh) it )
it =q  '-d¢) i) -
-0t =dY) it -d) ' -dh) -l —qY) |

The corresponding eigenvalues which are the roots of the equation (|P — AI| =0) are

M=1X=-1A3=1i(¢—p), and \y = —i(¢—p)

and hence

4
H (/\1 - )‘m)

m=2

= (I+1)(1—i(g—p))(1+i(g—p))
= 2(1+p*—2pg+¢°)

= 20+ +* +¢°)

= 4(*+¢%)

= (=1-1)(=1—i(g—p)(~=1+i(g—p))

= —2(1+p*—2pg+q?)
= 20 +p*+ ¢+ %)
= —4(°+¢)

= (i(g—p)—1)(i(qg—p)+1)(2i(¢—p))

= =2i[(¢*—2pq+p°) + 1[(¢—p)(q+p)]
= —2i( - 2pg+p* +1)(¢* - p?)
= 4i(p* —¢*)
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(M —Am) = (=i(g—p)—1)(=i(g—p)+1)(—2i(g—p))

T e

= 2i[(¢* —2pq+p°) +1[(¢—p)(q+D)]
= 2i(®—2pq+p>+1) (> —p?)
= —di(pt—¢%

For the characteristic matrices
ANo-p 0 —¢q
-q¢ N —p O

0 —q¢ N —p
0 —q¢ N |

for [ =1,2,3,4. We compute the cofactors as follows
A]Z()\l):(p2+q2>7 i?j:1727374

Aji(do) = (1) (2 1 %), i,j=1,2,3,4

W—W4ﬂyﬁ—¢» ij=1,2,34

COT ) o g, ij=1,2,34

Substituting the cofactors in the formula

Aji(A3) =

7 N N

Aji(A3) =

1
et mot (N = Am)

4
Pg?) = > Au(W)AT
=1

yields
O P’ +AHHO)"  @P*+A)EDED" | 0+ (il —p)) (g —p)"
Y 4(p* +q?) —4(p* +¢?) 4i(p* —q*)
+(p2+q2)(—i(q—p))(—i(q—p))”
—4i(p* —q*)
_ 1+1(_1)n+(p2+q2)(’i(q—p))(’i(q—p))” (P> +¢*)(i(g—p))(—=ilg—p))"
44 4i(p® —¢*)(p* +¢?) —4i(p? — ?)(P* + %)
_ }+}(_1>n_(q—p)(i(q—p))” (g—p)(=ilg—p))"
44 4p+q)p—q) 4p+q)(p—q)
o1 (ig—p)", (—ilg—p)"
= gtV 4

Pz('?) _le 1+(_1)z’+j+n+\/W(q_p)mrm(q_p)n]
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6.4

fori,j=1,2,3,4and n=1,2,3.... The final formula of pl(.;-z) assumes slightly different
forms for different values of n. The following are matrices of P for n =4k +1,n =

dk+2n=4k+3,and n=4k+4 and £ =0,1,2....

. L= (g—p)**Y 0 1+ (g—p)#h+D
plk+n _ 1 1+ (q—p)4F+D) 0 1— (g —p)+D) 0
2 0 1+ (q p)(4k+1) 0 1— (C] p)(4k+1)
1—(qg— p>(4k+1) 0 14 (q— p>(4k+1) 0
1 (g—p)@+ 0 1+ (g —p)H+2) 0 ]
plk+2) _ L 0 1— (q—p)@k+2) 0 14 (q—p)4+2)
I 0 1+ (q—p)#+2) 0 1—(q—p)4h+2) |
0 1+ (q—p)@+3) 0 1— (q—p)@k+3)
pak+3) _ 1 1—(q— p)(4k:+3) 0 1+ (q— p)(4k:+3) 0
2 0 1— (q p) (4k+3) 0 1+ (q p) (4k+3)
1+ (g —p)Ur+d) 0 1— (g —p)k+3) 0
14 (g—p) D 0 1 — (q—p)k+d) 0 ]
pk+e) _ 1 0 1+ (q—p)14F+9) 0 1= (q—p)Uk+d)
2] 1= (g=p) Y 0 1+ (g —p) Y 0
I 0 1—(g—p) Y 0 L+ (g—p) W+
Conclusion

The four methods of finding the nth power give the same results. Computation of the 2x2
transition probabilities give the results which are easily generalized. However, using the
direct method of multiplication, it is difficult to identify the pattern easily to help to come
up with the generalized pattern.

The 3x3 transition probability matrices onwards give complex patterns which are not easy
to generalize especially in the case of the cyclic random walks.

The method of multiplication gives a visible pattern similar to that of the Pascal Triangle,
but the generalization of the nth term needs to be investigated further from the pattern.
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For the eigen value technique, it is not easy to find the eigenvectors and therefore again,
this method needs further review to see whether it can give a result, otherwise we might
have to explore whether there is another alternative method which can give us a result.
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