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ABSTRACT 

In the wake of the current global nuclear renaissance, the threat of terrorism involving nuclear 

materials is real. The lethality involving detonated improvised nuclear devices (IND) “dirty 

bombs” or even radiological dispersal devices (RDD) is high as compared to any other form of 

terrorism. Such detonation events need to be timely detected and contained. As such, there is a 

need for a direct, rapid, non-invasive, remote and in situ state-of-the-art analytical techniques 

that can detect and characterize intercepted nuclear and radioactive materials (NRM) to apprise 

attribution. Nuclear forensics involves analysis of intercepted nuclear materials to provide 

sufficient evidence for attribution. Current nuclear forensics techniques are destructive, time-

consuming, invasive and laborious besides requiring a sizeable sample size of NRM. As such, 

they are of limited utility in direct rapid nuclear security analytics and attribution. Laser-Induced 

Breakdown Spectroscopy (LIBS), when combined with chemometrics, has the potential to be 

developed towards overcoming these limitations.  

The goal of this work was to develop a chemometric enabled LIBS methodology for direct, rapid 

and non-invasive nuclear forensics detection, quantitative analysis and attribution of fission 

products (FP) in the vitrified glass, nuclear powders and high-level liquid wastes (HLLW) in 

support of nuclear security. In this regard, selected FP (Rb, Sr, Y, Zr) were spiked in a uranium 

augmented (0-5 % natural grade) matrix (composed of; SiO2, Na2CO3 Al2O2, and CaCO3) in 

typical levels at which they occur in high-level nuclear wastes. The resulting sample was 

prepared as fused glass to simulate nuclear glass, mixed with cellulose and pressed into pellets to 

mimic high-level nuclear powders as may be encountered in detonation events and a third batch 

prepared to mimic HLLW resulting from nuclear fuel reprocessing.  

Drop coating deposition (DCD) of HLLW on perspex was found to produce the best signal to 

noise ratio (SNR) of 57.895 for Rb I 780.011 nm of 9 ppm. Multivariate calibration strategy for 

quantitative analysis of Rb, Sr, Y, and Zr was achieved by utilizing artificial neural network 

(ANN). Various ANN algorithms were tested with feed forward back propagation algorithm, 

providing (R2 > 95 %) calibration accuracy. The relative error of prediction (REP) of <

10 % was realized for each model. Validation of HLLW models was achieved using synthetic 

inductively coupled plasma (ICP) and atomic absorption spectroscopy standard solutions 

respectively and river clay PTXRFIAEA09 SRM with < 10 % deviation from certified values. 
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Detection limits for each of the spiked elements in different samples types were: fused 

glass LoD ≤ 200 ppm, powders pellets LoD ≤ 71 ppm and HLW liquids  LoD ≤ 8 ppm. 

Simulate high-level nuclear waste fluids typical of a nuclear forensic scene (detonation or 

accidental spillage of HLW liquids or unlawful release of FP to the environment) were treated 

together with base matrix standards to achieve PCA clustering that differentiates the nuclear 

wastes and non-nuclear wastes based on trace FP.  

Support Vector Machine (SVM) was utilized in developing qualitative clustering hyperplanes 

based on the presence of FP (Rb, Sr, Y, Zr) in samples. We report >  85 % accuracy in 

discrimination of FP in terms of trace concentrations and their corresponding spectral response 

signatures. These SVM findings are an important component of nuclear forensic attribution as 

samples containing FP in particular concentrations are separated by the developed hyperplanes 

and hence furnish useful nuclear forensic interpretations. The novelty of the developed analytical 

methodology lies in small samples involved (2 µl for liquid samples with computed SNR of 

57.895) and ( 3 mm for solid fragments) to furnish nuclear forensic signatures. Hence, 

chemometric-LIBS provides a robust tool which can be integrated into a suitable software-user 

interface of a handheld LIBS for rapid analysis of NRM in the context of nuclear forensics.  
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CHAPTER I 

1. INTRODUCTION 

1.1 Background 

As of 31st December 2016, more than 3068 cases of illicit trafficking of nuclear or radioactive 

materials had been reported to the IAEA by member states participating in the Incident and 

Trafficking Database (ITDB) system (IAEA, 2017). This is just the tip of an iceberg inferring 

that the actual number of illicit smuggling is significantly higher (Mayer et al., 2012). These 

cases have been rising gradually since the first interception of illicit smuggling of 1.5 Kg 

weapon-grade HEU (90%), Podolsk, Russia in 1992 (Moody et al., 2014). Nuclear forensics 

(NF), a fairly new scientific discipline, emerged in the early 1990s to respond to such cases. NF 

refers to the analysis of materials of nuclear origin recovered either through interception of 

unused or radioactive debris from nuclear explosion scenes (May et al., 2008). NF 

methodologies are used to characterize as well as to evaluate nuclear and radioactive materials 

(NRM) both in the front and the back-end of the nuclear fuel cycle (NFC). Terrorist groups more 

often seek NRM to pose threats in form of radiological dispersal devices (RDD) and improvised 

nuclear devices (IND). As such, NF probes intercepted NRM in order to provide sufficient 

evidence useful in nuclear attribution (Decker and Allison, 2011).  

Nuclear attribution refers to the iterative process that provides clues useful in identifying the 

source of NRM used in illegal activities; determine the point of origin and routes of transit 

involving such materials, and also provide sufficient evidence necessary for prosecution of those 

responsible for illicit smuggling of NRM (Mayer et al., 2012)).  NF when conducted effectively, 

is in itself a restriction to the envisaged nuclear security threats as through nuclear material 
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characterization, acts of terrorism involving RDDs and INDs (‘dirty bombs’) can be deterred 

(Angeyo, 2018).  

Technological changes that have taken root throughout the world call for sufficiency in energy 

which is always considered as the key driver of any nation’s economy. Sources of energy such as 

wind, hydro and solar have a number of limitations including relatively higher dependency on 

natural aspects that vary over time (as compared to nuclear) hence they are greatly unpredictable. 

In addition, sources of energy such as coal are in the verge of being banned as they contribute to 

greenhouse gas emissions that adversely affect the planet  (D’haeseleer, 1998; Sailor et al., 2000)  

As such, nations have been embracing nuclear energy as it overcomes most of these limitations 

and is a reliable, safe and clean source of energy. 

However, this global nuclear renaissance has a number of drawbacks which include lack of a 

long-term solution to the challenge of disposal of nuclear wastes. Operation of nuclear energy 

can follow an open or a closed fuel cycle (Baisden and Choppin, 2007) as shown in Figure 1.1.1. 

Some nations like the US and Canada have chosen to work with an open fuel cycle in which the 

spent fuel and other nuclear wastes end up in permanent disposal facilities to eliminate the 

chances of the proliferation of weapon-grade plutonium which is a byproduct of reprocessing of 

spent fuel (Nash et al., 2006).  Some other nations operating nuclear power programs like UK 

and France prefer having the nuclear waste undergo reprocessing in order to reduce radio-

toxicity as well as recover important fission products (FP) for various applications such as food 

preservation (Murray and Holbert, 2014), etc. Also, other useful nuclear fission products such as 

plutonium and depleted uranium are recovered for applications involving the formulation of 

mixed fuel oxides (MOX) which are utilized in hybrid reactors (‘breeder reactors’) (Şahin et al., 

1999; Yapıcı, 2003). During such processes, additional waste burden containing a number of 
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fission products, actinides, and trace metals are produced. Because of their negative impact on 

the environment, the release of these metals to the surroundings is detrimental (hydro-ecological) 

challenge. Therefore, there is a need for establishing operation of monitoring and surveillance 

programs geared towards control of the release of these fission products to the environment. 

 

 

Figure 1.1.1: The nuclear fuel cycle (After : Wilson (1996)). 
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Consequently, amidst the wake of the current global nuclear renaissance, the threat of terrorism 

involving nuclear materials is real. The lethality involving detonated improvised nuclear devices 

(IND) “dirty bombs” or even radiological dispersal devices (RDD) is high as compared to any 

other form of terrorism. These nuclear materials need to be highly safeguarded and if diverted for 

non-peaceful purposes, there is a need for a NF tool for rapid detection of unused NRM or even 

nuclear attribution of detonation scenes to bring culprits into accountability and Law 

Enforcement. 

1.2 The Composition of Nuclear Waste 

In the reactor core, 235U undergoes nuclear reactions leading to generation and accumulation of 

nuclear fission products (FP). Equation 1.1 shows some fission products from uranium fission 

(Sally, 2014). 

 n0
1   +   U  92

235 →   U →92
236  Ba56

 139  +  Kr 36
94 +  3 n 0

1 + 200 𝑀𝑒𝑣 (1.1) 

 

 

 Some of the FP (e.g. 149 Sm and 135Xe) are poisons as they have very high neutron absorption 

cross sections and lead to a reduction of reactor reactivity (Stacey, 2018). In the long run, the 

accumulation of these fission products results in inefficiency in energy generation and therefore 

the fuel rods must be replaced to maintain the efficiency in generation of energy (Henderson, 

2014). Spent fuel is highly radioactive and most nations running nuclear power plants have 

adopted a disposal facility to store the fuel in anticipation for an appropriate permanent solution.  

Nuclear waste can be broadly classified as high-level waste (HLW) and low-level waste (LLW). 

High-level liquid waste (HLLW) is normally generated during the initial stages of reprocessing 

                Reactants    Intermediate          Fission        Neutrons    Energy 

                                      unstable       products         

  product 
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of nuclear fuel  (Xuegang et al., 2012). In essence, HLLW is a composition of the nuclear fission 

products (e.g Mo, Tc, Nb, Ru, Cs, Y, Rb, Sr), some minor species from the actinide series and 

nitric acid which is used during extraction of FP (Donald et al., 1997). This nitric acid used in 

the reprocessing is highly corrosive hence desired waste management procedures require that de-

nitration be conducted. It is worth noting that metallic precipitates (Sr, Zr, Mo Ba, etc) are also 

generated during HLLW treatment as well as during de-nitrification process. Some of these 

precipitates are also important during the downstream portioning HLLW treatment process 

(Xuegang et al., 2012). Immobilization of most of these fission products can be achieved by 

integrating the materials into vitrified (glass) form which provides a more compact form for 

long-term storage. 

1.3 Quality Control/Quality Assurance Characterization of FP 

The goal of NF is to analyze suspected NRM to furnish information related to type, origin, 

production method for such material, the routes of transit and where possible, determine where 

the regulatory control was lost (L’Annunziata, 2012). In order to promptly respond to the 

questions raised in NF and achieve accurate attribution, the results must meet the required 

standards (Kristo, 2012). A laboratory analysis program, especially in NF, should be subjected to 

QA as it offers a means to deliver valid, traceable results and a capability to identify and correct 

anomalies consistent from reproducibility of results within a given technique (Leggitt et al., 

2009). Despite the rigorous procedures required to achieve full NF, QA facilitates the creation of 

a defensible and consistent input to the interpretation process in support of attribution 

assessments. As such, ISO accreditation is sought in NF laboratories in order to enable 

admissibility of scientific evidence for purposes of jurisdiction and holding the perpetrators 
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accountable.  In this work, certified reference materials have been utilized in the development of 

the methodology for trace analysis of NF signatures of selected FP. 

1.4 Overview of Laser-Induced Breakdown Spectroscopy (LIBS) 

LIBS is an atomic emission spectroscopic technique that has the ability to perform elemental, 

isotopic and molecular analysis of a huge variety of samples irrespective of their physical state. 

In this technique, a short pulsed and focused high power laser is directed and made to cause a 

breakdown on the surface of the sample. The energy of the laser is used to ablate a minute 

fraction of the sample (~1𝜇𝑔 ) (Kasem and Harith, 2015 ;  Hussain and Gondal, 2013)  As a 

result, a dense microplasma characterized by high electron density (~1018 cm-3) and high plasma 

temperature (> 20 000 K) is formed (Russo et al., 1999). This high-density plasma expands at 

supersonic speeds and contains information about the ablated sample (Musazzi and Perini, 2014). 

The atoms and ions in the expanding plasma plume exist mostly in excited states assuming a 

stoichiometric ablation and as they transit to the stable states, they emit electromagnetic radiation 

that can be spectrally analyzed and interpreted to reveal the chemical composition of the target 

sample. 

LIBS possess several advantages compared to other competing analytic techniques. These 

include; limited sample preparation, rapid real-time analysis, ability to perform in situ analysis 

and remote capability (suitable for radioactive samples), the unique advantage of achieving depth 

profiling of layered structures, the quasi-non-destructive (micro sample hence microanalysis) and 

also the unique portability advantage compared to other analytical methods fixed in a laboratory. 
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1.5 Hypothetical Nuclear Forensic Scenarios 

In post-detonation nuclear forensics, the desire to attribute the material to its source, loss of 

regulatory control and even its composition and of holding criminals to accountability requires 

rapid state-of-the-art microanalytic protocols. Such detonation scenes are characterized by tiny 

samples as most of the constituents of the nuclear device get jumbled in a manner that is difficult 

to isolate. The dust particles and tiny glass debris that could contain NF signatures (uranium and 

nuclear fission products) are dominant. Therefore, getting sufficient sample size that can furnish 

NF signatures using the classical analytical techniques is a major challenge. The use of rapid 

LIBS based analytical methods overcomes this limitation as minute sample sizes (typically <

1 𝜇𝑔) can furnish useful information. 

Similarly, illicit trafficking of nuclear materials can take many forms. The materials can be 

stolen and trafficked in concealed forms which may involve mixing with powders, fusing in 

glass or even mixing with liquids and packaging for shipping. With the advanced 

microextraction techniques, one can extract the constituents at the other end. As such, there is a 

need to develop techniques that can detect NF signatures in such concealed forms to deter 

smuggling and proliferation of nuclear materials. 

In performing analysis, detection of particular elements such as plutonium could link the material 

to a specific reactor hence a useful component of source apportionment. In addition, the 

concentrations of the detected elements (fission products) can offer information about the stage 

of the material in the nuclear fuel cycle. 
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1.6 Problem Statement 

Current nuclear forensics techniques are mostly destructive, time-consuming, invasive and 

laborious besides requiring a sizeable sample size of NRM. As such, they are of limited utility in 

rapid nuclear security analytics and attribution. Chemometric LIBS has the potential to be 

developed towards overcoming these limitations as it can simultaneously reveal the isotopic, 

molecular and elemental composition of NRM besides achieving attribution. 

1.7 Objectives 

1.7.1 Main Objective 

The goal of this work was to develop a chemometrics enabled LIBS methodology for rapid and 

minimally-invasive detection, quantitative analysis and attribution of fission products in simulate 

vitrified glass, nuclear powders and HLLW based on their concentrations and characteristic 

patterns in support of nuclear security. 

1.7.2 Specific Objectives 

The specific objectives are: 

i. To utilize standard reference materials (SRM) and LIBS in the air and atmospheric 

pressure to develop calibration models to detect and quantify trace Rb, Sr, Zr and Y in U 

augmented simulate nuclear fused glass, pressed powder pellets and liquid nuclear waste 

utilizing multivariate chemometrics (ANN).  

ii. To determine and compare the limit of detection (LoD) of each FP in each of the matrices 

(fused glass, pressed pellets and liquid samples). 

iii. To utilize the chemometric models developed in (i) to quantify fission products in 

synthetic standards for nuclear forensics applications. 

iv. To exploit the diversity of the information from (i-iii) to perform quasi-nuclear forensic 
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attribution (source apportionment, level of enrichment of the material and the stage of 

material in the nuclear fuel cycle) utilizing exploratory multivariate chemometrics (PCA 

and SVM). 

1.8  Justification and Significance of Study 

Vision 2030 is Kenya's long-term development blueprint. It identifies nuclear power as a clean, 

safe and reliable energy source that can contribute 19 % of the national energy mix. However, 

the operation of a nuclear power plant (NPP) is always associated with NRM that is required in 

the nuclear fuel cycle. Lack of adequate security for such NRM as well as to high-level 

radioactive wastes would directly imply high chances of nuclear proliferation. If materials 

suspected to be NRM are seized, there is a need for a direct rapid, minimally-invasive nuclear 

forensic analysis tool that can accurately identify the nature, the source and attribution of the 

material. 

NRM have been seized in various parts of the world over the last two decades. This means that 

the possibility of use of NRM in ‘dirty bombs’ and IND has also risen over time, even when 

the exact time of the attack is unknown. The consequences of a detonated IND in a populated 

region are great due to the negative impact of ionizing radiation and unpredicted future effects. 

As such, a rapid NF detection system such as chemometric LIBS is required. 

LIBS has been shown to be one of the most promising analytical technique for rapid analysis in 

nuclear forensics. Other analytical techniques such as the ‘swipe sample kits’ followed by 

digestion and analysis using ICP-MS used by IAEA in the detection of plutonium, thorium or 

uranium provide accurate results; however, the process is time-consuming and tedious. 

Therefore, the development of a methodology that attempts to overcome the inconveniences 
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encountered in spectral analytical techniques in nuclear forensics is novel and can contribute 

towards ensuring non-proliferation of NRM in the context of nuclear security. 

In addition, a national nuclear forensic laboratory is essential in order to better respond to 

nuclear terrorism crimes involving the use of RDD, IED, and IND. Findings from this research 

will be useful in generating data for potential establishment of a National Nuclear Forensics 

Library (NNFL) and models to quantify fission products which can assist regulatory authorities 

to characterize NRM towards combating illegal trafficking of NRM, etc. Moreover, as KNEB 

embarks on ensuring the reliability of electricity through NPP, research geared towards non-

proliferation is the need of the hour. Also, the study will enable Radiation Protection Board of 

Kenya (RPB), the national and global security agencies, the IAEA, UNSCEAR and ICRP in 

the formulation of recommended strategies of fighting malicious possession and trafficking of 

NRM. 

1.9 Scope and Limitations of Study 

Nuclear waste resulting from reprocessing of spent fuel is a composition of many fission 

products and actinides. Handling spent fuel is hazardous, hence simulates are employed to 

approximate the composition.  In this study, four fission products; Rb, Sr, Zr, and Y spiked in a 

U augmented matrix were used to develop the methodology. These FPs and U were spiked in 

typical ranges they occur in HLW. 

1.10 Study Hypothesis 

It is possible to quantify trace FP in HLW through nuclear forensics to inform attribution. 

Detection of trace FP in HLW is influenced by the matrix of the sample and the nature of the 

substrate used. It is possible to accurately simulate HLW resulting from reprocessing of spent 

fuel through representative selected FP.  
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CHAPTER II 

2. LITERATURE REVIEW 

2.1 Overview 

This chapter reviews the literature on LIBS, chemometric spectroscopy and their utility in 

nuclear forensic analysis. The chapter identifies the progress as well as critiques the application 

of LIBS in elemental analysis of various materials in different forms. Other applications of LIBS 

which include achieving isotopic and molecular spectroscopy are presented. In addition, the 

growth of chemometrics which is a natural complement to atomic emission spectroscopy to 

achieve modeling and calibration is also presented. 

2.2 LIBS in Elemental Analysis of Materials 

The applicability of LIBS to perform elemental analysis has been demonstrated in various fields 

such as; pharmaceuticals, pottery, soil analysis etc., from explosives to non-explosives (Judge et 

al., 2013; De Lucia et al., 2008; Gottfried et al., 2009).  In-situ fingerprinting of radioactive 

surrogates (namely; 60Co, 88Sr, 130Ba, 133Cs, 193Ir, and 238U) on materials found in urban areas 

(aluminum that is common in traffic signs, building bricks, pavement, concrete and glass on bus 

shelters) by LIBS has also been demonstrated  (Gaona et al., 2014). The research supports the 

ability of LIBS for remote analysis (samples 30 m away) in nuclear forensic scenarios for 

monitoring radiological threats and ionizing radiation sources. These findings reveal that the 

detection of the analytes depends significantly on the surface analyzed. However, employing 

multivariate techniques can be a potential solution irrespective of the nature of the surface 

analyzed. Therefore, as smuggling of NRM provides probable avenues to possible nuclear 

terrorism, there is a need for an analytical technique that is suitable for on-site, real-time, rapid 
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and sensitive analysis and that offers possibilities to realize simultaneous elemental, the isotopic 

and molecular composition of NRM. 

Multi-elemental analysis of various mineral melt oxide samples at various elemental 

concentrations was achieved by means of ND:YAG laser based LIBS within a spectral range of 

200-780 nm (Laville et al., 2007). Notably, 19 samples were used for calibration of major 

elements (Fe, Al, Mg, Ca, Ti, and Si). Second order polynomial multi-linear regression was used 

to develop the calibration model. From this study, results were found to be in agreement with 

those obtained by means of X-Ray Fluorescence (XRF) spectroscopy. However, the approach 

employed in this work is univariate which has limitations including, non-uniform spectral 

intensity response with concentration especially when trace elemental concentration is involved. 

Therefore, the utility of chemometrics approach with such data has the potential to overcome 

such limitations. 

Kim et al. (2012) performed quantitative analysis of U in uranium ore concentrates (UOC) by 

means of LIBS in order to develop measurement techniques applicable in high temperatures or 

high radioactivity environments such as in the nuclear reactor. In this work, uranium was 

selected because it is the element commonly available in spent reactor fuel.  Raw uranium ore 

powders were mixed with natural uranium oxide powders to attain uranium ore samples with 

uranium at different concentrations. By means of a pulsed Q-switched Nd:YAG laser operating 

at 532 nm laser excitation wavelength, a neutral atomic emission peak at 356.659 nm gave a 

limit of detection (LoD) of ~158 ppm uranium in the ore matrix. The concentration of uranium in 

the ore samples was consistently determined within the limits of experimental uncertainty 

compared to ICP-AES measurements. However, there is a need to develop methods capable of 



13 

 

lowering the detection limits so as to achieve trace elemental impurities in NRM in order to 

respond to illicit smuggling of NRM and address NF situations. 

Martin et al. (2012) explored the applicability of LIBS in nuclear material analysis and in-situ 

nuclear applications. The technique was applied on strontium (Sr) and cesium (Cs) which are 

common products of nuclear fission process. The study was achieved by means of a Nd:YAG 

laser at a fundamental wavelength of 1064 nm, doubled in frequency to 532 nm with an energy 

of 50 mJ per pulse. Comparative study of Sr and Ce at various concentration in calcium 

carbonate and black carbon matrix was achieved. Notably, Ce is a difficult element to excite by 

LIBS compared to Sr and therefore, these matrices were used in order to investigate the effect of 

the nature of the matrix on detection efficiency of Ce and Sr. This study shows the inherent 

potential of LIBS in in-situ applications such as detection of fission products in a nuclear reactor 

environment.  

Loudyi et al. (2009) applied a combination of LIBS and Laser-Induced Fluorescence (LIF) to 

investigate the limit of detection (LoD) of trace metallic impurities (Pb and Fe) in water. Using 

100 laser shots, the LoDs for Pb and Fe were found to be 39 ppm and 65 ppm respectively. The 

findings demonstrate the systematic ability of LIBS in the analysis of liquid matter. Despite the 

quenching problem commonly associated with LIBS, the findings of this study demonstrate that 

LIBS is a versatile analytical method. As such, this research supports the hypothesis that tiny 

liquid (say dew drops on surfaces) sampled from a detonation scene can be directly analyzed to 

furnish useful information about nuclear forensics signatures of fission products to apprise 

attribution. 



14 

 

2.3 Isotopic and Molecular Analysis using LIBS 

Isotopic analysis of materials using LIBS faces a major challenge that is attributed to small 

isotope shifts due to stark line broadening and Doppler’s effect on the LIBS spectra resulting in 

loss of information (Noll, 2012 ; Mao et al., 2011). However, over the past few years, advances 

have been made towards ensuring improved results in the use of LIBS in isotopic measurements. 

The feasibility of LIBS in the isotopic analysis was demonstrated by Russo et al. (2011) wherein, 

detection of isotopes of hydrogen, boron, carbon, and oxygen were illustrated using Laser 

ablation isotopic spectroscopy (LAMIS).  Similarly, direct analysis of uranium isotope ratios by 

means of nanosecond laser ablation (LA) in combination with multi-collector inductively 

coupled plasma mass spectrometer (ICP-MS) have been reported (Kappel et al., 2012). 

Molecular spectroscopy in ambient air and atmospheric pressure using LIBS is also affected by 

relatively small isotope splitting in atomic species (Mao et al., 2011). This is influenced by the 

vibrational and rotational states of the molecule. The use of plasma sources with low electron 

densities such as inductively coupled plasmas (ICP), and performing laser ablations with the 

sample in a vacuum or in a noble gas environment have been proven to overcome this limitation. 

However, considering field portability of such systems and when measurements have to be made 

in air and atmospheric pressure conditions, chemometric-LIBS becomes more convenient.  

The usefulness of uranium in nuclear energy and forensics remains high and study of such IS 

shifts is one of the measures towards mitigation of possible trafficking. LIBS has been used to 

determine isotopic shifts (IS) for uranium contained in complex matrices. This study addressed 

the detection limits for a variety of uranium lines as compared to the non-uranium lines with 

special emphasis accorded to the spectral interference. Results suggested that IS determination 

require high spectral resolution (Choi et al., 2013). 
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Chemometric LIBS has been demonstrated to be a suitable approach for determining isotope 

ratios of 235U / 238U and 1H / 3H using low-resolution LIBS in the air and atmospheric pressure 

(Doucet et al., 2011). Enriched uranium solutions were deposited on ceramic holder for LIBS 

measurements. The prepared samples were interrogated using 300 laser shots. PLS1 regression 

was used to construct a model that permitted prediction of isotopic ratios under conditions in 

which the univariate approach was not attainable without the use of ultra-high resolution 

spectrometer. This research illustrates the usefulness of isotopic analysis using a portable LIBS 

in NF. Also, this work suggests the robustness of chemometric procedures used and the 

integration of these procedures into a software user-interface can enable a non-qualified person 

to use it for NF applications. Therefore, development of a methodology that can simultaneously 

provide trace elemental, isotopic and molecular impurities in NRM is desirable. 

2.4 Analysis of Fusion Glass 

The first atomic bomb blast test was done on 16th July 1945 at Alamogordo in New Mexico, 

USA. The material mixture that melted around the range of the device formed a green glassy 

material referred to as trinitite (Eby et al., 2010). Within the trinitite glass beads obtained, the 

distribution of the radioactive components reflects the actual situation if a nuclear blast was to go 

off. Thus in any suspected nuclear detonation, the similarity between the materials collected 

from such an explosion with the already known characteristics of the trinitite test (accompanied 

with corresponding radiochemical interpretation) has potential to infer the type of detonated 

device, the explosive ability, and even its source. This forms a very important part of nuclear 

forensics and attribution. 

In order to realize the properties of nuclear melt glass and hence to develop deterrence 

procedures for analysis of potential nuclear terrorism involving nuclear bombs, there is need to 
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understand the chemical, physical and even morphological properties of the remnants – so-called 

post-irradiation nuclear forensics. Synthetic glass melts developed by Molgaard et al. (2015) 

serve as useful NF tools that give insight into the actual nuclear security case. In this work, a 

close resemblance material was produced as a surrogate trinitite with similar properties useful in 

conceptualizing and analyzing a similar NF situation. 

Fusion bead is a common sample preparation method in X-ray fluorescence (XRF) analysis. It is 

considered an effective sample preparation method for accurate analysis of soils, rocks and even 

other refractory samples. Advantages of the fusion bead method include the inherent ability to 

remove heterogeneity which is as a result of various grain sizes as well as other mineralogical 

effects (Yamada et al., 1995). In addition, the fusion bead approach reduces the co-existing 

component effect by dilution and also offers the possibility of preparation of standard samples 

from synthetic oxides. 

LIBS, like XRF, suffers from matrix related effects which limit its ability to produce accurate 

trace element quantitative analytical results (Musazzi and Perini, 2014). Sample integration into 

a glass form has been found to reduce mineralogical effects. Notably, the fused glass approach 

does not solve the chemical matrix issues encountered in LIBS; but it provides a rather stable 

physical matrix which eliminates the inconsistencies in the absorption of the laser energy, 

improved calibration models and also, reduces the saturation commonly observed on strong 

peaks due to sample dilution (Pease, 2013). In addition, in typical post-detonation NF scenarios 

glass is an unavoidable form in which glass debris is recovered for NF analysis. 

Pease (2013) used LIBS to investigate the possibility of fused glass sample preparations as 

opposed to pressed pellet powders in calibration models. A total of twenty-two samples were 

prepared both in fused glass form and pelletized form using eight major oxide elements. Fused 
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glass offered a more physical matrix that provided much more reliable spectral line responses as 

well as spot-to-spot repeatability compared to the pressed powders. Furthermore, there was 

appreciable discrimination of different elements when the fused glass data was statistically 

treated as opposed to the traditional pressed powders. 

Limited research has been directed into detection of fission products in glass form using LIBS. 

The integration of these fission products and other high-level liquid wastes into a more compact 

solid phase is a necessity in nuclear waste management practices. Jung et al. (2011) have 

however demonstrated the ability of LIBS in performing analysis of actinides embedded in a 

glass matrix. U and Eu were chosen as surrogates for high-level nuclear wastes. In this research, 

the findings are presented in the context of the feasibility of LIBS measurements of trace 

elements in glass matrices. 

2.5 Nuclear Fuel Reprocessing and Vitrification 

Reprocessing of used nuclear reactor fuel refers to the chemical or physical treatment of the used 

fuel in order to salvage the useful uranium, weapons-grade plutonium and other useful fission 

products. Figure 2.5.1 illustrates the procedure that is adopted during this process. Notably, spent 

fuel rods are received and chopped into pieces to recover the fuel pellets. Dissolution of the 

constituents of the pellets is achieved using nitric acid to recover uranium and other fission 

products extracts (Dey and Bansal, 2006).  

Solvent extraction is achieved with a mixture of tributyl phosphate (TBP) and kerosene or 

dedocane which are made to flow in a direction opposite to the flow of organic materials 

(Murray and Holbert, 2014).  As a result, an aqueous solution containing uranium, plutonium and 

an array of other fission products such as 239Ne, 85Kr, 90Sr, 137Ce, etc., is retrieved which is 

further separated and purified to attain U and Pu oxides. 
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Figure 2.5.1: Nuclear fuel reprocessing process (After: Murray and Holbert (2014)). 

It is worthwhile noting that, all these procedures i.e., digestion, dilution and even dissolution 

create additional radioactive wastes burden which requires specific procedures for storage as 

well as handling. Some of these FPs are toxic if they find their way to the hydrogeological 

system (Henderson, 2014). As such, these FPs are immobilized in glass in a process called 

vitrification. These vitrified form of the wastes is still radiotoxic and like any other high-level 

nuclear wastes, they must be safeguarded to eliminate the possibility of proliferation for 

malicious activities involving use in IED by terrorist groups. In this work, a chemometric-LIBS 

methodology for detection of selected fission products in simulated vitrified, powdered and 

liquid samples was developed for high-level nuclear wastes. 

& other fission 

products 
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2.6 Chemometric LIBS 

According to International Chemometrics Society, chemometrics is defined as “the science of 

relating the measurements made on a chemical system or process to the state of the system via 

application of mathematical or statistical methods” (Hibbert et al., 2009). These methods involve 

the automated detection of useful patterns in a set of data (Shalev-Shwartz and Ben-David, 

2014). 

Chemometrics utilizes statistical and mathematical methods to design or select optimum 

procedures and experiments as well as to provide maximum information by analyzing chemical 

data (Yang et al., 2010). Although spectra from LIBS can be perceived as elemental fingerprints 

of a substance, the spectra are usually very complex because, thousands of data points are 

collected in a matter of a second (Labbé et al., 2008). As such, the practical utility of LIBS gets 

limited due to the complex spectra; that provides an interpretation challenge. Especially, when  

tiny amounts of samples are to be analyzed and maximum information is desired from the data, 

chemometric techniques can be employed to extract and model useful information from the LIBS 

spectra since solid-state detector acquired spectral data is by its nature multivariate (Angeyo, 

2013; Labbé et al., 2008). 

2.6.1 Chemometrics in Other Applications 

Chemometric techniques have been widely applied in different fields and have proved to be 

powerful tools. In biology and medical applications, SVM has been widely utilized in both 

disease diagnostics and prognostics (Salas-Gonzalez et al., 2010 ; Xue et al., 2004; Williams et 

al., 2004; Takeuchi and Collier, 2005).  

In an attempt to discriminate among different shards of pottery using LIBS, Erdem et al. (2008) 

applied principal component analysis (PCA) in correlating the spectral data with the origin of 
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pottery sherds from Ayanis, Dilkaya and Karagunduz excavations in Turkey.  These sherds date 

back to the early and middle Iron Age. PCA results indicated that there was a close correlation 

between the composition of clay sherds obtained from Karagunduz and Dilkaya. As such, LIBS 

coupled with PCA offered an efficient tool for pottery characterization in the context origin 

assessment hence a similar combination has the potential for use in the characterization of high-

level nuclear wastes in the context of NF attribution. 

A combination of least squares support vector machine (LS-SVM) and LIBS has been shown to 

provide a sensitive analytical tool for analysis of pharmaceutical samples to detect counterfeits 

(Dingari et al., 2012a). The authors affirm the utility of SVM in the classification of samples 

especially the insusceptibility to outliers compared to other linear least squares methods. 

LIBS coupled with chemometrics has been shown to provide simultaneous quantitative and 

qualitative prediction of the molecular composition of pharmaceutical formulations (Doucet et 

al., 2008). Chemometrics techniques were employed to establish the active pharmaceutical 

ingredients (API) and excipients.  PCA and supervised SIMCA were used to exploit the 

multivariate nature of LIBS data obtained from pharmaceutical tablets in an attempt to 

discriminate among the drugs (Myakalwar et al., 2011). The findings reveal that apart from the 

presence of elements such as C, H, N and O which are considered active pharmaceutical 

components, other inorganic atoms (Fe, Mn and Ca) were also present. The findings emphasize 

the importance of such PCA tablet discrimination methodology as it plays a crucial role in rapid 

on-line process monitoring, the accuracy of quality control and assurance process in the 

pharmacological industry.  

LIBS in combination with chemometric techniques has been utilized in performing quantitative 

and explorative analysis in soil and rock samples acquired from High Background Radiation 
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Areas (HBRA) (Mukhono, 2012). The goal of the study was to establish both atomic and 

molecular signatures that have utility in characterizing HBRA and evaluating the impact of 

HBRA geothermic discharges on the immediate environment. Chemometric techniques (PCA, 

PLS, ANN, and SIMCA) provided good quantitative calibration and modeling of spectra 

obtained using LIBS in relation to the concentrations of the analytes of interest namely; Cu, Ti, 

As, Pb and Cr. 

Duchêne et al. (2010) focused on the utility of LIBS combined with chemometrics to perform 

archaeological metal characterization, pigment, and stone identification in cultural heritage 

applications. In particular, 30 commercial pigments traditionally used in murals were directly 

analyzed using LIBS technique to detect the characteristic chemical constituents. The acquired 

spectral data were used together with two different chemometric models namely; soft 

independent modeling of class analogy (SIMCA) for pigment identification and partial least 

squares discriminant analysis (PLS-DA) for characterization. The use of multivariate analysis 

approach led to a remarkable improvement of pigments identification despite the background 

noise. This implies that chemometric methods are handy in the analysis regardless of the 

background noise. 

Sirven et al. (2006) measured the concentration of chromium in soil samples. Calibration curve 

method was compared with two multivariate chemometric calibration techniques namely PLS 

and ANN. The precision, accuracy, of prediction and the LoD for the three techniques were 

compared. ANN technique was shown to correctly model the non-linearity due to self-absorption 

and provided the most acceptable results of order 10% compared to PLS. PCA was used to 

classify spectra from different soil samples. 



22 

 

A novel analytical methodology for the classification of soils in Brazil was achieved by means of 

LIBS with chemometric techniques (Pontes et al., 2009). Linear discriminant analysis (LDA) 

was employed based on the reduced subset spectral variable to build a classification model. A 

total of 149 Brazilian soil samples were grouped into three major classes namely Latossolo, 

Nitossolo, and Argissolo. Three techniques were used for variable selection namely; successive 

projection algorithm (SPA), genetic algorithm (GA) and stepwise formulation. Wavelet data 

compression approach was utilized in reducing the computational workload, especially in 

variable selection. Consequently, a classification rate of 90 % was achieved within the validation 

set whereas for cross validation set, an average classification rate of 72 % was achieved using a 

combination SPA-LDA. The wavelet transforms compression procedure was found to provide a 

100-fold reduction in computational workload without any noticeable effect on the classification 

accuracy of the models (Pontes et al., 2009). 

Multivariate calibration of LIBS for in situ monitoring of the composition of Pu feed in 

plutonium lanthanide borosilicate (PuLaBS) glass has been shown to improve results compared 

to univariate calibration (Tripathi et al., 2009). Multivariate calibration on the LIBS data was 

deemed useful in predicting the concentration of Ce, Cr, Fe Mo and Ni in the plutonium oxide 

surrogate residue. Through univariate calibration, the coefficient of determination was found to 

be 0.87 with a root mean squared error (RMSE) of 7.46%. By means of PCR and PLS, a 

multivariate calibration model, the coefficient of determination was found to be 0.97 and RMSE 

of 2.93 %. Therefore, multivariate calibration models for Ce performs better compared to the 

univariate approach.  
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2.6.2 Chemometrics Methods in Nuclear Science 

Chemometric techniques have been used in nuclear science in a wide range of applications. 

These techniques also have potential in NF in achieving origin assessment and composition of 

nuclear materials based on sample properties.  Jones et al. (2014) demonstrated the feasibility of 

pattern recognition to determine the reactor type of a given spent fuel using isotopic and 

elemental investigations. PCA was employed in dimensionality reduction as well as in the 

removal of outliers (to preserve 99 % of the useful information). The Parzen window classifier (a 

probabilistic neural network) technique was used to achieve classification of reactor type data 

(generated through FISPIN depletion package) and achieve classification of different reactor 

fuels. However, the authors noted that the approach was based on FISPIN generated data and 

therefore had a limitation when applied to real samples. As this work does not rely on computer-

generated data, the analysis of FP in HLW could better closely match the expected results in a 

typical nuclear forensics case. 

Sirven et al. (2009) demonstrated a technique in which LIBS coupled with chemometrics was 

used to successfully discriminate between yellow cake (powdered uranium ore concentrate) from 

the different geographical origins on the basis of 502.752 nm uranium emission line free from 

spectral interference. LIBS spectra for eleven samples obtained from different locations were 

used together with PCA and SIMCA models. It was found that the SIMCA model provided a 100 

% correct identification for all classes. In another study, PCA clustered soil and rock samples 

acquired from different geological origins into distinct groups which infer potential of LIBS in 

geochemical fingerprinting of uranium sources. Notably, the rare earth elements (REE) were 

identified to contribute greatly to the clustering observed (Bhatt et al., 2015; Bhatt et al., 2018). 
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Similarly, PCA has demonstrated attribution of geolocation of UOC samples through iterative 

PLS-DA (Robel et al., 2009).  

PCA and FDA have been utilized in the visualization of various uranium-bearing compounds 

with a particular interest in nuclear forensics. In their work, different uranium compounds 

namely; “(NH4)2U2O7, Na2U2O7 , UO2CO3·2(NH4)2CO3, UO2(OH)2 , UO2, UO3, UO4, U3O8 and 

UF4” (Ho et al., 2015) were analyzed using Raman spectroscopy. The clustering of these 

samples into distinct groups was in support of the hypothesis that different uranium-bearing 

compound exhibit different properties such that any suspected UOC sample can easily be 

identified as a UOC or not. These results are useful especially in the front end of the nuclear fuel 

cycle because the study does not involve fission products. However, considering that there is a 

need for nuclear safety especially when radioactive FP from the back end of the nuclear fuel 

cycle are involved, this thesis applies a similar concept to discriminate samples with FP from 

those without, utilizing PCA and SVM. 

In this thesis, we have demonstrated that a combination of SVM, PCA, and ANN offers a robust 

methodology for nuclear forensic applications. The methodology enables accurate discrimination 

of uranium and FP in vitrified samples, pressed pellets and HLLW samples which offers useful 

information in quasi-nuclear forensic attribution. 
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CHAPTER III 

3 THEORETICAL BACKGROUND 

3.1 Overview 

In this chapter, the basic principles of qualitative and quantitative LIBS are presented. The theory 

behind multivariate techniques namely ANN, PCA, and SVM are discussed and linked with 

nuclear forensics applications. Different neural network architectures used in ANN are 

discussed. Multivariate chemometric calibration and exploratory modeling principles are also 

discussed. 

3.2 Principles of LIBS 

Elemental analysis is very important in many fields. There are many analytical techniques that 

can be employed to facilitate analysis of materials for elemental content to appreciable detection 

levels. Where accuracy and precision are highly desirable like in a nuclear forensic analysis, the 

need for direct rapid, non-invasive technique that can enable analysis of limited sample sizes is 

desirable. LIBS has developed over time to be a useful technique that has immense ability to 

realize such an analysis.  

LIBS is thus a versatile atomic emission spectroscopic technique for elemental analysis. In this 

technique, a highly focused pulsed laser beam is used to ablate very small (microgram) amount 

of sample to create a high-temperature microplasma. The specific characteristics of plasmas 

include; the degree of ionization, plasma temperature and the electron density (Cremers et al., 

2006). If the ratio of the electrons to other species in the plasma is less than 10 %, then the 

plasma is weakly ionized. Conversely, very highly ionized plasmas consist of high electron 
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densities. For instance, electron number density in ICP is approximately 1015 cm-3 compared to 

1017 cm-3 in ablation plasmas used in LIBS (Mao et al., 2011). 

In LIBS,  the properties of the plasma used in achieving breakdown ought to be known since 

these plasma features contribute towards the nature of the line profiles (Stavropoulos et al., 2004; 

Cremers et al., 2006). The plasma is considered optically thin when there is negligible self-

absorption or scattering of the laser radiation such that the photons emitted by the constituent 

elements escape the plasma core freely. The intensity of radiation emitted I(λ) is given by 

(Cremers et al., 2006): 

 
𝐼(𝜆) = [

𝜀(𝜆)

𝛼(𝜆)
] {1 − 𝑒−𝛼(𝜆)𝐿} 

(3.1) 

Where; 𝜀(𝜆) is the emissivity, 𝛼(𝜆) the linear absorption coefficient and L is the plasma length 

observed along the line of sight. It is important to note that when 𝛼 is very small, the equation 

defines the condition for an optically thin plasma which is given by: 

 
𝐼(𝜆) = [

𝜀(𝜆)

𝛼(𝜆)
] [𝛼(𝜆)𝐿]~𝜀(𝜆)𝐿 

 

(3.2) 

The optical thickness of the plasma can be evaluated by observing a well-known spectral line for 

the presence of an absorption feature. Usually, the line will appear to possess a dip at the 

centroid frequency. This observed feature creates a problem of converting the resulting 

intensities into concentrations which is a major challenge in calibration free LIBS (CF-LIBS) 

technique (Cremers et al., 2006). Notably, in CF-LIBS an assumption of the existence of a local 

thermodynamic equilibrium (LTE) is made. The relative intensities of the spectral lines are used 
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to construct a family of Boltzmann plots for all the components of the plasma. The intercept of 

the lines gives the concentration of the constituents. However, the major challenge encountered 

in CF-LIBS is to account for the contribution of each of the constituents within the plasma in 

addition to the fact that plasma can exist in different temperatures. 

The Saha-Boltzmann equations provide the average electron density (𝑁𝑒) within the 

spectroscopic time window. The number of ions in  first ionization state is determined by 

(Barbini et al., 2000): 

 
𝑁𝑒 =

𝑁𝑎

𝑁𝑖
.

𝑈𝑖(𝑇)

𝑈𝑎(𝑇)
. 𝐵. (𝐾𝑇)

3

2. 𝑒(−
𝐸∞
𝐾𝑇

)
  

     

(3.3) 

Where, B is a constant, 𝑈𝑎(𝑇) and 𝑈𝑖(𝑇) are partition functions of the atomic and ionic state 

respectively, 𝑁𝑎 and 𝑁𝑖 are the population density of atoms and ions respectively within the 

spectroscopic window, T is the plasma temperature, K is the Boltzmann constant and 𝐸∞ is the 

ionization energy. 

The instantaneous temperature at the surface of the sample can reach up to 30,000 °C  (Russo et 

al., 1999). At this high temperature, the ablated material of the sample dissociates directly into 

excited ionic and atomic species (Rinke-kneapler and Sigman, 2014; Judge et al., 2013). The 

microplasma expands rapidly outwards at supersonic speeds and cools at which time, the excited 

ions and atoms emit characteristic radiation as they de-excite to the lower energy states (Loudyi 

et al., 2009). This optical emission  (which contains information about elemental composition) of 

the ablated material is collected by means of an optic fiber and focused onto a spectrometer 

(Choi et al., 2013; Loudyi et al., 2009). By means of a suitable detector, the emission is 
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spectrally resolved to enable the identification and measurement of the spectral emission peaks, 

which are characteristic of the elemental composition of the sample under investigation.  

The distribution of speeds of the excited particles and even the relative population of energy 

levels following plasma formation can well be explained using the concept of near local 

thermodynamic equilibrium (nLTE). This concept acknowledges the fact that equilibration 

occurs only in small regions of space (e.g. the core of the microplasma), however, it is dynamic 

from one particular region to another (Musazzi and Perini, 2014). Hence, if the experiment 

supports the possibility of the existence of an LTE, then the distribution of velocities of the 

quantities follows the Maxwell velocity distribution function: 

 
𝑓𝑀 = (

𝑚

2𝜋𝑘𝑇
)

3/2

𝑒−
𝑚𝑣2

2𝑘𝑇  

 

(3.4) 

In which, 𝑚 𝑎𝑛𝑑 𝑣 are the mass and the velocity of the electron respectively. Thus the 

population of the energy levels assuming atomic or molecular species given by the Boltzmann 

distribution with the ground state as a reference point is given as: 

 𝑁𝑗

𝑁𝑜
=

𝑔𝑗

𝑍
 𝑒−

𝐸𝑗

𝑘𝑇 

 

(3.5) 

Therefore, for relative populations the binding relationship is given as: 

 𝑁𝑗

𝑁𝑖
=

𝑔𝑗

𝑔𝑖
 𝑒−

𝐸𝑗−𝐸𝑖
𝑘𝑇  

(3.6) 
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Here, 𝑖 𝑎𝑛𝑑 𝑗 are energy levels, 𝑁𝑜 is the total population of the species, 𝑁𝑖,𝑗 are the populations 

of the energy levels and Z is the partition function which is the statistical weight of the reference 

state (ground state). Thus, the spectral line has intensity (radiant energy per unit volume) is given 

as: 

 
𝐼 =

ℎ𝑣𝑔𝐴𝑁

4𝜋
=

ℎ𝑐𝑁𝑜𝑔𝐴

4𝜋𝜆𝑍
 𝑒−

𝐸
𝑘𝑇 

 

(3.7) 

With 𝑣 as the frequency of the line, 𝐴 is the transition probability (Einstein coefficient) and 𝑁 the 

absolute number density of species. The concentrations of a particular element of interest can be 

obtained by performing a comparison between the unknown line intensity and that of  a known 

reference sample which possess approximately similar thermal properties (Stavropoulos et al., 

2004). 

LIBS also offers the possibility of performing depth-profiling of layered structures and surface 

coatings (Noll, 2012). As the laser drills into the material, spectroscopic measurements can be 

performed providing the elemental composition of the material as a function of the depth into the 

layered structure. 

3.3 Multivariate Chemometric Calibration and Modeling 

Adoption of chemometric techniques in laser spectroscopy serves to overcome some of the 

limitations encountered during analysis of samples especially in instances where rapid nuclear 

forensics is desired. Multivariate analysis methods have the potential of minimizing the 

complexity of data, extracting the most relevant features in the data as well as developing 
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calibration strategies in trace quantitative measurements which classical LIBS or even calibration 

free LIBS cannot achieve (Labbé et al., 2008).  

3.4 Artificial Neural Networks (ANN) 

An ANN as a chemometric tool is derived from the principles of operation of a biological 

neuron.  It is a special biological tool that processes information. A typical biological neuron is 

shown in Figure 3.4.1. Its main components include the cell body (soma) that contains plasma 

with molecular equipment necessary for forming materials required by the neuron (Jain et al., 

1996). The dendrites (receivers) receive impulses from axons of other neurons through the 

synaptic gap and the resulting signal generated by the soma cell is transmitted along the axon 

(transmitter) to the dendrites of other neurons. The point of contact between the axon of one 

neuron and a dendrite of another neuron is called the synapse. The synaptic joint is an 

elementary functional unit that contains neurotransmitters. These neurotransmitters diffuse 

across the synaptic gap to inhibit or enhance an impulse to the receptor neuron to emit electrical 

signals. The cell body mainly serves the purpose of summing up the incoming signals and 

determine whether they exceed a given threshold value. In case the summation of the incoming 

signals exceed the threshold value, the cell body sends a signal to other neurons to effect a 

response in the muscles involved  (Fausett, 1994). 
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Figure 3.4.1: A sketch of a biological neuron (Source:  Naguib and Sherbet (2001)). 

In this regard, the components of an ANN are akin to the biological neuron in a variety of ways. 

The transfer function, the inputs, the output and the weights mimic the soma cell, dendrites, 

axon, and synapse respectively. The learning process which refers to the problem of updating the 

neural network to perform specified tasks with a high level of confidence is likened to the 

efficiency of impulse transfer across the synapse. Figure 3.4.2 shows the components of an ANN 

and its similarity to a biological neuron. 
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Figure 3.4.2: Schematic of a simple ANN and its similarity to a biological neuron (After: Naguib 

and Sherbet (2001)). 



33 

 

 Therefore, ANN is a nonlinear computational tool capable of modeling complex functions such 

as spectral data from LIBS. ANN is useful in non-linear ordination and visualization of data 

models (Angeyo, 2013). In order to achieve a robust artificial neural network, the network has to 

be trained using a set of reference spectra or concentration data which represents part of what is 

to be analyzed; for example a set of known emission intensities corresponding to a known 

concentration of particular target elements. In training the network, sets of weights and bias 

through a system of neurons are developed in order to reduce the errors in the desired output. 

Prediction ability of the network is then achieved by a validation set of data that has not been 

initially shown to the network. 

3.4.1 Feed Forward Back Propagation ANN Algorithm  

The backpropagation algorithm is the most popular ANN. A simple approach followed by this 

algorithm is as given in Figure 3.4.3. This type of algorithm can be characterized by four main 

parts which involve; the feedforward nature of computation, a gradual backpropagation to the 

output layers, a continuous back-propagation to the hidden layers of the network and a gradual 

update of the weights of the network (Cilimkovic, 2015). 
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Figure 3.4.3: Schematic diagram of feed forward back propagation utilizing LIBS spectral data 

(After: Andrade-Garda et al. (2009)). 

3.4.2 Cascade Correlation Algorithm 

Cascade-correlation is an ANN architecture that begins out as a network without a pre-defined 

topology (Schetinin, 2003). Figure 3.4.4 shows a simple schematic of the process followed when 

utilizing the cascade correlation algorithm. It can be considered as a multilayer architecture 

because normally it begins out as a network without any hidden neurons, throughout the training 

process new neurons are added one by one. When a new neuron is added its input side weights 

are frozen as a result, each of the hidden neuron added becomes part of the network that 

influences the creation of other neurons as well as affecting the output (Fahlman and Lebiere, 
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1990). Because of the intrinsic ability to adjust the weights and neurons by itself, the cascade 

correlation architecture defines its own topology and size hence it learns more rapidly and retains 

much of the structures despite changes in the training set. 

 

Figure 3.4.4: Simple cascade correlation architecture (After: Schetinin (2003)). 

The cascade architecture algorithm looks for the termination of the learning process which is 

evaluated through analysis of the error obtained as compared to the target error.  
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3.5 Principal Component Analysis (PCA) 

Principal component analysis is an unsupervised technique for exploratory data analysis. As 

opposed to supervised learning that provides a set of features (𝑋1, … , 𝑋𝑝) measured on a given 

number of variables (𝑛) with corresponding expected outcome Y, unsupervised learning lacks 

the associated response variable Y and therefore its goal is to explore the data with the aim of 

discovering interesting outcome about the measurements. PCA provides avenues to summarize 

high dimensional data into a lower dimensional data set with a smaller number of variables 

(principal components) which, to a higher percentage, summarize the variability in the actual 

data set. In general, if X is a matrix of 𝒏 × 𝒑 dimensions then there are (𝑛 − 1, 𝑝) distinct 

principal components. However, it is a common practice to take into consideration the smallest 

number of PCs which is the aim of unsupervised learning. The criteria for selecting the number 

of PC to work with largely depends on the individual decision, the nature and type of the data 

involved. The scree plot which shows the proportion of variance explained by each of the PCs is 

often used to select the number of PCs through eyeballing the scree plot to identify the elbow 

point where the proportion of explained variance drops off. In addition, PCA aids in visualizing 

the nature of the data and even the associated variables. 

PCA operates following the concept of the high dimensional dataset having smaller components. 

Assuming a set of features 𝑋1, 𝑋2, … , 𝑋𝑝 then according to James et al. (2013), the first principal 

component is the summation of the linear combination of the features that possesses the largest 

variance  

 𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 + ⋯ + 𝜙𝑝1𝑋𝑝 (3.8) 
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Note that, the data is normalized so that  ∑ 𝜙𝑗1
2 = 1

𝑝
𝑗  and the elements 𝜙11, … , 𝜙𝑝1 are the 

loadings of the first principal component. 

The principal component loading vector is given by: 

 𝜙1 = (𝜙11 𝜙21 … 𝜙𝑝1)
𝑇
 

 

(3.9) 

A linear combination of measurements of the sample takes the form given by: 

 𝑧𝑖1 = 𝜙11𝑥𝑖1 + 𝜙21𝑥𝑖2 + ⋯ + 𝜙𝑝1𝑥𝑖𝑝 

 

(3.10) 

The first principal component solves the optimization problem given by equation 3.11 whose 

solution can be obtained by eigen decomposition approach. 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜙11, … , 𝜙𝑝1

{ 
1

𝑛
∑ (∑ 𝜙𝑗1𝑥𝑖𝑗

𝑝

𝑗=1

)

2

  

𝑛

𝑖=1

}  subject to ∑ 𝜙𝑗1
2 = 1

𝑝

𝑗=1

 

 

(3.11) 

It is worth noting that the object that is maximized in the equation above represents the sample 

variance of n values of 𝑧𝑖1. Also 𝑧11, … , 𝑧𝑛1 are called the scores of the first principle component. 

The second principal components represent a linear combination of the measurements that have 

maximal variance out of all linear combinations that have no correlation with the first principal 

component. 

The scores of the second PC is given by: 
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 𝑧𝑖2 = 𝜙11𝑥𝑖2 + 𝜙22𝑥𝑖2 + ⋯ + 𝜙𝑝2𝑥𝑖𝑝 

 

(3.12) 

Where, 𝜙2 is the second PC loading vector. The fact that the first PC is uncorrelated with the 

second PC is equivalent to constraining the individual loading vectors to be orthogonal to each 

other. 

3.6 Support Vector Machines (SVM) 

Support vector machine (SVM) is a maximal margin classifier that is used in discriminating 

between given groups of data using hyperplanes. A hyperplane is defined depending on the 

dimension of the data. In two dimensional space, a hyperplane is simply a line or a flat one-

dimensional subspace that offers maximum margin between two sets of data. In three 

dimensional space, a hyperplane can be perceived as a surface or a two-dimensional subsurface 

that separates the groups (Varmuza and Filzmoser, 2016). Therefore without loss of generality, 

in p dimensional space, the hyperplane corresponding to such space is given by  𝑝 − 1 . Notably, 

in two dimensions the equation of a separating hyperplane is given 

 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 = 0 (3.13) 

Here 𝛽0, 𝛽1 𝑎𝑛𝑑 𝛽2 are parameters and if there is a value of 𝑋 = (𝑋1, 𝑋2)𝑇 for which equation 

holds true, then the point can be located on the hyperplane. Conversely, if X does not satisfy the 

above equation  

 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 > 0 (3.14) 

On the other hand, X can also take the form 
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 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 < 0 (3.15) 

In which case, the value lies on the other side of the equation. 

Therefore for a p dimensional space, the equation of the hyperplane takes the form 

 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑋𝑝 = 0 (3.16) 

Hence equally, a value of 𝑋 = (𝑋1, 𝑋2, … 𝑋𝑝)
𝑇
 for which the equation above is satisfied, then the 

point can be located on the hyperplane. Generally, “a hyperplane divides a p-dimensional space 

into two halves and one can easily determine which side of the hyperplane a point lies by simply 

calculating the sign of the left hand side” (James et al., 2013). 

If any data can be separated by a hyperplane, then there is an infinite number of hyperplanes that 

can be determined. The maximal marginal hyperplane is the criterion for selecting the most 

optimal hyperplane. This is because a classifier that has a maximum margin on the training data 

will equally have a large margin on data that has not been shown to the classifier. The data points 

in any dimensional space that determine and support maximum margin of hyperplane are called 

support vectors. The maximal margin classifier provides the best means of data classification if a 

hyperplane exists. Naturally, spectral data such as LIBS data is non-separable in most cases and 

instead of maximal margin classifier, support vector classifier is used. This classifier is also 

known as the soft margin classifier as it violates the need to have every observation in the data 

on the desired side of the separating hyperplane. 

 

 



40 

 

CHAPTER IV 

4 MATERIALS AND METHODS 

4.1 Overview 

This chapter presents the methodology that was used in achieving the objectives of this work. 

The LIBS system used to perform the analysis is presented together with the operating 

conditions. The methodology that led to the production of fused glass samples is presented. For a 

similar concentration of fission products, pellet samples were also prepared to closely match 

nuclear waste powders. In addition, samples of a similar set of the fission products were prepared 

as liquids to mimic high-level nuclear wastes. Spectral pre-processing techniques employed in 

this work to achieve a robust modeling are briefly described.  

4.2 LIBS Instrumentation 

Ablation and excitation of the sample was achieved by means of a Q-switched pulsed Nd:YAG 

laser operating at a fundamental wavelength of 1064 nm. Emission from the microplasma was 

collected by means of the optical fiber (fused silica, 0.22 mm numerical aperture, and 101 mm 

focal length). Figure 4.2.1 shows the schematic diagram of LIBS.  

The detection system consists of seven high resolution (HR) spectrometers from Ocean Optics 

covering 200-980 nm range whose specifications are provided in Table 4.1. These spectrometers 

are composed of 2048 pixel linear silicon CCD array with an optical resolution of 0.065 nm 

(LIBS 2500 PLUS Operational Manual, 2008). Notably, this system of spectrometers acquires 

data through the OOILIBS software with the ability to identify spectral lines, compare the 

corresponding wavelength with the existing database of atomic or molecular emission 

wavelengths and delivers distinct peaks of the elements present in the sample. Other optimum 

parameters of the LIBS system are summarized in Table 4.2. 
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Table 4.1: Specifications of spectrometers from Ocean Optics utilized in this study 

 Model Region Gratings 

(lines/mm) 

Wavelength 

Range (nm) 

1 HR+C0463 UV 2400 200-305 

2 HR+C0464 UV 2400 295-400 

3 HR+C0465 Vis 1800 390-525 

4 HR+C0466 Vis 1800 520-635 

5 HR+C0467 Vis-NIR 1800 625-735 

6 HR+C0468 NIR 1800 725-820 

7 HR+C0469 NIR 1800 800-980 

 

Figure 4.2.1: Schematic diagram of LIBS (LIBS 2500 PLUS Operational Manual (2008)). 
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Table 4.2: Other optimum parameters of the LIBS system used in this study 

LIBS 2500 PLUS, Q-Switched  Nd:YAG Laser  (Ocean Optics) 

1. Laser wavelength 1064 nm 

2. Pulse width 10 ns 

3. Pulse repetition frequency 10 Hz 

4. Maximum energy 50 mJ 

5. Q-switch delay 150 μs 

6. Integration time 0.42 µs 

 

4.3 Optimization of the LIBS System 

Optimization of the LIBS was achieved using uranium pellet standard together with LIBS 

spectral reference database (Ralchenko et al., 2006) to ensure the best signal-to-noise ratio 

(SNR) of selected well-defined peaks. The Q-switch delay time (td), the distance between the 

optical fiber to the sample, the choice of the energy of the laser, the inter-pulse delay, and the 

number of laser ablations was investigated as a function of intensity in order to ensure optimal 

spectral output. 

4.4 Sample Preparation Procedures 

The analytical grade chemical compounds used in this work to mimic the fission products are as 

listed in Table 4.3. These salts are analytical grade chemicals with 99.9% purity defined by the 

accompanying certificates.  
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The compounds listed in Table 4.4 were utilized as a glass-forming matrix on which the FPs were 

spiked at varying concentrations. This approach was undertaken to mimic the borosilicate glass 

commonly used in the immobilization of fission products. Notably, pure silicon dioxide (silica) 

normally melts at temperatures greater than 1600 °C. The furnace available at the University of 

Nairobi could support a maximum temperature of 1400 °C . However, when low atomic number 

oxides and carbonates are added, an ‘aggressive’ mixture is formed in which the melting point of 

silicon oxide is greatly reduced. This approach was undertaken in producing simulate fused glass 

beads due to lack of high-temperature furnace.  

Table 4.3: Analytical grade reagents used as donors of the simulate fission products 

Name of the Compound Chemical 

Formula 

Formula Mass 

(g/mol) 

Target 

species 

Manufacturer 

1. Rubidium chloride RbCl 120.921 Rb Aldrich chemical 

Company, Inc, USA 

2. Strontium chloride SrCl2.6H2O 266.610 Sr Aldrich chemical 

Company, Inc, USA 

3. Tellurium dioxide TeO2 159.600 Te Darmstadt, Germany 

4. Yttrium nitrate Y(NO3)2.5H2O 364.993 Y Sigma-Aldrich, 

Darmstadt, Germany 

5. Zirconium (IV) 

oxide 

ZrO 123.218 Zr Aldrich chemical 

Company, Inc USA 

6. Uranium trioxide UO3 286.026 U BDH Chemicals, Poole, 

England 

7. Uranyl nitrate UO2.(NO2)2.6H2O 502.129 U BDH Chemicals, Poole, 

England 
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Table 4.4: Composition of the glass forming support matrix 

 Compound Chemical Formula Formula Mass (g/mol) 

1.  Silicon (IV) oxide SiO2 60.083 

2.  Calcium carbonate CaCO3 100.087 

3.  Sodium carbonate Na2CO3 105.989 

4.  Aluminum oxide Al2O2 101.960 

5.  Lithium metaborate (Fusion agent) 

 

LiBO2.2H2O 85.780 

 

 

Among the compounds in Table 4.3, yttrium nitrate, rubidium chloride and strontium chloride 

were highly hygroscopic forming crystalline crumps when left in the air. Weighing of these 

compounds was a major challenge due to the hygroscopic behavior and also considering that 

minute masses were involved. The compounds were therefore quickly weighed into a crucible 

and quickly ground to reduce exposure time in the air. The compounds were then ground to fine 

powder to reduce particle sizes. 

Randomized concentrations within the typical range (i.e 10 to 1000 ppm) for each element were 

generated using the RANDBETWEEN function in Microsoft Excel. Each of the resulting 

samples represented a 0 − 5 % augmented natural uranium (grade) as a representative of the 

post-irradiation fuel simulate. Utilizing the randomized concentrations, the respective masses 

required to get any chosen target concentrations were calculated using the serial dilution formula 

given in equation 4.1 (Ali and Raouf, 2011). 

 C1V1 = C2V2 (4.1) 
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Where C1 and C2 are initial and final concentration respectively, and V1 and V2 are the initial and 

final volumes respectively. By means of weighing balance (AT60 Delta Range METTLER 

TOLEDO), the masses of the individual FP and U were weighed for each of the samples. The 

composition of uranium in each of the samples was set between 1000 ppm and 50000 ppm 

typical to its occurrence in spent fuel, while that of the other FP was retained between 0 and 

1000 ppm except for zirconium whose occurrence in radioactive wastes can have concentration 

values up to 4000 ppm (Bevilacqua et al., 1987; Audero et al., 1995). Zirconium concentration is 

higher compared to other FP because it is applied as the main cladding of nuclear fuel pellets and 

sintered at high temperature.  

Reactor technology and the corresponding reactor types have been discussed in Bodansky 

(2007). For example, pressurized heavy water reactor (PHWR) utilizes heavy water as a coolant 

as well as a moderator (McIntyre, 1975). The unique feature of this reactor is that it uses natural 

uranium as the fuel. From the objectives of this work, it is thus easier to simulate spent fuel from 

PHWR as the uranium composition is that of yellow cake. ORIGEN FP depletion package is 

used to estimate fission products in spent fuel. In this work, the FP reference figures which 

represent the concentration of fission products in HLLW arising from the reprocessing of PHWR 

with a burnup of 7000 MW d/t U with a concentration of 250 l HLLW/t U and a cooling period 

of 20 years.  The FP compositions have been evaluated based on the abundance of these fission 

products and the actinide family by means of the ORIGEN computer code as reported in (Bell, 

1973).  

The compounds giving the glass matrix were also weighed one by one for each of the samples 

and mixed thoroughly as described in the paragraph below. The total composition of uranium 
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plus the fission products and the glass forming matrix compounds in Table 4.4 were maintained 

at 1g for each of the 30 samples prepared.  

Homogeneity in solid-solid dilution is a major challenge in analytical chemistry involving such 

samples. To maximize sample homogenization, the sample was put in a set up with a mixer and a 

drill machine rotating at 2800 rev/min for 5 minutes while shaking vigorously. Each of the 

samples was then coded S1, S2, S3 …etc. These samples were divided into three groups. The 

first group was fused with lithium metaborate to form 30 fused glass samples as described in 

section 4.4.1. The second group of the samples was used to simulate high-level nuclear waste 

powders as described in section 4.5.1. Lastly, to simulate high level liquid nuclear waste part of 

the sample was used as described in section 4.5.3. 

4.4.1 Preparation Fused Glass Sample 

After preparing stock samples for 30 varying concentrations of each of the fission products, the 

mixture was again thoroughly mixed to maximize homogeneity. 0.043 g of a sample was 

carefully weighed and placed in clean containers. 0.215 g of lithium metaborate was carefully 

weighed and mixed with the sample. The resultant mixture was placed in a Pt-Au crucible (top 

outer diameter 20 mm, bottom diameter 12 mm, height 5 mm, capacity 2.5 mL) and introduced 

into the furnace as shown in Figure 4.4.1. The total weight of the crucible before fusion was 

measured and recorded. Fusion and casting of the fused glass were done in the same crucible. 

The above procedure was repeated for the remaining 29 samples with varying concentrations of 

U and the associated fission products. The flux to sample ratio was maintained at 5:1 for all of 

the samples.  

Non-wetting-agents (NWA) behave as surfactants that lower the probability of the glass melt 

sticking onto the surface of the platinum molds. In glass fusion, alkaline halides are commonly 
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used as NWA. These releasing agents are added in small quantities usually a few milligrams. 

One major disadvantage of  NWA is their tendency of remaining within the fused bead 

(Watanabe, 2015) hence analysis of elements that exhibit spectral interference with the alkaline 

halides is a potential challenge. The NWA is normally added before fusion or during fusion 

depending on the type of fusion machines used. Too much of the NWA results in high surface 

tension which may cause the fusion bead to assume a spherical or crescent shape (Watanabe, 

2015). Notably, the sufficiency of the NWA depends mainly on the surface conditions of the 

mold, the dilution ratio, as well as the type and nature of the sample involved. 

In this work, potassium bromide was used as a NWA in which case 241 mg of the KBr salt was 

dissolved in distilled water forming a stock solution of 10 ml of 2.41 % (w/v). Using a 

micropipette 200 𝜇𝑙 was added to the constituents of the Pt crucible to act as a releasing agent 

during fusion hence prevent the fused glass from sticking to the walls of the crucible. Finally, the 

total mass (𝑀𝑖) of the contents of the crucible before fusion was recorded. 
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Figure 4.4.1: General fusion bead preparation procedure (After: Watanabe (2015)). 
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4.4.1.1  Nuclear Glass Fusion Process 

A Nabertherm furnace that supports a maximum temperature of 1400 °C was employed in the 

production of the fusion beads. The furnace was preheated to 1050 °C. The sample mixture in Pt-

Au crucibles with NWA, arranged on an alumina plate, were introduced slowly into the high-

temperature furnace as shown in Figure 4.4.1 and a stopwatch was started. The total fusion time 

was 180 seconds. The surface temperature at each of the melt was determined using a laser-based 

handheld pyrometer. All the samples were allowed to cool slowly for five minutes by slowly 

taking the crucible out of the furnace. This was done to minimize fracturing of the resulting 

beads as a result of sudden temperature changes as well as to avoid recrystallization in case of 

very slow cooling rate (Fausett, 1994; Watanabe, 2015). Finally, the crucibles were removed out 

of the furnace and allowed to cool under ambient air to a final room temperature (26°C).  

It was also noted that during fusion, the sample rose above the crucible and some spill around 

each crucible. This, coupled with the loss of weight due to the escape of the gaseous components 

namely; CO2, NO3 and NO2, and Loss of Ignition (LOI) contributed immensely towards 

analytical inaccuracy especially on the final masses of the fused beads (Homma et al., 2012; 

Rousseau, 2001). 

The mass of the glass (𝑀𝑓) beads obtained and recorded. The fused beads were placed in small 

petri dishes and carefully labelled. The ratio between the final mass (𝑀𝑓), and the initial 

mass (𝑀𝑖) was evaluated and represented the total mass recovery. Hence, the average mass 

recovery was found to be 32.20 % for all the glass beads. Nevertheless, because the components 

of each sample was thoroughly mixed prior to fusion and during fusion, the sample dissolved in 

the melt; so it was assumed that even in an event of spillage, there could be minimal errors in 

subsequent analysis. 
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4.4.2 Preparation of Pellet Samples 

Trafficking nuclear and radioactive materials in concealed form for use in ‘dirty bombs’ is a 

potential terrorist act. One of the possible concealed conditions may involve packaging nuclear 

materials with powders like cellulose at one end and performing extractions at the other end. As 

such a methodology that involves rapid and noninvasive detection of this fission products in 

trace quantities in powdered substances is desirable to deter possible trafficking. In this work, 

cellulose was used as a reference powder (concealed form in which nuclear materials can be 

trafficked) in addition to acting as an organic binder. 

Figure 4.4.2 shows the procedure that was used in preparing the pelletized samples. Notably, 0.1 

g of the sample and 0.5 g of cellulose powder were weighed and thoroughly mixed for 10 

minutes. Using a manual pellet press machine (LPM-15T) with a die of 2.5 cm diameter, 10 tons 

pressure was applied on the powder mixture to produce a pellet of 0.3 g. The pellet was kept in a 

clean petri dish awaiting further analysis.  

 

 

 

 

 

 

 

 



51 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

Sample  
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3 mm 5 mm 
1 mm 

Figure 4.4.2: Procedure for preparation of fused glass, pellet and drop coating deposition forms 

of simulate high level samples. 
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4.4.3 Preparation of Simulate Liquid Samples 

Spent fuel is chemically or physically treated in order to salvage plutonium, uranium and other 

fission products. Reprocessing of nuclear fuel requires dissolution in nitric acid and subsequent 

partitioning of actinides and other FP downstream (Murray and Holbert, 2014). As a result, high 

level liquid nuclear wastes are generated. A potential malicious terrorism act may involve HLW 

solutions trafficked in concealed conditions such as mixing with nitric acid or other solutions. FP 

from such HLW may be extracted and give rise to clandestine programs involving utility of such 

materials for IND and IED. Particles from a detonation scene more often settle of plant leaves 

and other surfaces and swipe samples can be taken to determine the characteristic of the 

detonated device. Dew drops forming on such plant leaves can dissolve such particles. In this 

research, we developed a laboratory simulate of the HLW solution form. We propose a 

methodology of sampling microliter samples that may contain some of the particles to offer an 

alternative supplementary information.  

The nitric acid in the slurry resulting from reprocessing of spent fuel is normally of about 3M 

(Audero et al., 1995; (Benedict et al., 1982) The molarity of the concentrated nitric acid was 

evaluated from the certificate provided by the manufacturer using the following formulation 

 
𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =

% 𝐴𝑠𝑠𝑎𝑦 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑀𝑎𝑠𝑠
× 10 

(4.2) 

The density of nitric acid is  1420 𝐾𝑔𝑚−3, the molecular mass calculated to be 63.01 𝑔/𝑚𝑜𝑙 

and the assay was 69 %. Therefore the effective molarity of the nitric acid was found to be 15.54 

M. 

Using the volume proportion in equation 4.1, 
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For 𝑉2 = 20 𝑚𝑙, 𝐶1 = 15.54 𝑀, 𝑎𝑛𝑑 𝐶2 = 3 𝑀 

𝑉1 =
3 𝑀 × 20 𝑚𝑙

15.54 𝑀
 

𝑉1 = 3.9 𝑚𝑙 

Therefore, to make 3 M nitric acid, 3.9 ml of the concentrated acid was pipetted and added to 

16.1 ml of water and the final solution was 20 ml. 

The same samples were treated as shown in Figure 4.4.2. 0.1 g of the first sample was carefully 

weighed and placed in a container. 500 µl of the prepared 3 M nitric acid was added into the 

sample and thoroughly shaken to dissolve and maximize homogeneity. 

By means of a micropipette, varying aliquots of the resultant liquid sample were placed on 

perspex wafer between 2 µl to 6 µl. This procedure was undertaken to investigate the effect of 

the volume of the sample on the spectral line response of the analyte using LIBS. The wafer was 

then placed inside a petri dish and covered to minimize chances of contamination. The petri dish 

was then placed on a hot plate set at 50 °C temperature until a dry drop deposition coating was 

obtained. 

Upon finding the optimum volume for such liquid deposition analysis, the procedure was 

repeated for all the remaining 30 samples and the LIBS data acquired from the samples was used 

to develop both univariate and multivariate quantitative calibration models that facilitate 

detection of fission products in simulated HLW solution, a technique called drop coating 

deposition LIBS (DCD-LIBS). 
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4.4.4 Synthetic Standard Preparations 

Synthetic standards were prepared from strontium and yttrium ICP standard whose certificates of 

analysis are given in Appendix 5. About 2 ml of strontium ICP standard of concentration 1000 

ppm was pipetted into a 50 ml plastic bottle. 18 ml of 3M nitric acid was added to the solution 

and mixed to form a synthetic standard of 100 ppm. Triplicate synthetic standards were prepared 

to provide a comparative study of the prediction ability of the model. The procedure was 

repeated for Yttrium ICP standard. The concentration range for Zr while developing the ANN 

model was 0 − 4000 ppm compared to Y and Sr whose model range was 0 − 1000 ppm. 

Therefore, a relatively higher target concentration (500 ppm) was selected as the target 

concentration. The 2ml of zirconium atomic standard solution was also diluted with 2 ml of nitric 

acid to produce a solution of 500 ppm Zr concentration.  

Analysis involved deposition of 2 𝜇𝑙 of each of the sample on perspex substrate and dried on a 

hot plate to produce a dry coat. Twenty spectra were acquired from the sample and averaged to 

obtain a representative spectra. Selected regions containing the peaks of FP (Sr, Y and Zr) were 

used in developed ANN models to test the predicted concentrations. 

River clay standard reference material PTXRFIAEA09 was used in the validation of ANN 

models developed using powder (pellet) samples (IAEA, 2014). The river clay powder was 

pressed into two pellets (25 mm diameter and 0.4512 g mass). Twenty spectra were acquired 

from both sides of the pellet and averaged to obtain representative spectra. Selected regions were 

utilized with the ANN models developed to determine the prediction ability of the model.  
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4.5 Evaluation of Limits of Detection (LoD) 

For any given analytical technique, the limit of detection refers to the smallest concentration of 

the analyte that can be detected and proved to be present (Cremers et al., 2006; Cremers and 

Radziemski, 2002 ; Van Grieken and Markowicz, 2001). Therefore, it is the lowest concentration 

that can be distinguished from an analytical blank. According to the International Union of Pure 

and Applied Chemistry (IUPAC), a spectrum from a given element is statistically significant 

when the signal is raised 3 standard deviations above the background reference (Long and 

Winefordner, 1983; Ripp, 1996). Hence; 

 
 LoD =

3σb

S
 

 

 

(4.3) 

Where 𝜎𝑏 is the standard deviation of the multiple samples of the blank and S is the sensitivity. 

LoD can be influenced by a number of parameters including; the delay time, fluctuations in the 

laser pulse energy as well as the characteristics of the sample being investigated. The 

relationship between the LIBS spectra and the concentrations of the analyte also known as 

sensitivity is given by the slope of the calibration curve. 

Detection limits for each of the FPs in their respective matrices (fused glass, pellet and drop 

coats on perspex) were computed. Spectrally isolated and interference-free peaks were identified 

and used in the evaluation of the LoD. Usually, small variations in the intensity of the central 

peak frequency create non-linearity if the peak height at a particular frequency is chosen. 

Therefore, the area under the curve (intensity) for each peak of interest was considered as a more 

uniform representation of the emitted intensities. This methodology was achieved by selecting 

the range containing the peak for 10 different analyte concentrations and a non-linear curve 

fitting employing the Gaussian function with Levenberg Marquart iteration algorithm in 
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OriginPro 9.1.0 data analysis and graphing software. All the peaks were treated simultaneously 

and fitting was done until convergence was attained.  

A scatter plot of the concentration against the corresponding peak area was utilized in univariate 

calibration. A line of best fit was drawn from which the slope of the line was extracted. Six blank 

samples (base matrix) were prepared and used to determine the standard deviation. The spectral 

region containing the specific lines was used to find the standard deviation of the blank minus 

the signal. The slope, the standard deviation obtained were used to calculate the LoD according 

to equation (4.3). The procedure was repeated for all the sample types (liquid, pellet and fused 

glass) and contrasted. 

4.6 Spectral Data Pre-processing Techniques 

Spectral data pre-processing techniques namely; PCA for outlier detection, baseline restoration, 

and normalization were applied on the data to de-noise the spectra, to reduce variability in the 

data and also to improve the accuracy and robustness of subsequent classification and analyses. 

A spectrum is considered normalized when the area under the curve for such a spectrum is 

evaluated to correct the spectra for the unknown path length. Standardization removes scatter 

effects from the individual spectra and puts all variables on the same scale such that, variables 

with high and low concentrations assume equal significance (Mark, 2001).  Additionally, these 

spectral preprocessing techniques were useful in removing outliers and redundant information 

while retaining the most significant features of the spectra to be used during multivariate 

modeling. 
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4.7 Principal Component Analysis of Simulate HLNW 

PCA was performed on nuclear waste liquid simulates spiked with trace fission products in order 

to discriminate nuclear liquids from those that are not, based on the presence of trace FP. The 

PCA was performed in R by selecting a partial section of the spectrum (340 nm to 395 nm) 

which contain most of the lines of the spiked elements. Variable scaling was performed and the 

resulting principal components were visualized in 2D and 3D score plots respectively. 

4.8 Artificial Neural Networks (ANN) of HLNW 

ANN was employed in regression modeling of the FP in the simulated nuclear wastes in glass 

(vitrified), high-level waste liquids, and powders. The schematic of the proposed ANN modeling 

approach employed in this work is given in Figure 4.8.1. 
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Figure 4.8.1: ANN modeling approach. 
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4.9 Support Vector Machines of FP in Simulate HLNW 

In this work, support vector machines was used for discrimination of samples based on the 

presence and the concentration of FP. Quantitative features (sample concentration) and 

qualitative features (spectral peaks) of each of the FP can infer the stage of the material in the 

NFC. Notably, in high level wastes, the FP occur in typical concentrations (Audero et al., 1995 ; 

Bevilacqua et al., 1987). If FP together with U are measured in unknown material and are found 

to be within these typical ranges, then there is a high likelihood of associating such material to 

HLW. Considering one fission product in relation to the rest of the FP, SVM hyperplanes can be 

used to classify a new sample as to whether it contains the fission product or not. Using 

OriginPro 9.1.0, the area under the peak for selected interference-free peaks of each of the spiked 

fission products (Rb, Sr, Zr, Y) and U together with their spiked concentrations were prepared as 

a matrix. The FP (Rb, Sr, Zr, Y) and U columns in the matrix were utilized as a predictor and the 

SVM classification was performed based on these fission products. The procedure was repeated 

for the three sample types (fused glass, pellets, liquid coats on perspex). The model was tuned to 

obtain the best parameter combination that produced optimal hyperplanes. Notably, both linear 

and radial kernels were utilized. Samples that had not been shown to the model were then fed to 

the model to determine the clustering ability of the model. The classification of the samples into 

their correct groups is a useful component of NF attribution as it can be utilized in a rapid 

positioning of the material in NFC. 

4.10 Safety Precautions  

This work involves laboratory simulation of high-level nuclear wastes resulting from 

reprocessing of nuclear fuels. Some of the elements eg (U, Sr, etc.) utilized are radiotoxic hence 

the need for precautionary measures. Despite the fact that stable elements were utilized in the 
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simulation, 238U emits alpha particles of 4.2 MeV energy (Bleise et al., 2003; Grenthe et al., 

2008). Also, the presence of small amounts of 235U decay with 4.4 MeV alpha particles and 

approximately 0.21 MeV gamma rays. For these reasons, exposure time was minimized while 

maximizing the distance from a subject from the samples during sample preparation. The survey 

meter was used to check the levels of ionizing radiation from the uranium salts and it was always 

below background. A protective face musk was always worn throughout the process of sample 

preparations. Sr also has a tendency of replacing calcium in bones and if the isotope is 

radioactive then it gradually releases radiation to the nearby muscles tissues. In addition, these 

elements are harmful if they find their way to the hydro-ecological system (Henderson, 2014). 

Radiacwash towels courtesy of the Radiation Protection Board (RPB) were used to clean the 

surfaces contaminated during the analysis.  

4.11 LIBS Line Selection Criteria 

Line selection criteria for quantitative model development was done based on the following 

spectral line properties; 

a) The lines identified were spectrally isolated and interference free. Peaks with a dip at the 

apex (suggesting self-absorption) were avoided. 

b) For each FP element, the ratio of the intensities of two adjacent visible lines was 

determined and compared to realize whether it corresponded with the ratio of the 

intensity of the same lines in atomic spectroscopy database. This was done to ascertain 

the authenticity of the lines. 

c) The net wavelength shifts from the LIBS reference database was also confirmed and 

maintained at ±0.2 𝑛𝑚. However in some special cases, depending on the operation 

conditions of LIBS, a deviation greater than 0.2 nm was noted. 
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Tellurium (Te) lines were not visible and identifiable on the LIBS spectrum. Further analysis of 

Te could not be achieved hence it was excluded in the subsequent analysis. 

Figure 4.11.1 shows a typical LIBS spectrum acquired from simulate HLW fused glass sample. 

 

 Figure 4.11.1: Zoom in of LIBS spectrum of an HLW fused glass sample. 
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Figure 4.11.2 shows the further zoom in into Figure 4.11.1  illustrating a typical spectrally isolated 

and interference-free lines chosen for model development. Such lines were employed in feature 

selection of the specific regions of interest for support vector machines, principal component 

analysis, and artificial neural network model development. 

 

Figure 4.11.2: Typical line profile for YII 371.029 nm. 

 

 

  

0

50

100

150

200

250

300

350

400

370.3 370.8 371.3 371.8

In
te

n
si

ty
 (

a.
u
)

Wavelength (nm)

Y II 371.029 nm



63 

 

Table 4.5 shows some of the lines that were chosen for quantitative model development. These 

lines were identified with the help of the OOILIBS spectral library as well as the atomic 

spectroscopy online database available on the NIST website (Ralchenko et al., 2006). 

Table 4.5: Spectral lines observed in LIBS and utilized in the quantitative model development 

Element Species Wavelength (nm) 

Yttrium Y II 371.029 

Y II 377.433 

Y II 437.494 

Y II 360.073 

Y II 363.312 

Y II 488.368 

Y II 523.810 

Y II 324.227 
   

Zirconium Zr I 421.386 

Zr I 422.931 

Zr I 356.610 

Zr II 273.486 

Zr II 274.556 

Zr II 327.305 

Zr II 267.863 

Zr II 339.197 

Zr II 343.823 

Zr II 357.247 

   

Strontium Sr II 407.771 

 Sr II 421.552 
 Sr II 430.810 
 Sr II 460.733 
   

Rubidium Rb I 780.011 
 Rb I 794.760 
 Rb II 424.440 
 Rb II 645.833 
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CHAPTER V 

5 RESULTS AND DISCUSSION 

5.1 Overview 

This chapter presents the results and discussion for the utility of chemometric methods in LIBS 

analysis of simulate nuclear fission products in glass, pressed pellets of simulate HLW powders 

and simulate HLW liquids. Section 5.5 presents the results for univariate calibration of the FP in 

glass, pellets and liquids of simulate high-level nuclear wastes. Section 5.7 presents optimization 

results and the outcome of quantitative ANN models of the FP in the above matrices. The 

elemental analysis is presented under the qualitative analysis section. Results and discussion for 

a DCD-LIBS approach to the simulate HLW liquid are presented in section 5.9. The PCA 

conducted on simulate nuclear wastes to infer attribution is presented in section 5.10. Finally, 

SVM performed on the samples as presented in section 5.11 as a discriminatory attempt among 

the spiked fission products. 

5.2 LIBS Peak Selection and Qualitative analysis 

In order to identify the peaks associated with each of the fission products (Y, Zr, Sr, U, Rb) 

pellets of analytical grade chemicals donors of each FP were analyzed using LIBS. The salts 

were pressed into a 2g pellet with 25 mm diameter using the pellet press machine (LPM-15T). A 

total of 10 spectra were taken from each of the pellets and averaged for a representative 

spectrum. The average spectra were then stacked with y-offsets in ORIGEN Lab graphing 

software. Figure 5.2.1 shows the result obtained.  
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Figure 5.2.1: LIBS spectra of the salts (FP donors) (stacked for easy view). 
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chloride spectrum only as compared to other spectra. The database of atomic emissions identifies 

these lines as the most dominant lines of Rb (Ralchenko et al., 2006). Hence these lines were 

adopted for model development. Following a similar approach, the lines given in Table 4.5 were 

identified for each analyte and used for model development. 

In qualitative analysis, the following lines were identified. These lines were reproducible for 

fused glass samples, pelletized samples, and the drop coating deposition LIBS samples. Figure 

5.2.2 and Figure 5.2.3 shows some of the peaks identified from the spiked FP. 

 

 

Figure 5.2.2: Identified peaks of simulate HLW liquid FP coated on perspex substrate. 
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Figure 5.2.3:  Selected observed emission lines of a pellet sample spiked with FP elements in 

fused glass and a blank fused glass matrix. 

5.3 Spectral Line Response with a Change in Concentration 

In laser spectroscopy, ideally, the intensity of a given line profile should be proportional to the 

concentration. This means that higher intensities should be noticeable for a higher concentration 

of the given species of interest. Figure 5.3.1 illustrates some of the line profiles of chosen 

elements that were identified to rely on this principle. 
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Figure 5.3.1: (A) Rb line at 780.011 nm and (B) Sr  line at 460.733 nm and (C) Y ionic line at 

371.029 nm responding with changes in the concentration of the respective analyte in different 

fused glass samples. 
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5.4 LIBS Optimization Parameters 

Prior to analysis, it is a common practice in atomic spectroscopy to optimize the conditions of 

the analytical instrument to maximize detection ability. In LIBS measurements the main factors 

influencing the intensity of spectral lines include the laser energy, the distance of the sample to 

lens distance, the number of laser shots and the Q-switch delay. 

5.4.1 Optimization of LIBS for Fused Glass Analysis 

The appropriate laser energy that gave the best signal to noise ratio for a spectrally isolated and 

interference-free U II peak at 367.002 nm was found to be 45 mJ with a Q-switch delay of  

150 𝜇𝑠 , an integration time of 0.42 s and an optical fibre to sample length of approximately 5.3 

mm. These conditions were held constant throughout the analysis of the fused glass samples. 

5.4.2 Optimization of LIBS for Pellet Samples 

The optimized parameters for analysis of pelletized samples was reported by (Mukhono, 2012) 

Since our work involved the use of cellulose as a binder and the work therein involved analysis 

of trace elements bound in cellulose, the conditions (laser pulse energy (LPE)) of 45 mJ, 0.42 μs 

integration time, a delay time of 150 μs and an optical fiber-to-lens length of 10 mm) were 

assumed to be applicable. 

5.4.3 Optimization Conditions for the Preparation of Liquid Samples 

For liquid simulates, there was no methodology reported for optimized LIBS conditions. As 

such, the LPE and the distance of spectrometer from the plasma were investigated for the best 

performing combination. 
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5.4.3.1 Optimum LPE  

It is important to optimize the laser energy before analysis of samples is done. The laser energy 

was varied from the minimum value 10 mJ to the feasible maximum 50 mJ with all other 

variables held constant. A Y line (YII 371.029 nm) that was spectrally isolated and free of 

overlapping was monitored with the changes in the laser energy. Through non-linear curve 

fitting, the area under each of the peaks was calculated. The area under the peak against each of 

the laser pulse energy is plotted as shown in Figure 5.4.1. 

Figure 5.4.1: Spectral line intensity (YII 371.029 nm) response with energy variation. 

The intensity of the emitted lines increases with the increase in laser energy up to 32.5 mJ. There 

is an irregular intensity response after 32.5 mJ which could be possibly due to fluctuations in the 
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45 mJ implying approximate stability in the laser energy. Hence the energy 42.5 mJ was chosen 

as the most appropriate optimum energy. 

5.4.3.2 The distance of the spectrometer from the plasma 

The distance between the spectrometer and the position struck by the laser was varied. Fifty 

single shot spectra were acquired for various distances from the sample surface at 42.5 mJ 

energy, 0.42 s integration time, and 150 𝜇𝑠 Q-Switch delay. The average of each of the spectra 

for each of the lengths was computed and presented as a single spectrum. Through feature 

selection, three lines were chosen and their intensity response at their centroids were plotted 

against the distance of the spectrometer from the sample (plasma).  Figure 5.4.2 indicates that the 

optimum distance between the spectrometer and the laser spot where the plasma produces the 

highest peak response is around 5.3 mm.  

 

Figure 5.4.2: Spectral line intensity response with distance of the optic fiber from the sample. 
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Therefore the optimized conditions for analysis of the drop coating deposition LIBS samples 

were set to be 42.5 mJ laser pulse energy, 0.42 s integration time, 5.3 mm optic fiber lens the to 

sample distance and a Q switch delay of 150𝜇𝑠. These conditions were preserved during the 

analysis of the 30 samples necessary for model development.  

Drop coating deposition is not a common technique in LIBS. There is limited research that has 

been directed towards this topic especially with LIBS in perspective. However, drop coating 

deposition Raman (DCDR) has been widely used in achieving sample analysis including; 

analysis of protein mixtures (Filik and Stone, 2007), DCDR of liposomes (Kočišová and 

Procházka, 2011) and even identification of variants in insulin by means of DCDR (Ortiz et al., 

2004). Since laser Raman and LIBS are laser-based techniques, drop coating deposition LIBS is 

also a potential analytic technique as illustrated in this work especially in the analysis of liquid 

samples. Figure 5.4.3 illustrates the spectral response with different volume of the drop deposited 

on the perspex substrate. 
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Figure 5.4.3: Spectral line intensity variation with the volume of drop deposition coating for the 

same sample. 
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Figure 5.4.3 shows that the smaller the microliter aliquots, the higher the spectral line intensity 

acquired. This enhancement can be attributed to two factors. First, an evaporating liquid droplet 

containing particles suspended in it forms a ring called ‘Coffee Ring’ which is due to the induced 

capillary motion that depends on the rate of evaporation of the liquid to the motion of the 

particles (Shen et al., 2010). The smaller the volume of the liquid aliquot, the smaller the radius 

of the dry coating. The particles cluster closer together hence interaction with laser energy is 

more direct and stronger compared to when the particles are far apart. Secondly, this signal 

enhancement can be attributed to the nature and type of substrate used. A good substrate for drop 

coating deposition should have a negligible solvent affinity, high optical reflectance and 

minimum optical absorbance (Zhang et al., 2003). Perspex wafers are designed to meet these 

characteristics. Indeed, perspex substrate produced the better signal enhancement compared to 

glass. Hence, this study shows that perspex is suitable for trace elemental analysis (similar to 

those potentially encountered in a nuclear forensic scene) in LIBS. 

The signal to noise ratio (SNR) or the signal to background ratio (SBR) of a methodology are the 

fundamental parameters used in evaluating the sensitivity of any analytical technique. In 

evaluating SNR, the point corresponding to the central wavelength of the chosen peak/the 

maximum point of the emission peak was chosen to represent the area under the curve for such a 

peak (Prochazka et al., 2015). It is worth noting that, each sample was analyzed by averaging 50 

spectra acquired randomly from the sample in order to attain more statistically significant results. 

The background was acquired by selecting regions close to the emission line that did not show 

any sign of elemental peak emission. Hence the mean of the selected regions represented the 

background. The noise that is associated with the background was computed by determining the 
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standard deviation from the background average value of the average spectra (Sládková et al., 

2017). The computed SNR for Rb II 779.985 nm is presented in Table 5.1. 

Table 5.1: SNR and SNB for Rb II 779.985 nm line corresponding to 9 ppm of Rb in simulate 

liquid solution for varying volume of drop coat on Perspex 

Parameter The volume of the drop coat (𝛍𝐥) 

 𝟐 𝝁𝒍 𝟒 𝝁𝒍 𝟔 𝝁𝒍 

Standard deviation of background (Counts) 4.318 2.984 2.524 

Average background (Counts) 18.188 11.521 11.325 

Intensity (Counts) 250.000 116.100 111.700 

Signal to noise ratio (SNR) 57.895 38.905 44.261 

Signal to background ratio (SBR) 13.746 10.077 9.863 

 

For the same fission products composition, the average spectra for pellet and fused glass were 

plotted on the same scale to find out the spectral response. The resulting graph is in Figure 5.4.4.  
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Figure 5.4.4: Comparison between spectra acquired from fused glass and pellet samples. 

 

The Y, Zr and U lines are conspicuous in the two spectra. The pellet sample provides enhanced 

peaks compared to the fused glass form of the same sample. This is attributed to the spectral 
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A further contrast between the three forms of the same sample (pellet form, fused glass, and 

liquid aliquots) is in Figure 5.4.5 below. 

 
Figure 5.4.5: Comparison of spectra acquired from fused glass, pressed powders and aliquot 

deposition coatings. 
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incorporation of nanoparticles on the sample surface aids in the breakdown of the threshold of 

the material thus enhancing the electric field localized around the nanoparticles. As such, there is 

an efficient coupling of the laser energy with the surface so that, much of the laser energy goes 

into excitation. This near nanostructuring provides sufficient points of plasma ignition that offers 

efficient ablation (De Giacomo et al., 2014). Therefore the electron density of the resulting 

plasma becomes high resulting in higher optical photon emission which is translated into the 

observed enhanced peaks. 

5.5 Univariate Calibration of FP in Simulate HLW 

The optimized conditions were set and fifty spectra were randomly acquired on the sample 

surface of each sample. The spectra were accumulated and averaged to get a representative 

spectrum for each of the samples. Notably, this was done in order to account for inhomogeneity 

in the samples. 

Trace detection and quantification of any element requires the knowledge of the LoD. Three 

blanks of each form of the sample were prepared. Detection limits for the three forms of the 

sample (fused glass, pellet form and liquid deposition) were evaluated and compared. In 

evaluating the LoD, the peak area for a chosen number of samples was evaluated in Origin Pro 

9.1 by performing non-linear curve fitting adopting the Gaussian function and Levenberg 

Marquart iteration algorithm.  

The fitted area was then taken as a rather uniform representation of the intensity of each of the 

peaks. Samples with different concentrations were chosen and the area under the peak for two 

selected emission lines was calculated. The sensitivity was extracted from the slope of the linear 

function with the highest R2 value. Some of the graphical plots are as shown in Figure 5.5.1, 

Figure 5.5.2 and Figure 5.5.3 
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It was noted that fused glass samples exhibited the highest LoD whereas the liquid samples 

offered lower detection limits. According to Liu et al. (2015), analysis of elements on glass 

samples is often accompanied by spectral interference which results in submersion of the spectral 

emissions in the background signals. Therefore, detection of such trace elements following a 

univariate approach is difficult and thus the LoD is high. The pellet samples gave lower detection 

limits compared to glass because of the presence of a more physical matrix that facilitates 

detection of the emission lines. The liquid deposits on perspex wafers provided the lowest 

detection limits because of reduced matrix interferences and the fact that the perspex surface was 

highly polished to a level where the surface behaves like a nano-structured surface hence 

improved sensitivity of spectral emissions (De Giacomo et al., 2014; Ye et al., 2002). 

Techniques that offer low detection limit are desirable in NF as trace concentrations of elements 

(FP) are involved from which useful NF signatures should be extracted. 

 

Figure 5.5.1: Selected univariate graphs for fission products acquired from fused glass samples 
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Figure 5.5.3: Selected univariate calibration graphs for fission products in spectra acquired from 

the liquid sample. 
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Following the 3𝜎 criterion in equation (4.3), Table 5.2 shows some of the detection limits that 

were evaluated for the three forms of the sample discussed herein and compared with a few other 

reported literature.  

Table 5.2: Limit of detection for Rb, Sr, Zr and Y elements in fused glass, pellet, and DCD-LIBS 

samples 

Target 

Element 

(Peak) 

LoD for fused 

glass samples 

(ppm) 

LoD pellet 

sample 

(ppm) 

LoD for 

DCD 

(ppm) 

LoD reported 

[Matrix, 𝝀, Ref] 

Rubidium 

(780.011 nm) 

181.6 25.5 6.0 1, [starch, 780.023 nm, 

Cremers and Radziemski, 

2013] 

Strontium 

(407.771 nm) 

175.0 18.8 6.5 19 [SrCl2 & Al2O3 

mixture, 460.73 nm, 

Fichet et al., 1999]   

130, [UO2 pellet, 407.77 

nm, Bhatt et al., 2015] 

Zirconium 

(360.119 nm) 

199.1 67.7 54.6 290, [glass, 360.119 nm, 

Kurniawan et al., 1995] 

190, [air, 360.119 nm, 

Kurniawan et al., 1995 

Yttrium 

(371.029 nm) 

129.1 70.1 7.2 2, [NaCl, 371.03 nm, 

Cremers et al., 2006] 

 

Zirconium does not react directly with nitric acid, however, its dissolution is increased in the 

presence of hydrofluoric acid (HF) (Prajapati et al., 2014; Wall and Whitener, 1959). The 

detection limit for Zr in DCD is relatively high compared to other FP investigated, primarily due 

to the poor dissolution of ZrO2 in nitric acid.  The dissolution rate of ZrO2 depends only on the 

changes in HF. Moreover, a significant quantity of ZrO2 can only dissolve when 13M nitric acid 
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is used. In this thesis 3M nitric acid was used as this is the concentration of nitric acid used 

during nuclear wastes reprocessing (Benedict et al., 1982) ; Audero et al., 1995). 

5.6 Multivariate Modelling for Quantitative Analysis of the FP in HLW 

In this section multivariate modeling involving ANN, PCA and SVM are discussed. One of the 

limitations of multi-linear univariate calibration or even calibration free LIBS is that both 

methods suffer from high detection limits. This is true especially when trace quantities of the 

element of interest are involved. The use of multivariate data processing, therefore, enables 

reduction of high dimension complex data to a form that is easy to extract essential information 

from the spectral data and make viable inferences. In addition, ideally, it is difficult to achieve a 

linear relationship between the emitted intensities of the spectral lines and concentration. Such 

linear relationships work well for high concentrations and fail for very low concentrations. ANN 

was used to achieve multivariate calibration as discussed in subsection 5.6.1. PCA and SVM 

were utilized in multivariate pattern recognition and sample discrimination based on the spiked 

FP as discussed in section 5.7.1 section 5.7.2 respectively. 

5.6.1 ANN Model for Quantitative Analysis of FP in HLW  

In this work, neural networks (NN) was chosen as a multivariate modeling technique owing to 

advantages that have been published over time (Cilimkovic, 2015; Beale et al., 2010; Jain et al., 

1996).  These advantages include the ability of NN to learn from examples especially from input-

output relationships and ability to model non-linear relationships between data (Naguib and 

Sherbet, 2001).  

Utilization of the entire spectrum requires large computer memory in order to achieve ANN 

modeling. Because of this limitation, there is a need for data compression procedures through 

spectral feature selection, which reduces redundancy in the data and achieves a more robust 
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calibration model. Therefore, the emission lines of the target elements which were spectrally 

isolated and free of interference were selected. The selected spectral regions were set in 

MATLAB 7.8.0 (R2009a) as the input to the ANN network. The corresponding known 

concentrations were administered as targets in the network. Prior to running the network, the 

input matrix was normalized by means of the inbuilt mapstd function which transforms the 

inputs to possess a zero mean and unity standard deviation. This is done in order to bring both 

high and low valued data to participate equally in the chemometric modeling. 

Optimization for the best performing parameters of the ANN network was done. This included a 

variation of the number of neurons, the learning rate of the model, the number of layers of the 

network and even the transfer function. The number of layers was varied with other variables 

held constant such that the number of layers that produced the highest accuracy in prediction of 

samples not shown to the network was selected. The best layer was set constant and the number 

of neurons was varied. The process was repeated until the architecture that offered the highest R2 

was chosen.  

The outcome is as illustrated in Table 5.3, Table 5.4 and Table 5.5 . It was found that a two-layer 

network with three neurons and tansig transfer function resulted into the rapid convergence of 

the network. In addition, highest 𝑅2 and the lowest MSE values for training, test and validation 

were achieved under these conditions. As such, these parameters were adopted and utilized for 

subsequent modeling. 
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Table 5.3: Model prediction ability with a variation of ANN layers for newff algorithm 

Network Layers Number of 

neurons 

Transfer 

function 

Learning rate R2 

2 2 tansig 0.0001 0.9844 

3 2 tansig 0.0001 0.9624 

4 2 tansig 0.0001 0.9795 

5 2 tansig 0.0001 0.9380 

6 2 tansig 0.0001 0.9633 

 

Table 5.4: Model prediction ability with a variation of the number of neurons for newff algorithm 

Network Layers Number of 

neurons 

Transfer 

function 

Learning 

rate 

R2 

2 2 tansig 0.0001 0.7272 

2 3 tansig 0.0001 0.9555 

2 4 tansig 0.0001 0.9227 

2 5 tansig 0.0001 0.8556 

2 6 tansig 0.0001 0.8462 

 

Table 5.5: Prediction ability of the model with varied learning rate for newff algorithm 

Network Layers Number of 

neurons 

Transfer 

function 

Learning rate R2 

2 3 tansig 0.0001 0.9426 

2 3 tansig 0.001 0.9790 

2 3 tansig 0.01 0.8821 

2 3 tansig 0.1 0.8312 
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These optimized parameters were obtained through feature selection of Y lines with feed forward 

back propagation algorithm with Levenberg-Marquit (LM) optimization function. The output of 

the layers was calculated from the net input by means of the tansig transfer function. The number 

of neurons was set to be 3 with a learning rate of 0.001. The associated code is given in 

Appendix 2. 

Two ANN algorithms were compared for the best performing architecture. Quantitative models 

developed using the networks were then compared to infer a model that is best suited for such 

data consisting of selective LIBS spectral regions set around the peaks of trace elements 

mimicking fission products in fused glass (a representative of fission elements in vitrified glass) 

and similar elements in liquid form (trace fission products in simulate liquid nuclear waste). 

Hence, the cascade correlation algorithm and the common feed forward back propagation were 

employed and compared. 

A comparison between cascade correlation algorithm (newcf) and feed forward back propagation 

algorithm (newff) for the fused glass samples data reveals the following ANN regression plots 

(Figure 5.6.1 and Figure 5.6.2 ) for synthetic samples that were not shown to the network. The 

same samples were maintained for the two architectures. 
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Figure 5.6.1: ANN multivariate regression plots for Sr utilizing newcf and newff algorithms 

respectively using fused glass samples data. 

 

Figure 5.6.2: ANN multivariate regression plots for Rb comparing newcf and newff algorithm 

(newff) for the fused glass samples data. 
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Cascade-correlation architecture leads to a higher coefficient of correlation between the 

predicted concentration and the measured concentrations. However, investigation of the 

individual predictions to that of the original concentrations reveals that the cascade correlation 

algorithm leads to a higher margin of error compared to the feed forward back propagation 

algorithm. Therefore when all other factors are held constant newff algorithm provides more 

reliable predictions. 

The relative error of prediction (REP) for each of the algorithm was evaluated based on the 

procedure reported by (Dingari et al., 2012b). Thus; 

 
REP(%) =

100

N
∑ |

Ci
́ − Ci

Ci
|

N

i
 

 

(5.1) 

Where N is the total number of spectra in the dataset, Ci
́  is the measured concentration and Ci is 

the concentration predicted by the model. Therefore the REP is considered as one of the figures 

of merit in multivariate analysis as it shows the accuracy and precision of the model. This figure 

of analytical merit was computed for all of the models developed as shown in Table 5.6. The 

lower the REP the more accurate the model. 
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Table 5.6: Relative Error of Prediction (REP) for the feed forward back propagation (newff) and 

cascade correlation (newcf) models developed utilizing feature selected fused glass 

data 

Multivariate Regression Plots 

(Fused glass feature selection) 

Relative Error of Prediction (%) 

 newff newcf 

Strontium  12.35 36.38 

Rubidium  9.61 15.18 

Zirconium 7.30 17.51 

Yttrium 3.78 13.23 

 

Since the feed forward back propagation algorithm worked best for these samples, it was adopted 

as the preferred algorithm and was used to develop the remaining models for the solid and liquid 

forms of each of the simulated samples. Other researchers e.g. Cilimkovic (2015), Skorpil and 

Stastny, (2006) have also identified the feed-forward algorithm to be rapid and has the ability to 

converge more easily compared to the cascade correlation algorithm. Utilizing this newff 

algorithm the ANN regression plots in subsections 5.6.1.1, subsection 5.6.1.2 and subsection 

5.6.1.3 were developed. 

5.6.1.1 Fused Glass Samples 

Figure 5.6.3 shows selected ANN regression plots for quantification of FP in fused glass utilizing 

ANN. For samples that had been set aside for model validation, the coefficient of correlation for 

the developed models was above 0.98 as shown on the graphs. 
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Figure 5.6.3: ANN multivariate regression plots for a) Y and  b) Zr in fused glass. 
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5.6.1.2 ANN Regression Plots for Pellet Samples (Pressed Simulate Nuclear Powders) 

Selected ANN regression plots for Y, Sr, and Rb are given in Figure 5.6.5. The sample (†) in 

Figure 5.6.5 (c) corresponding to 19 ppm Rb during model training predicted the same value 

regardless of the training iterations. This could be associated with the LoD of Rb which is 25.25 

following the univariate approach. Hence, the concentration of the sample lies below the 

computed detection limit (<LoD). If the samples are omitted from the calibration curve a high 

precision calibration curve is obtained. Hence, via multivariate modeling, the values can be 

mapped to fit in the calibration curve together with samples of higher concentrations. 
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Figure 5.6.4: ANN regression plots for (a) Y, (b) Sr using data acquired from pellet samples 
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Figure 5.6.5: ANN regression plot for Rb using data acquired from pellet samples. 

5.6.1.3 Drop Coating Deposition LIBS (DCD-LIBS) 

The modeling procedure was also extended to the same samples but prepared as liquid deposits 

on perspex substrate. The accuracy and prediction ability of the model are presented in Table 5.7. 

However, it is important to appreciate the potential of LIBS in analyzing tiny volumes. Small 

aliquots of only 2 𝜇𝑙 deposited on a suitable substrate can furnish important nuclear forensic 

signatures especially in nuclear accidents/detonation events. Presented in Figure 5.6.6 and Figure 

5.6.7 are representative curves acquired using the ANN models developed. 
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Figure 5.6.6: ANN regression plots for (a) Zr and (b) Sr for 2 µl simulate HLNW liquid deposited 

on perspex substrate. 
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Figure 5.6.7: ANN regression plots for (a) Y and (b) Rb for 2 µl simulate HLNW liquid 

deposited on perspex substrate. 
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The ability of the developed multivariate calibration models to predict synthetic samples which 

were hidden from the network is given by the explained variance value and the REP whose 

values for each model in fused glass, pellet, and liquid forms are as shown in Table 5.7. 

Table 5.7: Model performance based on the explained variance (R2), the Relative Error of 

Prediction (REP) and univariate LoD for fused glass, pelletized and liquid sample 

forms of the same analyte 

Element Fused glass Pelletized Form Dry Liquid micro drop 

Form 

 R2 REP 

(%) 

LoD R2 REP 

(%) 

LoD R2 REP 

(%) 

LoD 

Sr 0.939 12.350 175.0 0.974 8.730 18.8 0.957 1.470 6.5 

Rb 0.985 9.610 181.0 0.991 5.560 25.5 0.897 11.680 6.0 

Y 0.984 3.780 129.1 0.999 31.060 70.1 0.977 12.350 7.2 

Zr 0.987 7.300 199.1 0.750 15.020 67.7 0.957 4.180 54.6 

 

5.6.2 ANN Models Validation Results for Nuclear Pellets and HLLW Simulates 

Prediction ability of the DCD ANN models was further achieved with the use of synthetic ICP 

standard solution prepared in a similar way as the simulated samples. The percentage deviation 

from certified value is < 10 % as shown in Table 5.8. The prediction ability of the pressed 

powder pellet models was also done using river clay PTXRFIAEA09 SRM whose findings are in 

Table 5.9. The concentrations of selected FP (Sr, Y, and Zr) were found to have < 12 % 

deviation from the certified values. 
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Table 5.8 : HLLW Model validation results using certified standards. 

Name of the Standard Certified 

Standard 

Concentration 

(ppm) 

Average  

Predicted 

(Triplicate) 

(ppm) 

Deviation from 

the certified 

value (%) 

Strontium ICP standard, 

CertiPUR® MERCK Darmstadt 

Germany 

 

100 

 

91.34 ± 2.34 

 

8.66 

    

Zirconium Atomic Absorption 

Standard Solution, SIGMA 

Chemical Company, USA 

  

542.14 ± 5.51 

 

8.43 
 

500 

    

Yttrium ICP standard, CertiPUR® 

MERCK, Darmstadt Germany 

 

100 

 

 

93.61 ± 4.14 

 

6.39 

 

Table 5.9: Simulate nuclear pellet validation results using River Clay PTXRFIAEA09 

Element  Certified Concentration 

(ppm) 

Model Predicted (Triplicate) 

Concentration (ppm) 

Percentage 

error (%) 

Rb 105.57 ± 5.77 115.06 ± 3.16 9.0 

Sr 101.9 ± 3.03 89.59 ± 5.32 12.1 

Y 27.89 ± 2.15 24.63 ± 4.26 11.7 

Zr 317.91 ± 14.2 296.27 ± 15.21 6.8 
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5.7 Hypothetical Nuclear Forensic Scenario and Approach to Attribution 

 

In nuclear forensics, materials suspected to be of nuclear or radioactive origin are probed in 

pursuit of evidence to inform attribution. Some occurrences that may require the application of 

nuclear forensic include; detonation events involving such materials, spillage of nuclear wastes 

while moving to repository sites, radioactive dispersal devices (RDD) by malicious groups, etc. 

Such NF situations require a specific methodology for analysis and drawing inferences as tiny 

samples are involved.  

This work attempts to develop the methodology for analysis of such NF situations.  If a dirty 

bomb is blown off there is a need to determine its composition via (FP composition) and link it 

to the most likely origin of such material. One potential analytical plan would be to cordon the 

crime scene, collect fragments of the exploded device or even debris (e.g glass debris) for direct 

LIBS analysis. In addition, if the particles are allowed to rest on surfaces (say plant leaves) and 

dew allowed to form, the liquid aliquots can be sampled and analyzed via dry coat on a suitable 

substrate.  

Such trace micro-analytical capability offers a nuclear forensic methodology useful in attributing 

the material to its source or even analyzing materials from radiological crime scenes. As such, 

qualitative and quantitative elemental composition can be achieved via LIBS and the developed 

ANN models discussed here. 

5.7.1 Principal Component Analysis of Simulate HLNW Samples 

As mentioned earlier, in a typical nuclear scenario, for example, detonated nuclear 

device/radiological crime scene, the contents of the device involved get mixed in a manner that is 

difficult to separate in order to reveal the identity of the exploded device.  If data from such 
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samples is acquired then pattern recognition can be explored to reveal trends (e.g relationship 

between samples collected, the FP present, etc.)  

In this work, HLNW liquid samples containing known trace amounts of selected FP were 

utilized together with the reference blank liquid matrix. Three samples were set aside for method 

validation. A PCA was done on the samples to realize the behavior of the two groups. Their 

spectra data acquired through LIBS was used as input to PCA in R (Version 1.0.143 – © 2009-

2016 RStudio, Inc) through ‘Chemospec’ chemometric statistical packages (Hanson, 2014). The 

corresponding code is given in Appendix 4. The data was pretreated via normalization and 

baseline restoration. 

 Figure 5.7.1 (PC-2 against PC-1) and Figure 5.7.3 (PC-3 against PC-1) show the scores plot for 

the two sets of data. The liquid samples spiked with trace quantities of FP cluster together (SL 

group). The reference liquid blank samples also grouped together (LB group). The loadings plot 

illustrates that the peaks from the spiked elements are responsible for the positive PC-1 

clustering as shown in Figure 5.7.2 and Figure 5.7.3. Two samples spiked with FP (SLT1 and 

SLT3) were introduced to the model and they grouped together with the spiked liquid samples 

while blank validation sample (LBT2) clustered with the blank liquid samples. This is important 

in nuclear forensic analysis since samples suspected to be of nuclear origin can be identified and 

discriminated against those that do not contain FP. The 3D plot in Figure 5.7.4 shows that the 

distinct clusters with PC1 carrying most of the information about the samples. The samples SL5 

and SLT3 group closely together as shown in Figure 5.7.4. This is most likely because the 

samples had the same uranium concentrations (sample 3 and 5 in appendix 1). Notably, spectra 

of tiny liquid aliquots (2 µl) collected from a nuclear scene and deposited on a suitable substrate 

can be compared with reference spectral database and furnish nuclear forensic information to 
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inform attribution. Similar, approaches have been attempted by Banas et al. (2010) in which 

PCA together with a spectral library was utilized to simulate post-blast residues. However as this 

research involved explosive materials of non-nuclear origin, this work has exploited the potential 

utility of the approach especially in cases involving nuclear materials such as RDD. As such, 

PCA offers the ability to visualize such data since such events are characterized by low 

concentrations of the target elements (FP).  

 

Key: 

 LB – Blank liquid samples 

 SL – Spiked Liquid sample (spiked with trace FP) 

 LBT – Blank liquid test sample 

 SLT- Spiked liquid Test sample (spiked with trace FP) 

Figure 5.7.1:  PCA Scores plot for simulate high level liquid nuclear wastes. The samples SL and 

SLT contain FP spiked in trace quantitative levels while LB and LBT are reference 

blank samples matrix samples. 

Spiked with FP 

Blank 

matrix 
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Figure 5.7.2: PCA loadings plots for simulate high-level nuclear waste liquid samples 
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Figure 5.7.4: 3D PCA scores plot for simulate HLLW. The samples SL and SLT contain FP 

spiked within 0-1000 ppm levels while LB and LBT are blank samples. 

5.7.2 Support Vector Machine (SVM) Classification of Simulate Nuclear Wastes 

The goal of NF is to achieve attribution of intercepted NRM and/or characterizing materials 

acquired from nuclear scenes (e.g. detonation events). Such attribution depends largely on 

quantitative and qualitative data that has been discussed in this thesis. Supervised machine 

learning using e.g SVM has the potential to reveal any hidden properties of the data such as 

selected FP distribution in different samples acquired from a nuclear scene. Coexistence of FP 

Blank samples 

class ellipse 
Spiked samples 

group ellipse 
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and U in typical concentrations they occur can reveal the stage of the material in the NFC 

(Sekimoto and Miyashita, 2006). Equally, detection of zirconium in such materials can give 

clues about the nature of the sample as this element is utilized as cladding for nuclear fuel. In any 

case, even the lowest detection of FP at a radiological/nuclear crime scene depicted as a nuclear 

terrorism act requires utmost attention and analytical methodologies to deter such occurrences 

(Alkış, 2017). In this sub-section, SVM was used to visualize decision boundaries between 

individual FP for a material that has been classified as HLLW by means of the PCA approach as 

discussed in section 5.7.1. 

5.7.2.1 Choice of Optimized SVM Parameters 

 

Among the parameters that affect the output of an SVM classifier, the kernel type, the gamma 

(𝛾) and the cost (C) were optimized. The factor C controls the degree of violation of the margin 

(Cisewski et al., 2012a , Huang and Wang, 2006). A decreasing value of C widens the margin to 

accommodate more support vectors and vice versa (James et al., 2013). For radial basis kernels 

(RBK) functions, 𝛾 is utilized as a measure of similarity between two given points. A range of 

these parameters were used to tune the SVM classifier through 10 cross validation to attain the 

optimal parameter combination. The choice of Kernel type also affects the classification 

accuracy. Figure 5.7.5 shows a linear kernel (LK) function and RBK function using the same data 

set containing selected Zr and Rb peaks. RBK function provided the most flexible separating 

hyperplanes and was found to be the most appropriate for the HLW LIBS data. 
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For independent samples data hidden from the model, the confusion matrix in Table 5.10 shows 

that all Zr bearing samples were correctly classified as belonging to Zr class whereas for Rb class 

one sample was confused with Zr samples thus giving an overall correct grouping accuracy 

of 92.85 %.  

 

Table 5.10: Confusion matrix of test data set (𝐶 = 1000, 𝛾 = 1, 𝑅𝐵𝐾, 10 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) 

Clustering ability Predicted 

Rb Zr 

Actual Class Rb 6 1 

Zr 0 7 

Classification accuracy (%) 92.85 

 

R
b

Z
r

200 400 600 800 1000 1200 1400

100

200

300

400

oo

o

o

oo

o o
o

o

o

o

oo

ooo

o

o oo
o

oo

o

o

o

o

o o

o

o
o

o

o

x

x

x

x

x

x x
x

x

x

SVM classification plot

Concentration..ppm.

In
te

n
s
it
y
..
a

.u
.

R
b

Z
r

200 400 600 800 1000 1200 1400

100

200

300

400

oo

o

o

oo

o o
o

o

o
oo

ooo

o

o oo
o

oo

o

o

o

o

o o

o

o
o

o

o

x

x

x

x

x

x

x

x x
x

x

SVM classification plot

Concentration..ppm.

In
te

n
s
it
y
..
a

.u
.

Concentration (ppm) 

In
te

n
si

ty
 (

a.
u

) 

a) b) 

Figure 5.7.5: SVM plots utilizing selected zirconium and rubidium lines in fused glass with; a) linear 

kernel, b) RBK function. 
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5.7.2.2 SVM utilizing Fused Nuclear Glass Simulate Samples 

Selected spectral regions corresponding to the peaks of FP were utilized as inputs to the SVM 

classification model. This matrix consists of data that had been randomly selected and hidden 

from the model. The fission products (Sr and Rb) and U SVM classified samples as given in 

Figure 5.7.6. The corresponding confusion matrix is given in Table 5.11. The overall 

grouping/clustering accuracy was 82.35 %. As a result, out of 17 samples, 3 were misclassified.  

 

 

Figure 5.7.6: SVM plot of the feature selected fused glass samples training dataset (𝐶 = 1000,

𝛾 =  1, 𝑅𝐵𝐾). 
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Table 5.11: Confusion matrix of validation test data set at (C = 1000, γ = 1, RBK )  

 Predicted 

Sr U Zr 

A
ct

u
al

 C
la

ss
 Sr 5 0 2 

U 0 6 0 

Zr 1 0 3 

Classification accuracy (%) 82.35 

 

Zr and Y support vector classifier for HLNW in powdered samples (pressed into pellets) was 

also performed. Figure 5.7.7 shows a linear model developed that clusters samples as to whether 

they contain Zr or Y. The tuned model (𝐶 = 100, 𝛾 = 0.001 𝑎𝑛𝑑 𝑅𝐵𝐾 𝑓𝑢𝑛𝑡𝑖𝑜𝑛) was utilized in 

the classification (Figure 5.7.7).  All the 14 samples that were reserved for testing the model were 

correctly classified as shown in the confusion matrix in Table 5.12.  

A similar approach was followed to develop a classification model for distinguishing samples 

containing U from those containing Zr. As U and Zr always occur in high level nuclear wastes 

usually in high concentrations (Audero et al., 1995), their detection in a nuclear scene could infer 

a device of nuclear origin.  A test set validation set was input to the model to realize the ability of 

the SVM model to discriminate such samples based on selected regions/features of U and Zr as 

shown in Table 5.13. Results of the model indicated a 100% accuracy in distinguishing 7 samples 

containing Zr and 7 samples containing U. Figure 5.7.8 gives the output acquired from the model. 
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Table 5.12: Confusion matrix for Y-Zr SVM classifier utilizing data from pellet samples at 10 

fold cross validation (𝐶 = 1000, 𝛾 =  0.001, 𝑅𝐵𝐾 ) 

Clustering ability Predicted 

Y Zr 

Actual Class Y 7 0 

Zr 0 7 

Classification accuracy (%) 100 
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Figure 5.7.7: Y-Zr SVM classification plot for Pellet samples (𝐶 = 1000, 𝛾 =  0.001, 𝑅𝐵𝐾). 
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Figure 5.7.8: SVM plot for for U-Zr SVM classifier utilizing data from pellet samples (C =
1000, γ =  0.001 and RBK). 

 

 

Table 5.13: Confusion matrix for U-Zr SVM classifier utilizing data from pellet samples (C =
1000 , γ =  0.001 and RBK) 

Clustering ability Predicted 

U Zr 

Actual Class U 7 0 

Zr 0 7 

Classification accuracy (%) 100 

 

Multiclass SVM classifier was done by considering selected FP and subjecting them to the 

algorithm. SVM is a binary classification methodology. However, multi-class classification was 

done by considering one class against all other classes as reported by (Franc and Hlavác, 2002). 
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An input matrix comprising of 115 samples (23 samples per FP) with different concentrations 

and their peak information was prepared. Of these, 80 randomly selected samples were utilized 

in training and tuning the model. The resulting tuned model (𝐶 = 1000 𝑎𝑛𝑑 𝛾 = 0.1) was 

validated with a set of data with 35 samples randomly selected and hidden from the data set. 

Consistent with the sections above, in this work a typical simulate high level nuclear waste using 

the SVM classifier containing all the selected FPs is as shown in the Figure 5.7.9. The 

corresponding confusion matrix is as shown in Table 5.14. The actual U, Sr and Rb samples were 

correctly predicted and classified into their respective groups. Out of 9 samples containing Y, 5 

were correctly identified as Y, however, 4 of the samples were confused to belong to Zr and Sr 

groups respectively. Finally, 4 out of 5 samples containing Zr were classified correctly and one 

sample was grouped together with Sr samples.   

Discrimination against FPs is followed to narrow down into one fission product class against all 

FP classes to isolate samples that are suspected to be of non-nuclear origin. As characterization 

of nuclear wastes is necessary before waste disposal, Thus these support vector classifiers are 

discussed in this work to offer a supplementary capability not only to check on the process 

control for nuclear waste treatment but also to support regulatory compliance for a safe nuclear 

regime (IAEA, 2007). As such, this method can be extended to all FPs in HLW and aid in 

nuclear waste material characterization. Wastes from reprocessing of spent fuel are characterized 

as being contaminated with FPs and other trans-uranium nuclides. 
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Figure 5.7.9: SVM clustering of FP utilizing simulated HLNW powders pressed into pellets with 

the best model (𝐶 = 1000, 𝛾 =  0.1 𝑎𝑛𝑑 𝑅𝐵𝐾). 

Table 5.14: Ability of SVM model to cluster independent test pellet data at (C =  1000, γ =

 0.1 and RBK) 

Clustering ability Predicted 

Rb Sr U Y Zr 

A
ct

u
al

 C
la

ss
 

Rb 9 0 0 0 0 

Sr 0 5 0 0 0 

U 0 0 7 0 0 

Y 0 2 0 5 2 

Zr 0 1 0 0 4 

Classification accuracy 85.71 % 
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In conclusion, it was demonstrated that SVM reveals acceptable sample discrimination in terms 

of the fission products at trace concentrations. The use of SVM classifications in NF is limited. 

However, SVM with LIBS data has been applied in automatic classification of proteins abundant 

in blood plasma and potential biomarkers for ovarian cancer with an accuracy of over 99.24 %  

(Vance et al., 2010). Also, Dingari et al. (2012a) demonstrated the application of SVM with 

LIBS data acquired from pharmaceutical samples. An improved  classification accuracy of over 

10% was achieved while using SVM as contrasted with to PLS and SIMCA. In another study, 

SVM was utilized in the classification of powders suspected to  belong to either  Bacillus spores 

class of nonbiological confusant substances (Cisewski et al., 2012). As SVM has produced 

excellent results in sample discrimination in other applications, the methodology developed in 

this work illustrates that SVM, when combined with LIBS, can be useful in NF.  

5.7.3 Chemometric LIBS Methodology 

In this thesis, a chemometric LIBS methodology for rapid, minimally invasive detection, and 

quantitative analysis of nuclear fission products in simulate high-level nuclear wastes have been 

developed. In nuclear crime scene situation such as (detonations involving ‘dirty bombs’), 

nuclear security analytics requires rapid, minimally invasive and remote techniques are desirable. 

The role of NF analysis is to achieve attribution and offer sufficient evidence useful in bringing 

the perpetrators into Law Enforcement.  

An analytical strategy for such situations can follow the chemometric LIBS methodology 

developed in this thesis as illustrated in Figure 5.7.10. Glass debris, dust particles and fluids 

recovered from nuclear crime scenes etc., are sampled for either laboratory analysis. This 

methodology can be integrated into a software-user interface of a portable LIBS system for in 
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situ quantification and classification of FPs that coexist with uranium in nuclear scenes. 

Detection of FP in typical concentrations they occur in NRM can distinguish material of nuclear 

origin from those that are not using the qualitative model employing PCA and SVM. Further 

discrimination of sampled materials that contain one fission product in relation to other fission 

products is achieved by the SVM classifier useful in nuclear material classification based on FPs. 

The combined chemometric LIBS methodology for characterizing high-level wastes is presented 

in Figure 5.7.10. 
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Figure 5.7.10: Chemometric-LIBS nuclear forensic tool for analysis of FP in HLNW. 

 

Nuclear Forensic Tool 

(Quantitative & qualitative characterization of FP) 

 Quantitative Model 

Qualitative Model 

LIBS spectra 

PCA 

(Exploratory analysis) 

Feature selection 

ANN 
(Feed forward back propagation 

algorithm) 

Sample 

{Fused nuclear glass, HLW powders 

(pellet) HLNW liquid coats} 

 Laser 

(Pulsed, Q–switch 150 

µs, λ=1064 nm ν=10 Hz 

and LPE 45 mJ. )  

Spectral Preprocessing 

(Normalization and baseline correction) 

SVM, PCA 

(Classification) 

  

ANN 
(Cascade correlation algorithm) 
  

Prediction 

ability 

R2 and REP 

The better ANN 
algorithm 

(Validation with SRM) 



114 

 

CHAPTER VI 

6 CONCLUSION, RECOMMENDATIONS AND PROSPECTS  

6.1 Summary and Conclusions 

This research was undertaken to realize multivariate modeling oriented towards developing a 

rapid LIBS technique for detecting and quantifying nuclear fission products (Rb, Sr, Y, and Zr) 

in high level nuclear waste and applying the NF information to infer attribution. Models for 

qualitative and quantitative prediction of fission products in high-level nuclear waste for 

vitrified, powder and liquid forms respectively, were developed. PCA was utilized for 

exploratory data analysis for outlier detection prior to quantitative modeling in addition to 

pattern recognition applicable to NF. Two ANN algorithms (cascade correlation (CC) and feed 

forward back propagation (FFBP) were explored. The FFBP algorithm offered the lowest REP 

and high R2. Overall, > 95% model accuracy were achieved with < 10% REP. Using the HLLW 

models Sr was found to be 91.34 ± 2.34 𝑝𝑝𝑚, a deviation of 8.66 % from the certified value. 

For Zr, it was 542.14 ± 5.51 𝑝𝑝𝑚, a deviation of 8.43 % from certified value and Y, 93.61 ±

4.14 𝑝𝑝𝑚 constituting a deviation of 6.39 % from the certified value.  For ANN models 

developed using pellet samples, validation results using PTXRFIAEA09 SRM, Rb was found to 

be 115.06 ± 3.16 𝑝𝑝𝑚 with 9.0 % deviation from the certified value, for Sr, it was 89.59 ±

5.52 𝑝𝑝𝑚, with a deviation of 12.1 % from the certified value. For Y, it was found to be 

24.63 ± 4.26 𝑝𝑝𝑚 with a deviation of 11.7% from the certified value. Finally, Zr was found to 

be 296.27 ± 15.21 𝑝𝑝𝑚 a deviation of 6.8 % from the certified value. 

Detection limits (for the spiked elements in various sample types) were computed with fused 

glass (LoD ≤ 200 ppm), pressed powders pellets (LoD ≤ 71 ppm)  and HLNW 
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liquids  (LoD ≤ 8 ppm). The HLW liquid analytes offered the lowest LoD and highest spectral 

response attributed to good laser-matter interaction influenced by the choice of substrate. 

 The ability to analyze tiny (2𝜇𝑙) volumes liquid samples using LIBS coupled with 

chemometrics was found to be a useful methodology in nuclear forensics investigations and 

attribution. The reduced sample sizes depict the actual situation encountered in a typical nuclear 

forensics situation. In case of a detonated nuclear device where materials get mixed in 

inseparable forms, the suspended particulate matter of the constituents of the device always settle 

on surfaces for example plant leaves around the scene. If dew drops are allowed to form, then the 

particles can dissolve or get suspended within the dew drop. Sampling of such liquids can furnish 

trace composition NF signatures that can be analyzed to infer nuclear forensics and attribution. 

Accurately tuned SVM models were developed with the ability to characterize samples based on 

the composition of the FP. Notably, > 85 % prediction accuracy was realized. These models are 

contextually conveyed to infer nuclear forensic attribution. Thus, materials containing the fission 

products group together in distinct groups and those materials of a common nuclear origin can 

easily be identified using PCA. Their particular concentrations infer the locus of the material in 

the nuclear fuel cycle.  

Coupling chemometric techniques (ANN, PCA, and SVM) with LIBS eliminates the limitations 

commonly encountered in classical analysis techniques. This work forms a very crucial 

component of nuclear forensics as the models developed together with NF library can be 

integrated into a suitable software-user interface with a portable LIBS system to analyze and 

characterize materials suspected to be from the back end of the nuclear fuel cycle. 
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6.2 Recommendations and Prospects 

The decay of 235U in the nuclear reactor is accompanied by over 300 fission products and minor 

actinides. The methodology developed in this work using a few chosen fission products 

representatives can be extended to all the fission products that accompany the decay of 235U in 

the reactor. A comprehensive LIBS spectral library consisting of these elements can be 

developed and adopted as a reference framework in achieving nuclear forensics as well as 

responding to nuclear crimes in our country.  

The major challenge encountered in this work was that of acquiring matrix matching standards 

for method validation. The author proposes a method whereby, the simulation of nuclear wastes 

utilizing known (ISO standards samples) other than laboratory salts to especially develop the 

models and then utilize the developed models to characterize unknown (samples). The utility of 

ISO standard can yield more robust models. 

Finally, terrorism involving nuclear materials is likely to become sophisticated especially with 

the continuous global nuclear renaissance. As such refined counteract approaches to such 

terrorism are desirable. Data fusion is one of the probable techniques (Castanedo, 2013 , Fatima 

et al., 2017 , Moros et al., 2010). Three or more analytical techniques (e.g. LIBS, laser Raman, 

etc.) can be set to operate under the same combined sensing platform to acquire data for 

simulated HLNW. Through parametric fusion, the identity of suspected nuclear material can be 

developed to be a unique signature for HLNW. This approach has potential robustness as instead 

of relying on a single technique, combined techniques can provide more knowledge hence assist 

in developing nuclear forensic signatures in support of nuclear security.  
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APPENDICES 

 

Appendix 1: Target Concentrations Spiking Scheme 

 

Table A 1: The target concentrations of fission products spiking scheme 

 Target Concentrations (ppm) 

Target FP Sr Rb Te Zr Y U 

Sample 1 (S1) 35.99 58.76 51.03 54.79 37.97 26585.47 

Sample 2 (S2) 76.21 29.38 178.62 96.69 92.56 35832.00 

Sample 3 (S3) 14.82 156.69 51.03 644.63 151.89 36619.52 

Sample 4 (S4) 116.44 186.07 178.62 268.59 73.57 22770.09 

Sample 5 (S5) 101.62 68.55 153.10 698.34 112.73 36619.52 

Sample 6 (S6) 97.38 176.27 89.31 333.06 96.12 31093.33 

Sample 7 (S7) 71.98 127.31 63.79 386.78 116.29 21412.30 

Sample 8 (S8) 112.20 48.96 76.55 537.19 192.23 35261.73 

Sample 9 (S9) 40.22 146.89 127.58 343.80 53.40 36456.59 

Sample 10 (S10) 44.46 166.48 76.55 343.80 100.86 32939.92 

Sample 11 (S11) 67.74 146.89 76.55 300.83 219.52 30509.48 

Sample 12 (S12) 95.27 186.07 178.62 709.09 212.40 30482.32 

Sample 13 (S13) 74.10 186.07 25.52 3.22 346.49 23625.50 

Sample 14 (S14) 21.17 39.17 47.92 612.39 955.22 10057.17 

Sample 15 (S15) 69.86 58.76 63.90 290.08 789.09 6418.05 

Sample 16 (S16) 59.28 58.76 95.84 741.32 996.75 4797.96 

Sample 17 (S17) 33.87 127.31 191.69 440.49 937.42 10283.83 

Sample 18 (S18) 35.99 127.31 159.74 741.32 1058.45 9642.38 

Sample 19 (S19) 21.17 9.79 95.84 225.62 1038.28 8195.12 

Sample 20 (S20) 88.91 19.59 95.84 526.44 442.60 8010.09 

Sample 21 (S21) 41.81 122.41 297.60 643.23 85.44 11550.41 

Sample 22 (S22) 150.12 83.44 254.94 642.15 93.74 8262.48 

Sample 23 (S23) 76.51 108.51 61.82 1380.36 191.04 6897.66 

Sample 24 (S24) 23.22 78.05 44.73 1520.03 106.79 9211.45 

Sample 25 (S25) 93.30 82.65 150.47 530.74 72.38 8622.65 

Sample 26 (S26) 5.27 62.77 70.45 1480.38 94.93 12000.11 

Sample 27 (S27) 138.47 168.83 265.01 346.06 46.28 10224.42 

Sample 28 (S28) 133.01 173.24 18.69 1160.97 18.99 10645.17 

Sample 29 (S29) 97.55 89.61 170.76 591.01 48.81 7824.29 

Sample 30 (S30) 73.93 119.87 231.30 520.96 65.26 7374.28 
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Appendix 2: Artificial Neural Network Algorithm 

 

Load data 

% The input data is put in folder I, the target data in folder T, the sample data in folder S and the 

expected target concentrations in folder O 

% normalize the inputs and target matrices 

[In, Is] = mapstd (I); 

[Tn, Ts] = mapstd (T); 

Ss = mapstd (S); 

% The function mapstd normalizes the inputs and targets so that they will have zero mean and unity 

standard deviation. Here, I is the input data, T is the target data and S is the sample input data. 

These normalized data is stored in folders Is and Ts and they contain zero mean and unity standard 

deviation of the original targets 

% Create a feed forward network with 2 hidden neurons and 3 output neurons and set TRAINLM 

(Levernberg-Marquardt function). In case of cascade correlation algorithm newff was replaced with 

newcf 

net = newff(In,Tn,[2],3,{'tansig'}); 

% Divide the input data such that 60% of the data is used for training, 25% of the data is used for 

testing and 15% of the data is used for validation 

net.divideparam.trainratio = 0.60; 

net.divideparam.testratio = 0.25; 

net.divideparam.valratio = 0.15; 

% set the target maximum number of iterations 

net.trainParam.epochs = 50; 

% set the learning rate of the algorithm 

net.trainParam.lr = 0.001; 

% set the number of epochs between displays 

net.trainParam.show = 20; 

% set the training MSE error target 

net.trainParam.goal = 0.00001; 

% Train the network 
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net = train(net,In,Tn); 

% Perform a simulation of the network and store the results in a folder M 

M = sim(net,Sn); 

% transform the results stored in M back to their original form stored in the folder Ts. Here, the 

results predicted are of zero mean and unity standard deviation in accordance with the mpstd 

function applied earlier hence they must be transformed back to their original form. 

P = mapstd('reverse',M,Ts); 

% Determine the correlation coefficient for the predicted and actual concentrations 

R=corrcoef(P,O); 
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Appendix 3: Support Vector Machine Algorithm (Binary Clustering) in R 

 

# Load library containing support vector machine algorithm and tools 

library(e1071) 

# Read data from a file and store it in R as LIBSData 

LIBSData <- read.csv("Data.csv", sep = ",") 

#View the imported data in R Studio 

LIBSData 

#Get the summary of the data five number summary (minimum, first 

quartile, median upper quartile, and maximum value) the mean and the 

samples of each FP 

summary(LIBSData) 

#Provides the nature of the dataset in this case ‘data frame’ 

class(LIBSData) 

# point plot (scatter plots) of the LIBSData to visualize the data 

plot(LIBSData[,1], LIBSData[,2], type = "p") 

# point plot with column 3 containing FP as the color code 

plot(LIBSData[,1], LIBSData[,2], type = "p", col = LIBSData[,3]) 

# Create an indexing protocol for the total samples fed to the 

network. 

s<-sample(n,k) 

# For example, if n = 30 then select randomly a set of k = 24 samples 

for model training 

s<-sample(30,24) 

#Based on the index chosen above, divide the data into two classes for 

model training  

LIBSData_train <- LIBSData[s,1:3] 

# Assign the remaining data as testing data based on the remaining 

randomly indexed choices 

LIBSData_test <- LIBSData[-s,1:3] 

#Visualize the Test data and the training data sets 

LIBSData_test 

LIBSData_train 
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#Perform a support vector machine classification based on the FP 

species column with LIBSData_train data at a cost of 10 utilizing a 

linear, or radial or polynomial kernel by changing the kernel type. 

svmfit <-svm(FP~.,data=LIBSData_train, kernel="radial", cost=10, 

gamma=1) 

#print the resulting model 

print(svmfit) 

#graphically visualize the clustered training data and the 

corresponding hyperplanes of the model. 

plot(svmfit,LIBSData_train[,1:3]) 

#For selected cost and gamma values, fine tune the model to realize 

the best parameter combination. 

tuned <- tune(svm, FP~., data = LIBSData_train, kernel = "linear", 

ranges= list(cost = c(0.01,0.1, 1, 10,100,1000))) 

# Display the tuned model and the errors associated 

summary(tuned) 

# Store the best model in BestModel 

BestModel<-tuned$best.model 

plot(Bestmodel,LIBSData_train[,1:3]) 

#predict the test data 

Predicted <- predict(Bestmodel, LIBSData_test[,1:3],type="class") 

#Visualize the predicted data 

plot(Predicted)  

#Display in table format (confusion matrix) for easier view 

table(predict,LIBSData_test[,3]) 

#Determine the accuracy in prediction 

mean(Predicted== LIBSData_test[,3]) 
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Appendix 4: Principal Component Analysis Code in R 

 

library(ChemoSpec) 

library(devtools) 

library(utils) 

library(knitr) 

library(R.utils) 

files2SpectraObject(gr.crit = c("SL", "LB"), gr.cols = c("red3", "gray0"), 

                    freq.unit = "Wavelength (nm)", int.unit = "peak intensity (a.u)", descrip = "Simulate 

Liquid Nuclear Wastes", 

                    out.file = "pcasim", sep=",") 

#A new file called pcasim.RData is created which can be accessed as follows 

LPCA <- loadObject("pcasim.RData") 

#Making the data available 

data(TPCA) 

sumSpectra(TPCA) 

# Create a title of the plot 

myt <- expression(bolditalic(liquid~nuclear~wastes ~Sectra)) 

plotSpectra(LPCA, main = myt, 

            which = c(1, 2, 7), 

            yrange = c(0, 1500), offset = 100, lab.pos = 341) 

#zoom into specific region of the spectra 

plotSpectra(LPCA, main = myt, 

            which = c(1, 2, 7, 27,30,37,60, 63), xlim = c(420, 425), 

            yrange = c(0, 3000), offset = 100, lab.pos = 382) 

library(baseline) 

#baseline restoration on spectra 

BLPCA <- baselineSpectra(LPCA, int = FALSE, method = "rfbaseline", retC = TRUE) 
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# To remove a sample from the spectra say 

noLB1 <- removeSample(TPCA, rem.sam = c("LB1", "FSL0")) 

#Normalize baseline subtracted spectra 

NormPCA <- normSpectra(BLPCA) 

#Remove frequencies that do not contain regions of interest 

RNormPCA <- removeFreq(NormPCA, rem.freq = NormPCA$freq > 400 & NormPCA$freq < 

982) 

RRRNormPCA <- removeFreq(RNormPCA, rem.freq = RNormPCA$freq > 198 & 

RNormPCA$freq < 340) 

#principal component analysis 

class <- c_pcaSpectra(RRRNormPCA, choice = "noscale") 

plotScores(RRRNormPCA, main = myt, class, 

           pcs = c(1,2), ellipse = "rob", tol = 1.0, leg.loc = "topright") 

#Possible PCA outliers based on Orthogonaal distance 

diagnostics <- pcaDiag(RRRNormPCA, class, pcs = 2, plot = "OD") 

#possible PCA Outliers based on Score Distance 

diagnostics <- pcaDiag(RRNormPCA, class, pcs = 2, plot = "SD") 

#Remove outliers from the data 

ORRNormPCA <- removeSample(RRRNormPCA, rem.sam = c("LB4","SL2","SL1","SL7")) 

#principal component analysis 

class <- c_pcaSpectra(ORRNormPCA, choice = "noscale") 

plotScores(ORRNormPCA, main = myt, class, 

           pcs = c(1,2), ellipse = "rob", tol = 1.0, leg.loc = "top") 

#Plot Scree plot 

plotScree(class, main = myt) 

plotScree2(class, main = myt) 

out <- cv_pcaSpectra(NormPCA, pcs = 5, choice = "noscale") 
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Appendix 5: ICP standard Solutions Validation Certificates 
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