
Incorporating Mobile Forensics into
Nugget

Eric Chomba Ng’ang’a
P53/6504/2017

MSc Distributed Computing Technology

School of Computing and Informatics

University of Nairobi

Supervised by Dr. Elisha Abade

Submitted on 31st July 2019

Submitted in partial fulfilment for the award of MSc Distributed Computing Technology



Declaration

STUDENT

This project, as presented in this report, is my original work and has not been presented for
any award in any other university.

Signed …………………………… Date ………………………………

Eric Chomba Ng’ang’a
P53/6504/2017

SUPERVISOR

This research project is submitted as a partial fulfillment for the award of Master of Science
Degree in Distributed Computing Technology with my approval as the university super­
visor.

Signed …………………………… Date ………………………………

Dr. Elisha Abade
School of Computing and Informatics

i



Acknowledgements

I sincerely thank everyone who contributed to the success of this project. I
thank my supervisor for being available and resourceful as well as providing
me with guidance during the undertaking of this project.

ii



Table of Contents

Declaration i

Acknowledgements i

Table of Contents v

List of Tables vi

List of Figures vii

List of Abbreviations viii

Abstract x

1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Scope of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE REVIEW 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Importance of mobile forensics to investigations . . . . . . . . . . . 4
2.1.2 Challenges faced in mobile device forensics . . . . . . . . . . . . . . 5
2.1.3 Data acquisition from mobile devices . . . . . . . . . . . . . . . . . . 6

2.2 Nugget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Nugget architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Nugget’s grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Extensibility of Nugget . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Standardisation of information representation and exchange . . . . . 12

2.3 Digital forensic information representation and exchange . . . . . . . . . . . 12
2.3.1 Problems caused by lack of standardisation . . . . . . . . . . . . . . 12
2.3.2 Existing digital evidence representation formats . . . . . . . . . . . . 14

2.4 Digital forensic corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Proposed concept overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



3 RESEARCHMETHODOLOGY 20
3.1 Research design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Review and evaluate existing standards of digital forensic inform­
ation containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Review and evaluation of existing mobile forensic tools . . . . . . . 20
3.1.3 Design, implementation and testing of integrationwithmobile forensic

tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Conceptual architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 Forensic tool platform data flow . . . . . . . . . . . . . . . . . . . . . 23

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 DFXML Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Nugget Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Remote Procedural Call (RPC) Server Interface . . . . . . . . . . . . 31
3.2.4 Command line interface . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Android Image Platform . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.6 Android Device Platform . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.7 iPhone Image Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.8 Wrapping forensic tools . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Test samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 RESULTS AND DISCUSSIONS 44
4.1 Android Image Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Android Device Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 iPhone Image Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 SMS and MMS extraction . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Phone call extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Device information extraction . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Location extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 CONCLUSION AND RECOMMENDATIONS 49
5.1 Summary of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Limitations of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



REFERENCES 56

A Language specifications 57
A.1 Mobile extension to the DFXML version 1.2.0 specification . . . . . . . . . 57
A.2 Nugget language specification . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B Sample source code and output listing 63
B.1 Sample source code listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Sample output listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2.1 SMS and MMS extraction . . . . . . . . . . . . . . . . . . . . . . . . 66
B.2.2 Phone call extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2.3 Device information extraction . . . . . . . . . . . . . . . . . . . . . . 68
B.2.4 Location extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



List of Tables

3.1 SMS and MMS Message representation . . . . . . . . . . . . . . . . . . . . . 26
3.2 Phone Call representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Location information representation . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Bookmark and web browser history representation . . . . . . . . . . . . . . . 29
3.5 Device information representation . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Process representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Arguments passed onto the Dfxml RPC method . . . . . . . . . . . . . . . . . 32
3.8 Columns in the sms table of the mmssms.db database . . . . . . . . . . . . . 33
3.9 Columns in the messages table of the bugle_db database . . . . . . . . . . . 34
3.10 Columns in the calls table of the contacts2.db database . . . . . . . . . . . . 35
3.11 Extra columns defined in the calls table of the callhistory.db database . . . . 35
3.12 Attributes of a Digital Forensics XML (DFXML) FileObject . . . . . . . . . 36
3.13 Some of the known columns defined message table of the sms.db database . 39
3.14 Columns defined message table of the sms.db database . . . . . . . . . . . . 39
3.15 Summary of the tools used to execute forensic computations . . . . . . . . . 40
3.16 Summary of the test samples used to evaluate the system . . . . . . . . . . . 41

4.1 Summary of the Android platform test results . . . . . . . . . . . . . . . . . . 44
4.2 Summary of the Android Device Platform test results . . . . . . . . . . . . . 45
4.3 Summary of the iPhone platform test results . . . . . . . . . . . . . . . . . . 46

vi



List of Figures

2.1 Brothers tool hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Nugget runtime architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Proposed architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Conceptual forensic tool wrapper architecture . . . . . . . . . . . . . . . . . 22
3.2 Forensic tool platform phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



List of Abbreviations

ADB Android Debug Bridge

AFF Advanced Forensic Format

AFF4 Advanced Forensic Format 4

ANTLR ANother Tool for Language Recognition

AOSP Android Open Source Project

ARFF Attribute­Relation File Format

ASCII American Standard Code for Information Interchange

BGA Ball Grid Array

CFG Context Free Grammar

CLI Command Line Interface

CTI Cyber Threat Intelligence

CybOX Cyber Observable eXpression

DDL Data Definition Language

DEX Digital Evidence eXchange

DFRWS Digital Forensics Research Workshop

DFXML Digital Forensics XML

DSL Domain Specific Language

EBNF Extended Backus­Naur Form

eMMC embedded MultiMediaCard

EWF Expert Witness Format

FTK Forensic Tool Kit

GLONASS Global Navigation Satellite System

GPS Global Positioning System

viii



GUI Graphical User Interface

HLR Home Location Register

IEEE Institute of Electrical and Electronics Engineers

JSON JavaScript Object Notation

JTAG Joint Test Action Group (JTAG)

MIME Multipurpose Internet Mail Extension

NAND Not­AND

NOR Not­OR

RPC Remote Procedural Call

SCARF SCAlable Realtime Forensics

STIX Structured Threat Information Expression

TAP Test Access Port

TSK The Sleuth Kit

TUI Text User Interface

VLR Visitor Location Register

XIRAF XML Information Retrieval Appproach to digital Forensics

XML eXtensible Markup Language

XSD XML Schema Definition

ix



Abstract

Mobile devices are a significant component in our daily lives. Their ability to
be ubiquitous gives digital forensic investigators the ability to gain a deeper
insight into cases they are investigating. The use of mobile devices in digital
forensic investigations is on the rise due to the wealth of information they con­
tain. To address the increasing heterogeneity of digital forensic tools, Stelly and
Roussev (2018) came up with Nugget. Nugget is a digital forensics Domain
Specific Language (DSL) that provides a formal and useful way to describe
digital forensic computations that abstracts out their implementation. Nug­
get gives investigators the ability to declare forensic operations to perform on
digital evidence without specifying how they are to be done. However, Nug­
get does not currently support mobile digital forensics. The objective of this
study is to extend Nugget by enabling it to declare and execute mobile digital
forensic computations. This was done by integrating available forensic tools
with Nugget and extending Nugget’s DSL to accommodate mobile forensic
computations.

Keywords Nugget, mobile device forensics

x



Chapter 1

INTRODUCTION

1.1 Background

Digital forensic investigators are charged with the responsibility of collection, extraction,
analysis and reporting of data from digital devices. In order to accomplish these tasks,
investigators use a myriad of tools. Each of these tools has specific characteristics that
make it different from the rest. These differences are evident in a tool’s properties such as
(a) how the tool is installed or setup, (b) how the user interacts with the tool, for example,
via Graphical User Interface (GUI) or Text User Interface (TUI) Command Line Interface
(CLI), (c) what inputs the tool accepts, (d) how the tool outputs information or results and
(e) how correct or accurate the results are. Due to these differences, the tools have different
ways of specifying and implementing a specific digital forensic task. The increase in the
number of available digital forensic tools available for use has made the differences to grow
exponentially. The investigator requires to understand how to correctly and effectively use
a tool and how to interpret the tool’s results correctly.

To select the best tool for a specific forensic task, an investigator needs to know how to
evaluate a tool to determine if it would work as intended. Evaluation of forensic tools
has proved to be cumbersome. Since each tool has a specific way of specifying a task
to be executed, an evaluator first requires to know how all the tools being evaluated are
used. Secondly, the evaluator would write a specification for a task to be executed and its
success criteria. Next, the evaluator runs the tool through the specification, either manually
or through automation. Based on the results given by the tool, the evaluator can assess
whether the tool works as desired and if it is accurate.

The diversity in the implementation and use of these tools has flourished because of the lack
of, or minimal use of formal specifications for forensic tasks and representation of results.
Raghavan (2013) notes that there is a diversity problem brought about by the existence of
multiple forensic tools as well as a significant variation in the types and sources of digital
evidence. An analysis that was done by Lillis, Becker, O’Sullivan and Scanlon (2016)
shows that the complexity of sharing digital evidence between investigators has increased
due to the existence of multiple digital forensic storage standards.

1



Formal specifications or standards allow tools to align together. The harmony brought about
by standards creates a firm base on which information exchange and integrations can occur.

To address the increasing heterogeneity of digital forensic tools, Stelly and Roussev (2018)
came up with Nugget. Nugget is a digital forensics DSL targeted at digital forensic in­
vestigators. It provides a formal and useful description of digital forensic computations
(Roussev, 2015) that abstracts out their implementation. Nugget aims to provide a formal
specification of the operations to be carried out. Nugget’s primary target users are digital
forensic investigators, who can either be technical or non­technical. Technical investigators
have some understanding of computer systems or programming while non­technical invest­
igators may not. The DSL is designed to meet the needs of both kinds of investigators by
employing syntax that is easily recognisable by forensic domain experts.

Nugget is designed to work in conjunction with the various digital forensic tools available.
It does not seek to implement any of the tasks done by existing forensic tools. Nugget integ­
rates with the tools required to perform a task. Currently, Nugget has been integrated with
The Sleuth Kit (TSK) (Carrier, 2018a) for disk forensics, Volatility (The Volatility Found­
ation, 2018) for memory forensics and tshark (Wireshark Foundation, 2018) for network
forensics. A sample of the Nugget DSL is presented in Listing 1.1.

Listing 1.1: Sample Nugget snippet
1 files = ”forensic−target.E01” | extract as ntfs
2 videos = files | filter filename==”/*.m4v”
3 // print to stdout
4 print videos

In this example, files are extracted from the specified forensic target image and files with the
extension m4v are filtered from the list of extracted files. The files paths are then displayed
to the user. An example of some of the output from the Nugget interpreter is presented in
Listing 1.2.

Listing 1.2: Sample Nugget response snippet
nugget> files = ”forensic−target.E01” | extract as ntfs
nugget> videos = files | filter filename==”/Videos/*.m4v”
nugget> print videos
[
/Videos/MontereyKitty.m4v
/Videos/MontereyKittyHQ.m4v
/Videos/TiggerTheCat.m4v
/Videos/Cat.m4v
]

2



1.2 Problem definition

Mobile devices are essential sources of digital information used in investigations. Tools
have been developed to extract information from mobile devices such as communication
records, images, videos and much more. However, these tools have not yet been integrated
into Nugget.

Nugget separates the complexities of implementation of such a tool from the specification
of how the tool is applied. Different tools have different ways of displaying output results
of a forensic task. Without standardisation, tools being integrated would have too much
influence on the DSL making it change frequently.

1.3 Research Objectives

1. To review and evaluate existing standards of digital forensic information containers

2. To review and evaluate existing mobile forensic tools

3. To design and implement integrations of forensic tools with Nugget

4. To test the implemented integrations using publicly available digital forensic corpora

1.4 Justification

This research project seeks to embark on adding mobile forensics to Nugget and introduce
a standard representation of digital forensic evidence. Addition of mobile forensics would
allow digital forensic investigators to use Nugget for digital forensics of mobile devices
while standardisation of how to represent digital forensic evidence presents an opportunity
for more integrations and allow Nugget’s output to become input into other tools.

1.5 Scope of the study

There are various mobile platforms available each with its own set of tools to perform di­
gital forensics. This research shall limit its scope to the incorporation of open source or
publicly available forensic tools that can be invoked via the command line for the Android
and iPhone platforms.

3



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Roussev, Bertino and Sandhu (2016) describe forensics as the systematic application of
scientific methods to gather and analyse evidence for legal purpose. Digital forensics is
a sub­field within forensics that focuses on the identification, extraction, analysis and re­
porting of digital evidence stored in digital devices within a legal context. Digital forensics
encompasses all digital devices. Mobile forensics on the other hand, is a speciality within
digital forensics that focuses on using the digital forensic techniques on mobile devices.

2.1.1 Importance of mobile forensics to investigations

Mobile devices have become increasingly prevalent in our day­to­day activities. These
devices come in different forms including smart / feature phones, tablets, smart watches
and many more. Users can accomplish more than just communication using the devices.
With these devices being almost as powerful as personal computers, mobile devices can
handle more and more tasks. This usage has lead to accumulation of users’ of confidential
and personal information on the devices. This treasure trove of personal data is precious to
digital forensic investigators. Acquiring a suspect’s mobile device could indicate whom the
suspect was communicating with, where they were (e.g. using GPS or telecommunication
network’s Home Location Register (HLR) and Visitor Location Register (VLR)), multi­
media files and much more data. Due to their connectivity, mobile devices offer evidence
beyond the contents of the devices. Telecommunication service providers and internet ser­
vice providers can be sources of data or metadata, e.g. communication logs, while cloud
providers can be sources of data, e.g. backups.

Mobile devices have become instrumental in providing inculpatory or exculpatory evid­
ence to investigators, law enforcement officers and subsequently prosecutors. For example,
mobile devices were instrumental cases such as the 2010 NewYork car bomb investigation
(Forensicon Inc., 2010; Mazzetti, Tavernise &Healy, 2010) and the Capital Market Author­
ity’s (CMA) investigation into suspected insider trading at Kenol­Kobil (Omondi, 2019).

4



2.1.2 Challenges faced in mobile device forensics

While working with mobile devices, digital forensic investigators, as well as researchers,
have identified some challenges:

1. Hardware and software variance

Hardware used by mobile devices is different. Manufacturers update their hardware
and software often thus increasing the fragmentation of the available devices. The
operating systems used on the devices further fragment the devices. The most com­
mon mobile device operating system, Android, has various releases, all of which
are running in different devices. This variance requires digital forensic investigators
to adopt different approaches to collecting evidence for seemingly similar devices.
Forensic tool developers require to also keep up with changes introduced to make
sure that their forensic tools work with the updated devices.

2. Security measures

Since mobile devices store personal and confidential information, device manufac­
turers and software developers have enhanced the protection of this data (Skulkin,
Tindall & Tamma, 2018). Measures to protect the data include full­disk encryption,
password or PIN locks, remote data wiping or remote factory reset, application sand­
boxing. Some mobile devices enhance this protection by encrypting backups of the
device data.

These measures are essential to protect user information. However, they present a
hindrance to investigators. Without the encryption key, encrypted data is not usable,
even if it is extracted. Brute forcing passwords or PINs on some devices may result
in the device wiping all the data it contains. Suspects may wipe the data from their
device even after the device is in the investigator’s possession.

3. Ease of altering evidence on the device

Information stored on a mobile device can be casually manipulated, whether intended
or not. For example, the simple act of waking a locked mobile device from standby
mode could change data. In the process of picking up a confiscated device, an invest­
igator may look at a device. A device that employs facial recognition technology to
unlock may unsuccessfully attempt to recognise the investigator’s face. This simple
act can cause the device to harden its defences, e.g. requiring a password or PIN code,
if it detects the wrong face a number of times.

5



4. Offline and Online data storage

Mobile devices with access to the internet can store data both on the device and in
the cloud. Data that’s on the device could present a partial representation of the true
picture. Thus, investigators may require to include data stored in the cloud in the
investigation. Determining what data is stored in which cloud service may prove to
be a challenging task.

5. Rise of the amount of devices to be analysed

The rise in use of mobile devices has lead to a significant increase in their use in
investigations.

6. Device connectivity

Mobile devices offer user connectivity viamultiple channels e.g. cellular,WiFi, Bluetooth,
Infrared, NFC. Once a device has been taken into custody, communication via the
available channels requires to be discontinued e.g. by using Faraday bags. This step
is necessary so as to ensure that the device data isn’t altered by any of the connectivity
channels.

7. Power requirements Mobile devices get powered via portable batteries. If a device
has been found, it requires to be powered lest its power supply runs out and it shuts
down.

8. Anti­forensic techniques

A number of users have developed techniques that seek to counter forensic acquis­
ition and analysis of data in their devices. Such techniques include secure wiping a
device’s contents, data hiding and data obfuscation. Anti­forensic techniques may be
as sophisticated as detection of Faraday bags and triggering a full device wipe.

Mobile forensics typically begins with the identification of a mobile device and its seizure,
getting it under the control or custody of the investigator. The device should be handled
and stored with care since it affects how data will be acquired.

2.1.3 Data acquisition from mobile devices

Data extraction methods can be categorised into two major categories: (a) Logical extrac­
tion and (b) Physical extraction. Logical extraction involves using software that mediates
data access from the storage locations in the device. The user uses the software to ac­
cess the stored data. Software that manages access to the device’s stored data could be the

6



device’s Operating System or any other program that provides access to the device. This
method is limited since the data extracted is limited to what the software has access to or
what the user has access to. In modern mobile devices, security measures employed on the
devices ensure that installed applications and users access just what they require and thus
access to raw memory or raw disk information is limited or non­existent. To overcome this
challenge, physical extraction is used. It employs the use of hardware and software to ex­
tract information directly from the mobile device without the intervention of any mediating
software. Physical extraction grants investigators access to raw memory or storage inform­
ation. Access to raw memory or storage allows investigators to get more information from
the media such as deleted files. Components from the mobile device, such as the embedded
MultiMediaCard (eMMC), can be extracted from the mobile device’s circuitry and read us­
ing specialised hardware. This particular approach demonstrates that physical extraction is
more destructive to a mobile device than logical extraction.

Beyond these two categories, (Brothers, 2011) proposed a way to group techniques ap­
plied to retrieve information from mobile devices. The proposed hierarchy, as shown in
Figure 2.1, has five groups.

Figure 2.1: Tool hierarchy. Source: Brothers, 2011

Moving up the pyramid, the techniques used are highly specialised and technical, they take
longer times to analyse, they require more sophisticated and expensive tools and are more
invasive to the device (Murphy, 2011).

7



• Manual extraction

It’s the most straightforward technique involving reviewing the mobile device’s doc­
umentation and manually browsing the device using its buttons or touch interface to
look at and record the information presented on the screen. Data recorded is typic­
ally done using photographs. This method will not get all the data held in a device,
is prone to human error, time­consuming and will not work on broken or damaged
devices. Additionally, using the mobile device’s buttons may interfere with or alter
the evidence on the device, e.g. reading unread messages.

• Logical extraction

The mobile device being examined is connected to a computer using a wired con­
nection (e.g. USB data cable) or a wireless connection (e.g. Bluetooth, WiFi) and in­
formation is extracted from the device. The investigating computer sends commands
to the mobile device, which responds with the requested data.

• Hex dump / Joint Test Action Group (JTAG) (JTAG)

Hex dump is a way for raw data to be extracted from a mobile device’s memory
storage. A custom boot­loader is loaded onto the mobile device being investigator
using a computer. The boot­loader dumps the phone’s memory.

An Institute of Electrical and Electronics Engineers (IEEE) standard entitled Stand­
ard Test Access Port and Boundary­Scan Architecture, developed by the JTAG asso­
ciation, is a way of accessing a device’s raw data when connected to a standardised
Test Access Port (TAP) on its circuit board.

• Chip­off

In this approach, the digital forensic examiner removes a mobile device’s chip from
its circuit board and reads data from it (Mikhaylov & Skulkin, 2016). The device
chip is an eMMC that combines a flash memory controller, flash memory and the
multimedia card interface integrated on the same Ball Grid Array (BGA) package
(JEDEC Solid State Technology Association, 2007). This technique is especially
useful when dealing with devices that may have been damaged or devices that may
have a locked bootloader.

• Micro read

An investigator analyses the physical gates on a Not­AND (NAND) or a Not­OR
(NOR) chip using an electron microscope (Tahiri, 2016) (Tamma, Skulkin, Mahalik

8



& Bommisetty, 2018). The analysis results into a stream of 0s and 1s which can
be decoded into human­readable data, e.g. into ASCII characters. It is a long and
painstaking process that is rarely done.

2.2 Nugget

Nugget is an external DSL that allows users to describe forensic computations. Fowler
(2010) defines a DSL as a computer programming language of limited expressiveness fo­
cused on a particular domain. Fowler further categorises a DSL as either an external DSL,
an internal DSL or a language workbench. A language workbench is a specialised devel­
opment environment that allows users to define and build DSLs that results in scripts that
tightly couple the editing environment with the language. An internal DSL is one that re­
lies on the host general­purpose language. The application that uses the DSL provides the
host language that supplies the superset of the language features. Unlike an internal DSL,
an external DSL is separate from the primary language of the application it works with.
An external DSL defines its own syntax, parsers, lexers, code generation and compilers.
Examples include SQL and Awk.

In Nugget, forensic computations can be specified using any one of four types of operators:
extractors, filters, transformers and serialisers. Listing 2.1 demonstrates these operators.

Listing 2.1: A sample Nugget script showing file extraction, filtering and hashing on an
NTFS volume. Source: Stelly and Roussev, 2018
1 files = ”file:harddrive.EO1” | extract as ntfs [63,512]
2 jpgs = files | filter name==”*.jpg”
3 hashes = jpgs.content | sha1, md5
4 jpgs = jpgs | add hashes
5 print jpgs

Extractors are responsible for taking a data source and extracting information from them.
In the example shown in listing 2.1, line 1 demonstrates the extraction of files from an
NTFS image from block 63 using a block size of 512. Information extracted is passed on
to the filters which manipulate the result by adding or removing data. Line 2 illustrates
filtering of files whose file names end with the jpg extension. The filtered data is passed
on to the transformers that generate some output based on the data given. An example of
this is shown in line 3 where hashes are generated from each file in the results. Serialisers
convert the data into a format that can be usable by the user e.g. a text representation or
another tool e.g. digital evidence containers like Advanced Forensic Format (AFF).

9



2.2.1 Nugget architecture

Building on their previous work, SCAlable Realtime Forensics (SCARF), Stelly and Rous­
sev (2017) designed the Nugget architecture as demonstrated in Figure 2.2. The architecture
uses Linux containers to encapsulate Nugget as well as the forensic tools. Communication
to integrated tools and sharing of resources between Nugget and the forensic tools is done
via RPC. Nugget is designed as a scalable platform that is meant to scale up or down as
required. Digital forensic tasks can be distributed across multiple networked containers.

Figure 2.2: Nugget runtime architecture. Source: Stelly and Roussev, 2018

The user interacts with Nugget via a TUI or a GUI. The interface would accept Nugget
DSL as input and parse it using the interpreter. The instructions would be executed by
the DSL’s runtime and work with forensic tools on forensic targets. The output of this
operation is displayed to the investigator via the TUI or GUI. The resource manager is
responsible for scheduling computations, logging all operations and returning the results of
the computation.

10



2.2.2 Nugget’s grammar

Nugget is a Context Free Grammar (CFG) that is defined in Extended Backus­Naur Form
(EBNF) using ANother Tool for Language Recognition (ANTLR) (Parr, 2014). ANTLR
provides the constructs to perform lexical analysis and syntax analysis. The constructs
enable the Nugget runtime to parse and interpret the DSL.

Currently, tools integrated to Nugget dictate what will be part of the grammar. For example,
language elements such as sha1 and listof­sha1 are based on the sha1 hashing tool while
sha256 and listof­sha256 are based on the sha256 hashing tool. Both these tools provide
hashing but they are part of the language. With the incorporation of more tools into Nugget,
language elements will grow exponentially.

2.2.3 Extensibility of Nugget

There are numerous tools used in digital forensic investigations. A majority of the tools are
not yet integrated with Nugget. This requires that Nugget accommodates extra tools that
it does not integrate with by default. Currently, Nugget does this by allowing end users to
extend the DSL and write some boiler­plate code. Users require to generate language con­
structs using ANTLR to extend the DSL thereby extending Nugget to use the desired tools.
Since the target audience for Nugget is both technical and non­technical users, the latter
may find this approach to extensibility too technical. Due to the loose coupling brought
about by separation of forensic tools from Nugget, developers are able to extend Nugget.
Some of the ways in which Nugget’s extensibility can be accomplished include:

1. Extending the DSL

Nugget is able to add new functionality by updating the DSL. The implementer of
the new functionality would have to generate and compile the code necessary to ac­
complish the new functionality.

2. Extending the source code

Nugget’s source code can be modified to incorporate new features. The implementer
would have to compile the new code into Nugget.

3. Extending capabilities via RPC

Nugget communicates with forensic tools via RPC. Addition of a new tool means
creating, building and running a new RPC target.

11



The process of extending Nugget would be accomplished by (a) identifying the data type
to be consumed and produced, (b) incorporate the tool’s functionality into a container, and
(c) build Nugget to add the extension into the DSL grammar. For now, the extension of
Nugget requires some level of technical or programming knowledge to be able to incorpor­
ate new features.

2.2.4 Standardisation of information representation and exchange

The increase in digital forensic tools has also increased the number of ways digital evidence
can be represented and exchanged. Digital evidence takes various forms including raw disk
images, files, memory dumps, network packets and many more. While the raw data is the
actual evidence, meta information such as hashes and case details are equally as important.
Attempts have been made to standardise digital forensic evidence e.g. Structured Threat
Information Expression (STIX) (OASIS Open, 2018) (Casey, Back & Barnum, 2015) and
DFXML (S. Garfinkel, 2012a).

Nugget aims to unify digital forensic computations into one standard. However, the out­
put from such computations is not standardised. Thus, different tools implementing the
same computation would result in different outputs. The use of standard information rep­
resentation schemes would allow Nugget to integrate with standards compliant tools easily.
Evaluation and comparison of different forensic tools would also be possible since both
tools would give similarly structured output for a given input.

When tools conform to a standard, there shall be little to no need to have complicated ex­
tractors for each tool to be integrated to Nugget. Also, there shall be little or no influence on
the DSL by the tools. Standardisation simplifies the DSL by removing the complexities of
tool­specific data representation from the DSL and using a standard information exchange
to handle data representation.

2.3 Digital forensic information representation and exchange

2.3.1 Problems caused by lack of standardisation

Challenges have arisen as a result of the lack of standardisation of information and its ex­
change. Some of them include:

1. Difficulty in information exchange between investigators

12



Investigators and researchers working in different organisations may find it difficult
to exchange information between themselves since the information may be in dif­
ferent formats. This can be due to a number of factors e.g. using different forensic
tools to accomplish the same task. This difficulty can hinder investigators in different
legal jurisdictions from knowing that different crimes being investigated are actually
executed by the same perpetrator (Casey et al., 2015).

2. Loss of provenance information

Most existing evidence formats ignore information on how the evidence was obtained
(Casey et al., 2015). This provenance information is very beneficial since it allows
other investigators or researchers to repeat the same operations using the specified
tools in the specified order to arrive at the presented results. Evidence that’s retrieved
from a repeatable operation has a higher degree of confidence.

3. Difficulty in combining forensic tool outputs

Other than chaining, a forensic operation may utilise different outputs from different
forensic tools by combining the results into one. For example, a forensic operation
on a digital storage device may combine information on the different volumes with
information on the different files in the volumes. Without a common standard, mer­
ging results by different forensic tools into one a common format is laborious and
error prone (Casey et al., 2015).

4. Difficulty in chaining different forensic tools

It is often desirable to use the output of one forensic tool as the input of another. For
example, a forensic tool may specialise in extracting files while another specialises in
analysing the files’ contents. Without a format that is common between them, chain­
ing these tools may not work correctly. Such digital forensic tools lack composability
(S. Garfinkel, 2012a). This deficiency would make forensic tools that combine mul­
tiple specialised tools to become more complicated so as to support different tool
formats.

5. Difficulty in automation

Automation of forensic processes or operations would involve co­ordinating different
forensic tools. Without the promise of composability of the tools in use, the work of
automating these processes becomes troublesome (S. Garfinkel, 2012a).

6. Difficulty in tool and algorithm validation

13



To validate that a forensic tool works as designed, its output must be comparable with
the expected output. If the output of the tool and the expected data are in different
formats, the effort of verification increases (S. Garfinkel, 2012a; Roussev, 2015).
This problem increases exponentially due to the number of different tools available
that accomplish similar tasks and produce different formats.

7. Difficulty in scalability

Scalability of forensic operations is highly dependent on the degree of composability
of forensic tools. As noted previously, automation has become notoriously difficult
due to the different formats. This difficulty cascades down to scalability, making it
difficult to scale up forensic operations.

8. Poor documentation and proprietary formats

Poorly documented data formats and proprietary formats significantly reduce the
methods and techniques used to examine and analyse forensic targets (Common Di­
gital Evidence Storage Format Working Group (Digital Forensics Research Work­
shop), 2016). As van den Bos and van der Storm note, that proprietary data formats
are poorly documented and which leads to reverse engineering.

9. The Proliferation of more data formats

Without one standard that is common to all, there is little incentive for forensic tool
developers to conform to or enforce a standard way of representing information.
Thus, they would create a data format that suits their tool’s input or output.

2.3.2 Existing digital evidence representation formats

RAW Images

These are files representing an identical copy of the sourcemedia. While the imagemight be
the focus of a digital forensic analyst’s attention, critical meta information is missing from
the raw image e.g. cryptographic hashes. Also, storage optimisations e.g. compression have
not been done on the raw image thus requiring equal or more storage capacity than the raw
image (Roussev et al., 2016).

DERRIC

DERRIC (van den Bos & van der Storm, 2011) is a domain specific Data Definition Lan­
guage (DDL) for specifying data structures, in digital forensics. Researchers aimed to

14



achieve scalability (handle volumes of data) and flexibility (easy to modify and custom­
ise) by separation of data analysis and data formatting. DERRIC contains three sections, a
header, a sequence and a set of structures.

Attribute­Relation File Format (ARFF)

ARFF is a description of a list of instances sharing a set of attributes (Computing and Math­
ematical Sciences, University of Waikato, 2018). The description is written in an American
Standard Code for Information Interchange (ASCII) text file. The file has a header section
and a data section. The header section contains the name of the relation (data) and a list
of the attributes (columns) of the data and their types. The data section contains the actual
data. This format is mainly used with the Weka machine learning project.

Expert Witness Format (EWF)

It is a proprietary format used by EnCase from OpenText (formerly Guidance Software).
The popularity of EnCase has resulted in EWF’s widespread use in digital storage forensics.
There are open source implementations that have been done, such as libefw, (Metz, 2018)
enabling forensic tools, other than EnCase, such as TSK and Forensic Tool Kit (FTK) to
work with the format.

Advanced Forensic Format (AFF) and Advanced Forensic Format 4 (AFF4)

AFF and its successor AFF4 are containers that store disk image content and associated
metadata (Cohen, Garfinkel & Schatz, 2009).

XML Information Retrieval Appproach to digital Forensics (XIRAF)

XIRAF (Alink, Bhoedjang, Boncz & de Vries, 2006) is a framework that extracts features
from a forensic target using forensic tools and stores them in a high­performance eXtens­
ible Markup Language (XML) database system. The database is queried using XQuery. An
analyst friendly web interface simplifies the composition of an XQuery and its execution.
XIRAF has three components, (a) tool repository (b) feature extraction, and (c) storage sub­
system. The tool repository contains feature extraction tools, used by the feature extraction
component. Features extracted are stored on and queried from the XML database

15



Digital Evidence eXchange (DEX)

DEX (Levine & Liberatore, 2009) is an XML description of the transformations made to
acquired raw data and the tools used. The tool agnostic format is aimed at documenting the
products of a forensic investigation. A crucial part of being agnostic of the tool used is that
different tools can be used to work on raw data but the result is documented in a similar
fashion. Thus, digital forensic investigators are able to compare and exchange investiga­
tion results without being required to use the same tools. Investigation results can also be
reproduced using the DEX format and the raw data. In order to generate DEX output, the
digital forensic tools used in investigations are wrapped.

Digital Forensics XML (DFXML)

DFXML is a subset of the XML language that is designed to represent and exchange struc­
tured forensic information and forensic processing results (S. Garfinkel, 2012a). Despite
its name, DFXML is not restricted to XML format only. It can be represented using other
formats such as protocol buffers and JavaScript Object Notation (JSON). Some of the goals
DFXML seeks to accomplish include:

• Human readable

• Extensible

• Easy to generate and ingest

• Complement existing forensic formats

• Adhere to existing practices and standards

These goals allow new and existing users to use DFXML with minimal prior experience
with it. The goals also enable developers to incorporate DFXML into their forensic tools
and extend DFXML to match industry practices and standards.

As of version 1.3.0, DFXML represents the following sections:

• Metadata describing the source input

The source element describes the input given to the digital forensic tool.

• Metadata describing the forensic tool used

The creator element describes the forensic tool that did the analysis and created the
DFXML document. The build_environment element describes the environment in

16



which the forensic tool was built. The execution_environment element describes the
environment in which the forensic tool was executed.

• Metadata describing the storage media

The diskimageobject element describes the storage media being analysed.

• Metadata describing the storage contents The partitionsystemobject and volume ele­
ments represent the partitions and the volumes present on the storage media.

• Metadata describing files in a partition

The fileobject element represents the files and folder found on the storagemedia being
analysed.

• Resource usage

The rusage element describes how much time and resources used by the forensic
operation.

Cyber Observable eXpression (CybOX)

CybOX is used to represent cyber observables. A cyber observable is a set of properties
that describe an entity in a cyber environment e.g. a UNIX file or a Windows Registry Key.
CybOX has been incorporated into STIX 2.0.

Structured Threat Information Expression (STIX)

It’s used to represent and exchange Cyber Threat Intelligence (CTI) (OASIS Open, 2018).
STIX defines four major object types: domain objects, relationship objects, marking defin­
ition objects and bundle objects. Domain objects are used to represent unique concepts
in CTI. The twelve domain objects that are defined in STIX are Attack Pattern, Cam­
paign, Course of Action, Identity, Indicator, Intrusion Set, Malware, Observed Data, Re­
port, Threat Actor, Tool andVulnerability. Relationship objects declare relationships between
domain objects. Marking definition objects contain the actual data markings representing
handling or sharing requirements of the data. Bundle is a collection of objects grouped
together.

17



2.4 Digital forensic corpora

A digital forensic corpus is a collection of items that are the focus of digital forensic oper­
ations. Such a collection can contain data from a variety of sources e.g. hard drive images,
memory images, cell phone and camera images, network packet capture. A specially crafted
digital forensic corpus containing realistic data has a number of benefits, including testing
correctness of a forensic tool’s results, comparing two or more forensic tools, training and
educating digital forensic experts (S. Garfinkel, Farrell, Roussev & Dinolt, 2009). Digital
forensic corpora enable researchers to test techniques they have developed and also valid­
ate techniques other researchers have developed (S. Garfinkel et al., 2009). Thus, the tests
can be conducted and results validated by anyone. S. Garfinkel notes that maintaining an
extensive digital forensic corpus has a number of challenges chiefly related to the diversity
and size of the data stored.

2.5 Proposed concept overview

The overall conceptual is shown in Figure 2.3.

  

Nugget

User interface

Language interpreter

Language Runtime

RPC  
using 

standardised 
representation

Forensic tool
container 

User

Figure 2.3: Proposed architecture overview.

18



The implementation would has the mobile forensic tool implemented as a containers. The
mobile forensic tools would communicate via RPC with the Nugget runtime. The data
representation and exchange format was made to use a standardised forensic information
container.

19



Chapter 3

RESEARCHMETHODOLOGY

3.1 Research design

The research methodology describes how the research will be done so as to accomplish the
identified research objectives. The research was divided into three major phases: (a) Re­
view and evaluate existing standards of digital forensic information containers, (b) Review
and evaluation of existing mobile forensic tools, (c) Design, implementation and testing of
integrations with mobile forensic tools.

Each phase was then broken down into specific research tasks. These tasks handled specific
areas of the research objective.

3.1.1 Review and evaluate existing standards of digital forensic in­
formation containers

This phase of the research shall be an exploratory study, focusing on existing standards of
digital forensic information containers.

1. Identify a list of open source or publicly available digital forensic information con­
tainers

This research task was accomplished by conducting a survey of the concerning liter­
ature.

2. Identify the container’s attributes

3. Determine the best container to use for Nugget’s extractors and serialisers

The output of this phase shall inform the researcher what digital forensic container format
to incorporate into Nugget, satisfying the second research objective.

3.1.2 Review and evaluation of existing mobile forensic tools

In this phase, the researcher implemented an exploratory study into mobile forensic tools
that can be incorporated into Nugget. An exploratory study consists of collecting, analysing

20



and interpreting observations about known designs, systems or models (Edgar & Manz,
2017). The research tasks done to implement this research objective were:

1. Identify a list of open source or publicly available mobile forensic tools

An exploratory studywas done by doing a survey of the concerning literature (Kothari,
2004). Some of the tools identified were also a result of the exploratory study done
in the first phase of the research.

2. Identify the tools’ inputs and their resulting outputs

3. Determine how the tool can be incorporated into Nugget

The output of this phase informed the researcher which tools to integrate with Nugget, thus
satisfying the first research objective.

3.1.3 Design, implementation and testing of integration with mobile
forensic tools

In this phase, the researcher will design, implement and test the integration of mobile
forensic tools with Nugget. The tools to be integrated would be the outcome of the first
phase. Standardisation of information within Nugget will be informed by the second phase.
To implement this phase, the researcher used applied experimentation (Edgar & Manz,
2017) techniques. These techniques are useful when comparing alternative solutions to
a problem. Steps to be taken in this phase are:

1. Identify items in digital forensic corpora to be used in testing the integrations. Samples
to be used for testing in the experiment will be sourced mainly from digital forensic
corpora e.g. Digital Corpora (Digital Corpora, 2017) as well as digital forensic chal­
lenges, e.g. Digital Forensics Research Workshop (DFRWS) challenges.

2. Identify a mobile forensic tool to integrate with Nugget

3. Design and implement the integration of the tool with Nugget

4. Test the integration using digital forensic items identified in step 1

5. If step 4 succeeds, repeat steps 2, 3 and 4 using another mobile forensic tool.

The above steps integrate well with the system development methodology chosen, evolu­
tionary prototype. The methodology creates robust prototypes in a structured way and is
constantly refined according to the requirements of the final system. The output of this

21



phase shall be the integration of mobile forensic tools to Nugget, satisfying the third re­
search objective.

3.1.4 Conceptual architecture

The conceptual architecture of the forensic tool wrapper is illustrated in Figure 3.1.

Interfaces

Command Line
Interface RPC Server

Forensic target e.g. devices, emulators, device images, logical extracts

Forensic Tool
Platform

Instructions

DFXML
Document

Forensic Tool
Instructions

DFXML Data
Structures

Command line  
invocation of
forensic tool

Forensic tool
results

User RPC Client

Forensic tool platforms

Android Device Android Image iPhone Image

Forensic Tools 

zipinfo icattar unzipadb fiwalk

statfile fcat tsk_loaddbfind

Figure 3.1: Conceptual forensic tool wrapper architecture.

The architecture consists of three primary layers:

• Interfaces

22



The Interfaces layer contains the ways in which the forensic tool platforms can be
accessed by either users via the command line interface or the Nugget runtime via
the RPC Server.

• Forensic tool platforms

This layer contains the logic toworkwith specificmobile device platforms e.g. iPhone
and Android. Android Debug Bridge (ADB) is a specialisation of the Android plat­
form that works with physical devices or emulators. The components in this layer
accept instructions from the interfaces and return DFXML documents. Forensic com­
putation is delegated to the forensic tool layer.

• Forensic tools

This layer provides utilities to interact with the actual tools that do the work. The out­
put from components within this layer is appropriate DFXML objects e.g. FileObject
is the output from file­based operations.

3.1.5 Forensic tool platform data flow

The forensic tool platforms are meant to consume the evidence presented, perform the
forensic computation requested and provide the results in DFXML. Even though there are
different wrappers for the different mobile device platforms, the phases the wrappers go
through to process the data and present results are similar. The phases are summarised in
Figure 3.2.

ExtractStaging Analyse SerialiseForensic
Target

Forensic Evidence  
in DFXML

Figure 3.2: Forensic tool platform phases.

Each tool is designed to implement the following phases:

• Staging Phase

In this phase the forensic tool platform prepares the provided artefact to be used by
the forensic tool. The staging process typically means that the provided artefact is
placed in a specific working directory, ready to be ingested by the forensic tool.

• Extraction Phase

23



The forensic tool wrapper executes the forensic tool targeting the staged artefact to
extract one or more specific files or pieces of data. In the case of forensic images,
the forensic tools used would be SleuthKit, archive files would use ZIP or TAR while
Android devices or emulators would use the ADB.

• Analysis Phase (optional)

This is an optional phase that performs post­extraction processing of the data. If the
user’s or client’s request requires a pre­analysed response, this phase will be respons­
ible for that. An example of this would be counting the number of files in a folder
from the data source or evaluating the contents of an on­device data store e.g. the
SMS database.

• Output Phase

The data retrieved from the forensic tool is wrapped in the appropriate DFXML rep­
resentation and sent to the user.

3.2 Implementation

3.2.1 DFXML Extension

The representation and exchange format chosen for the project was DFXML. Some of the
advantages DFXML brings to the table include:

• Extensibility

It can be extended to represent items that were not part of the initial specification.

• Provenance

It can store information related to how and where the forensic computation was done,
allowing other users to independently verify or duplicate the results.

• Actively used in forensic tools

The format is used in forensic tools such as fiwalk (File InodeWalk) (S. L. Garfinkel,
2009). Therefore integrating such tools would be relatively easy.

• Influenced by an existing and popular forensic tool

The format has been influenced by the SleuthKit, a popular forensic tool­kit. Due to
this, forensic examiners that are familiar with the SleuthKit tool­kit would be familiar

24



with DFXML.

• Generic / General usage, not just disk forensics

Unlike other representation standards, DFXML is not specific to one area of forensics
e.g. disk forensics. Its extensibility enables the user to use it for more than what it
was initially specified.

• Ease of validation of output

Being a subset of XML, DFXML can be easily validated using XML Schema Defin­
ition (XSD) files. The XSD files define the data structures used in DFXML and
validate their usage.

• Human readable

Compared to other standards, DFXML is easier to use and understand since it’s not
a binary format.

The DFXML format offers ways to describe disk or image­based evidence e.g. from storage
devices. As of this writing, the latest version of DFXML (version 1.2.0) is based on disk
forensics, with a heavy influence from TSK. DFXML supports extensibility and thus evid­
ence sources that were not handled by DFXML can be easily incorporated. The DFXML
specification is written in XSD files (DFXML Working Group, 2017).

Support for mobile forensics evidence types

Mobile device forensics introduces new evidence types to deal with, other than on­disk files,
such as SMS and MMS messages and call logs. To extend the specification, the researcher
created an XSD file that specified the following elements in the mobile XML namespace:

• SMS and MMS Message

This object specifies SMS and MMS messages extracted from the input device or
file. Details of this object are highlighted in Table 3.1. The SMS and MMS evidence
structure report was influenced by the structure used by the SMS_Message_Object
schema (The MITRE Corporation, 2016) used by CybOX, the iPhone SMS/MMS
message format and the Android SMS/MMS message format.

25



Table 3.1: SMS and MMS Message representation
Field Description Type
Kind Kind of message i.e. SMS or MMS string
Sender The phone number of the message’s sender string
Recipient The phone number of the message’s recipient string
Body Contents of the message string
DateSent The date and time when the message was sent date time
DateReceived The date and time when the message was received date time
Read Whether the message was read or not boolean
Headers SMS/MMS message headers binary
Subject The subject of an MMS message string
CountryCode The ISO 3166­1 alpha­2 country code or the Mobile

Country Code e.g. KE or 639 for Kenya
string

Type Type of the message e.g. inbox, sent, outbox string

A sample representation of an SMS is highlighted in Listing 3.1.

Listing 3.1: SMS message representation
<mobile:sms_mms>
<mobile:kind>sms</mobile:kind>
<mobile:sender>+17033409661</mobile:sender>
<mobile:body>How&#39;s the flashmob going</mobile:body>
<mobile:date_received>2012−07−11T20:07:59+03:00</mobile:date_received>
<mobile:read>0</mobile:read>
<mobile:type>inbox</mobile:type>
</mobile:sms_mms>

• Phone call

This object represents the call history extracted from the device. Details of this object
are highlighted in Table 3.2.

26



Table 3.2: Phone Call representation
Field Description Type
From The phone number of the initiator of the phone call string
To The phone number of the call’s recipient string
DateCalled The date and time when the call was made date time
Duration How long the phone call lasted, in seconds positive integer
CountryCode The ISO 3166­1 alpha­2 country code or the Mobile

Country Code of the sender or recipient e.g. KE or 639
for Kenya

string

Type Type of the phone call e.g. incoming, outgoing,
blocked

string

Blocked Whether the phone call was blocked or not boolean

A sample representation of a phone call is highlighted in Listing 3.2.

Listing 3.2: Phone call representation
<mobile:call>
<mobile:from>5713083236</mobile:from>
<mobile:date_called>2012−07−06T18:18:50+03:00</mobile:date_called>
<mobile:duration>244</mobile:duration>
<mobile:country_code>310</mobile:country_code>
<mobile:type>incoming</mobile:type>
</mobile:call>

• Location information

This object represents an instance of coordinates found in the device. The coordin­
ates may come from the device’s cellular information, WiFi information or Global
Positioning System (GPS) / Global Navigation Satellite System (GLONASS) chips.
Details of this object are highlighted in Table 3.3.

27



Table 3.3: Location information representation
Field Description Type
Longitude The longitude of the location floating point number
Latitude The latitude of the location floating point number
Source The source of the location e.g. GPS, cell, wifi string
Confidence The confidence level of the location information positive integer
Timestamp The date and time when the location information was

recorded
date time

CellMCC The cellular Mobile Country Code used (if source is
cell) e.g. 639 for Kenya

string

CellMNC The cellular Mobile Network Code used (if source is
cell) e.g. 02 for Safaricom

string

CellLAC The cellular Location Area Code used (if source is cell) string
CellCI The cellular Cell Identifier used (if source is cell) string
WifiMAC The MAC of the WiFi network adapter used (if source

is wifi)
string

The representation combines the available location sources available on a mobile
device and separates between the different sources using the Source attribute. List­
ing 3.3 shows a representation of a location from a WiFi source while listing 3.4
shows a representation of a location from a device’s cellular information.

Listing 3.3: Location information from a WiFi source
<mobile:location>
<mobile:long>−77.08572131</mobile:long>
<mobile:lat>38.8291192</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>50</mobile:confidence>
<mobile:timestamp>2012−07−10T19:46:29+03:00</mobile:timestamp>
<mobile:wifi_mac>0:a0:f8:bc:25:a7</mobile:wifi_mac>
</mobile:location>

Listing 3.4: Location information from cellular service
<mobile:location>
<mobile:long>−77.11546951</mobile:long>
<mobile:lat>38.87767624</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>70</mobile:confidence>
<mobile:timestamp>2012−06−13T22:01:21+03:00</mobile:timestamp>
<mobile:cell_mcc>310</mobile:cell_mcc>
<mobile:cell_mnc>410</mobile:cell_mnc>
<mobile:cell_lac>7985</mobile:cell_lac>
<mobile:cell_ci>160043533</mobile:cell_ci>
</mobile:location>

28



• Bookmarks and web browser history

Thiswas another new concept introduced toDFXML, borrowing from theURL_History_Object
defined in CybOX (The MITRE Corporation, 2016). This object represents the web
browsing history of the user and also any bookmarks found. Details of this object are
highlighted in Table 3.4.

Table 3.4: Bookmark and web browser history representation
Field Description Type
WebBrowser Name of the web browser string
URL URL of the bookmark or visited location string
ReferrerURL The referring page’s URL string
PageTitle Title of the page or bookmark string
VisitDate When the bookmark was added or when the URL was

visited
string

• Device Information

Metadata about the device being investigated was supported by DFXML using the dc
namespace (DFXMLWorking Group, 2017; Dublin Core Metadata Initiative, 2018).
The namespace offers a definition of meta information such as the creator of the
DFXML document, date of creation, description and format of the forensic target.
The Device Information object extends this information by adding information about
the mobile forensics target. Details of this object are highlighted in Table 3.5.

Table 3.5: Device information representation
Field Description Type
Name Name of the device string
Model Model of the device string
Release Release number of the device string
Manufacturer Name of the device’s manufacturer string
SerialNumber Serial number of the device string
IMEI IMEI of the device string

Listing 3.5: Sample representation of device information
<mobile:device_info>
<mobile:name>iPhone OS</mobile:name>
<mobile:release>4.2.1</mobile:release>

</mobile:device_info>

29



Support for multiple commands

Some of the provenance information in DFXML is stored in the ExecutionEnvironment sec­
tion. The section has a CommandLine property that shows how the tool was invoked. An
assumption made was that only one command should be run. However, some extraction
procedures require use of more than one forensic tool. Thus, the definition of tool invoca­
tion had to be expanded to allow representation of multiple invocations and preserving their
order. To fulfil this requirement, the mobile namespace defines a new element, Command­
Line that has the command being invoked and also its position in a sequence of commands.
Details of this object is highlighted in Table 3.6.

Table 3.6: Process representation
Field Description Type
Command The command line invocation of the forensic tool string
Sequence The position of the command in a sequence of com­

mands
positive integer

3.2.2 Nugget Extension

Incorporation of DFXML

Nugget was already capable of handling disk, image and network information. However,
this information was not standardised. This allowed the tools being integrated to influence
the internal data structures used in Nugget. DFXML was used to standardise this informa­
tion. In addition to standardising existing data structures, DFXML enables Nugget to work
with the mobile extensions of DFXML.

The updated DFXML schema was incorporated into Nugget’s runtime. This enabled Nug­
get to consume and manipulate DFXML documents. Parts of the Nugget runtime that were
changed to accommodate DFXML were the extractors and the serialisers. As the external
data ingestor of the runtime, extractors were rewritten to enable consumption of DFXML
forensic data from forensic tool platforms. The serialisers are the output system of the
runtime so they were changed to be able to output DFXML.

Provenance information

Addition of extra information to enable different investigators to reproduce the results of a
forensic computation.

30



Case identification information

This information allows forensic investigators to have a way to associate a forensic compu­
tation expressed in Nugget with an investigation. It is set at the top of a Nugget script file
by specifying the case number, the investigation date and the investigator.

Multiple extractors, same type

Existing a file extractor. Devices require different extractor but present similar information
description

The visual presentation of information

Introduction of tabulated information enables users to consume more information about the
results. For example, to display files found from a forensic computation, only the filename
was shown.

[
/Videos/Cat.m4v

]

With the extra information, the forensic investigator can be able to view the file’s meta
information such as the modification, access and create times.

Filename Created Modified Accessed Size Type
---------------- -------- ------------------- ------------------- ------ -----
/Videos/Cat.m4v <nil> 2019-03-27T22:42:44 2019-02-17T17:56:49 7688 d

3.2.3 RPC Server Interface

It provides a simple interface for the Nugget runtime, to extract information from forensic
targets. It mediates communication between Nugget scripts and forensic tools. The RPC
interface provides its output in DFXML format. To keep the interface simple, only one
method was exposed via RPC, Dfxml. The Dfxml method required the client to supply
specific arguments, as defined in Table 3.7.

31



Table 3.7: Arguments passed onto the Dfxml RPC method
Argument Description Required?
Target The forensic target to be worked on Yes
Platform The platform that corresponds to the forensic target. The sup­

ported options are android to represent Android forensic im­
ages, iphone to represent iPhone forensic images and adb to rep­
resent Android devices or emulators.

Yes

Command The forensic computation to be done Yes
CommandArgs Arguments to be passed on to the forensic computation No

The result of the forensic computation was wrapped in a DFXML object and sent to the
RPC client.

3.2.4 Command line interface

While the primary client of the forensic tool platforms is the Nugget runtime, a user can
also use it as a stand­alone program. The command line interface provides the users with
an interface similar to the RPC server. To provide the user with a friendly way to consume
the data output, the command line interface provides users with a tabular format.

3.2.5 Android Image Platform

The Android Image platform focused on extracting information from images or logical ex­
tracts from devices running the Android Operating System. Images of devices could be
raw disk images or specialised forensic containers, e.g. the Expert Witness Format. Logical
extracts could be stored as file archives e.g. ZIP or TAR. The Android Open Source Pro­
ject (AOSP) maintains and provides the source code to the open source parts of Android.
Therefore, finding documentation and implementation of features such as SMS and phone
calls was reasonably straight­forward.

SMS and MMS extraction

Until Android 6, SMS and MMS information was stored in an SQLite database located at
/data/data/com.android.providers.telephony/databases/mmssms.db The database contains
a table named sms that stores SMS and MMS information using the columns described in
Table 3.8.

32



Table 3.8: Columns in the sms table of the mmssms.db database
Field Description
_id Unique identifier of the message
thread_id Thread ID of the message
address Address of the other party
person Person ID of the sender
date The date the message was received
date_sent The date the message was sent. New in Android 2.1
protocol Protocol identifier code e.g. MMS, SMS
read Whether the message has been read
status TP­status value for the message e.g. none, complete, pending, failed
type Type of the message e.g. inbox, draft, sent
reply_path_present Whether the TP­Reply­Path bit was set on this message
subject Subject of the message if present
body Body of the message
service_center The service centre through which to send the message, if present
locked If the message has been locked
error_code Error code associated with sending or receiving the message
seen Indicates whether the user has seen the message.
sub_id Subscription ID to which the message belongs to. New in Android 6.0
creator The name of the application that sends the message. New in Android 6.0

With the introduction of multiple users on one device, Android 5 and higher introduced sep­
aration of application and data based per user. Thus, each user has their own mmssms.db
located at /data/user/0/com.android.providers.telephony/databases/mmssms.db, where 0 is
the user identifier. Starting from Android 5, a new messaging application was introduced
to Android, called Messages. Its database is stored in /data/data/com.android.messaging/­
databases/bugle_db. Similar to the previous Android version, the database was also separ­
ated per user, storing user­specific content in /data/user/0/com.android.messaging/databases/­
bugle_db. The database had the columns described in Table 3.9:

33



Table 3.9: Columns in the messages table of the bugle_db database
Field Description
_id Unique identifier of the message
conversation_id Foreign key relation to the related conversation
sender_id Foreign key relation to the message’s sender
sent_timestamp When the message was sent
received_timestamp When the message was received
message_protocol Type of message e.g. SMS, MMS
message_status TP­Status of the message e.g. none, complete, pending, failed
seen Whether the user has seen the message or not
read Whether the user has read the message or not
sms_message_uri URI of the message
sms_priority Message priority
sms_message_size Size of the message in bytes
mms_subject Subject of an MMS
mms_transaction_id Transaction identifier of an MMS message
mms_content_location Location of MMS content
mms_expiry When MMS message will expire
raw_status TP­Status of the message e.g. none,complete,pending,failed

Extraction of data from themmssms.db and bugle_db databases was done in two steps. First
the database file was extracted from the device or the image onto theworkspace. Second, the
extracted database file was opened in read­only mode to prevent writes to it and then SQL
queries were issued to it. The resulting information was wrapped in an SMSMMSMessage
DFXML object.

Call history extraction
Call history is stored in an SQLite database located at /data/data/com.android.providers.­
contacts/databases/contacts2.db. After the introduction of multiple users on a device, the
location of the database file changed to /data/user/0/com.android.providers.contacts/databases/­
contacts2.db where 0 is the user identifier. The database contains a table named calls that
stores call history information using the columns described in Table 3.10.

34



Table 3.10: Columns in the calls table of the contacts2.db database
Field Description
_id Unique identifier of the row
number The number of the caller or callee
date When the call was placed
duration How long the call lasted
type Type of call e.g. incoming, outgoing,
name Name of the caller, if present
numbertype Type of the number
numberlabel Label of the number
countryiso ISO if the country within which the call was made
voicemail_uri URI of voicemail, if applicable
is_read In case of a missed call, if it’s read or not
geocoded_location Location within which the call was made
matched_number The matched number in the contacts database
normalized_number The normalised number
photo_id Link to a photo of the other party
formatted_number The formatted number

Since Android 7.1, the location of call history has been moved from contacts2.db to call­
history.db, both located in the same folder. The new database file contained the columns
defined in Table 3.10 with some additional columns defined in Table 3.11

Table 3.11: Extra columns defined in the calls table of the callhistory.db database
Field Description
via_number If the call was redirected it’s recorded here
subscription_id Link to the call’s subscription
phone_account_address The address as stored on the phone
phone_account_hidden Whether the account is hidden
last_modified When the record was last modified
dirty Whether the record has changed
deleted Whether the record is deleted or not

File location and extraction
Location and extraction of files from Android forensic images was done using fiwalk (S. L.
Garfinkel, 2009), icat (Venema, 2018) and fcat (Carrier, 2018b) from the SleuthKit tool
collection. fiwalk was used to extract all the information about disk volumes, folders and
files available on the forensic image. The output of fiwalk was formatted as a DFXML
document. Using the results from fiwalk’s image analysis, the Android wrapper was able to

35



locate specific files of interest, e.g. contacts2.db for SMS or MMS messages. The located
file contained its full path and name, inode number, integrity hash values and other attributes
as highlighted in Table 3.12

Table 3.12: Attributes of a DFXML FileObject
Attribute Description
Filename Name of the file
Type Type of the file e.g. folder, regular file, character file

The FileObject information and enabled the extraction of the file’s content from the forensic
image using either icat or fcat. icat extracted a file’s content using the file’s inode number
while fcat extracted a file’s content using the file’s full path. The extracted files are then
checked for their contents’ integrity by using the hashing algorithm and value provided by
the FileObject instance.

Device information
Information about a device is stored in a properties text file, located at /system/build.prop.
The file contains details such as the device’s name, its manufacturer, its CPU architecture,
its Android SDK release and much more.

3.2.6 Android Device Platform

The ADB is a command line tool that allows users to communicate with a connected device
or emulator (Google, 2018). Devices connect to the forensic machine using USB, WiFi or
Bluetooth. ADB is composed of three components:

• client that runs on the forensic machine and sends commands to the server

• daemon that runs on the Android device or emulator

• server that runs on the forensic machine and manages communication between the
client and the daemon

With ADB, an investigator has access to files on the device, canmanipulate applications and
services on the device and much more. If the device is rooted, the entire device’s contents
are available to the investigator. Using ADB may not be forensically sound since it does
not guarantee that it would not result in the modification of data on the device. Examples
of this include:

36



• If the device is powered off, it has to be powered back on to be able to use the ADB
server on the device

• To make the device accessible via ADB, the debugging setting needs to be enabled.
Enabling the debugging setting on a device requires unlocking the device (if it was
previously locked), enabling developer options (if it wasn’t enabled) and finally en­
abling the debug setting.

• To allow access to system files, ADB requires to be run in root mode. Running in root
mode gives the user root privileges only if the device has been rooted. Devices that
have not been rooted require to be rooted first in order to gain root access. Rooting a
device modifies data on the device.

• To run very long shell commands, shell script files require to be written onto the
device’s file system and then executed.

Even with the challenges highlighted above, ADB can be used carefully to ensure minimal
or no modifications are done on the device. McKemmish proposes that forensically sound
evidence should:

• not be affected by the digital forensic process

• document all errors identified

• be capable of independent verification

• be taken by a sufficiently experienced digital forensic analyst

By taking the above into consideration, evidence recovered using ADB can be forensically
sound. The provenance information provided by the Android Device Platform’s DFXML
output can also help the investigator prove that the evidence is forensically sound.

The ADB provides a shell utility that allows users to execute arbitrary commands on the
device via a command line interface.

File location and extraction
Locating files on the device’s file system was done using find. find traverses the specified
folder tree looking for files that match the specified search criteria. Once found, a file’s
meta information is extracted using stat. Execution of this technique differs between pre­
Android 7 devices and post­Android 7 devices because of the differing versions of find. For
devices running Android 7 and above, the find command was able to run the stat command
for each file located using the ­exec option. Devices that run less than Android 7 lack the

37



­exec command line argument and thus required the two commands to be run as separate
invocations, with the result of find being the input of stat. The output of find could be larger
than the allowed maximum length of commands. A shell script pushed to the device and
executed on the device was used to overcome this.

Extracting files from the device’s file system was done using adb pull (Google, 2018).

SMS and MMS extraction
This process is similar to the Android platform’s SMS and MMS extraction process. How­
ever, on mobile devices without root access, this extraction would not work because of
permission restriction.

Call history extraction
This process is similar to the Android platform’s SMS and MMS extraction process. How­
ever, on mobile devices without root access, this extraction would not work because of
permission restriction.

Device information
The techniques used to extract device information in the Android platform applied to the
Android Device Platform as well. Additionally, ADB provides the getprop utility that sim­
plifies accessing device information.

3.2.7 iPhone Image Platform

The iPhone Image platform dealt only with images and logical extracts from iPhone devices.
The iPhone Operating System, iOS, is closed source. Thus, much of the knowledge about
the internals of iOS have been acquired through observation and reverse engineering. Public
projects such as iphoneanalyzer (Crawford & matproud, 2012), iPhone Tracker (Warden,
2011) and The iPhone Wiki (The iPhone Wiki, 2015a) contributed to the techniques used in
the iPhone platform.

File location and extraction
It worked in similar fashion to the Android Platform’s file location and extraction since they
both deal with forensic images or file archives.

SMS and MMS extraction
SMS and MMS messages are managed by the Messages system application. The applica­
tion’s database is located at /private/var/mobile/Library/SMS/sms.db (Tamma et al., 2018;

38



The iPhone Wiki, 2015b). The main table in the sms.db database is the messages table.
Some of the known columns defined in the sms.db database are highlighted in Table 3.14.

Table 3.13: Some of the known columns defined message table of the sms.db database
Field Description
ROWID A unique identifier of the row
address Name or phone number of the other party
date Date message was sent / received
text Contents of the message
flags Status of the message e.g. sent, inbox, outbox, failed to send
svc_center Service centre
group_id Unique identifier of the message’s conversation group
subject Subject of an MMS message
country ISO 3166­1 alpha­2 country code e.g. KE for Kenya
read Whether the user has read the message or not

Call history extraction

Table 3.14: Columns defined message table of the sms.db database
Field Description
ROWID A unique identifier of the row
address Name or phone number of the other party
date Date message was sent / received
duration Duration of the call in seconds
flags Status of the call e.g. blocked, incoming, outgoing
id Id of the contact being called, ­1 for incoming calls
country_code Mobile country code of the country the phone was in when the call was

placed
network_code The Mobile network code of the network the phone was in when the call

was placed

Location history extraction
Location history was retrieved from the consolidated.db database. The database contains
locations recorded by the device from cellular sources and WiFi sources.

Device information
Device information was retrieved from a property list file named SystemVersion.plist. The
file is located at /private/var/System/Library/CoreServices/.

39



3.2.8 Wrapping forensic tools

Table 3.15 summarises the tools used to execute forensic commands.

Table 3.15: Summary of the tools used to execute forensic computations
Name Description
adb The Android Debug Bridge, used to communicate with Android devices or emu­

lators.
icat Part of the SleuthKit tool collection that outputs the contents of a file from a

forensic image­based on its inode number.
fcat Part of the SleuthKit tool collection that outputs the contents of a file from a

forensic image­based on its name.
file A tool to determine the Multipurpose Internet Mail Extension (MIME) type of a

file.
fiwalk Part of the SleuthKit tool collection that finds and extracts file information from a

forensic image into DFXML.
stat A tool to display metadata about a file or a file system.
tar A tool to examine and extract files from TAR archive files
tsk_loaddb Part of the SleuthKit tool collection that finds and extracts file information from a

forensic image into an SQLite database.
unzip A tool to extract files from ZIP archive files.
zipinfo A tool to examine ZIP archive files.

3.3 Testing

Testing the system was done to ensure the accomplishment of two main goals; the integra­
tion with the Nugget runtime and the evaluation of mobile forensic evidence. To test the
accomplishment of these two goals, the testing was split into two phases. The first phase of
testing focused on testing the system’s ability to ingest and evaluate mobile forensic evid­
ence. In this phase, the system was used via its two interfaces, the Command Line Interface
and the RPC interface. Input was given to the system and the output evaluated against pre­
viously established expected output. The systemwas tested in isolation, without connecting
to the Nugget runtime. The second phase of testing focused on testing the integration of
the system with Nugget’s runtime. Input during this phase of testing was Nugget scripts
that declare forensic computations on the specified mobile forensic evidence. The Nugget
runtime interpreted the scripts and sent the appropriate commands to the system. The output
of the results was compared against the previously established expected output. A sample
Nugget script used in testing is shown in Listing 3.6. The scripts declares that message,
phone call and location information be extracted from the provided forensic targets and the

40



results presented in tabular form.

Listing 3.6: Sample listing of Nugget script used for testing
1 case_number ”001”
2 investigator ”Chomba Ng’ang’a”
3 investigation_date ”08/04/2018”
4 workspace ”/nugget−tools/tmp”
5
6 msgs=”iphone:/it_forensics/tracy−phone−2012−07−15−final.tar” | extract as message
7 print msgs.SMSMMSMessage as table
8
9 calls=”iphone:/it_forensics/tracy−phone−2012−07−15−final.E01” | extract as call
10 print calls.PhoneCall as table
11
12 locations=”iphone:/it_forensics/tracy−phone−2012−07−15−final.tar” | extract as location
13 print locations.Location as table

3.3.1 Test samples

Test samples were obtained to evaluate the system. Each platform had its own specific set
of test samples. Table 4.3 highlights the samples.

Table 3.16: Summary of the test samples used to evaluate the system
# ID Platform Description
1 iPhone­1 iPhone Image TAR file (Tracy’s phone)
2 iPhone­2 iPhone Image EO1 file (Tracy’s phone)
3 iPhone­3 iPhone Image L01 file (Tracy’s phone)
4 Android­1 Android Image TAR file (Carry’s tablet)
5 Android­2 Android Image E01 file (Carry’s tablet)
6 Android­3 Android Image BIN file (Carry’s phone)
7 Android­4 Android Image ZIP file (Carry’s phone, FTK logical)
8 Android­5 Android Image NANDDUMP file (Nexus One)
9 Android­6 Android Image <no extension> binary file (Nexus S1)
10 Android­7 Android Image BIN file (Samsung Galaxy S6 Edge)
11 ADB­1 Android Device Blackberry Priv
12 ADB­2 Android Device Sony Xperia SP
13 ADB­3 Android Device Google Nexus 7 2013
14 ADB­4 Android Device Android 9 Emulator
15 ADB­5 Android Device Android 8 Emulator
16 ADB­6 Android Device Android 7 Emulator
17 ADB­7 Android Device Android 6 Emulator
18 ADB­8 Android Device Android 5.0 Emulator
19 ADB­9 Android Device Android 4.3 Emulator
20 ADB­10 Android Device Android 2 Emulator

41



iPhone Image Platform samples

The iPhone platform was tested using multiple images of the same iPhone obtained from a
simulated scenario about an attack in a city (Digital Corpora, 2018). The iPhonewas used by
a fictitious character in the scenario called Tracy. The images iPhone­2 and iPhone­3 were
created using EnCase (for logical extraction) while iPhone­1’s method of extraction was
unspecified. The EnCase produced files were in L01 and ZIP formats while the unspecified
extraction tools were in TAR and E01 formats.

Android Image Platform samples

The platformwas tested using various images from different sources. The first image source
was the attack in a city scenario (Digital Corpora, 2018). It provided a phone and tablet
owned by Carry, a fictitious character in the scenario. Physical extraction by UFED ver­
sion 1.2.0.0 was used to extract data from Carry’s phone into BIN files while logical extrac­
tion was done using FTK Imager into a ZIP file. Extraction from the tablet was done using
EnCase into E01 and TAR file formats. The second image source was from the Digital Cor­
pora’s mobile repository (Digital Corpora, 2015). This source provided two device images,
Nexus One and Nexus S1. The method of extraction was not specified. The third image
source was from the DFRWS annual forensic challenges. The 2018 challenge provided a
physical image of a Samsung Galaxy Edge S6 (DFRWS, 2018). The method of extraction
was not specified.

Android Device Platform samples

Samples to test this platform were physical devices and emulated devices. The physical
devices were Blackberry Priv phone, Sony Xperia SP phone and Google Nexus 7 2013
tablet. Both the Sony and the Nexus were permanently rooted by installing LineageOS.
The emulators were made using the Android SDK. Emulators were running Android 9,
Android 8, Android 7, Android 6, Android 5, Android 4 and Android 2. The emulators
were prepared for testing by making simulated messages, calls and location updates on the
device.

3.3.2 Testing procedure

Before testing the system with the selected samples, expected results from the samples were
obtained. The expected results provided a baseline against which the system’s test results
could be compared with and determined to be correct or not. A baseline expectation for

42



each of the forensic targets available was established, where applicable. The baseline for
the Android Image platform was established by using another forensic tool, Autopsy. The
baseline for the Android Device platform was established by pre­seeding the data in the
emulators and devices. This was done by using the devices e.g. sending and receiving
SMS, making and receiving phone calls.

After establishing the expected results, each forensic target was analysed using the system’s
command line interface and the RPC server interface. The output from the command line
interface, in DFXML format, was validated against the modified DFXML’s XSD specific­
ation as defined in Appendix A.1. To test the system’s integration with Nugget, Nugget
script files were written and executed. The output of the script files was validated against
what was expected by the baseline previously set.

43



Chapter 4

RESULTS AND DISCUSSIONS

4.1 Android Image Platform

The Android Image platform used seven sample files for testing. The values listed in the
Expected columns were obtained from using another forensic tool, Autopsy. Autopsy has
an Android ingestion module that extracts information that is specific to Android­based
device images.

Table 4.1: Summary of the Android platform test results
ID Messages Calls Location Device Information

Found Expected Found Expected Found Expected Found Expected
Android­1 0 0 0 0 0 0 0 1
Android­2 0 0 0 0 0 0 1 1
Android­3 19 19 8 8 0 0 1 1
Android­4 0 0 0 0 0 0 0 0
Android­5 6 6 5 5 0 0 1 1
Android­6 0 0 0 0 0 0 0 1
Android­7 N/A N/A N/A N/A N/A N/A N/A N/A

Sample Android­1 was a TAR archive. The archive had an error listing and extracting its
contents. Sample Android 2 was an E01 container of the same device Android­1 was extrac­
ted from. The device did not have any calls or messages and its device information was able
to be extracted successfully. Sample Android­3 was a BIN file containing the device’s stor­
age content. Extraction of messages, calls and device information was successful. Sample
Android­4 was a logical extract of the same device Android­3 was extracted from. Being
a logical extract, no system files were present thus no results expected. Sample Android­5
was a NANDDUMP file containing the device’s storage content. Extracting calls and mes­
sages from the file succeeded while extracting the device’s information did not succeed.

44



4.2 Android Device Platform

TheAndroid Device platform used ten samples for testing. The values listed in theExpected
columns were obtained by setting up the data on the devices and emulators by making and
receiving calls and text messages.

Table 4.2: Summary of the Android Device Platform test results
ID Messages Calls Location Device Information

Found Expected Found Expected Found Expected Found Expected
ADB­1 0 30 0 30 0 0 1 1
ADB­2 0 17 8 8 0 0 1 1
ADB­3 0 0 0 0 0 0 1 1
ADB­4 0 1 0 1 0 0 1 1
ADB­5 2 2 3 3 0 0 1 1
ADB­6 6 6 9 9 0 0 1 1
ADB­7 11 11 4 4 0 0 1 1
ADB­8 1 1 1 1 0 0 1 1
ADB­9 7 7 5 5 0 0 1 1
ADB­10 2 2 2 2 0 0 1 1

Retrieving device information from all samples was successful. Sample ADB­1 was the
Blackberry Priv. It was not rooted thus access to protected files via ADB was not granted.
This resulted in the failure to fetch any messages, calls or location information. Sample
ADB­2 was the Sony Xperia SP. It had been permanently rooted by installing LineageOS
(The LineageOS Project, 2019), which is based on the Android Operating System. Thus
ADB was able to get root access to the device and pull the required information. However,
the default messaging application on the device had been changed from the default one to
Signal (Open Whisper Systems, 2019) thus SMS and MMS messages were not available to
the system. Sample ADB­3 was a tablet that had been permanently rooted by installing Lin­
eageOS. The tablet did not have any cellular capabilities. This meant that it could not have
been able to make/receive calls or send/receive SMS or MMS messages. Sample ADB­
4 was an emulator running Android 9. An error that occurred during the testing prevented
any analysis from being conducted. Samples ADB­5, ADB­6, ADB­7, ADB­8, ADB­9 and
ADB­10 were emulators running various versions of the Android operating system. Test
results from these samples all matched with their respective expected results.

45



4.3 iPhone Image Platform

The iPhone Image platform used three samples for testing. The values listed in the Expected
columns are listed as not applicable because information about the contents of the messages
or calls or location was not known before the testing started.

Table 4.3: Summary of the iPhone platform test results
ID Messages Calls Location Device Information

Found Expected Found Expected Found Expected Found Expected
iPhone­1 25 N/A 5 N/A 2381 N/A 1 N/A
iPhone­2 25 N/A 5 N/A 2381 N/A 1 N/A
iPhone­3 0 N/A 0 N/A 0 N/A 0 N/A

The data obtained for the platform was from the same device. Samples iPhone­1 and
iPhone­2 got identical results because they were both physical extracts of the same phone,
though in different formats. Sample iPhone­3 did not get any results since it was a logical
extract from the phone which did not contain the required system information.

4.3.1 SMS and MMS extraction

A section of a sample DFXML extract of SMS and MMS information is displayed in List­
ing 4.1. The complete output of the sample is available in appendix at Listing B.2.

Listing 4.1: SMS and MMS DFXML extracttion as DFXML
<mobile:sms_mms>
<mobile:kind>sms</mobile:kind>
<mobile:sender>+15713083236</mobile:sender>
<mobile:body>What are you up to this weekend? </mobile:body>
<mobile:date_received>2012−06−13T00:25:04+03:00</mobile:date_received>
<mobile:read>1</mobile:read>
<mobile:country_code>us</mobile:country_code>
<mobile:type>inbox</mobile:type>
</mobile:sms_mms>

The above output shows the contents of one of the messages found in the forensic target
that was analysed. In this case, the mobile device received an SMS message on 13th June
2012 from a mobile subscriber with the phone number +15713083236 located in the United
States of America. The user of the mobile device has already read the message.

46



4.3.2 Phone call extraction

A sample DFXML extract of phone call information is displayed in Listing 4.2. The com­
plete output of the sample is available in appendix at Listing B.3.

Listing 4.2: Phone call extraction as DFXML
<mobile:call>
<mobile:from>6508870260</mobile:from>
<mobile:date_called>2012−06−12T23:04:50+03:00</mobile:date_called>
<mobile:duration>20</mobile:duration>
<mobile:country_code>310</mobile:country_code>
<mobile:type>incoming</mobile:type>
</mobile:call>

The extracted information shows that a phone cal was received by the mobile phone user
from a mobile subscriber with the number 6508870260 from a fictional country with the
code 310. The phone call was made on 12th June 2012 and lasted for 20 seconds.

4.3.3 Device information extraction

A sample DFXML extract of device information is displayed in Listing 4.3. The complete
output of the sample is available in appendix at Listing B.4.

Listing 4.3: Device information extraction as DFXML
<mobile:device_info>
<mobile:name>iPhone OS</mobile:name>
<mobile:release>4.2.1</mobile:release>
</mobile:device_info>

The above output shows that the mobile device under analysis was an iPhone, whose oper­
ating system was iPhoneOS version 4.2.1.

4.3.4 Location extraction

A sample DFXML extract of location information is displayed in Listing 4.4. The complete
output of the sample is available in appendix at Listing B.5.

Listing 4.4: Location information extraction as DFXML
<mobile:location>
<mobile:long>−77.11546951</mobile:long>
<mobile:lat>38.87767624</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>70</mobile:confidence>
<mobile:timestamp>2012−06−13T22:01:21+03:00</mobile:timestamp>
<mobile:cell_mcc>310</mobile:cell_mcc>

47



<mobile:cell_mnc>410</mobile:cell_mnc>
<mobile:cell_lac>7985</mobile:cell_lac>
<mobile:cell_ci>160043533</mobile:cell_ci>
</mobile:location>
<mobile:location>
<mobile:long>−77.08571225</mobile:long>
<mobile:lat>38.82908231</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>50</mobile:confidence>
<mobile:timestamp>2012−07−10T19:46:29+03:00</mobile:timestamp>
<mobile:wifi_mac>0:a0:f8:bc:25:a5</mobile:wifi_mac>
</mobile:location>

The above output shows location information extraction from cellular information and from
WiFi. The first location was retrieved from the device’s cellular information. The inform­
ation provides the coordinates in longitude and latitude and the cell in which the mobile
subscriber was located. The cell information includes the mobile country code, the mo­
bile network provider and the specific cell. The second location was retrieved from WiFi
information. It provides the coordinates in longitude and latitude and the WiFi MAC ad­
dress used. Both location information sections contain data on when the information was
captured and also the confidence level of the information’s accuracy.

48



Chapter 5

CONCLUSION AND RECOMMENDA­
TIONS

5.1 Summary of the study

The overall objective of the study was to incorporate mobile forensics into Nugget. This
objectivewas accomplished by designing, implementing and testing a system that integrated
with Nugget and implemented forensic computations on mobile forensic evidence samples.
The end product of the study was a system that integrated with Nugget and was able to
process mobile forensic evidence targets.

The overall objective had specific research objectives that were to be achieved. The first
objective was to review and evaluate existing standards of digital forensic information con­
tainers This objective was accomplished by first identifying a list of open source or publicly
available digital forensic information containers. Out of the list, one container, DFXML
was chosen to be used in the study.

The second objective was to review and evaluate existing mobile forensic tools. To accom­
plish this objective, a list of open source or publicly available mobile forensic tools was
identified. For each tool, its inputs and outputs were evaluated and based on the evaluation,
the method of incorporating the tool with Nugget was determined.

The third objective was to design and implement integrations of forensic tools with Nug­
get. This objective depended on the output of the first and second objectives. The forensic
information container selected in the first objective was used to structure forensic inform­
ation. The tools selected in the second objective were used to analyse forensic evidence
targets. The implementation of the integration to Nugget was done. The result of this ob­
jective was the development of the system that integrated the forensic tools to Nugget via
the chosen forensic information container.

The fourth objective was to test the implemented integrations using publicly available di­
gital forensic corpora. Based on the output of the third objective, the objective was accom­
plished by using the device images and device extracts obtained from the digital forensic

49



corpora. In addition to the digital forensic corpora, testing was done on physical devices
and emulated devices.

5.2 Limitations of the system

• Access to devices or device images

To test the implemented system, test samples of mobile device forensic targets was
required. In this case, the forensic targets included physical devices or emulated
devices or device images or physical and logical extracts from devices. Locating
physical devices for testing proved to be a challenge. Emulated devices for the An­
droid platform were easy to access and set up. On the other hand, accessing iPhone
platform device emulators proved to be difficult. Reliable device images or device
extracts were obtained from open digital forensic corpora. Even if the corpora had the
images and extracts, the number was limited. Device images and extracts are storage
intensive and thus require large storage mediums and relatively fast connections to
transfer them from one computing node to another.

• Availability of comprehensive non­commercial forensic tools

Tools that deal with mobile device forensics are mainly commercial. They require
buying or subscribing and their internal workings are not documented. The available
open source or free tools are either outdated or not comprehensive enough to provide
the required information. The forensic tool used in the study was Autopsy. It was
able to work on the Android mobile platform only.

• Documentation of proprietary technology

Much of the mobile device technology in circulation is the output of commercial
companies that consider them to be trade secrets. This secrecy means locating doc­
umentation for the technology is very difficult. Without official documentation, the
little information retrieved is subject to thorough testing and verification to prove its
correctness. If no information is found, reverse engineering is the next best altern­
ative to retrieving the required information. In this study, the iPhone and Android
mobile platforms were used. Information on Android was more readily available and
in a larger quantity than the iPhone.

50



5.3 Recommendations for future work

After pursuing this study, a number of items of work were identified that can be the basis
of future work. The items are:

1. Extend information collection capabilities

Other than phone call information, messaging information and location information,
more information can be extracted from mobile devices. Sources of this information
include deleted content, running processes, device memory, web browser bookmarks
and history.

With the ability to customise phone call and messaging applications, information re­
garding calls and messages may reside outside the default operating system’s defined
locations. For example, use of communication applications like WhatsApp or Face­
Book Messenger for messaging or making phone calls is currently not visible to the
system. Extending it to incorporate such information sources would be required.

2. Graphical user interface for the tool

The information extracted from the mobile device forensic targets is currently in
DFXML format. This mode of information presentation is not friendly to use on a
daily basis and does not exploit the depth of the information available. For example,
a timeline of events can be created based on the extracted information showing the
location of the mobile device, when phone calls or messages were made / received.
A Graphical User Interface would enable users to view the extracted information in
a richer way than the DFXML format.

3. Support other mobile platforms

The system currently supports iPhone and Androidmobile platforms. However, more
platforms exist, for example, BlackBerry OS,Windows Phone and Nokia’s S40. Sup­
port for these platform would be an addition to the existing extraction platforms
present in the system.

4. Modify Nugget to fully utilise DFXML content

DFXML provides more information than Nugget can currently process. A good ex­
ample of this is the provenance information. This information is crucial in showing
how a forensic computation was performed and in what environment. This allows
the independent replication of the forensic computation to validate the result of the

51



computation, if required.

5.4 Conclusion

Nugget allows digital forensic investigators to specify digital forensic computations and not
worry about their implementation. The study aimed at improving Nugget by introducing the
ability to specify and execute mobile device forensic computations. To accomplish this, an
integration of mobile forensic tools to Nugget was designed, implemented and tested. This
goal was achieved and in the course of doing so contributing to a new mobile forensic tool
being developed and also the extension of Nugget to accommodate mobile device forensic
computations.

52



REFERENCES

Alink, W., Bhoedjang, R., Boncz, P. & de Vries, A. (2006). XIRAF – XML­based indexing
and querying for digital forensics. Digital Investigation, 3, 50–58. The Proceedings
of the 6th Annual Digital Forensic Research Workshop (DFRWS ’06). doi:https://
doi.org/10.1016/j.diin.2006.06.016

Brothers, S. (2011). How cell phone ”forensic” tools actually work–cell phone tool leveling
system. In DoD Cybercrime Conference.

Carrier, B. (2018a). The SleuthKit. Retrieved November 3, 2018, from https : / / www .
sleuthkit.org

Carrier, B. (2018b). FCAT(1) manual page. Retrieved December 20, 2018, from https:/ /
www.sleuthkit.org/sleuthkit/man/fcat.html

Casey, E., Back, G. & Barnum, S. (2015). Leveraging CybOX™ to standardize represent­
ation and exchange of digital forensic information. Digital Investigation, 12, S102–
S110. DFRWS 2015 Europe. doi:https://doi.org/10.1016/j.diin.2015.01.014

Cohen, M., Garfinkel, S. & Schatz, B. (2009). Extending the advanced forensic format
to accommodate multiple data sources, logical evidence, arbitrary information and
forensic workflow. Digital Investigation, 6, S57–S68. The Proceedings of the Ninth
Annual DFRWS Conference. doi:https://doi.org/10.1016/j.diin.2009.06.010

Common Digital Evidence Storage Format Working Group (Digital Forensics Research
Workshop). (2016). Survey of disk image storage formats. Retrieved December 29,
2018, from http://old.dfrws.org/CDESF/survey­dfrws­cdesf­diskimg­01.pdf

Computing and Mathematical Sciences, University of Waikato. (2018). ARFF. Retrieved
December 29, 2018, from https://github.com/Waikato/weka­wiki/blob/master/docs/
arff_stable.md

Crawford, L. & matproud. (2012). iPhone Analyzer. Retrieved January 5, 2019, from https:
//sourceforge.net/p/iphoneanalyzer

DFRWS. (2018, August 14). Challenge details. Retrieved January 5, 2019, from https://
github.com/dfrws/dfrws2018­challenge/blob/master/challenge­details

DFXML Working Group. (2017). XML Schema for Digital Forensics XML. Retrieved
December 30, 2018, from https://github.com/dfxml­working­group/dfxml_schema

Digital Corpora. (2017, April 29). Digital Corpora. Retrieved November 5, 2018, from
https://digitalcorpora.org/

Digital Corpora. (2018, July 27). Natioal Gallery DC 2012 Attack. Retrieved November 5,
2018, from https://digitalcorpora.org/corpora/scenarios/national­gallery­dc­2012­
attack

53

https://dx.doi.org/https://doi.org/10.1016/j.diin.2006.06.016
https://dx.doi.org/https://doi.org/10.1016/j.diin.2006.06.016
https://www.sleuthkit.org
https://www.sleuthkit.org
https://www.sleuthkit.org/sleuthkit/man/fcat.html
https://www.sleuthkit.org/sleuthkit/man/fcat.html
https://dx.doi.org/https://doi.org/10.1016/j.diin.2015.01.014
https://dx.doi.org/https://doi.org/10.1016/j.diin.2009.06.010
http://old.dfrws.org/CDESF/survey-dfrws-cdesf-diskimg-01.pdf
https://github.com/Waikato/weka-wiki/blob/master/docs/arff_stable.md
https://github.com/Waikato/weka-wiki/blob/master/docs/arff_stable.md
https://sourceforge.net/p/iphoneanalyzer
https://sourceforge.net/p/iphoneanalyzer
https://github.com/dfrws/dfrws2018-challenge/blob/master/challenge-details
https://github.com/dfrws/dfrws2018-challenge/blob/master/challenge-details
https://github.com/dfxml-working-group/dfxml_schema
https://digitalcorpora.org/
https://digitalcorpora.org/corpora/scenarios/national-gallery-dc-2012-attack
https://digitalcorpora.org/corpora/scenarios/national-gallery-dc-2012-attack


Digital Corpora. (2015, May 17). Retrieved November 5, 2018, from http: / /downloads.
digitalcorpora.org/corpora/mobile/2011­android/

Dublin Core Metadata Initiative. (2018). DCMI Metadata Terms. Retrieved December 30,
2018, from http : / /www.dublincore .org / specifications /dublin ­ core /dcmi ­ terms /
#section­3

Edgar, T. W. & Manz, D. O. (2017). Research Methods For Cyber Security. Elsevier Inc.
Forensicon Inc. (2010, May 4). Cell phone & email forensics investigation cracks nyc

times square car bombing case. Retrieved November 30, 2018, from https://www.
forensicon.com/forensics­blotter/cell­phone­email­forensics­investigation­cracks­
nyc­times­square­car­bombing­case/

Fowler, M. (2010). Domain Specific Languages. Addison­Wesley Professional.
Garfinkel, S. (2012a). Digital forensics XML and theDFXML toolset.Digital Investigation,

8(3), 161–174. doi:https://doi.org/10.1016/j.diin.2011.11.002
Garfinkel, S. (2012b). Lessons learned writing digital forensics tools and managing a 30TB

digital evidence corpus. Digital Investigation, 9, S80–S89. The Proceedings of the
Twelfth Annual DFRWS Conference. doi:https://doi.org/10.1016/j.diin.2012.05.002

Garfinkel, S. L. (2009). AutomatingDisk Forensic Processingwith SleuthKit, XML and Py­
thon. In Systematic Approaches to Digital Forensic Engineering, IEEE International
Workshop on(SADFE) (Vol. 00, pp. 73–84). doi:10.1109/SADFE.2009.12

Garfinkel, S., Farrell, P., Roussev, V. & Dinolt, G. (2009). Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, 6, S2–S11. The
Proceedings of the Ninth Annual DFRWS Conference. doi:https://doi.org/10.1016/j.
diin.2009.06.016

Google. (2018). Android Debug Bridge (adb) | Android Developers. Retrieved December
20, 2018, from https://developer.android.com/studio/command­line/adb

JEDEC Solid State Technology Association. (2007). Embedded MultiMediaCard (eMMC)
Product Standard, Standard Capacity. Retrieved December 20, 2018, from https :
//www.jedec.org/system/files/docs/JESD84­A41.pdf

Kothari, C. R. (2004). Research methodology methods and techniques (2nd ed.). New Age
International Publishers.

Levine, B. N. & Liberatore, M. (2009). DEX: Digital evidence provenance supporting re­
producibility and comparison. Digital Investigation, 6, S48–S56. The Proceedings of
the Ninth Annual DFRWS Conference. doi:https://doi.org/10.1016/j.diin.2009.06.
011

Lillis, D., Becker, B. A., O’Sullivan, T. & Scanlon, M. (2016). Current Challenges and Fu­
ture Research Areas for Digital Forensic Investigation. In Annual ADFSL Conference

54

http://downloads.digitalcorpora.org/corpora/mobile/2011-android/
http://downloads.digitalcorpora.org/corpora/mobile/2011-android/
http://www.dublincore.org/specifications/dublin-core/dcmi-terms/#section-3
http://www.dublincore.org/specifications/dublin-core/dcmi-terms/#section-3
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://www.forensicon.com/forensics-blotter/cell-phone-email-forensics-investigation-cracks-nyc-times-square-car-bombing-case/
https://dx.doi.org/https://doi.org/10.1016/j.diin.2011.11.002
https://dx.doi.org/https://doi.org/10.1016/j.diin.2012.05.002
https://dx.doi.org/10.1109/SADFE.2009.12
https://dx.doi.org/https://doi.org/10.1016/j.diin.2009.06.016
https://dx.doi.org/https://doi.org/10.1016/j.diin.2009.06.016
https://developer.android.com/studio/command-line/adb
https://www.jedec.org/system/files/docs/JESD84-A41.pdf
https://www.jedec.org/system/files/docs/JESD84-A41.pdf
https://dx.doi.org/https://doi.org/10.1016/j.diin.2009.06.011
https://dx.doi.org/https://doi.org/10.1016/j.diin.2009.06.011


on Digital Forensics, Security and Law (Vol. 6). Retrieved from https://commons.
erau.edu/adfsl/2016/tuesday/6

Mazzetti, M., Tavernise, S. & Healy, J. (2010, May 4). Suspect, charged, said to admit to
role in plot. Retrieved November 9, 2018, from https://www.nytimes.com/2010/05/
05/nyregion/05bomb.html

McKemmish, R. (2008). When is Digital Evidence Forensically Sound? In I. Ray & S.
Shenoi (Eds.), Advances in digital forensics iv (pp. 3–15). Boston, MA: Springer US.

Metz, J. (2018). libewf. Retrieved December 29, 2018, from https: / /github.com/libyal /
libewf

Mikhaylov, I. & Skulkin, O. (2016). Chip­off technique in mobile forensics. Retrieved
December 19, 2018, from https://www.digitalforensics.com/blog/chip­off­technique­
in­mobile­forensics/

Murphy, C. A. (2011). Developing Process for Mobile Device Forensics. Retrieved Decem­
ber 21, 2018, from https://digital­forensics.sans.org/media/mobile­device­forensic­
process­v3.pdf

OASIS Open. (2018). Introduction to STIX. Retrieved December 30, 2018, from https :
//oasis­open.github.io/cti­documentation/stix/intro

Omondi, M. (2019, January 29). Kenol ceo’s phone seized in insider trading probe. Re­
trieved February 3, 2019, from https://www.businessdailyafrica.com/news/phone­
seized­in­insider­trading­probe/539546­4956286­ppn2q6/index.html

Open Whisper Systems. (2019). signalapp/Signal­Android. Retrieved July 3, 2019, from
https://github.com/signalapp/Signal­Android

Parr, T. (2014). The definitive ANTLR 4 reference. The Pragmatic Programmers, LLC.
Raghavan, S. (2013). Digital forensic research: Current state of the art. CSI Transactions

on ICT, 1(1), 91–114. doi:10.1007/s40012­012­0008­7
Roussev, V. (2015). Building a forensic computing language. In 2015 48th Hawaii Interna­

tional Conference on System Sciences (pp. 5228–5233). doi:10.1109/HICSS.2015.
617

Roussev, V., Bertino, E. & Sandhu, R. (2016). Digital forensic science: Issues, methods,
and challenges. Morgan & Claypool. Retrieved from https : / / ieeexplore . ieee .org/
document/7809443

Skulkin, O., Tindall, D. & Tamma, R. (2018). Learning Android Forensics (2nd ed.). Packt
Publishing Ltd.

Stelly, C. & Roussev, V. (2018). Nugget: A digital forensics language. In DFRWS 2108
Europe ­ Proceedings of the Fifth Annual DFRWS Europe, Elsevier Ltd.

55

https://commons.erau.edu/adfsl/2016/tuesday/6
https://commons.erau.edu/adfsl/2016/tuesday/6
https://www.nytimes.com/2010/05/05/nyregion/05bomb.html
https://www.nytimes.com/2010/05/05/nyregion/05bomb.html
https://github.com/libyal/libewf
https://github.com/libyal/libewf
https://www.digitalforensics.com/blog/chip-off-technique-in-mobile-forensics/
https://www.digitalforensics.com/blog/chip-off-technique-in-mobile-forensics/
https://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
https://digital-forensics.sans.org/media/mobile-device-forensic-process-v3.pdf
https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
https://www.businessdailyafrica.com/news/phone-seized-in-insider-trading-probe/539546-4956286-ppn2q6/index.html
https://www.businessdailyafrica.com/news/phone-seized-in-insider-trading-probe/539546-4956286-ppn2q6/index.html
https://github.com/signalapp/Signal-Android
https://dx.doi.org/10.1007/s40012-012-0008-7
https://dx.doi.org/10.1109/HICSS.2015.617
https://dx.doi.org/10.1109/HICSS.2015.617
https://ieeexplore.ieee.org/document/7809443
https://ieeexplore.ieee.org/document/7809443


Stelly, C. & Roussev, V. (2017). SCARF: A container­based approach to cloud­scale digital
forensic processing. Digital Investigation, 22, S39–S47. doi:https://doi.org/10.1016/
j.diin.2017.06.008

Tahiri, S. (2016).Mastering Mobile Forensics. Packt Publishing Ltd.
Tamma, R., Skulkin, O., Mahalik, H. & Bommisetty, S. (2018). Practical Mobile Forensics

(3rd ed.). Packt Publishing Ltd.
The iPhone Wiki. (2015a). The iPhone Wiki. Retrieved January 5, 2019, from https://www.

theiphonewiki.com
The iPhone Wiki. (2015b). Messages ­ The iPhone Wiki. Retrieved January 5, 2019, from

https://www.theiphonewiki.com/wiki/Messages
The LineageOS Project. (2019). LineageOS Android Distribution. Retrieved January 8,

2019, from https://www.lineageos.org/
The MITRE Corporation. (2016). CybOX Schemas and Schema Development. Retrieved

December 30, 2018, from https://github.com/CybOXProject/schemas
The Volatility Foundation. (2018). Volatility. Retrieved November 3, 2018, from https://

www.volatilityfoundation.org/
van den Bos, J. & van der Storm, T. (2011). Bringing Domain­Specific Languages to Di­

gital Forensics. In International conference on software engineering. doi:10.1145/
1985793.1985887

Venema, W. (2018). ICAT(1) manual page. Retrieved December 20, 2018, from https: / /
www.sleuthkit.org/sleuthkit/man/icat.html

Warden, P. (2011). iPhone Tracker. Retrieved January 5, 2019, from https://github.com/
petewarden/iPhoneTracker

Wireshark Foundation. (2018). Tshark. Retrieved November 3, 2018, from https://www.
wireshack.org

56

https://dx.doi.org/https://doi.org/10.1016/j.diin.2017.06.008
https://dx.doi.org/https://doi.org/10.1016/j.diin.2017.06.008
https://www.theiphonewiki.com
https://www.theiphonewiki.com
https://www.theiphonewiki.com/wiki/Messages
https://www.lineageos.org/
https://github.com/CybOXProject/schemas
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
https://dx.doi.org/10.1145/1985793.1985887
https://dx.doi.org/10.1145/1985793.1985887
https://www.sleuthkit.org/sleuthkit/man/icat.html
https://www.sleuthkit.org/sleuthkit/man/icat.html
https://github.com/petewarden/iPhoneTracker
https://github.com/petewarden/iPhoneTracker
https://www.wireshack.org
https://www.wireshack.org


Appendix A

Language specifications

A.1 Mobile extension to theDFXMLversion 1.2.0 specific­
ation

<?xml version=”1.0” encoding=”UTF−8”?>
<xs:schema
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:dfxml=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML”
xmlns:mobile=”https://github.com/ngash/dfxml/mobile”
targetNamespace=”https://github.com/ngash/dfxml/mobile”
elementFormDefault=”qualified”>
<xs:annotation>
<xs:documentation>
This is the schema file for mobile extensions for DFXML v1.2.0

</xs:documentation>
</xs:annotation>
<xs:import namespace=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML” schemaLocation=”dfxml.xsd” />
<xs:import namespace=”http://purl.org/dc/elements/1.1/” schemaLocation=”ref/dc.xsd”/>
<xs:import namespace=”http://www.w3.org/XML/1998/namespace” schemaLocation=”ref/xml.xsd”/>

<xs:element name=”device_info”>
<xs:annotation>
<xs:documentation>A representation of a mobile device information</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”name”></xs:element>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”model”></xs:element>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”release”></xs:element>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”manufacturer”></xs:element>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”serial_number”></xs:element>
<xs:element minOccurs=”0” maxOccurs=”1” type=”dfxml:string” name=”imei”></xs:element>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:complexType name=”sms_mms_kind_type”>
<xs:simpleContent>
<xs:restriction base=”dfxml:string”>
<xs:enumeration value=”sms” />
<xs:enumeration value=”mms” />

57



</xs:restriction>
</xs:simpleContent>

</xs:complexType>

<xs:element name=”sms_mms”>
<xs:annotation>
<xs:documentation>A representation of an SMS or MMS message</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”kind” minOccurs=”0” maxOccurs=”1” type=”mobile:sms_mms_kind_type” />
<xs:element name=”sender” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”recipient” minOccurs=”0” maxOccurs=”unbounded” type=”dfxml:string” />
<xs:element name=”body” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”date_sent” minOccurs=”0” maxOccurs=”1” type=”dfxml:dftime” />
<xs:element name=”date_received” minOccurs=”0” maxOccurs=”1” type=”dfxml:dftime” />
<xs:element name=”read” minOccurs=”0” maxOccurs=”1” type=”dfxml:bool01” />
<xs:element name=”headers” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”subject” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”country_code” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”type” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”call”>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”from” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”to” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”date_called” minOccurs=”0” maxOccurs=”1” type=”dfxml:dftime” />
<xs:element name=”duration” minOccurs=”0” maxOccurs=”1” type=”dfxml:nonNegativeInteger” />
<xs:element name=”country_code” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”type” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”blocked” minOccurs=”0” maxOccurs=”1” type=”dfxml:bool01” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”location”>
<xs:annotation>
<xs:documentation>A representation of a (latitude, longitude) location</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”lat” minOccurs=”1” maxOccurs=”1” type=”dfxml:float” />
<xs:element name=”long” minOccurs=”1” maxOccurs=”1” type=”dfxml:float” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

58



</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”app”>
<xs:annotation>
<xs:documentation>A representation of a mobile device application</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”name” minOccurs=”1” maxOccurs=”1” type=”dfxml:string” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”contact”>
<xs:annotation>
<xs:documentation>A representation of a contact</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”name” minOccurs=”1” maxOccurs=”1” type=”dfxml:string” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”process”>
<xs:annotation>
<xs:documentation>A representation of a process</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”name” minOccurs=”1” maxOccurs=”1” type=”dfxml:string” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”browsing”>
<xs:annotation>
<xs:documentation>A representation of a web location</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”url” minOccurs=”1” maxOccurs=”1” type=”dfxml:string” />

59



<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
</xs:sequence>
<xs:anyAttribute namespace=”##other” processContents=”lax”/>

</xs:complexType>
</xs:element>

<xs:element name=”command_line”>
<xs:annotation>
<xs:documentation>A representation of command line execution</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=”dfxml:string”>
<xs:attribute name=”sequence” type=”xs:nonNegativeInteger”>
<xs:annotation>
<xs:documentation>Number in the sequence of commands </xs:documentation>

</xs:annotation>
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<xs:element name=”error”>
<xs:annotation>
<xs:documentation>Documentation of an error occurence</xs:documentation>

</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”code” minOccurs=”1” maxOccurs=”1” type=”dfxml:nonNegativeInteger” />
<xs:element name=”message” minOccurs=”1” maxOccurs=”1” type=”dfxml:string” />
<xs:element name=”description” minOccurs=”0” maxOccurs=”1” type=”dfxml:string” />
<xs:any namespace=”##other” processContents=”lax” minOccurs=”0” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

A.2 Nugget language specification
grammar Nugget;

@header {
// import ”../NTypes”

}

prog: ( preamble |
define_assign |

operation_on_singleton |
singleton_var )*

EOF

60



;

preamble: (preamble_stmt)+ ;
preamble_stmt: preamble_action STRING;
preamble_action: (’case_number’|’investigator’|’investigation_date’|’workspace’);

define_assign: define |
define_tuple |
assign

;

define: ID nugget_type LISTOP? ;

define_tuple: ID ’tuple[’ (’,’? nugget_type)+ ’]’ LISTOP?;

assign: ID ’=’ STRING (’|’ nugget_action)* |
ID ’=’ ID (’|’ nugget_action)*

;

operation_on_singleton: singleton_op ID (’,’ ID)* output_as?;

output_as: ’as’ output_type;
output_type: ’json’|’table’;

singleton_op: (’type’ | ’print’ | ’size’ | ’typex’ | ’printx’ | ’raw’) ;

singleton_var: ID;

nugget_type:
’string’ |
’sha1’ |
’md5’ |
’ntfs’ |
’file’ |
’packet’ |
’pcap’ |
’exifinfo’ |
’datetime’ |
’memory’ |
’http’ |
’listof−md5’ |
’listof−sha1’ |
’listof−sha256’ |
’adb’ |
’message’ |
’call’ |
’location’ |
’contact’ |
’files’ |
’devinfo’
;

nugget_action: action_word ;

61



action_word:
filter |
’extract’ asType |
’sort’ byField |
’sha1’ |
’md5’ |
’sha256’ |
’getGetRequests’ |
’diskinfo’ |
’union’ ID |
’pslist’ |
’%%%’

;

asType: ’as’ nugget_type (byteOffsetSize)?;
byField:’by’ ID;

byteOffsetSize : ’[’INT ’,’ INT ’]’;

filter : ’filter’ filter_term (’,’ filter_term)*;
filter_term: ID COMPOP STRING;

COMPOP: (’>’ | ’<’ | ’>=’ | ’<=’ | ’==’);
LISTOP: ’[]’;

INT : [0−9]+;
ID : [a−zA−Z]+[a−zA−Z0−9_]* (’.’ [a−zA−Z]+[a−zA−Z0−9_]*)?;
STRING: ’”’ (’””’|~’”’)* ’”’;

WS : [ \t\r\n]+ −> skip;
NL : ’\r’? ’\n’;

LINE_COMMENT: ’//’ ~[\r\n]* −> skip;

62



Appendix B

Sample source code and output listing

B.1 Sample source code listing

Listing B.1: Sample source code listing showing the archive extraction logic
package nugget

import (
”fmt”
”github.com/ngash/nugget−tools/dfxml”
”github.com/ngash/nugget−tools/log”
”github.com/ngash/nugget−tools/mobile”
”github.com/ngash/nugget−tools/mobile/android”
”github.com/ngash/nugget−tools/mobile/iphone”
”strings”
”time”

)

const (
CMD_MESSAGE = ”message”
CMD_CALL = ”call”
CMD_FILE = ”file”
CMD_LOCATION = ”location”
CMD_CONTACT = ”contact”
CMD_PROCESS = ”process”
CMD_APPLICATION = ”application”
CMD_DEVICEINFO = ”devinfo”

)
const (
PLATFORM_IPHONE = ”iphone”
PLATFORM_ANDROID = ”android”
PLATFORM_ADB = ”adb”

)

typeMobile struct{ Workspace string }
typeMobileArgs struct {
Target string
Platform string
Command string
CommandArgsmap[string]string

}

func (m Mobile) Dfxml(args MobileArgs, reply *dfxml.DFXML) error {
log.Debug(”%+v”, args)
var w mobile.Wrapper
switch args.Platform {

63



case PLATFORM_IPHONE:
w = iphone.ImageWrapper{Workspace: m.Workspace}

case PLATFORM_ANDROID:
w = android.ImageWrapper{Workspace: m.Workspace}

case PLATFORM_ADB:
w = android.DeviceWrapper{Workspace: m.Workspace}
w.(android.DeviceWrapper).SetRoot(args.Target, true)

default:
return fmt.Errorf(”Unknown mobile platform ’%s’”, args.Platform)

}

switch args.Command {
case CMD_FILE, ”files”:
return extractFiles(w, args, reply)

case CMD_CALL:
return extractCalls(w, args, reply)

case CMD_MESSAGE:
return extractMessages(w, args, reply)

case CMD_LOCATION:
return extractLocations(w, args, reply)

case CMD_CONTACT:
return extractContacts(w, args, reply)

case CMD_APPLICATION:
return extractApps(w, args, reply)

case CMD_PROCESS:
return extractProcesses(w, args, reply)

case CMD_DEVICEINFO:
return extractDeviceInfo(w, args, reply)

default:
return fmt.Errorf(”Unknown command ’%s’”, args.Command)

}
}

func extractDeviceInfo(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.DeviceInfo(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.DeviceInfo = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractProcesses(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListProcesses(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.Process = resp

64



updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractApps(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListApplications(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.Application = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractContacts(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListContacts(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.Contact = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractLocations(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListLocations(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.Location = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractFiles(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
fname := args.CommandArgs[”filename”]
if fname == ”” {
fname = ”/”

}
fxn := w.ListFiles
if strings.Contains(fname, ”*”) {
fxn = w.FindFiles

}
start_time := time.Now()
resp, cmdstack, err := fxn(args.Target, fname)
stop_time := time.Now()

65



if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.FileObject = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractMessages(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListMessages(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.SMSMMSMessage = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}
func extractCalls(w mobile.Wrapper, args MobileArgs, reply *dfxml.DFXML) error {
start_time := time.Now()
resp, cmdstack, err := w.ListCalls(args.Target)
stop_time := time.Now()
if err != nil {
log.Error(”%+v”, err)

}
d := dfxml.NewDFXML()
d.PhoneCall = resp
updateDFXML(d, w, cmdstack, start_time, stop_time, args.Target, err)

*reply = *d
return nil

}

B.2 Sample output listing

B.2.1 SMS and MMS extraction

Listing B.2: SMS and MMS DFXML extraction as DFXML
<?xml version=”1.0” encoding=”UTF−8”?>
<dfxml xmlns=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML” xmlns:xsi=”http://www.w3.org/2001/

,→ XMLSchema−instance” xmlns:dc=”http://purl.org/dc/elements/1.1/” xmlns:mobile=”https://github.com/ngash/dfxml/
,→ mobile” version=”1.2.0”>

<metadata></metadata>
<creator>
<program>nugget−tools</program>
<version>0.0.1</version>
<execution_environment>
<os_sysname>Linux</os_sysname>

66



<os_release>5.0.5−arch1−1−ARCH</os_release>
<os_version>#1 SMP PREEMPT Wed Mar 27 17:53:10 UTC 2019</os_version>
<host>blackpearl</host>
<arch>x86_64</arch>
<uid>1000</uid>
<username>barbossa</username>
<start_time>2019−04−08T03:39:08.386512884+03:00</start_time>
<mobile:command_line mobile:sequence=”1”>/usr/bin/tar −t −f evidence/tracy−phone−2012−07−15−final.tar</

,→ mobile:command_line>
<mobile:command_line mobile:sequence=”2”>/usr/bin/tar −x −C /home/barbossa/Desktop/work/msc/units/y2−project/

,→ nugget−tools/stuff/workspace −f evidence/tracy−phone−2012−07−15−final.tar ./private/var/mobile/Library/SMS/
,→ sms.db</mobile:command_line>

</execution_environment>
</creator>
<rusage>
<utime>0.000213956</utime>
<stime>0.000138481</stime>
<maxrss>199640</maxrss>
<minflt>131813</minflt>
<majflt>0</majflt>
<nswap>0</nswap>
<inblock>0</inblock>
<oublock>0</oublock>
<clocktime>0.347418644</clocktime>
</rusage>
<mobile:sms_mms>
<mobile:kind>sms</mobile:kind>
<mobile:sender>+15713083236</mobile:sender>
<mobile:body>What are you up to this weekend? </mobile:body>
<mobile:date_received>2012−06−13T00:25:04+03:00</mobile:date_received>
<mobile:read>1</mobile:read>
<mobile:country_code>us</mobile:country_code>
<mobile:type>inbox</mobile:type>
</mobile:sms_mms>
</dfxml>

B.2.2 Phone call extraction

Listing B.3: Phone call extraction as DFXML
<?xml version=”1.0” encoding=”UTF−8”?>
<dfxml xmlns=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML” xmlns:xsi=”http://www.w3.org/2001/

,→ XMLSchema−instance” xmlns:dc=”http://purl.org/dc/elements/1.1/” xmlns:mobile=”https://github.com/ngash/dfxml/
,→ mobile” version=”1.2.0”>

<metadata></metadata>
<creator>
<program>nugget−tools</program>
<version>0.0.1</version>
<execution_environment>
<os_sysname>Linux</os_sysname>
<os_release>5.0.5−arch1−1−ARCH</os_release>
<os_version>#1 SMP PREEMPT Wed Mar 27 17:53:10 UTC 2019</os_version>
<host>blackpearl</host>

67



<arch>x86_64</arch>
<uid>1000</uid>
<username>barbossa</username>
<start_time>2019−04−08T03:39:20.457623379+03:00</start_time>
<mobile:command_line mobile:sequence=”1”>/usr/bin/tar −t −f evidence/tracy−phone−2012−07−15−final.tar</

,→ mobile:command_line>
<mobile:command_line mobile:sequence=”2”>/usr/bin/tar −x −C /home/barbossa/Desktop/work/msc/units/y2−project/

,→ nugget−tools/stuff/workspace −f evidence/tracy−phone−2012−07−15−final.tar ./private/var/wireless/Library/
,→ CallHistory/call_history.db</mobile:command_line>

</execution_environment>
</creator>
<rusage>
<utime>0.000173707</utime>
<stime>0.000178225</stime>
<maxrss>252172</maxrss>
<minflt>135095</minflt>
<majflt>0</majflt>
<nswap>0</nswap>
<inblock>0</inblock>
<oublock>0</oublock>
<clocktime>0.339693871</clocktime>
</rusage>
<mobile:call>
<mobile:from>6508870260</mobile:from>
<mobile:date_called>2012−06−12T23:04:50+03:00</mobile:date_called>
<mobile:duration>20</mobile:duration>
<mobile:country_code>310</mobile:country_code>
<mobile:type>incoming</mobile:type>
</mobile:call>
</dfxml>

B.2.3 Device information extraction

Listing B.4: Device information extraction as DFXML
<?xml version=”1.0” encoding=”UTF−8”?>
<dfxml xmlns=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:mobile=”https://github.com/ngash/dfxml/mobile” version=”1.2.0”>

<metadata></metadata>
<creator>
<program>nugget−tools</program>
<version>0.0.1</version>
<execution_environment>
<os_sysname>Linux</os_sysname>
<os_release>5.0.5−arch1−1−ARCH</os_release>
<os_version>#1 SMP PREEMPT Wed Mar 27 17:53:10 UTC 2019</os_version>
<host>blackpearl</host>
<arch>x86_64</arch>
<uid>1000</uid>
<username>barbossa</username>
<start_time>2019−03−17T13:21:15.491100149+03:00</start_time>

68



<mobile:command_line mobile:sequence=”1”>/usr/bin/tar −t −f evidence/tracy−phone−2012−07−15−final.tar</
,→ mobile:command_line>

<mobile:command_line mobile:sequence=”2”>/usr/bin/tar −x −C /home/barbossa/Desktop/work/msc/units/y2−project/nugget−
,→ tools/stuff/workspace −f evidence/tracy−phone−2012−07−15−final.tar ./System/Library/CoreServices/SystemVersion.plist
,→ </mobile:command_line>

</execution_environment>
</creator>
<rusage>
<utime>0.000190765</utime>
<stime>0.000161015</stime>
<maxrss>176716</maxrss>
<minflt>130250</minflt>
<majflt>0</majflt>
<nswap>0</nswap>
<inblock>0</inblock>
<oublock>0</oublock>
<clocktime>0.475734025</clocktime>
</rusage>
<mobile:device_info>
<mobile:name>iPhone OS</mobile:name>
<mobile:release>4.2.1</mobile:release>
</mobile:device_info>
</dfxml>

B.2.4 Location extraction

Listing B.5: Location information extraction as DFXML
<?xml version=”1.0” encoding=”UTF−8”?>
<dfxml xmlns=”http://www.forensicswiki.org/wiki/Category:Digital_Forensics_XML” xmlns:xsi=”http://www.w3.org/2001/

,→ XMLSchema−instance” xmlns:dc=”http://purl.org/dc/elements/1.1/” xmlns:mobile=”https://github.com/ngash/dfxml/mobile
,→ ” version=”1.2.0”>

<metadata></metadata>
<creator>
<program>nugget−tools</program>
<version>0.0.1</version>
<execution_environment>
<os_sysname>Linux</os_sysname>
<os_release>5.0.5−arch1−1−ARCH</os_release>
<os_version>#1 SMP PREEMPT Wed Mar 27 17:53:10 UTC 2019</os_version>
<host>blackpearl</host>
<arch>x86_64</arch>
<uid>1000</uid>
<username>barbossa</username>
<start_time>2019−04−08T03:38:48.538677359+03:00</start_time>
<mobile:command_line mobile:sequence=”1”>/usr/bin/tar −t −f evidence/tracy−phone−2012−07−15−final.tar</

,→ mobile:command_line>
<mobile:command_line mobile:sequence=”2”>/usr/bin/tar −x −C /home/barbossa/Desktop/work/msc/units/y2−project/nugget−

,→ tools/stuff/workspace −f evidence/tracy−phone−2012−07−15−final.tar ./private/var/root/Library/Caches/locationd/
,→ consolidated.db</mobile:command_line>

</execution_environment>
</creator>
<rusage>

69



<utime>0.000245826</utime>
<stime>0.000180958</stime>
<maxrss>231728</maxrss>
<minflt>137633</minflt>
<majflt>0</majflt>
<nswap>0</nswap>
<inblock>0</inblock>
<oublock>0</oublock>
<clocktime>0.539221063</clocktime>
</rusage>
<mobile:location>
<mobile:long>−77.11546951</mobile:long>
<mobile:lat>38.87767624</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>70</mobile:confidence>
<mobile:timestamp>2012−06−13T22:01:21+03:00</mobile:timestamp>
<mobile:cell_mcc>310</mobile:cell_mcc>
<mobile:cell_mnc>410</mobile:cell_mnc>
<mobile:cell_lac>7985</mobile:cell_lac>
<mobile:cell_ci>160043533</mobile:cell_ci>
</mobile:location>
<mobile:location>
<mobile:long>−77.08571225</mobile:long>
<mobile:lat>38.82908231</mobile:lat>
<mobile:source></mobile:source>
<mobile:confidence>50</mobile:confidence>
<mobile:timestamp>2012−07−10T19:46:29+03:00</mobile:timestamp>
<mobile:wifi_mac>0:a0:f8:bc:25:a5</mobile:wifi_mac>
</mobile:location>
</dfxml>

70


	Declaration
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	INTRODUCTION
	Background
	Problem definition
	Research Objectives
	Justification
	Scope of the study

	LITERATURE REVIEW
	Introduction
	Importance of mobile forensics to investigations
	Challenges faced in mobile device forensics
	Data acquisition from mobile devices

	Nugget
	Nugget architecture
	Nugget's grammar
	Extensibility of Nugget
	Standardisation of information representation and exchange

	Digital forensic information representation and exchange
	Problems caused by lack of standardisation
	Existing digital evidence representation formats

	Digital forensic corpora
	Proposed concept overview

	RESEARCH METHODOLOGY
	Research design
	Review and evaluate existing standards of digital forensic information containers
	Review and evaluation of existing mobile forensic tools
	Design, implementation and testing of integration with mobile forensic tools
	Conceptual architecture
	Forensic tool platform data flow

	Implementation
	DFXML Extension
	Nugget Extension
	RPC Server Interface
	Command line interface
	Android Image Platform
	Android Device Platform
	iPhone Image Platform
	Wrapping forensic tools

	Testing
	Test samples
	Testing procedure


	RESULTS AND DISCUSSIONS
	Android Image Platform
	Android Device Platform
	iPhone Image Platform
	SMS and MMS extraction
	Phone call extraction
	Device information extraction
	Location extraction


	CONCLUSION AND RECOMMENDATIONS
	Summary of the study
	Limitations of the system
	Recommendations for future work
	Conclusion

	REFERENCES
	Language specifications
	Mobile extension to the DFXML version 1.2.0 specification
	Nugget language specification

	Sample source code and output listing
	Sample source code listing
	Sample output listing
	SMS and MMS extraction
	Phone call extraction
	Device information extraction
	Location extraction



