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Abstract 

The impacts of climate change in the African continent have far reaching effects because it is a 

region of high vulnerability to climate shocks; it threatens food security, livelihoods and 

biodiversity. African forest ecosystems, which are interlinked to food production systems, are 

among the most impacted by world climate change. More so, the indigenous tree species are at a 

high risk of extinction hence the need to quantify them for conservation purposes. Modern methods 

such as remote sensing and specifically hyperspectral remote sensing offer more accurate methods 

with expansive scope for conservation, compared to the tedious and time-consuming methods that 

were previously used. Generally, this study aimed at mapping the indigenous and exotic tree 

species appearing on the top canopy in Ngangao forest using airborne hyperspectral data. 

Specifically, it aimed at determining the appropriate wavelengths for mapping of selected tree 

species; mapping selected tree species using different classification algorithms and the selected 

appropriate spectral bands; and testing the potential application of simulated multispectral data to 

discriminate tree species in Ngangao Forest. The Ngangao Forest is located in the Taita Hills in 

Kenya, approximately 100 km east of Kilimanjaro. The hyperspectral image was acquired using 

AISA Eagle VNIR sensor and used to map the tree species in Ngangao Forest using different 

algorithms. Simulated multispectral images with different spatial resolutions were used to map the 

same tree species and their accuracies compared with those of the hyperspectral images. 

Classification accuracies of between 49% and 80% were achieved using different machine learning 

algorithms. Spectral Angle Mapper proved to be the most inferior with an overall accuracy of 

49.24% while Random Forest was the most superior with an overall accuracy of 80.00%. Among 

the species, Pinus patula and Albizia gummifera were the most accurately mapped while 

Macaranga capensis and Phoenix reclinata were the least accurately mapped. The Random Forest 

ensemble eliminated redundant bands to achieve an optimal 53-band image for classification. 

These bands were centred around the blue, green, red-edge and infra-red regions of the 

electromagnetic spectrum. Simulating multispectral images to Worldview 2 and Sentinel 2, 

reduced the disk size and processing load on the computer. However, the species identification 

accuracy reduced while the training and testing sites were considerably fewer as the spatial and 

spectral resolution reduced. Ultimately, an increment in spectral and spatial resolution increases 

the species classification accuracy of the tree species in Ngangao Forest. An algorithm with the 

ability to use fewer training sites and an image resolution that enables one to collect more accurate 
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end members would achieve higher species classification accuracies using multispectral images. 

In the absence of this, hyperspectral images provide an alternative to this lacuna.   
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background 

The impacts of climate change have been widely felt. The Human Development Report 2007/2008 

(UNDP, 2007) identifies Africa as a region of high vulnerability to climatic shocks, where climate 

change threatens food security, livelihoods and economic prosperity. It has led to increased 

temperatures and reduction in annual rainfall which have had far reaching effects to biodiversity. 

Forest ecosystems are among the ecosystems which are and will continue to be severely impacted 

by the effects of climate change (Robledo et al., 2005).  

 

Forest ecosystems and food production are interlinked at several levels such as; some forest plants 

produce fruits which can be consumed by human beings, forests regulate the water cycle hence 

maintaining water-flow into agricultural areas, and also conserve the soil.  

 

This research has been conducted under the Climate Change Impacts on Ecosystem Services and 

Food Security in Eastern Africa (CHIESA) project. The project was funded by the Ministry of 

Foreign Affairs of Finland and ICIPE - International Centre of Insect Physiology and Ecology. 

The objective of the CHIESA project was to fill critical gaps in knowledge related to climate and 

land change impacts on ecosystem services in the Eastern Afromontane Biodiversity Hotspot 

(EABH) and develop adaptation strategies towards it through building the capacity of local 

research and administrative organisations through research, training and dissemination. The 

project aimed at building the capacity of research communities, extension officers and decision-

makers in environmental research in agriculture, hydrology, ecology and geoinformatics; in order 

to strengthen climate and land use change monitoring and prediction systems and adaptation 

strategies. CHIESA tackled the project objectives through 8 work packages (WP) that were all 

interlinked, but which also had their own activities, results and application plans. The WPs were: 

1) Coordination and management, 2) Land use and bio-geophysical information, 3) Valuation of 

ecosystem services, 4) Assessment of impacts on biodiversity and habitats, 5) Assessment of 

ecosystem pest management and pollination, 6) Assessment of impacts on water provision, 7) 

Elaboration of adaptation strategies, and 8) Dissemination of the main results and their application. 
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This research was c under WP2, whose main objective was to use satellite imagery and airborne 

remote sensing data for land cover mapping and change detection.  

The Target areas of the CHIESA project were three mountain areas in EABH in Kenya, Ethiopia 

and Tanzania. These areas were Taita Hills in South-east Kenya, Pangani river basin in North-East 

Tanzania and Jimma in South-West Ethiopia. This research focused on one forest patch within 

Taita Hills i.e. Ngangao with an aim of using airborne hyperspectral imagery to map the 

distribution of selected tree species. 

 

Mapping of tree species is important for a number of reasons. Some trees species have medicinal 

value, others are favoured nesting places for particular species of birds, and others are tourist 

attraction. Taita hills are endowed with rich biodiversity which include a variety of tree and bird 

species, some of which are endemic in this area. For these reasons, it was necessary to map the 

extent of these tree species in order to be able to manage them accordingly. Remote sensing 

techniques for classifying tree species have proven to be valuable in comparison to the tradition 

methods of mapping tree species (Voss and Sugumaran, 2008). 

 

Forests play a vital role in the regulation of climate and are essential to various cultural, economic 

and ecosystem services (Thenkabail et al., 2000). It is therefore necessary to sustainably manage 

and conserve them. Forests in Taita Hills are a key source of herbal medicine, water, sacred places 

and tourist attraction. Additionally, they are known for their rich biodiversity and are home to three 

endemic birds and numerous plant species. The Taita Hills form part of the Africa’s Eastern Arc 

Mountains, ranking among the top ten biodiversity hotspots in the world due to varied flora and 

fauna (Burgess et al., 2007). In Taita Hills, there are three main forest fragments; Chawia (86 ha), 

Mbololo (185 ha) and Ngangao (120 ha) and a number of other small fragments (Pellikka et al., 

2009). These forest fragments are greatly disturbed by human activities. For instance, a large extent 

of exotic forest was lost in 2010 when the western side of Ngangao forest was set ablaze by human. 

 

Forest mapping in Kenya has been limited to either indigenous or exotic level. At species level, 

only tedious and time consuming methods have been employed for identification of trees 

especially in the tropics. The development of sensors with high spectral resolution have offered 

new possibilities of forests mapping at species level by use of remote sensing techniques. These  
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techniques offer quick, up-to-date and accurate methods of discriminating between various tree 

species (Peerbhay et al., 2013).  

 

There are various disadvantages of high spectral resolution of hyperspectral data (Dalponte et al., 

2012; Jusoff and Pathan, 2009). Firstly, there’s a strong correlation between bands. This can cause 

convergence instability in the classification of images and adversely affect the accuracy of 

classification. The classification accuracy will reduce if all the spectral bands are used in 

classification without any form of band selection. Several methods of waveband selection have 

been developed and applied. Some of them include: Stepwise Discriminant Analysis (SDA) (Clark 

et al., 2005), Principal Component Analysis (PCA), Random Forest (RF) (Mutanga et al., 2012), 

Maximum Likelihood Classification method (Jia and Richards, 1994). To overcome the 

shortcoming high dimensionality if hyperspectral data, a Stepwise Discriminant Analysis (SDA) 

should be used. For selection of suitable spectral bands for discrimination of various species, an 

appropriate method of the band selection should be applied. Secondly, there has to be adequate 

training samples to derive good classification results. Optimal spectral bands for classification are 

difficult to determine with inadequate training samples. Thirdly, the high number of spectral bands 

increases the image processing time and cost. Since hyperspectral data is rich in spectral 

information, it is important to evaluate and select optimal features for a concrete application target 

in order to accurately and effectively extract them from the image (Jusoff and Pathan, 2009). 

 

1.2 Problem Statement  

The indigenous tree species have been at risk of extinction and for this reason, it is necessary to 

quantify them in order to be able to manage and conserve them. In Kenya, forest management 

using remote sensing techniques has been widely driven by multispectral data such as Landsat and 

SPOT. However, use of hyperspectral data extends the scope of forest management to include 

species mapping, forest health, canopy structure and possibly forest ecosystem function analysis. 

The high spatial and spectral resolutions of hyperspectral data have made this possible. The 

existing methods of species identification are tedious and time consuming (Voss and Sugumaran, 

2008). In addition, some parts of the forest are inaccessible and remote sensing techniques allow 

the tree species in these areas to be identified and mapped.  
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Figure 1.1 shows the locations where most of the studies on tree species mapping using remote 

sensing have been conducted throughout the world. These locations comprise temperate forest 

ecosystem (North America) and boreal forest (Europe), and very little in tropical forest (Central 

America) (Fassnacht et al., 2016). Fassnacht et al. (2016) further notes that the few studies 

conducted in Africa were in South Africa and focused mainly on savannah ecosystems. This shows 

that there is need to investigate the possibility of mapping tree species in the tropics and especially 

in the East Africa. 

 

 

Figure 1.1: World map displaying locations where tree species mapping studies have been 

conducted throughout the world (red dots) (Fassnacht et al., 2016) 

 

1.3 Objectives 

The main objective of this research was to map indigenous and exotic tree species appearing on 

the top canopy from airborne hyperspectral data using Ngangao Forest as a case study. 
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The specific objectives were namely to: 

i. Determine the appropriate wavelengths for mapping of selected tree species in Ngangao 

Forest. 

ii. Map selected tree species using different classification algorithms and selected 

appropriate spectral bands from hyperspectral data in Ngangao Forest. 

iii. Examine the potential application of simulated multispectral data in discriminating tree 

species in Ngangao Forest. 

 

1.4 Justification for the Study 

Trees contribute to sound environmental health by conservation and provision of water, provision 

of oxygen, purification of air, amelioration of climate, preservation of soil, and conservation of 

wildlife. Rain-fed agriculture is the main source of livelihood in Taita Hills. Forests, being an 

important driver to climate change, require optimal management for sustainable agricultural 

production. Ngangao Forest is rich in biodiversity. However, deforestation is evident in the forest 

through logging and forest fires, e.g. during the data collection, there was evidence of a section of 

forest that had burnt down. Salminen, (2004) notes that of all the forests in the Eastern Arc 

Mountains, Taita Hills has undergone the worst natural forest loss in the last 2000 years. Pellikka 

et al., (2009) reported that about half of the cloud forests in the hills were cleared for agricultural 

purposes between 1955 and 2004. Deforestation is said to reduce vapour flows derived from forests 

by 5% annually (Gordon et al., 2005). It is therefore important to quantify the forest cover and the 

constitution of the forest as different species contribute to the biodiversity of Ngangao Forest. 

Carbon storage vary with tree species and as a results, the outputs of this research could be used 

to model carbon sequestration in Taita Hills for subsequent projects. 

 

Dalponte et al., (2012) notes that mapping of tree species is key to the development policies 

relating to forest conservation and management. Kenya Forest Service and Kenya Wildlife 

Service, who are the core managers of forests and forests ecosystems could significantly benefit 

from this study. Information on tree species distribution over a large area is also key to the 

understanding of ecology of tree species such as the contribution of the different species to the 

ecosystem functions and services. Ngangao Forest is home to endemic birds and tree species. 

National Museums of Kenya is concerned with the conservation of the biological diversity of the 
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East African region and this study could help them understand and manage the ecosystem of these 

endemic species.  

 

There is no documented research on the use hyperspectral technology to identify tree species in 

East Africa. This research provides an alternative and faster approach in tree species identification 

in this region. Further, this research will justify why institutions and researchers may require to 

invest in hyperspectral technologies as compared to cheaper options of multispectral data in tree 

species identification. Different algorithms have been used in this research to map tree species. 

This research will advise on which of these algorithms are applicable in mapping of tree species 

using hyperspectral and multispectral data.  

 

1.5 Scope of Work 

The area of interest in this research is Ngangao Forest, which is one of the few remaining forest 

fragments in Taita Hills in south western Kenya. Ngangao Forest is reach in biodiversity and 

consists of a variety of tree species (Omoro et al., 2010). This research only focused on identifying 

10 tree species (6 indigenous and 4 exotic species) whose crowns appear on the top canopy and 

were clearly visible on the aerial images. In addition, samples of these species were clearly 

identified in the field during field data collection.  

 

The research examined techniques and algorithms that could facilitate the identification of tree 

species in tropical forests. The development of new algorithms is beyond the scope of this research. 

However, the research examined the utility of existing algorithms of mapping individual tree 

crowns and tree species using hyperspectral data and multispectral data. The multispectral data 

were simulated from hyperspectral data as opposed to the actual acquisition of these images. The 

hyperspectral data could not be calibrated using Analytical Spectral Devices (ASD) field 

spectrometers since the tree canopies could not be reached from the ground. 

 

1.6 Organization of the thesis  

This thesis is organized into six chapters. Chapter one gives the background of the study 

highlighting the importance of forests, forests ecosystems and species mapping. It further outlines 

the objectives of the research together with a justification of this study.  
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Chapter two generally examines the documented literature on hyperspectral data, multispectral 

data and the different algorithms of image processing and analysis.  Various methods of reducing 

spectral redundancy in hyperspectral images and image classification algorithms have been 

explored. A number of case studies relating to forest mapping have been mention. Various 

approaches of assessing the accuracies of image classification have been highlighted. 

 

Chapter three expounds on the methods that have been applied to achieve the objectives of this 

research. A comparison of the different band selection methods and tree species mapping 

algorithms has also been outlined. The area of study is also explained. Resampling of the 

hyperspectral data into two selected multispectral data for purposes of testing the possibility of 

using the later to map the tree species has been described. 

 

Chapter four outlines the findings of this research based on the objectives of the study. Tree species 

mapping accuracies using the different algorithms and at different spatial and spectral resolutions 

have been given and explained.  Chapter five gives critical discussions of the results achieved in 

this study. 

 

Finally, chapter six draws the conclusions and the recommendations of this study. Areas of further 

research have been identified and the contribution the research to knowledge has also been 

outlined.   
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CHAPTER TWO 

2. HYPERSPECTRAL DATA, MULTISPECTRAL DATA, AND IMAGE 

PROCESSING ALGORITHMS FOR TREE SPECIES MAPPING 

 

There has been consistent increase in the mean global temperatures since the 1850s due to the 

increasing greenhouse gases in the atmosphere. The later has been caused by, (i) the burning of 

fossil fuels such as coal, oil and gas, to meet the growing demand for energy and (ii) the spread of 

intensive agricultural practices to meet the growing demand for food, which is often associated 

with deforestation. The increasing global temperatures shows no indications of waning and is 

expected to bring about long-term changes in the global climatic conditions (Hallegatte, 2009).  

 

These changes will consequently bring severe impacts on the four aspects of food security, namely; 

food availability, food accessibility, food utilization and food system stability. The consequences 

are already being felt in global food markets, and are likely to be particularly significant in many 

rural areas where crops fail and yields significantly reduce. The impacts will be felt in both rural 

and urban areas where supply chains are interrupted, market prices rise, assets and livelihood 

opportunities are lost, purchasing power declines, human health is threatened, and affected people 

are unable to able to handle worsening conditions (Al et al., 2008; Godfray et al., 2010). 

 

Concerns for the implications and consequences of adverse climate change have stimulated a 

considerable amount of research. Vegetation mapping, (including tree species mapping) is an 

essential task in management of natural resources as vegetation provides an ecosystem for all 

living creatures and plays an significant role in contributing to global climate change, such as 

influencing the terrestrial carbon dioxide (Xiao and Boyd, 2004). Xiao and Boyd (2004) further 

notes that classification and mapping of vegetation presents critical information in understanding 

both natural and man-made habitats through quantification of vegetation cover from local to 

universal levels at a specific time stamp or over a continuous time period. For purposes of initiating 

programs to support vegetation protection and rehabilitation it is critical to obtain current status of 

vegetation cover (Egbert and Erofeeva, 2002). 
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Traditional methods of mapping vegetation, (e.g. ground surveys, map interpretation reviews of 

existing literature and collateral and ancillary data analysis), are usually very costly and time 

consuming. Remote sensing technology provides economical and practical means to study 

vegetation cover changes, especially in large areas (Langley et al., 2001; Nordberg and Evertson, 

2003). Remote sensing also provides data archives that can be made available to researchers for 

use over several decades. For instance, in 1992, the International Geosphere–Biosphere Program 

initiated a program to map global land cover in order to develop a Global Land Cover 

Characterization (GLCC) Database that was based on Advanced Very High Resolution 

Radiometer (AVHRR) of 1-km spatial resolution (DeFries et al., 1995; Vazquez et al., 1998). 

Similarly, in 1999, the Joint Research Institute of Italy in collaboration with over 30 research teams 

from around the globe implemented a similar project referred to as the Global Land Cover 2000 

(GLC2000) to map land cover for the whole earth and consequently developed the VEGA2000 

dataset using the SPOT4-VEGETATION imagery of 1-km spatial resolution (Bartholomé and 

Belward, 2005). Between January and December 2001, the National Aeronautics and Space 

Administration (NASA) of the United States developed a global MODIS land cover database based 

on monthly composites based on Levels 2 and 3 of the Terra MODIS data (Clark et al., 2010; 

Spruce et al., 2011). The approaches used in the development of the above land cover products 

together with the strengths and weaknesses of each of the approach were highlighted by Jung and 

Casler (2006). 

 

For over half a century ago, aerial and satellite imagery of different spectral resolutions with 

wavelengths stretching from visible to microwave and with spatial resolutions ranging from a few 

centimetres to a few kilometres and with temporal resolutions running from half hour to months 

have been acquired. The main factors to consider when selecting images from different sensors 

include: (i) the objective of the mapping assignment, (ii) the cost of images, (iii) the climatic 

conditions at the time of capture and (iv) the technical issues related to image interpretation. 

 

2.1 Pre-processing of Images for Tree Species Mapping  

Image pre-processing includes (i) geometric correction to correct for geometric distortion due to 

sensor-Earth geometry and other imaging conditions, (ii) radiometric correction to correct for 

uneven sensor response over the whole image, and (iii) orthorectification to correct for the effects 
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of image perspective and relief for the purpose of creating a planimetrically correct image. Image 

pre-processing commonly comprises operations which include and not limited to replacement of 

bad lines and patches, geometric correction, radiometric correction, image enhancement and 

masking of water and clouds.  

 

Prior to mapping of vegetation, pre-processing of satellite images is critical in order to remove or 

minimise noise resulting from the characteristics of the imaging system and imaging conditions. 

This initial processing will enhance the quality and the interpretability of image datasets. This is 

particularly the case when use of a time series imagery is made or when an area is covered by 

several images since it is fundamentally significant to make these images spatially and spectrally 

compatible. The pre-processed images should seem as if they have been captured by the same 

sensor after pre-processing (Toutin, 2004).  

 

2.2 Vegetation Indices 

A Vegetation Index (VI) refers to mathematical combination or transformation of spectral bands 

that emphasizes the spectral properties of green plants so that they appear distinct from other image 

features. Vegetation indices (VIs) are used to estimate the likelihood that vegetation was actively 

growing at the time of data acquisition. VIs are associated with canopy characteristics such as 

biomass, leaf area index, moisture content and percentage of vegetation cover. Table 2.1 shows 

some of commonly used Vegetation Indices as captured from literature. 
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Table 2.1: Commonly used Vegetation Indices, their formulae and characteristics. 

Index Formula Characteristics Reference 

Atmospherically 

Resistant Vegetation 

Index (ARVI) 

𝑁𝐼𝑅 − 𝑅𝐵

𝑁𝐼𝑅 + 𝑅𝐵
 

where 𝑅𝐵 = 𝑅 − 𝛾(𝐵 − 𝑅) 

Has dynamic range to the NDVI. It 

has resistance to atmospheric effects 

Kaufman and 

Tanre, 1992 

Enhanced Vegetation 

Index (EVI) 

𝐸𝑉𝐼 = 𝐺 𝑋
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + (𝐶1𝑋𝜌𝑅𝑒𝑑 − 𝐶2𝑋𝜌𝐵𝑙𝑢𝑒)+ 𝐿
 

where L is a soil adjustment factor, 

and C1 and C2 are coefficients used to correct 

aerosol scattering in the red band by the use of 

the blue band.  

It has improved resistance to the 

atmosphere and less evidence of 

saturation at high Leaf Area Index 

(LAI). 

Roberts et al., 

2016; Matsushita, 

2007 

 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

It indicates the greenness level of 

vegetation and very useful is 

determining the health of vegetation. 

Matsushita et al., 

2007; Bannari, et 

al., 1995 

Simple Ratio (SR)  𝑆𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
 

Shows the amount of vegetation and reduces 

effects of atmosphere and topography 

It depicts high values for vegetation 

and low for soil, ice, water, etc. It 

indicates amount of vegetation. 

Roberts et al., 

2016 
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Sum Green Index 

(SGI) 

10 to 25 percent of the reflectance Highly sensitive to small changes in 

vegetation canopy opening. 

Lobell and Asner, 

2003 

Water Band Index 

(WBI) 

𝑊𝐵𝐼 =
𝜌970

𝜌900
 

 

It is a reflectance that is sensitive to 

changes in canopy water 

status.Water Band Index contrast 

liquid water absorption. 

Roberts et al., 

2016 

Plant Senescence 

Reflectance Index 

(PSRI) 

PSRI =
𝑅𝑒𝑑660 − 𝐺𝑟𝑒𝑒𝑛510

𝑁𝐼𝑅760
 

 

It is sensitive to the senescence 

phase of plant development. 

Hatfield and 

Prueger, 2010 

Carotenoid 

Reflectance Index 

(CRI) 

𝐶𝑅 =
1

𝜌510
−

1

𝜌550
 

It is a measure of stress in 

vegetation. Higher CRI values mean 

greater carotenoid concentration 

relative to chlorophyll. 

Roberts et al., 

2016 

Anthocyanin 

Reflectance Index 

(ARI) 

𝐴𝑅𝐼 =
1

𝜌550
−

1

𝜌700
 

It uses reflectances in the green and 

red edge spectral bands to detect 

higher concentrations of 

anthocyanins in vegetation. 

Roberts et al., 

2016 
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Photochemical 

Reflectance Index 

(PRI)  

 

 𝑃𝑅𝐼 =
𝜌531 − 𝜌570

𝜌531 + 𝜌570
 

 

It is a reflectance measurement that 

is sensitive to changes in carotenoid 

pigments (particularly xanthophyll 

pigments) in live foliage. It is used 

in studies of vegetation productivity 

and stress. 

Roberts et al., 

2016 

Structure Insensitive 

Pigment Index (SIPI) 

𝑆𝐼𝑃𝐼 =
𝜌800 − 𝜌445

𝜌800 − 𝜌680
 It maximizes sensitivity to the ratio 

of bulk carotenoids to chlorophyll 

while minimizing the impact of the 

variable canopy structure. It is very 

useful in areas with high variability 

in the canopy structure, or leaf area 

index. 

Roberts et al., 

2016 

Red Edge 

Normalized 

Difference 

Vegetation Index 

(RENDVI) 

  

𝑅𝐸𝑁𝐷𝑉𝐼 =
𝜌750 − 𝜌705

𝜌750 + 𝜌705
 

It capitalizes on the sensitivity of the 

vegetation red edge to small changes 

in canopy foliage content, gap 

fraction, and senescence. 

Roberts et al., 

2016 
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Vogelmann Red 

Edge Index 1 (VOG-

1) 

  

𝑉𝑅𝐸 =
𝜌740

𝜌720
 

It is a narrowband reflectance 

measurement that is sensitive to the 

combined effects of foliage 

chlorophyll concentration, canopy 

leaf area, and water content. 

Roberts et al., 

2016 

Visible 

Atmospherically 

Resistant Index 

(VARI) 

  

𝑉𝐴𝑅𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒
 

It’s used to estimate the fraction of 

vegetation in a scene with low 

sensitivity to atmospheric effects. 

Roberts et al., 

2016 
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2.3 Image Classification 

Classification of an image entails the process of extracting differentiated classes or themes (e.g. 

land use categories and vegetation species) from raw remotely sensed data. The resulting classified 

image comprises of a mosaic of pixels, each of which belong to a particular these, and basically a 

thematic map of the raw image. This description also includes the pre-processing of the acquired 

images. 

 

2.3.1 Traditional Image Classification Methods 

The traditional methods of image classification employ the conventional algorithms, such as the 

K-mean and ISODATA for unsupervised image classification or the Maximum Likelihood 

Classification (MLC) for supervised image classification. In most cases, the unsupervised 

classification algorithms are used in thematic mapping, e.g. classification of vegetation from image 

data. These algorithms are usually easily applicable and are also widely available in most of the 

image pre-processing, analysis and statistical algorithms (Langley et al., 2001). The K-mean and 

the ISODATA clustering algorithms involve iterative procedures. The steps followed by both of 

the algorithms include: (i) assigning an arbitrary initial cluster vector, (ii) classification of each 

pixel to the closest cluster and, (iii) calculation of the new cluster mean vectors based on all the 

specific pixels in each of the clusters is executed. Steps (ii) and (iii) are repeated until the gap 

between the iteration is smaller than a pre-set threshold. The main difference between the two 

unsupervised classification algorithms is that the number of clusters do not change during the 

process of classification using K-means algorithm while the ISODATA algorithm removes the 

redundant clusters and creates new clusters, e.g. whenever a cluster centre is not assigned enough 

samples, it may be removed.  

 

Unsupervised classification methods essentially depend on statistics which are spectrally pixel-

based and in addition, they do not incorporate any prior knowledge of the characteristics of the 

classes or themes being investigated. The main advantage of applying unsupervised classification 

algorithms is to automatically convert raw image data into more meaningful information provided 

higher classification accuracies are achieved (Tso and Olsen, 2005). Alternatively, rather than 

relying on purely spectrally pixel-based, Tso and Olsen (2005) built a fundamental framework for 

unsupervised classification referred to as Hidden Markov Models (HMM) by incorporating both 
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spectral and contextual information. HMM showed significant improvements in both classification 

accuracies and visual qualities of the image. Duda and Canty (2002) investigated and compared 

unsupervised classification algorithms with respect to their capabilities to replicate field data in a 

multifaceted area. Notwithstanding its easy application, unsupervised classification has a 

disadvantage that the process of classification has to be repeated again and again if different 

training areas are incorporated. 

 

Contrary to unsupervised classification, supervised classification algorithms performs 

classification based on training samples, that contain prediction variables estimated in each 

sampling unit and assigns prior information classes to the sampling units (Černá and Chytrý, 

2005). Supervised classification assigns information classes to the rest of the pixels in the image. 

This means that, additional new data has no influence on the established standards of classification 

once the classifier has been set up, unlike the unsupervised classification. Maximum Likelihood 

Classification is based on the statistical distribution pattern; and usually regarded as a classic and 

most popular supervised classification algorithm for remote sensing images (Sohn and Rebello, 

2002; Xu and Wunsch, 2005). MLC has the disadvantage that it assumes the data follows a 

Gaussian distribution which may not be the case especially in complex areas; and this leads to less 

satisfactory classification results. In addition, it is computationally intensive and also very slow. 

 

2.3.2 Improved Image Classification Methods 

In many occasions, the same vegetation type on the ground may have distinct spectral 

characteristics in remotely sensed imagery. Alternatively, it is common that different vegetation 

types may possess similar spectral characteristics, which makes it very difficult to obtain good 

classification results by using either the traditional unsupervised classification or supervised 

classification. Identification of desirable classification algorithms has always been a big challenge 

for remote sensing analysts. Nevertheless, all image classification algorithms are derived from the 

traditional classification algorithms as aforementioned. The later provide the basic principles and 

techniques for the classification of an image. Thus, improved methods usually rely on and expand 

on specific techniques or spectral features, which can lead to improved classification results and 

thus deserve special mention. In the recent past, commendable progress has been made in the 

development of more powerful image classification algorithms to extract vegetation covers from 
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remotely sensed images. A relevant example is Stuart et al. (2006), who developed continuous 

classifications using Landsat imagery to distinguish variations within Neotropical savannas and to 

discriminate between savanna areas, the associated gallery forests, seasonally dry forests and 

wetland communities. The results of this study showed that continuous classifications were better 

than MLC classification and especially in complex land cover areas. 

 

In order to improve the classification accuracy, extensive field knowledge and auxiliary data such 

as elevation, soil types, weather parameters, etc. may be required. Gad and Kusky (2006) and 

Shrestha and Zinck, (2001) have shown that classification accuracy can significantly be improved 

by incorporating expert knowledge and ancillary data in the extraction of thematic features such 

as vegetation types. At a larger scale, Domaç and Süzen (2006) incorporated vegetation-related 

environmental variables in the image classification conducted in the Amanos Mountains region of 

southern central Turkey using Landsat images, and considerably improved classification accuracy 

when compared with the traditional MLC classification. Under many circumstances, however, 

gathering specific knowledge is a massive task and collection of ancillary data is very expensive 

and time consuming. For these reasons, the knowledge-based classification algorithms are not 

commonly used. 

 

Sohn and Rebello (2002) developed supervised and unsupervised Spectral Angle Classifiers 

(SAC), which normally take into consideration that the spectral characteristics of the same type of 

surface objects are approximately linearly scaled variations of one another as a result of the 

topographic and atmospheric effects of the environment. Those SAC helped identify the distances 

between pairs of signatures for classification and were successfully applied in biotic community 

and land cover classification (Sohn and Qi, 2005). The adoption of Vegetation Indices (VIs) 

including the most widely and commonly used Normalized Difference Vegetation Index (NDVI) 

and its optimized form, Enhanced Vegetation Index (EVI), is another method to map vegetation 

using optical sensors (DeFries et al., 1995). These VIs could also be incorporated in the 

classification as additional variables. The main principle of applying NDVI in mapping of 

vegetation cover is that vegetation is highly reflective and absorptive in the near infrared and in 

the visible red of the Electromagnetic Spectrum (EM) respectively. The contrast between these 

channels of EM can be used as an indicator of the status and types of the vegetation. In other word, 
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NDVI is a biophysical characteristic that correlates with photosynthetic process of vegetation. In 

addition to providing an indication of the vegetation greenness, NDVI is also able to offer valuable 

information of the dynamic changes of specific vegetation species given that multiple-time images 

are analysed (Wang and Tenhunen, 2004). Consequently, NDVI is a good indicator to reflect 

periodically dynamic changes of vegetation types (Geerken et al., 2005). Particular vegetation 

categories can be identified through their unique phenology, or dynamic signals of NDVI (Lenney 

et al., 1996), which is also referred to as ‘Multi-temporal Image Classification’. Another approach 

to identify specific vegetation groups is to study time series VIs. An example of this is that Bagan 

et al. (2005) applied the combined EVI multi-dataset generated from 16-day interval Moderate 

Resolution Imaging Spectroradiometer (MODIS) data during the growing season of plants as input 

parameters to match the features of vegetation types and to classify the images. The achieved 

results of classification were compared with those of the traditional MLC algorithm and the 

accuracy of the former exceeded that of the latter. 

 

Artificial Neural Network (ANN) and Fuzzy Logic classification approaches for vegetation 

discrimination have also been applied and reported in literature. ANN is applicable for the analysis 

of almost all kinds of imagery without regard to their statistical properties. Filippi and Jensen 

(2006) reports that ANN is very useful in extraction of vegetation-type information in complex 

vegetation mapping problems. However, this is usually at the expense of the interpretability of the 

results since ANN deploys a black-box approach that hides the underlying prediction process 

(Černá and Chytrý, 2005). Berberoglu et al. (2000) achieved an accuracy of 15% higher than the 

accuracy achieved using a standard per-pixel MLC algorithm by combining ANN and texture 

analysis on a per-field basis to classify land cover. However, one major drawback of ANN is that 

it is usually computationally demanding when large datasets are used to train the network and 

sometimes it may return no results even after running the computation for a while due to the local 

minimum especially for the backpropagation ANN. 

 

The fuzzy classification approach is usually useful where there is evidence of mixed-class areas. 

It has been investigated for the classification of suburban land cover from remote sensing imagery, 

the study of medium (10years)-to-long term (50 years) vegetation changes (Okeke and Karnieli, 

2006) and the biotic-based grassland classification (Xie et al., 2008). Fuzzy classification method 
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is more of a probability-based classification as opposed to crisp classification. Unlike 

implementing per-pixel-based classifier to produce crisp or hard classification, Xu et al. (2005) 

employed a Decision Tree (DT) derived from the regression approach to determine class 

proportions within a pixel so as to produce a soft classification. Theoretically, probability-based 

or soft classification is more reasonable for composite units since those units cannot be simply 

classified to one type but to a probability for that type. While soft classification techniques are 

inherently appealing for mapping vegetation transition, there is an unresolved issue of how best to 

present the output. Rather than imposing subjective boundaries on the end-member communities, 

transition zones of intermediate vegetation classes between the end-member communities were 

adopted to better represent the softened classification result (Xie et al., 2008). 

 

Decision Tree (DT) approach is another method of vegetation classification by matching the 

spectral features or combinations of spectral features from images with those of possible end-

members of vegetation types (species or family level). As compared to ANN, DT is 

computationally less intensive, makes no statistical assumptions and can handle data that are 

represented on different measurement scales. A global land cover map deduced from AVHRR 

imagery was produced by Hansen et al. (2006) using a DT that has a set of 41 metrics generated 

from five spectral channels and NDVI for input. The agreements for all classes varied from an 

average of 65% when viewing all pixels to an average of 82% when viewing only those 1 km 

pixels consisting of >90% one class within the high-resolution datasets. Other studies integrated 

soft classification with DT approach (Xu and Wunsch, 2005). Pal and Mather (2003) studied the 

utility of DT classifiers for land cover classification using multispectral and hyperspectral data and 

compared the performance of the DT classifier with that of the ANN and ML classifiers, with 

changes in training data size, choice of attribute selection measures, pruning methods and boosting. 

They found that the use of DT classifiers with high-dimensional (hyperspectral data) is limited 

while good results were achieved with multispectral data. Under some circumstances, DT can be 

very useful when vegetation types are strictly associated with other natural conditions (e.g. soil 

type or topography) (Egbert and Erofeeva, 2002). For example, some vegetation species may only 

grow in areas with elevation higher than a certain level. This can be integrated within DT to assist 

the classification process from imagery if such ancillary data are available. 
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2.4 Data Dimensionality Reduction 

Data dimensionality is a big challenge when dealing with hyperspectral data. It requires more 

processing power apportionment, more storage space and handling the data is complex. 

Dimensionality reduction provides the ability to handle data more easily. Image transformation 

techniques typically use statistical analysis to reduce the dimensionality of the data. There are 

several procedures that can be employed for dimensionality reduction in hyperspectral data 

analysis. They include Minimum Noise Fraction (MNF) transformation, Pixel Purity Index (PPI), 

is especially important in identifying extreme or spectrally pure pixels, the n Dimensional 

Visualizer for determining the endmember directly from the image and Random Forest for 

identifying the fractional data contribution of each band to the species reflectance.  

MNF is important in the reduction of the inherent dataset dimensionality and noise. The data 

computational requirement is reduced after application of MNF (Denghui and Le, 2011), and 

decorrelates and rescales noise in datasets. MNF transforms data that has noise with unit variance 

to data that has no band to band interrelationship. Thereafter, it performs the independent 

component analysis for data that has been cleaned/whitened of noise (Chen and Kovacevic, 2003) 

to produce much smaller spectral angles than those derived in transformed space (Mundt et al., 

2005). In practice, 95% of the information is contained in the first ten inverse MNF bands. PPI 

aims at finding the most spectrally pure/extreme pixels in image data (Chang and Plaza, 2006) 

which correspond to mixing endmembers. 

 

N-Dimensional Visualization is applied after correcting the image. Where ‘N’ is the number of 

bands, the coordinates of the bands in ‘N’ space consisting of ‘N’ values that are simply the spectral 

radiance and reflectance values in each band of a given spectrum and reflectance values in each 

band of a given pixel. The distribution of bands in ‘N ‘space can be used for estimation of some 

spectral endmembers and their pure spectral signature. The ‘N’ dimensional visualization is 

applied after gathering the data through MNF or PPI algorithms. Since the purest pixel is to find 

in the neighbourhood of the data cloud, the n-Dimensional visualizer allows for interactive rotation 

of data in n-D space, selection of group into different classes (Boardman& Kruse, 1999). Of all 

the dimensionality reduction methods, Random Forest performs best because it ranks variables 

according to their importance based on the out of box error.  
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2.5 Variable Selection 

Random Forest ranks variables based on their importance by randomly permuting variables 

associated with the ‘out-of-bag’ (OOB) samples and growing regression trees on the modified 

dataset (Breiman, 2001). If the original variables are associated with the response variables, then 

the Mean Square Error (MSE) will substantially decrease. Therefore, to measure the importance 

of the variables in the final random forest model, the MSE difference before and after permuting 

the variables is used. Besides dealing with the impact of each variables individually, random forest 

also assesses the interactions with other variables (Strobl and Zeileis, 2008).  

 

Recursive backward propagation method was used by the “varSe1RF” package (Diaz-Uriarte and 

Diaz-Uriarte, 2010) in the R statistical software (R. Core Team, 2014) to select the smallest 

possible subset of the important AISA Eagle spectral bands with required information that would 

achieve comparable classification accuracy. RF returned the importance of each band (n=129) 

using the OOB as the selection criteria. While eliminating the least important spectral bands, 

multiple RF models were repeatedly built from the training data, while building a new RF model 

each round. A .632+ bootstrap (n=10) method with replacement (Efron and Tibshirani, 1997) was 

employed at each loop in order to aggressively reduce the bands subspace without any over-fitting 

while evaluating the selection procedure (Abdel-Rahman et al., 2015). The .632+ bootstrapping 

employs the leave-one-out cross-validation procedure from the subspace not used in the 

classification model fitting (Diaz-Uriarte and Diaz-Uriarte, 2010). The subset with the smallest 

number of spectral bands and lowest OOB error estimate after termination of the loops was chosen 

as the optimal for the classification process. Collinearity between selected AISA Eagle bands was 

tested using a Pearson correlation test since predictor variable selection using such methods have 

been shown to be highly correlated in previous studies (Deng and Runger, 2012). 

 

2.6 Hyperspectral Imagery and Data Fusion for Vegetation Mapping 

Hyperspectral imagery and multiple imagery fusion have been used recently to extract vegetation 

cover and thus deserve special attention and further investigation. Xie et al. (2008) noted that more 

advanced methods reflecting the latest remote sensing techniques used in vegetation mapping have 

been documented in recent past. 
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2.6.1 Vegetation Mapping from Hyperspectral Imagery 

Recently, there has been an increase in the use of hyperspectral imagery for vegetation extraction 

as compared to the use multispectral imagery that only has a few spectral bands; hyperspectral 

imagery includes hundreds of spectral bands (Xie et al., 2008). Hyperspectral sensors are well 

suited for mapping of vegetation as the ability of the individual species or mixed communities of 

the species to reflect or absorb active or passive light can well be examined from the much wider 

spectral bands of hyperspectral data (Varshney and Arora, 2004). The hyperspectral imagery from 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) has commonly been used in the remote 

sensing studies of the earth surface. AVIRIS is a special optical sensor which acquires calibrated 

images with spectral resolution of 224 contiguous spectral bands and wavelength ranging from 

400 to 2500 nm. The information contained in these spectral bands can be exploited to detect, 

measure and monitor the components of the surface of the earth based on molecular absorption 

and scattering signatures. A case in particular is where AVIRIS imagery was used to classify salt 

marshes in China and in San Pablo Bay of California, USA (Li et al., 2005). The results of this 

study were acceptable considering the success in identifying two main marsh vegetation species 

(i.e. Spartina and Salicornia), which covered 94% of the total mash vegetation. However, more 

research work was recommended to correct the false detection of other marsh vegetation species. 

Xie et al. (2008) conducted similar work to study the structure of wetlands in San Francisco Bay 

of California by monitoring vegetation dynamics for purposes of recommending sustainable 

management of wetland ecosystems. In Brazil, discrimination of five important Brazilian 

sugarcane varieties was evaluated by use of  hyperspectral data acquired by the Hyperion sensor 

on board the Earth Observing-1 (EO-1) satellite (Galvao et al., 2005). The results of this study 

illustrated revealed that the five Brazilian sugarcane varieties were discriminated using the 

Hyperion data. This was evidence that hyperspectral imagery is capable of discriminating between 

plant species, which may be very difficult by using multispectral images. 

 

While the pre-processing and classification procedures of hyperspectral images are similar to those 

of multispectral images, the processing of hyperspectral imagery poses a great challenge because 

of the hundreds of spectral bands. For this reason, specialized, cost effective and computationally 

efficient image processing procedures are required (Varshney and Arora, 2004). A set of signature 

libraries of vegetation are usually required in order to discriminate between different vegetation 
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communities or species using hyperspectral imagery (Xie et al., 2008). The vegetation libraries for 

certain vegetation communities or species might be readily available for certain applications. For 

most cases, however, the spectral signature library is usually established using field spectrometers 

or the ground truthing data with hyperspectral data. Therefore, mapping of vegetation mapping by 

use of hyperspectral data has to be deigned well in order to collect synchronous field data for 

creating imagery signatures for classification. 

 

2.6.2 Vegetation Mapping Through Image Fusion 

The information extracted from images from a single sensor may be inconsistent, inadequate and 

imprecise for a specific application. In order to improve the accuracy and quality of vegetation 

classification, fusion of remotely sensed image data with different spatial resolutions is an effective 

method that can be employed. It is essential for accurate mapping of vegetation to efficiently 

integrate remotely sensed information with different spatial, spectral and temporal resolutions 

through image fusion. There are several studies that have been conducted aimed at the 

development of new image fusion algorithms (Amarsaikhan and Douglas, 2004; Zhu and Tateishi, 

2006). To illustrate this, Elith et al. (2006) studied the fusion of high spatial resolution 

panchromatic and low spatial resolution multispectral remotely sensed images and proposed a 

frequency buffer model to overcome the challenge of detecting high-frequency components of 

panchromatic images and low frequency components of multispectral images. Another example 

was illustrated by Zhu and Tateishi (2006) who developed a new temporal fusion classification 

model to study land cover classification and verified its improved performance over the 

conventional methods based on the statistical fusion of multi-temporal satellite images. Behnia 

(2005) also compared four frequently adopted algorithms of image fusion, namely brovey 

transform, principle component transform, smoothing filter-based intensity modulation and hue–

saturation–value (HIS) transform and established that each of the algorithms effectively improves 

the spatial resolution but distorts the original spectral signatures to certain extent (Behnia, 2005). 

In order to address the colour distortion problem associated with some existing techniques, Wu et 

al. (2005) developed normalized algorithm for colour enhancement to merge lower spatial 

resolution multispectral images with a higher spatial resolution panchromatic image (Wu et al., 

2005). Instead of developing new fusion algorithms, Colditz et al. (2006) tested various existing 

methods of image fusion to study their impacts on the accuracies of land cover classification 
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ranging from simple and common algorithms such as brovey transform, HSI transform and 

principal component analysis to more complex approaches such as wavelet transformation, 

adaptive image fusion and multi-sensor multi-resolution image fusion algorithms. As discussed 

above, it is noted that image fusion opens a new way of extracting high accuracy vegetation covers 

by integrating remotely sensed images captured by different sensors, though the challenges of 

fusion strategy (including developing new algorithms of image fusion) still require more research. 

 

2.7 Results Evaluation of Vegetation Mapping from Remote Sensing 

The products of vegetation mapping derived from remote sensed images should be objectively 

verified and communicated to users so that they can make informed decisions on whether and how 

the products can be used. Result evaluation, a procedure also called accuracy assessment, is often 

employed to determine the degree of ‘correctness’ of the classified vegetation groups compared to 

the actual ones. A vegetation map derived from image classification is considered accurate if it 

provides a true representation of the region it portrays (Foody, 2002) (Weber, 2006). Four 

significant stages have been witnessed in accuracy assessment methods (Congalton, 1994). 

Accuracy assessment in the first stage was done by visual inspection of derived maps. This method 

is deemed to be highly subjective and often not accurate. The second stage used a more objective 

method by which comparisons of the area extents of the classes in the derived thematic maps (e.g. 

the percentage of a specific vegetation group in area) were made with the corresponding extents 

on ground or in other reference dataset. However, there is a major problem with this non-site-

specific approach since the correct proportions of vegetation groups do not necessarily mean the 

correct locations. In the third stage, the accuracy metrics were built on a comparison of the class 

labels in the thematic map with the ground data for the same locations. Measures such as the 

percentages of cases correctly (and wrongly) classified were used to evaluate the classification 

accuracy. The accuracy assessment at the fourth stage made further refinements on the basis of the 

third stage. The obvious characteristic of this stage is the wide use of the confusion or error matrix, 

which describes the fitness between the derived classes and the reference data through using 

measures like overall accuracy and kappa coefficient. Additionally, a variety of other measures are 

also available or can be derived from the error matrix. For example, the accuracy of individual 

classes can be derived if the user is interested in specific vegetation groups. 
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Although it is agreed that accuracy assessment is important to qualify the result of image 

classification, it is probably impossible to specify a single, all-purpose measure for assessing 

classification accuracy. For example, the confusion matrix and its derived measures of accuracy 

may seem reasonable and feasible. However, they may not be applicable under some 

circumstances, especially in vegetation mapping at coarse scales (Cingolani et al., 2004). One of 

the problems caused by the pixel-based confusion matrix evaluation is that a pixel at a coarse 

resolution may include several vegetation types. As represented by Figure 2.1, a pixel in an 

imagery represents a composite of three vegetation classes (class A, B and C). Clearly, the ellipse 

located at the centre of the pixel may be the sampling area. Since it is impractical to sample the 

whole pixel at a large-scale mapping, this pixel would most likely be labelled with class B in image 

classification considering its percentage of the occupied area. Therefore, the vegetation class 

between the derived (class B) and the referenced (class A) will not match and this mismatch will 

introduce classification errors. In this case, the non-site-specific accuracy measures may be more 

suitable if not for the limitation mentioned previously. Moreover, rather than using field samples 

to test the classification accuracy, a widely accepted practice is to use finer resolution satellite data 

to assess coarser resolution products (Cihlar et al., 2003), although the high-resolution data are 

themselves subject to interpretation and possible errors (DeFries et al., 1999). The result evaluating 

for image classification still remains a hot debating topic today (Foody, 2002). 

 

 

Figure 2.1: An illustration of a pixel-based accuracy assessment of a coarse spatial resolution 

(Xie et al., 2008) 
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CHAPTER THREE 

3. METHODOLOGY 

3.1 Study Area 

Ngangao forest (38°20’E, 03°21’S) is one of the few forest fragments remaining in Taita Hills, 

Kenya. The Taita Hills are located at approximately 100 km east of Kilimanjaro and 175 km from 

the Kenyan coast (Figure 3.1). The area is known for bimodal pattern of rainfall with long rains 

occurring between March and May and the short rains between November and December, but the 

hilltops receive mist and cloud precipitation throughout the year (Pellikka et al., 2009; Rogers et 

al., 2008). Pellikka et al. (2005) notes that the average rainfall at and around the hills is 

approximately 1500 mm. Ngangao forest is located on an eastern slope of a north–south oriented 

mountain ridge with the western slope mainly covered by open rock and some patches of Acacia 

mearnsii and Pinus patula plantations. The forest is managed by the Kenya Forest Service and 

covers an area of about approximately hectares with the elevation ranging from 1700–1952 m 

above mean sea level (Omoro et al., 2010). The forest is rich in biodiversity, with many indigenous 

trees, bird species and patches of exotic tree species.  
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Figure 3.1: Location of the study area (Ngangao Forest). 
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3.1.1 Demographics and Livelihood in Taita Hills 

Taita Hills is dominated by subtribe of Taita people called Wadawida and the local language is 

Dawida. The population has been growing rapidly from 108,000 people in 1969 to 280,000 in 2009 

(KNBS, 2010) with most of this population concentrated on the highlands. The increasing 

population has exerted pressure on the forests and people depend on these forests for firewood, 

grazing and crop production. As earlier reported in this thesis, Pellikka et al. (2009) notes that 

approximately 50% of cloud forest was cleared for purposes of agricultural production between 

the years 1955 and 2004, and currently about 1% of the original indigenous forest area is 

remaining. During the field work, there was evidence of farming activities encroaching into parts 

of the eastern side of Ngangao forest. This is as a result of increasing population. 

 

Small scale agriculture is the main source of livelihood in Taita Hills (Pellikka et al., 2009), with 

different crops being grown at different elevations (Salminen, 2004). There are two main planting 

seasons as dictated by the rainfall patterns. Low-lying uplands, plains and low-lands are intensively 

cropped with cereals, tuber and horticultural crops. Agroforestry is also practised in the highlands 

and mid-lands. Livestock farming is also practised in small scale due to small farm sizes and 

grazing areas; especially in the highlands where the climatic conditions are favourable. The people 

around the forests often graze on the edges and sometimes inside. Charcoal burning is also 

practised in the lowlands. Other sources of livelihood as observed during the field work include 

retail shops, sand harvesting, mining, bee keeping and tourism. 

 

3.1.2 Climate 

Taita Hills receives bi-modal type of rainfall with long rains and short rains occurring between 

March and May and November and December respectively. The rainfall amounts average between 

1332 – 1910 mm per annum (Salminen, 2004). The southern and eastern slopes of Taita Hills 

receive more rainfall than western and northern slopes (Omoro et al., 2013) with some parts, 

especially the highlands, receiving cloud precipitation (Jaetzold, 1983). At the same time, the air 

can contain more humidity as temperatures increase with decreasing elevation. Most of the tropical 

forest fragments in the Taita Hills are found in the highlands and therefore the forest influence the 

rainfall amounts and distributions. 
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3.2 Acquisition and Pre-Processing of Hyperspectral Images 

The hyperspectral imagery used in this study was acquired on 4th February 2013 by use of an 

Airborne Imaging Spectrometer for Applications (AISA) Eagle VNIR sensor at an average flying 

height of about 2300 m above the mean sea level. This is usually a dry season with low cloud cover 

in many parts of Kenya including Taita Hills. The spectral range of the AISA sensor is 400 to 1000 

nm and was processed to 129 spectral bands which had bandwidth of about 4.6 nm. A total of 11 

flight lines running along the West-East direction with swath width of about 500 m covered the 

entire of the Ngangao Forest. 

 

The acquired images were then corrected for radiometric and atmospheric effects by means of 

CaliGeo Pro and ATCOR-4 software, respectively. A 20 m spatial resolution Digital Elevation 

Model (DEM) was resampled to 1 m spatial resolution and used for the orthorectification of the 

images. ENVI software was then used to correct for the geometric effects of the atmospherically 

corrected images by use of the Geographic Lookup Table (GLT) files generated by the CaliGeo 

Pro software. 

 

3.3 Definition of Training Areas 

High spatial resolution aerial photographs, which were acquired during the January 2012 flight 

campaign using Nikon D3X digital camera were used in the field to delineate the selected tree 

crowns only (Figure 3.3). No significant difference was expected with the one-year difference 

between the acquisition of hyperspectral data and the aerial photographs. These delineated tree 

crowns could be identified both on the photographs and on the ground. The crowns were randomly 

sampled and identified in the field mainly from the top of the open rocks, footpaths within the 

forest and along the edges of the forest (Figure 3.2). The plantation patches within Ngangao Forest 

were easily identified and training areas delineated. 
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Figure 3.2: A section of Ngangao Forest as viewed from one of the highest points in the forest. 

(Researcher, 2013). 

 

 

Figure 3.3: An illustration of delineated tree crowns that were identified both on the ground and 

on the aerial photographs. 
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The delineated crowns on the photographs were then identified and on-screen digitized from the 

true colour composites of the hyperspectral images using ArcGIS 10 software (Figure 3.4)  

 

 

Figure 3.4: A section of a true colour composite AISA Eagle image overlaid with delineated tree 

crown polygons. 

 

Since the flight campaign was conducted in the mid-morning hours of the day, some of tree crowns 

were partly covered by shadows and therefore only the sun-lit parts of the tree crowns were 

digitized. The exotic species usually have smaller crowns as compared to indigenous species and 

the former are mostly plantation patches of the forest. For this reason, small sections of the 

plantation forest were identified and digitized to represent the training data for the specified 

species. All tree species with identifiable pure endmembers were sampled, totalling to 152 

samples, which were digitized representing 10 different tree species (6 indigenous and 4 exotic 

species) (Table 3.1). Some of the commonly found indigenous tree species in Ngangao forest are 

albizia gummifera, ficus thonningii and newtonia buchananii, while those of exotic species are 

acacia mearnsii, cupressus lusitanica and pinus patula. 
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The mean spectral reflectance of each of the tree crowns was extracted from the AISA Eagle image 

for each of the processed 129 bands. Consequently, the mean spectral reflectance of each tree 

species was then computed. However, wavelengths ranging from 876 to1000 nm were not used in 

the analysis as they exhibited spectral noise and were therefore not used in the analysis. As a result, 

103 of 129 spectral bands were used in the subsequent analysis. The mean spectral reflectance 

curves of both the indigenous and exotic tree species respectively are represented by Figures 3.5 

and 3.6. 

 

Table 3.1: Indigenous and Exotic tree species studied and their respective number of samples (n). 

Name of Species 

(scientific name) 

Family name Local name 

(Dawida) 

Type n 

Acacia mearnsii Fabaceae Mgamu Exotic 11 

Cupressus lusitanica Cupressaceae Musumbesu Exotic 10 

Eucalyptus spp. Myrtaceae Mkongo Exotic 21 

Pinus patula Pinaceae Mubunduki Exotic 29 

Albizia gummifera Mimosaceae Msuruwachi Indigenous 37 

Ficus thonningii Moraceae Muvumu Indigenous 10 

Macaranga capensis Euphorbiaceae Shao Indigenous 14 

Newtonia buchananii Mimosaceae Chamsidu Indigenous 7 

Ocotea usambarensis Lauraceae Manyoda Indigenous 5 

Syzygium guineense Myrtaceae Mzambarau Indigenous 8 

Total 152 
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Figure 3.5: Spectral reflectance curves corresponding to the indigenous tree species. 

 

 

 

Figure 3.6: Spectral reflectance curves corresponding to the exotic tree species. 
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3.4 Narrow band Vegetation Indices 

A number of Vegetation Indices (VIs) can be calculated from hyperspectral imagery and applied 

in tree species discrimination. In this study, the following indices were computed: Atmospherically 

Resistant Vegetation Index (ARVI), Enhanced Vegetation Index (EVI), Normalized Difference 

Vegetation Index (NDVI), Simple Ratio (SR), Sum Green Index (SGI), Water Band Index (WBI), 

Plant Senescence Reflectance Index (PSRI), Carotenoid Reflectance Index (CRI), Anthocyanin 

Reflectance Index (ARI), Photochemical Reflectance Index (PRI), Structure Insensitive Pigment 

Index (SIPI), Red Edge Normalized Difference Vegetation Index (RENDVI), Vogelmann Red 

Edge Index 1 (VOG-1), Visible Atmospherically Resistant Index (VARI) and Visible Green Index 

(VIg). This led to a total of 128 variables which included 103 spectral bands and 15 computed VIs. 

The purpose of computing these vegetation indices was to increase the variables to be considered 

for the discrimination of the tree species. Different tree species will return different values of the 

VIs due to the unique physiological characteristics of different species.  

 

Additionally, four distinct broadbands were computed as the average of the spectral reflectance of 

the respective wavelength ranges of the AISA spectral bands (Table 3.2). 

 

Table 3.2: Simulated broadband wavelengths. 

Broadband Wavelength range (nm) No. of spectral bands 

Blue 0.42 – 0.52 16 

Green 0.52 – 0.60 18 

Red 0.63 – 0.69 13 

Near Infra-Red 0.76 – 0.86 25 

 

3.5 Statistical Analysis 

The Stepwise Discriminant Analysis (SDA) provided by the Predictive Analytics Software 

(PASW) Statistics 18 application was used for statistical analysis and subsequent classification of 

the AISA Eagle data. In order to build the discriminant functions for each of the tree species 

studied, SDA uses the reflectance values from the training classes. (Clark et al., 2005). 

 

SDA consists of a feature selection technique that reiterates the addition and removal of a certain 

feature at every single step of the analysis. This process enables one to find the best subset with 
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which suitable feature discrimination results can be realized. A linear function that relates the 

dependent variables (i.e. tree species) and the independent variables (i.e. spectral bands and VIs) 

was generated. At each stage of the discrimination, more variables were added on the function 

while the invaluable ones were removed. This process was repeated till none of the remaining 

variables appeared to further improve the classification accuracy. Evaluation of whether the 

variables were entered into or removed from the discriminant model was done using the Fischer 

statistic. Wilks' Lambda was used to measure the discriminatory power of the model while the 

leave-one-out cross validation method was used to validate classification results. Consequently, 

the samples of each tree species were classified by the linear function derived from all the samples 

besides the samples left out for validation.  

 

3.6 Algorithms for Data Dimensionality Reduction and Mapping Selected Tree Species 

in Ngangao Forest  

Hyperspectral images contain several hundreds of bands with spectra of fine spatial resolution 

stored in several wavelengths (Landgrebe, 1999). Every pixel contains proportionate values to the 

detailed spectrum of reflected light (Chang, 2003). Therefore, hyperspectral images have the 

ability to discriminate between hard to distinguish features in every spatial location, making it 

ideal for classification of heterogeneous classes such as species discrimination. Therefore, it is 

paramount to extract the right spectra and to choose the right classifier. 

 

The dimensionality in hyperspectral data make them unique and feature extraction is done with 

caution. For instance, to avoid the Hughes phenomena (Hughes, 1968) of the dimensionality curse, 

one needs to collect more training samples than is required in multispectral images. The curse in 

dimensionality leads to overfitting of classification models whereby training samples provide a 

good fit while the classifier performs poorly in testing samples. A good classifier incorporates the 

landscape heterogeneity and is able to deal with the large volumes of data in hyperspectral datasets. 

More often than not, data is multi class and nonlinear in nature. Therefore, it is important to get 

enough training data from a wider scale of features in the image with accurate feature selection 

process (Kavitha and Arivazhagan, 2010). 
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Classification of hyperspectral data can either be spectral or spatial classification. This is based on 

the dimension which an algorithm uses to apportion the reflectance in the data. When the pixel 

reflectance values are considered at different wavelengths, the classification is considered spectral. 

This is because a pixel will exhibit different reflectance across the different wavebands or 

wavelengths in this dimension. Spectral features calculated/derived from the dimension of 

wavelength and reflectance include maximum reflectance, minimum reflectance, mean 

reflectance, variance and standard deviation. Identification and extraction of spatial arrangements 

and contextual values of pixels, and basing a classification on textural properties of an image 

among others is considered spatial classification. It is pixel based and each pixel is assigned a class 

depending on its spectral value (Tarabalka et al., 2009). There are various classification methods 

in this category, including decision trees (Goel et al., 2003; Zhou et al., 2005), maximum 

likelihood/Bayesian estimation methods (Landgrebe, 2005), genetic algorithms (Vaiphasa, 2003), 

genetic algorithms based methods (Hernández-Espinosa et al., 2004; Subramanian et al., 1997; 

Yang, 1999), kernel based techniques and Support Vector Machines (SVM) which produce good 

classification results with high dimensionality data with less training data or with Hughes 

phenomena (Camps-Valls and Bruzzone, 2005; Fauvel, 2007; Fauvel et al., 2006; Gualtieri and 

Cromp, 1999).  

 

In classification, contextual information is as important as statistical information. The use of the 

neighbourhood of a pixel (Camps-Valls et al., 2006) improves classification than considering only 

conventional methods such as Spectral Angle Mapper (SAM). In literature, different authors have 

put forth the use of different methods, such as use of adaptive neighbourhood of each pixel (Fauvel 

et al., 2008), adaptive neighbourhood along with clustering information for segmentation-based 

classification (4) and kernel formulation by estimating wavelength decomposition of an image 

(Mercier and Girard-Ardhuin, 2006).  

 

Within the framework the classifiers, spectral angle classifiers are among the earliest in 

hyperspectral image classification (Landgrebe, 1999). The reference spectra (spectral signature) 

play a major role as they provide a reference point from which the input image spectra can be 

compared. The calculation of angular separation between the spectral signature and the input 

image provide the basis for decision making on the placement of the pixel. The process is time 
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consuming and more often with poor accuracy. For this reason, machine learning algorithms such 

as SVM, Neural Network and Random Forest are important and can often distinguish between 

complex boundaries (Vapnik, 1998). The complex process run in the background and specifically 

SVM does not require much data pre-processing with more accurate outputs (Camps-Valls et al., 

2006).  

 

3.6.1 Spectral Angle Mapping 

The Spectral Angle Mapping (SAM) algorithm is important in hyperspectral data correction. It 

belongs to the category of supervised image correction, where a pixel with minimum spectral angle 

comparison with reference spectra is assigned to the pixel vector. Spectral similarity between two 

pixels is determined by comparing the angles between them, which are then treated as vectors in 

space. Their dimensionality is equal to the number of bands in the data (Boardman, 1994; 

Sarhrouni et al., 2012). Pixels with least spectral angle dissimilarities are considered to be of the 

same class. Algorithm testing provide basis for calculating the angle between two spectra (van der 

Meer, 2006).  

            

  Where nb = number of bands 

    ti   = test spectrum 

    ri   = reference spectrum          (3.1) 

 

3.6.2 Support Vector Machines 

Support Vector Machine (SVM) algorithm has an advantage of outperforming other algorithms 

because it performs well with minimum training sites. It is non-linear and robust classification 

algorithm with kernel trick. SVM finds the separating hyper plane in some feature space inducted 

by the kernel function while all the computations are done in the original space itself (Vapnik, 

1998). For the given training set, the decision function is determined by resolving the convex 

optimization problem. 
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3.6.3 Artificial Neural Networks 

The Artificial Neural Networks (ANNs) borrow from the complexity of the human brain. This is 

because the human brain is very efficient at synthesising data from different sources (Atkinson 

and Tatnall, 1997). Therefore, the artificial neurons developed by mathematicians simulates this 

by developing algorithms to process vast amounts of data from different sources to unearth the 

complexities in datasets and make sense out of them, as Artificial Intelligence (AI). In 

classification, ANNs transforms data from feature space into class space, making them part of the 

automated pattern recognition technique (Ritter et al., 1988). This method is arguably one of the 

accurate and rapid method of classification available (Abraham, 2005; Benediktsson et al., 1997; 

Dayhoff and DeLeo, 2001; Goel et al., 2003; Yegnanarayana, 2009).  

 

3.6.4 Random Forest Algorithm 

The Random Forest (RF) (Breiman, 2001) ensemble allows for the growing, without statistical 

pruning, of many regression trees (ntrees), whose average gives the result. The trees in the forest 

are constructed by randomly drawing a bootstrap sample from the original training dataset 

(Breiman, 2001), with replacement (bootstrap aggregation/bagging). Each tree consists of two 

thirds (67%) bootstrapped randomly and independently subspace which are used for prediction, 

while one-third (33%) are excluded for testing (Prasad and Snyder, 2006). The two thirds part of 

the sample used for training is known as the ‘in-bag’ sample while one third part of the sample 

excluded for testing is termed as the ‘out-of-bag’ (OOB) instances (Breiman, 2001). From a subset 

of randomly selected features (mtry), tree nodes are split until all nodes have the same class (Liaw 

and Wiener, 2002). Afterwards, the results of all trees are combined by a majority vote (Breiman, 

2001). When calculating the predictive accuracy of the model using Mean Square Error (MSE), 

the OOB samples provides an unbiased assessment given that they are not used in training (Pang 

et al., 2006; Prasad and Snyder, 2006). The MSE of the model can be estimated by aggregating 

the OOB predictions of all trees in the forest (Liaw and Wiener, 2002) as shown in Equation 3.2; 
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MSEOOB =
∑ (Yi−Ŷi

OOB)
2n

i=1

n
                          (3.2) 

where n represents the number of samples, Yi represents the age of the forest and Yi
OOB represents 

the mean of the OOB predictions for the ith  observation (Dye et al., 2011). 

 

A random subset of the input variable establishes each tree split in addition to bagging (Breiman, 

2001). Therefore random forest is an accurate tool for prediction due to the randomness in selection 

of the datasets (bagging) and variable selection (mtry) (Breiman, 2001; Liaw and Wiener, 2002; 

Peters et al., 2007). The number of trees grown (ntrees) and the number of possible splitting (mtry) 

sampled at each node (Ismail and Mutanga, 2010; Liaw and Wiener, 2002; Peters et al., 2007), are 

the only key parameters required in growing a random forest (Dye et al., 2011).  

In this study, samples from different species were segregated into training data (70%) and testing 

data (30%) as shown in Table 3.3.  

 

Table 3.3: Data from different tree species used in this study, (70% for training while 30% for 

validation). 

Class Training Validation Total 

Acacia mearnsii 96 40 136 

Albizia gummefera 189 80 269 

Craibia zimmermannii 39 16 55 

Ficus thoningii 243 104 347 

Macaranga capensis 169 72 241 

Newtonia buchananii 178 75 253 

Ocotea usambarensis 157 66 223 

Phoenix reclinata 49 20 69 

Pinus patula 460 197 657 

Syzygium guineense 178 76 254 

  

A random sample of 30% of the reference data points from Table 3.3 was used to test the 

classification accuracy of using the Random Forest algorithm. Further, an error matrix of 
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classification results was generated to calculate the accuracy. The overall accuracy (OA), user’s 

accuracy (UA) and producer’s accuracy (PA), between reference test data and prediction (Cohen, 

1960; Congalton and Green, 2008; Pontius and Millones, 2011) were calculated for all RF models. 

The McNemar’s test was used to test whether there was a statistical significance between map 

accuracy using the entire AISA Eagle subspace and the reduced subspace after the variable 

selection. The results of the accuracy assessment are presented under the Results chapter. 

 

3.7 Testing the Potential Application of Simulated Multispectral Data in Discriminating 

Tree Species in Taita Hills 

Remote sensing of tree species identification assumes that each species has a unique spectral niche 

that is defined by the species biophysical and biochemical make-up (Asner and Martin, 2012; Cho 

et al., 2012; Clark et al., 2010). In theory therefore, it is possible to identify and separate every tree 

species using images obtained in the field. In this regard, a rich spectral library that provides the 

ability to divide the entire or part of the spectrum into separable units is paramount. However, 

mapping of trees species is hampered by low spectral resolution in multispectral images and the 

high cost of acquisition of hyperspectral images. Despite the cost, hyperspectral data is important 

in the determination of spectral separability between species when building a spectral library. The 

improved division of the electromagnetic spectrum in hyperspectral data gives narrow band data 

the ability to resolve subtle spectral canopy features such as carotenoid and chlorophyll content 

and foliar nutrients (Cho et al., 2012; Mitchell et al., 2012; Thulin et al., 2012).  

 

In spite of the good characteristics about narrow band data, it has the disadvantage of high 

dimensionality, especially when using conventional classification techniques. The Hughes effect 

in hyperspectral data (Colgan et al., 2012; Rodríguez-Castañeda et al., 2012) and high redundancy 

rates of some bands (Sarhrouni et al., 2012; Yin et al., 2012) in particular applications is 

problematic. This is because a classifier’s ability to generalize accurately is reduced (Beniwal and 

Arora, 2012; Chu et al., 2012) leading to the need for very large samples to achieve good 

description of data distribution (Dalponte et al., 2012). In addition, multicollinearity is experienced 

which is introduced by the use of highly correlated predictor variables (Makori et al., 2017; 

Numata et al., 2012). Multicollinearity becomes a challenge when discriminating between 

vegetation species with reflectance similarities in hyperspectral data (Ferwerda et al., 2005; Zhang 
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et al., 2011). Moreover, when the training data is insufficient, parameterization may not be reliable 

for feature selection (Chi and Bruzzone, 2007).  

 

In such cases, working with scaled data or with few narrow bands become optimal for species 

discrimination while minimizing the headache of the curse of dimensionality (Cho et al., 2012). 

The physical or spectroscopic meaning of wave bands is analysed to identify important bands 

which are in turn resampled from the high-dimensional spectra to wider bandwidth intervals 

(Becker et al., 2007; Schmidt and Skidmore, 2003). There are operational multispectral sensors 

with few narrow bands such as Worldview 2 & 3, and Sentinel 2 (Hedley et al., 2012; Immitzer et 

al., 2012). They are designed to capture specific wavelengths such as the red-edge and yellow 

spectrum in addition to the wavelengths in the conventional multispectral images.  

 

3.7.1 Worldview 2 

Worldview 2 is a multispectral imaging sensor that was launched in the 2009 by DigitalGlobe. It 

acquires images with 8 spectral bands and a spatial resolution of 1.84 m & 0.5 m panchromatic 

band, with a spectral range from 400 nm to 1,050 nm (Immitzer et al., 2012; Padwick et al., 2010). 

The spectral bands range from coastal band, blue, green, yellow, red, red edge to the longer 

wavelength near infrared band. The wavelength range of the multispectral Wordview-2 Sensor is 

as represented in Table 3.4. 

 

Table 3.4: Wavelength range and number of bands for scaled Worldview 2 used for 

classification. 

S/No Band Wavelength range (nm) No. of resample spectral bands 

1 Coastal 400 – 450 12 

2 Blue 450 – 510 13 

3 Green 510 – 580 16 

4 Yellow 585 – 625 10 

5 Red 630 -690 15 

6 Red Edge 705 – 745 10 

7 Near-IR1 770 – 895 26 

8 Near-IR2 860 – 1,040 30 
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The spectral response of individual bands is shown in Figure 3.7. The separation of individual 

spectral responses to map tree species indicate that it has a high potential in tree species mapping 

(Immitzer et al., 2012) with bands that are strongly related to vegetation. The yellow band is used 

to detect the senesce stage of vegetation, red-edge to discriminate heathy from unhealthy plants 

and vegetation age differences, and (Near Infra-Red) NIR 1 and 2 are mainly used for vegetation 

analysis since they are less affected by the atmosphere (Immitzer et al., 2012).  

 

 

Figure 3.7: Spectral responses for the spectral bands found in Worldview 2. 

 

Spectral configuration provides better identification of tree species. Worldview 2 has been shown 

to map big crown tree species with promising results e.g. (Cho et al., 2012; Colgan et al., 2012; 

Latif et al., 2012; Omar, 2010). However, studies in the coastal region of Kenya especially the 

Ngangao forest are still missing.  

 

3.7.2 Sentinel 2  

Sentinel 2 is an Earth observation mission developed by the European Space Agency (ESA) and 

was launched in June 2015. It acquires multispectral imagery  with a spatial resolution of 10 metres 

and 13 spectral bands in the visible, near infrared and shortwave infrared ranges (Hedley et al., 
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2012; Stratoulias et al., 2015; “User Guides - Sentinel-2 MSI - Sentinel Online,” n.d., p. 2) (Table 

3.5). It consists of two satellites (A and B) coupled to give a temporal resolution of 5 days. Its 

purpose is for land observation including soil, vegetation and water. It consists of several 

wavelengths that are important for vegetation mapping and species identification such as blue, 

green, red, red edge (which is divided into 4), Near Infra-Red (NIR) and Short-wave Infra-Red 

(SWIR) (Clasen et al., 2015; Immitzer et al., 2016; Stratoulias et al., 2015). The spectral responses 

of individual bands of the Sentinel 2 imagery that are within the range of the AISA Eagle sensor 

are shown in Figure 3.8. 

 

Table 3.5: Wavelength range for Sentinel 2 resampled from AISA Eagle image. 

Band number Centre λ nm 

B1 443 

B2 490 

B3 560 

B4 665 

B5 705 

B6 740 

B7 783 

B8 842 

B8a 865 

B9 945 

B10 1375 

B11 1610 

B12 2190 
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Figure 3.8: Spectral responses for the spectral bands found in Sentinel 2. 
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CHAPTER FOUR 

4. RESULTS  

4.1 Selection of Appropriate Spectral Bands for Mapping of Tree Species in Ngangao 

Forest 

Different dimension reduction methods were used to select the optimal bands for the classification 

of tree species in Ngangao Forest. Independent Component Analysis (ICA) was set at above 1,000 

Eigenvalues. This resulted in 32 optimal bands used in the classification. A plot of the endmember 

spectra of the selected bands indicated that the separability of the different classes (Figure 4.1 A) 

was not achieved well due to the transformations done by the ICA. Further, Principal Component 

Analysis (PCA) achieved better results in band reduction, achieving 13 bands from the 129 band 

image. But the endmember spectra indicated that most of the information was concentrated in the 

first and second bands of the image while the rest of the bands were rendered redundant (Figure 

4.1 B). Therefore, species separability from this image was not achieved due to the similarity in 

species spectral resemblance after the third band. The same setting yielded 20 bands when using 

the Minimum Noise Fraction (MNF) algorithm (Figure 4.1 C). The separability between species 

was not pronounced enough to enable the classification of species to proceed. The random forest 

algorithm produced desirable results with the reduction of bands to 53 and good spectral 

separability.  
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Figure 4.1: Band separation spectra for tree species mapping in Ngangao Forest in Taita Hills. 

 

Figures 4.2 and 4.3 present the usefulness of AISA Eagle bands to map tree species in Ngangao 

Forest using RF. The selected bands are centred around the blue (400-500 nm), green (500-600 

nm), red edge (650-690 nm) and in the infra-red (860-950 nm) regions of the Electromagnetic 

Spectrum (EMS) were the most important for discriminating amongst the different tree species 

than any other regions of the EMS. The OOB error rate changed with increasing number of spectral 

bands (n=129) using the .632+ bootstrap selection method. The result was a fewer number of bands 

(53) that accurately discriminated amongst the different tree species in Ngangao Forest with no 

significant decrease in mapping accuracy. Most of the important bands are found in the infrared 

and green regions of the EMS. The Pearson Correlation Coefficient (r) evidently showed that most 

of the spectral bands from the AISA Eagle (with 129 bands) were redundant and contained similar 

spectral information for mapping tree species in Ngangao Forest (Figure 3.4).  

 



47 
 

 

Figure 4.2: Usefulness of the AISA Eagle wavebands measured by the random forest classifier. 

 

 

Figure 4.3: OOB error of backward selection and .632+ bootstrapping for wavebands importance. 
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Correlation Coefficient 

Figure 4.4: Correlation Coefficient (r) of the reflectance of wavebands of AISA Eagle. 
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4.2 Mapping Tree Species using Different Classification Algorithms and Selected 

Appropriate Spectral Bands in Ngangao Forest 

All the four classification methods used to map tree species in Ngangao Forest were machine 

learning algorithms. They achieved varying accuracies ranging from 49% to 80% (Table 4.1). As 

presented in Table 4.1, the Spectral Angle Mapper achieved the lowest accuracy while Support 

Vector Machine and Random Forest achieved the highest accuracies. Random Forest ensemble 

has an advantage over Support Vector Machine since it considers many regression trees at the 

same time without statistical pruning and considers all bands in the image and ranks them 

according to the statistical importance. Therefore, Random Forest was preferred over the other 

classification methods.  

 

Table 4.1: Comparison of the Classification Accuracies for Species Classification in Ngangao 

Forest. 
  

Neural 

Network 

Support Vector 

Machine 

Spectral 

Angle Mapper 

Random 

Forest 

 
 

P/A U/A P/A U/A P/A U/A P/A U/A 

1 Albizia gummifera 95.17 76.42 89.22 78.18 52.42 42.34 90.00 85.71 

2 Phoenix reclinata 55.07 45.78 33.33 69.70 26.09 60.00 50.00 58.82 

3 Newtonia buchananii 71.94 93.81 79.45 75.00 69.57 67.69 86.67 92.86 

4 Syzygium guineense 71.26 69.35 74.80 72.52 39.76 33.44 64.47 77.78 

5 Pinus patula 98.02 89.94 97.72 90.17 72.75 84.90 94.92 85.00 

6 Ficus thoningii 77.23 72.63 71.76 80.58 27.38 49.48 86.54 76.27 

7 Macaranga capensis 62.24 82.87 66.80 74.54 29.46 33.65 58.33 79.25 

8 Acacia mearnsii 72.06 65.33 76.47 63.80 27.94 20.11 65.00 65.00 

9 Craibia zimmermannii 29.09 53.33 25.45 63.64 60.00 16.18 62.50 58.82 

10 Ocotea usambaransis 70.40 84.86 82.06 86.32 36.77 37.27 69.70 71.88  
Overall Accuracy 79.47 80.15 49.24 80.00 
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4.2.1 Optimization of Random Forest Classification Models 

All RF classification models obtained the same optimal ntree values for all species in this study 

across all band combinations. The ntree value of 500 while mtry values of 1 was achieved for 

classification using 129 and 53 bands (Figure 4.5). The 500 ntree had the least OOB errors 

compared to the others, therefore it was selected for further analysis.  

 

Figure 4.5: ntree values for different model settings used in the selection of suitable bands. 

 

4.2.2 Accuracy Assessment 

The overall accuracy of the Ngangao Forest RF classification algorithm was 80.00% (0.77 kappa 

coefficient) when using the 129 bands and 78.15% (0.74 kappa coefficient) when using 53 bands. 

The thematic map from the AISA Eagle is presented in Figure 4.6. Macaranga capensis and Ficus 

thoningii were the dominant species in Ngangao Forest. Pinus patula species was overly present 

in the classification map, spreading to the croplands and shrublands. Generally Craibia 

zimmermannii, Macaranga capensis and Phoenix reclinata had the lowest user and producer 

accuracies while Albizia gummifera, Newtonia buchananii and Pinus patula had the highest 

accuracies. The specific classification accuracies of species were slightly lower when using 53 

bands compared with the 129 bands. Syzygium guineense, Ficus thoningii, Macaranga capensis, 
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Albizia gummifera and Craibia zimmermannii were majorly restricted to the forested area. The 

confusion matrices of the classification map (Figure 4.6) are presented in Tables 4.2 and 4.3.  

 

Individual accuracies (PA and UA) were generally high (over 60%) for most of the tree species 

except Acacia mearnsii (UA=36.5%), Craibia zimmermannii (UA=18%) and Phoenix reclinata 

(UA=55.1%) indicating confusion with other classes. 

 

Figure 4.6: Classification map of the Ngangao Forest using random forest classifier 



52 
 

Table 4.2: Individual species producer and user accuracies of the random forest classifier. 

   129 Bands 53 Bands 

 

Species Name 

Total 

Points 

Used 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

1 Acacia mearnsii 136 65.00 65.00 60.00 61.54 

2 Albizia gummifera 269 90.00 85.71 90.00 85.71 

3 Craibia 

zimmermannii 

55 
62.50 58.82 50.00 61.54 

4 Ficus thoningii 347 86.54 76.27 84.62 72.73 

5 Macaranga capensis 241 58.33 79.25 55.56 78.43 

6 Newtonia 

buchananii 

253 
86.67 92.86 86.67 90.28 

7 Ocotea 

usambarensis 

223 
69.70 71.88 69.70 73.02 

8 Phoenix reclinata 69 50.00 58.82 50.00 66.67 

9 Pinus patula 657 94.92 85.00 94.92 82.02 

10 Syzygium guineense 254 64.47 77.78 60.53 76.67 

Overall accuracy   80.00 78.15 
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Table 4.3: Classification confusion matrix of the Random Forest classifier using the AISA Eagle image. 
 

A B C D E F G H I K Total UA(%) 

(a)                                                                 Using all (129) AISA Eagle wavebands  

A 26 0 1 1 9 0 0 0 2 1 40 65.00 

B 0 72 2 1 8 1 0 0 0 0 84 85.71 

C 2 1 10 2 0 0 1 0 0 1 17 58.82 

D 3 0 2 90 8 5 4 1 4 1 118 76.27 

E 2 4 0 0 42 2 0 1 1 1 53 79.25 

F 0 3 0 0 0 65 0 2 0 0 70 92.86 

G 0 0 0 3 1 0 46 0 3 11 64 71.88 

H 0 0 0 1 3 0 0 10 0 3 17 58.82 

I 6 0 1 4 0 1 12 0 187 9 220 85.00 

K 1 0 0 2 1 1 3 6 0 49 63 77.78 

Total 40 80 16 104 72 75 66 20 197 76 746  

PA(%) 65.00 90.00 62.50 86.54 58.33 86.67 69.70 50.00 94.92 64.47   

OA(%) 80.00            

             

(b)                                                                 Using the most important (53) AISA Eagle wavebands  

A 24 0 0 3 8 0 0 0 3 1 39 61.54 

B 0 72 1 1 8 2 0 0 0 0 84 85.71 

C 2 1 8 1 0 0 1 0 0 0 13 61.54 

D 5 0 4 88 10 4 3 1 2 4 121 72.73 

E 2 4 0 0 40 2 0 1 0 2 51 78.43 

F 0 3 1 0 1 65 0 2 0 0 72 90.28 

G 0 0 0 4 1 0 46 0 5 7 63 73.02 

H 0 0 0 0 3 0 0 10 0 2 15 66.67 

I 6 0 1 5 0 1 14 0 187 14 228 82.02 
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K 1 0 1 2 1 1 2 6 0 46 60 76.67 

Total 40 80 16 104 72 75 66 20 197 76 746  

PA (%) 60.00 90.00 50.00 84.62 55.56 86.67 69.70 50.00 94.92 60.53   

OA (%) 78.55            

 

      Legend: 

A Acacia mearnsii F Newtonia buchananii 

B Albizia gummifera G Ocotea usambarensis 

C Craibia zimmermannii H Phoenix reclinata 

D Ficus thoningii I Pinus patula 

E Macaranga capensis K Syzygium guineense 
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4.3 Mapping Tree Species using Simulated Multispectral Data  

Resampling the images from hyperspectral to multispectral reduced the image size (disk) from 

2.25 gigabytes to 21.40 megabytes for Worldview 2 and 1.40 megabytes for the Sentinel 2 image. 

The processing speed improved as the load on the computer reduced. Three classification methods 

{i.e. (a) Spectral Angle Mapper, (b) Neural Network and (c) Support Vector Machine} were used 

to test the applicability of upscaling of tree species identification in Ngangao Forest from 

hyperspectral to multispectral images. The hyperspectral image was classified using the three 

methods and the results are shown in Figure 4.7.  Table 4.4 shows the accuracy assessments of the 

results. The Spectral Angle Mapper classification method output had the lowest accuracy (below 

50%). Therefore, this method was eliminated from further analysis. Support Vector Machine 

proved to have the highest accuracy of 80.15% compared to Neural Network (79.47%). These two 

methods were used to test the applicability of upscaling species identification in tree species in 

Ngangao Forest.  

 

 

Figure 4.7: Classified images of tree species using AISA Eagle hyperspectral data: A) SAM, B) 

NN, C) SVM 
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Table 4.4: Individual class accuracy of tree species classification in Ngangao Forest. 

 2013 
A) Spectral Angle 

Mapper 
B) Neural Network 

C) Support Vector 

Machine 

 Species Name 
Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User 

Accuracy 

1 Albizia gummifera 52.42 42.34 95.17 76.42 89.22 78.18 

2 Phoenix reclinata 26.09 60.00 55.07 45.78 33.33 69.70 

3 Newtonia buchananii 69.57 67.69 71.94 93.81 79.45 75.00 

4 Syzygium guineense 39.76 33.44 71.26 69.35 74.80 72.52 

5 Pinus patula 72.75 84.90 98.02 89.94 97.72 90.17 

6 Ficus thoningii 27.38 49.48 77.23 72.63 71.76 80.58 

7 Macaranga capensis 29.46 33.65 62.24 82.87 66.80 74.54 

8 Acacia mearnsii 27.94 20.11 72.06 65.33 76.47 63.80 

9 Craibia zimmermannii 60.00 16.18 29.09 53.33 25.45 63.64 

10 Ocotea usambaransis 36.77 37.27 70.40 84.86 82.06 86.32 

 Overall Accuracy 49.24 79.47 80.15 
 Kappa Coefficient 0.42 0.76 0.77 

 

Support Vector Machine crushed during the classification of Sentinel 2 image. Therefore, it was 

eliminated from further analysis. On the other hand, Neural Network successfully classified the 

Worldview 2 and Sentinel 2 images. Generally, the overall classification accuracy and Kappa 

coefficient of Worldview 2 was higher than that of Sentinel 2 (Table 4.5). Even though the spatial 

resolution of Sentinel 2 was lower than Worldview 2 and the training sites were fewer, the 

interclass accuracies of some species were high in Sentinel 2 than in Worldview 2. On the other 

hand, some classes had 0% accuracy for both producer and user accuracies in Sentinel 2. Moreover, 

two classes did not classify in the Sentinel 2 image.  

 

Training sites reduced progressively from the hyperspectral image, Worldview 2 image to the 

Sentinel 2 image (Table 4.6). Albizia gummifera and Pinus patula had the highest accuracies in 

the Worldview 2 classification while Phoenix reclinata had the lowest accuracy. Acacia mearnsii 

and Crabia zimmermannii had 0% accuracy in this classification. On the other hand, Newtonia 

buchananii, Syzygium guineense, Ficus thoningi and Acacia mearnsii had 0% accuracy in the 

Sentinel 2 classification while Phoenix reclinata and Crabia zimmermannii did not classify 
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because the scaling of the images from AISA Eagle to Sentinel 2 increased the pixel size of the 

image beyond the training sites the diameter ranges of the training sites.  

 

Worldview 2 classification map (Figure 4.8 A) shows that features were distinguishable and 

classes separable at that level. On the other hand, the Sentinel 2 classification map did not 

distinguish between features clearly, while some of the classes were not clearly separable (Figure 

4.8 B). This was mainly because the difference between cell resolution canopy sizes of some of 

the tree species was small.  

 

Table 4.5: Classification accuracies of tree species in Ngangao forest using Worldview 2 and 

Sentinel 2. 

 2013 Worldview 2 Sentinel 2 

 Species Name 
Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 
User Accuracy 

1 Albizia gummifera 95.77 66.67 75.00 75.00 

2 Phoenix reclinata 5.88 100.00 Did not classify Did not classify 

3 Newtonia buchananii 23.81 83.33 0.00 0.00 

4 Syzygium guineense 59.32 33.02 0.00 0.00 

5 Pinus patula 94.77 85.34 100.00 71.43 

6 Ficus thoningii 54.12 29.30 100.00 36.00 

7 Macaranga capensis 30.88 45.65 0.00 0.00 

8 Acacia mearnsii 0.00 0.00 0.00 0.00 

9 Craibia zimmermannii 0.00 0.00 Did not classify Did not classify 

10 Ocotea usambaransis 19.30 78.57 0.00 0.00 

 Overall Accuracy 56.43 47.22 
 Kappa Coefficient 0.48 0.33 
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Table 4.6: Training sites used to classify tree species in Ngangao Forest. 

 Species Name RoIs AISA Eagle RoIs Worldview 2 RoIs Sentinel 2 

1 Albizia gummifera 269 71 4 

2 Phoenix reclinata 69 17 0 

3 Newtonia buchananii 253 63 4 

4 Syzygium guineense 254 59 2 

5 Pinus patula 657 172 4 

6 Ficus thoningii 347 85 5 

7 Macaranga capensis 241 68 1 

8 Acacia mearnsii 136 15 1 

9 Craibia zimmermannii 55 57 0 

10 Ocotea usambaransis 223 31 2 

 

 

 

Figure 4.8: Thematic maps for the classification of tree species using different multispectral 

images: A) Worldview 2, B) Sentinel 2. 
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CHAPTER FIVE 

5. DISCUSSIONS OF THE RESULTS 

5.1 Selection of Sensitive Spectral Bands for Tree Species Mapping in Ngangao Forest 

The decreasing dimensionality of the hyperspectral AISA Eagle image (n=53 bands) had results 

with similar accuracies as the original image with all the spectral bands (n=129 bands). This meant 

that the data dimensionality was reduced by 41.1%, a dimension similar to that (Abdel-Rahman et 

al., 2015) found when using data from the same sensor with 64 bands (n=64), to map flowering 

plants in the Kenyan savannah. Dimensionality reduction ensures that grid search and cross 

validation computation costs of the RF classification algorithm optimization are reduced, even 

though some of the selected bands were found to be correlated and therefore contain the same 

information as shown in Figure 4.4.  

 

5.2 Mapping Selected Tree Species in Ngangao Forest 

The relatively high OA’s and individual class accuracies (UA and PA) alluded to the fact that 

AISA Eagle image and the RF classifier has the potential to map tree species in forested areas. 

This study, demonstrated the heftiness of the .632+ bootstrap method in reducing the data 

dimensionality in hyperspectral data in the RF classifier, in line with the (Abdel-Rahman et al., 

2015) research. Even though it is expected that tree species discrimination could have been 

significantly improved with the inclusion of the SWIR regions of the EMS, the image acquisition 

cost could have substantially increased. This is because image acquisition could have required the 

flying altitude to be three times lower to achieve the desired spatial resolution as per the 

specification of the SWIR sensor. The IR region of the AISA Eagle EMS proved to be vital in 

substantiating this lacuna as could be seen in Figure 4.2 of the waveband usefulness and selection 

(Ge et al., 2006). The visible, red edge and IR regions of the EMS are sensitive to chlorophyll and 

other leaf properties (Filella and Penuelas, 1994; Kumar et al., 2002).  

 

Even though the overall accuracies were relatively high, the individual accuracies (PA and UA) of 

some tree species such as (Craibia zimmermannii and Phoenix reclinata) were low. This could be 

attributed to the confusion of such classes with other tree species or other plants such as crops. In 

particular the classification map (Figure 4.6) above showed that Phoenix reclinata was over-

mapped into farmlands and other landcover classes that the tree was not observed. This could also 
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be due to the auto-correlation between selected bands that were important in the classification, 

especially from the green and red regions of the EMS. Additionally the canopy structure of 

different tree species could have affected the mapping ability of some of the species, whose 

spectral responses (Kumar et al., 2002; Petropoulos et al., 2014) were affected by their canopy 

geometry. Moreover, the application of pixel based classification could result in misclassification 

(Cho et al., 2012) as the pixels at the border of the canopies have high intra-class variability. This 

could also lead to the salt and pepper effect (de Jong et al., 2011; Ouyang et al., 2011; Piiroinen et 

al., 2015) in regions without well-defined pixel orientation when defining the classes.  

 

In this study, a combination of high spectral (n=129) and spatial resolutions (1m), coupled with 

optimized machine learning algorithm approach was used. The robustness in this blend ensured 

that tree species were separable at fine scales. In cognisant that the SWIR part of the EMS could 

have produced better results, it is suggested that future studies include the SWIR bands to 

discriminate tree species. However, this approach is expensive and time consuming since AISA 

Eagle hyperspectral image is not readily available and optimizing the robust RF algorithm is costly. 

Therefore, upscaling this method to the multispectral images such as Worldview 3 and Sentinel 2 

that are accessible or freely available should be investigated.  

 

The RF algorithm in this study was developed to map different tree species in Ngangao Forest. 

This information is required to understand the distribution of different tree species in the landscape 

matrix and their health to develop a conservation framework for different tree species and 

landscape integrity. Tree species spatial-temporal information is valuable for conservation and 

ecological assessments which will ultimately lead to sustainable landscapes and controlled 

resource utilization at various landscapes and biodiversity establishment.  

 

5.3 Mapping of Tree Species using Simulated Multispectral Data  

5.3.1 Disk size and processing speed 

Resampling, transforms the image dimension on various axes. For instance, upscaling introduces 

more pixels to the image while downscaling leads to pixel reduction (Wu and Li, 2009). 

Resampling the Ngangao Forest hyperspectral data to multispectral data involved both spectral 

and spatial dimensional reduction. The image was downscaled both spatially and spectrally leading 
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to a reduction in image size (Veganzones et al., 2016; Zhang et al., 2017). The number of bands in 

the simulated data was smaller than the bands in the hyperspectral data. Most of the bands in the 

hyperspectral data were redundant, hence when they are resampled the information therein was 

consolidated into fewer bands. This meant that the smaller simulated images were processed by 

the classification algorithm with ease compared to the larger hyperspectral images.  

 

5.3.2 Dimensionality  

Dimensionality reduction minimizes the problems of nonlinearity, redundancy of bands and high 

dimensions in hyperspectral data (Wang and Wang, 2015; Yanqin and Ping, 2005), which in turn 

leads to data sets that are smaller in size compared to the original files, without loss of important 

information (Benedetto and Czaja, 2013). Resampling the Ngangao forest image reduced it 

spectrally from 129 bands to 8 bands for Worldview 2. The classified image of the resampled data 

achieved more than 56% accuracy in species identification compared to the 78% accuracy 

achieved by the hyperspectral data. This is despite the reduction in spatial resolution of the 

resampled image which might have contributed to the reduction in accuracy. (Mumby and 

Edwards, 2002) showed that spatial resolution improves the amount of details an image contains, 

while (McCloy and Bøcher, 2007) demonstrated how this resolution improves within class 

accuracy. More details improve the algorithms ability to discriminate between classes because the 

signatures of the different classes are better defined. Contrary, a reduction of the image details that 

discriminate between species classes will lead to a low ability of the algorithm to identify and 

differentiate between classes, hence lower accuracy.  

 

5.3.3 Classification methods and machine learning algorithms  

As a machine learning algorithm, Support Vector Machine (Colgan et al., 2012; Denghui and Le, 

2011) utilizes signature data provided in the training sample to build separable units that are used 

in the classification. On the other hand, Artificial Neural Network (Abraham, 2005; 

Yegnanarayana, 2009) simulates animal brains to progressively build information from signatures 

provided for by the training samples. Even though Support Vector Machine achieved the highest 

accuracy when the Worldview 2 image of Ngangao Forest was classified, the algorithm was not 

able to classify the simulated sentinel 2 image which had more spectral bands than Worldview 2 

but less spatial resolution. On the other hand, Neural Network which was ranked second in this 
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classification, managed to classify the image well with a small reduction in accuracy. Artificial 

Neural Network is reputed to optimize training sites to obtain high accuracy without the need for 

too much information (Nguyen et al., 2006). Therefore, Artificial Neural Network optimized the 

training sites to classify the Sentinel 2 image better than Support Vector Machine. 

 

5.3.4 Training sites 

Supervised classification is guided by specific spectral signatures which are representatives of the 

desired or available landcover classes in an image (Chi and Bruzzone, 2007; Mantero et al., 2005). 

These representative classes, which are also called training sites, guide the algorithm in the 

identification of similar pixels throughout the image, which are grouped into one class. In the 

Ngangao Forest image, the training sites were collected using the hyperspectral image whose 

spatial resolution was 1 metre. These sites were collected based on the pixel properties of the 

image, and considering that the canopy sizes of most of the trees was less than 10 metres, therefore 

most sites were less than the canopy sizes of these trees. In fact, to obtain pure pixels, only a subset 

of the canopy was considered as training sites.  

 

To classify the resampled Worldview 2 image, whose resolution was less than 2 metres, and 

Sentinel 2 whose resolution was 10 metres, the training sites were scaled to these images using the 

scaling application. Therefore, those training sites whose size was smaller than the resolution of 

the respective scaled images were automatically eliminated. This resulted into a total of 638 in 

Worldview 2 and 23 in Sentinel 2, down from 2,504 training sites in AISA Eagle image.  

Some of the classes did not have any training sites to classify the Sentinel 2 image such as Phoenix 

reclinata, and Craibia zimmermannii, while some, such as Macaranga capensis and Acacia 

mearnsii had very few training sites. This affected the overall accuracy of the classification since 

the training sites that were used in the classification were also used in verification. This led to 

some of the tree species classes being classified with higher accuracy in Sentinel 2 than in 

Worldview 2.  

 

Increasing the training sites of these images to achieve better representation was not possible since 

the pixel sizes were bigger than the canopies of some of the trees used to pick pure pixel. However, 

some of the classes which had bigger sized tree canopies as training sites (such as Albizia 
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gummifera) gave impressive accuracies. Therefore, it is possible to upscale the tree species 

identification to Sentinel 2 using big sized tree canopies as training sites.  

 

5.3.5 Map description  

The maps in Figure 4.8 show that species identification and segregation in Ngangao forest was 

successfully done using multispectral images. On one hand, the shape of the forest was distinct in 

Worldview 2 than in Sentinel 2. On the other hand, Ficus thoningii and Albizia gummifera species 

was over-classified in Sentinel 2 as compared to other species. This was attributable to the close 

similarity between the spectral reflectance of these species with farmlands around the forest. Since 

the training sites were reduced in Sentinel 2 compared to Worldview 2, distinguishing between 

tree species classes in the forest and crops in the farmlands was not clear. Therefore, they were 

classed as similar classes. This could however have been improved had the spatial resolution of 

the Sentinel 2 images been high. It is suspected that resampling the Sentinel 2 images with higher 

spatial resolution (probably between 2 to 5 metres) would improve the classification accuracy of 

tree species.  
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CHAPTER SIX 

6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The impacts of climate change in the African continent have far reaching effects because it is a 

region of high vulnerability to climate shocks; it threatens food security, livelihoods and economic 

prosperity. African forest ecosystems, which are interlinked to food production systems, are among 

the most impacted by world climate change. More so, the indigenous tree species are at a high risk 

of extinction hence the need to quantify them for conservation purposes. Modern methods such as 

remote sensing and specifically hyperspectral remote sensing offers a more accurate method with 

expansive scope for conservation, compared to the tedious and time-consuming methods that were 

previously used. Generally, this study aimed at mapping the indigenous and exotic tree species 

appearing on the top canopy of the Ngangao Forest using airborne hyperspectral data. Specifically, 

it aimed at determining the most appropriate spectral bands from the hyperspectral data for 

mapping of selected tree species; mapping selected tree species using different classification 

algorithms and selected appropriate spectral bands; and finally testing the potential application of 

simulated multispectral data to discriminate tree species in Ngangao Forest. 

Ngangao Forest is located in Taita Hills in the coastal region and approximately 100 kilometres 

from Kilimanjaro Mountain. It receives bimodal rainfall with Acacia mearnsii and Pinus patula 

being the main tree species in the area. For this study, the following tree species were considered; 

Acacia mearnsii, Cupressus lusitanica, Eucalyptus spp, Pinus patula, Albizia gummifera, Ficus 

thonningi, Macaranga capensis, Newtonia buchananii, Ocotea usambarensis and Syzygium 

guineense. Hyperspectral images were acquired using Airborne Imaging Spectrometer for 

Applications (AISA) Eagle VNIR sensor on 4th February 2013 at a mean flying height of 

approximately 2300 m above sea level. High definition photographs that were taken in January 

2012, were used in combination with insitu data and expert knowledge to delineate and pick 

training sites. The images were subjected to radiometric and atmospheric correction using CaliGeo 

Pro and ATCOR-4 software respectively. Orthorectification was consequently performed using a 

20m DEM resampled to 1m spatial resolution. Worldview 2 and Sentinel 2 multispectral images 

were resampled from the hyperspectral AISA Eagle image and used to test the upscaling of the 

mapping algorithms. Neural Network, Support Vector Machine, Spectral Angle Mapper and 

Random Forest algorithms were used for the same test.  
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Results indicated that mapping of tree species in Ngangao Forest was successful using images of 

different spatial and spectral resolution. The Spectral Angle Mapper algorithm achieved the lowest 

accuracy in mapping of the tree species while Random Forest and Support Vector Machine 

achieved the highest accuracies. The hyperspectral images achieved the highest accuracies using 

the Random Forest algorithm while the multispectral images achieved low accuracies. Sentinel 2 

image achieved the lowest accuracy because of the low spatial resolution and fewer number of 

training sites with low purity of the end members of each species. The Random Forest algorithm 

produced desirable results with the reduction of bands to 53 and good spectral separability. 

Macaranga capensis and Ficus thoningii were the most dorminant species in Ngangao Forest. The 

highest class accuracies were recorded for Pinus patula and Newtonia buchananii while those for 

Crabia zimmermanni and Phoenix reclinata were the lowest. In the multispectral images, World 

View 2 achieved better classification accuracy compared to Sentinel 2. 

This research has demonstrated the possibility of using hyperspectral data to map trees species in 

Kenyan tropical forest. As stated earlier in this research, there is no documented evidence of using 

this technology to map trees in East Africa. Different algorithms have also been tested in this 

research and the outcome could inform other researchers on the preferable algorithm of the four 

tested algorithms. Finally, this research has also compared two multispectral sensors and shows 

that one would give preference to World View 2 images as they exhibit better results. 

6.2 Recommendations 

Hyperspectral image classification achieved the highest class accuracies compared to multispectral 

images. Moreover, hyperspectral image with all the 129 bands had better class accuracy compared 

to the 53 band image classification. Even though the hyperspectral images achieved the highest 

accuracy when using the highest possible number of spectral bands, they are highly unavailable 

because of the cost of acquiring them and dimensional redundancies. The collinearity effect 

exhibited by hyperspectral images with many bands pose a very big challenge. Therefore, an 

algorithm that enables the selection of the most appropriate bands based on the specific species 

class information is paramount to increasing the accuracy of species identification.  

Even though more class specific training data means an increase in collinearity, better methods 

should be devised to ensure more class information, that is explicitly accurate is collected to reduce 
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the divergence of class reflectance from the mean. Additionally, to achieve higher accuracy in 

species identification, studies should be focused on specific classes, while classification should be 

done on individual classes as opposed to combining all class information together. Novel methods 

such as spectrometry and Analytical Spectral Devices (ASD) should be used to increase the purity 

of end members. It is also recommended that a combination of Light Detection and Ranging 

(LiDAR) and hyperspectral data could be tested to find out whether the result would improve. It 

is also recommended that object-based classification approaches be used to map the tree species 

using hyperspectral data in order to compare the results of the pixel based approaches used in this 

research.  

This research could be extended to other forest fragments in Taita Hills and other tropical forest 

ecosystems. The findings of this research could be useful to other researchers who are keen on 

evaluating ecosystem services offered by forests. In addition, the institutions tasked with the 

management and conservation of forest ecosystems such as Kenya Forest Service, National 

Museums of Kenya and Kenya Wildlife Service could also benefit from the results of the research 

in their performance of their core mandates.  

6.3 Research Contribution to Knowledge 

The three objectives of this research were achieved. Generally, the results of this study have 

contributed to the body of knowledge in the following ways. First, this study has demonstrated the 

possibility of mapping trees species in tropical forest ecosystems using airborne hyperspectral data. 

By the time of submitting this thesis, there was no documented evidence of the technology being 

used in East Africa to map the species. Secondly, different methods were tested to reduce the high 

dimensionality of hyperspectral data. Additionally, different algorithms were used together with 

selected bands to map the individual tree species. The only documented research in this field and 

geographic region was by Abdel-Rahman et al. (2015) who tested the Random Forest algorithm 

only and airborne hyperspectral data (processed to 64 bands) in flower mapping in Lower Eastern 

Kenya. This research has showed that Random Forest algorithm performed well in the selection 

of sensitive bands and also in the mapping of tree species appearing on the top canopy of Ngangao 

Forest. These results could advise other researchers on the preferable algorithm (of the tested ones) 

to use in a similar ecosystem. Thirdly, the research has also shown that the more affordable sensors 
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such as WorldView 2 can be used to map tree species but with relatively low accuracies. Sentinel 

2 sensor performed poorly in mapping of tree species in the tropics. 
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