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Abstract

The aim of this project is to carry out a research on the e�ects of weather variables on the

seasonality of in�uenza. For this purpose we formulate a compartmental model to represent

in�uenza transmission dynamics. In�uenza is modeled as a 5-dimensional deterministic

system of ODE’s with a variable transmission rate expressed as an exponential function of

the weather variables.

The basic properties including the basic reproduction number are derived. The disease free

and endemic equilibrium of the model are found and their stability analyzed. The disease

free equilibrium point is found to be both locally and globally stable.

In�uenza data was organized into seasons from December 2006 to November 2011. Graphs

were drawn for all the four stations to determine the season with the most �u prevalence.

It was established that, the 3rd season has the most �u prevalence while the 1st season

had the least �u prevalence.

The mean values of the weather variables were retrieved from world weather website

online and aggregated into seasonal values. The correlation coe�cient of �u with the

basic reproduction number, temperature, rainfall and humidity was calculated. In Nairobi

station, we see that there is a positive correlation between �u and the basic reproduction

number. In all the four stations, we can see that there is a negative correlation between �u

and temperature and �u and rainfall. On the other hand, there is a positive correlation

between �u and humidity.
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1 Introduction

The aim of this thesis is to study the e�ect of temperature, rainfall and humidity in the
seasonality of Influenza virus in Kenya.

This thesis has five chapters. Chapter one basically covers the introduction. It gives the
general background of the disease, problem statement, objectives and the significance of
the study. Chapter two highlights some existing literature on e�ects of weather variables
on the seasonality of Influenza. Formulation and analysis of the deterministic model is
covered in Chapter three. Chapter five contains numerical simulations for the model
and finally, results, discussions and recommendations of the simulations are covered in
Chapter 6.

1.1 Classification and Causes of Influenza

Influenza is an communicable viral infection. The virus can be classified into three main
types namely; Influenza A,B and C.

Influenza A mutates a lot through antigenic shi� and antigenic dri� and it ends up forming
new strains like H1N1 (Swine Flu) and H3N2 (Avian Flu (Urban M.A., 2009). Since Influenza
A has the ability to mutate and form a di�erent strain, it can easily cause widespread
outbreak.

1.2 Antigenic Dri� and Antigenic Shi�

Influenza viruses mutate o�en such that the immune system of the host is not able to
protect against the new strain. The two processes involved in the mutation are called;
antigenic dri� and antigenic shi�.

• An influenza virus is prone to errors every time a copy of its genome is being formed. If
the errors are su�icient enough, reinfection is possible as immunity produced against
the previous strain might not be able to protect against the newly formed strain. This
process is called antigenic dri�.

• When two influenza strains mix to form a new strain that has the properties of both
both mother strains, the process is called antigenic shi�.
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1.3 Transmission and Spread of Influenza

The influenza virus is airborne. It can be transmi�ed through direct contact with an
infectious person or by coming into contact with a contaminated surface. When an
infectious person coughs or sneezes, air droplets carrying the infection enter the respiratory
system of someone in close range, this makes makes the transmission of the flu quite
rapid in crowded places.

If you have the flu, you are contagious from at least a day before you begin to experience
symptoms up through five days a�er your symptoms begin.

1.4 Signs and Symptoms

Influenza is usually characterized by a sudden inception of fever, headache, sore throat
and runny nose. In high risk groups, influenza can cause severe illnesses such as sinus
infection and pneumonia or even lead to death.

1.5 High Risk Groups

Influenza infections a�ect all populations. However, pregnant women, children between 5
to 59 months, the elderly, and individuals with underlying chronic illnesses are at a high
risk of infection due to weakened immune system. Since health care workers constantly
interact with patients, they are also at a high risk of infection.

1.6 Diagnosis,Treatment and Recovery

The Rapid Influenza Diagnostics Test is o�en used to determine if a patient is infectious.
Occasionally, the disease can clear when the infected takes plenty of water and has enough
rest, hence, patients with uncomplicated seasonal influenza are usually advised to stay
home to minimize chances of spreading the disease. However, there are antiviral drugs
which may be prescribed to help reduce the ability of the disease to spread and relieve
some of the symptoms. The treatment period lasts about 5 days but can be prolonged
until there is satisfactory improvement.

1.7 Prevention

The most e�ective way to prevent the flu is through annual vaccinations. At least each
flu shot protects against three to four di�erent influenza viruses within that year’s flu
season.
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Alternative routines that can be used to prevent the spread of the disease include:

• Constant wash of hands with soap and clean water.

• Avoiding overcrowded places when sick.

• Cleaning and disinfecting objects and surfaces.

• Avoiding direct sneezes and coughs onto one’s hand

1.8 Risk of Re-infection

When one gets sick from one strain of the influenza virus, his or her body develops
immunity that will protect him or her from ge�ing re-infected with the same strain.
However, one can still be infected with a di�erent strain as the antibodies formed from
the first infection might not be able to provide protection against a di�erent strain.
However, if an immunized individual re-encounters a virus in 3-4 weeks re-infection is
likely to occur because by then, the primary antibody response has not matured. This is
likely to occur during an extensive circulation of the influenza virus.

1.9 Cycles of Occurrence

Influenza occurs in distinct outbreaks of varying extents every year in Kenya. The epi-
demiological pa�ern reflects the changing nature of the antigenic properties of influenza
viruses (Mwangangi, 2013).The subsequent spread depends upon multiple factors includ-
ing transmissibility of the virus and susceptibility of the population.
Influenza is prevalent during cold months as the flu virus is believed to be steady and
stays in the air longer during cold months. In winter, most people are also indoors and
hence overcrowding and lack of vitamin D.

1.10 Public Concern

Influenza presents a year-round disease burden.It causes illnesses that range in severity.
The illnesses not only maim leading to hospitalization and loss of productivity but can
also lead to death.

The fact that the virus mutates a lot, is a great potential for a pandemic. Every year, a new
vaccine is introduced so that it is e�ective to the circulating influenza virus. In temperate
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climates, seasonal epidemics occur mainly during winter, while in tropical regions like
Kenya, influenza may occur throughout the year. In sub-Saharan Africa, influenza is not
properly documented making it hard to detect a new strain or clusters of human cases
that could be associated with a pandemic(Gessner, 2011).Knowledge of disease burden is
essential in informing policy decisions around treatment and prevention of the disease.

1.11 Past Pandemic

A pandemic is a global outbreak of a disease. So far, we have had four global outbreaks of
the influenza virus.

• The Spanish Flu involving H1N1 sub type of Influenza A was the first global outbreak
of Influenza which occurred between the years 1918 and 1920.As the name suggests,
the pandemic originated in Spain. It caused upto 50 million deaths worldwide (Tauben-
berger and Morens, 2006).

• The Asian Flu which originated from China in the year 1956 caused about 2 million
deaths according to WHO and it involved the H2N2 Influenza A sub-type.

• The Hong Kong Flu which occurred between the years 1968 and 1970 was caused by
the H3N2 sub-type which was generated from the H2N2 sub-type through antigenic
shi� (Hong, 2006). The virus caused about one million deaths world wide (Mandel,
2009).

• The 2009 Swine Flu which involved the H1N1 Influenza A sub-type occurred between
2009 and 2010. It caused about 200,000 deaths globally according to WHO website
(Mwangangi, 2013).

1.12 Problem Statement

Although various e�orts against the disease have been made, influenza is still endemic
due to lack of su�icient knowledge on its dynamics and proper application of cost e�ective
control strategies. This disease is highly linked with weather variables as it is seen to have
peaks during cold months. This study is intended to develop a mathematical model for
the transmission dynamics of Influenza and use this mathematical model to quantify the
role of seasonal weather variables in the transmission dynamics of the virus.
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1.13 Objectives of the Study

The main objective of this study is to devise a mathematical model for the transmission
dynamics of Influenza and determine the e�ects of seasonal temperature, rainfall and
humidity.

1.13.1 Specific objectives

1. To establish and ascertain the stability of equilibrium points.

2. To express the reproduction number as a function of temperature, rainfall and humidity.

3. To estimate the transmission rate from the data.

4. To analyze and detect pa�erns in the seasonality of observed influenza data.

5. To analyze and detect pa�erns in the seasonality of observed influenza data.



6

2 Literature Review

2.1 Influenza Seasonality

In temperate regions, influenza occurs constantly during winter and early spring months
(Lipsitch, 2009). Its seasonality is well studied and documented. In tropical regions
influenza seasonality is not well studied and documented. However, influenza is seen
to occur sporadically all year round in tropical regions with peaks observed during cold
months. If peak influenza activity is an accurate measure, flu viruses prefer the weather
either cold and dry or humid and rainy, according to an analysis of climate variables and
flu pa�erns around the world (CIDRAP, 2013).

Several studies conducted have linked weather variables to the seasonality of Influenza.
Weather variables not only a�ect virus survivor-ship but also the transmission e�iciency
of the disease. Inadequate vitamin D and melantonin due to changes of number of days
with sunlight is believed to a�ect the susceptibility of the population.

By using weekly meteorological data and disease surveillance data of influenza in Shaoyang
(Zhou et al, 2007) used a general additive model to investigate the e�ect of weather vari-
ables on Influenza activity. The study suggests that the risk of influenza is higher in cold
and less humid conditions in China.

Lowen and Palese (2009) in their study showed that low temperature and humidity not
only improve the viability of the influenza virus but also facilitate rapid spread of the virus
by providing suitable circumstances for aerosol borne transmission.

Zhou (2009) study suggested that the seasonality of Influenza could depend on several
factors such as weather variables and internal dynamic resonance. Some of the weather
variables he examined in his study were precipitation, solar radiation and dew point. The
results of his study suggest that;

• Influenza illnesses are directly proportional to the exponential of the number of days
with precipitation and to the negative exponential of quarter power of sunny hours in
all climatic regions.

• In temperate and arctic regions,Influenza illness is a negative exponential of dew point.

• Influenza illness is an exponential function of an absolute deviation of dew point from
its annual mean in tropical regions.
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He recommended that in depth knowledge on roles of weather variables in Influenza activ-
ity is critical for early interventions such as opportune vaccination and social distancing.
He used the general growth model in his study and derived a formula for the transmission
dynamics of influenza.

Chong (2005) conducted a study in a subtropical city Hong Kong fi�ed weather variables
and Influenza mortality data in an SIR model to identify the weather variables e�ect on
the seasonality of influenza virus transmission. The results of the study showed that, air
temperature and rainfall played a significant role in the seasonality of the Influenza virus.
Air temperature and rainfall were found to be the significant drivers of seasonality of the
disease.

These studies suggest that periodicity of Influenza is caused by a less-than-straight
forward interaction of many di�erent factors. Recognition of this complexity is essential
for continued examination and study of the seasonality of the virus.

2.2 Mathematical Modeling of Influenza

Mathematical modeling dates back to 1766 when the very first publication was made. In
the seminal paper, Bernoulli developed a mathematical model to study deaths caused by
small pox in England. In 1772 Lambert extended Bernoulli’s model by incorporating age
dependent parameters (Dietz, 1976).

In 1911 Ross made an extension which was like the benchmark of modern mathematical
epidemiology. Following up the work of Ross, Kermack and McKendrick founded the
deterministic model. In their papers, they addressed the mass action incident, suggesting
that the probability of infection of susceptible is analogous to the number of its contacts
with infected individuals (Dietz, 1976).

Over the years, mathematical models have been adapted in analysis of disease dynamics
(Chowell, 2008) estimated the reproduction number over three decades in Australia, France
and in the United States by applying an elementary epidemic model to the weekly values
of influenza deaths. In his study, he divided the population into five classes, namely;
susceptible, exposed, infectious, protected and dead.

Chong et al (2015) extended the model by Chowell in their research which was aimed
at describing the dynamic system of seasonal influenza in Hong Kong. Their model was
divided into four compartments; susceptible, infectious, recovered and dead. They used
a time varying transmission rate to express the transmission rate as a function of the
weather variables.
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3 Model Formulation and Analysis

In this Chapter, a deterministic model describing the dynamics of influenza transmission
is formulated. The model comprising of non linear di�erential equations is qualitatively
analyzed to determine the existence of the steady states. The steady states are then
analyzed to determine local and global stability.

3.1 Model Formulation

To come up with the model, we use the idea of the model formulated by Chowell (2010)
and incorporate the idea of variable transmission rate by Chong (2015). To construct the
SEIRD deterministic model, we divide the total population N into five epidemiological
classes; the susceptible class (s); those who are not infected but are at a risk of ge�ing
the infection if exposed, the Exposed class (e); those who are infected but are not yet
contagious , the Infected class (i); the group of people who already have the disease and
are contagious, the Recovered class (r); the group of people who have been healed hence
immune to the disease and the Dead class (d) consisting of those who die from the disease
(Miller, 2007). Hence, the total population;

N = s+ e+ i+ r+d.

The Susceptible become infected at a rate βt . σ represents the rate at which one moves
from the Exposed class to the Infected class, λ is the recovery rate and finally µ represents
the rate of death due to the disease.

To analyze the system, we normalize it by dividing both sides of the equation by N. let
s/N = S, e/N = E , i/N = I, r/N = R and d/N = D.Hence S + E + I + R + D = 1.

3.2 Assumptions of the Model

• The population can be divided into a set of five classes depending on their experience
with the disease.

• The population is homogeneous with the same probability of transmi�ing the disease.

• The population is constant at any given time. No natural births and deaths.This is
because, influenza cycle is in days while deaths and births happen over years.

• The recovered assume permanent immunity.
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• At the beginning , everyone in the population is assumed to be susceptible

Variable Description

S Susceptible

E Exposed

I Infected

R Recovered

D Dead

Parameter Description

βt Transmission rate

σ Infection rate

δ Recovery rate

µ Disease induced death rate

3.3 The Compartmental Model

Figure 1. The Compartmental Model
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3.4 The Model equations

From Figure 1 the following ordinary di�erential equations are obtained.

dS
dt

= −βtSI,

dE
dt

= βtSI−σE,

dI
dt

= σE− (µ +δ )I, (1)

dR
dt

= δ I,

dD
dt

= µI.

3.5 Analysis of the Model

In this section qualitative analysis of the model is carried out in order to investigate the
possibility of the existence and stability of equilibrium points.

3.5.1 Invariance of the region ,positivity and boundedness of the solution

To determine whether the model is biologically meaningful, it is tested for positivity and
feasibility. To prove invariance, positivity and boundedness, it is imperative to show that
the system is dissipative (Vibound, 2013). That is, all solutions are uniformly bounded in a
proper subset Ω = R4

+ with non negative initial conditions.

Ω = [(S,E, I,R) ∈ R4
+ : N(t)≤ Λ

µ
] (2)

3.5.2 Existence and Stability of the Equilibrium Points

The equilibrium points are found by se�ing model equation (1) to zero.

−βSI = 0, (3)

σE− (µ +δ )I = 0, (4)

δ I = 0, (5)
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µI = 0. (6)

3.5.3 The Disease Free Equilibrium Point(D.F.E.P)

When there is no disease in the population, we have a D.F.E.P.

Stability of D.F.E.P is regarded as a case whereby the disease is totally eliminated from
the population. When R0 ≤ 1 this can be achieved.

In the absence of the disease ; E = I = R = 0 hence, S = N = 1.

Hence;
E0 = [1,0,0,0]

3.5.4 Basic Reproduction Number

To analyze the stability of the disease free equilibrium point, the basic reproduction num-
ber R0 for the model must be computed. The basic reproduction number R0; is defined as
the total number of secondary infections arising from one newly infected individual intro-
duced into a totally susceptible population (May and Anderson, 1992). We calculate the
basic reproduction number R0 of the system using the next generation operator approach
(Watmough, 2002). We define the model dynamics using;

dE
dt

= βSI−σE

dI
dt

= σE− (µ +δ )I

We define the vector valued function f as the rate of appearance of new infection in the
disease compartments.

f =

En

In





12

Finding the Jacobian matrix of f at the disease free equilibrium gives,

F =

0 βtS?

0 0



F =

0 βt(1)

0 0


Calculating the di�erence between the rate of transfer of individuals out of the disease
compartment and the rate of transfer of individuals into the disease compartment we get;

ν = ν
−−ν

+

Where,ν− is the transfer of individuals out of the disease compartment.
ν+ is the transfer of individuals into the disease compartment. The transmission vector is
given by;

ν =

 σE

(µ +δ )I−σE


V =

 σ 0

−σ µ +δ



V−1 =
1

(σ)(µ +δ )

µ +σ 0

σ σ



=

 1
σ

0
1

δ+µ

1
δ+µ



FV−1 =

0 βtS

0 0

 1
σ

0
1

δ+µ

1
δ+µ



=

 βtS
δ+µ

βtS
δ+µ

0 0


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The basic Reproduction number R0 is equal to the spectral radius(the greatest eigenvalue)
of FV−1

=

∣∣∣∣∣∣
βtS

δ+µ
−λ

βtS
δ+µ

0 0−λ

∣∣∣∣∣∣
(−λ )(

βtS
δ +µ

−λ ) = 0

Hence,
λ1 = 0

λ2 =
βtS

δ +µ

λ2 is the greatest eigenvalue hence;

R0 =
βtS?

δ +µ

At the disease free equilibrium point, the value of E=O, I=0, R=0 and D=0 hence, the value
of S is equal to the total population which is one; thus

R0 =
βt

δ +µ
(7)

The terms in the basic reproduction number can be interpreted as follows;
1
δ

= Mean Infectious Period
βt = Transmission rate
1
µ

= Life Expectancy of Human Population

It is clear that R0 increases with increase in β . Therefore the transmission term increases
the basic reproduction number R0 . This means that more and more people get infected
as more contacts are made by the susceptible population.

3.5.5 Local Stability of Disease Free Equilibrium Point

We analyze this by obtaining the Jacobian of the equation(1)and evaluating its eigenvalues.
For the equilibrium to be locally asymptotically stable, R0 < 1.
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From the equation (1) above, we have the Jacobian;

J(E) =


−βtI 0 −βtS 0

βtI −σ βtS 0

0 σ −(δ +µ) 0

0 0 µ 0


At the disease free equilibrium point, we know that: [S,E, I,R,D] = [1,0,0,0,0]. Hence,
replacing the values of S and I in the matrix above, we get; The Jacobian matrix at the
Disease Free Equilibrium Point;

J(E0) =


0 0 −βt 0

0 −σ βt 0

0 σ −(δ +µ) 0

0 0 µ 0



We now evaluate J(E0) to get it’s eigenvalues∣∣∣∣∣∣∣∣∣∣∣

0−λ 0 −βt 0

0 −σ −λ βt 0

0 σ −(δ +µ)−λ 0

0 0 µ 0−λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣∣

λ 0 βt 0

0 σ +λ −βt 0

0 −σ (δ +µ)+λ 0

0 0 µ λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

λ

∣∣∣∣∣∣∣∣
σ +λ −βt 0

−σ (δ +µ)+λ 0

0 µ λ

∣∣∣∣∣∣∣∣= 0

λ
2

∣∣∣∣∣∣σ +λ −βt

−σ (δ +µ)+λ

∣∣∣∣∣∣= 0
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λ
2[(σ +λ )(δ +µ)+λ )−βtσ ] = 0

λ
2 +λ (δ +µ +σ)+σ(δ +µ−βt) = 0

We use the Descartes rule of signs to analyze the signs of the eigenvalues. For all values
of 1

R0
> 1, we have no sign change and hence, all the eigenvalues will be negative. This

condition makes the disease free equilibrium point locally asymptotically stable. Any
state initiated near E0 tends to E0 as time increases.

3.5.6 Global Stability of the Disease Free Equilibrium point

The disease free equilibrium point E0 is said to be globally stable if all solutions of the
model that start out anywhere in the feasible region stay near the point E0 at all times.
The global stability of the disease free equilibrium point will be analyzed using a Lyapunov
function.
If L(x) is a Lyapunov function, then we have;

1. L(x) > 0 and L = 0 only at x = x?

2. L′(x) < 0 and L′(x) = 0 at x = x?

Let L = E + I

L′ =
dE
dt

+
dI
dt

L′ = βtSI−σE +σE−δ I−µI

= βtSI− [δ +µ]I

= [δ +µ][
βSI

δ +µ
− I]
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= [δ +µ]I[SR0−1]

for R0 < 1, the disease can be controlled but, for R0 > 1, the disease perseveres.

3.5.7 Existence of the Endemic Equilibrium point

For Influenza to persist in the population, it means R0 > 1 and S(t) 6= 0,E(t) 6= 0, I(t) 6=
0,R(t) 6= 0. An endemic equilibrium point is a steady state that exists when there is
disease in the population.

Stability of an endemic equilibrium point represents a situation in which a disease es-
tablishes itself within a community. In epidemiological modeling, this is possible when
R0 > 1.

Then the model has an endemic equilibrium point at S = 0. This implies that, E is also
equal to zero, hence, we have I +R = 1.

3.5.8 Local Stability of the Endemic Equilibrium point

We determine the stability of the endemic equilibrium point by eigenvalue analysis where
the Jacobian matrix is computed and evaluated at the endemic equilibrium point.

J(E) =


−βtI 0 −βtS 0

βtI −σ βtS 0

0 σ −(δ +µ) 0

0 0 µ 0


At the endemic equilibrium point, we have

J(E?) =


−βtI? 0 −βtS 0

βtI? −σ βtS 0

0 σ −(δ +µ) 0

0 0 µ 0


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We find the eigenvalues of the Jacobian matrix at the endemic equilibrium point.∣∣∣∣∣∣∣∣∣∣∣

−βtI?−λ 0 −βtS 0

βtI? −σ −λ βtS 0

0 σ −(δ +µ)−λ 0

0 0 µ 0−λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

[−βtI?−λ ]

∣∣∣∣∣∣∣∣
−σ −λ βtS 0

σ −(δ +µ)−λ 0

0 µ 0−λ

∣∣∣∣∣∣∣∣= 0

[−βtI?−λ ][−σ −λ ]

∣∣∣∣∣∣−(δ +µ)−λ 0

µ 0−λ

∣∣∣∣∣∣= 0

[−βtI?−λ ][−σ −λ ][λ (δ +µ)+λ
2] = 0

Using the Descartes rule of signs, we find that all the eigenvalues will be negative, hence,
the endemic equilibrium point is locally asymptotically stable.
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4 Numerical Analysis of the Model

In this Chapter, we verify the model equations by solving them numerically and also
establish the relationship between Influenza with the di�erent weather variables and the
basic reproduction number for each station.

Using the least square method, we obtained the transmission rate for the four stations.
The true values of some of the parameters used in the simulations are not well known since
they required extensive field work. Therefore, their values were extracted from literature.
The di�erential equations are solved using the MATLAB in-built function ode-45 and the
numerical results are plo�ed to ease interpretation.

The influenza data was acquired from a University of Nairobi alumnus (Juma V., 2015), who
carried out a related study in 2015.The influenza data provided for di�erent stations was
given in months from 2006 to 2011. We organized the data into seasons from December of
2006 to November 2011 in order to have a general idea of flu prevalence for the di�erent
seasons.

In terms of weather conditions calendar seasons in Kenya are reversed in relation to
Northern Hemisphere. So at Spring months in Kenya, there is local Autumn. Yet average
temperature is 29◦C more like at summer.

4.1 R0 as a function of meteorological parameters

From equation (7)

R0 =
βt

δ +µ

Station Name

1 Nairobi

2 Nyanza

3 Malindi

4 Isiolo

Table 1. Stations under consideration
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Season Period

D−F December of the previous

year to February

M−M March to May

J−A June to August

S−N September to November

Table 2. Seasons and their interpretation

This model was extended by Chong et al in their research. They used a time varying
transmission rate βt given by βt = β0e(α1T+α2R+α3H) (Chong et al, 2015).

R0 =
β0e(α1T+α2R+α3H)

δ +µ
(8)

The transmission rate has been expressed as a function of the meteorological parameters.
T represents the transformed value of temperature, R represents the transformed value of
Rainfall and H represents the transformed value of Humidity.

The transformation
Zi =

xi− x̄i

σxi
(9)

is used to evaluate the di�erent values of the weather variables.

4.2 Parameter Estimation

The parameters β0, α0, α1 and α2 are estimated using the least squares method. The rest
of the parameters, σ , δ and µ are retrieved from literature.We assume the values of the
variables S(0)= 100, E(0)= 9, I(0)= 9 , R(0)= 0 for all the stations under consideration.

4.3 Least Squares Method

We transform the meteorological parameters to make the model coe�icients more compa-
rable to each other. Taking xi as one of the weather variables, x̄i as the the mean of the
sample and σxi as the standard deviation of the sampling period. The transformation

Zi =
xi− x̄i

σxi
(10)

where Zi stands for the transformed weather variables (T̂ , R̂ and Ĥ) is used to evaluate
the di�erent values of the weather variables.
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1 December 2006 to February

2007

2 2007 March to May 2007

3 2007 June to August 2007

4 2007 September to November

2007

5 2007 December to February

2008

6 2008 March to May 2008

7 2008 June to August 2008

8 2008 September to November

2008

9 2008 December to February

2009

10 2009 March to May 2009

11 2009 June to August 2009

12 2009 September to November

2009

13 2009 December to February

2010

14 2010 March to May 2010

15 2010 June to August 2010

16 2010 September to November

2010

17 2010 December to February

2011

18 2011 March to May 2011

18 2011 June to August 2011

20 2011 September to November

2011

Table 3. Season labels from 2006 to 2011
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Parameter Description Value Referencce

σ Infection rate 1/1.9 days Lipsitch, 2004

δ Recovery rate 1/4.1 days Lipsitch, 2004

CFP Case Fatality Proportion 0.2 percent Lipsitch, 2004

µ Death rate due to the disease δ [CFP/(1-CFP)] Chowell et al,

2008b

Table 4. Parameter description and their values

βt = β0e(α1T̂+α2R̂+α3Ĥ) (11)

We linearize the equation to get:

lnβt = lnβ0e(α1T̂+α2R̂+α3Ĥ)

lnβt = lnβ0 + lne(α1T̂+α2R̂+α3Ĥ)

lnβt = lnβ0 +(α1T̂ +α2R̂+α3Ĥ)

By le�ing lnβt = ŷ, lnβ0 = α0, we obtain a multiple linear regression equation

yi = α0 +α1T̂ +α2R̂+α3Ĥ (12)

If we assume y is the approximate value corresponding to the value yi then, the Error Sum
of Squares(SSE) is given by:

SSE =
4

∑
i=1

e2
i

=
4

∑
i=1

(ȳi− yi)
2)
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=
4

∑
i=1

(α0 +α1T̂ +α2R̂+α3Ĥ− yi)
2

We need to find the values of α0, α1 ,α2 and α3 so that the error is minimum.

∂S
∂α0

= 2
4

∑
i=1

(α0 +α1T̂ +α2R̂+α3Ĥ− yi)(1) = 0

∂S
∂α1

= 2
4

∑
i=1

(α0 +α1T̂ +α2R̂+α3Ĥ− yi)(T̂ ) = 0

∂S
∂α2

= 2
4

∑
i=1

(α0 +α1T̂ +α2R̂+α3Ĥ− yi)(R̂) = 0

∂S
∂α3

= 2
4

∑
i=1

(α0 +α1T̂ +α2R̂+α3Ĥ− yi)(Ĥ) = 0

= α0 +α1

4

∑
n=1

T̂ +α2

4

∑
i=1

R̂+α3

4

∑
i=1

Ĥ =
4

∑
i=1

yi (13)

= α0

4

∑
i=1

T̂ +α1

4

∑
i=1

T̂ 2 +α2

4

∑
i=1

ĤT̂ =
4

∑
i=1

yiT̂ (14)

= α0

4

∑
i=1

R̂+α1

4

∑
i=1

T̂ R̂+α2

4

∑
i=1

R̂2 +α3

4

∑
i=1

ĤR̂ =
4

∑
i=1

yiR̂ (15)

= α0

4

∑
i=1

Ĥ +α1

4

∑
i=1

T̂ Ĥ +α2

4

∑
i=1

R̂Ĥ +α3

4

∑
i=1

Ĥ2 =
4

∑
i=1

yiHi (16)

For each station, we shall substitute the values of the weather variables (T̂ , R̂, Ĥ) then
evaluate the system of equations using MATLAB to obtain α0, α1,α2 and α3.

4.4 Results and Discussions

To evaluate the behavior of the model over time, we assume the values of the variables
S(0)= 100, E(0)= 9, I(0)= 9 , R(0)= 0. We used the transmission rate evaluated above with
respect to the meteorological parameters and the rest of the parameters are go�en from
literature.
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4.4.1 Nairobi Station

T̂ = 0.851

R̂ = 0.0774

Ĥ = 0.72

yi = 0.440901

α0 = 3.807078, α1 =−0.000, α2 =−0.000 and α3 =−5.2885.

β0 = eα0 = 45.0187

Since βt = β0e(α1T̂+α2R̂+α3Ĥ)

The transmission rate for Nairobi station; βt = 45.0187e(α1T̂+α2R̂+α3Ĥ) = 0.998. The
corresponding R0 for this particular station is

R0 =
45.0187e(α1T̂+α2R̂+α3Ĥ)

δ +µ
= 0.799 (17)

Figure 2. A Numerical Simulation for Nairobi Station

4.4.2 Nyanza Station

T̂ = 0.9426

R̂ = 0.35
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Ĥ = 0.71

yi = 0.3728814

α0 = 0.0371, α1 = 0.0000, α2 = 7.4219 and α3 =−3.7110.

β0 = eα0 = 1.0377968

Since βt = β0e(α1T̂+α2R̂+α3Ĥ) The transmission rate for Nyanza station; βt = 1.0377968e(α1T̂+α2R̂+α3Ĥ)=

14.98. The corresponding R0 for this particular station is

R0 =
1.0377968e(α1T̂+α2R̂+α3Ĥ

δ +µ
= 0.812 (18)

Figure 3. A Numerical Simulation for Nyanza Station

4.4.3 Malindi Station

T̂ = 0.8648

R̂ = 0.4273

Ĥ = 0.81

yi = 0.437247

α0 =−0.1559, α1 = 4.9559, α2 = 2.2724 and α3 =−5.7576

β0 = eα0 = 0.8556448
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Since βt = β0e(α1T+α2R+α3H)

The transmission rate for Malindi station; βt = 0.8556448e(α1T̂+α2R̂+α3Ĥ) = 0.018623. The
corresponding R0 for this particular station is

R0 =
0.018623e(α1T̂+α2R̂+α3Ĥ

δ +µ
= 1.45 (19)

Figure 4. A Numerical Simulation for Malindi Station

4.4.4 Isiolo Station

T̂ = 0.8510

R̂ = 0.1943

Ĥ = 0.72

yi = 0.2393822

α0 =−1.6986, α1 = 1.4214, α2 =−0.0288 and α3 = 0.6870.

β0 = eα0 = 0.18294

Since βt = β0e(α1T̂+α2R̂+α3Ĥ)

The transmission rate for Isiolo station; βt = 0.18294e(α1T+α2R+α3H) = 1.000056. The
corresponding R0 for this particular station is
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R0 =
1.000056e(α1T̂+α2R̂+α3Ĥ)

δ +µ
= 0.39 (20)

Figure 5. A Numerical Simulation for Isiolo Station

From Fig. 2 - 4 and 5, we notice that when the transmission rate is high as in the case of
Nyanza station, the line representing the Susceptible drops almost immediately, meaning
more people become exposed and hence infected faster.

The death rate for all the stations is maintained above 20 percent. A study done in 2015
by a university of Nairobi student Dr. Juma showed the death rate being slightly above
10 percent.However, he only considered two weather variables that is temperature and
rainfall.

Fig. 6 shows a graph of percentage Flu against seasons over the years. This graph was
plo�ed using the aggregated seasonal values for Nairobi station. The graph clearly shows
the fluctuation status of each flu type per season over the years.

We notice that at the beginning of 2007, only the seasonal H1N1 is dominant with no-
ticeable fluctuations. When the pandemic H1N1 starts dominating, the seasonal H1N1
decreases and eventually fades away, as seen in Fig. 7.
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Figure 6

Figure 7

As depicted in Fig. 8 - 11 there is an inverse relationship between Flu A and Flu B over the
years. As Flu a increases, Flu B tends to decrease and vice versa.
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Figure 8

Figure 9

Flu A is seen to be dominant in the 3rd season(June - August), while Flu B dominates
in the 2nd season(March - May) in all the stations apart from Nairobi station where it
dominates in the 1st season(December - February).This is clearly illustrated in Fig. 12 - 15.
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Figure 10

Figure 11
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Figure 12

Figure 13
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Figure 14

Figure 15
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Figure 16

Figure 17
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Figure 18

Figure 19
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Figure 20

Figure 21
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Figure 22

Figure 23
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Figure 24
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5 Conclusion

5.1 Findings

Analysis of the model was carried out at Disease free and endemic equilibrium points.
The basic reproduction number was computed using the next generation matrix. It was
discovered that if R0 < 1, then the disease free equilibrium point is locally asymptotically
stable and when R0 > 1, the endemic equilibrium emerge whose global stability was
analyzed using the Lyapunov function.

The higher the transmission rate, the higher the rate of infection. Di�erent stations have
di�erent transmission rates the highest being the one for Nyanza which saw a rapid fall
in the Susceptible population almost immediately as depicted in Fig. 3.

The death rate in all the stations is maintained at slightly above 20 percent which is in
accordance with other literature.

In all the stations, it is observed that Influenza tends to peak during the third season apart
from Isiolo station where the flu is prevalent in the 2nd and 4th seasons. As seen in Fig. 16
- 20, the 3rd season has the most flu prevalence while the 1st season depicts the least flu
in Nairobi station, Nyanza station, Malindi station and also across all the stations. Isiolo
station however exhibits a rather di�erent pa�ern. It has it’s peak in the 4th season and
the 1st season is still the one withe the least flu prevalence just like the other stations.

From Nairobi station, we see that there is a high positive correlation between flu and the
reproduction number.Hence, when the basic reproduction number increases, the flu also
increases.

In all the four stations, we can see that there is a positive correlation between flu and
humidity.This is in line with recent studies which have demonstrated that climatic factors
account for a proportion of seasonality.

In this study we found a negative correlation coe�icient of temperature and overall flu.
This implies that,a decrease in temperature indicates an increase in influenza while an
increase in temperature will indicate a decrease in influenza. This may be due to the
fact that, a decrease in temperature could enhance crowding and indoor activities which
would eventually increase the contact.
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5.2 Recommendations

Basing on the results of the study, it is paramount to pay a�ention to the following
recommendations:

• Appropriate data for both flu and weather variables for the di�erent stations should
be availed to enable extensive analysis.

• The use of as many meteorological drivers of seasonality as possible in the simulation.
This could provide a be�er approximations than only using three of the meteorological
parameters.

• other demographics such as age, social mixing should be considered in future as they
can be a great limitation to a�aining realism.
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