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Abstract

In this project we investigate the invariant and hyper-invariant subspace lattices of some
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these lattices for operators in certain equivalence classes.
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1 PRELIMINARIES

1.1 Introduction

This chapter outlines the historical background, notations, terminologies and definitions
that shall be used throughout this work.

1.1.1 Historical Background

Functional analysis is a branch of mathematics which studies the analytical structures
of a vector space endowed with a topology. Functional analysis emerged as a distinct
field in the 20th century when it was realized that diverse mathematical processes from
arithmetic to calculus procedures, exhibit very similar properties. One of the branches of
functional analysis is operator theory. Operator theory found the limelight in 1900 when
David Hilbert held a conference in Paris and posed 23 famous problems.A linear operator
is a linear transformation from a vector space to itself. We can therefore confirm that a
linear operator is a transformation which maps linear subspaces to linear subspaces. In
studying the la�ices of operators, we are going to view our operators as matrices which
is the model for operator theory. Toeplitz [20] found out that every linear operator can
be represented by a matrix for easier operations on these operators. In this work we are
going to investigate the la�ice invariant subspace of some operators which is a branch
of operator theory. The invariant subspaces of an operator, their classification and de-
scription play a central role in operator theory. They are analogue of the eigenvectors of a
linear operator. Reducing subspaces are useful in direct sum decomposition of an operator.
The basic motivation for the study of invariant subspace comes from the interest in the
structures of the operators and from approximation theory. The knowledge of hyper-lat
T ∈ B(H ) give information about the structure of the commutant of T . The ordinary
sum decomposition of an operator T ∈ B(H ) that is, T = T1+T2 is important in operator
theory, but will not be used in the sequel, since, unlike the direct sum decomposition,
it misses a crucial feature of failing to transfer invariant subspace from the parts, (the
direct summands), to the operator itself, (the direct sum). In other words, if a subspace is
invariant under the direct sum, then is invariant under the direct summand.
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1.1.2 Notations,Terminologies and Definitions

Notations

In this work we will denote by
H : Complex separable Hilbert space.
B(H ): Banach Algebra of bounded linear operator.
T ∗ : Adjoint of an operator T ∈ B(H ).

Ker(T ) : Kernel of an operator T ∈ B(H ).

Ran(T ) : Range of an operator T ∈ B(H ).

M : Closure of a closed subspace M of H .

M⊥ : an orthogonal complement of a closed subspace of H .
< x,y >: The inner product of x and y on the Hilbert space H

Lat(T ) : The subspace la�ice of all invariant subspace of T ∈ B(H ).
Red(T ): The subspace la�ice of all reducing subspace of T ∈ B(H )

Hyperlat(T ): The subspace la�ice of all hyper invariant subspaces of T ∈ B(H ).
W (T ): The numerical range of an operator T ∈ B(H ).
PM : Orthogonal Projection onto a closed subspace M ⊆H .
W ∗(T ): The weakly closed von Neumann algebra generated by T .

Terminologies and De�nitions

De�nition 1.1.1. An operator T ∈ B(H ) is said to be:
normal if T T ∗ = T ∗T
unitary if T T ∗ = T ∗T = I
projection if T 2 = T and T ∗ = T
scalar if T = αI for some α a scalar and identity operator I.
compact if for each bounded set M ⊆H the closure of the image T (M ) is compact.

De�nition 1.1.2. An operatorT ∈ B(H ,K ) is said to be quasi-a�nity if it is injective and
with dense range.

De�nition 1.1.3. Two operators A ∈ B(H ),B ∈ B(K ) are said to be:
Similar; if there exists an invertible operator N ∈ B(H ,K ) such that NA = BN.

unitarily equivalents; if there exist a invertible unitary operator U ∈ B(H ,K ) such that
UA = BU.

quasi-similar; if there exist quasi-a�nities X ∈ B(H ,K ) and Y ∈ B(K ,H ) such that
XA = BX and AY = Y B.
quasi-a�ne transform of each other; if there exists a quasi-a�nity X ∈ B(H ,K ) such that
XA = BX .
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metrically equivalent; if A∗A = B∗B.
almost similar; if there exists an invertible operator N such that the following conditions are
satis�ed; A∗A = N−1 (B∗B) N and A∗+A = N−1 (B∗+B) N.

De�nition 1.1.4. A quasi-a�nity X is said to have the hereditary property with respect to
an operator T ∈ B(H ) if X ∈ {T}′ and X(M ) = M∀M ∈ Hyperlat(T ).

De�nition 1.1.5. A lattice is a partially ordered set say X , in which every pair of elements
has a least upper bound and a greatest lower bound.

If every pair {x,y} of elements of X is bounded above, then X is a directed set (or the set
X is said to be directed upward). If every pair {x,y} is bounded below, then X is said to be
directed downward.Every la�ice is directed both upward and downward. If every bounded
subset of X has a supremum and an infimum, then X is a boundedly complete la�ice. If
every subset of X has a supremum and an infimum, then X is a complete la�ice. Then we
have the following chain of implications:

complete lattice⇒ boundedly complete lattice⇒ lattice⇒ directed set

De�nition 1.1.6. A subspace M ⊆H is said to be:
• invariant under T ∈ B(H ) if TM ⊆M . In this case , we say that the subspace M is T−
invariant.
•reducing under T ∈ B(H ) if it is invariant under T and T ∗. Equivalently an operator is
said to be reducible if it has a nontrivial reducing subspace. A subspace that is not reducible is
said to be irreducible. This means that an operator is irreducible if it has no reducing subspace
other than {0} and H .
• hyperinvariant under T ∈ B(H ) if SM ⊆M∀
S ∈ {T}‘.
• hyper-reducing under T ∈ B(H ) if it reduces every operator in the {T}‘

We use Lat(T ), Red(T ), Hyperlat(T ) and HyperRed(T ) the collection of all subspaces
invariant, reducing, hyperinvariant and hyper-reducing for T ∈ B(H ). Clearly

HyperRed(T )⊆ Lat(T ).[12].

The concept of hyper-reducibility of a subspace of a Hilbert space was introduced by
Moore[15]. We will prove in Chapter 3 that

HyperRed(T ) = Red({T}
′
) = Lat({T}

′
)∩Lat({T ∗}

′
).
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An operator T ∈ B(H ) is said to be reducible if it has a nontrivial reducing subspace
(equivalently, if it has a proper nonzero direct summand-that is, if there exists a subspace
M of H such that M and M⊥ are nonzero and T − invariant(see[14]). This is equivalent
to saying that if M is nontrivial and invariant under T and T ∗. A subspace that is not
reducible is said to be irreducible. This means that an operator is irreducible if it has no
reducing subspace other than {0} and H . It has been shown in[11] that an operator
T ∈B(H ) is reducible if and only if there exists a non-scalar operator L such that LT = T L
and T ∗L = LT ∗ . That is if and only if there exists a non-scalar operator L ∈ {T}′

⋂
{T ∗}′

Equivalently, T is reducible if and only if both T and T ∗ lie in {L}′for some non-scalar
operator L.

De�nition 1.1.7. A subspace lattice on a Hilbert space H is a family of subspaces of H

which is closed under the formation of arbitrary intersections and arbitrary linear spans and
which contains the zero subspace {0} and H .

Remark 1.1.8. The set of all invariant subspaces of T ∈ B(H ) is a lattice. The subspace
lattice of all invariant, reducing and hyperinvariant subspaces of Tare complete, in the sense
that intersections and closed linear spans of subspaces are also in these lattices. Since T
commutes with itself, we have that:

Hyperlat(T )⊆ Lat(T )

and
Red(T )⊆ Lat(T ).

If T1 and T2 are quasisimilar and there exists an implementing pair (X ,Y ) of quasia�nities
such that XY has the hereditary property with respect to T1 and Y X has the hereditary
property with respect to T2 then we say that T1 is hyperquasisimilar to T2. This is denoted by
T1 ≈ T2. The notion of hyper-quasisimilarity was introduced by C. Foias etal [6]. We note that
hyper-quasisimilarity is strictly stronger than quasisimilarity . In fact the following inclusion
of operator equivalences is true;

Similar ⊂ Hyper−quasisimilar ⊂ Quasisimilar.

1.2 Some Properties Of Invariant Subspaces

Theorem 1.2.1. Suppose T ∈ B(H ) is normal and M is a subspace of �nite dimensional
Hilbert space H that is invariant under T . Then M⊥ is invariant under T and hence M

reduces T .
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Proof. Let e1, ...,em be the orthonormal basis of M . Extend to an orthonormal basis

β = (e1, ...em, f1... fn) of H . Thus the matrix of T with respect to the basis of H is of the

form

[T ]β =

A B

0 C


since T is normal,we have:

n

∑
j=1
‖ Te j ‖2=

n

∑
j=1
‖ T ∗e j ‖2

Thus B is an operator of all zeros ,hence the results.

De�nition 1.2.2. A subspace M ⊆H is said to be inaccessible if the only continuous
mapping Ψ of the closed interval [0, l] into Lat(T ) with Ψ(0) = M is the constant map
Ψ(t)∼= M .

Corollary 1.2.3. [4]If T ∈ B(H ) and M is an inaccessible invariant subspace for T , then
M is hyperinvariant subspace for T .

Corollary 1.2.4. [4]If M is an isolated point of Lat(T ), then M is hyperinvariant subspace
for T .

De�nition 1.2.5. We say that a subspace M ∈ Lat(T ) commutes with Lat(T ) if PM com-
mutes with PN ∀ N ∈ Lat(T ), and that M is a pinch point of Lat(T ) if ∀ N ∈ Lat(T )
either N ⊂M or M ⊂N .

Theorem 1.2.6. [4]If T is an operator on a �nite-dimensional Hilbert space, then there exists
an integer k≥ 1 and nilpotent operators N1...Nk on �nite-dimensional spaces such that Lat(T )
is homeomorphic to the product space

Lat(N1)× ...×Lat(Nk).

Corollary 1.2.7. If T is any operator on a �nite-dimensional Hilbert space, then the isolated
points of Lat(T ) can be speci�ed exactly.

Proof. We know that there exists an integer k ≥ 1 and nilpotent operators N1...Nk on

�nite-dimensional spaces such that Lat(T ) is homeomorphic to the product space

Lat(N1)× ...×Lat(Nk)

Since the isolated invariant subspaces of the operators Ni(1 6 i 6 k) are completely deter-

mined, clearly a subspace M ∈ Lat(T )will be isolated if and only if each of the subspaces

Mi ∈ Lat(Ni) is an isolated point in Lat(Ni).
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Proposition 1.2.8. If T ∈ B(H ) and p ∈ P(F), then null p(T ) is invariant under T .

Proof Suppose T ∈ B(H ) and p ∈ P(F). Let v ∈ null p(T ). Then p(T )v = 0. Thus
(p(T ))(T v)= T (p(T )v)= T (0)= 0, and hence T v∈ null p(T ). Thus null p(T ) is invariant
under T , as desired.

1.2.1 Invariant Subspaces And Local Spectral Theory

De�nition 1.2.9. An operator T ∈ B(H ) is said to be decomposable, provided that, for each
open cover C =U ∪V of the complex plane C, there exist Y,Z ∈ Lat(T ) for which

H = Y +Z,σ(T|Y )⊆Uand σ(T|Z)⊆V

where σ is the spectrum.

This simple definition is equivalent to the original notion of decomposability, as introduced
by Foias[3]and discussed in the classical books by Colojoarva and Foias. The theory of
decomposable operators is now richly developed with many interesting applications and
connections. Evidently, the class of decomposable operators contains all normal operators
on Hilbert spaces and more generally, all spectral operators in the sense of Dunford on
Banach spaces. Moreover, a simple application of the Riesz functional calculus shows
that all operators with totally disconnected spectrum are decomposable. In particular, all
compact and algebraic operators are decomposable.
Given an arbitrary operator T ∈ B(H ), let σT (x)⊆ C denote the local spectrum of T at
the point x∈H i.e. the complement of the set σT (x)∀ λ ∈C for which there exist an open
neighborhood U of λ in C and an analytic function f : U → X such that (T −µ) f (µ) = x
holds for all µ ∈U . For every closed subset M of C, let XT (M ) = {x⊆H : σT (x)⊆M }
denote the corresponding analytic spectral subspace of T .

De�nition 1.2.10. An operator T ∈ B(H ) is said to have Dunford’s property if XT (M ) is
closed for every closed subspace M ⊆ C.

Theorem 1.2.11. Let T ∈ B(H ) be a bounded linear operator on a Hilbert space H of
dimension greater than 1. If T ∈ B(H ) has both Dunford’s property and decomposition
property, then T has a non-trivial invariant closed linear subspace.

Proof. Suppose that T ∈ B(H ) has both Dunford‘s property and decomposition prop-

erty on a Hilbert space H of dimension greater than 1. Then T is decomposable. At �rst,

we know that if σ(T ) contains at least two points, then T has a non-trivial hyperinvariant



7

closed linear subspace. Since T is decomposable, it follows from that T has a non-trivial hy-

perinvariant closed linear subspace. It remains to consider the case of operator T ∈ B(H )

such that H is at least two-dimensional and σ(T ) is a singleton. Then it follows that

T = λ I +N for some λ ∈ C and some nilpotent operator N ∈ B(H ). Let p ∈ Z be the

smallest integer for which N p = 0, and choose an x ∈H for which N p−1 6= 0. The linear

subspace generated by N p−1x is a one-dimensional T− invariant linear subspace of H .

This completes the proof.

Corollary 1.2.12. Every generalized scalar operator on a Banach space of dimension greater
than 1 has a non-trivial invariant closed linear subspace.
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2 LITERATURE REVIEW

The invariant subspace problem asks whether every operator on a complex separable
Hilbert space has a nontrivial invariant subspace. This problem has its origin approximately
when, (according to Aronszaj and Smith), J. von Neumann [17]proved that every com-
pact operator on a separable infinite-dimensional complex Hilbert space has a nontrivial
invariant subspace.

Aronszaj and Smith[2] proved that every compact operator on any Hilbert space of
dimension at least two has non-trivial invariant subspace. Hoover [10] studied hyper
invariant subspaces and proved that if and are quasi similar operators and if S has a
hyper invariant subspace then so does T . if in addition, S is normal, then the la�ice
of hyper invariant subspaces for T contains a sub-la�ice which is la�ice isomorphic to
the la�ice of spectral projections for S. Similar results for hyper-invariance have been
studied by Kubrusly [11] and has shown that similarity preserves nontrivial subspaces
while quasisimilarity preserves hyperinvariant subspaces. Lomonosov [12] proved that an
operator has a non-trivial invariant subspace if it commutes with a non-scalar operator that
commutes with a non-zero compact operator. Brown [16] proved that every subnormal
operator has a non-trivial invariant subspaces. Atzmon [5] gave an example of an operator
without invariant sub-spaces on a nuclear Frechet space. Brown, Chevreau and Pearcy [1]
showed that every contraction on a Hilbert space whose spectrum contains the unit circle
has a nontrivial invariant subspace. Brown [6] proved that every hyponormal operator
whose spectrum has nonempty interior has a non-trivial invariant subspace. Herrero [9]
proved that the structure of the hyperla�ice of an operator is not preserved under quasi
similarity. Gamal [7] proved that the la�ices of invariant subspaces remain isomorphic
under quasia�ine transforms. Nagy and Foias [21] proved that a contraction T has a non-
trivial invariant sub-space. In addition Nzimbi etal[18] introduced the concept of metric
equivalence of operators. The author explained metric equivalence relation and closely
related relations on some classes of operators. He also described the spectral picture of
metrically equivalent operators and gave some conditions when metric equivalence of
operators implies unitary equivalence.

However, there is very li�le in the literature about relationship between invariant,reducing
and hyper-invariant subspace la�ices for operators in some equivalence relations and
that this thesis sets out to show some of these relationships. For example, we wish to
investigate if given the la�ices of two operators say A and B , we can determine the
structure and properties of the operators and how they are related.



9

3 OPERATOR EQUIVALENCE AND LATTICES

In this chapter we are going to study the la�ices of operators in some equivalence classes.

3.1 Isomorphism Of La�ices

We now present some results on isomorphism of invariant subspace la�ices.

De�nition 3.1.1. (Isomorphism of Hilbert spaces). Two Hilbert spaces V and W over the
same �eld F are isomorphic if there is a bijection T : V 7→W which preserves addition and
scalar multiplication.

Theorem 3.1.2. Suppose that T ∈ B(H ), where H is a �nite dimensional Hilbert space and
ϕ : B(H )(H ) de�ned by T 7→ ϕ(T ) is a linear map. Then the following statements are
equivalent.
(i) Lat(T )∼= Lat(ϕ(T )).
(ii) Hyperlat(T )∼= Hyperlat(ϕ(T )).
(iii) Red(T )∼= Red(ϕ(T )).

From above theorem, we can conclude that Lat(T )∼=Lat(cT ) ,Hyperlat(T )∼=Hyperlat(cT )
and Red(T )∼= Red(cT ). where 0 6= c ∈ C.

Theorem 3.1.3. Similarity of operators preserves non-trivial invariant and non-trivial hy-
perinvariant subspaces.

Proof. We prove the case for invariance and the proof for hyperinvariance can be

proved similarly.Suppose A,B ∈ B(H) are such that A = X−1BX ;That is, XA = BX . Thus

BXM = XAM ⊆ XM .

Since M is non-trivial and X is invertible, we conclude that XM is a non-trivial invariant

subspace for B. Thus M is A− invariant if and only if M is B− invariant.

It has been proved( [9], [10]) that if A and B are quasisimilar and one has a nontrivial
hyperinvariant subspace, then so does the other. However, similar (quasisimilar) opera-
tors need not have isomorphic invariant (hyperinvariant) la�ices. An example is given
in Herrero[9] of two quasisimilar nilpotent operators of the same order but with non-
isomorphic hyperla�ices. This shows that structure of the hyperla�ice of an operator is
not preserved under quasisimilarity.
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Example 3.1.4. Let A =

0 1

0 1

 and B =

0 0

0 1

. A simple computation shows that A and B

are similar. However another computation shows that

Lat(A) = {{0},span

1

0

 ,R2}

Lat(B) = {{0},span

1

0

 ,span

0

1

 ,R2}

Clearly, Lat(A) and Lat(B) are not isomorphic.

Theorem 3.1.5. ([11]) Hyper-quasi-similarity preserves nontrivial hyperinvariant invariant
subspaces.

Proof. This follows easily from the fact that hyperquasi-similarity is stronger than

quasisimilarity and the fact that quasisimilarity preserves non-trivial hyperinvariant sub-

spaces.

Remark 3.1.6. Kubrusly in[11] has shown that non-scalar normal operators have non-trivial
hyperinvariant subspaces.
Thus an operator quasisimilar to a non-scalar normal operator has a non-trivial hyperinvariant
subspace.

Remark 3.1.7. Hyperquasi-similarity is an equivalence relation.

3.2 Equality Of La�ices

In this section we are going to discuss and give conditions when the invariant subspace
la�ices for any two or more operators on a Hilbert space H are equal. The following
result due to [18]is well known.

Theorem 3.2.1. [18] Metrically equivalent self-adjoint operators on a �nite dimensional
Hilbert space have a common non-trivial invariant subspace.

Proof. Let A,B,∈ B(H ) be self-adjoint and M ,N be nontrivial A− invariant and

B− invariant subspaces, respectively.

Then A∗AM ⊆M ⊆ B∗BN ⊆N and B∗BN ⊆N ⊆ A∗AM ⊆M which implies that

M = N .
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Theorem 3.2.2. Two orthogonal projections on a Hilbert space H are metrically equivalent
if and only if they are equal.

Proof. Let P and Q be orthogonal projections on a Hilbert space H . If P∗P = Q∗Q,

then P2 = Q2
, which implies that P = Q. The converse is trivial.

Corollary 3.2.3. If P and Q are metrically equivalent projections, then Lat(P) = Lat(Q).

Theorem 3.2.4. If A and B are metrically equivalent positive operators, then Lat(A) =
Lat(B).

Proof. In this case A = B. The claim follows trivially.

Proposition 3.2.5. For any operators A and B on �nite-dimensional Hilbert spaces H and
K over a �eld F, the following are equivalent:
(a) Hyperlat(A

⊕
B) = Hyperlat(A)

⊕
Hyperlat(B).

(b) The minimum polynomials of A and B are relatively prime.

Theorem 3.2.6. If T ∈ B(H ) is quasisimilar to a unitary operator U ∈ B(K ) then

Hyperlat(T )⊆ Red(U).

Proof. Follows from the fact that for a unitary operator U,

Hyperlat(U) = Red(U).

Theorem 3.2.7. (von Neumann Double Commutant Theorem) Let H be a Hilbert space and
a⊆ B(H ) be a unital self-adjoint *-subalgebra of B(H ). Then the following conditions are
equivalent.
(i) a = {a}′′.
(ii) a is closed with respect to the weak operator topology on B(H ).

(iii) a is closed with respect to the strong operator topology (SOT) on B(H ).

If a unital (self-adjoint) *-subalgebra a of B(H ) satisfies either of the three equivalent
conditions in above, we say that it is a von Neumann algebra. The Double Commutant
Theorem simply asserts that the double commutant a = {a}′′ of a unital self-adjoint
subalgebra a of B(H ) is always strongly closed (and hence weakly closed). That is, a
is strongly (and hence weakly) dense in a = {a}′′ . Equivalently, it says that the strongly
closed unital self-adjoint subalgebras of B(H ) are always their own double commutant.
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For convenience, we take a von Neumann algebra as a *- subalgebra a of B(H ) satisfying
a = {a}′′ . A von Neumann algebra is a unital, weakly closed and contains an abundance
of projections. If a is a von Neumann algebra, then a is generated by the projections in a.
Let T ∈ B(H ). We define W ∗(T ) to be the von Neumann algebra generated by {I,T}.
Note that

W ∗(T ) = {T}
′′
∪{αI : α ∈ C}.

From the Double Commutant Theorem, if T = T ∗, then {T}′′ =W ∗(T ) and{T}′ is a von
Neumann algebra and is therefore generated by its projections. Since the projections in
{T}′ are also in {T ∗}′ it follows that the Double Commutant Theorem has the following
reformulation.

W ∗(T ) = {T : PT = T P,∀ pro jection P ∈ {T}
′
}.

Corollary 3.2.8. Let T ∈ B(H ). Then Lat(T ) = Lat(W ∗(T )).

Proof. Since T ∈W ∗(T ) trivially Lat(W ∗(T )) ⊆ Lat(T ). On the other hand, W ∗(T )
consists of polynomials in I and T , and hence Lat(T ) ⊆ Lat(W ∗(T )). Combining these

two inclusions, equality follows. This proves the claim.

Theorem 3.2.9. Let T,S ∈ B(H ). If Lat(T ) = Lat(S) then Hyperlat(T ) = Hyperlat(S).

Proof. This follows easily from the de�nition.

Corollary 3.2.10. Let T ∈ B(H ) then Hyperlat(T ) = Lat({T}′).

Theorem 3.2.11. Let A,B ∈ B(H ). If A ∈W ∗(B), then Lat(B)⊆ Lat(A).

Proof. We know that Hyperlat(T ) ⊆ Lat(T ) for any T ∈ B(H ) since T commutes

with itself [2] that is, T ∈ {T}′ . Since A ∈W ∗(B) we have that, QPM = PM Q where

Q ∈ {W ∗(B)}′ = {B}′ ∩{B∗}′ is an orthogonal projection in {B}′ and M ∈ Hyperlat(B),
and hence PM APM = PM A, where PM ∈W ∗(A) is an orthogonal projection of H onto

M . This means that

M ∈ Hyperlat(B)⊆ Lat(B)⇒M ∈ Lat(A).

Thus, M ∈ Lat(B)⇒M ∈ Lat(A).

Remark 3.2.12. The converse of Theorem 3.2.12 is not true in general. However, if in addi-
tion, AB = BA then the converse is true.

Corollary 3.2.13. Let A,B ∈ B(H ). If A ∈W ∗(B) then Hyperlat(B)⊆ Hyperlat(A).
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Proof. This follows from the proof of Theorem 3.2.12 and the fact that Hyperlat(T )⊆
Lat(T ) for any T ∈ B(H ).

Lemma 3.2.14. [19] Let A be a nilpotent operator, p a polynomial. Then

Lat(A) = Lat(p(A)) i f and only i f p
′
(0) 6= 0.

Proof. Assume that Lat(A) = Lat(p(A)). If p
′
(0) = 0, we may assume also that p(0) =

0, as removal of a scalar multiple of the identity will not change the invariant subspaces.

Since A is nilpotent, there are an integer k (index of nilpotence) and a vector x 6= 0 such that

Akx = 0 and Ak−1x 6= 0. Then A2(Ak−2x+Ak−1x) = 0, and hence M = [Ak−2x+Ak−1x]
(the subspace generated by the enclosed vector) is contained in the kernel of A2

. Thus M is

in the kernel ofp(A) and hence p(A)− invariant [as p(A) is a linear combination of powers

of A of order 2 or higher]. It is easy to see that M is not A− invariant , contradicting the

equality assumption.

Conversely, if p
′
(0) 6= 0 , we show that A and p(A) have the same lattice of invariant

subspaces. The inclusion Lat(A)⊆ Lat(p(A)) is always true; to show the opposite inclusion,

we let M ∈ Lat(p(A)). We may assume with no loss of generality that p(A) = A+ c2A2 +

..... Since M is a sum of p(A)− cyclic subspaces, and invariance is preserved under

algebraic addition of subspaces, we may assume that M itself is p(A)-cyclic, i.e. M =

[x, p(A)x,(P(A))2x2, .....], for some vector x. It is now easy to see, by the nilpotence of A,

that Ax is a linear combination of [p(A)]kx, k = 1,2,3, .. So M is A− invariant , and hence

Lat(A) = Lat(p(A)).

Corollary 3.2.15. [19]Let A be an arbitrary operator on a �nite dimensional complex vector
space, p a polynomial. Then Lat(A) = Lat(p(A)) if p

′
(λ ) 6= 0 ∀ λ ∈ σ(A).

Proof. Every member of Lat(A) is a direct sum of invariant subspaces whose restrictions

of A are nilpotent operators plus scalar operators (primary summands). On each such

primary subspace A is λ I+N for some λ ∈σ(A)and some nilpotent N. A short computation

shows that the restriction of p(A) to the primary subspace is

p(λ )I + p
′
N +

p
′′
(λ )

2!
N2 +

p
′′′
(λ )

3!
N3 + ...........

Clearly, a subspace contained in this primary subspace is A− invariant if and only if it is

N− invariant . Therefore A and p(A) leave the same subspaces invariant p
′
(λ ) 6= 0.

De�nition 3.2.16. Let H be a Hilbert space over a �eld F. A Hilbert space homomorphism
that maps H to itself is called an endomorphism of H . A Hilbert space isomorphism that
maps H to itself is called an automorphism of H . The set of all automorphisms of H will
be denoted Aut(H ).
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Theorem 3.2.17. [19]Let A and B be operators on a �nite dimensional complex Hilbert space
H . Then Lat(A) = Lat(B) if and only if there exist a polynomial p and an invertible operator
S such that (i) p

′
(λ ) 6= 0 ∀ λ ∈ σ(A), (ii) B = S−1 p(A)S and (iii) SM ∈ Lat(A) when and

only when M ∈ Lat(A).

Proof. Let A = A1
⊕

A2
⊕

.......
⊕

Ak, be the Jordan decomposition of A, and H =

H1
⊕

H2
⊕

........
⊕

Hk, the corresponding decomposition of the space H . Then by

assumption on the invariant subspace lattices, B decomposes with respect to this decom-

position into a direct sum B1
⊕

B2
⊕

........
⊕

Bk. On each Hi,Ai is the (algebraic) sum of

a cyclic nilpotent operator and a scalar (multiple of the identity on Hi). Since Bi leaves

all Ai− invariant subspaces invariant, there exist an invertible operator Si and a scalar αi

such that SiAiSi +αiI = Bi, where Ii is the identity operator on the space Hi. Moreover

Si can be chosen to leave invariant all Ai− invariant , subspaces. For each i 6= j, if Ai and

A j have the same eigenvalue, then Bi and B j have the same eigenvalue. For we may

assume the eigenvalue for Ai and A j is 0, and so there are nonzero vectors xi and x j such

that Aixi = 0 and A jx j = 0. Thus the subspace M = [xi
⊕

x j](generated by the vector

xi
⊕

x j) is A−invariant, and hence is B−invariant. If λi and λ j are eigenvalues of Bi and

B j respectively, then

(Bi
⊕

B j)(xi
⊕

x j) = λixi
⊕

λ jx j

is a vector in M , by invariance. Therefore λi = λ j, and hence αi = α j. Thus our question

reduces to the primary case, and we may assume that the primary summand Ap of A
under consideration is nilpotent. Let Hpbe the primary subspace on which Ap acts, Sp

the direct sum of all the Si (obtained above) acting on subspaces of Hp. Let Bp be the

restriction of B to Hp, and Ip, the identity operator on (or the idempotent onto)Hp. Then

the above argument shows that Bp−λpIp = S−1
p ApSp, for some scalar λp. Since each Ip,

is a polynomial in A, we have S−1AS = B−q(A), where SS is the direct sum of Sp acting

on primary subspaces Hp, and q is a polynomial such that q(A)\Hp coincides with λpIp.

Since S commutes with each λpIp, B = S−1(q(A)+A)S = S−1 p(A)S.

To see that p
′
(0), we assume the contrary. We may also assume that A is nilpotent. For if

not, we can restrict to each primary summand, which is a sum of a scalar and a nilpotent.

Choose an upper triangularizing Jordan basis for A. Then the matrix of B with respect to

the Jordan basis would have all entries on the �rst superdiagonal (the diagonal above the

main diagonal) zero. There is a basis vector x annihilated by A, which is in the range of

A. Then the basis vector y preceding x is the preimage of x under A.Ay = x. Note that B
leaves the subspace [y] invariant, yet A does not, contradicting our equality assumption on

the lattices.

To see that (iii) holds, let M ∈ Lat(A). Then S−1 p(A)SM = BM ⊆M by the lattice

assumption. Thus SM is p(A)− invariant , and hence A− invariant by Corollary3.2.16.

If on the other hand SM ∈ Lat(A), then p(A)SM ⊆ SM thus BM = S−1 p(A)SM ⊆M ,

and M is B− invariant . So M ∈ Lat(B) = Lat(A). Conversely, if the conditions are

satis�ed, we show that A and B have the same lattice of invariant subspaces. Let be M
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an A− invariant subspace. Then SM is A− invariant , and hence is p(A)− invariant .
Thus BM = S−1 p(A)SM ⊆ M : So M is B− invariant . If M is B-invariant, then

S−1 p(A)SM = BM ⊆M , and hence SM is p(A)− invariant . Therefore M is A−
invariant by Corollary3.2.16. This completes the proof.

Corollary 3.2.18. Let A and B be operators on a �nite dimensional vector space with the
same lattice of invariant subspaces. Then S−1 p(A)S for some invertible S and some polyno-
mial p; furthermore (i) The operator S can be chosen to be upper triangular with respect to a
Jordan basis for A;
(ii) S decomposes with respect to the Jordan decomposition of A;
(iii) S induces an automorphism on Lat(A).
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4 REDUCIBILITY AND SUBSPACE LATTICES

4.1 Introduction

It is clear that reducing subspaces are generally easier to treat than arbitrary invariant
subspaces. Reducing subspaces find applications in wavelet expansion, multiresolution
analysis(MRA) in image processing and automorphic graph theory. We now discuss some
of the properties of reducing subspaces.

Theorem 4.1.1. A subspaceM reduces an operator T if and only if M ∈ Lat(T )∩Lat(T ∗).

Proof. Follows easily from the de�nition.

Corollary 4.1.2. Let T ∈ B(H ) and M be a subspace of H . Then the following statements
are equivalent;
(i) M reduces T.
(ii) M ∈ Lat(T )∩Lat(T ∗).
(iii) PM ∈ {T}

′
, where PM is the orthogonal projection of H onto M .

Theorem 4.1.3. If T1 ∈ B(H1 and T2 ∈ B(H ) are irreducible, then every operator A ∈
B(H∞,H ) that intertwines them is either zero or identity.

Theorem 4.1.4. If an operator A commutes with an irreducible operator T, then A is similar
to a scalar operator.

Theorem 4.1.5. If T ∈ B(H ) is nilpotent of nil-index n, then

Red(T ) = {{0},H }.

Corollary 4.1.6. Let T ∈ B(H ). If Red(T ) = {{0},H }, then T = αI + S, where S is a
nilpotent operator.

Bercovici etal [1] have proved that for a nilpotent operator T ∈ B(H) such that T n = 0, for
some integer n≥ 1,Hyperlat(T ) is generated by the spaces Ker(T m) and Ran(T m),m =

0,1,2, ....,n. They have also shown that Ran(T n−1) is the smallest nontrivial hyperinvari-
ant subspace and the Ker(T n−1) is the largest nontrivial hyperinvariant subspace.
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4.2 Relationship Between Hyperinvariant Subspaces and Reducing
Subspaces Of an Operator

Theorem4.2.1. Let T ∈B(H ) be a unitary operator. A subspaceM ⊆H is hyperinvariant
for T if and only if M reduces T.

Proof. Suppose that M ∈Hyperlat(T ) and let PM be the orthogonal projection of H

onto M . Then APM = PM APM for every A ∈ {T}′ . Since T is unitary and hence normal,

by Fuglede’s theorem, A∗ ∈ {T}′. Thus A∗PM = PM A∗ and hence APM = PM APM = PM A
By Corollary 4.1.2, we have that M reduces T. Conversely, suppose M reduces T. Without

loss of generality, suppose APM = PM A. Then

AM = APM H = PM AH ⊆ PM H = M .

This shows that M is invariant under A. So, if APM = PM A for all A ∈ {T}′, then M is

hyperinvariant for T.

Remark 4.2.2. Theorem 4.2.1 says that for a unitary operator T we have thatHyperlat(T ) =
Red(T ).

Remark 4.2.3. Theorem 4.2.1 can be relaxed as follows.

Theorem 4.2.4. Let T ∈ B(H ) be an isometry. If M ⊆H is such that TM = M then
M reduces T.

Proof. If TM = M then T ∗M = T ∗TM = M . This proves the claim.

Corollary 4.2.5. Let T ∈ B(H ) be an isometry. If M ⊆H is such that TM = M then
Red(T ) = Lat(T ).

Proof. This follows from Theorem 4.2.3 and the fact that Red(T ) ⊆ Lat(T ), for any

operator T.

4.3 Reductive Operators

De�nition 4.3.1. An operator T ∈ B(H ) is reductive if all its invariant subspaces reduce it.

Remark 4.3.2. Note that Red(T ) = Red(T ∗) for any operator T ∈ B(H ).

We now characterize reductive operators. That is, we give a necessary and su�icient
condition when an operator T is reductive.
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Corollary 4.3.3. An operator T ∈ B(H ) is reductive if and only if Lat(T ) = Red(T ).

Proof. By de�nition, if T is reductive, then Lat(T ) ⊆ Red(T ) = Red(T ∗). But the

inclusion Red(T )⊆ Lat(T ) is obvious. Combining these statements, we have equality.

Conversely, suppose that

Lat(T ) = Red(T ∗).

Then

Lat(T ) = Red(T ∗) = Lat(T ∗)∩Lat(T )⊆ Lat(T ∗).

Thus Lat(T )⊆ Lat(T ∗).

Corollary 4.3.4. Let T ∈ B(H ). If Lat(T )⊆ Lat(T ∗), then T is reductive.

The class of reducible operators contains the class of reductive operators. However, an

operator may be reducible but fail to be reductive. Thus,

Reductive⊆ Reducible.

Note that every self-adjoint (and by extension, normal operator on a �nite dimensional

Hilbert space) is reductive. It is also known that every compact normal operator is reductive.

It is a known fact that every operator that commutes with a non-scalar normal operator is

reducible. In fact for a normal operator T ∈ B(H ), we have that

Lat(T )∼= Lat(T ∗).

The class of reductive operators contains the class of normal operators.Thus

Normal ⊂ Reductive⊂ Reducible.

The above inclusion is strict. For instance it has been shown in[12] that not every reductive

operator in normal. Moore[15] went further and gave some conditions under which a

reductive operator is normal: that such a reductive operator T must commute with an

injective compact operator or T is polynomially compact or T is expressible as a sum of a

normal operator and a commuting compact operator.

Example 4.3.5. The bilateral shift B on `2(Z) de�ned by B(...,x−2,x−1, [x0],x1,x2, ...) =

(...,x−2,x−1,x0,x1,x2, ...)where x=(...,x−2,x−1, [x0],x1,x2, ...)∈ `2(Z) and [x0] denotes the
0− th coordinate of x, is not reductive. Indeed, M = {x ∈ `2(Z) : xn = 0, i f n < 0} ∈ Lat(B)
but M * Lat(B∗).
Theorem 3.3.4 A reductive operator is normal if and only if it has a nontrivial invariant
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subspace.
Theorem 3.3.5 Let T ∈ B(H ). If a subspace M ⊆ H is hyper-reducing then M ∈
Lat({T}′)∩Lat({T ∗}′).

Example 4.3.6. Let A =

1 0

0 1

 and B =

1 1

0 1

 acting in R2

Clearly these two operators are not similar. A simple computation shows that;

Lat(A) = {{0},span

1

0

 ,span

0

1

 ,R2}= Red(A)

and

Lat(B) = {{0},span

1

0

 ,R2} 6= {{0},R2}= Red(B).

Thus A is reductive while B is not since not every invariant subspace of B reduces B. Another
computation shows that

{B}
′
= {X : X =

α β

0 α

 ,α,β ∈ R}

and

{A}
′
= {Y : Y =

α β

γ λ

 ,α,β ,γ,λ ∈ R}

hence
Hyperlat(A) = {{0},R2}

and
Hyperlat(B) = Lat(B).

Theorem 4.3.7. [13] If A is a reductive operator then A can be written as a direct sum
A = A1

⊕
A2 where A1 is normal, A2 is reductive and all the invariant subspaces of A2 are

hyperinvariant.

Corollary 4.3.8. [7] Suppose A is reductive operator such that A = A1
⊕

A2 then

Hyperlat(A1)
⊕

Hyperlat(A2)
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and
Lat(A) = Hyperlat(A).

From theorem 4.3.7 and corollary 4.3.8 we conclude that if A is reductive and completely

non-normal ( that is, A has no normal direct summand) then Lat(A) = Lat({A}′).

Theorem 4.3.9. ([13]) If A is a reductive operator, then every hyperinvariant subspace of A
is hyper-reducing.

Corollary 4.3.10. If A is a reductive operator, then Hyperlat(A)⊆ HyperRed(A).

Corollary 4.3.10 says that if A is reductive then Lat({A}′) = Lat({A∗}′).

Theorem 4.3.11. Let T ∈ B(H ). Then HyperRed(T ) = Lat({T}′)∩Lat({T ∗}′).

Proof.

HyperRed(T ) = {M ⊆H : M ∈ Red({T}′)}

= {M ⊆H : SM ⊆M,S∗M ⊆M,S ∈ {T}′}

=
{

M⊆H :M∈Lat(S)∩Lat(S∗),S∈{T}′}
}

= {M ⊆H : M ∈ Lat({T}′)∩Lat({T ∗}′)}

= Lat({T}′)∩Lat({T ∗}′)

Theorem 4.3.12. Let T ∈ B(H ). Then

HyperRed(T ) = Hyperlat(T )∩Hyperlat(T ∗)

Proof. The proof follows from Theorem 4.3.11 and the fact that Lat({T}′)=Hyperlat(T )
and Lat({T ∗}′) = Hyperlat(T ∗), for any T ∈ B(H )

Corollary 4.3.13. Let T ∈ B(H ) be self-adjoint. Then

HyperRed(T ) = Hyperlat(T ).

Proof. The proof follows easily from Theorem 4.3.12 and the fact that self-adjointness

of T. The proof also follows from Theorem 4.3.11, the self-adjointness of T and the fact

that Lat({T}′) = Hyperlat(T ).



21

We know characterize the hyperlattice of a normal operator in a Hilbert space.

Theorem 4.3.14. [1]Let T ∈ B(H ) be normal. Then Hyperlat(T ) = {M ⊆H : PM ∈
W ∗(T )}.

Corollary 4.3.15. : Let T ∈ B(H ) be normal. Then every hyperinvariant subspace of T is
hyperinvariant for T ∗.

Corollary 4.3.15 says Hyperlat(T )⊆ Hyperlat(T ∗), for any normal operator T ∈ B(H ).

The converse is also true. This leads to the following result.

Corollary 4.3.16. Let T ∈ B(H ) be normal. Then Hyperlat(T ) = Hyperlat(T ∗).

Proof. Since T is normal if and only if T ∗ is normal, the result follows from the fact

that T ∗ ∈ {T}′ if and only if T ∈ {T ∗}′.

Remark 4.3.17. For a normal operator T, the hyperlattices of T and that of its adjoint
coincide.

Theorem 4.3.18. If T ∈ B(H ) is an invertible reductive operator, then T−1 is also reducible.

Proof. Since T ∈ B(H ) is reducible, by Theorem 4.3.8 it can be expressed as

T =

T1 0

0 T2

= T1
⊕

T2,

with respect to the direct sum decomposition H = M
⊕

M⊥, where M is a subspace

that reduces T. Invertibility of T implies that of T1 and T2. Thus

T−1 =

 T−1
1 0

0 T−1
2

= T−1
1

⊕
T−1

2

with respect to the direct sum decomposition H = M
⊕

M⊥.

Corollary 4.3.19. Let T ∈ B(H ) be invertible. If a subspace M ⊆H reduces T, then M

reduces T−1.

Proof. Let PM be the orthogonal projection of H onto M . Since M reduces T, we

have T PM = PM T By the proof of Theorem 4.3.18, T−1PM = PM T−1. This proves the

claim.
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Remark 4.3.20. From Theorem 4.3.18 and Corollary 4.3.19, we conclude that if T ∈ B(H )

is invertible, then Red(T ) = Red(T−1).

Example 4.3.21. Consider the bilateral weighted shift Tω on `2(Z) de�ned by Tωen =

ωnen+1,where n∈Z and {en} the canonical orthonormal basis for `2(Z).A simple calculation

shows that T−1
ω en =

1
ωn

en where n ∈ Z. If M = span{e1,e2, .....} then M is invariant for

Tω but is not invariant for T−1
ω .

The following result shows that taking powers of an operator T ∈ B(H ) preserves invari-

ance and reduction.

Theorem 4.3.22. Let T ∈ B(H ) and M ⊆H . The following statements are true for any
integer n > 1.

(i) I f M ∈ Lat(T ) then M ∈ Lat(T n).

(ii) I f M ∈ Red(T ) thenmathcalM ∈ Red(T n).

Proof. The proofs of (i) and (ii) follow easily by mathematical induction on n ∈ N. In

the proof of (ii), we use the fact that M ∈ Red(T ) implies that TM ⊆M and T ∗M ⊆
M .

Theorem4.3.23. LetT ∈B(H ) andM ⊆H . IfM ∈Hyperlat(T ) thenM ∈Hyperlat(T n)

for any integer n > 1.

Proof. We need to prove that M ∈ Lat(S), where S ∈ {T}′ implies that M ∈ Lat(X)

where X = {T n}′.
By Theorem 4.3.22(i), if M ∈ Lat(S) then M ∈ Lat(Sn), where S ∈ {T}′.
By mathematical induction on n ∈N , if S ∈ {T}′ then Sn ∈ {T}′,T n ∈ {S}′ and Sn ∈
{{T n}}′. By letting X = Sn, and using Theorem 4.3.22(i) once more, the result follows.
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5 INVARIANT SUBSPACE LATTICE OPERATIONS

5.1 Introduction

The main objective in this chapter is to analyse Lat(A), maps of Lat(A), f or any A∈B(H )

as far as possible assuming nothing about A beyond linearity and boundedness. All lattices

considered in the chapter will have a zero element {0} and a unit element H such that

{0}⊂M⊂H for all lattice elements M . Such a lattice is complemented if for any element

M there exists at least one element N with M ∩N = {0} and M +N = H . If M

and N are any lattice elements, we denote by [M ,N ] the set of all lattice elements P
with M ⊂ P⊂N . If each interval sublattice [M ,N ] is complemented, then the lattice

is said to be relatively complemented. A lattice is distributive if (M +N )∩P = (M ∩
P)+ (N ∩P) for all elements M ,N ,P, and modular if this identity holds whenever

M ⊂P. A lattice L is said to be the direct sum of sublattices L1 and L2 if each

5.2 Implementation of the criterion

The algorithm provided in [8] resolves the problem of existence of a common invariant

subspace when one of the matrices has distinct eigenvalues (requiring in the process a �nite

number of rational computations). Our results lead to a plausible strategy for all matrices,

including the opportunity of providing a basis for the common invariant subspace. As in

[8] use will be made of the following criterion for the existence of a common eigenvector.

Theorem 5.2.1. [21]: Let X ,Y ∈Cp×p and

K =
p−1

∑
m,l=1

[Xm,Y l]∗[Xm,Y l],

where [Xm,Y l] denotes the commutator XmY l−Y lXm. Then X and Y have a common eigen-
vector if and only if K is not invertible.
Consider now the following plan for discovering a k−dimensional (1 < k < n) common in-
variant subspace of given operators A,B ∈Cn×n :
1. Find s such that A+ sI and B+ sI are invertible.
2. Compute X = (A+ sI)k,Y = (B+ sI)k and K as in the theorem above.
3. If K is invertible, A and B do not have a common invariant subspace of dimension k
4. Otherwise, compute bases for the intersections of eigenspaces of X and Y.
5. If the intersecting eigenspaces of X and Y contain a non-zero decomposable vector, then A
and B have a common invariant subspace of dimension k. Otherwise, no such subspace exists.
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6. Find a decomposable vector belonging to an eigenspace intersection of Step4 and factor it;
its factors form a basis for a common invariant subspace of A and B. Steps 1to3 of the above
plan are straightforward. Steps2 and3 can be computationally expensive, depending on n
and k. Step4 can be performed using [8,Algorithm12.4.3]. Steps5and6 can be theoretically
and practically challenging; we will return to them after the following illustrative example.

Example 5.2.2. Let us consider whether

A =


3 −3 1

0 4 0

−1 −3 5


and

B =


−1 −3 5

−2 6 2

−7 −1 11


have a common invariant subspace of dimension k = 2 or not. The eigenvalues of A are all
equal to 4 and of B are 4(double) and 8.We compute the second compounds of A and B to be:

X = A2 =


12 0 −4

−12 16 −12

4 0 20


and

Y = B2 =


−12 8 −36

−20 24 −28

44 −8 68


The matrix K of Theorem 5.3.1 is a scalar multiple of


1 0 1

0 0 0

1 0 1


and thus it is not invertible. Using Matlab’s null routine (which computes orthogonal bases,
either rationally via the echelon form or via the singular value decomposition), we �nd that

Null(X−16I) = span{α,β}
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where α =
[
−1 0 1

]t
,β =

[
0 1 0

]t
. We also �nd that

Null(Y −16I) = span{µ}

where µ =
[
1 −1 −1

]t
. Also, we �nd that

Null(Y −32I) = span{δ}

where δ =
[
1 1 −1

]t
.

Since µ,δ ∈ span{α,β} we have that µ,δ are common eigenvectors of X and Y.Moreover,µ
and δ are decomposable as µ = x1∧ x2 and δ = x1∧ x3 where

x1 =
[
1 0 1

]t
, x2 =

[
0 1 −1

]t
, x3 =

[
0 1 1

]t
.

It follows that span{x1,x2} and span{x1,x3} are common invariant subspaces of A and B.
Notice also that, when k = 1, A and B have a common invariant subspace of dimension 1
namely, the span of x1 which is a common eigenvector of A and B.
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6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

The concept of the lattices of bounded linear operators on Hilbert Spaces plays a cen-

tral role in the study of the structure and behavior of these operators. It tends to ex-

ploit the gaps that the study of the properties of an operator has always failed to ad-

dress. For example, during our study, we have been able to realize that for a unitary

operator T, Hyperlat(T ) = Red(T ). It has also been proved that for a normal operator

T, Hyperlat(T )⊆ Hyperlat(T ∗), and the following inclusions hold:

Normal ⊂ Reductive⊂ Reducible.

It have also been shown that:

1. If P and Q are metrically equivalent projections, then Lat(P) = Lat(Q).

2. If A and B are metrically equivalent positive operators, then Lat(A) = Lat(B).

3. An operator T ∈ B(H ) is reductive if and only if Lat(T ) = Red(T ).

Reductive⊆ Reducible.

4. It has also been shown that for T ∈B(H )HyperRed(T )=Hyperlat(T )∩Hyperlat(T ∗)

5. Also for T ∈ B(H ) be self-adjoint. Then

HyperRed(T ) = Hyperlat(T ).

6.2 Recommendations

In our study we have shown that similarity and hyper-quasisimilarity preserves non-trivial

hyperinvariant subspaces. We would like to recommend research that would determine on

whether similarity, almost-similarity and metric equivalence preserve hyper-reducibility

or non-trivial hyper-reducing subspaces.
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