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ABSTRACT

Understanding the relationship between financial variables is an essential part of managing
financial risk. Such relationships in the context of risk management are of sensation
interest in the modern world in which modeling risk has become a popular idea. The
2007/08 financial meltdown has accentuated the importance of this because it showed that
with a distant probability of an event happening, say 0.01%, it should not be overlooked.
The existence of dependency between the two variables is underscored in their established
joint distribution. Conventional financial models intensely depend on a relationship to
elucidation the dependence that exists between tow variables. Nevertheless, as a means of
measuring dependence, correlation entirely defines the dependence structure for normal
distributions. This is more so in the case of elliptical distributions as opposed to other
classes. Even within elliptical distributions, correlation remains delicate because it is easily
distorted by outliers.

One of the biggest shortfalls of current financial models is in their assumption and over-
simplification that leads to false parameterization. Many financial models assume that
asset returns and risk variables follow normal distribution and as such pay a�ention the
judiciously possible (central moments), undermining the value of what is remotely probable
(extreme events). Yet, the financial crisis showed that remote events are understated. Thus,
this paper focuses on copula model- that characterized the dependence structure across
the entire distribution. Also, copulas have the advantage of being able to portray more
information concerning the dependence structures between the two variables because
they are distributions themselves.

From the viewpoint systemic and tail risk, the copula is motivating. In this regard, it
enables us to disengage the dependence structure (linked with systemic risk) from the
marginal distribution (linked with tail risk) and archetypal both distinctly with a bigger
degree of precision. Fundamentally, copulas act as magnifying glasses that permit us to
examine and model financial variables with greater precision- in this case the connections
between systemic and tail risk
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1 INTRODUCTION

1.1 Background

Globally, actuaries are at the forefront in providing/building financial models that are used
to mitigate risks in various fields especially in the financial service industry in an a�empt
to make the global financial systems safer. In this regard, actuaries have become more
involved in managing risk; more recently integrated risk management (IRM) has been the
focus of many firms’ especially insurance, pricing securities, and risk management. To
a�ain e�icient in risk management, the actuaries ought to respond to the critical question
of whether the correlation structure dangerous or not. In case it is found to be dangerous,
the degree dangerous-ness ought to be established based on the situation. In this respect,
the, tools used quantify, carry out comparison and contrast, and also to model the existing
strength of dependence amongst various risks become very crucial.(Denuit et al., 2005).

Even so, the biggest challenge actuaries face when modeling risks is dependence (de-
pendency is extremely di�icult to model given its volatility and uncertainty). In modern
portfolio and risk theory, the dependency structure plays an increasingly important role
which cannot be overlooked. Unlike independence that is defined in a singular way,
dependence can be explained in many ways leading to complicated and far less convenient
models. Risk can be defined as an event or a situation that may or may not take place,
and exposes a firm to adverse financial consequence as a result of internal and or external
vulnerabilities. Modeling of risks uses probability theory due to the probabilistic nature of
risks; for instance, in the insurance sector risk is a situation where the probability of an
event taking place is known but the intensity and time of occurrence is unknown.

Traditional financial models were anchored on the supposition of independence, and the
popular law. Not so long ago, an emergence of complex financial products has stirred the
interest on modeling dependency. Modeling dependence involves the rigorous processes
of analyzing dependency between di�erent risks faced by a company and postulating
a credible model. In the insurance industry, dependency is present in all aspects from
portfolio structure, capital allocation, pricing, and reserve calculations. Insurance is the
act of transferring (totally or partially) the economic impact of risk to another party for
an agreed amount of premium.

One of the biggest shortfalls of current financial models is in their assumption and over-
simplification that leads to false parameterization. Many financial models use or assume
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a Gaussian process because of their desired tractable properties in calculation. In reality,
many loss distributions are skewed, non-linear, and heavy tailed. Additionally, asset
returns are not Gaussian and this presents a problem. The problem is unit-dimensional
financial systems are not Gaussian while their multivariate counterparts are Gaussian. It
has taken the market time to realize how best to use and model multivariate financial
models, and for the first time, copula-based modeling provide a rigorous and intuitive
concept that adequately addresses the fundamental important issue of dependence at the
heart of financial products.

The reminder of this article is structure in the following order. The reminder of section 1
explains the problem or objective, hypothesis, and justification or limitation of the study;
in the part marked section 2 there is a review of theoretical and empirical texts; in the
part 3 we examine a relationship between copula and dependence measures; Section 4
analyses the result based on numerical results of data from financial data. The last section
5 converses the experimental outcomes and makes a conclusion.

1.2 Statement of Problem

The main problem that this paper seeks to address is; finding a way to understand tail
and systemic risk. Such a relationship would help improve current financial models. As
aforementioned, most of the existing financial models used in finance industry fail to
explain the extreme dependence. This mistake in the context of risk management (risk
management focus on central moments over tail events) is very costly because these tail
risks can make or break a company; it’s the unknown unknowns that hurt every time.

Over the last ten years, large and well-respected financial institutions have experienced
failure in the face of tail risks, revealing the inadequate protection provided by current
practice. To exemplify this, the recent financial crisis (2008), illustrated the devastating
e�ect that tail risk have on a company. In the face of a systemic crisis, a resilient financial
model can provide strong line of defense against failure.

This thesis proposes using copulas to model the correlation between the tail risk and
systemic risk. Sklar (1959) stated that copulas are the best probability tools for separating
the joint distributions into marginals (component associated with tail risks)and the corre-
lation component (o�en related with systemic risk). Moreover, according to Schweizer and
Wol� (1981) the copula approach is invariant whereas its margins are changeable at will.
Consequently, this means it is the copula that e�ectively takes into account those aspects
of the joint distribution that are proved to be invariant when subjected to increasingly
strict changes.
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Furthermore, copula is suitable for modeling Tail Risks and Systemic Risks because it
focuses on modeling the complete dispersal instead of just the fundamental moments.
Even so, the selection of copula function is important because one must look at the
correlation, marginal distributions, tail dependence, and asymmetry/symmetry of the
events to be modeled. For instance, assume that Λ represents a prospect that a given
risk is great because the other is also great. Bouye et al. (2000) contend that Gaussian
copula extreme levels are asymptotically independent for ρ 6= 1, i.e. λ = 0 for ρ < 1
while their counterpart student copula extreme levels are asymptotically dependent for
ρ 6=−1".Therefore, results are governed by the choice of copula family. In this article, we
adopt previous approaches to calibrate copula based on assumptions and historical data

1.3 Objectives

The objective of this research study is twofold: first we will show that the copula function
is a powerful tool because it focuses on modeling the distribution in its entirety than just
focusing of the essential moments of the random variables. Secondly, we will examine the
simulation and estimation of copula functions, provide examples where necessary, and
outline the theoretical and computational di�iculties when dealing with copula and large
data sets.

1.3.1 General objectives

The expansive objective of this study is to define a suitable copula that e�ectively describes
the dependence arrangement between the tail risk and the systemic risk in the financial
markets.

1.3.2 Definite objectives

Some of the define objectives for this study are;

i. To fit marginal distributions to the tail and systemic risk in financial returns

ii. To fit di�erent copulas to the tail and systemic risk using the marginal distributions
obtained.

iii. To investigation the appropriate of the copulas in order to establish the best copula
that fits the data

1.4 Hypothesis

This study proposed the null hypotheses that; for a typical financial data,



4

i. The reported tail and systemic risk can be fit to individual marginal distributions

ii. There exists dependence between the tail and systemic risks that can be modeled
using copulas

iii. Di�erent copulas represent the tail and systemic risks dependence to di�erent extents
and therefore some copulas can be considered to explain the dependence be�er than
others.

1.5 Justification of the study

This study sought to find a suitable explicit copula that can be used to explain the relation-
ship between tail and systemic risks and therefore would be useful for further research in
trying to find expected tail risk and systemic risk from past financial information.

1.6 Limitation and Scope of the study

This study focuses on particularly on the financial sector, specifically the financial markets
which a�ects the two main sectors the insurance and banking industry. Even so, this
research can be applied to other financial industries particularly the financial markets.
The main objective of the research is to establish a connection between the tail risks and
systemic risks incurred by financial markets. For this reason, the study was not restricted
geographically. Therefore, the concept of this research can be applied anywhere in a
financial se�ing as well as any other non-financial sector. Nonetheless, researchers should
be wary of the di�erence in the di�erent financial sectors as a result of di�erent risks
experiences. To exemplify the relationship between the tail risks and systemic risks, this
investigation considered data from the global financial market in which the methodology
was applied.

The first challenge experienced in the study was determining and defining of the tail
risks. An ideal definition of the tail risk for the study is the statistical probability that
represents the least likely outcome. However; in practice it is quite di�icult to ascertain
this exact probabilities and as such most financial companies use the normal (bell-shaped)
curve to rank risks. Secondly, data used was retrieved from initial estimates of the risk
amount because it is di�icult to get the actual/ revised amounts because the revision
occur a�er the financial companies have accessed the impact of the risk at a future time.
Nonetheless, the aim of this research is to carry out an empirical investigation of the
existing connection between systemic and tail risk based one on the initial observation of
risks; thus the initial estimates were useful in establishing the relationship between the
risks.
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Moreover, it is imperative to appreciate that the research did not put into consideration
any human error that may have been present in the data entry stages and as such the
model may be subject to parametric errors.
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2 LITERATURE REVIEW

2.1 Introduction

The existence of dependence among random variables is indicated through joint distribu-
tions. Therefore, the relations of dependency between variables X and Y is wholly defined
by their shared dispersal function F(x, y). The concept of dependency is widely used
in actuarial mathematics particularly in measuring and modeling risks in the insurance
industry. McNeil et al. (2005) asserted that it is very important to correctly account for
all aspects of dependencies and model them in case of measuring or aggregating risks.
However, unquantifiable uncertainties will always exist, and traditional risk management
approaches are not adequate.

Embrechts et al. (1999) stated that although quantitative methods are used most o�en
in risk assessment, their usefulness wanes in the realm of tail risk management. This is
particularly pertinent in the perspective of contemporary risk-based solvency and capital
schemes, which among many others may include as the Basel requirements and Swiss
Solvency Test. As mentioned, oversimplified assumptions or oversimplified models used
in the traditional financial models lead to catastrophic losses for a financial company.
To exemplify this, the Basel Commi�ee on Banking Supervision assumes implicitly that
various types of losses are seamlessly dependent; this is not always the case.

Various models have been proposed to model the interaction as well as the relationship
between two variables. Although not a new concept, the copulas are a powerful instru-
ments used by risk managers because they are well-matched with univariate elliptical
financial modeling. Not surprisingly, this method has received a lot of a�ention from the
field of insurance risk management particularly when modeling dependency. This chapter
reviews the role of copula in modeling dependency in the financial industry. In addition,
it provides a broad review of previous literature systemic risk and tail risk models and
measures.

2.1.1 Theoretic Literature Review

The notion of dependency is central to many statistical models and and quantifies the
extent of the linkage in two random variables involved. Over the years, many theories
have been put forward to explain assumptions and measure the level of dependency in
statistical sense. Though the subject of many financial and statistical articles, there is a
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lot of misunderstanding in describing and distinguishing the dependence structure and
correlation of random variables (Staudt, 2010).

Most of these literatures use dependence and correlation interchangeably even though
they have di�erent meanings. Moreover, it is critical to appreciate that the correlation
figure does not completely defines the association of variables in specific cases (e.g. when
the distribution is multivariate Gaussian) otherwise information given by the coe�icient
is not enough to determine the dependency structure of the random variables (Embrechts,
McNeil and Straumann, 2002).

The focus of this study will be on two theories that that have been the focus of a number
of studies in the recent past. These theories are namely

1. the Sklars theorem (Copula theorem)

2. the Bayesian inference theorem.

The following is a review of applications of these theorems in the financial industry.

2.1.2 Sklar’s Theorem

Abe Sklar first proposed Sklar’s theorem in 1959. According to Sklar (1959), the joint dis-
tribution of n-variables contains enough evidence on the issues of dependence structure
between variables and also the marginal behavior of the individual random variables.
Therefore, the theorem recommended copula as tools for decoupling the marginal prop-
erties of the variables and understanding the dependency structure of two or multiple
variables.

In the recent, copula centered approaches have become more popular in insurance and
finance, taking over these sectors by storm. As Per Fisher (1997) asserts, Copulas play are
vital role to the statisticians because there are used for studying scale-free measures with
regard to dependence and also serve as a preparatory point for them when constructing
various families of two variable distributions.

The research make a contribution to expand the already existing the literature on risk
management and Archimedean copula modeling as the aim is to find an appropriate
copula to explain dependence between the systemic risk and tail risk in insurance. Depen-
dency modeling and extreme value theory in the financial industry did received immense
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a�ention in the recent past. Popular texts on dependence modeling using copula in finance
consist of an introduction by Embrechts et al. (1999), Joe (1997), Jaworski et al. (2010),
Trivedi and Zimmer (2005), Kojadinovic and Yan (2010), and McNeil et al. (2005).

Subsequent works showing dependency in finance include the pioneer works of Embrechts
et al. (2001), Tibile�i (2000), and Bouye (2000). A large number of contributions of copulas in
modeling extreme risks and degree of interdependence among risks/variables in actuarial
science include the works of Barne� et al. (2007), (Wang 1997), Wang (1998), and Venter
(2002, 2003).

Furthermore, some important literature concerning copula revolve around the statistical
aspect of finding the best copulas that fits the data. And to the essential real-world
dilemma some studies that su�iciently address the issue. An actuarial viewpoint is given
by Valdez (1998) while Genest and Rivest (1993) supplied a more general statistical theory
of fi�ing copulas.

An alternative strand of literature focuses on Computing with Copulas. McNeil and
Ulman (2010) and Azzalini (2010) demonstrated how to compute copula models using the
R-package. In line with the theory in Embrechts et al.(1999), several studies investigate
the theory of multivariate association and dependence in risk management; see Schmid
et al. (2010), Venter (2003), and Li (2000).

2.1.3 Bayesian Inference Theorem

The Bayesian theorem which was postulated by Reverend Thomas Bayes in 1763 o�ers
a way of systematically evaluating the complex resulting models. Financial models are
increasingly becoming complex as the financial systems become more complex. There is
need for the new sophisticated models to reveal the true magnitude of the risk insurance
company’s face. Just recently, the implementation of new regulatory work (solvency II)
demanded that insurance companies must have enough funds that match their liabilities
as well as that which will insure against credit and market risks. Such requirements
require means of quantifying and evaluating model and parameters uncertainty. The
Bayesian inference theorem presents a way that simply extent the computations to more
superior systems. Several posterior predictive simulations of the original data can be
compared with the original data set to check the model fit.

In particular, the Bayesian inference is a�ractive when evaluating insurance models
because it is exact in finite samples. According to Puustelli, Koskinen, and Luoma (2008)
it is critical to have an exact description of sample being used in order to avoid sample
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errors. Likewise Cairns (2000) stated that a benefit of the theorem is found in its ability to
incorporates prior information in the model. According to Cairns (2000), most actuarial
problems arising from the underlying model, parameter values, and the stochastic nature
of a model are solved by using a Bayesian framework. Modern techniques of Bayesian
Inference are useful in constructing models for extreme value of large claims.

Equally, Hardy (2002) used Bayesian approach in valuing equity-linked insurance contracts.
Recently, Bayesian approach has been used for evaluating equity-linked saving contracts
in the previous model to deal with estimation of model uncertainty and estimation in
in valuing equity-linked insurance contracts. Bunnin et al. (2002) while using Bayesian
Inference to price European Call Options mentioned that Bayesian approach clearly
acknowledged the risks associated to parameter estimation and model choice.

Bayesian mortality model are used in modeling parametric curves. In the same way,
Bayesian inference theorem has been applied in smoothing spline methods in mortality
modeling. Additionally, Bayesian Inference has also been used to forecast insurance
loss reserving. Bornhue�er-Ferguson reserving and credibility theories heavily rely on
Bayesian methodology, Gisler and Buhlmann (2005) proposed that the insurance practice
mathematically motivates Bayesian Statistics, that is the concept of credibility theory.
Zhang et al. (2010) recommended a this model for predicting losses in insurance industry
while Pacakova (1997) used Bayesian inference to estimate credibility premium for short-
term insurance contracts.

2.2 Empirical Literature Review

Some applications of dependence modeling are outlined in this section. But first, we look
at a general introduction to modeling dependence in financial institutions o�ered by Joe
(1997); this literature is very informative as it gives the readers an overview of multivariate
models. The multivariate normal model explained by Joe (1997) is not the best model for
insurance and financial data fi�ing because their dependency structure is not only too
restrictive but also their marginal distributions tails are too short and symmetric.

Similarly, Dhaene and Goovaerts (1996) o�ered an illustration of application of dependence
in the insurance sector; they presented a model for calculating stop loss premiums that
reflects the possibility of association between risks in the portfolio. Stop loss insurance are
designed to limit the claim amount beyond a specific value so that the insurance financial
reserves is protected against excess claim amounts that may result from catastrophic or
numerous claim amount at the same time. Based on the assumption that when a given
individual survives, all other individuals with a probability of survival greater than that of



10

the individual will survive and vice-versa, the scholars undertook to estimate the expected
maximum stop loss amounts.

Dhaene and Goovaerts (1996) extended the same issue and o�ered a statistical model for
stop-loss insurance. These ideas provide us with a means of modifying individual events of
risks in a portfolio and allow us to create pa�erns that can help deduce the distributions of
the modified risks. These authors determined the stop loss premiums using the modified
risks. This paper uses the same concept to calculate the dependence between individual
risk in the insurance and financial industry.

Nonetheless, dependencies between risks can be classified as empirical or structural.
Structural dependencies is a situation where the loss variable is determined by common
variables such as common shocks (e.g. an automobile accident that causes numerous
related claims), economic factors (e.g. inflation determines costs in various lines of
insurance), catastrophic events (e.g. 9/11 that distresses many lines of insurances such
as property, healthy, and life), and uncertain risk variables (e.g. long term changes in
mortality that a�ect life-annuities).

On the other hand, empirical dependencies refer to observed co-movements between
di�erent lines of business. These relationships do not have well-defined cause-e�ect and
occur at a macro level. What is more, such relationships are complex and data on these
relationships is o�en unavailable. However, data on their marginal distributions is richly
available. Before we discuss the applications of copula modeling, some knowledge on
literature on extreme risk and systemic risk is required. A discussion of systemic and tail
risk causes and measure in empirical literature is given below.

Systemic Risk

Whether structural or empirical dependency, they display key characteristics of systemic
risk- the possibility of movement from positive equilibrium to appositive equilibrium.
Although varying definitions have been put forward, Basias et al. (2012) o�ered a definition
that captures the essence of other disparities, they defined systemic risk as a disruption
that a�ects the course of a given financial services which is triggered by an injury of part
or an entire financial system as well as can likely cause a serious adverse impact on the
real economic performance. Ostalecka (2012) accentuates that regardless of the varying
definitions, systemic risk evolve along with new developments of the financial sector. A lot
of scholars and institutions have o�ered varying definitions of systemic risk in financial
literature, yet no consensus has been reached. Majority of their opinions resolve that more
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focus should be on consequences of systemic risk to the real economy; they unanimously
agree that current research should look at the interlink-ages or dependency between firms
in the financial industry and common exposures.

However, current causes of systemic risks di�er from those observed in the past. As
such, there is need to define systemic risk to reflect recent trends that focus on impact
of firms on the real economy. Ostalecka (2012) observed that current systemic risks
to financial institutions include poor monetary or fiscal policies, poor regulations, and
catastrophic events. However, firms in the insurance industry are less likely to su�er from
systemic risk when compared to those in the asset and banking industries. This is because
insurance firms design products that restrict access to assets under management, require
ongoing premiums, and use proactive ALM techniques. In fact, insurance firms have strict
regulations that focus on solvency which shield against insolvency whereas banks seek
return optimization, for this reason banks try to keep capital regulations at a minimum.

One notable contribution to the rich literature of systemic risk in financial, insurance and
reinsurance was made by Rudolph (2017); he o�ers a deep review of systemic risk within
the insurance industry. The scholar argues that systemic risk build up over time and the
regime switching models cannot capture the complex and higher order interaction across
many scenarios. Besides, most of these relationships not only expand exponentially but
also these variables are rarely linear. Similarly, Ostalecka (2012) contents that although
some existing models may reflect the higher volatility; they only replace extreme values
of the multivariate distribution with fat tails. Such models only make the mathematics
tractability of the model easy to compute but do not reflect the actual empirical distribu-
tion. Rudolph (2017) asserts that copula; particularly its covariance matrix reflects higher
order dependencies between variables.

Hendricks et al. (2006) in their paper provide a synopsis of general risk sources and
discussed the propagation of systemic risk. The scholars shared the opinion that existing
systemic shock models in the financial system are no longer adequate to apprehend the
spread of major disruption. Recent studies show that the increasing complexity of the
financial system structures and the diverse nature of activities in the financial sector and
so new models are desirable (Hendricks et al., 2006). They asserted that systemic risk in the
banking system and establish that bank “runs”- the decision by majority of the depositors
to withdraw their funds causes’ instability. The concern for liquidity (insolvency) in banks
is contagious in the banking sector; a self-fulfilling prophecy that a run at one bank will
cause runs in many other banks.

The consequences of systemic risk in the banking sector lead to social costs that are borne
by the nonfinancial portion of the economy; because banks will be reluctant to extend
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financial loans amid a series of bank runs. Additionally, Acharya and Richardson (2009)
suggested that public policy/regulations and high leverage positions to prevent bank runs
may in turn generate systemic risks. The burden of supervision/ regulation falls heavily
on traditional institutions when compared to non-traditional institutions such as private
equity and hedge funds (Basias et al., 2012). In hindsight, innovation is endemic in the
deregulated non-traditional institutions and as their activities become so intertwined with
global financial systems that a single demise such as the Long Term Capital Management
hedge fund has severe consequences to the financial stability.

According to Hendricks et al. (2006) such policies pay li�le a�ention to the “moral hazard”
of the firms to pay a�ention to firm risk as they engaged in high-risk projects that endanger
the financial health of the banks. Significantly, liquidity-based models that can result to
“runs” is not exclusively used by banks only, this model is relevant to hedge funds and
security firms. Basias et al. (2012) discussed systemic risk in the financial asset markets
that caused disruptions to financial markets. Hendricks et al. (2006) stressed the need
shi� emphasis from liquidity- based run models to “market gridlock” because recent
financial crises manifested themselves in financial markets rather than at institutional
level. Basias et al. (2012) propose that “disintermediation” of financial activity resulted
from growth of mutual funds and capital markets in recent decades. As a result, large
financial institutions shi�ed their activities from bank-based to market-based financial
systems that partake in issuance of stocks and bonds as well as investing on securities on
behalf of firms and households (mutual funds and pension funds).

Acharya and Richardson (2009) found that although market-based systems are superior
to bank-based models, they are vulnerable because it requires the market to be liquid/
tradability. Therefore, in the absent of liquidity (market-gridlock crisis) - investors are
unable or unwilling to buy assets and as a result market liquidity dries up and market grid-
lock takes hold (Hendricks et al., 2006). Ex post, a market-gridlock crisis is characterized
by a several investors simultaneously halting trading activities in an a�empt to protect
capital and reduce losses. In aggregate, the combined actions of such investors paralyze
and eventually stop financial activity. An illustration of the aforementioned action was
experience in the periods leading to the 1987 stock market crash.

Additional discussion on sources of systemic risks caused by market-based models is
o�ered by Minsky (1977). Both papers propose that some changes macro-economic
conditions can open new profitable investment opportunities which in turn a�ract capital
facilitated by investors. However, a�er sometime profits begin to run out and prices fall
stimulating creating panic as investors cut o� credit. Another source of systemic risk in
financial market is clearance and se�lement. Hendricks et al. (2006) found that clearance
and se�lement mechanisms put a strain to investors who hedge across di�erent market;
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this is because the urgency to transfer large cash can create gridlock in payment systems.
This situation is exemplified by the failure of the Gemant bank- Hersta� Bank.

Basias et al. (2012) paper emphasis the need to expand systemic risk models to incorporate
potential endogenous variables created by current trends. New trends like gradual dereg-
ulation of markets, ongoing financial innovation, and disintermediation make financial
systems more vulnerable. Smaga (2014) echoed the same sentiments when they analyzed
the term systemic risk and pro-cyclicality in view of the 2007/2008 financial crisis that
wronged. He recommends a philosophical approach of systemic risks that combines the
process of building up of negative externalities (imbalances) towards their materialization.
Smaga (2014) acknowledges that when dealing with systemic risk, researchers must incor-
porate the aspect of uncertainty of occurrence and timing of the events. The model consist
of four important elements namely (1) shock, (2) channel of contagion, (3) institutions
a�ected, and (4) structural vulnerabilities.

Equally, Allen and Carle�i (2011) formulated six classes of systemic risk viz.; (i) conjoint
exposure to the drop in the price of assert, (ii) contagion/ domino e�ect, (iii) currency
mismatch, (iv) assets bubble, (v) multiple equilibrium panic, and (vi) sovereign debt.
Systemic risks vary considerably because it can originate within or outside the system
and can be endogenous or exogenous. Sco� (2012) argued that contagion, correlation,
and connectedness are key features of systemic risk that aid the distribution and increase
the level of risk. Anand et al. (2013) arrived at a similar conclusion and found that many
financial systems are robust but fragile. Even with diversification at micro-levels, the
probability of systemic risk is still very high due to correlation that amplifies contagion
and shock e�ects.

Hitherto, construction of systemic risk measures followed two approaches bo�om-up or
top-down. The bo�om-up approach emulates the portfolio approach to assign systemic
risk measure whereas the top-down approach utilizes historical behavior and time series
data to arrive at a quantitative measure (Chan-Lau et al., 2007). Danielsson et al. (2005)
points out that systemic risk measures are more theoretical in nature and it is impossible
to fit the models to real market data. Moreover, there is lack of su�iciently large datasets
due to shortage of financial data in crisis periods.

Eisenberg and Noe (2001) devised a mechanism to measure systemic risk in complex
financial systems. They examined the cyclical obligations and inter-linkage in financial
institution and proposed a model that used clearing vectors. The clearing vector helps in
used to calculate the amount of a firm’s debt as dependent/interlinked to other firms. A
simulated sequential default algorithm is used to compute the clearing vector- the neutral
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measure of systemic risk. This systemic risk measure is based on how many ‘waves’ of
induced default a system has before it fails. However, a shortcoming of this model is that
it does not allow true dynamics (clearing for more than one date).

Several probability distributions measures of systemic risk have been put forward, most
of these measures are direct because they employ the joint distribution of negative
outcomes of SIFI. What is more, most of these models are a-theoretical and are used
to provide estimates of correlated losses. Examples of probability distribution systemic
threat measures include the Marginal anticipated loss (MES) of Acharya et al. (2010), the
monetary system’s of many variables density (BSMD) function suggested by Segoviano
and Goodhart (2009), the conditional value at Risk (CoVaR) suggested by Adrian and
Brunnermeier (2011), instability in the monetary system approach method presented by
Kritzman and Li (2010), and option implied probability of default (iPoD) of Capuano (2008).

Of these models, the most conspicuous are the conditional value at threat measure that is
suggested by Adrian and Brunnermeier (2010) and the Marginal expected shortfall (MES)
of Acharya et al. (2010). Adrian and Brunnermeier (2010) model measures the systemic
importance of firm A and distress in firm A given that another firm B is in distress. On
the contrary, Acharya et al. (2010) model uses the marginal expected shortfall to quantify
a single firm’s contribution to total systemic risk; and arrived at the conclusion that firms
with higher MES contribute more to systemic risk.

Nevertheless Basias et al. (2012) a�er employing model risk analytics points out the
empirical methods (the proposed statistical systemic risk measures) do not provide con-
sistent signals to legislators. They investigated the model risk when calculating the
marginal expected shortfall and the conditional value at risk measures using of daily
returns for a sample of 92 large financial institutions. The models are subject to high
degrees of parameter uncertainty and concluded that systemic risks using these models
are undependable.

2.2.1 Tail Risk

The global financial crisis rekindled the debate on tail risk and tail dependency both within
the academic world and the financial service industry. However, interest in tail risk has
been an interesting area of research since academia’s proved that market returns violate
the normality assumption. Currently, the concept of tail risk has found a niche in hedge
funds. This o�ers the liquidity and enhances the e�ectiveness of the monetary markets.
Nevertheless, Hedge-funds are exposed in a structural manner to tail risk and in times of
crisis they amplify market volatilities and financial risks on the global economy.
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Almeida and Leal (2016) defined tail related risk as the likelihood of tremendously large
damages in portfolio returns. Subsequently, every investor and fund manager fears the
possibility of their portfolios incurring extreme large losses. Nonetheless, some early
studies by Rietz (1988) and Barro (2006) revealed that positive relationships exist between
portfolio returns and tail risk; this implies that portfolio returns increases when tail risk
increases. Still, many empirical findings show that o�loading tail risk comes at the cost of
lower portfolio returns. There are many ways to measure tail risk, which include using
option prices, using cross-section of returns, and stochastic discount factor approach and
risk-neutral information.

The first literature on tail risk dates back to the early 1960s when Mandelbrot (1963)
challenged the assumption that financial returns followed a Gaussian distribution. He
applied power law to show the skewed distributions of financial returns. Consistent
with Mandelbrot’s argument, Fama (1963) assessed that the abrupt price movements
experienced in certain markets do not follow the usual normal distribution. Bla�berg and
Gonedes (1974) examined the earlier studies and suggested the students (t) distribution
to account for the fat tails in asset returns.Other subsequent studies just to mention a
few Akgiray and Booth (1988), Janse and De Vries (1991), and Hols and De Vries (1991)
confirmed that the distribution of returns is asymmetrical at the tails.

In light of this important development, economists have proposed di�erent measures
(distributions) to capture the tail returns/risks. Among them is downside deviation as
an alternative to the standard deviation and beta measures of the traditional Gaussian
distribution. Still, the use of this measure was disputed because it does not consider the
full distribution of financial returns. The Value at Risk (VAR) measure advocated by Beder
(1995) was and is still widely accepted and used by policymakers. Yet as mentioned earlier,
the VAR measure has some drawbacks; Artzner et al. (1999) established that the measure
is not coherent.

Despite the flaws many policymakers used VaR as a measure of downside risk exposure
until the collapse of LTCM in 1998 when researchers began to criticize it as inaccurate. Li
(1999) proposed a new approach based on skewedness and kurtosis in addition to volatility
were proposed to estimate VaR. Farve and Galeano (2002) used a similar approach when
they developed the Modified Value at Risk. Likewise, Rockafella and Uryasev (2000) came
up with another measure called the expected shortfall also known as Conditional VaR
(CVaR). When Alexander and Baptista (2004) compared VaR and CVaR, they proved that
CVaR is more e�ective. In a similar approach, Agarwal and Naik (2004) showed that the
mean-variance approach underestimates the le�-tails and that the CVaR measure is more
resourceful.
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Bollerlev and Todorov (2011) employed time series analysis which yields the cross-sectional
approaches for estimating tail risk. They investigated this model using high-frequency
data from S & P 500 futures in estimating model-free index of investors fear. The scholars
reached the conclusion that investors who take on more risks are compensated for tail
events. However, their definition of tail risk varies from the above-mention one, for
them tail risk is the jumps in asset prices. Distaso et al.(2009) used quantile regression
investigated the link between systemic crisis and tail risk in hedge funds. They established
that tail inter-dependencies are higher in times of distress.

There is a growing interest in quantitative theories in particular the application of Extreme
Value Theory (EVT) - that appears to o�er accurate measures of extreme risks. Bali (2003)
and Gençay and Selcuk (2004) found that EVT models not only outperform traditional VaR
models but they give be�er estimates of tail risk. The implication of these findings is that
the standard VaR methodologies can be improved by exploiting EVT. This is demonstrated
by Kelly and Jiang (2014) who used extreme value theory and suggested a global tail risk
measure for common fluctuations; this approach uses to estimate lower tail. They used a
dynamic power law structure that takes into account systematic tail risk and asset specific
tail risk and demonstrated that tail risk has strong prognostic power for portfolio returns.

Santos (2015) crated a Hedge Fund Tail Risk measure by extending the extreme value
theory to incorporate a other factors that controls for tail situations, this measures is
superior to the one o�ered by Kelly and Jiang (2014). More recently, Almeida et al. (2016)
using stock returns proposed a novel model of estimating tail risk that incorporates risk-
neutral information. One notable advantage of this model is that it precludes the use of
option data.

In addition to tail risk, scholars have shown an interest in tail dependence and time-
varying tail distributions. The copula theory has received a lot of a�ention because of its
e�ectiveness in capturing di�erent pa�erns of tail dependence. Pa�on (2006) used copula
theory to study the correlation between exchange rates during depreciations and during
appreciation. Equally, by conditioning variables using Joe-Clayton copula, Michelis and
Ning (2010) considered the dependence between exchange rates and stock returns.

Besides copula, Markov switching processes have been used to examine time-varying
tail distributions. For instance, Ballio et al. (2007) and Litzenberger and Modest (2008)
applied models of Markov regimes to determine time varying exposure in varying market
conditions. Researchers like Brown and Spitzer (2006), Bacmann and Gawron (2004), and
Distaso et al. (2009) have also scrutinized tail dependency in hedge funds. These studies
observed time-varying tail dependency in the structures of hedge funds and concluded
that normality assumption is not appropriate for hedge funds.
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2.2.2 Copula Models

The application of copula theory to risk modeling has increased because copula models
take into account the dependency between individual risks when aggregating them (Joe,
1997). In addition, copulas models capture the correlation between extreme events, thus
replicating the probability of sporadic events buildup. This is because disruptive events
do not just happen as a result of short, sharp shocks but rather are drawn out over long
periods when disconnected risks become connected over time via intermediate linkages.
Thus, copulas are robust mathematical tools to model such dependencies. Notably, the
Norma copula is a benchmark model for many financial applications. However, massive
evidence has been cumulated against the Normal copula, see Nelsen (1999).

The natures of copula application vary from risk management, financial markets, derivative
contracts, and portfolio decision problems. Nonetheless, the pioneer users of copulas
in finance were the field of risk management. In risk management, the challenge is to
estimate VAR and probability of large losses (tail events). Cherubini and Luciano (2011)
and Embrechts et al. (2000) are just a few of researchers who studied portfolio value at
risk using copula models. Li (2000) proposed Gaussian copula models in pricing of credit
derivatives specifically to price collateralized debt obligations (CDOs). His model gained
wide-spread popularity in correlating associations between securities. The mathematical
elegance in Li’s model allowed complex investments like mortgages to be correctly priced.

Others like Embrechts et al. (2003) and Bouye et al. (2000) pioneered the use of copula
to measure dependencies in financial markets. These scholars were interested on the
idea that non-normal joint distributions could be used to estimate portfolio shortfalls.
Rosenberg and Schuermann (2006) suggested the use of copula to solve integrated risk
management problems that are considered jointly. Copula is also used to model portfolio
decision problems; determining the correct weights that maximize expected returns.

Pa�on (2004) used copula (the multivariate distribution of assets) to solve the bivariate
equity portfolio problem. Using the same approach Hong and White (2005) used copula to
determine the weights of eleven equity portfolios. Other notable uses of copula in finance
include studies by Kang (2007) who examined the dependence structure of hedge funds
and Zimmer (2012) who explore the role of copula in the recent housing crisis.

Regarding systemic risks, copula-based dynamic models are proposed to estimate the
measures of systemic risk. Oh and Pa�on (2016) employed a copula model to probability of
individual firm distress as well as the joint probability of distress (systemic risk measure).
Recently, vine copulas have been proposed to model the complex interdependence between
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financial institutions due to their flexible structure that overcomes the limitation of copula
in higher dimensions. Such studies include works by Aas et al. (2009) who tipped the
use of vine copula in finance and insurance. A similar study used vine copula model to
analyze interdependencies between di�erent borrowers.

On tail dependence, Bha�i and Nguyen (2012a) modeled the dependency structure of
international stock markets using extreme value theory as well as time-varying (dynamic)
copula. Nguyen and Bha�i (2012b) employed semi-parametric copula to illustrate the
relationship between stock markets and oil prices. Likewise, Naifar (2012) investigated
dependence in presence of jump-risk between equity returns, risk premium, and volatility.

Taking into account the conclusions reached on this topic, this paper focus on co-movement
of tail risk and systemic risk using a non-simple correlation analysis: the copula approach.
Per Staudt (2010) copula are “powerful mathematical tool for modeling the joint distri-
bution of simultaneous events”. In the context of systemic and tail risk, the copula is
motivating because it permits us to decouple the dependence structure (that which is
associated with systemic risk) from the marginal distribution (that which is associated
with tail risk) and model each one distinctly with more degree of accuracy. Staudt (2010)
clearly argues that copula are critical in understanding higher- dimension dependence
due to their invariant nature using strictly increasing transformations of random variables.
Likewise, Schuermann (2006) pointed out that copula are especially useful when dealing
with financial information because it lets us examine tail dependency.

As mentioned, this article acknowledges that for financial appliances the model con-
struction should include strong dependencies between extreme tail events (losses) in
place of extreme gains. Staudt (2010) states that financial markets are described by this
e�ect, therefore, simple Archimedean copulas specifically Gumbel’s and Clayton’s that
e�ectively take into account asymmetric tail dependency is used to evaluate tail risk and
systemic risk in this case. The Gumbel copula takes into account upper tail dependence
whereas the Clayton Copula takes account of the lower tail dependence. In addition, this
paper includes the benchmark Gaussian Copula- symmetric with tail independence- as a
comparative estimate to the other two copulas.

2.3 Conceptual Frame work

As mentioned earlier, the focus of this study is to examine the association between systemic
risk and tail risk using copula. This involved obtaining the marginal distribution of tail
risk and dependency structure of systemic risk. Copula allows us to predict each one
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di�erently with a bigger degree of accuracy in order construct a resilient financial model
that takes into account the correlation between systemic and tail risk.
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3 Copula Models for Tail and Systemic Risk

3.1 Introduction

Kort (2007) asserted that the association among more than one random variable is com-
pletely determined by their joint distribution function. Currently, the most popular tool
for modeling dependency is the correlation coe�icient. But correlation being among the
universal concepts in financial theory, correlation is also taken the wrong way in most
literature (Embrechts et al., 1999). Per Artzner et al., (1999), the widespread assumption
and use of the Gaussian distribution led to the interpretation of dependence as correlation.
This misunderstanding stems from the use of correlation in literature to imply dependency.
For instance, Modern portfolio theory pioneered by Harry Markowitz (1969) assumes that
asset returns follow Gaussian distribution. However, this is but only one of the canonical
measures of dependency in the field of multivariate joint distributions.

Mathematically, measures of dependency provide a solution to the complicated nature of
dependency in the bivariate case. Thus the main task is to construct multivariate function
which is dependable with its corresponding marginal function and correlations (Embrechts
et al., 1999). Over the last decades, di�erent distributions have been proposed to replace
the normality assumption because empirical research revealed that distributions of actual
financial data is rarely normally distributed and as such, the correlation coe�icient became
inadequate in modeling dependency (Embrechts et al. 1999).

3.1.1 Linear Correlation

Pearson’s correlation coe�cient

This correlation coe�icient determines the degree of dependency (correlation) amid two
linear variables. It is only a reasonable measure when the distribution of risk variables is
bivariate normal. A correlation of +1 indicates positive dependence (rise or fall together), -1
implies negative dependence (one rise and the other falls), and a zero correlation suggests
the risk variables are independent (Joe, 1997). The correlation measure among X and Y is

ρ(X ,Y ) =Cov(X ,Y )div
√

VarX×VarY (3.1)
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The interpretation of linear correlation to more than two variables is forthright; the
summary of the variance-covariance matrix vector yield the corresponding correlations.
The acceptance of the linear correlation is because of its ability to o�er straight forward
calculations.

3.1.2 Rank correlation

Spearman’s rank correlation

Assumed two indiscriminate variables X and Y with marginal distributions G1 and G2 in
that order and joint distribution F, then, the Spearman’s rho measure is specified as:

ρs(X ,Y ) = ρ(Fx(X),Fy(Y )) (3.2)

(Schweizer and Wol�, 1981)

Kendall’s rank correlation

Equally given (X1,Y1) and (X2,Y2) pairwise independent random variables with joint
function F, the Kendall’s tau coe�icient is specified as:

τ = prob[(X1−X2)(Y1−Y2)> 0]−prob[(X1−X2)(Y1−Y2)< 0] (3.3)

(Schweizer and Wol�, 1981)

Staudt (2010) suggested that to overcome the problem of outliers, rank dependency
coe�icients like Kendall’s tau and Spearman’s rho are suitable because it works on ranks
of the data instead of using the nominal values. Embrechts et al. (1999) emphasized that
while the Pearson’s linear coe�icient only determines the linear relationship, both rank
correlation measures can quantify the amount of monotonic association between binary
set of random variables. Both Spearman’s rho and Kendall’s tau are symmetric measures
of association that take values between [-1, 1].

And unlike linear correlation measure, a value of zero (for independent risk variables) in the
case of rank measures does not automatically suggest unconventionality. Additionally, it
has been used in cases of nonlinear relationship and are invariant to some transformations
such as the natural logarithm. The invariant property of rank correlation is very useful
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in modeling probabilities; thus rank correlation (gives a way of fi�ing copula to data)
have a natural place in copula mathematics. Hitherto, it is not as easy to compute linear
correlation as rank correlations since they are not moment-based correlations (Joe, 1997).

3.1.3 Tail dependency

The measures of tail relationship determines the level of association that exist in extreme
tails of the joint functions (i.e. measures any co-movements in extremes of the distribution
of a pair of random variables). Extreme tail association is useful when examining extreme
tails of a set of risk variables G and H that exhibit no correlation (Kort, 2007).

However, it is important to understand that tail dependency is not the same as dependency
and it is possible for two risk variables to be dependent but exhibit no dependence in their
extreme tails. In situations of continuous marginal functions, extreme relationship amid
the two risk variables can be measured using the copula approach due to its invariant
property under severely increasing transformations (Embrechts et al. 1999). Staudt (2010)
claimed that the tail dependence is a good alternative that measures the systemic risk
between the risk variables."An interesting result from the tail dependence statistic shows the
normal copula lack tail dependence".

Upper tail dependency

The measure of extreme upper association between binary random variants W and X with
cumulative densities Y and Z respectively is shown to be:

λU = Limu→0(Prob[X > Z−1(u)/W > Y−1(u)]) (3.4)

as long as a limit Λ∃[0,1] exists.

If Λ ∈ [0,1], then the two variants M and N are asymptotically related (in the upper ex-
treme) otherwise when λ = 0 it is said they are asymptotically non-dependent (Embrechts
et al. 1999).

Lower tail dependency

Likewise, the coe�icient for corresponding lower extreme dependency is specified as:
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λL = Liml→0(Prob[X 6 Z−1(U)/W 6 Y−1(u)]) (3.5)

as long as a limit Λ ∈ [0,1] exists.

Similarly, lower tail dependence is present if and only if λ 6= 0.

3.1.4 Positive �adrant Dependence

This is a specific kind of dependence, given two random variables X and Y, X and Y are
positive quadrant dependent (PQD) if:

Prob(X > x,Y > y)> Prob(X > x)Prob(Y > y)

This means the probability that the two random variables are simultaneously large is at
least greater as it would if they were independent.

3.1.5 Limitation of correlation

Per (Bouye et al., 2000), correlation is only a sensible measure when dealing with mul-
tivariate normal distribution and when this is not the case, the following problems are
encountered;

• Its inability to comprehend the dependence in non-linear relationships- correlations
do not work with nonlinear dependencies and there is need for alternative ways for
understanding the complete joint function of the multivariate functions.

• Correlation is easily distorted by outliers

• Correlation does not exist without the variances of both variables are determined

• Correlation is not invariant under transformation of the risk variables (Kort, 2007).

• The traditional preposition that independence implies zero correlation is flawed be-
cause zilch association does not necessarily mean non-association (unless the normality
assumption is assumed)

3.2 Copula

A comprehensive meaning of the copula function was o�ered in Nelsen (1999) in which
he states that copulas are are special tools that act as a connection between the marginal
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functions to their corresponding multivariate distribution functions. A copula function
allows us to detach the marginal component from the dependency construct. A novelty
and important discovery in mathematics, in fact, Fisher (1997) noted that copulas are
important in mathematicians for two main reasons namely (a) they pave way for studying
scale-free measures of dependency, and (b) are foundation for constructing bivariate
distributions.

3.2.1 Skalar’s theorem

Skalar’s (1959) stated that if F is a d-dimensional distribution function with marginals

F1,F2,F3, ...,Fn

Then there is a d-dimensional copula C such that for all x ∈ Rd :

F(x1, ...,xn) =C(F1(x1), ...,Fn(xn))

If F1, ...,Fn are all continuous, then C is unique.

Conversely, if C is a d-dimensional copula, and F1, ...,Fn are distribution functions, then
F defined by:

F(x1, ...,xn) =C(F1(x1), ...,Fn(xn))

is a d-dimensional distribution with margins F1, ...,Fn.

Definitions

According to Nelsen (1999) both of the following copula definitions are ‘coupled’ by Sklar’s
theorem (1959), the main finding in copula theory.

Informal Copula De�nition

Let X and Y be continuous random variables with distribution functions
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F(x) = P(X ≤ x)

and

G(y) = P(Y ≤ y)

,

With the joint distribution function be given as

H(x,y) = Prob(X ≤ x,Y ≤ y).∀(x,y) ∈ [−∞,+∞]2

Consider the point in I2(I = [0,1]) with coordinates (F(x),G(y),H(x,y)).

This mapping from [0;1]2→ [0;1] is a 2-dimensional copula (Nelsen, 1999).

Similarly, an n-dimensional copula is a function C that maps [0;1]n→ [0;1].

Formal Copula De�nition

An n-dimensional copula is a function C : [0;1]n → [0;1] with specified properties. To
expound the properties of copulas functions; let us consider the bivariate case where the
copula is derived from two variables. As mentioned above, the 2-dimensional copula C is
a function C : I2→ I such that;

1. 1. Copula functions are grounded.

This property implies that C(0,v) =C(u,0) = 0

2. Copula functions are 2-increasing.

This is basically a two dimension version of non-decreasing functions in one dimen-
sion.Mathematically, this property can be represented as; C is 2-increasing: for a, b, c,
d in I with and if;

C (b, d) – C (a, d) – C (b, c) + C (a, c) > 0
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3. When one variable is equal to 1, the copula is equal to the other variable I.e.

C(1,x) =C(x,1) = x.∀I

4. The copula functions should lie between the Frechet-Hoe�ding bounds:

W (u,v) = max(u+ v−1,0)6C(u,v)6 min(u,v) = M(u,v)

.

Frechet-Hoe�ding bounds

Hoe�ding (1940) and Frechet (1951) suggested that for a copula to be considered valid, it
must lie within the W (u,v) = max(u+ v−1,0)6C(u,v)6 min(u,v) = M(u,v) bounds.
This inequality is known as the Frechet- Hoe�ding bounds where W and M are the lower
and upper bounds respectively. What is intriguing is that the bounds W and M are also
copulas by themselves. These copulas together with the product copula Π =UV plays a
significant role in explaining copulas. Per Nelsen (1999) these three copulas have important
statistical interpretations;

• The copula of U and V is M (u, v) if and only if U and V is almost surely an increasing
function of the other.

• The copula of U and V is W (u, v) if and only if U and V is almost surely a decreasing
function of the other.

• The copula of U and V is Π if and only if U and V are independent.

All aforementioned copulas form a crucial class of copulas well known as Fundamental
copulas (Joe 1997). Because of the requirement that the copulas have to be within the
Frechet-Hoe�ding bounds, it is understandable that while some copulas will cover both
bounds, others can fail to cover both bounds. Comprehensive copulas refer to a family of
copulas that are capable of modeling the three aforementioned copulas.
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Figure 3.1. Fundamental Copula density plot

Per Pa�on (2002), copulas are powerful tools to model dependence because they are not
only flexible but there are also many types (variety) of dependence they allow for.

3.2.2 Copula and Dependence Measures

Staudt (2010) stated that copula are either symmetric or not. Therefore, they are the best
tools for measuring dependency and can be easily connected to the dependency measures
discussed earlier. Nonetheless, the main objective here is to understand the connection in
specific cases of Archimedean copulas (Franks, Clayton, t-copula and Normal (Gaussian)
copula). Considering the dependency measures already discussed, their links to copula
are defined as follows:

a. Kendall’s Tau: is linked to copula by the following formula

ρτ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1

.

b. Spearman’s rho is related to copula in general through the following ways:

ρs(X ,Y ) = 12
∫ 1

0

∫ 1

0
C(u,v)dudv−3
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ρs(X ,Y ) = 12
∫ 1

0

∫ 1

0
uvdC(u,v)−3

ρs(X ,Y ) = 12
∫ 1

0

∫ 1

0
C(u,v)−uvdudv

c. Positive �adrant dependence: in relation to copula, two variables are said to be
positive quadrant dependent if;

C(u,v)≥ uv

d. Upper tail dependence: where C is the copula function for (U,V ), it follows that

Λu = Limu→1
1−2u+C(u,u)

(1−u

If Λu exists and is greater than 0 but less than or equal to 1 then C has upper tail
dependence and if Λu is 0 then C has no upper tail independence.

e. Lower tail dependence: similarly,

Λl = Limu→0
C(u,u)

u
Equally, if ΛL exists then C has lower tail dependence as long as ΛL is greater than 0
but less than or equal to 1 and has no lower tail independence if ΛL is equal to 0

3.2.3 Types of Copula

This section provides a brief overview of parametric families of copula. However, we
will concentrate on copulas that portray deep tail dependency; the Archimedean family.
Generally, copulas are classified into three main categories namely;

• Frechet family or Fundamental copula - they are constructed by taking a�ine
linear combinations of the Frechet-Hoe�ding bounds and the product copula. This
family is can depict positive dependency, negative dependency, and independence. The
coe�icient of tail dependence is found by solving the weights in linear combination.

• Implicit or elliptical copula – this family of copulas stems from elliptical distribu-
tions and is symmetric nature. This implies that their lower and upper tail dependency
coe�icients are equal. Examples include the Normal copula and the student’s t copula.

• Explicit copulas - this family satisfying certain properties and are constructed using
general mathematical constructions. They are also known as the Archimedean copulas
and take a variety of forms. As a result, they depict distinct lower and upper tail
dependence coe�icients and are very suitable for modeling market data (such as asset
prices) with profound tail dependence.
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3.3 The Archimedean copulas

Nelsen (1999) define bivariate Archimedean copulas as the following:

C(u1,u2) = ψ
−1(ψ(u1)+ψ(u2)) (3.6)

where ψ is a strict generator and ψ−1 is completely monotonic on the intervals [0,∞) These
copulas are resultants of parametric generators/ generator functions. These generator
functions represented as ψ(t) have precise properties discussed below.

Properties of the generator function;

• Continuous

• Decreasing

• Convex with ψ(1) = 0

• The generator function is said to be strict if ψ(0) = +∞

De�nition:Pseudo-inverse

The pseudo-inverse of ψ is given as;

ψ
−1(t) = ψ

−1(t),0 6 t 6 ψ(0) (3.7)

Now, let us consider ψ(t) a continuous, decreasing, convex function ψ : [0,1]→ [0,∞)

such that ψ(1) = 0. Then, the Archimedean copulas function C is defined as;

CA(u1,u2) = ψ
−1(ψ(u)+ψ(v)) (3.8)

The density function of the Archimedean copula with generator ψ is given by;

CA(u,v) =
−ψ ′′(C(u,v))ψ ′(u)ψ ′(v)

[ψ ′(C(u,v))]3
(3.9)
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Note that,in the case of a strict generator function ψ [−1] = ψ−1

Coles and Tawn (1991) found that Archimedean copulas are popular and desirable because
they present several desired properties (symmetric, associative) as well as the fact that
they simplify calculus.

Construction of the Generator Functions

There are various methods of constructing generator functions. However, the most popular
method is the use of Laplace transform. Consider ψ [−1](t) the inverse of the generator
function ψ(t) and let G be the distribution function of a non-negative random variable (Z),
Marshall and Olkin [1988] showed that the relationship between the two is the Laplace
transform. Therefore, the inverse of the Laplace transform is a generator of Archimedean
copula, i.e. the Laplace transform is given as;

ψ
[−1](t) =

∫
∞

0
exptz dG(z)

, then ψ = ψ−1 generates a strict Archimedean copula.

This generator function has the following properties;

• ψ [−1](−t) is a moment generating function for the random variable Z.

• ψ [−1](t) is continuous and strictly decreasing with ψ [−1](0) = 1 and ψ [−1](∞) = 0

• ψ [−1](t) is a completely monotonic function.

A good example of a generator function that is derived from Laplace transform is the
Clayton copula generator where the random variable follows gamma distribution with
parameters (γ,1/γ)

Properties of Archimedean copula

• They are symmetric in nature; i.e. C (u, v) = C (v, u)

• Archimedean copula are associative i.e. C (C (u, v), w) = C (u, C (v, w))

• For any constant k>0, kψ(t) is also a generator
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Archimedean copulas and dependence measures

As mentioned above, Archimedean copulas are popular because of their tractable properties
that simplify calculus. This means they are easy to link with dependence measures such
as the Kendall’s tau, upper tail dependence, and lower tail dependence.

Genest and MacKay (1986) proved the relation between Kendall’s tau and the copula
generator function in the bivariate case as;

τ = 1+4
∫ 1

0
(ψ(u)/ψ

′(u))du

Correspondingly, the relation between tail dependency and Archimedean copula generator
function was demonstrated by Joe (1997). He argued that if ψ is a strict generator such
thatψ [−1] belongs to the class of Laplace transforms for strictly positive random variables.
If ψ ′(0) is finite and di�erent from zero, then the copula does not have tail dependence.

C(u,v) = ψ
[−1](ψ(u)+ψ(v))

if ψ−1(0) is finite, then the copula from that generator function does not have upper tail
dependence. But where 1/ψ ′(0) or ψ [−1](0) =−∞ the copula has upper tail dependence
with coe�icient given by;

Λu = 2−2Lim→+0 +[ψ ′(s)/ψ
′(2s)

Equally, the coe�icient of lower tail dependence is given as;

Λl = 2Lim→+∞ +[ψ ′(s)/ψ
′(2s)

In the next section, we will discuss the closed formula for the Clayton, Franks, and Gumbel
copulas. Additionally, we will discuss the explicit formulas between the dependence
measures and the copula parameter.
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3.3.1 The Frank Copula

The Frank Copula (1979) is a member of the Archimedean family whose generator function
is given by:

ψ(t) =− log[exp−θ t−1/exp−θ −1] (3.10)

The Frank’s Copula has the following properties;

• Is comprehensive

• Is a strict copula

• Is radially symmetric

• Its probability distribution function is given by;

CFr(u,v;θ) =−θ
[−1] log1+(exp[−θu]−1)(exp[−θv]−1)

(exp[−θ ]−1)
(3.11)

In a scenario where θ is the copula parameter that assumes any value in the Euclidean
space of dimension one. In contrast to the Gumbel and the Clayton Copula, the Frank
copula o�ers a highest a�ainable range of dependence. Consequently, the dependence
parameter of the Frank’s copula permits an estimation of the lower and upper Frechet-
Hoe�ding bounds, implying that the Frank copula allows for modeling of positive and
negative dependence in a data set.

When θ approaches −∞ and +∞ the lower and upper Frechet- Hoe�ding bounds while
the independence case is a�ained when θ approaches zero. This implies that the value
of θ a�ects the level of dependence, consequently, a higher level of α indicates more
dependence.

Nevertheless, it is important to point out that the Frank copula has neither upper nor lower
tail dependence λL = λU = 0. This concept is known as radial symmetry i.e. C(u,v) =
u+v˘1+C(1−u,1−v). Thus, the Frank’s copula is appropriate for modeling information
is characterized by weak tail dependence. The Spearman’s rho and Kendall’s tau are
linked to the Franks copula by Debye function and yields,
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τk = 1+4[D1(α)−1]/α

ρs = 1−12[D2−α−D1−α]/α

The Debye function given by;

Dk(α) =
k

αk

∫
α

0

tk

exp1−1
(3.12)

3.3.2 The Clayton Copula

Introduced by Clayton (1978), the Clayton copula is also known as the Pareto family of
copulas. It is widely used in modeling correlated risks due to its ability to display lower
tail dependence. The Clayton generator function is;

ψ(t) = 1/θ(t−θ −1) (3.13)

The Pareto family of copulas has the following properties;

• Is strict for α > 0

• Is comprehensive

• With a probability distribution function given by;

CCL(u,v;θ) = max[0,u−θ + v−θ −1]−1/θ (3.14)

Where θ the copula parameter is strictly in the interval (0,∞), when θ = 0 the marginal
distributions become independent, when θ → ∞ the copula approximates the upper
Frechet- Hoe�ing bound. The Frechet- Hoe�ing lower bound cannot be approximated due
to the restriction on dependence parameters. The implication of this assumption is that
the Clayton copula does not account for negative dependence. The relationship between
the Clayton copula and Kendall’s tau is stated as;

τ = α/(α +2)
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Equally, Clayton copula is related to lower tail dependence in the following way;

Λl = 2−1/α

(Cherubini, Luciano, and Vecchiato, 2004).

Note that the link between Clayton copula and the Spearman’s rho is very complicated.

3.3.3 Gumbel Copula

The Gumbel (1960) is popular for modeling asymmetric dependence in data. According
to Staudt (2010), this Archimedean copula is capable of capturing strong upper tail de-
pendence and weak lower tail dependence. Similar arguments were made by Cherubini,
Luciano, and Vecchiato (2004) who suggested that the Gumbel copula should be used
when expected outcome have less correlation at low values but strong association at
higher values.

The Gumbel Copula generator function is;

ψ(t) = (− log(t))θ (3.15)

The properties of the Gumble copula are;

• Is strict

• With the distribution function given as;

CGU(u,v;θ) = exp−[− log(u)θ ]+[− log(v)θ ]1/θ

(3.16)

Where the copula parameter θ is restricted on the interval [1,∞), when θ→ 1,the marginal
distributions become independent and approaches the Frechet- Hoe�ding upper bounds
when θ →∞. The Gumbel copula is similar to the Clayton copula in that they only portray
cases of positive dependence and independence but fail to account for negative association.
The link between the Gumbel parameter and the Kendall’s tau is shown to be;

τ = (θ −1)/θ

or
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τ = 1−θ
−1

Similarly, the relationship with upper tail dependence is λu = 2−21/θ while the lower tail
dependence is λl = 0. Note that the connection Gumbel copula parameter and Spearman’s
rho have is not in a closed form.

3.3.4 Copula Parameter estimation

Just like other copulas, Archimedean copulas involves several underlying functions namely
the joint cumulative distribution functions and the marginal cumulative distribution
functions. According to Charpentier, Fermanian, and Scaillet (2006), copula parameter
estimation involves how to estimate separately the joint law and the margins. The copulas
discussed above are characterized by a dependence parameter that we need to estimate.
Depending on the assumptions made, di�erent approaches can be taken to estimate the
parameters (we can use parametric, semi-parametric, or non-parametric).

Non-Parametric (Empirical) method

Although not widely used, in this method, the practitioner may choose to use ‘empirical
counterparts’ or invoke well known smoothing statistical methods. This method is simple
and straight forward because parameters are estimated from the observations instead
of making initial assumptions about the distribution of the data and later verifying the
validity of assumptions.

Parametric methods

Although there are numerous methods of parametric estimation, the most widely used
estimation methods are the Inference for margins (IFM) and the full maximum likelihood
estimation (FML) also known as exact maximum likelihood method (EML). Below is a
detailed discuss of these methods

Full maximum likelihood estimation (FML)/Exact maximum likelihood method

The FLM is the simplest and most direct method of estimation that maximizes the log
likelihood. This method not only yields the copula parameter but also gives the marginal
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distribution parameter (i.e. provides the parameters of the marginal distributions and the
copula simultaneously).

Considering Sklar’s theorem, the canonical form of joint density of random variables X1
and X2;

F(X1,X2) =C(F(X1)F(X2))

Di�erentiating this expression gives the canonical form:

f (x1,x2) = c(F1(x1)F2(x2)) f1(x1) f2(x2)

Where c is the copula density function fi and Fi are the marginal density and distribution
function respectively.

Our aim is to find θ ∈Θ that maximizes the likelihood function

l(θ) = cF1(x1)F2(x2) f1(x1) f2(x2)

Thisθ also maximimes the log-likelihood;

log l(θ) = logc(F1(x1)F2(x2)+ log f1(x1) f2(x2)

Then the maximum likelihood estimator (MLE) is given by:

ΘML = argmax log(θ)

Inference for margins (IFM)

Joe and Xu (1996) proposed this simpler method in which the first step is to estimate
the margins parameters and then the second step is to estimate the copula parameters.
This method significantly reduces the computation of finding the optimal estimators (Joe,
2005).
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∂ 2

∂x∂y
Cθ Fα(x),Gβ (y) = [cθ (x),Gβ (y)] fα(x)gβ (y)

The first marginal are estimator is:

θ1 = argmax
n

∑
i

n

∑
i

log fi(xi;θ1

The copula estimator given the marginal estimator is:

Θ2 = argmax
n

∑
i

logc(F1(x1),F2(x2);θ1,θ2)

This results in the IFM estimator:

ΘIFM = (θ1,θ2)

Joe (1997) found that under certain conditions, the IFM estimator verifies property of
asymptotic normality and can be shown that the estimator is consistent. However, if the
margins are incorrectly specified, the estimation of ΘIFM may be seriously a�ected (Kim
et al., 2007).

3.3.5 Goodness of Fit Tests/ Copula Selection

In order to establish the best copula for the data, a goodness of fit test must be conducted.
Although there is no universally acceptable statistic standard for selecting the best copula,
we consider two tests namely the Akaike Information Criterion (AIC) and the Schwarz
Information Criterion (SIC) (Palaro and Ho�a, 2006). Dias and Embrechts (2004) found
that the AIC tends to be superior in small samples whereas the Schwarz Information
Criterion (SIC or BIC)) works best in larger samples. In this research, both goodness-of-
fit-tests shall be applied to choose the copula that o�ers the suitable fit, i.e. the copula
that matches the lowermost values in these criterions.
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The Akaike Information Criterion

Proposed by Akaike (1973), the Akaike information criterion is simple yet very flexible for
determining the best statistical model. This method is based on earlier models proposed
by Kullback (1951) and Kullback (1959) who suggested using the Kullback-Leibler (1951)
information quantity that measures the distance between the true model (observations)
and the model of interest. The task is to minimize this distance in order to arrive at the
best model.

Initially, the Kullback-Leibler (1951) information quantity recommended the expectation
of the log likelihood of the distribution proposed and that of the log likelihood of the true
distribution but Akaike (1977) suggested the use of mean log likelihood as an estimate
of the Kullback-Leibler information quantity. From these developments, the Akaike
Information Criterion statistic was introduced defined as;

AIC =−2Likelihood+2k

; k is the number of parameters

The Schwarz Information Criterion

Also known as the Bayesian Information Criterion, the Schwarz Information Criterion
was derived by Schwarz (1978). This criterio is more favorable because it is not only linked
to Bayesian statistics but it also does not require the input of the prior information. It is
given as;

SIC =−2Likelihood+K× ln(n)

;k is the number of parameters
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4 DATA ANALYSIS AND INTERPRETATION

4.1 Data Description

Here, we evaluate the relevance of copula model in assessing the systemic and tail risk
within a stock market. The dataset consist of 2 stock indices from strongest economies
globally. The daily closing prices in Euro from was obtained from the stock market o�icial
website. The stock price indices are converted to log-returns (continuously compounded
returns). This results in 2910 observations per stock index. The estimation of parameters
and model building were performed using 12-year time frame, specifically from January
2007 to July 2018. The analysis was conducted using the so�ware package R.

This data-set is interesting from a number of reasons. First, it displays presence of systemic
risk (i.e., a peril/financial threat which a�ect the FTSE 100 index is also very likely to a�ect
the S& P 500 (US) stock). In addition, there is also evidence of tail risk in the fat right tails,
of the kernel densities fit to historic FTSE 100 (UK), and the S& P 500 (US) stock indices
(see Figure 4.1). Figure 4.1 shows the distribution plots and the time plots of the FTSE
100 (UK), and the S& P 500 (US) stock indices. The returns trend clearly hints a positive
dependence between the stocks in the sense that whenever one of the two prices goes up
or down, so does the other one.
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Figure 4.2. The time plots and the distribution plots of the FTSE 100 (UK), and the S&P 500 (US)
stock indices

Figure 4.1 shows volatility clustering in which large (small) returns is followed by large
(small) returns. Likewise, the distribution plots indicate that the returns are not normally
distributed but tend to be more leptokurtic. In close inspection, the time plots shows those
durations of high volatility are associated with financial crisis such as the 2008-2009, late
2011, and more recently in mid-2015.

Table 4.1 indicates that the return series have a positive mean. Moreover, the distributions
are slightly le�-tailed as shown by their negative skewness. Therefore, as expected from
the distribution plots, all kurtosis values were higher than the kurtosis value of the normal
distribution (3).This further ascertains that the distributions are leptokurtic.

Stock Index Mean Median Maximum Minimum Std. deviation Skewness Kurtosis

FTSE 0.00005 0.00004 0.0094 -0.0093 0.0121 -0.1333 7.7979

S&P 500 0.0002 0.00064 0.1096 -0.0945 0.0125 -0.3682 10.8618

Table 4.1. Descriptive statistics of the FTSE and the S&P 500 stock indices

Nonetheless, we carried out non-normality test to test the supposition that the returns
series are typically dispersed at the 1% meaningful level. The JarqueBera (JB) test is used
to assess the non-normality of returns. As expected, the JB test a�irmatively rejects the
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non-substantiated hypothesis that returns are usually distributed at the 1% significance
level.

Similarly, we used Ljung-Box Q-test (LB) to measure the volatility clustering observed in
the time plots. We employed the Ljung-Box Q-test (LB) to test the null hypothesis of no
serial correlation at the 1% significance level. We performed the test on the first 12 lags of
the squared log-returns; the p value is low. Therefore we can reject the null hypothesis
(no serial correlation) and say that there is serial correlation in the log returns.

Stock Index Jarque-Bera JB P-Value Ljung Box for squared log returns LB P-Value

FTSE 7413.3 0 2366.2 0

S&P 500 14381 0 3373.8 0

Table 4.2. Jarque-Bera and Liung Box tests to test respectively for the normality of the log
returns and for the ARCH e�ect in the squared log returns

Previous studies showed that financial returns (stock and stock index) display heavy-tails
and leptokurtosis. Thus, modeling the data that is not normally distributed and exhibit
serial correlation requires ARMA-GARCH model that helps in filter the log-returns to
provide serially independent innovations.

4.2 Model

To specify the multivariate model, the models must be specified for the marginal distribu-
tions as well as the general model that describes the dependence structure between the
marginal distributions.

4.2.1 Modeling the marginal distributions

As previously mentioned, the ARIMA-GARCH is applied extensively in the financial
industry because many financial returns exhibit some degree of autocorrelation and
conditional heteroskedasticity. The premier step in modeling of the datasets encompasses
a repeated application of ARIMA-GARCH filtration with student-t distributed error terms
to find the marginal distribution of individual stock index. This step helps us understand
the details of each country. The sieving the log-returns using ARIMA- GARCH model
because each of the indexes o�ers a series that is nearly independent as well as identically
distributed.

The next step involves estimating the piece-wise probability distributions to model the
daily returns of each index. Note that we do not make assumptions (i.e. normal distribution
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or any other simple parametric) regarding the distribution of the data; instead, we allow
the data to speak for itself (gives a more flexible empirical distribution). Thus, ifX[i,t] is the
log return of index I at time T, then the ARMA(p,q)-GARCH(m,s) model is given by:

X(i, t) = µi +
p

∑
j=1

Θi, jXi,t− j +
q

∑
k=1

Ψi,kεi,t−q + εi,t

where
εi,t = δi,tεi,t

δ
2(i, t) = αi,0 +

max(m+s)

∑
j=1

(αi, j + γi, j < 1

where i= FTSE 100, and US S& P 500 and

αi,0 > 0,αi, j > 0,and
max(m+s)

∑
j=1

(αi, j + γi, j < 1

We use the conditional likelihood approach to approximate the parameters of the ARMA(p,q)-
GARCH(m,s) model. The log-likelihood function is given as:

l(θi) =−
n
2

log2π− 1
2

n

∑
t=1

logδ
2(i, t)− 1

2

n

∑
t=1

β 2(i, t)
δ 2(i, t)

where
θi = µiψi,1, ...,ψi,pθi,1, ...,θi,qαi,0αi,1, ...,αi,mβi,1, ...,βi,s

Consequently, the maximum likelihood estimator maximizes the log likelihood function:

θi = argmaxl(θi)

We use numerical maximization approach to calculate the maximum likelihood estimator.
The next step is to plug the estimator into the model in order to obtain the one-step
next-period forecasts of the volatility and the value of the log-likelihood.
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In ARMA modeling, the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) play a central role, for they serve as the primary tools that are used to
detect the relationships that may occur between and within the return series at di�erent
lags that may apply. The ACF and PACF plots are explore to recognize the structuring
of the ARMA model. As a result, when the model with the identified lags is estimated,
a check is done to make sure that it correctly describes the return series. The model
fits if the p-value is statistically significant (should be less than 0.05). Likewise, the lag
parameters of the GARCH model but for squared log-returns were also identified using
the ACF and PACF functions. The su�iciency of the final model is tested by means of LB
test and can be graphically assessed by means of ACF plots.

The optimal models that seem to fit the FTSE 100, and S& P 500 respectively are ARMA(1,1)-
GARCH(1,1)and ARMA(0,2)-GARCH(1,1)

FTSE S&P

Parameter Estimate Error Estimate Error

µ 0.00002 0.00 0.00006 0.00001

ar1 0.09 0.0017 -0.007 0.002

ma1 -0.09 0.001 -0.0009 0.002

ω 0.000002 0 0 0

α1 0.012 0.0014 0.127 0.00134

β1 0.086 0.0015 0.085 0.00137

Table 4.3. The estimated parameters and as well as their standard errors

Moreover, the results presented the table demonstrates that the figure of the appraised
parametersβ and α for both stock indices is lower than 1. As indicated by Tsay (2005),
this is an appropriate property that point toward the variance of the error with regard of
finite while conditional variance fluctuates over time.

From the information gathered, the e�ectiveness of the ARMA(1,1)-GARCH(1,1)and
ARMA(0,2)-GARCH(1,1) models is graphically evaluated by plo�ing ACF plots of the
consistent residuals and the squared standardized residuals. The ACF plots shows that
there is no major serial correlation in the squared standardized residuals and standardized
residuals. Moreover, we used Ljung Box-test on the squared standardized residuals and
standardized residuals as well as test the null hypothesis of no serial at the first 12 lags of
the standardized residuals of stock indices at the 5% significance level. At the same time,
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the LB test did not manage to reject the null hypothesis. Consequently, the p-values are
registered are 0.023 and 0.013 for the FTSE 100 and S&P 500 in that order.

Moreover, the LB test failed to casto� the null hypothesis of no serial correlation in the
squared standard residual for FTSE 100, and S&P 500 indices. In this respect, the LB test
on the squared standardized residuals for the FTSE 100 indicated that the LB (12) = 16.206
with a p-value = 0.023. Consequently, the equation unpredictability is only suitable at the
1% significance level. Equally, the LB test does flops and fails to reject the null hypothesis
of no serial correlation in the first 12 lags at the 1% significance level for the S&P 500 index
with a LB (12)= 14.665 with a p-value= 0.013.

The results explicitly show that the ARMA(1,1)-GARCH(1,1)and ARMA(0,2)-GARCH(1,1)
models are appropriate to use since they o�er serially independent innovations. The
implication of this results is that the a�ained innovation can be applied in modeling the
dependence organization of the marginal distributions of the for FTSE 100, and S&P 500
stock indices.

4.2.2 Modeling the dependence structure

Once information has been filtered through the ARCH-GARCH model, transforming the
standardized residuals to uniform variates by student-t distributions is the next stage. We
fit the Clayton, Gumbel, and Frank to the transformed data. The maximum likelihood
approach is used to estimate the copula parameters, which is a vital point to note.

Table 4.4 below shows the Clayton, Gumbel, and Frank estimated parameters alongside
their respective confidence intervals (CI), SIC values, and the AIC values.

Copula Estimated parameter 95% Con�dence Interval SIC Value AIC Value

Clayton 1.042194 [3.611,3.825] -5301.488 -5295.407

Gumbel 1.661397 [3.746,3.935] -5445.510 -5439.430

Frank 4.302434 [13.370,14.171] -4591.805 -4585.725

Table 4.4. Copula parameter estimation

The results in figure 4.4 show that the Gumbel copula o�er the most suitable to the
standard residual data based on the factor that it provide the lowermost values for both
criterions used, the AIC and the SIC.
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According to information before, in the hypothetical context, the Gumbel copula is a�irmed
to be disproportionately extreme, appropriate for the modeling the upper tail dependence.
Nonetheless, the dependence structure in the marginal of the for FTSE 100, and S&P 500
stock indices is shown by the copula parameter. As discussed earlier, in the event that
the copula approximation is equal to 1 then the marginal distributions are independent
but when the estimated value methods infinitude then the Gumbel copula methods
the Fréchet-Hoe�ding upper bounds and the marginal distributions become perfectly
dependent. In this case, the estimated Gumbel parameter indicates the presence of positive
dependence between FTSE 100, and S&P 500 stock indices.

The graphs in figure 4.2 illustrate in more details the dependence structure given by the
Gumbel copula. The density, sca�er, and contour plots of random sample simulated from
Gumbel copula are given in Figure 4.2. As anticipated from the projected copula parameter,
the density plot show strong upper tail dependence in the data. Likewise, the simulated
values in the sca�er plot are heavily concentrated in the upper tail. We compare the
contour plots with the cases of independence and perfect dependence. The contour plot
for the approximation Gumbel parameter has more similarity to the contour plot for the
comonotonic case

Figure 4.3. Copula density plot (upper le�), copula plot (upper right), 1000 simulated points,
and the copula contour plot of the Gumbel copula with parameter 1.661397
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Consequently, the manner in which the Gumbel (1.661397) captured dependence triggers
the joint distribution to create an upper tail dependence is quite fascinating. As shown in
Figure 4.3 , illustrations of the density and the contour plot of the distribution is a�ained
by linking the approximated Gumbel copula and the student-t margins that were acquired
from the GARCH approximation.. Subsequently, the figure demonstrates a clear upper
tail dependence, which shows that large gains from the FTSE 100 index and the S&P 500
index creates further propensities to occur concurrently than large losses.

Figure 4.4. Density and contour plot of the joint distribution obtained by coupling the Gumbel
(1.661397) with the estimated student-t margins
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4.2.3 Dependence Measures

Applying the use of the projected copula and understanding of the theory as discussed
in section 3.2.2, we are in a position to calculate the copula based dependence measures
namely; tail dependency, Kendall’s tau, and Spearman’s rho. The calculations of the
aforementioned dependence measure are tabulated in Table 4.5 below. The results show
the rank correlation measures (Spearman’s rho and Kendall’s tau) have positive values
that are closer to 1. This implies that FTSE 100 index and the S& P 500 index are strongly
positively correlated. It is important to point out that the estimated Spearman’s rho
and Kendall’s tau values are very close to their sample equivalents, which are 0.8315 and
0.753492 respectively.

The fact that the estimated values are close to their sample counterparts points out the
adequacy and flexibility of modeling dependency using copula. Thus, if the dependence
structure between risks can be taken into account using a particular Archimedean copula,
then the example of Kendall’s tau or Spearman’s rho approximations might be rightly
employed to calculate the joint probability that may exist between the risk factors. The
outcomes entered in Table 4.5 endorse that FTSE 100 and the S&P 500 stock indices show
greater upper tail dependence. Conversely, based on the fact that Gumbel copula does
not capture any lower tail dependence, the captured value of the lower tail dependence
equals to zero

Kendall’s tau Spearman’s rho Upper tail Lower tail

0.8097 0.753492 0.802 0.000

Table 4.5. Estimated Kendall’s tau, Spearman’s rho, and tail dependence based on the estimated
copula
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The research paper empirically highlights several issues that are linked to our indulgent
of dependence structure in financial risk models, taking into account the varying market
environments involved. It also demonstrates the statistical value of copula-based models
using risk management lens. First, we discuss the shortcomings of traditional measures
of dependency particularly Pearson correlation which lacks the desired properties of
dependence measures. The concept dependence is dynamic; correlation is only a substitute
for expressing the dependence structure.

Therefore, in given se�ings correlation works as a suitable measure but popularly in risk
management dynamics, correlation is a weak supposition and is dangerous to completely
rely on correlation to understand the dependence between risks (correlation tells one side
of the story). The three major shortcomings of Pearson correlation are: 1) correlation is
easily distorted and is not able to take into account the non-linear dependencies. 2) The
use of correlation lacks clarity when handling extreme events. 3) In strictly snowballing
transformations, correlation is not invariant of the risks.

Nonetheless, it is important to understand that while dependence is a measure of the
connection between the random variables in respect to their total range and tail depen-
dence is the association in the extreme tails. In this respect, tail dependence is defined
as a systemic risk- the relationship in the extreme tails of the combined distribution.
Consequently, tail dependence and dependence are not one thing or the same but distinct
from one another. In this regard, there may be a possibility for any given financial variable
to be dependent without there being dependence in the tail of its distributions.

Secondly, we discuss copula based models specifically this paper focused on the Archimedean
class as alternative statistical techniques that capture the entire dependence structure be-
tween risks. Financial models based around assumptions of Gaussian distribution mostly
underestimate tail risks. Nonetheless, we show that Archimedean Copula models not only
capture the central dependence but also adequate for modeling tail dependence (extreme
events). In addition, Archimedean copula models put into consideration the dynamic
nature of tail dependence and helps risk managers improve extreme event forecasts.
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Still, there are caveats associated with copula-based models. To exemplify this, there are a
number of copula roles that do not appropriately explain the conduct in the extreme tails
of di�erent distributions and as such seriously minimize tail and systemic risk because
parameter estimation a�ects the selection of the copula function. Consequently, several
factors must be considered for example using be�er dependence measures more robust
than Pearson correlation, using extreme value theory to fit the marginal distributions,
and selecting a copula function with natural explanation.

Thirdly, the 2007-2009 and other financial crises emphasized the need for be�er tools to
measure systemic and tail risk. The crisis proved that extreme events impact the overall
financial system largely causing uncertainty which can lead to financial crisis. In this
paper we propose copula models to measure systemic tail dependence. The model is
more robust and precise and can help regulators and investors choose diversification
possibilities.

Taken together, the empirical findings of this paper show the statistical importance of
incorporating asymmetric copula models in managing financial risk. Such dynamic models
can assist the stakeholders to have a be�er understanding of the dependency structure
between risk variables with diverse characteristics under diverse market environments.
Moreover, copula models are more powerful and precise tools for forecasting risk and
as such should be useful to both investors and regulatory bodies in determining capital
requirements and allocation.

5.2 Future Research

This thesis modeled the systemic and tail risk between a portfolio of two risk variables
using two-dimensional copulas. Nonetheless, many portfolios in the financial industry
consist of more than two random variables. Thus, there is need to extend this analysis to
a multivariate case.

In addition, the only copulas used in this study are the Archimedean class but only Frank
Copula accounts for both lower and upper tail dependence. This means further research
in the use of other copulas that allow modeling extreme tail dependencies such as the use
extreme-value copulas (e.g. the Symmetrical Joe Clayton copula).
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A ACF and PACF plots of S& P 500 and FTSE 100
Indices
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