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Few human immunodeficiency virus (HIV)–infected persons can maintain low viral levels without therapeutic intervention. We 
evaluate predictors of spontaneous control of the viral load (hereafter, “viral control”) in a prospective cohort of African adults 
shortly after HIV infection. Viral control was defined as ≥2 consecutively measured viral loads (VLs) of ≤10 000 copies/mL after the 
estimated date of infection, followed by at least 4 subsequent measurements for which the VL in at least 75% was ≤10 000 copies/
mL in the absence of ART. Multivariable logistic regression characterized predictors of viral control. Of 590 eligible volunteers, 107 
(18.1%) experienced viral control, of whom 25 (4.2%) maintained a VL of 51–2000 copies/mL, and 5 (0.8%) sustained a VL of ≤50 
copies/mL. The median ART-free follow-up time was 3.3 years (range, 0.3–9.7 years). Factors independently associated with control 
were HIV-1 subtype A (reference, subtype C; adjusted odds ratio [aOR], 2.1 [95% confidence interval {CI}, 1.3–3.5]), female sex (ref-
erence, male sex; aOR, 1.8 [95% CI, 1.1–2.8]), and having HLA class I variant allele B*57 (reference, not having this allele; aOR, 1.9 
[95% CI, 1.0–3.6]) in a multivariable model that also controlled for age at the time of infection and baseline CD4+ T-cell count. We 
observed strong associations between infecting HIV-1 subtype, HLA type, and sex on viral control in this cohort. HIV-1 subtype is 
important to consider when testing and designing new therapeutic and prevention technologies, including vaccines.
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Effective control of human immunodeficiency virus (HIV) in-
fection is associated with improved clinical outcomes, including 
delayed onset of AIDS [1, 2], and studies indicate that the risk 
of sexually transmitting HIV is reduced for individuals with 
low plasma HIV loads [3, 4]. Spontaneous control of viral rep-
lication is rare, typically occurring in fewer than 5%–10% of all 
persons with HIV infection [1, 5]; it is also not well understood, 
particularly in the African context. A better understanding of 

spontaneous viral control could aid in development of new HIV 
treatment and cure options, prevention technologies, and vac-
cine design [6, 7].

The definition of HIV load control varies. All definitions in-
clude persons who are HIV seropositive by antibody testing 
(such as enzyme-linked immunosorbent assay [ELISA], rapid 
test, or Western blot) but who have a low or nondetectable 
HIV load in the absence of ART. A  recent systematic review 
found that viremic controllers are most often defined as those 
with viral loads of <2000 copies/mL, but there was no clear 
consensus on the definition of control, and thresholds varied 
by up to 15 000 copies/mL [8]. Though our understanding of 
viral control is improving, a broader understanding of the role 
of the infecting viral subtype remains lacking. Here, we evaluate 
predictors of viral control in a cohort of volunteers from large, 
well-defined HIV-incidence cohorts in Africa enrolled within 
1 year of their estimated date of infection.
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METHODS

Ethical Considerations

This study was approved by local ethics review (Supplementary 
Materials). All volunteers provided informed consent before the 
collection of any study-related data.

Recruitment and Study Procedures

Volunteers were primarily recruited from HIV-1 epidemiology 
studies at 9 clinical research centers in Kenya, Rwanda, South 
Africa, Uganda, and Zambia, as described elsewhere [9]; addi-
tional details are in the Supplementary Materials.

At enrollment, each volunteer’s medical history was recorded 
and a physical examination was conducted. Volunteers were 
followed monthly for the first 3  months after the estimated 
date of HIV infection, quarterly through 2  years after the 
estimated date of infection, and every 6 months thereafter. At 
each follow-up visit, volunteers were asked whether they had 
started ART or taken antiretroviral drugs for prevention of 
mother-to-child transmission of HIV. A  symptoms-directed  
physical examination was performed. All volunteers were assessed 
for ART eligibility per the national guidelines and referred for 
treatment as appropriate. Blood specimens were collected for 
syphilis-specific serologic analysis (performed annually), meas-
urement of CD4+ and CD8+ T-cell counts (by FACSCount or 
FACSCalibur; Becton-Dickinson Biosciences, Rapid plasma re-
agin, Biotec Laboratories, Inc., UK), and, if required, confirma-
tory HIV testing (eg, for volunteers who tested positive for HIV 
p24 antigen but negative for HIV antibodies at enrollment). 
Peripheral blood mononuclear cells were collected and stored; 
plasma was stored for viral load testing and subtype determina-
tion. The latter was derived from an amplified 1.7-kb segment 
of the pol gene, using the REGA HIV-1 subtyping tool and the 
Stanford database (available at: http://hivdb.stanford.edu/). If 
the subtype could not be assigned by using the REGA tool, ad-
ditional phylogenetic analysis was done [10]. Genomic DNA 
samples derived from peripheral blood mononuclear cells were 
used for genotyping 3 HLA class  I  loci (HLA-A, HLA-B, and 
HLA-C), with individual alleles resolved to 4-digit specificities 
by using polymerase chain reaction–based techniques and cur-
rent HLA nomenclatures [11].

Definition of Viral Control

Viral control included aviremic control (viral load threshold, ≤ 50 
copies/mL), viremic control (viral load threshold, 51–2000 
copies/mL), and weak control (viral load threshold, 2001–
10  000 copies/mL), collectively referred to as sustained viral 
control. Sustained viral control was defined as ≥2 consecutive 
viral load measurements  ≤10  000 copies/mL (for weak con-
trol), ≤2000 copies/mL (for viremic control), and ≤50 copies/mL 
(for aviremic control) within 3–36 months after the estimated 
date of infection, plus at least 4 subsequent measurements for 
which the viral load in at least 75% was ≤10  000, ≤2000, and 

≤50 copies/mL, respectively. All visits after the initiation of ART 
were excluded from analysis. No viral load data were recorded 
during short-term use of antiretroviral drugs for prevention of 
mother-to-child transmission of HIV. Plasma from participants 
was tested for the presence of antiretroviral drugs at the time 
their viral load dropped to ≤2000 copies/mL (Supplementary 
Materials).

Data Analysis

Multivariable logistic regression analysis with the ART-free fol-
low-up duration as an offset variable was used to characterize 
predictors of viral control. Missing data on HIV-1 subtype 
were imputed using the subtype of the participant’s suspected 
transmitting partner, if known. For participants in South Africa 
or Zambia, subtype C was assumed if no partner data were 
available.

All analyses were performed using R, version 3.4.3 (available 
at: https://www.R-project.org), using the package “glmulti,” to 
determine the best regression model among models with up to 
6 covariates from a set of 26 covariates that included year of 
the estimated date of infection, age group at estimated date of 
infection (<25 years vs ≥25 years), sex, risk group, HIV-1 sub-
type, baseline CD4+ T-cell count, and HLA alleles present in 
≥50 volunteers. Baseline CD4+ T-cell count was defined as the 
month 3 measurement or the average of measurements that fell 
within the window of the month 3 visit. Missing baseline CD4+ 
T-cell counts were imputed using chained equations in which 
the month 6 and month 12 CD4+ T-cell counts, along with age 
group (<25  years vs ≥25  years), sex, subtype, and geographic 
region, were used to model the missing data. No interaction 
terms were included, except for sex by A*03 when prior data 
[12] suggested women with this allele were more likely to con-
trol whereas men were not. The best model is defined as the 
model with the smallest value for the Akaike information cri-
terion, a measure that balances a model’s simplicity with its fit 
of the data [13].

Six sensitivity analyses were performed (Supplementary 
Materials). The first limited the analysis to participants with 
at least 1  year of ART-free follow-up, to assess the effect of 
participants who withdrew from the study early. The second 
analysis adjusted for ART guidelines that varied over time 
and by country. For this analysis, the time to recommended 
ART initiation was calculated for each participant, based on 
their CD4+ T-cell count over time, and used an approxima-
tion to Rwanda’s ART guidelines (ie, the most-conservative 
guidelines). Follow-up time was then calculated as the time 
from the estimated date of infection to the earliest occurrence 
of the following: actual ART initiation, recommended ART ini-
tiation, or last study visit. The third sensitivity analysis replaced 
HIV-1 subtype with a subtype-by-geographic-region covariate 
in which sites were categorized as belonging to either eastern 
or southern Africa. While subtype C is predominant (nearly 
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100%) in southern Africa, there was greater subtype diversity 
among eastern African participants. Fourth, we limited our 
analysis to women only, to allow a better comparison to the 
study by Venner et  al [14]. Fifth, we excluded volunteers for 
whom we had to impute the baseline CD4+ T-cell count. Finally, 
we performed a multivariable analysis with a more conservative 
definition of controller, using a threshold of 2000 copies/mL.

RESULTS

Study Population and Viral Control

Between February 2006 and December 2011, 613 volunteers 
with incident HIV infection were identified and enrolled, in-
cluding 113 from Kenya, 143 from Uganda, 94 from Rwanda, 
234 from Zambia, and 29 from South Africa. Nearly all 
volunteers (564 [92%]) were identified during prospective fol-
low-up in HIV incidence studies of key populations (Figure 1 
and Table 1). Study follow-up data reported here were collected 
through April 2016.

Overall, 590 volunteers (96.2%) had sufficient data to evaluate 
viral control (Figure 1). Two hundred twenty-four volunteers 
(38.0%) achieved initial control (viral load, ≤10 000 copies/mL), 
but most later lost control of virus. In the cohort, 107 (18.1%) 
met our criteria for sustained viral control, with 25 (4.2%) and 
5 (0.8%) exhibiting viremic and aviremic control, respectively. 

For the 107 controllers, the median time to control was 124 days 
(interquartile range, 84–302 days) after the estimated date of in-
fection. The median follow-up time in the absence of ART was 
3.3 years (range, 0.25–9.7 years). Over the course of follow-up, 
a similar proportion of controllers started ART, with 56.1% of 
viral controllers starting therapy in comparison to 59.4% of 
noncontrollers (P = .53). However, controllers had a longer me-
dian ART-free follow-up time than noncontrollers (5.1 years vs 
3.2 years; P < .001, by the Wilcoxon rank sum test).

Predictors of Viral Control

Table 2 presents baseline cohort characteristics by control 
status. The best multivariable model for viral control (Table 3) 
included baseline CD4+ T-cell count, sex, subtype, age at the 
estimated date of infection, and HLA alleles B*45:01, B*57, and 
B*58:02. Infection with HIV-1 subtype A as compared to sub-
type C was associated with control (adjusted odds ratio [aOR], 
2.1 [95% confidence interval {CI}, 1.3–3.5]), as was having the 
HLA class I variant B*57 (aOR, 1.9 [95% CI, 1.0–3.6]). Women 
(aOR, 1.8 [95% CI, 1.1–2.8]) were also more likely to control 
than men (Table 3). Although not significant at the .05 level, the 
presence of a B*58:02 allele (aOR, 0.5 [95% CI, .3–1.0]; P = .08) 
appeared unfavorable with respect to control. Being older was 
also suggestive of a lower odds of control (aOR, 0.6 [95% CI, 
.4–1.0]; P  =  .07), and each 100-cell increase in a volunteer’s 
baseline CD4+ T-cell count was suggestive of an increased odds 
of control (aOR, 1.1 [95% CI, 1.0–1.2]; P = .06). The presence of 
a B*45:01 allele (aOR, 0.7 [95% CI, .3–1.3]; P = .22) was not as-
sociated with control status, although its inclusion in the model 
improved the fit of the data.

Aviremic and Viremic Viral Control

We observed too few aviremic and viremic viral controllers for 
a systematic multivariable analysis. However, after combining 
the aviremic with the viremic controllers, we found a signifi-
cant association with HIV-1 subtype after adjustment for age 
group, sex, baseline CD4+ T-cell count, and presence of HLA 
allele B*57. With subtype C as the reference group, we observed 
an aOR of 3.31 (95% CI, 1.37–8.65) for subtype A and viral con-
trol (Supplementary Table 6).

Sensitivity Analyses

While 5 of 6 analyses confirmed results of our primary analysis 
(Supplementary Materials), our analysis comparing controllers 
with subtype C infection in southern Africa to those in eastern 
Africa showed that East African volunteers with subtype C 
were more likely to control (aOR, 3.3 [95% CI, 1.1–9.1]) than 
southern African volunteers with subtype C infection. Because 
geography was significantly correlated with HIV subtype 
(98% of volunteers [249 of  255] in Zambia and South Africa 
were infected with subtype C), we were unable to initially 
control for it. The prevalence of control varied by site within 
southern Africa, ranging from no controllers in Cape Town to 

10 641 volunteers from 16 cohorts
followed at 9 clinical research
centers between 2005 and 2011

625 cases of  incident HIV
infection documented

564 (90.2%) enrolled

49 volunteers with incident
HIV identified elsewhere

Initial cohort size: 613

590 (96.2%) with adequate
data for analysis

23 volunteers with inadequate data
   - 2 were missing subtype and HLA
     data and had an inadequate
     follow-up time 
   - 8 were missing subtype data and
     had an inadequate follow-up time
   - 1 was missing subtype and HLA
     data
   - 3 had an inadequate follow-up
     time
   - 4 were missing subtype data
   - 5 were missing HLA data

Figure 1.  Flow of volunteers through the study. HIV, human immunodeficiency 
virus.
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a prevalence of 7% in Lusaka, 18% in Copperbelt, and 29% in 
Rustenburg (P = .01, by the Fisher exact test; Table 2). This dif-
ference may be explained in part by the fact that Rustenburg 
volunteers were younger than volunteers from Zambia (median 
ages at the estimated date of infection, 25 and 33 years; P < .001, 
by the Wilcoxon rank sum test).

DISCUSSION

In this adult, African cohort, we observed that 5% of volunteers 
demonstrated viral control to a level of ≤2000 viral copies/mL, 
including a small number (<1%) of aviremic controllers who 
maintained undetectable or nearly undetectable viral loads, 
while an additional 13% maintained weak control, with viral 
loads ranging from 2001 to 10  000 copies/mL. Subtype A–
infected volunteers were more likely to control than subtype C–
infected volunteers (aOR, 2.1 [95% CI, 1.3–3.5]), even when we 
controlled for multiple factors.

The definition of HIV load control varies across studies, 
making direct comparisons challenging. While we have 
presented our data according to the most common definitions 
observed in a systematic review of studies of viral control [8], 
owing to sample size limitations our multivariable analysis re-
quired the adoption of a broader definition of control. Most 
studies that report on viral control have done so in relatively ho-
mogeneous cohorts and rarely mention the infecting HIV-1 sub-
type. Okulicz et al, in a US military cohort, using the same viral 
thresholds as us, observed aviremic control in <1% of subjects 
and viremic control in 3% [1]. Madec et  al found that 7% of 
seroconverters enrolled in CASCADE (comprising 22 cohorts 
across Canada, Europe, and Australia) also controlled virus to 
a level of <400/500 copies/mL at 2 consecutive visits, and this 
was more common among women than men [15]. Lambotte 
et al, in France, also used a different definition of control (<400 
copies/mL in >90% of tested samples from individuals known 
to have been infected with HIV for >10 years) and found that 
control was exhibited in <1% of HIV-infected patients [5]. In an 

Australian cohort, the authors defined controllers as people with 
viral loads of <400 copies/mL for at least 2 years and observed a 
prevalence of 1.5% [2]. A recent prevalence study from Uganda 
defined controllers as persons who had a viral load of <2000 
copies/mL, had a care duration of ≥5  years, were ART naive, 
and had a serial CD4+ T-cell count of ≥500 cells/µL; the authors 
reported a prevalence of 0.26%, although because limited data 
on their source population were shown, this is likely an under-
estimate [16].

In another recent study, Venner et al described a cohort of 
286 African women in Uganda and Zimbabwe in which they 
observed a similar overall prevalence of viral control (ie, 7%, 
with control defined as a viral load of <2000 viral copies/mL 
and a CD4+ T-cell count >350 for >3  years). However, they 
observed the opposite correlation between subtype and con-
trol, noting that control was more common among women with 
HIV-1 subtype C infection as compared to those with subtype 
A infection [14]. While these results are contrary to ours, their 
cohort comprised only women, was smaller than ours, and 
did not control for HLA typing, which we found to be signif-
icantly associated with viral control and, as we have previously 
published, disease progression [17]. If we limited our analysis 
to the 239 women with HLA and subtype data (Supplementary 
Materials), we obtained results similar to our primary analysis 
when comparing subtype A  to subtype C (aOR, 2.4 [95% CI, 
1.1–5.2]). Furthermore, additional sensitivity analyses suggest 
that our observed relationship between infecting HIV-1 sub-
type and viral control persists under varying conditions. While 
Venner et al suggest that a hypothesized “milder” subtype C in-
fection may be associated with a longer latency period, which in 
turn may allow for increased opportunities for transmission and 
thus greater spread, others have argued that the rapid spread of 
subtype C is due to higher replicative fitness and infectiousness 
[18, 19]. Our own work in this cohort has shown higher viral 
loads among persons infected with subtype C as compared to 
subtype A, supporting the hypothesis of subtype C’s increased 

Table 1.  Description of Early Human Immunodeficiency Virus (HIV) Infection Cohort, by Location of Participating Clinical Research Center

Location Study Start Enrollment Complete Source Population(s) Enrolled, No. Included in Analysis, No. (%)

Kigali, Rwanda Feb 2006 May 2011 Discordant couplesa 94 92 (97.9)

Masaka, Uganda Jun 2006 Nov 2011 Rural communities, discordant couplesa 97 95 (97.9)

Kilifi, Kenya Jun 2006 Oct 2011 Walk-in VCT clients, FSW, MSM 88 84 (95.5)

Lusaka, Zambia Jun 2006 Jul 2011 Discordant couplesa 151 150 (99.3)

Kangemi, Kenya Aug 2006 Jul 2010 FSW, clients of FSW, MSM 25 25 (100)

Entebbe, Uganda Aug 2006 Oct 2010 Discordant couples,a walk-in VCT clients 46 39 (84.8)

Ndola and Kitwe, Zambia Oct 2006 Dec 2011 Discordant couplesa 83 79 (95.2)

Cape Town, RSA Dec 2006 Nov 2007 At-risk community membersb 7 5 (71.4)

Rustenburg, RSA Oct 2009 Dec 2011 At-risk community members,b MSM 22 21 (95.5)

Summary Feb 2006 Dec 2011 … 613 590 (96.2)

Abbreviations: FSW, female sex workers; MSM, men who report sex with men; RSA, Republic of South Africa; VCT, voluntary counseling and testing for HIV. 
aHeterosexual cohabiting couples of discordant HIV status (one infected, one not).
bSelf-reported heterosexual risk for HIV acquisition (see Methods).
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Table 2.  Baseline Characteristics, by Human Immunodeficiency Virus (HIV) Control Status

Characteristic
Volunteers, 

No. (%)
Sustained Control,  

No. (%)a
Viremic Control,  

No. (%)b
Aviremic Control, 

No. (%)c

Overall 590 (100) 107 (18.4) 25 (4.2) 5 (0.9)

Study site    

  Kigali, Rwanda 92 (100) 25 (27.2) 8 (8.7) 2 (2.2)

  Masaka, Uganda 95 (100) 16 (16.8) 6 (6.3) 1 (1.1)

  Kilifi, Kenya 84 (100) 18 (21.4) 3 (3.6) 0 (0)

  Lusaka, Zambia 150 (100) 11 (7.3) 0 (0) 2 (1.3)

  Kangemi, Kenya 25 (100) 7 (28.0) 5 (20.0) 0 (0)

  Entebbe, Uganda 39 (100) 10 (25.6) 9 (23.1) 0 (0)

  Ndola and Kitwe, Zambia 79 (100) 14 (17.7) 3 (3.8) 0 (0)

  Cape Town, RSA 5 (100) 0 (0) 0 (0) 0 (0)

  Rustenburg, RSA 21 (100) 6 (28.6) 2 (9.5) 0 (0)

Estimated time of infection        

  2005–2006 170 (100) 25 (14.7) 10 (5.9) 1 (0.6)

  2007–2008 218 (100) 41 (18.8) 7 (3.2) 3 (1.4)

  2009–2011 202 (100) 41 (20.3) 8 (4.0) 1 (0.5)

Age at estimated time of infection        

  <25 y 160 (100) 38 (23.8) 9 (5.6) 0 (0)

  ≥25 y 430 (100) 69 (16.1) 16 (3.7) 5 (1.2)

Sex and risk group        

  Heterosexual male 261 (100) 33 (12.6) 8 (3.1) 2 (0.8)

  MSM 90 (100) 17 (18.9) 2 (2.2) 0 (0)

  Female 239 (100) 57 (23.9) 15 (6.3) 3 (1.3)

HLA-A*03, by sex        

  Female        

    No 213 (100) 49 (23.0) 12 (5.6) 1 (0.5)

    Yes 26 (100) 8 (30.8) 3 (11.5) 2 (7.7)

  Male        

    No 325 (100) 46 (14.2) 9 (2.8) 2 (0.6)

    Yes 26 (100) 4 (15.4) 1 (3.9) 0 (0)

HLA-B*45 allele        

  No 499 (100) 96 (19.2) 22 (4.4) 5 (1.0)

  Yes 91 (100) 11 (12.1) 3 (3.3) 0 (0)

HLA-B*58:02        

  No 502 (100) 96 (19.1) 21 (4.2) 4 (0.8)

  Yes 88 (100) 11 (12.5) 4 (4.6) 1 (1.1)

HLA-B*57        

  No 535 (100) 90 (16.8) 19 (3.6) 4 (0.8)

  Yes 55 (100) 17 (30.9) 6 (10.9) 1 (1.8)

HLA-B*81        

  No 562 (100) 101 (18.0) 24 (4.3) 5 (0.9)

  Yes 28 (100) 6 (21.4) 1 (3.6) 0 (0)

HIV-1 subtype        

  C 273 (100) 38 (13.9) 6 (2.2) 2 (0.7)

  A 207 (100) 52 (25.12) 15 (7.3) 3 (1.5)

  D 81 (100) 15 (18.5) 4 (4.9) 0 (0)

  Otherd 29 (100) 2 (6.9) 0 (0) 0 (0)

Baseline CD4+ T-cell counte 533 (435–695) 646 (492–760) 712 (560–803) 483 (381–492)

ART-free follow-up duration, ye 3.3 (3.2–5.1) 5.1 (3.2–6.9) 6.0 (3.7–7.7) 6.9 (5.1, 6.9)

Data are no. of volunteers (% with characteristic), unless otherwise indicated.

Abbreviations: ART, antiretroviral therapy; MSM, men who report sex with men; RSA, Republic of South Africa.
aVolunteers who maintain a viral load of ≤10 000 copies/mL (ie, all viral controllers).
bSubset of sustained controllers who maintain a viral load of 51–2000 copies/mL.
cSubset of sustained controllers who maintain a viral load of ≤50 copies/mL.
dTwelve volunteers had subtype A1/D virus, 6 had subtype A1/C, 2 had subtype A1/A2/D, 2 had subtype CRF02_AG, 2 had subtype G, and 1 each had subtype A1/C/D, B, C/K, CRF11_CPX, 
or D/C.
eData are median values (interquartile ranges) for 590 volunteers, 107 in the sustained control group, 25 in the viremic control group, and 5 in the aviremic control group.
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infectiousness [20]. Results of epidemiologic studies have also 
been inconclusive. A  report among African couples with a 
discordant HIV status (hereafter, HIV-discordant couples) re-
ported no evidence of an increased risk of transmission asso-
ciated with HIV-1 subtype C [21], while another study, from 
Uganda, found that HIV-1 subtype A has a higher rate of trans-
mission than subtype D among HIV-discordant couples, but 
they were not able to assess subtype C [22]. Given that early 
treatment is important for improving clinical outcomes [23] 

and is increasingly common, observational studies such as these 
are no longer possible, and this question may never be answered 
definitively. However, as infecting subtype has been shown to 
be associated with clinical outcomes in multiple studies [14, 
17, 24, 25] and now with viral control, it would seem prudent 
to consider how infecting subtype may affect new prevention 
technologies, including vaccines.

We evaluated a broad range of HLA alleles and found that 
HLA-B*57 was predictive of viremic control, although this 

Table 3.  Association Between Baseline Covariates and Sustained Control of Human Immunodeficiency Virus (HIV) Load in an Early Infection Cohort

Covariate
Volunteers,a  

No.
ART-Free  

Follow-Up, PY
Viral Controllers,  

No.

Unadjusted Analysis Adjusted Analysis

OR (95% CI) P OR (95% CI) P

Estimated time of infection  

  2005–2006 170 760.5 25 Reference  …  

  2007–2008 218 812.4 41 1.48 (.86–2.58) .163 …  

  2009–2011 202 570.2 41 1.82 (1.06–3.19) .032 …  

Age at estimated time of infection        

<25 y 160 544.8 38 Reference  Reference  

≥25 y 430 1598.4 69 0.58 (.37–.91) .016 0.64 (.39–1.06) .068

Sex          

  Male 351 1270.9 50 Reference  Reference  

  Female 239 872.4 57 1.89 (1.24–2.90) .003 1.78 (1.12–2.84) .015

Risk group          

  Discordant couple 427 1522.8 71 Reference     

  MSM 90 311.7 17 1.19 (.64–2.12) .556    

  Other heterosexual 65 268 17 1.68 (.89–3.07) .097    

  Unknown 8 40.8 2 1.41 (.20–6.35) .681    

HLA-A*03, by sex          

Female          

No 213 754.1 49 Reference     

Yes 26 118.3 8 1.33 (.51–3.18) .539    

Male          

No 325 1166.7 46 0.55 (.35–.85) .008    

Yes 26 104.2 4 0.57 (.16–1.59) .326    

HLA-B*45:01          

  No 499 1857.8 96 Reference  Reference  

  Yes 91 285.5 11 0.62 (.3–1.16) .160 0.65 (.31–1.25) .222

HLA-B*58:02          

  No 504 1819.2 96 Reference  Reference  

  Yes 86 324 11 0.61 (.29–1.15) .148 0.53 (.25–1.04) .081

HLA-B*57          

  No 535 1901.6 90 Reference  Reference  

  Yes 55 241.6 17 2.02 (1.07–3.72) .026 1.90 (.98–3.58) .051

HLA-A*02:02          

  No 535 1946.9 95 Reference     

  Yes 55 196.3 12 1.32 (.64–2.55) .424    

Baseline CD4+ T-cell count 590 2143.2 107 1.13b (1.04–1.23) .002 1.09b (1.00–1.18) .058

HIV-1 subtype          

  C 273 929.7 38 Reference  Reference  

  A 207 832.1 52 1.97 (1.24–3.17) .004 2.09 (1.27–3.49) .004

  D 81 278.4 15 1.43 (.72–2.74) .287 1.44 (.71–2.80) .292

  Otherc 29 102.9 2 0.46 (.07–1.64) .306 0.51 (.08–1.88) .383

Abbreviations: ART, antiretroviral therapy; CI, confidence interval; MSM, men who report sex with men; OR, odds ratio; PY, person-years.
aData are for 590 volunteers with viral load, subtype, and HLA data available.
bData are the odds of viral control for every 100-cell increase in counts (ie, in the adjusted analysis, the odds of control increases 9% for every 100-cell increase in baseline CD4+ T-cell count).
cTwelve volunteers had subtype A1/D virus, 6 had subtype A1/C, 2 had subtype A1/A2/D, 2 had subtype CRF02_AG, 2 had subtype G, and 1 each had subtype A1/C/D, B, C/K, CRF11_CPX, 
or D/C.
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association was of borderline significance (P = .051). This is in 
agreement with the literature on disease progression and viral 
control [26–29], although the relationships between B*57 and 
disease control often appear to be more robust, suggesting that 
this allele may play a stronger role in clinical outcomes than 
viral suppression. Previous studies have reported B*45 to be as-
sociated with poor clinical outcomes of HIV infection [30] or 
higher HIV loads [31], but here we found that volunteers with 
B*45:01 were not associated with control; however, the allele 
remained in our final model, suggesting that it may play some 
role in characterizing viral control. Some studies have suggested 
the presence of the B*58:02 allele to be unfavorable [32]; simi-
larly, our data suggested that persons with the allele may be less 
likely to control HIV (aOR, 0.5 [95% CI, .2–1.0]). Previously, we 
observed in this cohort a sex-allele interaction with HLA-A*03, 
where women with A*03 were shown to have positive outcomes 
and men were not [12]. Although we observed a higher preva-
lence of viral control in women with A*03, with multivariable 
analysis we observed that this interaction was not predictive of 
viral control.

We found that women were more likely to be controllers than 
men. The CASCADE cohort found a similar result [15]. Route 
of exposure has been shown to affect viral fitness in the new 
host, with male-to-female transmission associated with lower 
viral fitness [33]. We have also previously shown that the sex of 
the seroconverter was associated with early set-point viral loads 
in HIV-discordant couples [34]. Less fit viruses may be easier to 
control, supporting our findings.

A limitation of this study is the relatively short follow-up du-
ration for volunteers. Follow-up in many of the reports of viral 
control is measured in decades [1, 2, 5], and follow-up our study 
ranged from <1 year to nearly 10 years. We observed that some 
volunteers controlled virus only to lose control later (eg, see 
sensitivity analysis 2); with an increased follow-up duration, we 
may have observed more cases like this, lowering our estimated 
prevalence of control. Access to ART varied across country and 
region, introducing a bias in the length of ART-free follow-up 
by enrollment center. To control for this, we undertook a sen-
sitivity analysis, using Rwandan government ART guidelines 
(Rwanda was typically the earliest adopter of new World Health 
Organization guidelines on ART initiation); standardizing our 
cohort to these guidelines, we still observed that control was 
more common among volunteers infected with subtype A. Our 
main finding of viral control being associated with HIV-1 sub-
type was driven in part by the low prevalence of viral con-
trol among volunteers from Lusaka, our largest recruitment 
center (Table 1). Our sensitivity analysis in which subtype was 
replaced by geographic region, suggested that eastern Africans 
infected with subtype C are more likely to control their virus 
than southern Africans and that the frequency of viral con-
trol between those with subtype A  and those with subtype C 
in eastern Africa is similar (Supplementary Table 3). However, 

the number of eastern Africans infected with subtype C is small 
(n = 24), and our observed regional difference in viral control 
may be due to other unmeasured covariates.

Nearly one third of volunteers were enrolled too late to have 
a blood specimen collected at baseline (defined as 3  months 
after estimated date of HIV acquisition) for determination of 
the CD4+ T-cell count, and for these volunteers we imputed this 
data point. In another sensitivity analysis, we limited our anal-
ysis to the 392 volunteers with baseline CD4+ T-cell count data 
and found that the relationship between subtype A and subtype 
C persisted, although with the smaller sample size, the statistical 
significance was attenuated. Perhaps more importantly, we did 
not have CD4+ T-cell count estimates for volunteers before they 
acquired HIV infection. In a study conducted by these teams 
and in many of these clinical research centers, we observed a 
significant difference in CD4+ T-cell count, with lower counts 
observed among healthy, HIV-uninfected persons living in 
Zambia as compared to East Africa [35], similar to what Venner 
et al also noted: Zimbabwean women tended to have lower CD4+ 
T-cell counts than their Ugandan counterparts [14]. Although 
the CD4+ T-cell count approximately 3 months after infection 
was correlated with viral control in this cohort, it would have 
been informative to describe any immunological discrepancies 
prior to HIV acquisition.

Also, 23 volunteers (4%) from the cohort were missing 
infecting HIV-1 subtype data, missing HLA data, or did not 
have an adequate amount ART-free follow-up time to con-
tribute to the study (Figure 1). While this represents only a 
small portion of our overall cohort, early ART initiation or 
loss to follow-up may be associated with disease progression, 
and our estimate of viral control may thus be a modest overes-
timate were these volunteers to be included. Additionally, our 
subtypes are derived from the pol sequence, and we may have 
missed some viral recombination. The clinical significance of 
this is unclear, and our derivation of subtype still proved to be 
significantly associated with viral control.

A main strength of this cohort is the large, well-defined 
source populations across regions where multiple HIV subtypes 
are prevalent. These vaccine-preparedness cohorts focused on 
persons at elevated risk of HIV acquisition (eg, men who re-
port sex with men and female sex workers), but in many cases, 
an individual was considered to have an elevated risk because 
they were married to a person with HIV infection. Because we 
enrolled >90% of consecutively identified volunteers with in-
cident HIV infection from these vaccine-preparedness studies 
of HIV transmission, our estimates of the prevalence of viral 
control are less likely to be further affected by selection bias be-
yond being a member of these key populations. Because HIV 
testing for these volunteers was done quarterly or monthly 
and included p24 antigen testing and polymerase chain reac-
tion analysis, the between-test period during which HIV infec-
tion occurred was narrow, allowing us to estimate the date of 
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HIV infection with relative precision. Previously, we noted that 
symptoms of acute retroviral syndrome were more common 
among volunteers with subtype A infection than among those 
with subtype C or D infection—highlighting potential subtype-
mediated differences prior to the onset of viral control [36].

Infecting HIV-1 subtype is important. Controlling for vol-
unteer HLA type, sex, and other characteristics, we observed 
that persons infected with HIV subtype A  were significantly 
more likely to control virus than were persons with subtype 
C. Previous research in this cohort and others has shown that 
subtype is also associated with disease progression. While this 
question may never be answered conclusively, our data suggest 
that infecting HIV-1 subtype should be considered when de-
signing new HIV therapeutic agents, prevention modalities, or 
vaccines.
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