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1 CHAPTER 1: INTRODUCTION

1.1 BACKGROUND
A Software Defined Network is one in which switches do not process incoming packets (Open

Networking Foundation (ONF), 2017). SDN’s main characteristic is the separation of the
network into three layers. Layer 1 is the infrastructure layer constituting unintelligent network
equipment such as switches. These simply drop and/or forward packets depending on the flow
information installed onto them by the next layer — the control layer. The control layer links
applications running on a layer above to the lower layer which is the infrastructure layer. The
final and top layer is the application layer; it’s composed of applications that communicate with

lower layers through an application programming interface.

Incoming packets are assessed by devices in the infrastructure layer. They always look for a
match and the corresponding action e.g. forward, drop etc. If no match is found, the packet will
then be sent to the controller for further processing.

During denial of service attacks (DOS), attackers will try to prevent users of a system or service
from obtaining it normally. When the attackers use more than one source or machine to carry out
their malicious activities in a coordinated manner; then it is termed a distributed denial of service
(DDoS).

We can classify DDoS attacks into three broad categories (Kesavan, 2016):

1. Volume-based distributed denial of service attacks.
2. Protocol-based distributed denial of service attacks.

3. Application-based distributed denial of service attacks.

Volume-based ddos attacks entail using massive amounts of traffic resulting in saturation of the
bandwidth of the host that has been targeted.

Protocol attacks take advantage of vulnerabilities in the internet and transport layers of the OSI

model thus making the targeted host inaccessible.

DDosS attacks exploiting weaknesses in the OSI application are known as application attacks.

These attacks are very sophisticated and also the most challenging to identify and mitigate.

DDoS defense mechanisms can be classified as:
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1. DDoS Attack Prevention — this mechanism aims to stop any attack before it compromises
the target.

2. Distributed DOS Attack Detection — the main aim is to ensure the attack is detected when
it is in progress.

3. DDoS Source of Attack Identification — the source of the attack is identified.

4. Distributed Denial of Service Attack Reaction — repercussions of the attack are

eliminated as soon as possible.

Firewalls are commonly deployed to protect networks from attacks such as denial of service
attack and distributed denial of service attacks. Firewalls are network devices or systems that
control the flow of traffic between networks. There are two major types of firewalls that are used

currently:

a. Network Layer firewalls — these firewalls use protocol/port numbers, source/destination
IP addresses and other parameters filter packets based on protocol, source and to filter
packets.

b. Application Layer firewalls — these firewalls use the OSI application layer for their

operation.

Software defined networking (SDN) features can greatly improve firewalls operation as

described below:

- SDN enables the target systems to tailor their defense according to their goals and weak

points.

- SDN is similar to network firewalls in that policies can be set using the flow tables in the

controller.

- Afirewall will use access control lists whereas with SDN policy is defined with the flow
rules which are pushed to the switches. SDN’s flow tables offer more options for filtering

compared to access control lists.

- SDN’s centralized controller manages all the switches in a topology thus enhancing
scalability unlike network firewalls which are setup for each device in a network.

11



There has been a lot of research focusing combatting DDoS attacks in Software Defined
Networks. SDN has been used in conjunction with other technologies such as SOMs (self-
organizing maps); support vector machines, entropy, statistical methods etc. to detect and
mitigate DDoS attacks.

However, these methods seem to be generalized and mainly address the volumetric attacks. This
research aims to build on previous work that already addresses volumetric attacks, to find a
solution for protocol based attacks. Combating these attacks entails understanding the working of
the various attacks and designing a specific solution geared towards detecting and mitigating the

specific attack.

1.2 PROBLEM DEFINITION

Frequency and sophistication of distributed denial of service attacks (DDoS) is rapidly growing.
These DDoS attacks are the most popular malicious attacks (Pescatore, 2014). Previous research
work like (Mousavi, 2014), and (Luo, Wu, Li, & Pei, 2015) has focused mainly on volumetric
DDosS attacks thus leaving protocol and application DDoS attacks unexplored. This research will
build on previous research work on volumetric DDoS attacks to find a solution for protocol
based DDoS attacks by taking advantage of the SDN architecture. The research will focus on
TCP SYN flood attacks and ping flood attacks.

Software Defined Networking’s centralized control offers a better way to mitigate these flooding
attacks. Using SDN, we can have the application layer hosting a new set of security services that
take advantage of the global view of the network from the controller and the capability to

directly control the switches (Cabaj, Wytr¢bowicz, Kuklinski, Radziszewski, & Truong , 2014).

1.3 RESEARCH OBJECTIVES

This research will study SDN aiming to find vulnerabilities with regards to DDoS attacks.
The main objectives are:
a) Establish methodologies and technologies that we can apply for detection and prevention

of protocol based distributed denial of service attacks (DDoS).
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b) Develop an application with the capability for detection and stopping protocol based
distributed denial of service attacks.

c) Evaluate accuracy of the developed application in terms of detecting and deterring
protocol based DDoS attacks.

d) Determine whether the application can handle malicious traffic while normal traffic is left

unaffected.

1.4 RESEARCH QUESTIONS

This research aims to explore a possibility of combating DDoS attacks based on various

protocols using Software Defined Networking.

Research questions are as follows:
1. What technologies and methodologies can we use fore detection and prevention of
protocol based distributed denial of service attacks.
2. Can we code a system or application to detect and stop protocol based DDoS attacks?
3. s the application developed able to detect and deter protocol based DDoS attacks?
4. Can the application developed detect and stop DDoS while allowing normal traffic to

continue flowing unaffected?
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2 CHAPTER 2: LITERATURE REVIEW

Software defined networking is a new networking technology that has recently emerged. It
provides an architecture separating the control and the data planes. The central control plane has
an advantage in that our network becomes much more dynamic thus making resource

management efficient and cost effective.

SDN has the unique feature of abstracting a network into two planes - control and data. The
depiction of an SDN is shown below. There are three very distinct layers:

Infrastructure Layer - lowest layer consisting of simple network devices such as switches. These
do not have any intelligence. Their core function is either to drop or forward packets as dictated
by the flow table rules on the control plane through a chosen southbound protocol.

APPLICATION LAYER ‘

Business Applications

CONTROL LAYER

SDN
Control
Software

Network Services

Control Data Plane interface

(e.g., OpenFlow)
INFRASTRUCTURE LAYER

Network Device Network Device
Network Device Network Device

Network Device

Figure 1 A High Level Schema of the SDN Network

Control Layer - this sits above the infrastructure layer. Its main function is to interface

applications running on a higher layer with the dumb devices below in the infrastructure layer. It
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also has what is termed as the brain of the SDN - the controller. This layer has the privilege of
having a centralized control and view of the SDN. APIs allow applications above to control

devices below.

Application layer - has applications running. Some manage the network below and some secure
the SDN. Applications use a chosen northbound API of the controller to talk to the controller.
These applications take advantage of the central view of the SDN by the controller to understand
the whole network. This data is then used to come up with flow tables to be pushed to the dumb

switches.

SDN is continuously evolving while facing many challenges. Some companies like Google and

Huawei have already deployed SDN.

SDN is extremely unique because it offers capability for programmability. This can be achieved
due to the separation of the two planes - control and data. Devices on the SDN are dumb and

programmable.
Since data and control planes are separated:

e The network control can be handled separately without affecting flows of data.

e Devices lack intelligence. This is thus put in the controller.

e Dumb devices are controlled from higher layer using software.

e The applications have a wide range of capability to define how the network could act or

operate.

2.1 SECURITY PROBLEMS IN SDN
In SDN some of the main priorities are the reliability and security due to the cyber-attack and

growing trend of digital threats. Commercial adaption of SDN is still in its early phase although

Google, Microsoft, Yahoo have been conducted a lot of experiments and research on it. A main

concern today is the accessibility of Internet routers thanks to the widespread of clouds in terms

of reliability. If SDN control platforms want to become an essential part of network applications
reaching a high level of availability is crucial. DDoS attacks are a major threat to this goal as

their main aim is to make services unavailable by exhausting computing resources.
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2.2 DOS AND DDOS ATTACKS — DEFINITION

Denial of Service attacks are usually originated by malicious individuals with the aim of
interrupting regular or standard functioning/operation of a service or application. In case the
malicious user incorporates many machines/hosts in the attack, then we refer to it as a distributed
denial of service. Botnets - this is large pool of devices which are able to communicate, are
usually used. Botnets are usually infected and the malicious users has remote control of them. An
attack is achieved when the botnets each send traffic to a target resulting in exhaustion of critical
resources thus making them unavailable to legitimate users. The attacker has the potential to
send massive volume of packets to the target with spoofed source IP addresses. Later In this

section we are explaining in details the nature of the botnet.

Distributed denial of services are the top security issue on the internet and web servers are the
main target. As much as we understand what DDoS is, its detection is very complicated due to

complexity of differentiating normal and malicious traffic.

Detecting DDoS based on flooding is a major challenge for security of the internet now. This
attack relies heavily on large resource imbalance between the internet consisting on millions of
devices and the limited resources on a victim host when handling unusually large number of
requests that are not genuine resulting in normal user requests not being processed because
resources are exhausted. (Rodrigo, Edjard, & Alexandre, Lightweight DDoS Flooding Attack
Detection Using NOX/OpenFlow, 2010).

These attacks are feasible due to easily available tools that are easy to use e.g. (Dittrich, 1999).
Users with little expertise in networking can use these tools to set up an attack to a targeted host.
Use of IP spoofing makes it very hard to trace source of attack. Recently the twitter website fell

victim to DDoS and had its services unreachable for a number of hours. (Sutter, 2009).

When trying to detect a DDoS there are a number of challenges. First is the fact that packet
headers have been modified and made to look normal thus differentiating between traffic that is
safe and legitimate and that from malicious hosts is extremely complicated and hard. Secondly,
data to be analyzed is huge. These two issues make detection extensively complicated and

response timelines get even worse.
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2.3 DDOS TYPES

Distributed denial of services can be achieved in various ways. Classification of these attacks can
be done using the traffic characteristics, amount of packets/data used, and what weakness was
targeted on the host. Based on these, we can have three distinct types of DDoS i.e. volumetric,

protocol based and finally application based attacks. (Kesavan, 2016)

2.3.1 Volume-based DDoS

These are by a long shot the most popular attacks accounting for close to 65% of DDoS incidents
based on a report from Arbor Networks. Even though they usually have a large size of traffic that
could even be in hundreds of Gbps, they do not require a similarly large traffic to be originated
by the attacking hosts. This characteristic enables them to be very simple to generate. A
magnifying medium could be used to convert little data traffic into gigabytes of end traffic on the
targeted host. This method usually sends normal requests to a service such as DNS most times
using a fake source address. When the service responds to this request, they are in effect
communicating with a fake address resulting in the targeted host being overwhelmed with

exaggerated traffic.

A true gquery to the DNS from a fake source IP for ANY records can multiply the traffic even
100 times as the request could respond with all records such as A, CNAME, NS, or MX. A
similar request sent to multiple DNS serves e.g in the range of a hundred or a thousand can lead

to generation of gigabits of packets; the targeted host will collapse. (Kesavan, 2016).

2.3.2 DDoS using Protocols
These mainly use vulnerabilities in network and transport layers. The most popular being TCP
based SYN flooding which uses a successive TCP SYN packets sent to a host thus making it

unable to operate normally henceforth. (Kesavan, 2016).

2.3.3 DDoS using Applications
This type of DDoS is the most elusive and most complicated to identify or even tackle.
Malicious users in these attacks are experts having intricate knowledge of how the targeted

application operates. Generated packets for attack are usually safe but target the OSI application
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layer; it triggers a process in the layers inner working which takes up all the resource resulting in

unavailability. This is why it is nearly impossible to tackle this kind of attacks.

2.4 Other DDoS Attack Types
There are other different forms of DDoS attacks. These are introduced below.

2.4.1 User Datagram Protocol Flooding
User datagram flooding or UDP flooding is characterized by malicious hosts making the targeted

host incapacitated by use of massive UDP packets sent at a very high rate such that they cannot
be processed.

Since UDP can use random ports, targeted ports vary making prediction very difficult. Victim
host receives the UDP packets, processes them to find associated process on the destination port.
Failure to find the associated process, a destination unreachable ICMP message is generated
directed to the attacking host. This whole process consumes massive resources on the host thus

eventually making them unavailable once all resources are engaged.

2.4.2 SYN Flooding using TCP
TCP SYN flooding take advantage of the thre way handshake mechanism used in TCP. With

TCP, this handshake process is used to establish a connection between two hosts before the start
exchanging data.

The host initiating communication first sends a SYN request to the host it is interested in
communicating with. Once the recipient gets the SYN packet, it opens a port for a new process
and continues to listen for more packets. A SYN-ACK is sent back to the initiating host. This
shows it’s expecting more from the host.

On receiving the SYN-ACK, the initiator sends back an ACK thus completing the 3 way
handshake and communication can then proceed.

TCP SYN flooding happens after an attacking host sends multiple SYN requests which the target
handles normally by dedicating ports and other resources such as memory and CPU. The attacker
never sends the SYN-ACK thus leaving the recipient expecting messages that won’t come. This
expectant state continues for some time until the configured clock timeout upon which the TCB

is freed.
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When many SYN requests are sent and the host is in a state where new TCBs cannot be allocated

to genuine requests, the host is unresponsive. (Wesley M. Eddy, 2006).

2.4.3 Ping Flooding
In Ping flooding, an attacker sends numerous ICMP echo regests which it cannot service. This

attack targets bandwidth of the network instead of computer resources since a host can process
ICMP very fast with minimal compute resources. (Gupta, Joshi, & Misra, 2009). Once the
bandwidth is exhausted, the targeted host becomes unreachable hence unresponsive.

2.4.4  Smurf Flooding
Smurf flooding entails the target host e.g. server being flooded with echo responses/replies

instead of echo requests. (Gupta, Joshi, & Misra, 2009). The attacker basically makes the source
IP address of the initial echo request that of the target. A broadcast of the echo request is made to
a number of devices. These then construct replies which are sent to the masqueraded IP address,

which is the IP of the victim hence the attack takes place.

2.5 Distributed Denial of Service Detection and Mitigation
There are well established mechanisms for protection against DDoS and mitigation of DDoS

attacks when they happen to occur. (Haris, Ahmad, & Ghani, 2010). They involve:

Prevention of DDoS

Detecting DDoS

Filter-based mechanisms

Determination of DDoS sources.

Firewalls based on destination addresses combined with filtering of packets has widely been
used with exceptional success. (Hussain, Heidemann, & Papadopoulos, 2003). This involves
placement of a device capable of monitoring at the section the device to be protected connects to
our network. The whole network benefits from the protection. Unfortunately, this method has no
capacity to learn and implement protection from the new knowledge. This shortcoming makes
the solution untenable in cloud based solutions where protecting each destination individually is

quite impractical.
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Contrastingly, SDN enables global view of the whole network thus allowing complete network
based detection.

Network based DDoS detection involves placing a number of monitors over the entire network.
These monitoring agents have predefined signatures; the monitors constantly attempts to match
traffic passing through the network against the signatures. This activity does not disrupt the
traffic flow.

This detection method does not feature any learning but relies on analysis developed externally
to come up with required signatures to be used by monitoring agents.

2.6 Classifying DDoS Defense Mechanisms
Defending DDoS is a major challenge for network administrators. A number of options exist to

achieve this:
1. DDoS Attack Prevention — this mechanism aims to stop any attack before it compromises
the target.
2. Distributed DOS Attack Detection — the main aim is to ensure the attack is detected when
it is in progress.
DDoS Source of Attack Identification — the source of the attack is identified.
4. Distributed Denial of Service Attack Reaction — repercussions of the attack are

eliminated as soon as possible.

2.6.1 DDoS Attack Prevention
Aims to stop the attack early in its process before any damage is experienced. Traffic recognized

as malicious is denied based on known patterns. Below approaches can be used to stop DDoS:
Traffic filtering - examining and analyzing incoming and outgoing traffic on all routers.
Firewall - performs traffic filtering based on unique characteristics such as protocols, source and

destination addresses, source and destination ports etc.

2.6.2 Distributed DOS Attack Detection
Mechanisms used in this category should have the capability to determine whether traffic is

actually legitimate or malicious. The mechanism should be accurate to avoid legitimate traffic
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being confused for malicious traffic; this is known as false positives. (Carl, Kesidis, Brooks, &
Rai, 2006).

Efficient mechanisms will eventually have a good balance between false positives and false
negatives. We have mainly two schemes: (Mirkovic, Martin, & Reiher, 2010), (Srivastava,
Gupta, Tyagi, Sharma, & Mishra, 2011):

Pattern detection - attacks are identified through comparison of traffic coming in with well-
defined attack signatures that are stored in a filesystem or storage.

If a successful match of an attack to a signature is made, the method could be very accurate with
very few false positives. Issues will arise in case new forms of attack are generated or slight
variations that can trick the mechanism.

Anomaly detection - this will identify an attack by detecting anomalous traffic patterns.
Rate-based detection - when flow of traffic in a network changes, this method will detect any

issues by using known patterns of traffic volumes based on time.

2.6.3 DDoS Source of Attack Identification
When the system identifies an ongoing attack, the best course of action would be to block that

associated traffic at its source.

2.6.4 Distributed Denial of Service Attack Reaction
This mechanism aims to stop or minimize effects of a DDoS and eliminate the malicious traffic

while leaving the legitimate traffic unaffected. This minimizes damage caused by DDoS while it

IS in progress.

2.7 Firewalls
Firewalls are network security systems used to control the flow of traffic that is inbound or

outbound between networks. They analyze traffic by looking at characteristics such as layer 2/3

headers - hardware address, source/destination addresses.

2.7.1 Firewall Types
Two broad categories of firewalls exist; this is mainly based on the layer of the network at which

it operates. These are - network layer firewalls and application layer firewalls.
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2.7.1.1 Network Layer firewalls
This type of firewall is also known as packet filtering firewall. Packets are processed and

analyzed based on ports or protocol in use, MAC address, layer three source and destination
address. This mechanism is usually deployed on switches and routers. ACLs are mostly used for
this task.

An ACL will permit or drop packets using specific rules that have been configured and applied
to ports or addresses available on the host. ACLS work on traffic in both directions.

One major drawback of ACLs is that they are not adaptable to conditions. Once configured, they
do not adapt to changing conditions. Secondly, some attacks could use well known port numbers
and could then pass via the firewall undetected.

2.7.1.2 Application Based firewalls
These types of firewalls operate at the top layer of the network i.e. application layer. However,

they are slower than packet filtering firewalls as they have to maintain state information for

applications at both the client and server. They also continue inspecting traffic.

2.8 Firewalls against Denial of Service and Distributed DoS
Firewalls are second in the most targeted systems on the internet after common servers when it

comes to DoS and DDoS. At time access control lists could contain thousands of lines to match
traffic for the purpose of filtration between legal and non legal traffic. The main disadvantage
with this is that DDoS attacks nowadays will be camouflaged in normal traffic and when
firewalls allow connections using its configured access control lists for each sent packet. This
finally results in connection tables being exhausted. When this limit is reached, new connection
requests will be dropped irrespective of their legitimacy.

This phenomenon is a consequense of firewalls not being designed for distributed denial of
service. Firewall devices process packets one at a time against the configured access control lists
hence they do not the capability to differentiate malicious/suspect traffic and the normal or legal

traffic thus resulting in a weak point.
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2.9 Software Defined Networking vs Firewalls
Current firewall systems have many shortcomings when it comes to defending denial of service

attacks since they focus on allowing or denying traffic using configured access control lists. This
makes it complicated to determine which traffic is to be allowed and which is to be dropped.
SDN technology in conjunction with OpenFlow can improve on firewall functionality. Features
to assist us are:

-Since the control and data planes are separated, the network devices are abstracted allowing
software engineers to create applications using high level programming languages to manage the
network infrastructure.

SDN has enabled capability to develop of unique defense strategies that depend on the target's
unique goal and its weaknesses.

This is accomplished using entries in a table with header or packet details to filter
incoming/outgoing traffic.

Whereas a firewall will use access control lists, SDN's OpenFlow devices deploy flow tables.
Access control lists are handicapped by number of lines that can be used to match and filter
traffic. Typically ACLs will match using source/destination IP addresses, port then define at
action. SDN's OpenFlow tables make use of more fields with regards to protocols and Open
System Interconnection layers.

Hence, with OF flow tables, we are able to come up with broader and also clearly drilled down
characteristics of the traffic.

With Software Defined Networking, switches are centrally managed by the controller. This gives
SDN an advantage over network based firewalls which have each device with its own control
plane by allowing administration of traffic and flow policy at a single point. This allows for
scalability. This characteristic is also makes SDN better at DoS/DDoS as traffic is followed as a

whole.
2.10 SDN AND DDOS ATTACKS

SDN uses the central controller to its advantage to make decisions concerning the whole network

using flow tables.
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2.11 RELATED WORK
(Mousavi, 2014), used entropy to detect DDoS attacks. Entropy (Shannon-Wiener index) is

defined as the measurement of randomness with regards to a randomly varying data and for this
research, traffic traversing over the network using destination internet address.

His method sought to identify the attacks in their early stages thus mitigating them in good time.

The controller normally collects statistics from all switches so that it can find flows not in use.

They are usually deleted if not traffic/packets are received over a given time, known as time out

and can be set do different values.

Mousavi proposed adding additional statistics onto the SDN's controller. These were -
destination address entropy on the SDN controller. The module will detect if the rate of packets

coming in to a given destination is deemed very high compared to the normal rate.

50 was set as the size of the window i.e. every 50 of Packet in packets are analyzed to check the
destination address then entropy is calculated. The result is compared to the threshold that was
set. An entropy that is below the threshold and continues for 5 consequent periods, then it is
concluded that a DoS attack is happening. If this happens with five entropy bands, which is two
hundred and fifty packets of a flow thus it gives the network ability to detect an attack eraly
enough.

The above method assumes traffic is evenly distributed to all IP addresses in the network. This
would not apply in a server based environment. There could be more traffic going to a server e.g.
a web server. Setting the window size and threshold is not straight forward as all networks are
not the same. Networks are also not static hence the values might need to be dynamic. My
research overcomes the above challenges by designing a solution that protects a particular server
and can be applied to any service that an administrator would like to protect. The solution works

in real time hence does not need setting values such as window size or thresholds.
(Dao, Park, Park, & Cho, 2015) Uses a statistical method based on the fact that majority of users

send a minimum of five packets to any destination at a time. Users considered suspicious will

send less than five packets at a time.
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n denotes the smallest number of packets sent by a frequent user for each connection. The

average of setup connections will marked by k.
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Figure 2 Statistical method for DDoS prevention

T is used to represent a table construct on the SDN controller. It's used to keep the layer 3
address of each packet that traverses the switch. For each layer 3 address, a counter, ci, is used to
keep a track of arriving packets.

If an attack was in progress, the SDN controller will assume that there is a DoS/DDoS attack
ongoing as soon as a packet is forwarded by a switch and seen by the controller.

SDN controller will create a new entrant with hard and idle timeouts; their values are not bigger
than the values assigned for normal entries so that the lifetime is limited. The layer 3 source
address in the table T is made up to date and the associated counter (ci) is increased by a single
digit.

After ci reaches kK, its data traffic characteristic is analyzed by obtaining s i.e. average packet

numbers. When s>n, we conclude that the layer 3 source IP successfully set up a connection and
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sent authentic data, meaning we can classify it as a frequent user. The SDN controller then sends
a message to reset hard and idle timeouts of the current entries to standard values.

If s<n, the system concludes that this is unsafe traffic. The SDN controller will send a command
to drop associated traffic.

This solution is based suited to volume based DDoS attacks. The solution would have challenges
detecting subtle attacks based on protocol or application weaknesses. My research improves this
statistical method by adding a way of detecting protocol and application attacks and mitigating

the same based on the characteristics of the attacks.

In (Phan, Bao, & Park, 2016) traffic characteristics of flows to a server in an ISP core network in
the event of normal traffic flow and during a DoS/DDoS attack are analyzed. A combined usage
of support vector machines (J. & Cristianini, 2000) and Self Organizing Map (Kohonen, 1997)
enhances the efficiency of classifying flows for the traffic running on the network. For this setup,
SVM is deployed as a tool for supervised learning model that is capable of analyzing given data
and notice patterns. Self-organizing map is known as an efficient algorithm for the purpose of
un-supervised learning in artificial neural networks. This collaboration of SVM and SOM takes
advantage of each algorithm used; not just for generation of accurate decisions but to ultimately
bring down time spent processing. Additionally, SVM and SOM collaboration is applied in a
proposal to limit distributed denial of service attack consequences.
After analyzing, a prevention mechanism is proposed based on SDN. This architecture can
capture and analyze flows in real time. This is the input into the prevention step. As a last step, a
prevention scheme based on multiple criteria was designed. This uses hard decisions thresholds
and system of fuzzy inference with its main purpose being detection of a DDoS attack. If attacks
are determined to be present, the suspicious flows can be dropped by this system.
They proposed a novel network architecture designed to prevent DDoS attacks. This architecture
uses statistical characteristics of network traffic that is incoming.
SDN switches monitor below mentioned statistical characteristics then sends them to the
controller.

o distribution of time between arrivals i.e. inter arrival time

o quantities of packets per flow distribution
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o the sum of flow entries towards a server

An application running on the SDN controller uses the two algorithms i.e. hard thresholds and

fuzzy logical scheme; is a response to the analyzation of statistical characteristics and determines

if a DDoS attack progressing or normal state prevails.

However, for this method, the support vector machines and the self-organizing maps still have to

be trained with datasets in order to be able to detect attacks. This can take time and could not be

ideal for all situations. My method will use real time detection based on characteristics of the

attacks hence will not need extensive training before it can work.

(Luo, Wu, Li, & Pei, 2015) Used the below framework:

Detection Script
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Figure 3 DDoS prevention framework

The framework has the following components:

e A scripting language.

e Modules that are already defined.

e A component to enforce.
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Script language defines how to detect and mitigate. We have a number of predefined modules
that can be used to come up with new methods. The framework has numerous conceptual and
rudimentary modules. These are building blocks for detecting and mitigating DDoS.
The scripts are converted into corresponding flow rules for the SDN switches. These are installed
into the switches using the system's enforcement module.
This enforcement module has a number of critical characteristics that make sure switch ruled
obtained out of security policies are made a priority and installed/executed before other flows
derived from other applications.
Below are responsibilities of the enforcement module:

o Rule source identification

o Detecting rules that are conflicting

o Resolving the detected conflicts
Some key modules of the framework are explained below:

1. Binding module - Any node could initiate a threat in our network thus making
identification of a particular node in the network critical. Taking advantage of the SDN
controller's centralized control and whole view, this module collects data from all
equipment in the system e.g. IP address. This enables easy monitoring of the network.

2. Location tracking module - Knowledge of the each host's location eases blocking of
detected attacks. SDN controller's centralization and global management enables this.

3. Packets filtering module —

4. Interface/port statistics querying function - for detection of DDoS attack, the system
should have the capability to identify happenings associated with distributed denial of
service attack incidents. Port data for each SDN switch is collected at intervals to
determine both byte and packet rates. These values are used to make a decision.

5. Flow statistics queries module - This framework checks at intervals the SDN switches'
flow entries to determine presence of flow entries considered malicious, removes the

flows and installs new ones while blocking the DDoS.

The solution had many modules which have a toll on the processing capacity of the controller.

The solution is also not designed for specific protocol and application DDoS attacks which are
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often subtle and difficult to detect. This research is an improvement on this solution as it aims to

find a solution for these subtle protocol and application attacks.

(Rodrigo, Edjard, & Alexandre, Light-weight Distributed DoS Flood Attack Detection Using
NOX & OpenFlow, 2010) Used SOM for distributed denial of service detection. Three modules
are used in the solution.

1. Flow collector - periodically collects information of flow tables installed on switches. These
communications are done over a secure channel.

2. Feature extractor - picks flows obtained from above. Isolates and processes characteristics
pertinent to distributed denial of service detection; stores them in 6 tuples to be sent to the
classifier.

3. Classifier - used to analyze 6 tuple to determine if it matches distributed denial of service
attack or normal traffic. The classification could be achieved using either statistical or learning

methods. For this research, SOM was used.

The Self Organizing Maps are trained using data collected from the SDN Open flow devices.
Specific information used for the training include:

e average number of packets for each flow

e average traffic in bytes for each flow

e average time duration for each flow

e the percent of flow pairs

e the growth of a flow

e growth of a port

With time, the SOM gets better by improving stats of the vectors. This method also has the
drawback of requiring extensive training of the SOM. This takes time and in the meantime,
attacks can succeed while the training is still ongoing. This research’s proposed method does not

require any training.

2.12 Conceptual Architecture
Below is a simple conceptual framework of our solution:
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CONCEPTUAL ARCHITECTURE
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CONCEPTUAL ARCHITECTURE
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Figure 5 Conceptual Architecture

The conceptual architecture above depicts how the system will defend against Ping Floods and
TCP SYN attacks. The system defends when there is a malicious flow by deleting the flow.

1. Definition of address groups — traffic is categorized into internal and external. Internal
traffic is represented as an address block and is the address space used on the hosts and
switches of the SDN. In our case it’s the address block 10.0.0.0/8. External traffic is any
other traffic that might be accessing our network. We define the whole address space as
external traffic i.e. 0.0.0.0/0.

2. Flow definition - We define the flows by assigning names to packet characteristics
identified and implemented in grouping the same packets into flows or keys, a unique
value to associate the flow with and finally a filter for selection of specific traffic.

3. Defining thresholds - We define thresholds of packets that could signal a breach e.g.

10000 packets per second for a given flow.
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4. Get threshold events - The application keeps polling for events in order to obtain
notifications in case of new events.

5. Monitoring of flows - The flow is monitored and more information regarding the flow is
obtained. This information is extracted from the event plus the agent, metrics and data
sources.

6. Deploying control — after monitoring and determining that thresholds have been
exceeded, the controller installs flows that result in traffic from the identified source
being dropped.

7. Monitoring of flows — the flow is continuously monitored to ensure that the control
measures took effect on traffic.

8. Releasing control - After a given time, the control action is stopped so that flow table
entries engaged in blocking the attacker are released. If the attack happens again, another

event will be generated and new control implemented.

To achieve the above, a node.js application will be created. Node.js was chosen because it allows
for asynchronous input/output thus supporting higher levels of parallelism thus enabling SDN
applications interact with many controllers, monitor systems etc. without blocking hence we get
a quick and consistent response time.

sFlow and OpenFlow are used to create the test bed for the application to detect DDoS. Mininet

allows us to create virtual networks.

2.13 Tools for Research
This section gives more information about various tools that can be used for the research.

2.13.1 Controllers

There are a number of controllers in the market today. These include:
ONOS Controller. Open Network Operating System - this is a project that is sponsored by The

Linux Foundation and aims to come with an SDN OS for communication service providers. It is

designed with scalability and high performance/scalability. (ONOS, 2018)
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Open-Daylight controller. Open-Daylight controller - this project is a collaboration open source
project also by The Linux foundation and aims to promote SDN and network function
virtualization aka NFV. Java programming language has been used for this project.
(OpenDaylight, 2018)

NOX controller - the oldest controller. Operates as network control platform providing an
abstracted high level programmable interface for management purposes and also offers ability to
develop applications to control the network.

NOX was initiated by Nicira networks which was eventually bought by VMware. (NOX, 2018)

Floodlight Controller developed by Big Switch Networks. Floodlight operates together with
OpenFlow; managing network traffic in SDNs. (Floodlight, 2018)

For our research we will use Floodlight because it can handle larger flows. Floodlight is
compatible with Linux, Mac OS and windows, and it has topology discovery. There are other

controllers.

2.13.2 Network Emulator

We have various network emulators in the market today:

ns-3 - this educational/research network simulation for network systems. It’s free for use. (ns-3,
2018)

netem provides network/system emulation so as to get ability to test protocols. Variables that can
be tested - losses, delays, duplications and reordering. (netem, 2018)

The research will use Mininet (Mininet, 2017) as the network emulator. This is the common
emulation system for SDNSs. It can simulate a required network even on a simple laptop. It makes
use of kernel namespaces. Kernel namespace can avail independent processes with standalone
network interface, route table etc.

Mininet uses process based virtualizations to simulate SDN switch and host on a given kernel.
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2.13.3 Hypervisor

Virtualbox hypervisor is available for free. It is owned by Oracle. This hypervisor may be
installed on any operating system. Virtualbox will support all OSs on the guest virtual machine.
(Virtualbox, 2018)

Linux KVM - Linux based. It allows for conversion of the linux kernel into a hypervisor thus

enabling virtual machines to have access to the hardware directly.

VMware - This hypervisor is can be expensive to use due to high licensing costs. It offers open

versions of VMware ESXi but they are limited with no advanced features as the paid versions.

Citrix's Xen is another virtualization tool with roots in the open source world. It is mainly free.
However, for advanced features, you have to pay. Several commercial editions exist that give

more advanced features for management purposes, automating and uptime/availability.

Microsoft Hyper-V was introduced by Microsoft. It is free for evaluation purposes only. It is not

advanced as VMware in terms of number of products available.

For this research, Oracle Virtualbox will be used as it is open source and offers full features on

the free version.

2.13.4 Open vSwitch

OpenvSwitch (OVS) performs multilayer switching and can be programmatically controlled by
SDN controllers, this switching platform will be used in this study because it works will with
both the Floodlight controller and Mininet.

OVS architecture is shown below:
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Figure 6 OpenvSwitch

2.13.5 Packet Generation

Packet generation is done hping3 and nping. Hping3 has no graphical interface and is used as an
OSI TCP-IP packet assembly and analyzation. In addition to ICMP pings, this tool can work on a
variety of protocols such as TCP, User datagram protocol, raw internet protocol packets.
Moreover, it contains the tracert mode and a unique ability to transport files over a secure
channel etc.

On the other hand, NPING is a free tool used to generate packets, analyze responses, and
measure response times. This tool is able to generate packets based on quite a big variety of
protocols thus enabling users to have admin control of protocol headers.

Nping has a variety of functions e.g. simple ping, packet generation, stress testing, simulation of

attacks such as DoS, traceroutes etc.

2.13.6 sFlow-RT

This project uses sFlow-RT to obtain real time visibility in terms of traffic and statistics, of the
Software Defined Network. sFlow enables development of applications that are aware of the
network’s performance at any one time. This allows us to create applications with capability for

DDoS detection and prevention, load balancing etc.
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sFlow-RT has an analytics engine that obtains telemetry streams continuously from agents
known as sFlow agents. These agents are found in network equipment, hosts and also apps. The
agents convert this telemetry streams into metrics that can be acted upon and accessed via the
REST API. This REST API enables administrators to define measurements, obtain given
metrics, define thresholds, and get notifications. Applications can then be built to use this
information as long as the language used supports HTTP/REST calls.

sFlow-RT enables administrators or users to have a view of applications, servers and network
performance. This is achieved through a combination of network, host and app monitoring

within an integrated analytics pipeline. (inMon, 2018).

2.13.7 OpenFlow

OpenFlow(OF) is a pioneer SDN standard that defines communication protocol enabling the
controller to interact with the data plane of devices in the infrastructure layer of the SDN. SDN
controllers can send configuration changes down to switches and routers using OpenFlow. Flow

tables of the switches are modified by the controller using OpenFlow.
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3 CHAPTER 3 METHODOLOGY

3.1 Introduction
In this chapter, a description of the methodology that was used in carrying out the study is

discussed in detail. Tools and process followed are described.

Research methodology to be used is experimentation. Reasons for choosing experimentation:

1. Experiments are performed and the results we get indicate how effective the proposed
distributed denial of service attack detection solution is.

2. Simulation of various experiments helps to obtain results as close as possible to a real
world scenario. Final results can indicate whether the proposed method is adequate and
effective for DDoS detection and prevention.

3. Since SDN provides a programmable network platform, experimentation can take
advantage of this function. Experiments on a real environment can be achieved due to
SDN's high configurability as it provides separation among virtual networks.
Transitioning from experimental environment to an operational one can be done
smoothly.

4. SDN separates the data and the control planes hence making it feasible to build big

experiments on attacks and defenses.

3.2 Prototype Design
Research design adopted for this study was prototype experiment. This choice is guided by the

need for flexibility in topology design and also cost consideration. Free and open source tools

will be used for this study. They are widely used in research and prototyping of networks.

3.2.1 Experiment Requirements
To meet our prototype design objective, the following were identified:
1. SDN Controller — Floodlight.
2. A network emulator.
3. A traffic generator.
A basic PC with the following specification was found to be adequate for the hardware platform.
Intel Core i7-5500U CPU. 2.4 GHz processor. 16GB Random Access Memory. 10/100/1000

Mbps network interface.
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For software, Ubuntu Linux Operating System running on Oracle Virtual Box virtual machine
was used. Linux virtual machines will be created for the SDN controller, Mininet network

emulator and iPERF traffic generation and analysis tool for network performance measurements.

3.2.2 Network Setup
A topology consisting of one server and thirty four PC clients. Among the PCs we will have two

acting as DDoS attackers. OpenFlow will be used for simulation of the SDN network.

The attackers will be used to simulate a protocol attack while the other machines will generate

normal traffic.

SIMULATION NETWORK TOPOLOGY

CONTROLLER

Attacker

SERVER

Frequent user Attacker

Figure 7 Simulation Network Topology
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3.3 Application Development
This study and experiment will entail creating an application to run on the controller. The

application is meant to detect and mitigate Ping Floods and TCP SYN DDoS attacks.
The application is a REST application built using node.js and uses JSON to communicate with

the controller.

3.3.1 Software Development Model
This study will employ the classic waterfall software development because the project

requirements are already clear.

3.3.2 Requirements Definition and Analysis
Requirements were identified and further classified into two categories i.e. functional

requirements and non-functional requirements.
a. Functional requirements — these following functional requirements were
identified:
i. The application should be capable of examining all packets sent to the web
server or of interest.

ii. It should be capable of identifying malicious packets and dropping them
and blacklisting the suspected IP addresses.

iii. The application should be capable of communicating with the controller
when installing appropriate flows in the switches depending on decisions
it has made.

b. Non-functional requirements include:
i. The application shouldn’t overload the CPU and memory of the controller

or machine it is running on.

3.3.3 Application design and development
The application will be developed using node.js.

Floodlight controller has a REST API through which applications can communicate with it. The
main function of the application is to check all packets destined to the web server; identify the
TCP packets and keep track of the SYN packets.

The application will have two main classes. The first class handles mitigation and has a total of

six functions. The second class launches the application and has two functions.
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Inputs/Outputs

Inputs to the application are all the packets destined to the web server. All the packets to the
SDN network are also input since it has to examine all of them and determine which ones are
destined to the web server, are TCP SYN packets and are destined to port 80 or port 8080.

The switches in the network collect these statistics and send them to the controller at a set
interval e.g. every 2 seconds. The application can then examine these statistics and come up with
appropriate action.

Output for the application is deletion of flows if an attack is detected. Otherwise no action is
taken. When an attack is detected, the application should have the capability to block and black
list the suspected IP to prevent further attacks. The application will allow legitimate traffic to be

forwarded in all situations i.e. whether under attack or under normal situations.

3.3.4 System Testing
Functional tests are carried out throughout the development process of the application to ensure

the code works as expected and debug the code. Unit testing and integration testing is also used
when developing the application.

Unit Tests

Unit tests are done to ensure the various modules work as expected. The application has two
classes which are tested separately to ensure they give accurate output. Stress tests were also

incorporated to ensure throughput and latency of the application was acceptable.
Integration testing

Once the application is installed, integration tests are run to ensure it works as expected with the

controller and the switches in the network.

3.3.5 Implementation
After testing was completed, the application was deployed on the SDN network.
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3.4 Experimentation
This section gives more details about how the experiments will be done. The experiments aim at

answering the research questions.

3.4.1 Fixed parameters
1. Number of nodes - 37: 1 controller, 1 web server, 2 machines to simulate an attack, 1

switch, 33 machines to simulate normal users.
2. Platform memory — 16Gb
3. Platform CPU — Intel Core i7-7500U 2.70GHz 2.90GHz

4. Traffic generated for the test, both normal and malicious traffic.

3.4.2 Variable parameters
1. The protection/defence mechanism. First, the experiments will be run without the defence

mechanism in place thus allowing the controller to forward all the packets received on the
network. Then the defence mechanism is set up on the controller and the experiments run
again.

There will be legitimate users on the network. Each will send a GET-request continuously to a

given server in the network periodically.

3.5 Research Tools
This section gives more information about how the research will be conducted and the data

collection methods used. Selection of information sources is also discussed. How the data will be

analyzed and evaluated is also discussed.

A case study of mitigating DDoS attacks on SDN will be carried out. Protocol based DDoS
attacks and Application based DDoS attacks will be the subject of study. Our method of

combating DDoS will be simulated in a virtual environment.

3.5.1 Controller
For our research we will use Floodlight because it can handle larger flows. Floodlight is
compatible with all the major operating systems.
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3.5.2 Network Emulator

This research will use Mininet (Mininet, 2017) as the network emulator. Mininet is a common
network emulation application used with Software Defined Networks. It can emulate a whole
network on a single laptop or PC using what we call kernel namespaces to avail individualistic
processes having their own e.g. networking interface, address resolution protocols, route table
etc.

Mininet makes use of process based virtualization to simulate switches and various hosts or
machines on a given kernel. This gives us the ability to simulate large networks and even various
topologies.

To create a network using Mininet, the command mn is used.

3.5.3 Open vSwitch

OpenvSwitch (OVS) performs multilayer switching and can be programmatically controlled by
SDN controllers, this switching platform will be used in this study because it works will with
both the Floodlight controller and Mininet.

OVS architecture is shown below:

I () Security: VLAN \\ Monitoring: Netflow,

| g isolation, traffic filtering "\ sFlow, SPAN, RSPAN

L y 4

‘ 4 QoS: traffic queuing @' S:tet:‘r::twedoc\:)sn';;ol.
and traffic shaping : mgmt prc;tocol

- y € A

Figure 8 OpenvSwitch
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3.5.4 Packet Generation

Packet generation is done hping3 and nping. Hping3 has no graphical interface and is used as an
OSI TCP-IP packet assembly and analyzation. In addition to ICMP pings, this tool can work on a
variety of protocols such as TCP, User datagram protocol, raw internet protocol packets.
Moreover, it contains the tracert mode and a unique ability to transport files over a secure
channel etc.

On the other hand, NPING is a free tool used to generate packets, analyze responses, and
measure response times. This tool is able to generate packets based on quite a big variety of
protocols thus enabling users to have admin control of protocol headers.

Nping has a variety of functions e.g. simple ping, packet generation, stress testing, simulation of
attacks such as DoS, traceroutes etc.

3.5.5 Hypervisor

Virtualbox hypervisor is available for free. It is owned by Oracle. This hypervisor may be
installed on any operating system. Virtualbox will support all OSs on the guest virtual machine.
(Virtualbox, 2018)

3.5.6 sFlow-RT

This project uses sFlow-RT to obtain real time visibility in terms of traffic and statistics, of the
Software Defined Network. sFlow enables development of applications that are aware of the
network’s performance at any one time. This allows us to create applications with capability for
DDoS detection and prevention, load balancing etc.

sFlow-RT has an analytics engine that obtains telemetry streams continuously from agents
known as sFlow agents. These agents are found in network equipment, hosts and also apps. The
agents convert this telemetry streams into metrics that can be acted upon and accessed via the
REST API. This REST API enables administrators to define measurements, obtain given
metrics, define thresholds, and get notifications. Applications can then be built to use this
information as long as the language used supports HTTP/REST calls.

sFlow-RT enables administrators or users to have a view of applications, servers and network
performance. This is achieved through a combination of network, host and app monitoring

within an integrated analytics pipeline. (inMon, 2018).
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3.5.7 OpenFlow

OpenFlow(OF) is a pioneer SDN standard that defines communication protocol enabling the
controller to interact with the data plane of devices in the infrastructure layer of the SDN. SDN
controllers can send configuration changes down to switches and routers using OpenFlow. Flow

tables of the switches are modified by the controller using OpenFlow.
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3.6 Research Schedule
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Figure 10 Project Schedule

3.7 Experimenting with the setup
Below is the experimental setup.

Topology:



SIMULATION NETWORK TOPOLOGY

CONTROLLER

Attacker SERVER

Frequ ent user Attacker

Figure 11 Simulation Network Topology

The above diagram shows the topology to be used. For our experiment, we will have 35 hosts.
One of the machines will be a web server which we will use to simulate the attacks. The other
hosts will be used to generate traffic on the network and also to simulate DDoS attacks on the
network. The topology has one mininet switch. We also have one controller based on Floodlight.
Mininet will be used to simulate the network i.e. the switch and the hosts. The controller is
simulated on its own using Floodlight. The two are then integrated to work together.

For collection of statistics on the network, sFlow is configured. This tool is greatly used to
demonstrate what is happening on the network. For our research we integrate sFlow and mininet

on startup so that any packet flowing through our simulated network is captured. sFlow also
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enables us to graph traffic and protocols types on our network. This will help with interpretation
of the results.

Traffic on the network is simulated using nping and ping commands.
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4 CHAPTER 4 RESULTS AND DISCUSSION

4.1 Experiment Results
T Results from experiments conducted will be discussed hence forth.

4.2 Starting Floodlight
The Floodlight controller service is started by navigating to the floodlight installation directory -

/home/Ubuntu/floodlight and executing the command:

Java —jar target/floodlight.jar.

u wvm:~/T1 t 48 ster) et, L :
2 INFO [n duleloade f default.properties
IARN [n i t 1.

) initialize p rg.sdnplatf nternal.config.SyncStoreCCProvider
ersistent st

at org e g ageEngine.java ) ~[floodlight.jar:1.2]
at org.sdnplatform.sync.inte gis r ) ~[floodlight.jar:1.2]

Figure 12 Starting Floodlight Controller

4.3 Starting sFlow

To start sFlow, navigate to the working directory for sFlow - /home/Ubuntu/floodlight/sflow-rt
and run the following command:

JIstart.sh

ubuntu@sdnhubvm:~/floodlight/sflow-rt[23:23] (master)$ ./start.sh
2018-07-11T23:29:42-07060 INFO: Listening, sFlow port 6343

2018-07-11T23:29:43-0760 INFO: Listening, HTTP port 8008
2018-07-11723:29:43-0700 INFO: app/dashboard-example/scripts/metrics.js started

2018-07-11T23:29:43-0760 INFO: app/flow-graph/scripts/graph.js started
2018-07-11T23:29:43-0700 INFO: app/mininet-dashboard/scripts/metrics.js started

Figure 13 Starting sFlow

4.4 Starting Mininet
For this project, a topology file — MyTopology.py was created to allow for faster running of

mininet with our preferred topology.

Project Topology

from mininet.topo import Topo
class MinimalTopo( Topo ):

"Minimal topology with a single switch and six hosts"
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def build( self ):

# Create six hosts.

h1 = self.addHost( 'h1")
h2 = self.addHost( 'h2")
h3 = self.addHost( 'h3")
h4 = self.addHost( 'h4")
h5 = self.addHost( 'h5")
h6 = self.addHost( 'h6")
h7 = self.addHost( 'h7")
h8 = self.addHost( 'h8")
h9 = self.addHost( 'h9")
h10 = self.addHost( 'h10")
h1l = self.addHost( 'h11")
h12 = self.addHost( 'h12")
h13 = self.addHost( 'h13")
h14 = self.addHost( 'h14")
h15 = self.addHost( 'h15")
h16 = self.addHost( 'h16")
h17 = self.addHost( 'h17")
h18 = self.addHost( 'h18")
h19 = self.addHost( 'h19")
h20 = self.addHost( 'h20")
h21 = self.addHost( 'h21")
h22 = self.addHost( 'h22")
h23 = self.addHost( 'h23")
h24 = self.addHost( 'h24")
h25 = self.addHost( 'h25")
h26 = self.addHost( 'h26")
h27 = self.addHost( 'h27")
h28 = self.addHost( 'h28")
h29 = self.addHost( 'h29")

49



h30 = self.addHost( 'h30")
h31 = self.addHost( 'h31")
h32 = self.addHost( 'h32")
h33 = self.addHost( 'h33")
h34 = self.addHost( 'h34")
h35 = self.addHost( 'h35")
# Create a switch

s1 = self.addSwitch('s1")
# Add links between the switch and each host
self.addLink(s1,hl)
self.addLink(s1,h2)
self.addLink(s1,h3)
self.addLink(s1,h4)
self.addLink(s1,h5)
self.addLink(s1,h6)
self.addLink(s1,h7)
self.addLink(s1,h8)
self.addLink(s1,h9)
self.addLink(s1,h10)
self.addLink(s1,h11)
self.addLink(s1,h12)
self.addLink(s1,h13)
self.addLink(s1,h14)
self.addLink(s1,h15)
self.addLink(s1,h16)
self.addLink(s1,h17)
self.addLink(s1,h18)
self.addLink(s1,h19)
self.addLink(s1,h20)
self.addLink(s1,h21)
self.addLink(s1,h22)
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self.addLink(s1,h23)
self.addLink(s1,h24)
self.addLink(s1,h25)
self.addLink(s1,h26)
self.addLink(s1,h27)
self.addLink(s1,h28)
self.addLink(s1,h29)
self.addLink(s1,h30)
self.addLink(s1,h31)
self.addLink(s1,h32)
self.addLink(s1,h33)
self.addLink(s1,h34)
self.addLink(s1,h35)
# Allows the file to be imported using ‘mn --custom <filename> --topo minimal
topos = {

'minimal’: MinimalTopo

To start mininet while enabling sFlow on the switches at the same time, the command below is
eecuted from the sFlow directory:

ubuntu@sdnhubvm:~/floodlight/sflow-rt[23:29] (master)$ sudo mn --custom
IMyTopology.py,./extras/sflow.py --topo=minimal --controller=remote,ip=127.0.0.1,port=6653
--switch=ovsk,protocols=OpenFlow13

51



buntu@sdnhubvm:~/floodlight/sflow-rt[09:58] (master)$ sudo mn --custom ./MyTopology.py,./extras/sflow.py --topo=minimal --controller=remote,ip=127.0.0.1,port=6653 --switch=ovsk,protocols=Open
lo

ing network
controller

, hd) (s1, h5) (sl (s1, (s1, h15) (s1, h16) (s1, h17) (s1, h18) (s1, h19) (s1, h26) (
(s1, h24) (s1, h2s) h26) (s1, 29) (s1, 51, h3 h34) (s1, h35)

e Starting 1 switches

** Enabling sFlow:
51

*# Sending topology
** Starting CLI:
iininet>

Figure 14 Starting mininet

4.5 Configuring hl as a web server
To configure host h1 as the web server in the topology, run the command below from the mininet

command prompt:

h1 python -m SimpleHTTPServer 80 &

mininet> h1 python -m SimpleHTTPServer 80 &

mininet>

Accessing web server:

To access the web server from host h2, use the command below:

h2 wget -O - hl

The same command can be run from h2’s terminal as:

wget -O - 10.0.0.1

mininet> h2 wget -O - hl
--2018-07-12 00:29:19-- http://10.0.0.1/
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Connecting to 10.0.0.1:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 790 [text/html]

Saving to: ‘STDOUT’

0% []0 --.-K/s <IDOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><htmI>

<title>Directory listing for /</title>

<body>

<h2>Directory listing for /</h2>

<hr>

<ul>

<li><a href="app/">app/</a>

<li><a href="extras/"">extras/</a>

<li><a href="get-app.sh">get-app.sh</a>

<li><a href="GodfreyProject.mn">GodfreyProject. mn</a>

<li><a href="lib/">lib/</a>

<li><a href="MyTopology.py">MyTopology.py</a>

<li><a href="ping_flood_mitigation.js">ping_flood_mitigation.js</a>
<li><a href="resources/">resources/</a>

<li><a href="start.sh">start.sh</a>

<li><a href="store/">store/</a>

<li><a href="syn_flood_mitigation.js">syn_flood_mitigation.js</a>
<li><a href="syn_flood_mitigation.js%7E">syn_flood_mitigation.js~</a>
<li><a href="syn_flood_mitigation20.js">syn_flood_mitigation20.js</a>
</ul>

<hr>

</body>

</html>

100%[=================== ==============>] 790 --.-K/s in Os

2018-07-12 00:29:19 (55.0 MB/s) - written to stdout [790/790]
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mininet>

"Node: h3"

A AL
wes 2000 Ok

Figure 15 Accessing webserver

4.6 Simulating traffic on the network
Nping was used to simulate traffic on the virtual network. The following commands were used:

/* Send UDP packets with 100 bytes of random data */
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h7 - nping --udp 10.0.0.35 -p 53 --data-length 100 -c 50000000
h10 - nping --udp 10.0.0.29 -p 53 --data-length 100 -c 10000

/* Send ICMP packets */

h8 - ping 10.0.0.30 -c 20000000

h9 - ping 10.0.0.22 -c 20000000

# Send TCP packets at a rate of 100pkts/sec

h11 - sudo nping --tcp 10.0.0.25 --rate 100 -c 10000000
h12 - sudo nping --tcp 10.0.0.28 --rate 100 -c 10000000
h13 - sudo nping --tcp 10.0.0.27 --rate 100 -c 1000000
h14 - sudo nping --tcp 10.0.0.26 --rate 100 -c 20000000
h15 - sudo nping --tcp 10.0.0.25 --rate 100 -c 30000000
h16 - sudo nping --tcp 10.0.0.24 --rate 100 -c 20000000
h17 - sudo nping --tcp 10.0.0.23 --rate 100 -c 20000000
h18 - sudo nping --tcp 10.0.0.22 --rate 100 -c 20000000
h19 - sudo nping --tcp 10.0.0.21 --rate 100 -c 20000000
h20 - sudo nping --tcp 10.0.0.20 --rate 100 -c 20000000

# Send ARP requests to 10.0.0.0/24 subnet
h21 - sudo nping --arp 10.0.0.0/24 --delay 100ms

4.7 Ping Flood Simulation:

4.7.1 Normal traffic:
Traffic on the network before attack:
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Figure 16 Normal traffic
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Figure 16 shows normal traffic on the virtual network. This is before the ping flood attack is
simulated. This traffic is generated by the commands nping commands shown previously.
The different colors indicate traffic from one host to the other e.g.

Blue: ICMP traffic from 10.0.0.25 to 10.0.0.11.

Red: ICMP traffic from 10.0.0.21 to 10.0.0.19

Orange: ICMP traffic from 10.0.0.17 to 10.0.0.23

Green: ICMP traffic from 10.0.0.12 to 10.0.0.28

Maroon: ICMP traffic from 10.0.0.11 to 10.0.0.25

The graph shows normal conditions and traffic as per our simulation. Hosts exchanging traffic
mostly via ICMP among themselves.
At this point the attack has not started yet. The switch has flow rules installed by the controller

that allow traffic to be exchanged among all hosts.
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Figure 17Normal topology traffic

Figure 17 shows normal topology traffic on the simulated network. This is generated by the
nping commands to simulate normal traffic.

The graph indicates traffic as seen on the mininet switch in our topology. Different colors are
used for each host connected on a port on the switch.

Blue: Traffic on port 25 of the switch for host 10.0.0.25

Red: Traffic on port 27 of the switch for host 10.0.0.27

Yellow: Traffic on port 12 of the switch for host 10.0.0.12

Green: Traffic on port 16 of the switch for host 10.0.0.16

Maroon: Traffic on port 14 of the switch for host 10.0.0.14

This is traffic generated by the nping commands shown previously.
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All traffic is allowed since the flow tables have not yet blocked any IP addresses. The SDN

controller installed the flow tables in the switch which allow this traffic to go through.
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Figure 18 Normal protocol traffic

Figure 18 shows protocols running on the network. TCP traffic is the most common with ICMP,
UDP and ARP as shown above.

The traffic was generated by nping commands on the various hosts. Different protocols on the
network have been represented by different colors on the graph. The traffic running on the
network represented by different colors is:

Blue: IP TCP traffic on the network.

Red: IP ICMP traffic.

Yellow: IP UDP DNS traffic.

Green: ARP traffic.
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Figure 19 Normal traffic

Figure 19 shows all the total traffic on the simulated network under normal conditions.
The top graph shows total traffic which is just below 800kbps and is shown in blue graph. On the
lower graph, incoming traffic is shown using a blue line at just over 600kbps and outgoing traffic

is shown using a red line and is just below 100kbps.
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4.7.2 CPU Usage on Server under normal traffic conditions:

Figure 20 CPU usage on server

Figure 20 shows the CPU usage on the web server under normal conditions. The figure shows a
value of 16.6%.
Htop command was used to check resource usage on the web server. The command helps

administrators monitor processes running on the system along with their full command lines.

Figure 21 htop CPU output

With regards to the above screenshot, numbers 1 to 2 are CPU cores for the web server and the
progress bars next to them describe their usage. The progress bars contain multiple colors. The
colors have the following meanings:

Blue: Shows the percentage of CPU used by low priority processes. (nice > 0)

Green: Indicates percentage of CPU used for processes owned by normal users.

Red: Displays percentage of CPU used by system processes.

Orange: Shows percentage of CPU used by IRQ time.

Magenta: Indicates percentage of CPU consumed by Soft IRQ time.

Grey: Percentage of CPU consumed by 10 Wait time.

Cyan: Percentage of CPU consumed by Steal time.
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Just below the CPU stats we have information on memory and swap usage. A similar progress
bar with different colors is used. The colors have the following meanings:

Green - percentage of RAM utilized by memory pages

Blue - percentage of RAM used by buffer pages

Orange - percentage of RAM used by cache pages

Figure 22 Tasks, threads

Htop’s output also indicates number of tasks and threads running on the system. In our case, we
have 106 tasks with 218 threads but only 1 process is running.

Tasks represent all open processes. However, not each open process consumes CPU all the time.
There are a number of states in which a process could exist:

R: Running — process is actively using CPU.

T/S: Traced/Stopped — process is currently in stopped or paused state.

Z: Zombie or defunct — process has completed execution but still has an entry in the process
table.

S: Sleeping — Most common state for many processes. Generally, processes are in the sleep state
for most of the time and perform small checks at a constant interval of time, or wait for user
input before it comes back to running state.

The load average is the system’s load average. The three values are for the last minute, last five
minutes and the last 15 minutes.

Uptime value refers to system’s uptime since last reboot.

Figure 23 htop detailed process information.

PID — Process ID number.
USER — process owner.
PRI — process priority as viewed by the Linux kernel.

N — Process priority reset by the user or root.
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VIR —virtual memory that a process is consuming.

RES — physical memory that a process is consuming.

SHR — shared memory that a process is consuming.

S — Current state of a process.

CPU% — percentage of CPU consumed by each process.
MEM% — percentage of Memory consumed by each process.
TIME+ — time since process execution has started.

Command — full command execution in parallel to each process.

At the moment the CPU is at 16.6% indicating that the system is not overloaded. Usage for CPU

cores 1 and 2 are also low at 21% and 14% respectively.

4.7.3 With no Ping Flood Mitigation:
Ping Flood Attack is launched from h2 using hping3 utility.

l' 1 iemp mode
will be shown

0,13t icmp mode
liez will be sh

Figure 24 Ping flood attack launched

-+ 8

60



Figure 24 shows a ping flood attack initiated towards h1, the web server. The command used is
hping3 -1 —flood 10.0.0.1.

10.0.0.1 is the IP address of the web server.

The attack has been sourced from host 2.

4.7.4 CPU Usage on Server:
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Figure 25 CPU usage on server

Figure 25 shows that the CPU usage on the web server has shot up to 97.4% during the ping
flood attack.

Both CPU cores 1 and 2 have also had their usage go up to 69% and 74% respectively. Memory
and swap usage has not changed much.

Tasks and threads running also remain almost the same — 107 tasks and 214 threads with only 2
processes running at the moment.

At this stage the SDN controller has no intelligence to detect the attack and stop the same. So the

web server is exposed and overwhelmed thus making the services available.
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Figure 26 Traffic on network

Figure 26 shows traffic on the network spiking up when the ping flood attack is initiated.
The graph shows traffic on the network and is consistent with our simulation as it shows traffic
shown in blue originating from 10.0.0.1, the web server to 10.0.0.2, the attacking machine.

Red indicates traffic from the attacking machine, 10.0.0.2 to the web server, 10.0.0.1.

The lower graph shows traffic as it passes through the mininet switch. The blue line represents
port 1 on the switch on which the web server is connected and the red line is for port 2 on which

the attacking machine is connected.

The two graphs also indicate a spike in traffic from the normal 600kbps to almost ten times at
6Mbps.

In this instance, the SDN did not adapt to the conditions of the network i.e. detect the DDoS and
stop it while allowing normal traffic to continue flowing. The malicious ping flood continued
thus overwhelming the web server hence making it unresponsive. Its services are then made
inaccessible. Normal users cannot access the web page because the malicious users have made it

unable to respond to legitimate requests.
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Figure 27 Protocol traffic during ping flood attack

Figure 27 shows protocol traffic on the network also increasing during the simulated attack. As
indicated on the image, most of the traffic is ICMP traffic. Ping flood is based on ICMP traffic.
This is shown by the blue on the graph.

Red color represents IP TCP traffic, Yellow is for ARP traffic while green indicated UDP DNS

traffic on the simulated network.

The graph also shows a sudden increase in the ICMP traffic. It is at this point that the ping flood
started.

The traffic continues unabated because at this moment the controller is not capable of detecting
the DDoS and then stopping the same. Thus the server will end up being overwhelmed thus

making the service unavailable i.e. the web service.

The SDN network still has no intelligence or an application to help it determine the legality of
traffic currently traversing the network. Malicious traffic is allowed to flow through the network
thus causing disruptions to other normal operations on the network. The controller does not
detect the malicious traffic hence it cannot instruct the switches to drop this DDoS attack that is
ongoing.

~ Total Traffic

01:01:00 01:02:00 01:03:00 01:05:00
45M ) B In

e out
< 35| @

g M

n 2.5M

g M

2 15

2 m

@

01:01:00 01:02:00 01:03:00 01:04:00 01:05:00
Time - hhimm:ss

Figure 28 Traffic on network
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Figure 28 is a graph of total traffic running on the network. Traffic flow was normal until when
the ping flood attack was initiated leading to the traffic shooting up as shown in the image above.
The lower graph shows total incoming traffic using the blue line and total outgoing traffic using
the red line.

This diagram also indicates that the SDN, being unable to detect the malicious traffic, allowed
total traffic to explode and go up unabated. At this point, all traffic is seen as normal traffic since
it has no mechanism to differentiate between normal and malicious traffic.

The lower section of the graph also shows traffic coming in and going out increasing. The SDN
allowed all traffic to come in and be responded to by the server. If this continues, it will reach a
point where the server will be overwhelmed hence making it impossible to respond to legitimate
queries. This is due to inability of the controller to put a stop to the attack by instructing the

switches to drop the malicious traffic.

e":"true","action":"","hard tim

e":"true","action":"","hard_tim

Figure 29 Ping flood mitigation script

Figure 29 shows the mitigation script being run to detect and stop the ping flood attack.
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Figure 30 Traffic drop after ping flood mitigation
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After the mitigation script is run, the ping flood traffic is now dropped by the switch after new
flow entries are installed by the controller into the switch.

Blue indicates traffic from the web server towards the attacking machine 10.0.0.9 while red
shows the reverse traffic originating from the attacking machine 10.0.0.9 destined to the web
server, 10.0.0.1.

When the mitigation script is applied, the DDoS traffic drops sharply as shown in the graph. The
SDN controller was able to detect the source of the malicious traffic. It then installed flows in the
switch that ensure all traffic from the malicious source is dropped.

The application gives the SDN intelligence to differentiate between legitimate and malicious
flows. Once malicious flows are detected, the controller installs flow rules into the switches
instructing the switches to drop malicious traffic. In this case, any traffic originating from the IP
address 10.0.0.9.
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Figure 31 Topology traffic after mitigation

Figure 31 shows total topology traffic falling after the mitigation script is executed. The graph
shows traffic on the switch. Blue line indicates traffic on port 1 of the switch. This is the port on
which the web server is connected.

Red line shows traffic on port 9 on which the attacking host is connected.

Once the mitigation is executed, the SDN is able to detect the malicious traffic and drop the same

thus eliminating the DDoS.
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The sharp drop in traffic on the switch is a result of the switch dropping packets deemed

malicious by the controller. When the DDoS attack was detected, the controller immediately

created rules that instruct the switch to drop any packets from the malicious host. Thus ensuring

that the server is safe and continues to operate optimally.
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Figure 32 Total traffic after ping flood mitigation

06:52:00

Figure 32 shows total traffic falling after the ping flood attack has been mitigated. Most of the

traffic was generated by the ping flood attack. This is shown by the graph at the top. The ping

flood attack generated up to just over 10Mbps of traffic on the network.

The lower graph indicates incoming traffic using the blue line and outgoing traffic using the red

line. The traffic significantly dropped after the detection mechanism was deployed. This enabled

the SDN controller to detect malicious flows, install appropriate flows on the switch which made

the switches drop malicious traffic thus the reduction in traffic on the network.
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Figure 33 Protocol traffic after mitigation

The figure above shows protocol traffic which is mainly ICMP dropping after the mitigation has
taken effect. Since we are simulating a ping flood attack, most of the traffic is ICMP and this is
represented by the blue color on the graph. There is little UDP DNS traffic represented by the red
color on the network.

Ping flood is composed of ICMP traffic, hence the SDN used its intelligence to detect the ping
flood DDoS attack. It then installed appropriate flow rules onto the switches instructing the
switch to drop any traffic from the malicious sources thus resulting in the sharp drop on the
graph.
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Figure 34 CPU usage after mitigation

Figure 34 shows CPU usage has gone down to normal levels. Down from 97% to 21%. This is
after the ping flood attack has been detected and mitigated. Usage for CPU cores 1 and 2 has also
reduced to 14% and 23% respectively. Memory usage and swap usage were not affected.

The number of tasks and threads was also barely the same.
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4.8 TCP SYN MITIGATION:
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Figure 35 CPU usage on server before attack

Figure 35 shows the CPU usage, 24%, on the web server under normal conditions. CPU cores 1
and 2 have 17% and 22% utilization respectively. Memory usage is at 2085MB of 2505MB and
swap is at 37MB of 1023MB. There are 106 tasks and 216 threads but only 1 running process.
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Figure 36 Traffic on network before tcp syn attack

The figure above indicates traffic on the network before the tcp syn attack is started. This is
normal simulated traffic on the network using the traffic generation script that was discussed

earlier. Different colors refer to different hosts on the network i.e.
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Blue: Traffic from host 10.0.0.19 to host 10.0.0.21

Red: ICMP traffic from host 10.0.0.28 to host 10.0.0.12
Yellow: ICMP traffic from host 10.0.0.21 to host 10.0.0.19
Green: ICMP traffic from host 10.0.0.23 to host 10.0.0.17
Maroon: ICMP traffic from host 10.0.0.22 to host 10.0.0.18

Total traffic on the network is somewhat just below 300kbps.
At this point the SDN is forwarding all traffic on the network. Flow rules installed on the switch

allow the switch to forward all traffic. All hosts can reach each other using any protocol at this

point.
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Figure 37 Topology traffic before TCP SYN attack

The figure above shows topology traffic on the network under normal circumstances. This is a
representation of traffic as seen on the mininet switch. All hosts connect to this switch. Different
colors represent different hosts and ports on the switch e.e.

Blue — switch port 25 for host 10.0.0.25

Red — switch port 13 for host 10.0.0.13

Yellow — switch port 11 for host 10.0.0.11

Green — switch port 27 for host 10.0.0.27

Maroon — switch port 23 for host 10.0.0.23

The graph captures traffic on the whole network from the switch per port.
The SDN controller has installed flow rules that allow all traffic to be forwarded hence all ports

on which hosts are connected are able to forward traffic. No host is being blocked.
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Figure 38 Network traffic

The above image is an indication of total network traffic without the TCP SYN attack traffic.
The graph at the top shows all traffic on the virtual network. Total traffic is just below 800kbps.
The lower graph indicates incoming traffic using a blue line while outgoing traffic is represented
using a red line.

This is the total traffic on the SDN network.
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Figure 39 Total protocol traffic
Figure 39 shows total traffic in terms of protocols flowing on the network before simulating the
tcp syn attack.

Blue - TCP traffic is represented by the blue section of the graph.

Red - The red indicates IP ICMP traffic and

Yellow shows ARP traffic on the network.

Green shows the UDP DNS traffic.

The SDN is allowing all hosts and all protocols to be forwarded on the network.
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Figure 40 Accessing web page

Figure 40 shows that to access a web page from the web server takes less than 1ms. Accessing

the web page is done from host h3. This is a simulation of web access from a host, in this case

host 3 and the host 1 is configured as the web server hence the IP address 10.0.0.1 in the wget

command.

The third last line shows 100% completion of the task and at the end indicates how long it took

to download the page — less than 0 seconds!
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Figure 41 TCP connections on server

Figure 41 shows the server backlog on host 1. All connection attempts have been successful.
Since the SDN is not blocking any host, all connection attempts to the server are successful. The

web server has received connections and the TCP handshake has succeeded.
4.8.1 Syn attack with nping:
% Real-time Min... [®=] Terminal Node: hl 3. "MNode: h2"

= + 0 data by

Untitle

Figure 42 TCP SYN attack with nping
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In the figure above, a TCP SYN attack has been initiated from host h2 using the nping command.
The attack is aimed at the web server whose IP address is 10.0.0.1.

Source of the attack is host 10.0.0.2.

4.8.2 CPU usage on server:
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Figure 43 CPU usage on server

Figure 43 shows that CPU usage shoots up from 24% to 93.9%. The web server’s CPU is high
due to the tcp syn attack initiated above. Both CPU cores 1 and 2 have also had their usage go
high up to 94% and 57% respectively.

Memory usage is at 2323MB out of 2505MB. Swap usage is also at 343MB out of 1023MB.

117 tasks and 257 threads exist on the system and only 2 were running.

At this point the SDN is vulnerable because the controller has no intelligence to identify
malicious traffic. Hence, all traffic is forwarded to the server leading to exhaustion of resources
such as CPU. Eventually the services will be inaccessible because the server is overwhelmed and
cannot process any requests.
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4.8.3 TCP Connections on Server:
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Figure 44 TCP connections on server

Figure 44 shows the server’s back log. Most of the connections are in TIME_WAIT. The attack
has made the server unavailable thus it cannot process the connection requests.

Connections to the server are stuck in TIME_WAIT. The server is overwhelmed hence it cannot
process connection requests. The attack has succeeded in making web server services
unavailable to legitimate users.

This was possible because at this stage, the SDN has no way of detecting and stopping the TCP
SYN attack.
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4.8.4 Graph on network:
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Figure 45 Graph showing an attack on the server

Figure 45 shows total traffic and topology traffic on the network after the tcp syn attack is
initiated. Traffic shoots up indicating a ddos attack on the network. The top graph shows traffic
sources and destinations using different colors i.e.

Blue — TCP traffic from 10.0.0.2(attacker) to 10.0.0.1(web server).

Red — TCP traffic from 10.0.0.1, web server, back to 10.0.0.2, which is the attacking machine.
Yellow — TCP traffic from 10.0.0.4 to 10.0.0.1

Green — TCP traffic from 10.0.0.6 to 10.0.0.1

Purple — TCP traffic from 10.0.0.22 to 10.0.0.6

At this stage, the SDN does not have the application running that can detect DDoS and stop it.

Hence, the traffic is allowed through the network and ends up overwhelming the web server.
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4.8.5 Web server Access:
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Figure 46 Web access during attack
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Figure 47 Mitigation of attack

The figure below shows the mitigation script being executed. The script is an application running
on top of the controller, giving it the intelligence to detect malicious flows. It then installs flows
on the switches to counter the malicious traffic. The switch is instructed to drop all traffic
emanating from the malicious source.

The SDN controller now has the intelligence to identify TCP SYN attack. It was able to
determine that the source of the attack was from the IP address 10.0.0.2. Upon this discovery, it
installed appropriated flow rules, blocking any traffic from 10.0.0.2 destined to 10.0.0.1, onto the
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switch. From that instance, any traffic matching that flow rule is dropped thus stopping the TCP
SYN attack.

4.8.6.1 Server Connections:
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Figure 48 Connections on server

In the above image, the server backlog has reduced and more connections are successful.
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The SDN controller having stopped the attack from 10.0.0.2, reduces load on the server, enabling

it to allow more connections.

4.8.7 Usage on network
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Figure 49 Traffic drop after mitigation
Figure 49 shows DDoS traffic being dropped by the switch. The traffic from the attacker
continues to reach the switch. However, this traffic is not transmitted to the intended destination
as the flow entry has been deleted to protect the web server from the attack.

The graph at the top shows mostly traffic from the attacker, 10.0.0.1 destined for the web server
10.0.0.1, in blue.

The graph does not show traffic from the web server, 10.0.0.1 back to the attacker 10.0.0.2.

The controller has dropped the flow allowing this kind of traffic after it recognized it as
malicious traffic.

When traffic from 10.0.0.2 reaches the switch, it is not forwarded to the server thus protecting
the server from the DDoS attack. The traffic is dropped as per the new flow rule installed by the
controller onto the mininet switch.

The other traffic types are marginal hence not shown in color on the graph.
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The SDN controller detected the TCP SYN attack. It then created flow rules instructing the
switch to drop any traffic from 10.0.0.2 to 10.0.0.1. So traffic from 10.0.0.2 continues to arrive
on the switch but is not forwarded to 10.0.0.1, hence on the graph, it continues to show that
traffic on the port that 10.0.0.2 is connected on still has high traffic. However, this traffic is not
forwarded to 10.0.0.1, which is the web server. So no response or traffic is seen to arrive on the

port that 10.0.0.1 is connected on, the red line. So there is a sharp drop on the line graph.

The SDN has then nullified the DDoS, in the process protecting the web server from malicious

traffic.
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Figure 50 CPU usage

CPU usage is seen to be reducing to normal levels in the above image. CPU core 2 has had its
usage drop while that of CPU core is still reducing. Overall CPU usage has dropped to 85%.
Tasks and threads remain almost the same.

Memory and swap usage are not affected much.

The SDN controller identified malicious flows i.e. traffic from 10.0.0.2 to 10.0.0.1. It then

installed flows instructing the switch to drop this type of flows thus protecting the server from
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the TCP SYN attack. Any traffic from 10.0.0.2 to 10.0.0.1 is dropped. Hence resources on the

server are not exhausted e.g. the CPU usage.

4.8.8 SYN Attack with hping3

Figure 51 TCP SYN attack with hping3

In figure 51, a tcp syn attack is implemented using hping3 utility.
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Figure 52 server connections

The above image shows the server backlog with most of the connections showing how the server
has received numerous SYN packets. The connections are not completing to the CONNECTED
state.

The SDN controller has not application to help it detect and stop DDoS attacks at this point. All
traffic to and from all hosts is allowed on the switch. The attack originated from 10.0.0.2 is

allowed to continue unabated as the controller cannot tell that it’s a DDoS attack. Hence all
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traffic reaches the web server, exhausts all the resources eventually making the server

unresponsive to all requests.

W mee

1 139384

oot

Figure 53 CPU usage on server

CPU usage is seen to be increasing in the image above due to the tcp syn attack launched above.
Usage on the two CPU cores is also increasing. Overall CPU usage is at 75%.

Since the SDN controller cannot tell that a DDoS attack is in progress, it allowed all traffic from
10.0.0.2 to reach the web server until it was eventually overwhelmed and unable to process any
requests, both legitimate and illegitimate.

The DDoS is successfully executed from 10.0.0.2 making web services unavailable from
10.0.0.1. Once the CPU usage is so high, the server is incapable of processing any requests
further.
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Figure 54 Web server access

Attempts to access the web server are unsuccessful due to the ddos attack initiated above. The
web server has been overwhelmed and cannot respond at this instance. The web page cannot be
accessed.

At this moment, the SDN controller has no intelligence to detect this attack hence the web server
is left exposed. The SDN network forwards all traffic leading to exhaustion of resources on the
server and making it unable to process any further requests.
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Figure 55 Ping to server

Pings to the server are failing indicating the tcp syn ddos attack was successful. The server’s
resources have been exhausted to the point of not being able to respond to any connection
requests.

4.8.9 Total server failure:
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Figure 56 Server failure
Figure 56 shows that there is no traffic coming from the server meaning it has been overwhelmed

by the ddos attack.
The SDN was not able to detect the DDoS and left the server exposed leading to its total failure
after some time. Services are not available at this point since the web server cannot respond to

any connection requests.
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5 CHAPTER 5: CONCLUSION

In this research, we sought to find a solution for combatting protocol based DoS and DDoS
attacks by taking advantage of the Software Defined Networking architecture. The study has
successfully established that SDN can be used to effective detect and stop protocol based
DoS/DDoS attacks. For this study, a virtualized environment implemented using Virtualbox,
mininet, floodlight controller, sFlow, and OpenFlow switches was used. Nping, hping3 and

normal ping were used to generate traffic on the virtual network.

Establish methodologies and technologies that can be used to detect and prevent protocol
based DDoS attacks.

This study was set out to identify methodologies and technologies that can be used to detect and
stop protocol based DDoS attacks. Taking advantage of the Software Defined Networking
architecture where the controller has a view of the whole network and installs flows on the
switches in the topology, an application was developed to take advantage of this feature. The
following technologies were used to come with a solution to detect and prevent protocol based
DDoS attacks:

Open Southbound APIs

OpenFlow and sFlow were used as southbound APIs.

sFlow-RT was used to obtain telemetry streams continuously from the switch and host in the
SDN using agents in the switch and hosts. The agents convert these telemetry streams into
metrics that were acted upon and accessed via the REST API. This allowed us to define
measurements, obtain given metrics, define thresholds, and get notifications. The application
built used this information is HTTP/REST calls.

sFlow-RT enabled us to have a view of network performance.

OpenFlow(OF) is a pioneer SDN standard that defines communication protocol enabling the
controller to interact with the data plane of devices in the infrastructure layer of the SDN. SDN
controllers can send configuration changes down to switches and routers using OpenFlow. Flow
tables of the switches are modified by the controller using OpenFlow. For our research,

OpenFlow is used to install appropriate flow rules into the switch depending on the state of the
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network e.g. when an attack is detected, the controller uses OpenFlow to install a flow in the
switch instructing it to drop any traffic originating from an IP address identified as a source of

malicious traffic.

Controller Operating System

For this research, the Floodlight controller was used since it provides basic connectivity by
default. It also allows users to automatically alter the flow rules using the REST API. This
capability allows us to create an application that doesn’t have to worry about maintaining

connectivity thus focusing on optimization of the network.

Open Northbound API

REST API was used as the northbound API. REST (Representational State Transfer) is based on
uniform resource identifiers (URIs). URLSs are a type of URI and we use them in this research.
REST API uses HTTP protocols and JSON thus making it very compatible with browsers. This
makes it very simple to deploy and optimal for web applications. REST API was used in this
research for client-server communications. REST allowed us to define measurements, obtain

given metrics, define thresholds, and get notifications from the underlying layers of the SDN.

Application
The application was built using node.js. Node.js is a free, open source and runs on all platforms
i.e. linux, windows, unix, Mac OS etc. It uses javascript on servers. Node.js was chosen because
it allows for asynchronous input/output thus supporting higher levels of parallelism thus enabling
SDN applications interact with many controllers, monitor systems etc. without blocking hence
we get a quick and consistent response time. Node.js has the ability to do the following:

e generation of dynamic page content.

e creation, opening, reading, writing, deletion, and closing files existing on a given server.

e addition, deletion, modification of data stored in a database.

JSON (Javascript Object Notation) was also used in the application. JSON is used to store and
transport data because it is lightweight. Most common scenario for this is whenever data is sent

to a web page from a server. JSON is constructed using two structures:
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- A pair of name/value.

- A listing of values that are ordered.

This is the syntax used to store and exchange data.

JSON is readable by almost all programming languages and can be easily fetched by HTTP.

The methodology used in this research is shown in the diagram below:

-

CONCEPTUAL ARCHITECTURE

DDOS PROTECTION |

Define address groups.
J O\O{fo Define flows.
Fl l'ght Define thresholds. |

While (running) {

sFlouws

Receive threshold event

@ Monitor flow J @
| Deploy control

REST API REST API
Monitor flow

Release control

)

9. Definition of address groups — traffic is categorized into internal and external. Internal
traffic is represented as an address block and is the address space used on the hosts and
switches of the SDN. In our case it’s the address block 10.0.0.0/8. External traffic is any
other traffic that might be accessing our network. We define the whole address space as
external traffic i.e. 0.0.0.0/0.

10. Flow definition - We define the flows by assigning names to packet characteristics
identified and implemented in grouping the same packets into flows or keys, a unique
value to associate the flow with and finally a filter for selection of specific traffic.

11. Defining thresholds - We define thresholds of packets that could signal a breach e.g.

10000 packets per second for a given flow.
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12. Get threshold events - The application keeps polling for events in order to obtain
notifications in case of new events.

13. Monitoring of flows - The flow is monitored and more information regarding the flow is
obtained. This information is extracted from the event plus the agent, metrics and data
sources.

14. Deploying control — after monitoring and determining that thresholds have been
exceeded, the controller installs flows that result in traffic from the identified source
being dropped.

15. Monitoring of flows — the flow is continuously monitored to ensure that the control
measures took effect on traffic.

16. Releasing control - After a given time, the control action is stopped so that flow table
entries engaged in blocking the attacker are released. If the attack happens again, another

event will be generated and new control implemented.

Develop an application to be used to detect and prevent protocol based DDoS attacks. The
application should detect DDoS in SDN before it overwhelms the controller.

For this research, a node.js application was developed and successfully used to detect and
prevent protocol based DDoS attacks. Node.js was chosen because it allows for asynchronous
input/output thus supporting higher levels of parallelism thus enabling SDN applications interact
with many controllers, monitor systems etc. without blocking hence we get a quick and
consistent response time. The application uses the REST API to communicate with the controller
which in turn avails all information with regards to the virtual network.

JSON (Javascript Object Notation) was also used in the application. JSON is used to store and
transport data because it is lightweight. Most common scenario for this is whenever data is sent
to a web page from a server. JSON is constructed using two structures:

- A pair of name/value.

- A listing of values that are ordered.

This is the syntax used to store and exchange data.

JSON is readable by almost all programming languages and can be easily fetched by HTTP.
Evaluate accuracy of the developed application in terms of detecting and deterring protocol
based DDoS attacks.
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Through experimentation, the application developed was tested with simulated ping flood and
syn flood attacks and on both occasions, the application was able to successfully identify, detect
and prevent the attacks.

This was determined by the application output where it was able to stop the actual IP address
from which the attack was being simulated.

As shown in the image below, the IP 10.0.0.2 was detected as the source of the TCP SYN attack
and consequently stopped from causing further harm.

Figure 57TCP SYN attack mitigation

Determine whether the application can handle malicious traffic while normal traffic is left
unaffected.

The experiments conducted proved that the application can handle malicious traffic while normal
traffic is left unaffected.

By singling out specific IP addresses during the attack and coming up with a flow rule that only
stops traffic from that particular IP address, other normal traffic is left to continue traversing the
network unaffected.

The ddos application singles out only specific hosts and mitigates their destructive nature on the

network.

5.1 Future Work
This study was focused on detecting and preventing protocol based DoS/DDosS attacks with ping

and syn flood attacks experimented with. A virtualized environment was used.
Further work can be done using real networking equipment. Other protocol attacks can also be
studied e.g. DNS attacks, HTTP flooding etc.

Application based DoS/DDoS attacks are also an interesting field that could be explored further.
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