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ABSTRACT

The goal of this project is to construct the Generalized Inverse gaussian distribution under
different parameterizations; using the special function called the modified Bessel function
of the third kind. This is the only special function that has been used all through in this re-
search. Under Modified Bessel function of the third kind, various definitions, properties and
alternative forms have been studied. With the parameters of the Generalized inverse gaus-
sian distribution reguating both the concetration and scaling of densities, other parameters
are introduced leading to GIG distributions but of different forms. These parameterizations
are Sichel, Jorgensen’s, Willmot’s, Barndorftf-Nielsen and Allenis Paramaterrizations.

Special cases under each parameterizations has led to various distributons which have been
treated as sub-models of the GIG distributions. These distributions are inverse gaussian,
receiprocal inverse gaussian, gamma, Inverse gaussian, exponential, positive hyperbolic
and Levy distributions. Their statistical properties such as the r th moment, the Laplace
transform and modality of the special submodels have also been studied. Depending on
the sign of v, it has been established that the Generalized inverse gaussian distribution is
viewed as either the first or the last hitting times for a certain diffusion process where the
Inverse and the reciprocal inverse gaussian distributions were among the sub-models of
the Generalized inverse gaussian distributions.

It has been established that the Generalized inverse gaussian distributions is seen to belong
to the family of generalized gamma convolution. By introducing other parameters, we have
seen that the resultant distribution has four parameters. This is the Power Generalized
Inverse gaussian distribution. We have also established that the inverse of a Generalized
inverse gaussian distribution is a special case of the power Generalized inverse gaussian
distribution where the power is one.

Under Sichel and Barndorff-Nielsen parameterizations, convolution properties have been
proved using the Laplace technique. It has been shown that multiplying the two laplaces
of the specific special cases, gives back the laplace distribution with the GIG distribution
parameters. Under Sichel parameterization, we have come up with the Sichel distribution
wich is as a resut of mixing the Poisson and the Generalized inverse gaussian distribution.
The Sichel distribution has been expressed recussively, then arriving at its properties.
Moreover, it has been established that special cases under Allen’s and Willmot’s parame-
terizations has led to the same statical properties as the other cases established earlier.
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ABBREVIATIONS AND NOTATIONS

Abbreviations and notations of various chapetes are in those specific chapters. Generally,
abbreviations and notations used are given as below.

K,(®)- Modofied Bessel function of the third kind

E(X")- The r th moment of a distribution

Lx (s)- The laplace transform of distribution

f(x) - The probality mass function of a Generalized inverse gaussian distribution
pd f - probablity density function

cd f - cummulative distribution function

Lgic- The Laplace of the Generalized inverse gaussian distribution.

g(A)- mixing distribution.

f(x|A)-The conditional properly.

pgf - Probability Generating Function.
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1.1

GENERAL INTRODUCTION

Background Information

Probablity distributions are key in statistics. A probability distribution is a mathematical
function which provides the probability of occurences which have different possible
outcomes in any experiment. In other words, its a detailed description of any random
phenomenon in terms of the probabilities of various events. For this case, an experiment
or a survey is a good example of a random phenomenon We have two major subdivisions
of Probability distributions. Discrete probability distribution: This is only applcable
under scenarios when set of possible outcomes are discrete, example is tossing a coin. It is
mostly encoded by a list of the probabilites which are descrete known as probability mass
function. On the other hand, Continous probability distriution is where possible
scenarios can only take set that are contionous range. Example is real numbers. This type
of distribution is described by probability distribution functions. The key areas of any
distribution are the constructions using various method, estimation of various parameters
depending on the type of distribution and their applications.

Some methods of constructing various distributions include: Power series, transformation,
special functions, generator approach, Langararian expansion, Geomerty and trigonometry,
mixtures, recussive relations in probablities, differential equetions, stochastic process,
hazard functions and sum of independent random ariables.

In this work, we used modified Bessel function of the third kind which is one of the special
functions to construct the Generalized inverse gaussian distribution. Moreover, we used
the change of variable technique and the cummulative distribution technique to come up
with other forms of the GIG distributions.

Historically, the first appearence of the GIG distribution was discovered by Halphen, E
(1941). This is the reason as to why it is also known as Halphen type A distribution.
During this time, there was a study of extreme hydrological events. Halphen family of
distributions was used to model the maximum annual flood series. The following were
taken into account; the dseign of hydrolaulic structures, forecasting of flood involving
estimation of flood flows achieved by fitting a probability distribution to observed data,
with specified return period and optimal operation of reservoirs. In his study of population
frequencies, Good(1953) proposed the GIG distribution. Population frequencies of species
and estimation were studied in the Biometrica. A random sample drawn from a population
of species of animals and if a population is represented r times in the sample of the
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population size N, then r/N is not a good estimate of the entire population of frequency f,
when r is small.

This work consideres the five parameters which are used to come up with the GIG distribu-
tion by using the modified Bessel functon of the third kind. Using the change of variable
technique and the cummulative distribution technique, the resultantant new distribution
is called the Power-GIG distribution which has an extra parameter compaired to the GIG
distribution. The inverse of a GIG distribution is a special case of the Power-GIG distri-
bution. Some unique propositions of the Laplaces of various GIG distributions has been
proved. Taking various Laplaces of the GIG distributions, their product results to the same
Laplaces of the GIG distribuutions with the same paramters.

Definitions and Terminologies

A random variable (o) with function f(e) has the following conditions

)20 and [ f(o) d(e)=1

Where f(e) is the pdf in a continous form
In a descrete form, we define;

if(') =1 and f(e)>0

f(e) is the pmf
Generalized Distribution

A distribution is said to be generalized if it nests various distributions. To generalize
a distribution, means adding a another parameter to an existing parameters of a given
distribution. This is done by formulating general concepts from specific instances by
basing on common statistical properties of a given pdf. GIG is therefore advategious over
other distributions since it nests various distributions.

Parameterization

This is a mathematical process that consist of expressing a model, system or process as
a function of some specific independent quantities which are called Parameters. By
definition,

1

< @
2Kv(a)):/0 y lexp—a(y—f—;) dy 1.0
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Due to the various parameterizations; the Sichel’s, Jorgensen’s, Willmot’s, Barndorft-
Nielsen and Allen’s parameterizations, we have the Generalized inverse gaussian distribu-
tions. This has been done by letting @ eqaul to various parameters, we substitute @ with
the following,

1. ® = +/y¢ this is the Sichel’s parameterization
2. o= %, where ¢ = u? and y = # Willmot’s parameterization
3. 0 = po, where ¥ = p? and ¢ = 62 Barndorff-Nielsen parameterization

4. o= 269%, where y = 26 and ¢ = 262 Allen’s parameterization

5. @ =+/yp and n = \/% implying ¢ = @wn and y = %this is the Jorgensen’s parame-

terization

All the above parameterizations are as a result of Sichel’s Parameterization since the
original parametrs ¥ and ¢ have been equeted to other parameters.

Statement of the Problem

In construction of the Generalized Inverse gaussian distribution, we choose on the modified
Bessel function of the third kind which is a very significant special function used in the
construction. Choosing on other special functions or the use of mixture method in the
costruction has not yet proved to hold waters in the GIG distribution construction, hence
giving room for us to explore further the use of modified Bessel function of the third kind
as a special function. Generalized Inverse gaussian distribution which is as a result of
various parameterizations, hence by use of change of variable technique, we obtain it.
GIGD has various sub-models due to special and limiting cases. In this case, by letting
the parameters to be equal to certain consistent values, we obtain the sub-models which
are inverse gaussian, reciprocal inverse gaussian, gamma, inverse gamma, exponential,
positive hyperbolic and the Levy distribution. GIGD and its submodels are quite flexible to
work with despite their complexity nature.

The problem is to work with all the five parameterizations; Sichel’s, Barndorft-Nielsen,
Allen’s, Willmot’s and Jorgensen’s parameterizations. The aim being to construct the
GIGD based on the all the above parameterizations and study their statistical propeties
(r-th moment, Laplace transform and modality). Due to the special and limiting cases, we
various sub-models and their statical properties mentioned above.
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1.5

Objectives
1.4.1 General Objectives

The main objective is to construct the Generalized Inverse Gaussian distributions, under
different parameterizations.

1.4.2 Specific Objectives

1. To explore modified Bessel function of the third kind.

2. To construct Generalized Inverse Gaussian distribution under different parameteriza-
tions.

3. To study of the Generalized Inverse Gaussian distribution properties under different
parameterizations.

Literature Review

Generalized Inverse Gaussian distributions can be constructed using the special function;
modified Bessel function of the third kind. Several ways of extending GIG distribution can
be used to extend the GIG distribution. These are the change of variable technique and
Cummulative distribution technique. Taking some sub models of the GIG and the GIG
distributions in different forms give rise to the GIG distibution.

The first appearence of GIG distribution was discovered by Halphen, E(1941). This is the
reason behind the GIG distribution called Halphen type A distribution. Good (1953), pro-
posed the GIG distribution during his study of population frequences. As seen earlier, GIG
distribution nests the modified Bessel function of the third kind, whereby the parameters
regulate both the concetration and scaling of densities.

Sichel (1974) used the GIG distribution to construct the mixture of poisson distribution
hence calling it the Sichel distribution. Barndorff-Nielsen and Halgreen (1977) studied the
convolution properties. They studied the GIG distributions infinite divisibility and the
equvalence properties. The result was that the inverse Gaussian and receiprocal Inverse
gaussian are respectively the first and the last hitting times for a Brownian mortion.

Halgreen(1979) found out that the GIG distribution belong to the family of generalized
gamma convolution. Jorgensen(1982), completed the study of Halphen distribution. They
introduced the two parameters leading to a GIG density of another form. Due to the restric-
tions of the parameters, the GIG distribution leads to the Inverse Gaussian, Receiprocal
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Inverse Gaussian, gamma and the invese gamma distributions. Eberline and Hmmerstein
(2004) showed the detailed proof of the GIG belonging to the family of generalized gamma
convolution. Eberline and Hammerstein (2004) reviwed the fact that GIG distribution
belong to the family of generalized gamma convolution. Madan, Roynette and Yor (2008)
have shown that the Black-Scholes formular in finance can be expressed interms of the
distribution function of the GIG distribution function of GIG variables.

Lemonte and Cardeiro (2010) proposed the Exponentiated GIG distribution. The exponen-
tiated standard gamma distribution was extended then structural proprties of the resultant
distribution by expanding its moments were studied, mgf and the order statistics. They
further discussed the MLE of the model parameters and importance of the new model
showed by use of real data.

Devorge (2012) showed random variate generation for the GIG distribution. Uniformly
efficient and simple random variate generator for every parameter range of the GIG was
provided. In this work, general algorithm and that which works for all densities that are
propotional to a long concave function even if the normalization constant is not known
has been provided.

Kondou and Ley (2014) studied characterization of the GIG laws. They reviewed several
characterization theorems of the GIG on the positive real line. These characterization
theorems have been surveyed then two new characterizations based on the Maximum
Likelihood estimation and Stein method established.

Hasebe and Szpojankowski (2017) studied properties of free GIG. They showed that, free
GIG distributions have same properties with the classical one. They provided that free GIG
distributions is unimodal, divisible and free regular freely infinitely . The distributions in
this class that are freely self decomposable were determined.

Methods

The methods used in the construction are:

1. Special functions. Modified Bessel function of the third kind is the only type of special
function that has been used.

2. Direct intergration and substitution.

3. Cummulative distribution and change of variable techniques.
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1.8

Significance of the Study

Generalized Inverse Gaussian distributions has been applied in many fields i.e used to
model a lifetime data. In actual Data. It has been used in diverse real phenomenon such
as waiting time. Jorgensen(1982) applied the GIG distribution in modelling of waiting
time. In Neural activity. Iyengar and Liao (1977), used Generlaized Inverse Gaussian
distribution in modelling the neural activity. Extreme hydrological events. Cheban et
al(2010), applied GIG distribution in his research work of of mixed estimation methods for
Halphen distributions with application in extreme hydrologic events. GIG as a mixing
distribution: the distribution can be used as a mixing distribution. Using it as a mixing
distribution can be helpful since taking other statistical distribution, we can get back to a
distribution that can be expressed interms of a Bessel function or puerly new distribution
or purely new distribution. Therefore, in this study, Modified Bessel function of the third
kind has been used to obtain the GIG distribution under different parameterizations. It is
one of the most crucial special type of distribution in constructiong the GIG distribution.
This study has also made use of the generalized distributions nesting other distributions.
Generalized distributions include, GIG distribution, 3 parameter generalized lindly and
transmited exponential. Though, the main focuss has been the GIG distributions mostly.
The main reason for working with GIG distribution throughout is because of its flexiblity to
work with it. Various identities have been deduced as a result of various paramaterizations
and also under generalization of GIG.

Outline of the Project

The rest of the project is outlined as follows. Chapter 1 introduces the topic. It has
executive summary of the work. In Chapter 2, Modified Bessel function of the third kind,
its properties and various theorems have been deeply investigated. The relationship of
Modified Bessel function of the third kind and the first kind also studied.

In chapter 3, Generalized inverse gaussian distribution based on the Sichel’s parameteri-
zation has been constructed using the modified Bessel function of the third kind as the
only special function used in the construction. Sichel parameterization has led to various
sub-models of the Generalized inverse gaussian distribution. Under this section, we have
derived some statisical properties of the special cases of the Generalized inverse Gaussian
distribution based on this parameterization. Later in this chapter, we have the convolution
properties which have been proved using the Laplace technique. This has given rise to the
Sichel Distribution which is as a result of miture of poisson and the GIG distributions. We
have expressed the Sichel distribution in a recussive form.

In chapter 4, we have generalized the GIG based on the Barndorff Nielsen and Allen’s pa-
rameterizations. Under each paramaterization, we have the proved the propositions based
on the Laplace transform. We have derived various special cases wich are the sub-models



of the GIG distributions and their properties. We constructed the GIG distribution based
on the Willmot’s and Jorgensen’s parameterizations. Special cases under the two parame-
terizations have been covered with their properties. These are the last parameterizations
that have been covered in detailed.

In chapter 5, we have conluded by giving the general conclusion and the recomendation.
This chapter outlines in summary what we have not covered but is relevant as far as
this topic is concerned. In otherwords, we have given the possible areas of research in
Generalized Inverse gaussian distribution.
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MODIFIED BESSEL FUNCTION OF THE THIRD
KIND: DEFINITIONS AND PROPERTIES

Introduction

In this chapter, we have presented various equivalent definitions of modified Bessel function
of the third kind, properties and alternative forms. Some of the properties in a recussive
relation and summation forms have been studied. There is a section on the special cases of
the modified Bessel function of the third kind which has been done by varying or assigning
the parameters various values then studying various relationships. We have concluded
this chapter by expressing the modified Bessel function of the third kind interms of the
first kind. Some relations have been established.

Definition and Its Properties

A modified Bessel function of the third kind with index v and of order @ denoted by K, w:

* () 1
2K, (o) :/ M lexp——(x+-) dx (2.1)
0 2 by
Property 2.1 (Symmetry)
K, (w)=K_,(o) (2.2)
Proof:
Let 1 J
x=—-=dx= ——%}
y y



Property 2.2 (Derivative 1)

0 1
%K(a)) =K (0) = _E[KV“ (0) +Ky—1(0)] (2.3)
Proof
d _li T lexp— L4 L
%Kv(a))— Sam ¥ exp 2(y+x) dx
2/ —= x+i)]exp—§ (x-l—l) dx

1
:——— {/ (v+1)= exp—g(x—I— dx+/ (v=1)- exp—E(x—i— ) dx}
1 1

1 (0] 1
=515 ) X Lexp 2(x+2) dx+/) xl Lexp 2(x+ ) dx}

Ki(@) = —%[KvH(w) )

An alternative form of definition 1 is given in the following

Proposition (2.1)

Loy <o o
k() =5 (%) /Ot exp{—1— 2} dr 2.4)
Proof
Let
xzz—:dx——z— dl
1 /0 o, o0 2 [0)
K (o) =~ "lexp——(=—+ =) (— dt
(@)= [ e -2+ 2)(-%)
Lo, 1 0 0 2
=(% ——(=+2)} ar
2<2)/ prr =7 (5 )
1o, =1 o>
_5(5)/0 thexp—(Z—H) dt
_1 wv 0o—v—l 602
—2(2)/0t exp{—1— -} di
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Alternatively,
2

Q v () I0)
Kv(w):%/o t*V*Iexp—t—Z dt

Let
2t 2

X=—=dx=— dt
(0] (0]

1 /= 0] 1
Ko (0) = 5/0 x_v_lexp—z(xjL ;) dx
b2, 42 0.2t o
=3 G peeg gty @
1 oo 2v71 o CO2
=3/ wv—lt exp [_Z_Z} dt

- % (%)V/OthIexp [—(H— %)] dt

Property 2.3 (Derivative II)

= va(a)) —K,11(o) (2.5)

Proof
Differentiating equation (2.4),

2, 10 joN [~ w?
%Kv(w) = 5% (3) /0 t exXp |:—l' — Z:| dt
_l ngfl oofvfl __(1)_2 Qvi/m —v—1 __w_Z
_2(2(2) /Ot exp(—t— ) di+(3) 5 [ exp(—i— ) dr
L1l roN oo o> O\ [ O o>
—5(5 (3) (3) /0 T exp {—f—ﬂ ar+(3) /0 (o) e ("‘47)‘”)

v oVl e o>

_ v _(& —(v+1)—1 e —
wKV(a)) (2 /0 t exp( t 4t) dt)
%
0]

By letting v=0 we have
Corollary 2.3.1

—Kp(w) = —K; () (2.6)
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Property 2.4 (Recursive Relation)

2—6;)1(1,((0) =Kyy1(@) —Ki—1 (@)

Proof
Equating (2.3) and (2.5): i.e properties 2.2 and 2.3, we have

_% [Kv+l(w> —|—Kv_1(0))] = %Kv((l)) _Kv—i-l(w)

S K (o) + K (@) = _%Kv(w) +2K,+1(@)

2v
Ky (@) = Ko+ Ky (0)

Alternatively, consider definition 1, i.e,

Using intergration by parts, let

O] 1 0] 1 (0] 1
U = exp [—§(x+;)}:>d”:—§(1—;)exp [—E(er;)] dx
and
v
dv=x"1 dx=v=""
x¥ ® LI 1/~ o 1\ ol
K=o |-Ser ]| o3 [we(1-L)eten
lo [ )
012 [T et
ol =, —Q(x4+1) ol =, 5 —Q(x+1)
—_ 2 x d —_——_— 2 X d
22 Jo * ¢ w2l ¥ € x
® ®
- Ky(w) = 2—va+1((0) - 2—va—1

2K (@) = 0Ky 4 (0) — 0K, ()

K (@) = 2 K(0) 4 Ko 1 (0)

Corollary 2.4.1
1
K%(CO) = (1 + 5) K%((I))

and
K = 1+i+i K (o)
%(a)) P

2

(2.7)

(2.8)

(2.9)



Proof
Putv = % in (2.7)

Kg(a)) = %Ké +K (o)
:éKé(w)jLKé(w)
1

Also if |
v=-—5 in (2.7), we obtain,

Next put v = % in (2.7)

3
K%((l)) = BK%((D) -I-K%(a))
3 1
= 5 1+ 5) K%(CO) —f-Ké((O) + K ((l))
3 1
3 3
= (1+5+E) K%(a))
Property 2.5 (Derivative of log)
0 v Kv+1<w)
%logKv(a)) o Klo) (2.10)
Proof
d 1 d
% 10gKv<w) - Kv(w) %Kv(w)
1 v
WA [EKV(CO) —Kv+1(a))] by property 2.3
. J _v Kv+l( )
Ry logK, (o) o Ko by property (2.2)
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52308K(0) = 2K (@)
- o1 (3 @)K )
. %logKv((o) _ Kvgw) <—% {2&“(@) _ Z—C:Kv(co)D

_ Kvgw) (~Koir(0) + 2 K(0))

_ v Kv+1(w)

0o  K(o)

By property (2.4) )
Koi1(0) = S K,(0) + K1 (0)

Ky-1(0) = Ky11(0) - K ()

The modified Bessel function of the third kind can be expressed interms of the hyperbolic
functions as

Proposition (2.2)
K,(0) = —/ e~ @M coshve dt (2.11)

Proof

By property 2.1

KV(w) = K—V(m)

Adding K, (®) on both sides we have,

2Kv(w) - Kv(w) +K—v(w)

0 2Jo
1
2

/°° (xv—1+x_v_1)e—§<x+;) dx
0

Let
x=¢ =dx=¢édt
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2.3

1
:5/ coshvte®cosht gt

Where

e et

coshx =

Definition 2 and its Properties

K,(o) = (%)V F(l:}:%_)%) /loo(tz _ 1)1}—%6_&” dt

which satisfies the differential equation

d? d
0> 22 L0 (@ 1)y =0

In terms of hyperbolic functions we have

Proposition (2.3)

K,(0) = (9>v I(3) )/Om(sinhe)Zvea)coshG 40

Proof
Let

t =coshO = dr =sinh® dO

(2.12)

(2.13)
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v T 1 0 _1
K(0) = (%) I (j)1)/ (cosh?8 —1)" 2 e ®hOginhg 46
\% 3 0
1
1 o _g\ 2 V=32
@ L[5 ] e
v 3 0
1
Vv l—‘ l oo 20 2 —26 _4 V_Z
:@) . (j)l)/ <e + T ) e @00 g 4
v 3 0
1
l—‘ l o 260 _2 20\ V"2
_ @)Vr( (j)l)/ (—e 4+e ) e~ @0 Ginh e 46
% 3 0
1
(1 w 7,0 _ ,—6\ 20—7)
_ <§>Vr( (j)l)/ (—e 26 > e~ @osh0Gnhg 46
% 5 0
(i o
— <9> ) / (sinh0)2 "' e~ @O ginhe 46
2/ T(v+3)Jo
(i o
— <9>V (2)1 / (Sinh9)2vefa)cosh6 46
2 F(v—|— Q) 0

Definition 2 can also be expressed in summation form as given in the following

Proposition (2.4)
(20)™ 0)

o 1 1,
_ T o <1+Z. C(v+3) F(v+§+z)(2w)i> i)
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Proofs
Part (a)
v T 1 00 _1
Kv((D): (9) (2)1 / (tz—l)v ze*wl dt
2 F(V‘i‘i) 1
0NV F(%) —oto [T (2 vy
:(§>1—‘ leww/ (t —1) 279 4t
(v+3) 1
o\ TG o (T2 b
— (E) - i e 0)/ (f _1) 2 o+ dt
(v+3) 1
o\ TE) o 1, v—3 1
:(5>F lew/ (t—l) e =D gy
(v+3) 1
Now let J
y (t—1)=t=1+==dt Ey
o\w TL 0 Yy \1""2
k()= (3) =2 —/ 2(1+5)] Te d
v(©) 2/ Tv+1) o Jo 20 Y
oy T(}) oo ] ypeb
_(® ¢ [ a2 —} e d
(2) F(v+%) o Jo ( Za))a) Y
o\ T(3) e“’/‘” Y.y .
(@ ¢ [ 2a+ 2 —] e d
(2) l"(v—i—%) o Jo ( 2a))a) Y
v T(3) e v=3 y \V"3
_ -l (2 ) <1+_> e dy
2m

-
~—
<
m|~ +
I~

w/m
o G

NI'—‘

Il
[\
¢}
<
|
VRS VRS VRS

(SIS SIRSEN SRS

N—— N—— N——
< <
o]
<3 <
+ o=+
N—
S—
|
e e
(%g
Ips
N
<
- |
rol—
~__
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Part (b)

K,(w) can be expressed as follows;

|
e

=
B

gl
o

I
|
S

gl
o

I
|
S

gl
Q

I
|
S

gl
Q

I
|
S

gl
Q

I
|
8

gl
o

I
|
S

gl
Q

I
!
8

gl
Q

I
!
8

gl
Q

I
!
8

gl
Q

I
!
S

gl
Q

I
!
8

gl
Q

I
!
8

gl
Q

I
|
8

=
B
Q

g

Urr(%lili) i (v+ 5 _ti)(zw)‘i]
Ly 0t 15!) 2(;— D, iz Z'FF((VL ;_ z) (2w)—i]
Bt |
_1 + 4; 8;1 z!rr(z;rf;_l ;) (20) 2+ ; —”FF(E}VJ:L%;?) (200)_1
g e o,
R R e _*_lf) o]
ot R E R
e S g
S R |
: . L
| 4v —1+ﬁ [4v* — 21—1) 2] +IZ3,vFr((VV1:_2)(2“’)_i]
ﬁ v H ' z—l
[ 4 _1+121 4y? 1—1 +f[ [4v2 — 1—1 )?] i (v+ _+_) 2w)—i]

1 L T(v+1—i)

1+ZH 4v2— 21—1) ]

n=1i=
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Corollary 2.4.1

@ K,y (@) =\ Fe® [ 1+ I i (20) ]

(b) an%(a)) = \/; [14— - ,v(?;ll 11)) (2(0)7"]

where n is a positive interger.
Proof

From proposition 2.4 put

v:n+%
T .| & Tn+1+i) -
K — o |14y TR gy
w3 (@) =4/ 55¢ +,§ AT+ 1—) 2
= Le—a) _1+i (I’l—|—) (2 )—l_
20 I =il(n—i)! ]
ool v )]
=/ — 1 20)7"
20° +l§{l'(n—z)‘( o)
Puttingv:n—%we have
K 1(60): 167(0 -1+i F(ﬂ‘f‘) (2 )71
n-3 20 & (n—i)
T — i - (I’l—l—l 1) —1
=4/— 1 2
20° +;i!(n—i—1)( ) ]
T ol " (nti-1) B
=4/ 1 2 !
20° +Z;i!(n—;—1) (20)
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Corollary 2.4.2

(a) K%(CO) = Kfé(a)) = %eiw
(b) K3 (@) = /e (1 +)
@Ks(@) =/Fe e (1+3+2)

Proof

From corollary 2.4.1 putn =0

putting n =1,

K; (o) = %e_“’ _l-l-éli(i;_i)i!) (2(0)“']
Ks(0) = %e‘“’ :1 + %(2@‘1 + %(m)—z}
Ks(0) = /e :1+%+ 2&‘(‘02}
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2.4 Modified Bessel function of the third kind in terms of modified

Bessel function of the first kind

By expanding the generating function ¢2(=1) we have

e%(t_%) :e%te_%
—e%te_%wf1
_y (+90)" i( wt_1>k
oo M SN 2
o oo (_l)k(%)m+k m—k
=2 ) mlk!

Let

n+k=0k=0
e v (D1 e
=Y Y orom(z)

o0 - (_1)k o\ 2k+n|
=L |1, k+1)k!<5> ]’

n=—oo [ k=0

The coefficient of " is

- (—1)k W\ n+2k
MO Y ok DR (3)

K=0
Let
o0 1 W\ n+2k
@) Y = (5)
nl )Iéor(n+k+1)k! 2
Replace n by v>0

- 1 W V+2k
h(@) :k;)kzr(wm 0 (3)

(2.20)

(2.21)

which is called a modified Bessel function of the first kind. The relationship between

modified Bessel functions of the third and first kind is given by

T

K (o) = (@) = §()]

~ 2sinvr

(2.22)
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3.1

3.2

GENERALIZED INVERSE GAUSSIAN
DISTRIBUTION BASED ON SICHEL’S
PARAMETERIZATION (@ = /W@)

Introduction

In this chapter, we constructed GIG distribution under Sichel’s parameterization. Special
cases of GIG also discussed. Under this parameterization, we have a vast area on the special
cases wich gave rise to various distributions. These distributions are known as the GIG
distribution sub-models. Throughout this chapeter, we have various statistical properties
which we have studied in detailed. Properties cosidered are r-th moment, Laplace transform
and modality; all the properties have been discussed under the GIG distribution and its
sub-models as well.

Construction and properties

From (2.1) we let

o=y 31

1 /= VY9
KV(VW)):E/O vale’TW(”%) dz (3.2)

We shall refer to parameterization (3.1) as Sichel’s parameterization. Now let us consider

14 14
7= 4/—x=dz=,/-—-dx (3.3)
Ve \fy

the following transformation
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Therefore, (3.2) becomes
s - [ (5) e

A ()
(Vo) = <\/7> /Ooox lem 3wt gy

. py et b .
..f(x):(\/%) AN dx x>0;—c<v<o, @, y>0

Is a Generalized Inverse Gaussian (GIG) pdf variable X with parameters v, ¢, y

( %)va—lef%(wﬁr%)

7)o o

xvl——(l]/x—i—)
= . x>0, —eo<v<o, ¢>0, y>0
fO xv—lefz(l[/er;)dx

fx) =

The random Variable X from the GIG pdf will be denoted as

X ~GIG(v,¢,vy)

(3.4)

(3.5)

(3.6)

(3.7)
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3.3 Properties

3.3.1 Property 3.1: Moments

(3.8)

< e
=
5
=

RO @

K2 (VW0) [Km(ﬁfmr
( K\(Vv9)

< e
=

(3.10)

<le

Proof

=
%
h=
| =
ﬁg
=
<
+
~
|
(€]
>
o)
|
—
N =
S
+
= |
<
=

:<\/% V}/‘*’( %)Vﬂem(—%(ifm%)) dx
KV(‘V‘P)z 0 ( %)
:< ﬂ)rKerr(\/l/f(P)
v) K((Vv9)

Therefore, to get the mean and variance,

(]2 Kelv¥o)
POy ) kW)
— f Kv—i—l(\/ll_f(]))
POy ) R
¢\ Ka(v¥9)
2O=\Wy) kv
Var(x) = /2 2 KVHWQ’)—[KVHWMZ
v K,(v/ o) K (/y9)
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3.3.2 Property 3.2: Laplace transform

The Laplace transform of a GIG distributed random variable X with parameters v, ¢,

denoted by LGi6(v,0,v)

Proof

B v va( (2S‘|‘l//)¢)
L6ice.w) = (\/E) K(Vy9)

T /T P T
= (\/%>v /ooxVIexp{—l[(2s—|— l,l/)x—l—ﬂ]}dx
2K, (vVy9) 5 2 X
V)" o«
( a) v— _<2S+ ll/) (P 1
.LX(s):mo/x Lexp{ 5 [x—l—2s+w*)—c]}dx

é&%%(V;f;yK«<k+ww
(%) i

3.3.3 Property 3.3: Modality

and Yy

(3.11)

The mode of GIG distribution is which maximizes the pdf f(x). This peak is obtained by
solving the equation

Therefore,

d
Ef(x) =0

— —1)2
Xmode:(v 1)+ i; 1) +W¢> v >0

(3.12)
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Proof if
st
dx
i( v—le—%(l//x—ki)) -0
dx
(v l)xvfze*%("’”g)+xv*1e*%(¢"+%):O
d (., Ly ) _
dx< ¢’ >_0
[
(v—1)+x |:—§+2—xZ:| :O
[
—1)—x=—+-—-=0
(=1 =xg 45,
2v—Dx—yx’+¢ =0
vl —2(v—1Dx—¢ =0
y=0=-20v—1)x—¢=0
xX= ¢
2(1—v)
The mode is
v—1)++/(v—1)2+
X (v-D++v(—-1) W)? >0
and X4 ¢ v=0
moae 2(1 —V),
3.4 Special cases of GIG Distribution
3.4.1 Inverse Gaussian Distribution
When |
v=—3 (3.13)

=4/ 27(fx3 VP (W) (3.14)

(3.15)
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VarX = ﬁ) (1+\/W)—< %)2
= ﬁ)z((lﬂ/W)l)
(%)

v >_% K_%(\/ (2s+v)o)

-5 (Vy9)
— VYO (25ty)d

¥ —-3+/9+4(0vy)
mode 2(\/@)

[ 4
14+ = —1

3
2

3.4.2 Reciprocal Inverse Gaussian

This is the case when
, 0>0, v>0

| =

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Then the pdf of RIG distribution is

1 1 1 [} 1
} e byt d) :
f<x>=< %) sz—:(z_w) eV for x>0 >0, y>0
1 (V¥6)
2
(3.21)

The moments are:

E(X") ¢ rK%H(\/W) 3.22
“\Vv) xew o
E(X)_\/EK;(\/II/_)
VK (VYY)
e Ki(Vv9)
_\/;(Hm) K, (V)
:\/%@4_\/@) (3.23)
2
Var(X) = (ﬁ) [3\/W+ Vo — ufzﬂ
2
= (ﬁ) (3\/W+w¢(1—w¢)) (3.24)

GIG(L,0.v) 25+ y K\ (Vv9)
1
1{ . re_ (2s+y)
_( v )2 24/ (2s+y)¢
N 2s+y T : -
[NW] Ve

Il
VRS
<
N————
o=
VRS
<
<-
N——
|
[N
3
T
B
_l’_
s
<
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L V(259
GIG( ¢'l//) 2S_|_]l[

25 _|_ WLGIG(_%7¢7W)

?

L

v

%
2S+l’f GIG(7%7¢7IV)
=Laich omLeic-Low) (3.25)

where

B—

I _ |4
GIG(3.0,v) — \ 25+ v

is the Laplace of gamma distribution with parameters % , % as will be shown in section
343

Thus the Laplace transform of a reciprocal inverse Gaussian is the product of the Laplace
transform of a Gamma (1 l”) and the Laplace of an inverse Gaussian distribution. This
further implies that a convolution of a Gamma (3, ¥) and an IG(¢, y) as will be shown
later.

The mode of RIG is

(3.26)

3.4.3 Gamma Distribution

When
v>0, ¢6=0, yv>0 (3.27)
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Using formula (3.6) we have

.. . v
This is called a gamma pdf with parameters v and %

Thus
GIG(v,0,y) = Gamma(v, %)
X le—%(l[/x—i-%)
E(X") = 1 ;
Jo xrtv=le (vt d) dx
when ¢ =0
r—|—v—1 —5X
E(X") =

x’*v 1e X gy

v
2% dx

—/

(%)
_ 2 / xv—i—r 1 —7x

Fv)o
-

(¥) o

(3.28)

(3.29)

(3.30)

(3.31)
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g
(3 +s)
v v
_(_2
%’ +5
ie ,
v
LGi6(v0,y) = (‘l/ n 2s) (3.32)
Modality
d
— =0
< 1)
i (%/)Vef%xxvfl —0
dx | Iv
(v—1)x"2e 7" 47! [—%/efgx] =0
(v—1)x""2 e )
2
2v—1)x" 2 —x"ly =0
2v—1)x=vy
-Xmodezz( llil) lf V?’él
and
Xnode = if v= (3.33)
3.4.4 Exponential Distribution
(3.34)

This is a special case of a gamma distribution when

v=1, ¢=0, yv>0
v
ez’
f(X)_f(;o —Yix
e
_f(;"xl—le Yax
v
e 2%
f(x): 1
v
2
x>0 and y>0
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E(X7) = (V%)rr(mu 1) = (%)rr!

This is an exponential distribution with parameters ¥ > 0

Let

To get the modality

(3.35)

(3.36)

(3.37)

(3.38)
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3.4.5 Inverse Gamma Distribution

This is the case when
v<0, ¢>0, y=0

Using formula (3.6) we have

<
I
—_
|
S

1
f(x):fi vel_;l,x>0, v<0, ¢>0
Oxi e 2x
I= xvfle*%% dx
0
d
Put x:—:>dx:——§
y y
=(I\""" o ([ d
L)
0 \Y y
- 0 yv—H-Ze : dy
I'(—v)
(5)
(5)
2
flx)= xv_]e_%, x>0

Let

A
fx) = <1%7>L sA-1,-41
= a%zle—gix—l—l

Which is an inverse Gamma pdf with v<0

Thus

X ~ GIG(v,¢,0) = Inverse Gamma(—v, %), wherev <0 and ¢ >0

(3.39)

(3.40)

(3.41)

(3.42)
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(3.43)

when A > 1

(3.44)

(A-D@A-1)



)2 (1—1)1(/1—2) N @)2 (/1—1)1(1—1)
21 [A=—1-A+2
) A—1 [(1—1)(1—2)}

2
) @ ! for A>2 (3.45)

Lx(s) = ~Fz
(8)" -
_ Iil /Ox/lleé(2sx+¢) dx
Let
x= %z:dxz %dz
A
o (5 w2 | e ) 2
= o LV 2s® P72 |Vt m;% s &
0 (o)
2 ¢
= FQ)<¢;) K_5(\/(25)0)
(9 (/2 R SRV
- \2 2s (A)
A
_ ¢ K_p(v2ys)
_2[\/; B (3.46)
For modality
4 [ 2-1,-50] =
dx [x ‘e ]_0
(“A+Dx A2 {—%,ﬂ ~0
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X _%
A+l ¢
x_{2/1+2]i
o

3.4.6 Levy Distribution

This is a special case of inverse gamma distribution when

Therefore A = %

ie

1
V:_Ev ¢>07 W:O

1) = pgye
f0) =t
= 274;36%7 x>0
n (0TG-
s = (3) )
:<9>’F<%—r>
2 VT
(TG (¢
s =(§) 222 = (%)
r(-1+1
7= 35y
E(X)=—¢

—30(3)
E(X*) = %2
2 2
Var(x) =% — (-9 =%~ ?

$>0

(3.47)

(3.48)

(3.49)

(3.50)
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Alternatively using

Remark: A > 2 = v < —2 for Var X to exist

Laplace transform is

|
|‘S~
o7
—_
(I
vl
Q
|
ﬁ
=2
1)

3.4.7 Positive Hyperbolic Distribution

This is the case when
v=1, ¢>0, wv>0

X ~GIG(1,¢,vy)

So put v=1 in the results obtained in sections 3.2 and 3.3

IO AW L
1= (8 im0

This is called a positive hyperbolic distribution.

(3.51)

(3.52)
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w (¥)e 3w+l
E(Xr):/o x’<¢22(1(\/w) dx
_ <%> l « r —l(l//x-i-g)
_Kl(\/W)Z/o ve BT dx
_ Ky /°° <%)1+rx1+r—1 e b (wrty) "
Ki(vy) Jo (\/%)’ K1+r(\/%)

Modality

dx

N
2 X
— VYo + vx‘g‘l’ —0

(3.53)

(3.54)

(3.55)

(3.56)
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3.4.8 Harmonic Distribution

This is a case when

v=0, ¢ =an, 1,1/:6—1 (3.57)
n
xile %(%"'%)
fx)= T (3.58)
K.(3)
EX"=n"—2 3.59
) Ko(a) (339
I’lKl(l)
E(X n
(X) = Ko(a)
2
Kz l) Kl(l
VarX = n? L L 3.60
Kola) | Kola) (3.60)
Ko(V2ans +a?)
LGiG(0,an,2) = Ko(a) (3.61)
—1+V1+ad?
Xmode - 7

1 1
=\/5+t1-= (3.62)
a a

3.4.9 Generalized Harmonic Distribution

Barndorff-Nielsen (1971) constructed a GIG distribution as follows:-
X and Y are independent gamma II distributed random variables with parametrs ({,2p 1)
and (n,2p) respectively. Their joint pdf is

1 5T (-1 € 2p)’n 1
1—6 2 X . A —
(2p~1)ET(4) (2p)1(n)
nglynfle_%x_%

f,y)=fx)f(y) =

S fy) = (3.63)
(2p)1=¢0({)0(n)
Let
t= \/g and u=./yx
Therefore

/ u X
ut = )—}yx:y and —= y—x:x
X t y

u 2u
x:; and y:ut:>7



The above is from Jacobian

The new pdf is

g(u,t) = f(x,y)J|
x‘;_lyn_le_%x_% 2u
(2p)1=¢0(§)0(n) ¢
xS luM=le™ 2072 2y

-'-g(l"?t) = 4 _
(2p)n1—sI(E)T(n) ¢
b 1n—1+1,=C+14+n-1-1 ( 1[ut

2

t

— 215 Tpnr()r(n)
un+e—1m-C-1

B 1(u
T T I r(n) <‘5 [E
)= [ gl = glo/u) =

Considering

Let
t =pz=dt =pdz

= [t (s )
0 2p pz

1 u 1
=2p 2/0 Z exp( 2(z+z)>dz

=2p"K; (u)

(3.64)
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2p*Kj ()
A
@) e lag 1)
= A (3.66)
Y=— and ¢ =up
u
RV II/(P = Eup =u
_yjul 1
o\ pup p
T|U = u ~ GIG(A,up, %)
when A > 0 then ;
T\U =u~ GIG(0,up, E)
which is a harmonic distribution.
r ¢ )rKerr\/ Vo
rw=0=(7) Ziw
_ rKlJrr(u)
Kj (u)
K/l+1(”)
E\TWU=ul=p—"——
T I=p K, ()
Ky (u)
e AT
Ky o(u) [KAH(M)]Z
S Var(T|U = u) = p? + — (3.68)
TU=0=r"1"%w KW

3.5 Related Distributions

Using GIG distribution, other distributions can be obtained as follows;

1. Powers of a GIG distributed random variable; the inverse of a GIG random variable is a

special case
2. Log of a GIG distributed random variable

3. Convolutions of random variables of GIG(Sums of distributions and its special cases)
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4. Sichel distributions which is a mixture of a Poisson and a GIG mixing distribution
which has been discussed.

3.5.1 Distribution based on translational transformation

(a) Let
Y =rX (3.69)

where

X ~GIG(v,¢,y)
Then

Y ~ GIG(v,r(p,%)
Proof

r dy r
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1. Let

Z =1InX (3.70)

where X is a continous random variable

Then

where

0
K(VYO)EIX] = (~In\ [OK(/W0) + 5 (/¥9)
_ v, Jd
E[InX] = —1In ¢+ava(\/W)
0
E[InX] =1n %+5KV(M)
2. when
X ~GIG(v,§,v) (3.71)
then

n (0 Ker(VV9)
Eo”‘(w) K. (V¥9)
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dt

Alternatively, let

Z=InX = M,(t) = E[¢"¥] = E[¢'™]

M (t) = E[X']

oo (ﬁ)vxvfle_%("’”%)dx

S TANCT)

_ <\/%>V /ooxt+v—1 ~dwet ) g
0

~ 2K, (V) ‘

kw9 (V)
Ko/Y0 <\/%>t+v

MZ(I) — ( (P) KH—V(\/W)

v/ K(/yo)
i o\, [o 0\ ¢
0= | (1f2) myf e 2) dth(\/W)]
EInX] = M) l=o

v K(Vve)
3. when
X ~ GIG(,0,y) = T(v, g) (3.72)
then
. 14
E[InX] = y( )—lnz
where

't d
y(1) T~ ar ogl'(¢t) = digamma  function

The pdf of a Gamma Distribution is
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| V) o m e I_l /N
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— St =~~~ = =
SN S A K
— — — |
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—~ —~ ~ J—
= = ARSI
—~ FV . 8
w oIS 2
: =
—

v(v) - w(v)

where

is a digamma function.
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Alternatively,

M;(t) = E[X]

/xf \2) -

_ 2) / tl‘+ le 2dx
0

- T(v)
("7') Li+v)

") (% )
2

n IIZIF(t +v)+ <%>[ %F(t +v)}

X ~GIG(v,9,0) = Inverse Gamma(v, g) (3.73)
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Alternatively,
(5)
o0 2
M.(t) = E[X' :/ X e 2ix" dx
1 (p - t+v—1 1
— s 2 x
() (2) /0 X e dx
Let 0 0 0
= —— = — d dx=——=d
y 2x:>x 2 an X 22 v

3.5.2 The Inverse of a GIG distributed Random variable (Y = X1)

LetY = )l( where X ~ GIG(v, y9)
then 1
Y = )_( ~ GIG(_V7 W7¢)

(3.74)
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~
N ~
|
+
%
S

(Vo)
—1
"Kon (VoY) _ [ 9 Kou(VeY)
K_.(vVov)

2(VOY) (Ko (VeW)]
s Vary = ( KK+§ \/%/V)l) = [KKJVFEE/%/V)/)] (3.76)
The Laplace transform:
Ly(s)=E[e™*]
oo el
Lo (f8) o) o
W3 (5) .
= ZKV\(/\EW/)/O Egiﬂ 'eXp[ 5 {(2s+¢)y+";/H dy
Modality of
dy =0
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The mode is

(—v— D)y "2e 20045) Ly mv=1,30045) _
di <yfvfle—%<¢y+%>> _0
y

T A A
(—v—1) y2+2y—0

2(v+1)y—9¢y° +y =0
0y’ +2(v+1)y—y =0

 2(v+ ) £ /A(v+1)2+ 4y
y= 26
_—(+h+ (v+1)2+yo
o
since ' y>0 y= —vr Dt ¢(v+1)2+w¢

_ =D+ 1)+
¢ )
when ¢ =0 (3.78)

¢ >0

and y:2(v+1),

Remark: The results of Y can be obtained from the results of X and by replacing v with
-v and interchanging ¢ and y

3.5.3 The Power of a GIG-Distributed Random Variable (Y = X?)

If X is a GIG distribution with parameters (v, y, @), then ¥ = X9 has an Extended-GIG
distribution with parameters v, ¥, ¢,and 0

1. Using the change of variable technique.

where

Yy = x°

X ~GIG(v,¢,y) and o0 <0 <oo

0x%dx =dy
dy 01
— =0X
dx
dx 1 1,
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( %)V 1 9
flx)= mxv_le_Z(W)H'x), x>0
g(y) = fx)]|
(V) !
=g ¢
(VY
v’ b4
_1 (("’) )yé(v—l)yé—le—é(w o)
6 2K,(vVvyo
v v 1,0
%Hg (\/q))(p‘)yvé*éle b )
(VY
(VB L e
g()’):——d) yele y8 (3.79)
6 2K,(Vv9)

This is a Power-GIG distribution. It has four parameters contrary to the GIG distribution
itself. The parameters are (A, %, v, 0)

Proof 2: Using Cummulative Distribution Technique.

Using the cmmulative distribution technique, we let

Y =x°
F(x) = Prob(X <x)
G(y) = Prob(Y <y)
G(y) = Prob(Y <y)
= Prob(X% <y)
= Prob(X < yé)
1 |
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But

(V%)
¢ v—1 f%(u/er%)

f(X):mx e , x>0
1,6
Y ' 1 1 Lov=1), -1 _—1( 9+y%)
-8y = o) wimne” e 2V
Ly 51e_é(wé+y(§))
o\ 2K(Ve)

This is the power GIG distribution with the four parametrs.

o0 AWM 1 Ly 1 1 0
=/ <\/j) m)’ * 16XP<—§(‘W +);)) dy
v+r6(\/w
K(VY9)
r6

v+r0 (\/W
) K9 250

The Modality
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(3.81)

3.6 Convolutions of a class of a GIG Distribution
Convolution arises as the operation interms of pdf that corresponds to the addition of
independent random variables to forming linear combinations of random variables.
Let Z = X +Y where X and Y are independent continous random variable. The problem is

to find the distribution of Z.

Method 1: Convolution Approach

g(z) = diZG(Z) = /0 Z filz—=y)fa(y)dy (3.82)

Where fi(x) and f>(y) are the pdfs of X and Y.

Proof
Z=X+Y

G(z) = Prob[Z < 7]
=Prob[ X +Y <¢]
= Prob|x < z—)]
=Problx<z—y;0<y<7
= [ [ n@hG)dxdy
~ [ Aot soar

o [Jo
= [(A=3p00d
@)= 266 = [ AE-1p0) 6)
8\2) = dz = Jo 1 y)Jj2\y)ay .

Method 2: Laplace Transform Technique

Lz(s) =Ly (S)LY (S) (3.84)
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Proof

Using the Laplace Technique, we shall prove the following proposition;
Proposition (3.3)

Let X; and X, be two independent gamma random variables with parameters (v, ¥) and
(v2, ), the sum is also a Gamma with parameters v; 4+ v, and ¥

L616(v1.,0,w) * LG1G(2,0,9) = LGIG(,4+.,0,y) (3.85)

Proof
Z=X+Y

Where
X ~GIG(v1,0,y) and Y ~ GIG(v2,0,vy)

Vi E V2
GIG(v1,0,y) * LGIG(v2,0,) (% S> (% + s)

vi+va
= 3.32
(ﬂ—i-s) as from (3.32)

2

Y S

SIS

S = LGiG(4v,,0,v)

Therefore, the product of the Laplaces of two gamma distributions is the Laplace of two
gamma distributions.

Proposition (3.4)
L6iG(—vp.v) * L616(v0,y) = L616(v9,w) (3.86)
X ~GIG(—v,¢,y) and Y ~ GIG(v,0,y)

From (3.32) and (3.77)
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Proof

LGi6(—v,9,w) * LG16(v0,y)

() ()
() i (7)

( +2s 4 )Z)VKV(\/¢(2s+w))

2s+ll/ K_,(Vy9)
_ y(vV/ 025+ v))
‘(\/ s+w> K.(V¥9) @87
= L6iGe,y)

Therefore, the product of the Laplace transforms of the GIG distribution with parameter -v
and the Laplace of a gamma, is the Laplace transform of a GIG distribution with parameters

(v ¢, v)
Note: GIG(—V, Y, ¢) % GIG(_V7 (p: V/)

Proposition (3.5)

L *L =L

Proof

Ly(s) = V¥ VOW+2)  rrom  (3.18)
— VOV Y+2s)
2 Ly (s) = L(s)Ly(s)
— VU VYT) VO (VT Y F2s)
— e(\/ﬁ+\/¢7)(ﬁ, \% W+2S) 3.89

This is the Laplace Transform of Z ~ GIG(—%, 91 + ¢2, W)
Proposition (3.6)

LGIG(*%:%W) *LGIG(%,%,w) - LGIG(%@] +02,W) (3.90)
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Proof

1
LX(S)ZLGIG(—§7¢=W) from (3.18)
_ BM(\/W_V y+2s)

1

Ly(s) = (wfzs) FVEINTD) from (3.05)

< Lz(s) = Lx(s)Ly (s)

1
:w@wwxwww(_ﬂ_)gwmwvwwn
Y+ 2s

1
:( 4 )zw@u@\@u%ymwywwm
V+2s

1

:< 4 )wawmewwm

Y +2s
Which is a Laplace transform of Z ~ GI G(%, 01+ 02, )

3.6.1 A GIG distribution as a mixing distribution

In this case, GIG is used as a mixing distribution. Poisson and the GIG distribution are
mixed giving rise to a distribution called Sichel’” Distribution.

(exp(=A1))(A1)*

x!

(ﬁ)vlv_l exp—3 (WA + %)
2K,(V'w9) ’

fx/A) =

x=0,1,2,..,.A>0

g(A) = A>0
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N e

£(e) = /0 x!

tx(\/%)v

2K, (Vv 9)

= © v+x—1 b _i
_2x!1<v\/w/0 A eXp( At Wt )
= 1 = a1 _Z_M_l )

“ab* eXp( > 2" 2/1> “*

tx(\/%)v

x!\K\/yo

where ¢ =

L[ 1
fX(t):C*E/() AV+x—1exp{_§[(2t—}—y/)l+%]} dA

_ l = a1 _1 L
=cx* //1 exp{ 2(2l+W)M+2t+y/
LetA = ¢

2t—}—1//

2t+y

v+x—1
1 /> !
fx(l‘)zc*i/o < 2l‘j)—lllz) exp (5(21‘4—1’/)

¢ v+x =

:< 2f+w> /o
(P v+x—1

( 2t-|—1//> 2/ * exp(

( 2t+l[/> v+x( (D(Zt—l—y/))

<

L \/—(m)vﬂ[{vﬂ( o2t +y))

_r(|y_¢ VKv-i-x( 02t +y))
= 0 2+y Ko /U0

1
ZV+x71 exp (—5(22‘ + ‘V)

1
7

(

VeQr+y)

¢

2t+1,/>

d()

dA

}odA

¢ ¢ 1 0
Z+ *
2+y 2%+vy o, Yty
2t+y

1
<z+—)> i
2X+y z

(1)) =

(3.91)
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3.6.2 Poisson-GIG in a Recursive Form

K, 1 (CO) = Z—JKV((D) +K, ((1))

tx v\’ 0\ Kix(\/O2+ )
flx) = (\/ 2t+lll) (\/ 2t+l//> Ky
Therefore

x—1
B 1 v Y () Kv+x71( ¢(2l‘+ll/))
f(x_l)_(x—l)!( 2r+w> (\/2r+w> K/yo
e V([0 ) K (V2T W)
f(x+1)—(x+1)!( QH_W)( 2t+y/> K\/yo

%( 2t1lw>v< 2lf—l]/>x+l< 2(v+x)

flx+1)= Ky ¢(2t+w)Kv+x( ¢ (21 + ) + Ky ( ¢(2t+llf))>
x+1 v x+1
flx+1)= (;+1)! (V %) (V %’) 2v4x)  Kiix(A\/02t +y))
Kevvo ooy K/vo

1 e K ( ¢ (2t + 1//))
+(x’+1)!(v 2t—llifl,li) ( 2t+l//> Ky
(e N oy (e R (VO api
_x—|—1< 2t+1//> (_( m)>< 2t—|—l//> K\/Yo }\/m
txl ; [ o x_lKv+x—l< ¢(2t+‘lf)>
x+1 < 2t—|—l//> ( 2t+y/)>< 2t+l[/> K\ Wo }

2(v+x) 1? ()
flr+1) x+1( Yty m” Gty © D
2(v+x) 012
St = x-|—1 2t+1//f(x) (x+1)(2t+l//)f( b

=x(x+1)2t+y)f (x+1)—2tx(x+v)f(x)+¢)t flx—1)
for x=0,1,2,3,....where f(—1)=

x(x+ D)2t +y) f(x+1) = 2tx(x+) f(x) + 012 f(x— 1) (3.92)
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3.6.3

PGF of Poisson-GIG Distribution

L4 ’ oo
( 2t+l[/) P exp (_% (((Zt;qff_ ZQjﬁw)er\/W%)) dy

—~
<]

G ):<\/%) < lI/W—I—Zt >v2Kv( ‘P(2S+Vf)>

2K/ Yo + 2t —2ts

v "Ko(\/9(25+y))
(\/ l//+2t—2ts) Ko/ Vo 3:99)
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Alternatively,

9= LI
i/ exp — M)(M)xg(l)dl]sx
x=0 )C.

:/wexp ()Y
0 x=0

_ / " exp—(At) exp—(Ats)gAdA
0

G(s) :/Omexp—mu—s))gm
= Elexp—t(1 —s)A]

(Ats)*

x!

JgAdA

=La(t(1—s)) (3.94)
is the Laplace of a mixing distribution at #(1 —s).
([ K92+ )
fals) = ( 25+ W) Kyo
K,
o=ttt (\frtry) e o
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Table 1. GIG and Related Distributions using Sichel’s Parameterization

Dist f(x) E(X") E(X)
1 [ r
i/ vaej(q/x-&-f) Q Kv+r(\/W) Q Kerl(\/W)
ol6 (VE) 5w (V3 o (V) tohs
) _Liyps? o\ L VY ¢
16 e Ve (ﬁ) K_ZWW) v
1 r K
202 =Syt ) R () [
RIG (%)« (V¥) Ky Vv0) Vo +vee)
¥ Yy v "T+r
Gamma (Fz(v))e 27Xy v—1 <%) 1(_(5)) % .
Exponential %e*%x r! (%) %
(8), o (8) ra
Inverse gamma ) e 2xx Al ) ( i)r 2(/l¢—1)
(5)
¢
2) 91 1 "T(}-r) r(—1)
ey et (@ (94
1 [ r
. V) e2 ¥ ¢\ K (Vo) 9\ K(Vy9)
Hyperbolic % 2K, (/79) (Ve Ki(Vvo) (V) K (/o)

Table 2. Summary of the Variance, Laplace and modes of GIG and related Distributions

Dist Var(X) Laplace Mode
2
9\ (Ka(VVO) _ [K(VV9) v ' KGWCsHw)9) (=D (=1 +yo
GIG (V) (- kas)) (55) " v
G o ooV [ i fve-1]
2 Sy 1+%0 1
RIG (V) BVow+wo(l—ye)) [ lnev¥ovEive %
2 v
Gamma (%) v (%) 2(vlil)
2
Exponential <ll%> zsﬂy/ o
) A
K (\/2sys 2(A+1
Inverse gamma (%) m 2{ %} A(l_\/(M‘l/) [ (¢+ )]
Levy —2¢?2 e V205 %
2
‘ 9\ (KBWYe)  [K(/y9) v Ki(V/(251y)9)
Hyperbolic ( w> (Kl(\/W) [Kl(\/W)D VB T K9 !
1 1
mamenic 2 15— ()| b B+1-]
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4.1

4.2

GENERALIZED INVERSE GAUSSIAN
DISTRIBUTION BASED ON OTHER
PARAMETERIZATIONS

Introduction

In this chapter, we have constructed the Generalized inverse gaussian distribution based
on the Barndorff-Nielsen, Allen, Willmot and Jorgensen Parameterizations. Using Sichel’s
Paramterization, we substitute various parameters to come up with GIG distributions
based on all the above mentioned paramterizations.

Properties of the distributions based on the two above parameterizations have been studied.

These properties are r-th moment, the Laplace transform and the modality.
Going by every property mentioned above, we have the special cases of the GIG distribution

in which we have studied their properties. These resulting distributions are the sub-models
of the GIG distributions.

Barndorff-Nielsen Parameterization: ® = pc

Using Sichel’s parameterizations, let w = p? and ¢ = 6> we obtain GIG distribution based
on Barndorff-Nielsen parameterizations.

4.2.1 Construction

Let o =po
S Ky(po)== [ 2le 2 D) (4.0)

dx x>0;—cc<y<oo, p, © (4.1)
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Therefore
0.2
flx)= (%)vxvfle—%(f’%ﬁ?)
= >
2L (B) e D) g

=1, 4 (p2x+ )
X te 2 x
= , x>0; —ow<v<oo, ¢2>0, p>0 4.2)

o 1 2
Jox—lem2(PHS0) gy

This is a GIG distribution with parameters, (v,p, o)

E(X") = (E> Kvir(po)
p) Kilpo
T herefore,
o Kv+1(p6)
EX)= (=~
X (p) K.(po)
2
E(X?) = (E) Kv12(po)
p) Kf(po)
2 2 2
o\ Kv2(po) (6) [Km(pc)]
Var(X)=|— ) —F———— | — — (4.3)
%) (p) K\ (po) p K\(po)
The Laplace Transform
_ 02\ K@+ pY)o?
Lx(s) = (\/ 2s+p2> K,po
_ p K/ (2s+p*)o @)
/25 +p2 K,op
To get the modality The mode is
— —1)2 252
Ximode = (V 1)+\/(;2 1) tpo , p>0 (4.5)
o2
and  Xpode = p=0
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4.3 Special cases of GIG Distribution based on the Barndorff-Nielsen

Paramterization
4.3.1 lverse Gaussian Distribution

When
y=—= (4.6)

o? 1,2, o2
-'-f(x):\/27r 36”66*7(’”*7) x>0 and ¢ >0
x

Ky (po)
EX)=(2) 2
~1(po)
2K; (op)
E(Xz):( <
P/ E_ipo)
2Ky (po) Ki(po)
Var(X):(—) X -
~3(po) —2(po)

—
2\ 4/ 5.2¢ 2
E(X)z( G) 2ve'o - G—)—% @.7)

_ (%)2(1 +po) (@.8)



65

= [ &*f(x) dx
0
( p )—EK_Q( (2s+p)o)

¥ —3++/9+4(c?%p?)
mode 2(v/p?0?)

2(po)

4.3.2 Reciprocal Inverse Gaussian

This is the case when

1
V= E, c>0, p>0
Then the pdf of RIG distribution is

1

2\ 2 _1 _l(p2x+%2) 2 % o2
f(x):< p_> T :<2p> e 20T for x>0; 60, p>0

X

2Ky ()

4.9)

(4.10)

(4.11)

4.12)

(4.13)
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The moments are:

o [o?) Ki(VP?c?) o\ Ky, (pO)
= ?) K (1/02p?) _(F)
K1 ,(po)

&
ke
I
N N N/

T/Aa ©TIA TIQ

~—_ ~— ~—
=
i)
Q

2
Var(X) = (%) [30p +p*c? —(0?p?)?]

2
(%) (3op +p*c?(1—o?p?))

The Laplace of RIG,

I3 _ p? epc—\/(2s+p2)02

p2

=L L

GIG(%707P) GIG(_%’O-vp)

where

N —

2
L (P

2
is the Laplace of a gamma distribution with parameters % and &

The mode of RIG is
(3= 1)+4/(3)2+p?0?
Xmode - po
(5 + /() +0%?
-Xmode =
po

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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4.3.3 Gamma Distribution

When

Using formula (3.6) we have

.. . p?
This is called a gamma pdf with parameters v and 5

when ¢ =0

ie

1 ¢
K Tv—lo—3(wx+3)

E(X") =

2
5 (

f()w xr+vf 1 e 2 yx+

-G %7
£0=(12) oy =
- (3) 53 e
Var(X) = (%)Z(H—l)v— (%)zﬂ = ;%

LGiG(vo,p) = (

p?

p%+2s

%) dx

:

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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To get the modality
d
el -0
1)
)"
i <7) —ﬁx v—1 0
dx I'v N
2
P
X 1
- Amode 2(‘)_1),\/75
and

Xode = if v=1 (4.26)

4.3.4 Exponential Distribution
This is a special case of a gamma distribution with

v=1l, =0, p>0 (4.27)

=
=

N—
I

el
7
pz 2
:7677)6 for x>0 and p>0

EX") = (%)VF(H— 1)=r! (%)r (4.28)

This is an exponential distribution with parameters % >0

MG
E(X?) = f
(%)
1
Var(X) = -
(5) (&)
1
= (4.29)
(5)
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To get the modality

4.3.5 Inverse Gamma Distribution

This is the case when

flx)= T X e 7%, x>0
—v
(%)
2 o2
flo) = e
(%)
= lil e %2;)57}' 1

Which is an inverse Gamma pdf with v<0

Thus

2

o
X ~ GIG(v,0,0) = Inverse Gamma(—v, 7), wherev <0 and o >0

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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_ o’ 1
2 A1
2 );
[a 2
ey - L% o

Var(X)

(5) il
(0

(72)2 G-y 1 A2

—

The Laplace Transform is

2 (1)
For modality
—(A+1 2
CERI
X 2
x* 2
A+1 o2

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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4.3.6 Levy Distribution

This is a special case of inverse gamma distribution when When

v=—=, 0>0, p=0 (4.41)

Therefore A = %

| g
02 o1
flx) = e
:,/2;2636—"223(, x>0, 6>0
r 62 rr(l_r)
2-(%) g
r l—r
- (%2) F(\Q/ﬁ ) (4.42)
2 1_ 2 _1
on-(5) 2 (5)%
_ o’ T(5+1)
R
o 1)
2 —31()
E(X)=o0"
2\?T(-2 +1
2\ 2 (-1
E(X?) = (%) _éré))
:(0_2)2 (—3+1)
2) =3(=2r()
o2\*1 o4
()43
Var(X) = %4 —(c?)? = %4 —o*= —564 (4.43)
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Alternatively using

o2\2 1
V“’(X)Z(T) G120 2)
o2\ 2 1
(%)t
o
e
_ 2.4

Remark: A > 2 = v < —2 for Var X to exist

Laplace transform is

2 202s
— e*\/20'2s — e 250 (4.44)
4.3.7 Positive Hyperbolic Distribution
This is the case when
v=1l, >0, p>0 (4.45)

X ~GIG(1,0,p)

So put v=1 in the results obtained in sections 3.2 and 3.3

P2\ e HPHE) e kPP
f(x):< ?) 2K, (po) =(5) Kipoy % 020 p>0

n_ (0 Kitr(po)
E(X)_(p) Ki(op) (1o
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_ (o) Ka(po)
S (P) Ki(op)
_(9\’Ks(po)
BOC) = (E> Ki(po)
_ (9 Ks(po) (o) Ki(po)
Var(X)—(p) X,(op) (p) Kpo)
_(o\*[Ks(po) K3 (po)
_(P) [Kl(po) Klz(pc)] (4.47)
2 K 25+ p2)o2
farctap) :\/IPZ ! I(ﬁ (;cp) = (4.48)
Modality GPXZ s
2 Xmode =1 (4.49)

4.3.8 Convolution of a class of GIG Distribution

As proved earlier in chapter 3, using the Laplace transform technique, where L,(s) =
Ly(s)Ly(s). The following proposition hold.

Proposition (4.1)
LGIG(VI ) 07 p) * LGIG(VZa 07 p) - LGIG(VI + V2, 07 P) (4-50)
Proof

L;(s) = Ly(s) x Ly(s)

p2 Vi+va
LZ(S) = <p2+25)

= Lgig(vi +v2,0,p)

This is the Laplace transform wich is as a result of the product of the two laplaces of
gamma distribution.
Z ~ Lgig(vi +v2,0,p)
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Proposition (4.2)

Lig(—v,0,p)*Lgic(v,0,p) = LgiG(v,0,p) (4.51)
Proof
L(s) = P RCAVESD
’ VP?+2s K, (po)
= Lgig(v,0,p)
Proposition (4.3)
1 1 1
LGIG(_§7 o1,p) *LGIG(_§7 02,p) = LGIG(—§7 01+ 02,p) (4.52)
Proof
1
LGIG(—EKXP) = L,(s)
_ oPO1—01\/p?+2s
S Ly (s) = Le(s)Ly(s)
— P01 01 \/meP%—Gz\/m
_ (o1t (/P72
1
=LG1G(—§,0'1 +02,p)
Proposition (4.4)
1 1 1
LGIG(_Ey o1,pP) *LGIG(E, 02,p) = LGIG(E; o1+ 02,p) (4.53)
Proof
1
Ly(s) = LGIG(§70-27P>

P 2
— (_PZT2S> oP 02021/ p2+2s

o
_ p epozfazy/p2+2s
V/p%+2s
L (s) = Ly(s)Ly(s)
_ epoqfon/p2+2s p epczfcrz\/p2+2s
Vp2+2s

p 01+62) (p—/p>+2s)

= —e(

Vp2+2s
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1
4.4 Allen’s Parameterization: ® =200?2

In Allen’s Parameterization, we substitute the following in Sichel’s Parameterization,

y=20 and ¢=20" (4.54)

0.2
————x e *,x>0 (4.55)

2
Lo (6x+)

= . (4.56)
[f(;oxv_le_(e”%)dx}
Forx >0, —co<x<oo, 062>0, 0>0
N -
E(X") = 62\ K (2062) (4.57)
o K,(2002)
_ (i) " Ky4v(2062)
02/ K,(2067)
s = () oot
02/ K,(2002)
6\ K, 12(2067) o 2K3—|—1(206%)
02 K,(2007) 02/ K2(20072)
_ (g>2 K.:2(200%) K7,,(2062) ws)
02 K,(2002)  K2(206?) '
The Laplace Transform
20 \IK,(2,/0%(s+6
Lx(s) = ( ) ol ( 1 ) (4.59)
25426 K,(2067)
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4.5

Modality
o2
—1)—06x+—=0
(v—1) x+ P
x> —(v—1)x+0>=0
v o (v—1)£/(v—1)2+4026
mode — 20
—1 —1)2+4020
when 650, X, —0ZDTVE-1)2+do
20
when 6 =0
o2
Xmode - ( — 1)
Special cases and their Properties
4.5.1 Inverse Gaussian Distribution
When
1
yp=——
2

T
(2062)
1 2
3 =
302007 ,—(6x+ %)
o x3
-
1
3 =
Ox 32007 p—(0x+%)
VX

(4.60)

(4.61)

(4.62)
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2
VarX = (11) <266%>
02

203
== (4.63)
02
2K (y/(25+20)267)
/ 1 s o
Ly(s) = ( 20 ) 2
254260 K | 1
—5(2002)
26206%— (25+20)202 (4.64)

|
_ 20022 (s+06)202

~34/9+4(4020)

4(69%)

16
\/1—|—?962—1] (4.65)

4.5.2 Reciprocal Inverse Gaussian

Xmode =

3
2

When
c>0, 6>0 (4.66)

Then the pdf of RIG distribution is

0> %x_%e_(ew'%z) 40 2 o2
flx)= <—> - - <—) e (0t for x>0, o>0, 6>0

o 2K1 1 X
5(20012)
(4.67)
The moments are:
1
2\"K1, (20067)
E(Xr):(6—1> 2t 1 (4.68)
02 K%(zo-ez)
1
2N\ K (2697)
b= (&)=
02/ Ki(20602)
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Var(X) = (%)2 (669% +4626(1 —4029)> (4.69)

The Laplace of RIG,

_ 20 6209%— (25+20)20
GIG(3,0.,0) 25+20

_ 2,
~ V25426 7GIG(=3.6.0)

L

B 26 2 L
~ 25426 ) TGIG(-3.096)
0 \}
= <s+ 9) L6i6(-1,6.6) =L16(1.0.6)L616(~1.0.0) (4.70)
where
1
0 \2
Lcnx;me)::(s+_9)
The mode of RIG is
2
A
Xmade = 1
2002
—4+y/1(1+602)
B 269%
V1+6002—1
Xnode = —————1 (4.71)
4002
4.5.3 Gamma Distribution
When
v>0, o=0, 6>0 (4.72)
9 %
flx)= %eexﬂl x>0, v>0 (4.73)
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when 0 =0

- 2
B (é) F(er)r)
E(X)= (g) F(;(Jvr)l) =1
BOC) = (éfr(rv(tf) - <%>2<V“)V
. Var(X) = (%)2(v+1)v— (é)zvz = (é)zv

ie

To get the modality

and

" Xmode = muv 7é 1

Xnode = if v=1

4.5.4 Exponential Distribution

When

for x>0 and 6 >0

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)



80

E(x7) = (%)rr(m 1) =1l (%)

This is an exponential distribution with parameters 6 > 0

1
2
0
2 1
M= o e
1
- 2
(%)
1
LX(S) = Gz
6
CER
To get the modality
e =0
Xinode = ©°

4.5.5 Inverse Gamma Distribution

v<0, 6>0, 6=0

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)
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whenA > 1= —v>1=v< -1

1 A—1—-A+2
Var(X)Z(Gz) 2_1 [()L—l)(l—z)]

1
= (c%) -1 —2) for A >2

The Laplace Transform is

For modality
—(A+1)

4.5.6 Levy Distribution

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)
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i.e

62 _o2l
flx) = =
62 21
={/=3¢ %%, x>0, >0
X
o ST =)
|
= (Gz)rl“(?/%r) (4.93)
1_ _1
E(X) — (02) F(i/%l) _ (02) F(\/%z)
_ LT(=3+1)
E(X)=o? _;F(%)
L, T(3)
=)
~E(X)=—(207) (4.94)
2 T(L—-2)
E(Xz) - (62) I—%(%)
52 T(=3)
=) T
22 l(=3+1)
=)
2y _ (22 F(_%)
E(X*) = (07) )
o2 T(=3+1)
~ S
2
— (Gz)zé = %
1
Var(X) = ? —40* = —264 (4.95)
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Alternatively using

1
Var(x) = o*
(=3)(=3)
8 4
=—=0
3
Remark: A >2 = v < —2 for Var X to exist
Laplace transform is
1
2025 1 ’ 2(202)
L =2 — s
x(s) 2 205
:e—2\/m (4.96)
4.5.7 Positive Hyperbolic Distribution
When
v=1, >0, 6>0 (4.97)
So put v=1 in the results obtained in sections 3.2 and 3.3
6% ef(9x+%)
fO)=—|———— x>0, >0, 6>0
0 ] 2K, (2697)
02\ Ki.,(206%)
EX")=|— 1”—1 (4.98)
o K (2697)
1 1
02 \ K>(20602)
E(X) i 1
G J Ki(2002)
1 v 1
02\ K3(2002
e = (&) K00
o K (2697)
o\ [K3 zce%> K2 (2095)
Var(X) = = — - (4.99)

. B \/Tm( (25 +26)20%)
GIG(1,0.6) = \[ 53179 KI(ZGG%)

)
=4/ 0 Ki(2 (s+?)6) (4.100)
s+6 K1(2697)
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Modality

(2602)x%+ (2562) =0
C Xmode =1 (4.101)
4.6 Willmot and Jorgensen Parameterizations
4.6.1 Introduction

In this section, covered the GIG distribution under two different parameterizations; Willmot
and Jorgensen. Under each, we constructed the GIG distributions. We studied properties

such as the r th moment, the Laplace transforms and the modality of the distributions.

Going by each special cases, we determined the same properties such as the r th moment,
the Laplace transforms and the modalities of the special cases of the GIG distributions.

4.6.2 Willmot’s Parameterization: ® =

™=

Given the Sichel’s paramterization, ® = /@ ¥ we therefore substitute the following,

W hen q):,u2 and y/:% (4.102)
K, < ,u_2> zl/mx"_le_é %(XJF%) dx
v B 2 Jo
()Ll 1)
Therefore the GIG is a pdf given by
fx) = %exp{—%} (4.103)

Where
w,B>0,for x>0
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. Kiir(5)
EX")=nu K (%)
_ Kv+1(%)
E(X)=u K(%)
2N 2 v+2(%)
= K.(%)
Kv+2(%) Kv+1(%) ?
Var(X)Zﬂz Kv(%) Kv %) ]
_ 2 Kv+2(%) K3+1 %)]
PG RO
Lx(s) = aa 2 i ~ | k,2 “_Z(L
2K, 5 2B (ﬂ;ﬂ)f 2B 2P
1 1 u?
— _K, (2
K1 2695 2\ 208 19))
(B L/ 2Bs
:(1+2ﬁs)—5K(ﬁ K:: Ps)
B

According to Willmot’s notations,

e Ko{uB ' (1+2Bs)7}

L(s) = (1+2Bs)

To get the modality

Ko(up=1)

=1+ =12+
Xinode = 1 ﬁ>0
B>
2
B=0

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)
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4.7 Special Cases
4.7.1 Inverse Gaussian Distribution

When
V= —=— (4.109)

EX") =u" (4.110)

Therefore
EX)=u
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The Laplace Transform

K y{1+2Bs)2
K_%‘uﬁfl

Lx(s) = (v/1+2Bs)?

i o P KB VTR
(#)%exp(—‘uﬁ—l)

- n\/m Z'uBil %ex -1 _ -1 S
_(z‘uﬁ—l\/TZﬁs T ) piup up W}

= expl 5114289}~ 1)}

To get the modality

4.72 Case2:v=3j

When

(4.111)

(4.112)

(4.113)

(4.114)
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SE(X) = .U{l—f-%} where ® :‘uﬁ—l

E(x? N{lJrZ#}

312uB~1)"!  41up~")?
TR T TR

3 3
2up-! + (‘uﬁ—l)z}

= u*{1+

= p*{1+

2
Var(X) = uz{g - 2‘%}

=pu+2p°

1 1 exp(—uB-! S
Le(s) = (VT 2By ("B p(—up~ /TT255)

2up- \/W exp(—up—1)

1
= (——=)exp{—up~'\/1+2Bs+up~'}
Vv 1+2Bs
Modality
d
Ef(x) =0
_yy [
—1 14+ 4
Xmode u
2B
4.7.3 Gamma Distribution
When |
u? =0, 52 >0
() 1 i
flx)= e X", x>0, —>0

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)
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This is a gamma distribution with parameters v and 1

2p?
. T(+1)
= Y
B I'v
)
_ b
L
2p7
and E(X?) = F(v+2)2
()
 Var(X) = 1213 [F(v+2)_1]
a 1) L T
(3)

Modality
d
af(x) =0
. X J— 1
- Amode — 2ﬁ2(v—1)
When
1 ) 1
V:_§7 U :0, W >0
1
() - !
flx)= ;B_l) eiﬂﬁxx_%_l, x>0, B >0
2
E(X") = T(=3+7)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)
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1
B (4.127)
2B
| )
and E(X?) = (—5+ )2
1 1
[ ()
(=142
S Var(X) = 1 (=3 + )_1 (4.128)
1\ | (=1
282 2
()
()"
1
357
Lx(S): _%
1
(552 +5)
NN
) 12[3 (4.129)
W—Fs
Modality
d
. =0
dxf(x)
1
1\ 2
582 i
j—x <2ﬁ—>1€ 2p* x_%_l —0
2
. 1
'Xmode:—W
When | 1
J— 2_
. _O,?>O (4.130)
%
@) e
Lo #x27l x>0, —=>0
r'(z) ;



E(X) =
287
1
and E(X?) = 1G+2) 5
TG (35:)
. 1 [rd+2) ]
SVar(X) = —1
( ) #)2 F(%)
Lx(s)=E (e*SX)

Modality
1 1_2 l_l 1
(E—l)xZ — X2 WZO
T
xX= 12B
(z—1)
B 1
S 2B2(3-1)
1
'~Xm0de:_ﬁ
4.7.4 Exponential Distribution
=1, p*= Lo
v=1, u =0, F> (4.131)

_ L 1
f(x):”ﬁe  for x>0 and E>O

E(X") = (2B*)'T(r+1)=r(2B%)

(4.132)
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E(X)=2p?
E(X?) = 122
(352)
Var(X) = 11 5
)
Xinode = ©°

4.7.5 Inverse Gamma Distribution

This is the case when

v<0, u°>0, B2 =0
A
u?
N 2
Which is an inverse Gamma pdf with v<0
A
2
2) T(A-r)
E(Xr) - <F)V 2 A—r
()
2
when A > 1
2
us 1
X)=C-—
E(X) 2 A—1

) = (1) [

p2\? 1
:(7) GGy o AR

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)
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For modality

4.7.6 Levy Distribution

This is a special case of inverse gamma when

Therefore A =

B[ —

ie

1

B’

1 2
— 0
v > u: >0,

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)
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Alternatively using

2 4

Remark: A > 2 = v < —2 for Var X to exist

Laplace transform is

4.7.7 Positive Hyperbolic Distribution

When
v=1, u>0, B>0

Pl G
x) =
2K (5)

2.0 ,,2
:,u_lexp<—M), x>0, B>0, u>0

2Bx

This is a positive hyperbolic distribution.

4.8 Jorgensen’s Parameterization

4.8.1 Introduction

(4.146)

(4.147)

(4.148)

In this section, we shall construct the GIG distribution under Jorgensen parameterization
and determine various properties. Most of the properties have been discussed in the

previous sections under the special cases.
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4.8.2 Construction

Using Sichel’s Parameterization, ® = /@y and n = \/%

Therefore

w
= and = —
v n (0 n

Given that;
K ( 2/ “exp {—— wx+¢)] dx
and ¢, v > 0 we have the notation 1 = \/% and 0 = /oy

Kv(a)):/wxv exp{——(l]/x%—(l))} dx

—/ Vl{ (onx 1+ %x)] dx

We let x = Nz = dx =ndz

2'nz M
_77/ CXP{ w(1+z)} dz

o, 1
:217V§/0 exp{—z(g-l—z)} dz

K(0) = [ neexp | -3 (L4 T na:

flx)= p —co <y <o, N >0,

(4.149)

o >0 (4.150)
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4.9

xvfleig(nx‘l»%)
flx)= , x>0; —o<y<o, M>0, ©>0 (4151

oo _o 1
fO xV—le 2(nx+nx)dx

4.8.3 Property 3.1: Moments

r 1 rKv+r((D)
EX")=1|— (4.152)
) (n) K, (o)
1 Kv—i—l(w)
EX)=|— (4.153)
o (n) K, (o)
1\ [ Kis2(@) {Km(w)r
Var(X) = | — — (4.154)
©=(3) (m(w) K. (0)
4.8.4 Property 3.2: Laplace transform
The Laplace is
vK,(,/(2s+on)2)
_ on n
Lx(s) = ( 2s+a)n) Ko () (4.155)

4.8.5 Property 3.3: Modality

The mode of GIG distribution is which maximizes the pdf f(x). This peak is obtained by
solving the equation

d
- —0
5
Therefore,
-1 12+ 02
Xinode (V ) i (V ) o s >0
on
o
and  Xypde = 2(1"_ V), w=0 (4.156)

Special cases of GIG Distribution
4.9.1 Inverse Gaussian Distribution

When
V= —= (4.157)
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o]
flx) = 2;x3ewe—7<nx+%>

r 1 '

EX) =~
i
Lx(s) = 0—,/(@2s+on)f
3 4

Xm()de - E 1 + §0)2 - 1]

4.9.2 Reciprocal Inverse Gaussian

This is the case when |
V= E,

Then the pdf of RIG distribution is

1

2 ®

f(x) — (2::”) e—ﬂnw%) fOI’ x> 0; o> O, n> 0
X

The moments are:

The Laplace of RIG,

on o—,/(2s+on)e
Lx(s) = \/ 2s+wne '
_ [_en

=L L

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)
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where

L = on :

is the Laplace of a gamma distribution with parameters % and %

The mode of RIG is

2
VI+G -

Xmode - 2w
4.9.3 Gamma Distribution
When
Q]
v>0, —=0, on>0
n
(F1)" _on
flx)= Fz(v) e 2%l x>0, v>0

.. . v
This is called a gamma pdf with parameters v and 5

Thus »
GIG(v,0,0n) = Gamma(v, 7”)

£0= () 1)

£ (Gr) "Fy o
RN M
Var(X) = (win)z(vﬂ)v— (win)z# _ (win

(4.165)

(4.170)

(1.171)

(4.172)

(4.173)
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The mode is

and

4.9.4 Exponential Distribution
This is a special case of a gamma distribution with

v=1 on>0

~

—~~
)

S~—
Il

o

2
()] o
N -9
2

on

This is an exponential distribution with parameters % >0

2
2
E(X?) =
(41)?
Var(X) = —=> — 1
() (%)’
B 1
(g
on
_ 2 . owonm
Lx(s) Yl+s  2s+o0n
e~ TX =0

for x>0 and on >0

2)’

E(X") = (win)rr(rﬂ):rz (_

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)

(4.179)
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4.9.5 Inverse Gamma Distribution

This is the case when

v<0, on=0 (4.180)
o\ A
n
8 B SR
flx)= ¢ 2xx (4.181)

Which is an inverse Gamma pdf with v<0

Thus

@ @
X ~ GIG(v, E,O) = Inverse Gamma(—v, —

), wherev <0 and )
2n n

A
[0
2n) T(A—
E(X") = <1177L (w ki), (4.182)
(%)
when A > 1
o 1
E(X)= mi-1
2
) n_ (@ 1
..E(X)—(2n> = (4.183)
2
o 1
Var(X) = (%) A =120=2) for A >2 (4.184)
The Laplace Transform is
A
B o |7 K, (V20ns)
L(s) =2 { ml Ty (4.185)
For modality
1
x
Ximode = Z(AQ—'_ 1) (4.186)
n
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4.9.6 Levy Distribution

Is a special case of inverse gamma distribution when

Therefore A = %

I(3)
Q] _ol Q]
f(x):1/2n7rx3e mx x>0 ﬁ>0
n [0\ T(G-7)
500 = (57) o)
_(g)rF(%—r)
\2n) V=@
[0\ TI(-3)
0=(5)"7
o O(—=3+1)
=
_ o T()
2 —31(3)
E(X):—%
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Alternatively using

Remark: A > 2 = v < —2 for Var X to exist

Laplace transform is

—e n (4.190)

4.9.7 Positive Hyperbolic Distribution

This is the case when o
v=1, E>O, on >0

@
X ~ GIG(I,E,wn)
So put v=1 in the results obtained in sections 3.2 and 3.3

o~ St

f(x)=(n)T(w)

x>0 %>0, on >0

This is called a positive hyperbolic distribution.

ry __ l rK1+V(w)
E(X") = (n> X, (0) (4.191)
1 K> (o)
E(X)= (ﬁ) Kzl(a) (4.192)
o _ (1 * K3 ()
EX) = <n) K (o)
(1Y K@) (1) K(a)
Var(X)_<n) Kl(w>_(n) K} (o)
(1N K (o) K3 (o)
‘(E) K1<w>_1<2%<w>} .
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Modality is

Ki(y/(2s+@n)2)

L = \/5e
GIG(L§.om) =\ 25 on K (o)
1)
—+ ) =0
X
o’ +o=0

.'.Xmode =1

(4.194)

(4.195)
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5.1

5.2

CONCLUSSIONS AND RECOMMENDATIONS

Summary of Results and challanges

The objective of this study was to construct the Generalized inverse gaussian distributions
under different parameterizations using modified Bessel function of the third kind wich is
a special function.

Modified Bessel function of the third kind

Modified Bessel function of the third kind is one of the special functions that have been
used throughout in construction of GIG distribution. Eventhough, there are quiet a number
of special functions, we have only used it as the only special function in this work. Due to
different parameterizations, we have derived Generalized inverse Gaussian distributions.

GIG distributions

We have seen that various forms of GIG distributions have been constructed. This was
only by use of modified Bessel function of the third kind. We therefore worked with the
five parameterizations to come up with various forms of GIG distributions. These are; The
Sichel’s, Jorgensen’s, Allen’s, Willmot’s, and Barndorff-Nielsen Parameterizations. From
Sichel’s, we came up with all the other four parameterizations. In otherwords, we treated
the other four parameterizations as special cases of the Sichel’s parametrization. Under
each, we have covered the following thematic areas; construction and properties, special
cases which have given rise to GIG sub-models distributions, the convolution properties,
power and the inverse of the GIG distribution which was only covered under Sichel’s
and Barndorff-Nielsen parameterizations. Using the change of variable technique and
the cummulative distribution function technique, we came up with the power of the GIG
distribution.

Recommendations

Modified Bessel function of the third kind

The only special function used is the modified Bessel function of the third kind. Other
special functions such as Gamma, Beta, Modified Bessel functions of first and second kind
and many other special distributions could be used as well.
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Other Methods

Futher work could be to identify other methods in constructing the Generalized inverse
Gaussian distributions, such as the use of mixture method and use of special functions
other than the one used in this research work. GIG distribution could be used as a mixing
distribution to come up with other distributions. Other special functions that could be used
are the generalized Lindly, Paretto and Trasmuted exponential which are distributions of
the finite mixtures. Other special functions that could be used are gamma, betta, of first
and second kind Bessel functions .

Properties

In this work, we have only costructed the Generalized Inverse Gaussian distributions using
the based on five parametrizations which have led to various forms of the GIG. We have
obtained the general formular for various properties such as the moments, the laplace
transforms and the modalities under all four parameterizations.

We have generalized the Generalized inverse Gaussian distributions and their properties.
There were some special cases which led to sub-models of the GIG distributions. These
are; the Inverse gaussian, the reciprocal inverse gaussian, the gamma, inverse gamma,
exponential, positive hyperbolic and the Levy distributions. We have therefore worked on
their statistical properties like the r th moment, the Laplace trasform and their modalities.

However, a lot has not been done on other properties and estimating parameters of GIG,
the power GIG distribution and the GIG submodels as well. Extensive work in these areas
would be very important.

Inference on Parameters and Applications

The main forcus of this work is on the construction of Generalized inverse Gaussian
distribution based on the five parameterizations. Under theory of estimation, estimations,
testing of hypotheses and extensive applications in real data situation of the Generalized
inverse Gaussian distributions and other related distributions and its sub-models such
as the inverse gaussian, the reciprocal inverse gaussian, gamma, the inverse gamma,
exponential, positive hyperbolic and the Levy distributions are major areas for further
research.
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