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Abstract

This project is on spectra and almost similarity of operators in Hilbert spaces.

In chapter one we discuss the meaning and the structure of a Hilbert space. Here the
linear structure, the norm, the inner product structure and convergence of sequences in a
set of vectors are discussed to yield the meaning of a Hilbert space.

In chapter two, transformation of elements in a Hilbert space is discussed. The nature of
transformations are also discussed in this chapter i.e. the preservation of linear structure,
boundedness and the norm. The Banach algebra of bounded linear operators is also
established. We use the linear operator to define invariant subspaces of a Hilbert space.
We also define the spectra of operators on Hilbert spaces. The structure and the subsets of
the spectrum are discussed in this chapter. We also discuss the spectrum of some classes
of operators.

The third chapter is on similarity and quasi-similarity of operators. We show that unitary
equivalence, similarity and quasi-similarity of operators are equivalence relations. Also
unitary equivalence implies similarity and similarity implies quasi-similarity. Unitary
equivalent and Similar operators have equal spectra in general. Quasi-similar operators on
a finite dimensional Hilbert space have equal spectra but on infinite dimensional Hilbert
spaces, quasi similar operators have equal spectra if the operators are hypo-normal.

The fourth chapter is on almost similarity of operators. We discuss the relationship of
cartesian and polar decomposition of operators with almost similarity of operators. We
show that almost similarity of operators is an equivalence relation. Almost similar
operators which are Hermitian or projections have equal spectra.
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1.1

PRELIMINARIES

Introduction

A set is a well defined collection of objects.

Sets are denoted by capital letters, e.g.set X.

The objects in a set are called elements.

If 0 is one of the objects in X, then this is denoted o0 € X and read as p
belongs to X.

If every element ¥ of Y is also a member in X, then Y C X
egZCQCRCC

A set can be empty (i.e. having no elements), having a finite number of
elements or have infinite number of elements.

Examples of infinite sets include: Z, Q, R, C

A function is a rule f that uniquely associates members of one set, say X
with members of another set, say Y denoted f : X — Y.

A domain D of f denoted D(f) contains all the values at which a function
f is defined.

The collection {f(0) € Y : p € X} of values that function f can produce is
called the range of f and denoted Ran(f).

If an object ¢ € X is mapped to an object f(0) € Y by a mapping f, this is
denoted f : o — f(o)

The term vector was first used by 18" century Astronomers investigating
planetary revolution around the sun.

A Euclidean vector is a Geometric object that has magnitude and direction.
In pure mathematics, vectors are abstract entities which may or may not
be characterised by a magnitude and direction.

Thus euclidean vectors are special kind of vectors which are elements of a
special kind of a vector space called the euclidean space. The inner product
associates each pair of elements in a vector space with a scalar.



A metric is a distance function on vectors while a norm gives the notion of
a vector’s length. A linear space X with norm function defined on X given
X is complete is a Banach space.

The earliest Hilbert spaces were worked on in the early twentieth century
by David Hilbert. A complete normed linear space H whose norm is induced
by the inner product function is a Hilbert space.

A linear transformation on a linear space preserves the operation of addition
and scalar multiplication of vectors. This transformation may be bounded
or unbounded,invertible or not invertible, symmetric or not symmetric
among other properties. Various classes of operators are studied which
include normal, unitary, hypo-normal,quasi-normal among other classes.

In mathematics the spectrum of a linear transformation is a generalized
collection of eigenvalues of a given matrix. specifically a A € C is an
object contained in the spectrum of a bounded linear Transformation A
when A — Al does not have an inverse where [ is identity operator. If the
linear space has dimension less than infinity then a transformation on this
space has a spectrum which is just given by its eigenvalues. In the case
where the dimension of the linear space is infinite we will have some other
objects in the spectrum of a linear transformation of this space added to
its eigen-values

Two Operators on a Hilbert Space such that the Operators are intertwined
by another invertible operator are similar and are equivalent to each other
in terms of eigenvalues, trace and spectrum among others.

Quasi Similarity was first studied by Foias and S. Nagy(4). Two Operators
are Quasi Similar when each is a quasi-affine transform of each other.
Quasi-similar operators on a finite dimensional Hilbert spaces have equal
spectra but in case of infinite dimensional Hilbert spaces, Sz Nagy(4) has
shown that the Operators may be quasi-similar but have spectra which are
not equal. Clary(17) proved the condition under which two Quasi Similar
transformaions will be having spectra being equal, i.e. if the operators are
hyponormal.

Almost similarity was first introduced by A.A.S Jibril(21). He proved various
results that relate almost similarity and other classes of operators. In 2008



Nzimbi et al(13) results are also handy in enriching almost similarity where
he attempts to classify those operators where quasi-similarity implies al-
most similarity.

A bounded linear operator A can be expressed like a complex number
¢ = o0+ 1 into real and imaginary parts by decomposing it into two
unique hermitian operators T and U such that A = T + 0.

A can also be expressed like a complex number ¢ = re? into polar form
as A = UG given U is a partially isometric and GG being non-negative self
adjoint operator.

If A=UG =7 +i¥ then G> = A*A and 2T = A* + A.

Definition of almost similarity makes use of Cartesian and polar decom-
position of operators. Two operators A and = are almost similar if A*A =
YT1(2*2)T and A* + A = Y71(E* + =)T where T is invertible operator.
We investigate the conditions under which two almost similar operators
have equal spectra, i.e. if the operators are Hermitian or projections.



1.2 Notation and terminology
In this project, Vector spaces and vector subspaces will be denoted by
X, Xy, X, Y, Yy, Yy
Hilbert spaces will be denoted by
H, H;, Hy, Hs, Hy

and closed subspaces by
M, My, M.

We will denote linear operators by
A? E? ‘P7T7F7 Q? G7 I? L7 P’ Q?R7 S? T7 U

For A on H and ¢ € H, then A of ¢ will be denoted A(p) or Ap.

A(H) is bounded if || Ao ||< a || 0]|,Vo € Hand a > 0

B(H) will be the class of linear transformations on H], which are linear and
bounded.

The domain, co-domain, range, image, co-image, kernel and co-kernel of A

will be denoted by
D(A),CoD(A),Ran(A), Im(A), Colm(A), Ker(A), Coker(A) respectively.

The dense range of A € B(H;, H,) will be denoted by Ran(A) = H
The norm of A € B(H) will be denoted by

Al = inf{o:[| Ao < el oI, V(e # 0) € H, o > 0}

A* € B(Hy, H;) will denote the Hilbert ad-joint operator of A € B(H;, H).
The space of bounded invertible operators from Hj into Hs will be denoted
by G(Hl, Hg)

A € B(H) is said to be:

. idempotent if A2 = A
« aninvolutionif A2=1

« self ad-joint or Hermitian if A* = A



. aprojectionif A2=A = A*

« normal if A*A = AA*

« hypo-normal if A*A > AA*

« co-hyponormal if A* is hyponormal

« seminormal if either hypornormal or co-hyponormal
« quasi-hypo-normal if A*(A*A — AA*)A >0

« p-quasi-hyponormal if A*[(A*A)? — (AA*)P]A >0

. paranormal if | Ao [P<|| A% ||| o || Vo € H

« unitary if A = AN =1

« isometry if A*A =1

« partial isometry if AA*A = Aie if A*A is a projection

« co-isometry if AA* =1

If A € B(H) is

Unitary = Normal = Quasi — normal = hypo — normal
= Paranormal

The trace of A will be denoted

1=1

where {0;; i1 =1,2,...... ,n} are elements in the main diagonal.

N(A — XI) will denote the eigen space.

p(A),0(A),00(N),00(A),or(A), m(A), 7(A) will denote resolvent set, spec-
trum, point spectrum, continuous spectrum, residual spectrum, approxi-
mate point spectrum and compression spectrum of an operator A € B(H)
respectively.

Ry(A) = (A — AMI)~! will denote the resolvent of an operator A € B(H) at
A

W (A) will be the numerical range and w(A) numerical radius of an opera-
tor A.



Two operators A € B(H;) and = € B(H,) which are:
unitary equivalent will be denoted A = =,
similar will be denoted A ~ =,
quasi-similar will be denoted A ~ =,
almost similar will be denoted A%S=

Note:

unitary — equivalence = similarity = quasi — similarity

and

unitary — equivalence = similarity = almost — similarity



1.3

Hilbert spaces

Definition 1.3.1. : Linear space

A linear space (L.S) over a scalar field K is a set X of vectors together with
arule” +7 for adding any two elements o and 1 of X to form an element
0 + ¢ of X (called vector addition) and another rule”.” for multiplying any
element o of X by an element xk of K to form an element ko of X (called
scalar multiplication). Moreover the rules must satisfy the following familiar

algebraic properties:

10.

closure of vector addition.
o+1eX Vo, eX

Addition of vectors is commutative
o+t=1t+0,V0,1€X

Addition of vectors is associative.
e+ (+Q) =(e+1)+¢ Vo, eX

Existence of addition identity.
40 € X such that o+ 0 = p,Vo € X

Existence of inverse elements of addition.
d—o€eXsuchthato+ (—0) = (—p0)+0=0,Vp X

Closure of scalar multiplication.
ko € X,Vo e X,Vk € K

Distributivity of ”.” w.r.t scalar addition.
k(o4 1t) = ko+ kL, Vo, € X,Vk € K

Distributivity of ”.” w.r.t scalar addition.
(Iil + HQ)Q = K10 + k20,0 € X, VK1, ke € K

”

Compatibility of ”.” with field multiplication.
(k1k2)0 = K1(k20),Vo € X,Vr1, Ky € K

Existence of identity element of scalar multiplication.
dI € X such that [p = 0,Vp € X

Definition 1.3.2.



For a subset Y of X to be a subspace the following are necessary and suf-
ficient conditions.
o+teY,Vo,LeY

ko €Y, Vo e Y, Vk e K

Remark 1.3.3.
Note, {0} and X are trivial subspaces of L.S X.

Proposition 1.3.4.
let X be L.S over a scalar field K and Y1, Y, be subspaces. then Y1 4+ Yo and
Y, MYy are linear subspace of X

Proof. 1. Letp € Yy andt € Yo, then (0 + ¢ € Y1 + Y))
Let 01,00 € Yy and 1,10 € Yo then (o1 + ¢1), (02 + t2) € Y1 + Y5
and

(o1 + 1)+ (02 +t2) = (01 + 02) + (11 + 12) € Y1 + Yy

because (g1 + 02) € Y7 and (11 + t2) € Yo since Y; and Y are linear
spaces

Ifk e Kand o+ ¢t €Yy + Yo then k(o4 1) = Ko+ Kt

but ko € Yy and ke € Yy = k(0+1) € Y1 + Y5

2. Let o,. € YN Yy then p,t € Yy and p,¢ € Yo
=o+teYiandp+re€Yo=04+1€ Y NY,
Letoe YN Yyand k € Kthenp € Yiand p € Yy
alsokp € Yiand kp € Yo = ko € Y1 N Yy

[]

Definition 1.3.5. : Inner product spaces (I.P.S)
A mapping (,) : X X X — K is an inner product function on X if Vo,V € X,
and k € K, it satisfies the axioms below.

1. Positivity axiom.
(0,00 20,(0,0) =0 0=0,0€X

2. Conjugate symmetry.
<Qv 19> = <197 Q>




3. Homogeneity property.
(ko ¥) = r{e, 0)

4. Distributive property.

(0+1,¢) = (0,¢) + (¥, ()

Remark 1.3.6.
IfK = R then the conjugate symmetry reduces to symmetry thus (o, ) =

(7, 0)

Definition 1.3.7.
An (I.P.S) is a linear space endowed with I.P structure.

Examples 1.3.8.

1. The euclidean vector space X = R" with the I.P function
(0,9) = 0.0 = 0191 + 02U2 + ... + 0,0, V0,0 € X
such that o = (01, 02, ..., 0n) and V¥ = (V1, 9, ...., V)
is an IPS.

2. The space X = M, ,(R) of m x n matrices with the inner product function
(A, B) = X0 50050, VA, E € X
is an IPS.

3. The space X = C|p, q| of continuous functions in the closed interval [p, q|
with the inner product function

(fi, f2) = qul (0)do,Vfi, fo € X
is an IPS.

Definition 1.3.9. : Normed linear spaces
AnormonXisarule|,||: X — R* which meets the following requirements.

1. None negativity property
lel=0,voeX

2. Continuity property
loll=0&0=0,vVoeX

3. Homogeneity property
Ikel=l sl el VoeX Vi e K
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4. Triangular inequality
e+ d <[l ell+[1?1],vedeX

Remark 1.3.10.

If continuity property is relaxed i.e. || o ||= 0 for some ¢ # O then ||,|| is a
semi-norm.

Definition 1.3.11.

The pair (X, ||, ||) where ||, || is a norm defined on X is a normed linear space
(N.L.S).

Examples 1.3.12.

1. The n-dimensional euclidean space with the euclidean norm of point
0= (01,02 -, 0n) € R" defined by ||o|| = /03 + 05+ .... + 2.

2. The linear space X = R" with the norm of point
0 = (01,02, 0n) € X defined by || ¢ |=1Zj<,, {I ¢ [}-

3. The space X of integrable functions in the interval [p, q] with || f|| = (qu |
Fe) I ).

Theorem 1.3.13. :The Cauchy Bunyakosky theorem (CBS)
LetX bean I.P.S and o,V € X. Then

| (0.9) 1< V{0, 0)/ (9, 9)

Theorem 1.3.14.
Suppose (0, 1) is an inner product on X, then

ol = /{0, 0) is a norm.

Proof. (o,0) 20= /(0,00 = 0= 0]=0,
hence the positivity property.

lel=0& (00 =0 (00 =0&0=0
the continuity property

| 0,9 |*P=(0o+V,0+9) = (0, 0+ )+ (¥, 0+ )

= (0,0) + (0,9) + (I, 0) + (¥, )
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< (0, 0) + [{0, )] + [{9, 0)| + (¥, 9)

< llol® + 2llellI9]] + [19%]| by CBS

(lell +l121)°

ie flo+ 91 < (lell + 191)* = lle+ 2l < [loll + [19]
Therefore the sub additivity property is satisfied.
Consequently ||o]| = /{0, 0) is a norm. O

Remark 1.3.15.
The norm on o defined by ||o|| = /{0, 0) is a norm.

Theorem 1.3.16.
Let X bean I.P.S and 0,V € X. Then

lo +911* +1lo = 2I* = 2(llell* + [[9]%)

Theorem 1.3.17.
Let X bean I.P.S and 0,V € X. Then

1
(w,9) = Z(lle+2I° = lle = 9II)
ifK = R
1 L L
(0, 0) = Z(le+ 91 = o= 9I* +ille + W|* —ille — ")

if K = C

Definition 1.3.18.

A non empty subset Y of [.P.S X is an orthogonal set if Vo, € Y and
0 # v then (0,9) = 0.

An orthogonal subset Y of X is called an orthonormal set if ||o|| = 1 for any
oeY

Theorem 1.3.19. :Pythagorean law
Let X bean I.P.S and 0,9 € X where o is orthogonal to 1} denoted o L ¥ i.e.
(0,9) = 0. Then |[o +9||* = [|o||* + [|[9]]*
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Proof.
lo+9]1? = (049, 0+3) = (0, 0+0)+(0, 0+V) = (0, 0)+{0, V) +{I+0)+(V, V)

(0, 0) + (9,9) = |lo|]* + |||

Theorem 1.3.20.
A N.L.S is a metric space with the metric

d(e,7) = [le = 9|

Proof. d(o,v)=|lo—9| >0

d(, ) =0 -V ||=0p—-0=0c =1

d(o,V) = |lo, V|| = [(=1)(¥ = o)l = | = U[[V = ol = [V = ol = d(¥, 0)
d(o, ) = o=t =1llle=)+ W =) <l e=D |+ 0 —]

= d(0,9) + d(, 1)

[]

Definition 1.3.21. :Cauchy sequence A sequence {a,} in X is Cauchy if
given a positive ¢ we can find N € J7 satisfying

lom — onll < &,Ym,n > N

ied(om, 0n) — 0asm,n — o

Definition 1.3.22.
A N.L.S X is complete ( a Banach space) if every Cauchy sequence in X also
converges to a finite limit in X.

Definition 1.3.23.
A Banach Space H is a Hilbert space if the norm on elements in H is induced
by the I.P function.

Examples 1.3.24.



13

. Euclidean space R? equipped with inner product function defined by
(0,7) = (01, 02, 03).(U1, 02, U3) = hih1 + 0202 + 0373

is a Hilbert space.

. The Lebesgue space (X, M.j1) of functions with inner product of functions
f1, f2 € (X, M, u) defined as

i, f) = / f1()Fa()du(s)

is a Hilbert space.

. For s a non-negative integer and () C R", the sobolev space H*(£2) which
contains L? functions whose weak derivatives of order upto s are also L?,
equiped with the inner product function defined by

i f) = /Q f1()Fa(@)do+ /Q Dfi(0)Dfal@) ot /Q D* (o) D*Fol)do

(with D as a set which is open ) is a Hilbert space.
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2.1

LINEAR OPERATORS AND THEIR SPECTRAL
PROPERTIES

Some properties of linear operators

Definition 2.1.1.
A mapping A : H; — Hy such that,
Alo+7) = Ao+ AJ, Vo, v € Hy

A(kp) = kAo,Vo € Hy, VK € K

is called a linear operator.

Definition 2.1.2.
A mapping F : H — K defined by F (k10 + ko) = k1 F o + ko 0
Vo,V € H and k1,0, k1 F o, ko 'Y € K is called a linear functional.

Definition 2.1.3.
The kernel of an operator A : H; — H is given by

Ker(A) ={o€H;: A(o) =0}

The image of A is given by
]m(A) = {AQ eHy:p0€ Hl}

Theorem 2.1.4.
The kernel of P : H; — H is a subspace of H;

Proof. Let p,v € Ker(A) C H; and x € K Then
AMo+9)=Ap)+AW)=04+0=0= o+ € Ker(A)

A(ko) = kA(0) = k.0 =0= kp € Ker(A)
A0) =0=0¢€ Ker(A)
Hence Ker(A) is a subspace of H; O
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Theorem 2.1.5.
Let P : Hy — Hy then Im(P) is a linear subspace of Hs.

Proof. Letv;,d; € Im(A) where

U1 = N1, Y2 = Apy for o1, 02 € Hi.
Then

01+ 02 € Hi = A(o1 + 02) = No1 + Ao =01 + U
:>191+192€Im(P)

ko € Hy = A(ko) = k(o) = AY € Im(A)
0eH; = A(0)=0=0¢€ Im(A)

Hence Im(A) is a subspace of H.

Definition 2.1.6.
The co-kernel of A : Hy — Hy is given by

Coker(A) = Hy/Im(A)

The co-image of A is given by
Coim(A) = H;/Ker(A)

Remark 2.1.7.
The following are the basic properties of mappings from H; into Hp

1. The sum of A and = is given by
(A+Z)o=Ao+Z0,YVoeH,
2. The product of A and = is given by
(AE)e = A(Zp), Vo € Hy

3. N and = are equal if Ao = Zp, Vo € Hj
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4. The identity operator I is defined by Ip = p,Vp € H;
5. The associative law holds for operators A, = and Y i.e. A(ZY) = (A=)Y

6. The commutative law does not generally hold for operators A and = i.e.
A= # ZA. If A and = commute, then A= = ZA and [\, 2] =0

7. The n'" power of an operator A denoted A" is n successive applications of

the operator. e.g. A20 = AAo
8. The exponential of an operator A denoted e” is defined via power series

A 2 A3
e :[+A+E+§+ ........

Definition 2.1.8.
A H; — Hy is a bounded if we can have k > 0 satisfying

Ao, < &llolm,, Vo € Hy

Definition 2.1.9.
A H; — Hy is continuous if for everye > 0,36 > 0 where

lo = 9]l <6 = [lAe— AD[| <&,Vo,9 € H,

Theorem 2.1.10.
If A : Hy — H, is bounded ,then A is continuous.

Proof. Let A be bounded and p, 9 € H; with ¢ # .

Then [|Ag — AJ]| = Ao — D)]| < sll(e— D)l <

If k = 0 the relation holds for all § > 0

Ifk > 0,let |o— || < dthend =< >0

Then A is continuous. O

Remark 2.1.11.
if A : Hy — H is continuous, then A is continuous at 0 € Hy, or at some
point ag € H; and therefore continuous everywhere in H.

Theorem 2.1.12.
An operator A : Hy — H is bounded iff A maps bounded sets into bounded
sets.
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Proof. Suppose A is a bounded. Then Ja > 0 satisfying
[Aoll < allell, Vo € Hiy

. Let Ml C H; where M is a bounded set.

Then ||g|| < k, Vo € M and some constant k.

to have ||Ag|| < a|lo|| < ak,Vo € M = A(M) is a bounded set.
Conversely suppose A maps bounded sets onto bounded sets and consider

0 # 0.
Then || ﬁ =1

Let ¥ = ﬁ. Then all ¥ are bounded for all o

so || A(Y) ||< «afor some constant cvi.e. || A(ﬁ) |I< aie |[Ao||[<all ol
Thus A is a bounded. []

Definition 2.1.13.
We define the norm of A : H; — Hb as

IAll = inf{s - [[Aell < sllell, Vo € Hi}

Remark 2.1.14.
If||A|| < 1 then A is a contraction.

Proposition 2.1.15.
If A and = are bounded linear operators from Hj into Hy over the same scalar
field K then:

1. A + = is a bounded linear operator
2. K is a bounded linear operator Vrx € K

3. A= and =A are bounded linear operators.

Proof. 1. Letpo,¥ € Hy, \,u € Kand «, 5 > 0.
(A+Z)( Ao+ pd) = Ao+ pd) + Z(No + pdd)

= Mo+ pAd + A=+ p=Z9 = AMA+ZE)o+ p(A+ =)0
= A + Eis linear
Using triangular inequality ||[(A 4+ Z)g|| = ||Ao + 2o

< [[Aell + [[Eell < allell + Bllell = (a+ B)lll]
but (o + ) > 0 = A + Z is linear and bounded.
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2. Let o, € Hy and A\, p, a, k € K
(kA) (Ao + pd) = k(AXo + Apd) = Ao + kY

= kA is linear.

Now [|(kA)ell = [lx(Ae)|| = |ell|Aell < |xlallo]
but (|k|a) > 0 € K = kA is linear and bounded.

3. AZ(Ao+ pd) = AZE( Ao+ pd)] = A[AZ0 + p=9] = A(AE) o+ pu(AE)Y
= A= is linear.
Now using continuity of A and = we have

I(AZ)ell = [[A(Z0)l| < al[Zell < afllell

but o > 0 € K = A= is a linear and bounded.

[]

Remark 2.1.16.

By the results of the proposition 2.1.15, we have shown that the set of bounded
linear operators from H, into H is a linear space.

Proposition 2.1.17.

The space B(Hy, Hy) of all bounded linear operators from H; into Hy is a
N.L.S.

Proof. Let A,= € B(H;, Hs), 0 € Hy, ¥ € Hy, k € K then the norm of
A is defined by

, Ao
|All = inf{x : [|Aol| < kllo||} = SUP{H} = sup{||Ao| : o] £ 1}

1. To prove the non-negativity axiom
|A|| > 0 from the definition of the norm of A

NowletD = {p € H; : ||o|| < 1} and let ¥ = ”—g”thenﬁ eD
but

HAH:0<:>AQ:O(:>A19:O<:>A(”—§H):O<:>A:O
ie. Al =0iffA=0
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2. To prove the homogeneity property
[&A]] = sup{lsAell - llell = 1} = sup{|x|[|Aell - floll = 1}
= |slsup{[|Aell - lloll = 1} = |s[|A]
3. To prove the triangular in equality
I(A+E)oll = Ao+ Zoll < [|Aoll + [|Ze]
taking supremum on right hand side for ||o|| = 1 we have
(A + E)ol| < supl|Aell + supl|Zel < [IAl+ [IZ]
Taking supremum on left hand side for ||g|| = 1 we have

A+ =] < Il + (=]

Theorem 2.1.18.
The space B(H, Hy) is a banach space.

Proof. We have already shown in propositions 2.1.17 that the set B(H, Hy)
is N.L.S. It now remains to show that it‘'s complete.
Let A, be a Cauchy in B(H;, Hs), then for ¢ > 0, IN € j* satisfying

(IAn = A)ol| < e, Vm,n > N

So [[(An + Am)ell < [|An + Anl[lle]l < €llell

hence {A,(0)} is a Cauchy sequence in H.

but H is a banach space, so every sequence {A,,} in Hj also converges in
H.

so from ||A,,(0) — An(0)]| < g||o|| we let m — oo to obtain

1An(2) — Aoll <ellell = [I(An — Aell < ellol] = (An — A) € B(H,, Hy)

suchthat A = A, — (A, — A) € B(H, Hy)
Now the norm of (A, — A) is given by
[An = All = supf[|An(e) — Alo)[}
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< supl{[|An — Allllell - [lel =1} < e
ie. ||A, — Al| < € and therefore A,, converges uniformly to A
So B(H,, Hy) is complete. O

Definition 2.1.19.
Let A € B(H,, Hy) then A is invertible if we have A~ : Hy — H to have
A'A(0) = To = 0,YA(0) € Hy

Remark 2.1.20.
Note that A is invertible if it is injective i.e. (1-1) and surjective i.e. onto. If A
is injective the Ker(A) = 0 and if A is surjective then Im(A) = Hy

Theorem 2.1.21.
Let A € B(H;, H,) then A~ exists and A~! € B(Hy, H;) iff we have o > 0
and | Aol| > «af|o|| i.e. A is bounded below.

Proof . suppose A is bounded below to have ||Ag|| > al|o| and o1, 02 €
Ker(A).
Then [|[A(01 — 02)| = o1 — 02|
butA(gl —QQ) :AQ1+AQ2 =04+0=0
1.e.
0]l = allor — o2l = 0 > aflor — 02| = |lor — 02| = 0= 01 — 02 =0
ie. A(0) = 0= Ker(A) =0 = Aisinjective.
Now A is injective and A~ exist.
Let ¥ € A(H,) so that ¥ = A(p) for o € Hj. then A~1(9) = A1A(0) = 0
So
IAell = alloll = [IAAT')]| = al|A7H0|

1.e.

1
9]l > el A7) = A9 < 9]
(0]

Hence A~! is a bounded.
Conversely, suppose P! exists and is bounded.
Then 3 o > 0 satistying

1A < afld]

Let ¥ = A(p) for some p € Hjy
Then
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A (Ao)|l < allAell = lloll < allAoll = [[Ae]l > 2ol
Hence A is bounded below. ]

Remark 2.1.22.

In mathematics each bounded linear operator on a complex Hilbert space has
a corresponding ad — joint operator also called Hermitian ad-joint named
after Charles Hermite.

Definition 2.1.23.

If to every operator A € B(H;, H,) we associate another unique operator
A* € B(Hy, H;) to satisfy

(Ao, 9) = (0, A"0),Vo € Hy, VI € Hy

. Then A* is called an Hermitian ad-joint of A

Remark 2.1.24.

Note that the ad-joint of A* denoted (A*)* = A
i.e. for each A* : Hy — H; we associate by a unique operator

A Hy — Hy satisfying (A0, o) = (9, A*p) = (¥, Ao)

Remark 2.1.25.
If an operator A is a square matrix [\;;], then its ad-joint operator A*is the
conjugate transpose of [\;;].

Proposition 2.1.26.
Let A,= € B(H,, Hs). Then

Proof. 1. Forall p,9 € H;. Then

(A+2)0,0) = (0, (A +Z) D). (4)
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but ((A + Z)o,9) = (Ao + Ep, ) = (Ao, V) + (0, V)

= (0, A"0) + (0,2"0) = (o, A" + E") = (g, (A" + E")¥)

ie. (A+2)o,v) = (0, (A" +Z9)).......... (17)
The results (i) and (i7) imply that

(o.(A+2)d) = (0. (A" +E)0) = (A +5)" = A" 4 =
. let p,v € Hj and A € K. Then
(AN)o, ) = (0, AN D) .eee (471)

but (AA)o,9) = (Ao, 9) = Mo, A*9) = (0, \A*0)......(iv)

From (7i7) and (iv),

(0. (AN T) = (0 AA™0) = (AA)” = AN°

(A=), 1) = (0, (AZ) V)i, (v)
but (A=Zp, V) = (Zp, A*9) = (0, Z*A*0)..ooccrini. (vi)

From (v) and (vi),
(0, (AZ)"9) = (0, Z"A"0) = (AZ)" = Z*A"

. Note

(0,9) =(10,9) = (0, ")) = [0 =0 =" =1=1"
A is invertible = A~ € B(H,, H;)

and A\TTA =1 =" = AAT!
= (AN =" =T=A\)Y = A A ) =1=A")N

ie. (A71)* is the inverse of A* = (A*)~t = (A1)

Definition 2.1.27.
A € B(H) is sel f ad — joint (also hermitian) if A* = A ie. if

(Ao, V) = (0, \V),Vp,0 € H
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Theorem 2.1.28.
Let A, = € B(H) be self ad-joint. Then AZ is self ad-joint iff A <> = i.e. if A

commutes with =

—

Proof. Let A & =, then AZ ==
thus (AZ)" = Z*A* = ZA = A= = AZ is self ad-joint.

conversely let A= be self ad-joint, then (AZ)* = A=

thus EA = Z"A" = (AZ) = AZE= A & = O]
Theorem 2.1.29.

Let A € B(H) be self ad-joint. Then the real polynomial ®(A\) = apl + oy A+
as\% + ... + a,, A" is also self ad-joint.

Proof. Since A commutes with itself we have AA = A? is self ad-joint.
Also A% <+ A = A3 is self ad-joint thus inductively we have

A" = A"\ is self ad-joint for alln € J+

If a; € R the for A = ; we have (AA)* = AA* = AA = AA is self ad-joint
Therefore every term of the polynomial ®(A) is self ad-joint and their finite
sum is also self ad-joint. [

Definition 2.1.30.
A € B(H) is idempotent if

A*(0) = A(o),Vo e H

Definition 2.1.31.
A : H — M is a projection if A isi.eA? = A = A*

Remark 2.1.32.
If A € B(H) is a projection then |A|| < 1 i.e. A is a contraction.

Definition 2.1.33.
Let A € B(Hy, Hy) then A is an isometry if || Aol| = ||o||, Vo € Hy

Remark 2.1.34.
Clearly an isometry is injective.

Proposition 2.1.35.
IfA € B(H) is an isometry then A*A = I
Note ||Aol = llell = l[Aell® = llolI* = (Ao, Ao) = (0. 0)

= (0, A*Ao) = (0, 10) = N*A =1
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Definition 2.1.36.
Let A € B(Hy, Hy) then A is an isomorphism if A is surjective and

(Ao, AY) = (0,7),Yo,9 € H;

Remark 2.1.37.
Clearly an isometry is an isomorphism, since

[A0ll* = (Ao, Ao) = (0, 0) = |lo|” = || Aol = llell
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2.2

Invariant subspaces

Definition 2.2.1.
A closed subspace M of H is invariant under transformation T € B(H) if

ToeM,VoeM

ie. YM C M where TM = {Yp: o € M}

Remark 2.2.2.
IfM C H is T — invariant we can restrict Y to M to arrive at a new linear

transformation
T/M: M —M

Proposition 2.2.3.
The subspaces {0} and H of H are invariant subspaces under any linear
operator Y : H — H

Proof. T(0) =0= YT{0} C {0} thus {0} is T — invariant
T(0) € H,Vp € Hand so T(H) C H thus His T — invariant O

Remark 2.2.4.

The subspaces {0} and H of H under linear operator Y are called trivial
T — invariant subspaces.

IfH has no non-trivial T — invariant subspaces then T is simple.

Proposition 2.2.5.
Both kernel and the image of T on H are Y — tnvariant subspaces.

Proof. If p € Ker(Y) then Yo = 0 thus Y(Yp) = Y(0) = 0 and so
To e Ker(T)

ie. T(Ker(Y)) C Ker(Y) = Ker(Y)is T — invariant

If ¥ € Im(Y) then ¥ € Y(p) for o € H and then T (o) = T (Tp) € Im(Y)
ie. Y[Im(Y)] C Im(Y) = Im(Y)is T — invariant. O]

Proposition 2.2.6.
Let Ml and My be Y — invariant subspaces in Hilbert space H.
Then My + My and Ml; N M, are T — invariant subspaces in H
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Proof . Clearly M;+Ms and MMM, are subspaces of H. Now let p € M
and ¥ € M, then p+ 9 € M; + My and T(p+ ) = To+ T € M; + M,
since Yo € Mj and T¢ € M, thus implying Y (o + ¥) C M; + Mo,

hence M; + My is T — tnvariant

Now let o € M[; N M, then o € Ml and p € M,

Also TQ € M; and TQ eM, = TQ e M;NM, = T(MlmMg) C M;NM,
and hence M; "My is T — invariant []

Remark 2.2.7.
Lat(Y) deenotes the lattice of all Y — invariant subspaces of H. Thus

Lat(Y)={M C H: TM C M}

Definition 2.2.8.

M C H reduces T € B(H) if M is T — invariant and T* — invariant i.e.

if Y(M) C M and T*(M) C M

Remark 2.2.9.
Red(Y) denotes the lattice of all T — reducing subspaces of H. Thus

Red(Y) ={M CH:YM C M, T*M C M}

Remark 2.2.10.

Recall,two operators T,V € B(H) are said to commute if
TV = VT ie. ifthe commutator of Y and ¥ denoted [Y, V] = YW —-UYT =0
{R}' denotes the set of UV € B(H) such that YV = ¥Y

Definition 2.2.11.

M C H is T — hyperinvariant if M is U — invariant forall ¥ € {T}' ie.

if (M) C M forvY =TV

Remark 2.2.12.
Hyperlat(T) denotes Hyper — invariant subspaces under transformation

T

Remark 2.2.13.

Note that Red(Y) C Lat(Y) since every Y — reducing subspace is T —
nvariant

Also Hyperlat(Y) C Lat(Y) because T € {Y} since[Y,T] =TT-TT =
0
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2.3 Some classes of linear operators

Definition 2.3.1. : Positive operators

A € B(H) is positive if \* = A and

(Ao, 0) > 0,Yo € H

Proposition 2.3.2.

If A € B(H) is self ad-joint, then A? is positive.

Proof. (A%p,0) = (Ao, A*0) = (Ao, Ag) = [[Agl]* > 0,Voc H
hence A? is positive. []

Corollary 2.3.3.
Any projection A is a positive operator since A = A* and A> = A
So

(Ao, 0) = (N0, 0) = (Ao, A*0) = (Ao, No) = ||Ag|”> > 0,Vp € H

Theorem 2.3.4. :Remainder theorem
IfA € B(H) = T*Y (i.e. the composite of Y*, T € B(H)), then A is positive.

Proof. A* = (T*7)* = T*T** = T*Y = A = A is self ad-joint.

Also
(Ao, 0) = (T*T0,0) = (To,To) = | To|* > 0,Yo € H
Hence A is positive []

Definition 2.3.5.
A € B(H) is normal if
AN = AN ie if[A,A] =0

Theorem 2.3.6.
A € B(H) is normal iff

Aol = [|A"0]|, Vo € H

Proof. Let A be normal and ¢ € H, then
|Ao||> = (Ao, Ao) = (A"Ao, o)

A% 0]|* = (A", A*0) = (AA*p, o)
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but A is normal = A*A = AA* = (A*Ap, 0) = (AA*p, o)
= [[Aol* = [IA*]* = [[Agl] = [|A"0]
Conversely let || Ag|| = ||[A*o||, then

[Ao||? = [[A*o|]* = (Ao, Ao) = (A*o,A*0) = (A*Ag, 0) = (AN*p, 0) =
A*A = AA* = A is normal. O]

Definition 2.3.7. : Quasi — normal operators
A € B(H) is quasinormal if

A(A*A) = (AA)A

Remark 2.3.8.

Every normal operator is quasi-normal.

Note, if A is normal then A*A = AN* = A(A*A) = A(AN*) = A(A*A) =
(AA*)A = A is quasi normal

Remark 2.3.9.

Every isometry is quasi-normal but not every isometry is normal

Note, if A is an isometry then AN*A = I = A(A*A)(A*A) = AI(A*A) =
AN*A = AN*A = A is quasi-normal

But A is an isometry implies that A is normal iff A commutes with A* and so
not true in general

Definition 2.3.10.
A € B(H) is bi — normal if
(A*A)AN* = (AA)A*A ie if A*A commutes with AA*

Definition 2.3.11.
A € B(H) is hypo-normal if A*A > AN*
A is p — hypornormal if (N*A)P > (AA*)? thus A is hyponormal if p = 1

Remark 2.3.12.
Clearly if A is hypo-normal operator then A*A — AA* > 0 = A*A — AN* is
a positive.

Definition 2.3.13.
A € B(H) is semi-normal if either A or A* is hypo-normal
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Definition 2.3.14.
U € B(H) is a unitary ifU*U = UU* =1

Remark 2.3.15.

The weaker condition U*U = I defines an isometry while the other condition
UU* = I defines co-isometry.

So a unitary operator is a bounded linear operator which is both an isometry
and co-isometry.

Definition 2.3.16.
A € B(H) is paranormal if [|A?|| > [|A|?

Remark 2.3.17.

Note, if A is

unitary = normal = quasi—normal = subnormal = hyponormal =
semi — normal = paranormal

Definition 2.3.18.
A € B(H) is a normaloid if || A]| = sup{|(Ag, 0)| : |lo]| = 1}
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2.4 Spectra of linear operators

Definition 2.4.1.
An eigenvector is a non zero vector o € H that changes by only a scalar
factor A when a linear transformation A € B(H) is applied to it, i.e.Ap = Ao

Definition 2.4.2.
Let A € B(H), a value A € C is an eigen — value if 3 a non-zero vector
o € H satisfying Ao = Ao.

Remark 2.4.3.
The pair o, A where o is an eigenvector and )\ is its associated eigenvalue is
called an eigen pair.

Definition 2.4.4.
Let A € B(H). The equation Ao = Ao where ¢ is an eigenvector and X is its
associated eigenvalue is called the eigen — equation.

Remark 2.4.5.

IfH is a continuous function space, then A can be a differential operator like
d/da while f is an eigen function which is scaled by d/da.

hence (d/da)f = \f is the eigen equation.

Proposition 2.4.6.
The eigen equation Ap = \p where A is an n X n matrix and g is an n-
dimensional column vector can be re-written as

Ao=XocAo—o=0=(A=X)p=0

Let I be ann x n identity matrix, then

Equation (1) has non-zero solutions iff determinant of (A — \I) is equal to
zero, i.e.

Equation (i1) is the characteristic equation whose left side is the characteristic

polynomial.
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Remark 2.4.7.

The characteristic polynomial | A — I | is of degree n such that the equation
(1) has n roots, (i.€.\1, A2, Az, ........ , A\n) which are the eigenvalues of the
operator A\

Definition 2.4.8.

Let A € B(H), then the union of the zero vector and all the eigenvectors
associated with an eigenvalue \ such that Ao = \p is a linear subspace of H
called the eigen — space associated with \.

Remark 2.4.9.
We can find out all the vectors associated with an eigenvalue \ by solving the
equation

(A=X)o=0

Lemma 2.4.10.
The eigen-values of a bounded self ad-joint operator are real and the eigen-
vectors associated with different eigenvalues are orthogonal.

Proof. If A : H — His self ad-joint and Ap = Ap with ¢ #0 )
then A(g, 0) = (Ao, 0) = (Ao, 0) = (0, Ao) = (0, A0) = Mo, 0) & A=A
= \is real.

Let A\ and p be real eigenvalues such that Ap = \p and Av = pdd

Then

Mo, U) = (Ao, V) = (Ao, V) = (0, AV) = (0, i) = (e, V).
ie. Ao, V) = p(o, ) = (A — (e, ¥) =0
since A # u then we have (p,9) =0 = o109 O

Definition 2.4.11.

Resolvent set, p(A) of A € B(H) is the set of complex numbers X\ satisfying:
(i)A — M1 is injective thus (A — \I) ™! exists.

(ii)Both A — X\ and (A — \I)~! are in B(H).

(iii))Ran(A — \I) = H.

Remark 2.4.12.
Note that if X € p(A) then X is a regular value of A

ie. p(A) ={\ € C: \isaregular value }



32

Definition 2.4.13.
The spectrum of A € B(H) iso(A) = {A € C : X € [p(A)]°} iec(A) =
C/p(A)

Remark 2.4.14.

If X\ does not meet any of the three conditions of the resolvent set of an operator
A then A € o(A).

Thus depending on the condition which is not met we can decompose the
spectrum of an operator A in to:

1. The point spectrum of A
op(A) ={\ € C: (A — \I)~! does not exist }.

2. Continuous spectrum of A

oc(A) = {\ € C: Ran(A — \I) = H and (A — XI)~! exists but not
bounded}

3. Residual spectrum of A
or(A) ={\ € C: (A — XI)! exists but Ran(A — \I) # H}

Theorem 2.4.15.
A € C is an element of op(A) iff the eigen equation Ao = Ao has a non-zero
solution of o € H.

Proof. Let A € op(A) then (A — AI)~! does not exist.

ie. A — Al isnot 1 — 1 so a singular matrix = (A — A\/)p = 0 for some
0#0

= No—AMpop=0=Ao—po=0=Ao= )Xo

Therefore Ao = Ao has a non-zero solution of p.

Conversely let Ap = Ao for some p # 0

Then (A — X))o =0= (A — A)p = 0 for some p # 0 = A — A] is not
1-1

therefore (A — A\I)~! does not exist i.e.\ € op(A) O

Remark 2.4.16.

In the above prove such a \ is called an eigen value of A and a vector p # 0
satisfying the eigen equation Ap = \p is called the eigenvector of A corre-
sponding to \.



33

The set consisting of all eigenvectors corresponding to A is the eigen space and
denoted N (A — \I).
The dimension of N (A — M) is called the multiplicity of the eigenvalue .

Theorem 2.4.17.
IfH has a finite dimension and A € B(H), then oA = op(A) i.e. oc(A) and
or(A) are empty sets.

Proof. An operator on a H is always bounded. So VA € C, (A — \I)~!
is bounded if it exists and therefore oo (A) = ¢

If A\ € op(A) then (A — MI)~! exists and is bounded since H has a finite
dimension. Therefore (A — AI)~! is injective on H.

Now let {01, 02, ...-.... , O} be a basis for H, then it follows

{(A=XD)o1, (A—=A)og, ......... , (A—AI)p,} which spans the Ran(A — )
is linearly independent and therefore Ran(A — AI) = H.

This contradicts the definition of oz (A) and therefore there is no such A in
or(A) = or(A) = ¢

Hence we have 0(A) = op(A) Uoc(A) Uog(A) = op(A) U U@ =
JP(A) []
Definition 2.4.18.

A complex number \ € w(A) if fore > 0,30 € D(A) such that || o ||=1
and | (A—=X)o||< e

Remark 2.4.19.
Note that the points A € [o(A) — w(A)] form the compresion spectrum of
A denoted T(A\)

Theorem 2.4.20.
A complex number \ € w(A) iff (A — A\I) does not have a bounded inverse.

Proof. Suppose A € 7w(A) then for each n € J*,3Jap, € D(A) with
| on|| = 1 satisfying

(A =Alen [I<

S|

i.e. we can not find x > O such that || (A — A)o [|> k|| o || Vo € D(A)
Suppose « > 0 satisfying || (A — M) ||> k|| ¢ || does not exist.

This means for any € > 0 and p € D(A) with || ¢ ||= 1 is such that

| (A=X)o|[<e=Xer(A) O
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Corollary 2.4.21.
Let A € B(H) then m(A) C o(A)

Proof. Let A be notin o(A) then A € p(A) = A — Al has a bounded
inverse which implies that ) is not an elementin 7(A) = 7w(A) C o(A) O

Theorem 2.4.22.
ForA € B(H), oc(A)Uop(A) C w(A)

Proof. Let A € op(A) then (A — AI)~! does not exist and so A — I is
not 1-1

There isno x > O such that || (A=A ||> k| o ||

This implies for e > 0dp € D(A) with || ¢ ||= 1 such that

| (A=X)o|l<e=Aen(A)=op(A) CTT(A)eeeveennrnnn. (1)

Also let A € o¢(A) then (A — \I)~! exists and Ran(A — AI) = H but

(A — A\I)~! is not bounded.

Therefore for any x > o we can find ¥ € Ran(A — A\I) such that
FA=ADT D [[= 5| 9|

ie. | 0 2 || (A= AT =] (A - Do <L o

Thus for || ¢ ||= 1 it is equivalent to say || (A — A)o ||< eie. A € w(A)
and so o¢(A) C(A).coeeeene. (17)

Hence by (i) and (ii) we have op(A) U oc(A) C 7(A) O

Definition 2.4.23.
The spectral radius of A € B(H) denoted v(A\) is the radius of the smallest
disc whose center is at zero that contains o(\).

So
Y(A) = Sup{|A[: A € o(A)}

Theorem 2.4.24.
Let A* = A and f : 0(A) — C a continuous function then

proof
By Brian Davis(10) page 18
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Definition 2.4.25.
Numerical range of A € B(H) is

W(A) = {({Ag,0): 0 € H, | o [|=1}

Theorem 2.4.26.
IfA € B(H) thenop(A) C W(A)

Proof. Let A € op(A) then dp € H with || ¢ ||= 1 such that Ap = Ap
Now (0,0) =1= A= Xo,0) = (Ao, 0) = (Ao, 0) € W(A)
ie. A€op(A) = e W(A) = op(A) CW(A)

[]
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2.5 Spectra of some classes of linear operators

Remark 2.5.1.

The following proposition gives some results on spectra of some classes of
operators on H according to Paul Garrett (11)page 18.

Proposition 2.5.2.
Let A € B(H).

Then:

1. if A is self ad-joint then c(A) C R

2. if A is positive then o () is a non-negative real number.
3. if A is a projection the o(A) C {0,1}

4. if A is unitary theno(A) Cz € C:| z |=1

Theorem 2.5.3.
If A € B(H) is a normal operator then

OR(A) = ¢

Proof. Let A € op(A) then

Ran(h — M) #H = Ran(h — M) # {0}

= the null set N(A* — X\I) # {0} = (A* — A\I)o = 0 for some o # 0
Let A be normal, then A — A/ is normal and

(A= ADe |[=Il (A" = M)e ||, Vo € H

but (A* = Al)o= 0= (A" = Ao =0 = (A=Al ||=0

= (A — AI)p = 0 for some p # 0

This is only possible if | A — Al |= 0 i.e. if A is an eigenvalue i.e. if
AE O'p(A)

This is a contradiction since op(A) and oz(A) must be disjoint sets.
Therefore there is no such A and hence op(A) = ¢ O
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Corollary 2.5.4.
If \ is normal,
m(A) =0o(A)

Proof. Recall, always m(A) C o(A).cveeeriniiennnnn. (2)

Also recall op(A) = ¢ for normal A implying o(A) = op(A) Uoc(A)

but op(A) U oo (A) is always a subset of 7(A)

Soc(A) =op(A)Uocc(A) C m(A)

ie. o(A) Ca(A)iei (27)

(1) and (i1) = o(A) = 7(A). O
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3.1

SIMILARITY AND QUASI-SIMILARITY OF
OPERATORS AND THEIR SPECTRAL PROPERTIES

Some results on similarity of operators

Definition 3.1.1.

Equivalently Y is invertible if Y has a trivial kernel in H, and Hy is the range
of T
ie. Ker(T) =0 and Ran(R) = Hy

Definition 3.1.2.
Let A : D(A) — H;y,Z : D(Z) — Hy be two linear operators on dense
subspaces D(A\) of Hy and D(Z) of Hy respectively. Then Y : H; — Hy
intertwines A and = if

T:D(A) — D(E)

TAo=Z=Yp,Vo e D(A)

Remark 3.1.3.

The intertwining operator Y for

A € B(H,) and = € B(H,) is invertible and in B(H;,H,) and called an
affinity of A and =

Remark 3.1.4.
We denote by G(H, H) the class of all invertible operators from H into H

Proposition 3.1.5.
If Y € G(Hy,Hy) intertwines A € B(H,) and = € B(Hs), then T* €
G(Hy, H, ) intertwines =* € B(Hy) and A* € B(H, ).

Proof. Let Y intertwine A and =, then YA = =T
Let o € H; and 9 € H,

then (TAp,¥) = (Ao, T*9) = (o, A*T*).............. (i)
and (ZY0,7) = (Yo, =) = (0, T*E*) cervvrrnnn.n. (ii)

So from (i) and (ii) we have
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(0, T*=*0) = (o, A*Y*0) since (=Y p, ) = (TAp, V)
Thus T*=* = A*T* which implies that T* intertwines =* and A* []

Definition 3.1.6.

Let A € B(H,) and = € B(H,).

Then A is similar to = denoted A ~ Z if 3T € G(H,, Hy) satisfying A =
T-1=7

Remark 3.1.7.
Note, if A ~ Z and = ~ A then A and = are similar.

Corollary 3.1.8.

Let A € B(H,) and = € B(Hy) be similar, i.e. A ~ = and = ~ A then 3 an
intertwining operator Y € G(Hy, Hy) for A and = satisfying TA = =Y.
Moreover Y1 € G(Hy, H,) is an intertwining operator for = and A satisfying
T2 =AY

Proof. Since A ~ = then

A=T1EY < TA=TT1ET & TA=E2T
Hence 7T is an intertwining operator for A and =
Now

TA=EY < T I TAYT ' =7T"Z2YT AT =712

Hence Y ! is an intertwining operator for = and A []

Definition 3.1.9.
Let the relation R on objects o, and . be such that:

1. oRp i.e. N reflexive.
2. if oY then YN i.e. N is symmetric
3. if oMY and YR then pRe i.e. N is transitive

Then the relation R satisfying i,ii and iii above is called an equivalence relation.

Theorem 3.1.10.
Similarity of operators is an equivalence relation.
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Proof . Let similarity be represented by ~ and let A € B(H).
Consider the identity operator I € B(H, )

Note [ € G(H;)and [ = !

Now [ 'Al = IAI = A implying A = [T'AT & A ~ A

So ~ is reflexive.

Let = € B(Hy) and A ~ =

Then we can find T € G(H;, H) satisfying A = T"!'=ZT

= TAT =TT 1ETY 1 =Zie ZE=TAY lie. 2= (Y1) IAYT!
i.e. we can find Y~! € G(Hy, H;) satisfying = = (T~1)" AT

==~A

So A ~ Z = = ~ A and therefore ~ is symmetric.

Let ' € B(H;3) with A ~Zand = ~ T

Then can find T € G(H;, Hy) and ¥ € G(H,, Hj) satisfying
A=Y= and = = U TV

= A =T (U TU)Y = (W) TWT
ie. we can find VY € G(H;, Hs) satisfying

A= (1) ' TUY = A~T

SoA~Z,=~1 = A ~ I and therefore ~ is transitive.
Hence ~ is an equivalence relation. []

Definition 3.1.11.
A € B(H,) is unitarily equivalent to = € B(H) denoted A = = if we can
find a unitary operator U € B(H, Hy) satisfying A = U*ZU

Theorem 3.1.12.
Unitary equivalence is an equivalence relation.

Proof. Let = denote unitary equivalence and let A € B(H;).
Consider the identity operator / € B(H];)

Note [* =1 = I"] =11 =1 = [I"ie. [ is unitary.

Now I*Al = IAI = A = A = A thus we have = is reflexive.
Let = € B(Hy) and A = =

Then we can find U; € B(H, Hy) satisfying

A= Ul*EUl = UlAUl* = UlUl*EUlUl* === UlAUl*



41

Let Uy = U;" then Us is unitary and = = Uy* AU,

i.e. we can find U, € B(Hy, H;) satisfying = = Uy"AUs = = = A

so A = = = = = A and thus we have = is symmetric.

LetI' ¢ B(H;) with A= Zand = =T

then we can find U; € B(H,, Hs) and U, € B(H,, H3) satisfying

A= Ul*EUl and = = UQ*FUQ

SoA = Ul*UQ*FUQUl = (UQUl)*F(UQUl)

Let U3 = UsU; then Us is unitary and A = U3"TU3 = A =T

SoA=E=Z =21 = A =T thus we have = is transitive.

Hence = is an equivalence relation. ]

Remark 3.1.13.
Recall A € B(H) is positive if A* = A and (Ao, o) > 0,Vo € H
Note that A is strictly positive if we also have (Ao, 0) =0 < 0=0

Definition 3.1.14.
A € B(H,, Hy) which is self ad-joint and strictly positive is called a metric
operator.

Remark 3.1.15.
We now give the following results on metric operators according to Antoine
and Trapani (14)

Proposition 3.1.16.

1. A metric operator A : H; — H is invertible and densely defined but may
be bounded or unbounded.

2. If A is metric then A“ is metric foralla € R

3. if 2 and =" are densely defined on H, and Hy respectively. Then = is
similar to Z* with intertwining metric A satisfying = = A"1Z2*A

4. If= € B(H;) and ' € B(H,) which are self adjoint, then = is metrically
similar to I satisfying = = AGTAG)
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3.2 Spectral properties of similar operators

Remark 3.2.1.
Recall, A represented by a square n x n matrix A = [)\;;] is diagonal if
Nij = 0V i # j and the elements \j; = {1, A, oo , An} in the main

diagonal are all eigenvalues of A (multiplicity included).

Definition 3.2.2.
Ann x n matrix A = [\;;] is a triangular if all the elements above the main
diagonal are all zeroes.

Remark 3.2.3.

Note that the elements \11, oo, ......... y Ann given by A, Ao, oo , A\ in the
main diagonal of a triangular matrix A are the eigenvalues of A hence the
points op(A).

Theorem 3.2.4.

LetH = K".

If a matrix operator A on K" is such that all its eigenvalues are in K then we
can find Y on K" to have YAY ! = = as a triangular matrix

i.e. we can find =, a triangular matrix satisfying A ~ =.

Definition 3.2.5.
Let A = [\;j] be ann x n square matrix and let {\;;} be the elements in the
main diagonal fori = 1,2, ........ n. Then the trace of A denoted

tT’(A) = E?:l /\“

Proposition 3.2.6.
The matrix operators A,= € B(H) which are are similar have the same
characteristic polynomial. Moreover A and = have the same trace.

Proof . Since A is similar to = then we can have an invertible matrix T
satisfying
A="T"l=T

The characteristic polynomial of A i.e. Dy \ = det(A — )
So we have P\ = det(A — M) = det|THE — )]

= det(Y 1) det(Z — M )det(T)
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= det(Y) 'det(Z — M)det(T) = det(Z — M) = d=)\

Thus we have A = ®=)\ i.e. A and = have the same characteristic
polynomial.

So A and = have the same eigenvalues (multiplicity included).

But the trace of an n x n matrix is given by addition of its eigenvalues with
multiplicities and therefore A and = have the same trace. []

Corollary 3.2.7.
IfA,= € B(H) are similar then

UP(A) = O'p(E)

Proof . We have already established that similar operators have the same
characteristic polynomial and hence the same eigenvalues.

The collection of eigen-values is the op and therefore
ANEiUp(A):OP(E) []

Theorem 3.2.8.
Let A € B(H,) and = € B(H,) where H; and H are finite dimensional with

A ~ Z. Then A and = have the same spectrum i.e. o(A) = o(=Z)

Proof . Since Hj is finite dimensional we have o¢(A) = ¢ and og(A) =
¢ = o(A) =op(A).

Similarly 0¢(2) = ¢pand or(2) = ¢ = 0(E) = op(2)

but A and = are similar, so by corollary 3.2.7 ,

op(A) =op(E) = g(A) =0 (2)

[]

Remark 3.2.9.

According to Halmos(2) the equality of spectra of similar operators can be
extended to infinite dimensional Hilbert spaces. So for A,= € B(H) and
A ~ = given H has infinite dimension , then:

UP(A) = UP(E)

oo(N) = o¢(E)
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and hence
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3.3 Some results on quasi-similarity of operators

Remark 3.3.1.
Recall if A € B(H,) and = € B(Hs) are similar, then we can find an affinity
T € B(Hy, Hy) satisfying TA = =

Definition 3.3.2.
T € B(Hy, Hy) is quasi invertible (also called a quasi-affinity) if 1 — 1 and
the range of Y is dense in Hy

Definition 3.3.3.

Let A € B(H,) and = € B(Hy)

Then A is quasi-affine transform of = denoted A ~ = if we can find a quasi-
affinity T € B(Hy, Hy) satisfying TA = =7

Remark 3.3.4.
IfA € B(H,) and = € B(Hs) are quasi-affine transforms of each other i.e.
we have quasi-affinities T € B(H;, Hy) and ¥ € B(Hs, H,) satisfying

TA==

UE = AV
then A and = are said to be quasi-similar.

Theorem 3.3.5.

If Y is a quasi-affinity from H; to Hy and V is a quasi-affinity from Hs to Hj
then U'Y is a quasi-affinity from H; to Hs and YV is a quasi-affinity from
Hs to Hj.

Proof. Since for quasi-similar operators A € B(H;) and = € B(H,) we
can find quasi-affinities T € B(H;, Hs) and ¥ € B(Hs,, H;) then we can
have the following commutative diagram which illustrates this relationship.
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H, > H, > H, > H,
P R Q 5 P R Q
¥ k J v J
I, > Il > I, > I,
R S R

Now T is a quasi-affinity from Hj to Hy means that Y is 1 —1 and Ran(Y) =
Hs.

Similarly W is 1 — 1 and Ran (V) = Hj

Then WY isa 1 — 1 operator since is a composition of 1 — 1 operators.
The range of UY is subset of Hj i.e. Ran(V7T) C H;

Then it follows VY (H;) = WY (Hy).............. (7)

but Ran(Y) = Hy = YT (H;) = Hj since T is a quasi-affinity
so (i) becomes WY (H;) = W(Hy)

but Ran(V) = H; = V(H,) = H; since V is a quasi-affinity
consequently WYY (H;) = Hj ie. Ran(VT) = H;

Now that we have shown that U is 1 — 1 and has a dense range in H;, it
implies that U7 is a quasi-affinity.

Similarly YW is 1 — 1 operator because is a composition of 1 — 1 operators.
So Ran(YTWV) C H,

Then it follows YW (Hs) = YW (Hy)...ooveeeeee (ii)

but Ran(V) = H; = V(H,) = Hj since V is a quasi-affinity.

so (i7) becomes YW(H,) = Y(Hj;)

but Ran(Y) = Hy = Y(H;) = Hj since T is a quasi-affinity.
consequently YW (Hsy) = Hj i.e. Ran(YWV) = Hy

Now since we have shown that YW is 1 — 1 and Ran(YV¥) = H2 then it
implies that TV is a quasi-affinity. []

Theorem 3.3.6.
Let A € B(H) be a quasi-affinity, then A* is a quasi-affinity.



47

Proof. Given A € B(H) is a quasi-affinity, then A is 1 —1 and Ran(A) =
H

Since Ais 1 — 1 ie. Ker(A) = {0}

but Ker(A) = Ran(A*) = Ran(A*) = {0} = Ran(A*)

so A* has a dense range in {0}

clearly Ker(A*) = {0} ie. A*is1—1

Now that A* is 1 — 1 and has dense range, it follows that A* is a quasi-
affinity. [

Theorem 3.3.7.
Quasi-similarity of operators is an equivalence relation.

Proof. Let A € B(H;) and denote quasi-similarity by ~=.

Now let T and ¥ be quasi-affinities where T = ¥ = [ without lose of
generality.

then TA =JTA=Al = AV ieVTA =AU

also WA = IA = Al = AT ie VA =AY

hence we have A ~ A ,thus ~ is reflexive.

Let = € B(Hy) and A = =

then we can find quasi-affinities T € B(H;, H,) and ¥ € B(H,, H, ) satis-
fying

TA=Z=Tand V== AV

e VE=AVand TA=ET ==~

ie. A = = = = = A thus =~ is symmetric.

Let I' € B(Hj3) where A = = and = ~

We can find quasi-affinities T € B(H;, H) and ¥ € B(H,, H, ) satisfying

TA=Z=T

V== AU
and quasi-affinities © € B(H,, H3) and €2 € B(Hjs, Hy) such that

O==TI6

Qr = =0

Now QOWTY is a composition of 1 — 1 operators and hence a 1 — 1 operator.
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but

QOUTA = QOAUT since YTA = AUYT

QOAYT = QOU=T since AAV = U=

QEVEY = Q=0VT since OVE = ZOV

QZOUTY = T'QOVT since 2= = I'()

Thus QOUTA =T'QOUT

ie. QOUT is a quasi-affinity of A and I Also

AVTON = UVTAOSQ since AUT = UTA

UTAOQ) = V=161 since TA — =T

V=70 = VTOZ=() since 210 = TO=

UTO= = UYOOI since =2 = QT

Thus YV TOQI = AVTON

ie. UTO( is a quasi-affinity of I" and A

Now that QOUY € B(H;, Hj) is a quasi-affinity of A and I'
and VYOC) € B(Hjs, H,) is a quasi-affinities of I and A then it follows
A=xT

ieA~Z Z~TI = A ~T, thus ~ is transitive.

Hence it follows that ~ is an equivalence relation.

Theorem 3.3.8.
Let A € B(H,) ,= € B(Hs) be similar, then A and = are quasi-similar.

Proof. If A and = are similar, we can find T € G(H;, Hs) satisfying
A=TTEY=TA=EY= AT =712

Let ¥ = Y ! then AV = U= i.e. there exists a quasi-invertible operator
U € B(H,, H;) satisfying V= = AW
Now that there exists quasi-affinities T and V¥ satisfying

TA=Z=7T

U= ==V
it now follows that A and = are quasi-similar

Proposition 3.3.9.
Let H, Hy and Hs be finite dimensional and

T € B(Hy, Hy), ¥ € B(H,, Hs) be quasi-affinities.
Then the inverse (UY)~! € B(Hs, H;) of composite operator
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UY € B(H;, Hs) exists and (¥Y)1 =T 1!

Proof. Recall the composite VY € B(H;, Hj3) is a quasi-affinity and is a
bijection and so (UT) ! exists.

Now
(UT)(¥Y)~! = Iy, is the identity operator in Hj
then applying ¥~ ! we have

TLSY (O =0, = YY) T =0t

and applying T~! we have

TIYOT) =7 = () =1

Lemma 3.3.10.
If A € B(H,) is quasi-affine transform of = € B(Hy) then

=* € B(H,) is a quasi-affine transform of A* € B(H];)

Lemma 3.3.11.

Let T be a quasi-affinity from H; to Hy

Then | T |= VT*Y is a quasi-affinity from Hy to H; and T | T |7} by
continuity extends to a unitary transformation U : H; — Hp

Theorem 3.3.12.
Let A € B(H,) be a quasi-affine transform of = € B(H,) given A and = are
unitary. Then A and = are unitarily equivalent.

Proof. Recallif A and = are unitary, then
NMA=AN"=T= A*=A"1

— k= —r—

and == = == :[:>E*:E*1
Let T € B(H, H, be a quasi-affinity such that TA = ZT......cccoccc.. (i)
Then applying A~! on (i),

TAA ' =ZYA 1= T=27TA"!
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Applying =71

(1]

Y EIEYA T S 2T = YA = BT = YA, (i4)

Note that T* is also a quasi-affinity and by lemma 3.3.10,

[T |= VT =| T P= T

So by (i) TA =T*=7T

Then applying (i), T*ZT = AT*T = A | T |2

thus [T PA=A|T |

and by iteration | T |** A = A | T |** wheren = 0,1,2,3, .......

so for every polynomial ®(Y') we have ®(| T |*)A = AD(| T |?)

Let {®,(T)} be a sequence of polynomials tending to | T |2 uniformly on
the interval 0 < T <|| T ||2 then ®,(| T |?) converges to | YT | so that
| TIA=A|T] i (231)

Note Y | T |'= U by lemma 3.3.11

thus it follows that ZU | T |=ZY | T |} YT |=ET since | T |71 Y |= T
but =Y = T A by (i) above

so ZU | T |= TA and applying | T | 7!,

ZEUY| Y =TA| Y| =Y | Y|'A=>EU =UA

i.e. we can have a unitary operator U € B(H,, H,) satisfying

UN=ZU= A=UEU
hence A and = are unitarily equivalent. ]
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3.4 Spectral properties of quasi-similar operators

Remark 3.4.1.

On finite dimensional Hilbert space, quasi-similar operators are also similar.
But in infinite dimensional spaces, quasi-similarity is a weak relationship,
leading to the operators to have spectra which are not equal in some cases

(Sz-Nagy(3)).
However there are some conditions under which two quasi-similar operators
on infinite dimensional Hilbert spaces will have equal spectra.

Lemma 3.4.2.
Let = € B(Hs) be hypo-normal operator and

{ﬁn}ff:o

a sequence in Hy where =4, .1 = v,,,Vn > 0
Then either || 9o ||>]| V1 ||>]| P2 ||>, oo
or|| v, || = o0 asn — oo

Proof. Recall an operator A is hypo-normal if A*A < AA*
For any v € Hy we have

120 ||I= (=0, 20)2 < (|| Z"=0 [|[| 9 )2

<(IZ2 9D <=2+ 2

DN | —

letting v = v,,19 we have 2 = ,,,1 and =29 =9, satisfying

1
FOnsr 1= 5 (O [} 4 [ Onsz (1)

so {||9,||} is convex, hence the result. O

Lemma 3.4.3.

Let A € G(H,) and = € B(Hy) be hypo-normal.
Let T € B(Hy, Hs) be such that TA ==

then || YA o ||[<|| A7L ||| Yo || forall o € Hy
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Proof. Assume dimH; > 1 andlet A =|| A~! [|> 0

Fix o € H; and define ¥,, = A" TA "o forn > 0

then A\=0,,11 =9, and || ¥, [|<|| T |||l o || foralln >0
since A= is hypo-normal then

| do [|ZI 91 |1=]] D2 ||> oo by lemma above.

The first inequality in this chain || ¥; ||<|| ¥y || shows that

ITA o <[ AT Ye

[]

Theorem 3.4.4.

Let A € G(H,) and = € B(H,) be hypo-normal. Let A and = be quasi-
similar operators i.e. we can find T € B(H;, Hy) where Ker(Y) = 0 and
Ran(Y) = Hy and satisfies TA = ZY. Then = € G(H,).

Proof. Assume dimH; > 1.
Clearly Ran(Z) O Ran(Y) and so Ran(Z) = Hj
Now of we set 9; = P~1p in lemma 3.4.3 we have the inequality

- | Yo |
IE(Te) 1= 7=
A=
Le. ]
I 2(Ter) |2 777 | Tor |
A=l
thus = is bounded below in the range of T and hence = € G(H) O

Theorem 3.4.5.

Let A € B(H,) and = € B(H,) be quasi-similar hypo-normal operators. Then
o(A) = o(Z)

Proof . If A and = hypo-normal with A ~ = then for any A € C we have
A — A = = — \I are also hypo-normal operators.

So by theorem (3.4.4), A € G(H,),= € G(H,) or both are non invertible
and therefore the o(A) = o(2) O
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Remark 3.4.6.
Note there is proper inclusion relation of operators i.e.

Normal C Hypo — normal C Paranormal

Then in view of theorem above, quasi-similar normal operators have equal
spectra since every normal operator is hypo-normal.

Now every hypo-normal operator is paranormal.

So equality of quasi-similar paranormal operators is an area for further re-
search.



54

4.1

ALMOST SIMILARITY OF OPERATORS AND THEIR
SPECTRAL PROPERTIES

Cartesian and polar decomposition of operators

Remark 4.1.1.

Recall if A, = € B(H) are self ad-joint , then A= is self ad-joint iff A commutes
with =.

Also if ®(A) is a polynomial of a self ad-joint operator A with real coefficients
then ®(A) is a self ad-joint operator.

These results show that bounded self ad-joint operator may be comparable to
generalised real numbers.

Then it must be feasible to look upon any bounded linear operator as a gener-
alised complex number.

An object £ € C has a unique representation & = o + 1) with 9,0 €
UpsilonY.

It must then be feasible to express A € B(H) as A = T+iV with T, ¥ € B(H)
being unique and self ad-joint.

Theorem 4.1.2.
For A € B(H) we can find a unique self ad-joint operators T, ¥ € B(H) to
have

A=T+U
Proof. Since A =T + ¢V it implies
AN=(TH+0) " =T"+(GU) =T"+UF =71 —i0" =T — V¥

Then
A+ A*

A+ AN =T+iV4+T -0 =2T=T7T= 5

and
A —A*

21

AN ="T+iV -T 4V =2V = ¥ =
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so T and V¥ are uniquely determined.
Thus

A+A A=A A+ A
A=T4io =200 4 - At

A —A*

2 21 2
Now T* = (455" = 5(A + A")" = 3(A" + A7)

A4+ A"
= -

T

1
= —(A+ A" =
(A + )

Le.
T" =7 = 7T is self ad-joint.
Also U* = (AA5)" = —L(A — A*)" = — L (A" — A™)

24 23

B V) P S
21

ie. U* = U = VU is self ad-joint.
therefore T and ¥ are unique self ad-joint operators

Remark 4.1.3.

2

However if a complex z = a + ib then a and b always commute.

But in the operator theory if P € B(H) and P = R + 1S where R, S € B(H)
are self ad-joint operators, then we need not have R commute with S.

But in a special case we may have R commute with S as expressed below.

Theorem 4.1.4.

Let A € B(H) and A = Y + ¢V with T,V € B(H) as self ad-joint. Then Y

commutes with V iff A is a normal.

e S ATA = AN

Proof. Let T commute with ¥ then

A+ A" A—A* A=A A+ A"

TV =0T = (

;) =

5

= (A+A)A-A)=(A=-A)A+AY)
= A - AN+ AA AN =AN+ AN — A"A — AN
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= A*A+ A"A = AN+ AN
= 2A*A = 2AA"
= A*A = AA®

i.e. A is a normal operator.
Conversely let A be a normal.

Then
ANA=AN = (T —iU)(T + V) = (T +¥)(T — V)
= T2+ U2 4TV —40Y = T2+ U2 4+ 0T — YT
= (YU —UT) =4(¥YT — TV)
=TV -—UY =0T —TVY
= 2TY0U =207
=TV =Y7T

ie YU commutes with VY. []
Remark 4.1.5.

¢ € C can be decomposed into polar form as & = re'® wherer is the absolute
value of ¢ and €' is called the complex sign of €.

In mathematics the polar decomposition of a linear operator is a factorization
analogous to & € C.

Definition 4.1.6.
The polar decomposition of A € B(H) is a canonical factorization A = UG
where U is partialy isometric and GG is a positive.

Remark 4.1.7.
The non-negative self ad-joint operator GG is such that

G = (AA)? = G? = A*A

while U must be partialy isometric, since if U is unitary and A is a one sided
shift operator on IL?(N) then

(MA)z=T= A= U(A*A)3 = U must be A but not unitary

hence a contradiction.
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4.2 Some results on almost similarity of operators

Remark 4.2.1.

Almost similarity is a new class in operator theory and was first introduced
by A.A. Fibril (21). He proved various results that relate almost similarity and
other classes of operators.

Definition 4.2.2.
Two operators A, = € B(H) are almost similar denoted A%’= if we can find
an operator Y € G(H) satisfying

AA =T HE=E)Y

N+ A=T1=+2)Y

Remark 4.2.3.
The definition of almost similarity above we have made use of both Cartesian
and polar decomposition of A and =.

Thusif A = UG = T +iV then G = VA*A = A*A = G? and A"+ A = 270

Theorem 4.2.4.
Almost similarity of operators is an equivalence relation.

Proof. Let %’ denote almost similarity and let A € B(H).
Let T be an identity operator I on H. Then

THAA)Y = I(A*A)T = A*A

T HA* + AT =T(A*+ A=A+ A
Thus A%JA i.e. almost similarity of operators is reflexive.
Let = € B(H) and A%S=
Then we can find T € G(H) satisfying
AMA=T1EE)T

AN+ A=""1E="+E5)T

applying Y and Y~! we have

TAANY =71 EE) Yy ===
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TA+ AT =TT ' E+2) YT ' ==+

Let U = Y~ ! then ¥ € G(H) and ¥~! = T and hence we have
=2 = U HARA) W

4 E=U AT+ AT

i.e Z%7A and hence almost similarity of operators is symmetric.

Let I' € B(H) and let A%’= and =%T.
Then we can find T, ¥ € G(H) satisfying

ANA=T"HEE)Y

and

This implies
AA =Y YT WY

AN+ A=""0 T +T)UY
which implies
AA = (U H T D)UY
A+ A=) (I +T)UY

but ¥Y € G(H) since it is a composition of operators in G(H).

thus A%°T" and hence almost similarity of operators is transitive.

Proposition 4.2.5.
Let A, = € B(H).
Then:

1. if A%J0 then A = 0
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2. if A5T then A = I

3. if N\&7= and = is isometric then A is also isometric.

Proof. 1. Let ALJ0
Then we can find T € G(H) satisfying

AMA="T"10T =0
AN+ A=010T=0=A*"=—-A
= ANA=-AN=0=A"=0=A=0

2. Let AXST
Then we can have T € G(H) satisfying

NA=U"'I" U =0"1TU =7

NAA=U Y+ DNV =V T4+ 1V =21

Now A* + A =21 = A*A + AN = 2A i.e. by applying A
but QA =7 =T+ A2=2A=A2_2A 4+ =0

= A-01HA-1)=0

Leto € Hthen (A—I)(A—1)o=0

Let (A—Ilpo=vthen (A—1)=0= AV =9
Consequently Ao = o = A = Ipand hence A = [

3. Let A%’= then we can find T € G(H) satisfying

Let = be an isometry then =*2 = [ = A*A =T 1Y =T
ie. A*A = I = A is an isometry.

Definition 4.2.6.
A € B(H) is called a 6 — operator if A* + A commutes with A*A
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Remark 4.2.7.
Note, the set of 6 — operators in B(H) is denoted 6(H)
s0

O(H) = {A € B(H) : [A"A, A" + A] = 0}

Proposition 4.2.8.
IfA,Z € B(H) with A%’= and = € (H) then A € 6(H)

Proof. Since A%’= we can find T € G(H) satisfying

AA =T L(E=E)T

so we have
(A*A)(A* +A) = [T H=ZE)T] [T HE +E)T]
=T HEE)(E +E) e (7)

we also have

(A + HAN) = [T HE DT HES)T)

but = € 9 = (2*2)(=
so from (i) and (ii)

(A"A) (A" +A) = (A" + A)(A™A)

ie. A*A commutes with A* + A and hence A € 0(H)

Theorem 4.2.9.
Let A € B(H), then A is Hermitian iff (A* + A)? > 4A*A

Proof . we proof for the case where equality sign holds i.e A is Hermitian

iff (A + A*)% = 4A*A
Suppose A is hermitian
Then
(A +A")? = (A+A)? = (2A)% = 472

AN A = 4NN = 42

So (A + A*)? = 4A*A
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Conversely suppose (A + A*)? = 4A*A
and let A = T 4 ¢ be the Cartesian decomposition of A
Then

(A+A) = (T +il + T —40)? = (27)? = 472

AN A = 4[(T —i0)(T +i0)] = 4]0+ U2 +4(TV — UY)] = 472 + 402

So4YZ =424+ 402 =402 =0 = V2 =0= TV =0
sothatt T =Y+ iV=A=T+0=A=7T
Now since Y is Hermitian it follows A is Hermitian. ]

Proposition 4.2.10.
If\,=Z € B(H) such that A%’= and = is Hermitian, then A is Hermitian.

Proof . Since A%=, we can have T € G(H) so that

NA=TEE)T = 4NN =T 1422

~—

—~
<

~—

NM+A=TE+ET = A+A) = [T H(E+E)TT H(E+E29)T]
= (A+A) =T HE+E)T o, (i4)

Since = is Hermitian then (2 + Z*)? = 4Z*Z and then (ii) becomes

(A+A) =T M4EEY (i)

but from (i) we have Y1 (4Z*=)Y = 4A*A then (iii) becomes
(A + A*)? = 4AA* ie. A is Hermitian. O

Remark 4.2.11.
Recall if A € B(H)) and A is an isometry then A*A = [

Definition 4.2.12.

A € B(H) is a partial isometry if AN*A = A

ie if A*AA*A = A*A = (A*A)? = A*A

and (N*N)* = A*A implying A*A is a projection.
Proposition 4.2.13.

Let A\, = € B(H) and A%’= with A partially isometric. Then = is also a partial
isometry.
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Proof. If A%’= then we can have T € G(H) so that
ANA=T1ZET i, ()

So

Now (A*A)? = A*A and from (i) and (ii) we have

T IZEY =T 1 (EE)T = (B E)P2 =ZE............ (4id)
Also (2" 2) = Z* =" = E*E.ooe. (iv) ie.
(747) and (4v) imply that =*= is a projection and hence = is partially iso-
metric. []

Proposition 4.2.14.
Let A € B(H) and A%S=. If A is a projection, then = also.

Proof. If A% = we can find T € G(H) so that

NHA=TT1E +2T......... (44)

Since A is a projection then A is Hermitian thus A* = A and by proposition
4.2.10, = is also Hermitian thus =* = =
Now from @

AMA=AA=A2=""1=2Y = T 1227 = v 1=27
ie. A2 =7""1=27

but A is a projection implying that A2 = A so that

Also from 2

N+A=A+A=2A=YE+ET =T (E+3)T =T 1227



e 2A =T 2ZEY = A=""1=27.......... (1v)
From iii and iv, Y '=ZY = Y1227 = =% = = and since = is Hermi-
tian,then = is a projection. []

Proposition 4.2.15.
Let A,= € B(H). If A and = are unitarily equivalent, then A=

Proof. Let A and = be unitarily equivalent, then
A=UZU = N =(UEU) =U'E"U
So
NA = (U'ZU)(U*EU) = U'E*2U = U 25U
ie. we can find U € G(H) satisfying

ANMA=U'Z"20............. (4)

Also

N HA=USU+UEU =U*E+E)U =U =" +E)U

ie there is U € G(H) which satisfies

N+ A=U 4+ ) (44)

The results () and (77) imply that A%’= O

Remark 4.2.16.
The following proposition gives the condition under which quasi-similarity
implies almost similarity.

Proposition 4.2.17.
Let A,= € B(H) and A ~ = with equal unitary quasi-affinities and that H
has finite dimension. Then A=
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Proof. Let A = =, then we can have two quasi-affinities T, ¥ € B(H)

which satisfy
TA=2=7

==AV

Assume Y and W are unitary and T = ¥

then T*Y = TY* =] = YT*=7T"!

but TA =21 = A =T"127 = T*=Y = A* = (T*ET)* = T*E*T

So A*A = (T*E*T)T*EY = T*=*EY = T 12*=T......... (1)

and A"+ A =T=T+TET =T(="+2)T

=T 1 E 4+ E)T......(¢)

The results (i) and (i7) imply that A%S= ]

Proposition 4.2.18.
Let A, = € B(H) and A%S=. If A is Hermitian, then A ~ =.

Proof . If A%’=, we can find T € G(H) satisfying

A+ A=T=+2)T

Since A is Hermitian then = is Hermitian by proposition 4.2.10
Thus

A+ A=TT1E+EDT=2A=T"122T = A="""'2

Hence we have A ~ = ]

Remark 4.2.19.
Note that in the above proposition, since A and = are Hermitian then both A
and = are normal and so A = =.

Proposition 4.2.20.
Let A € B(H), if A is normal then A%SA*

Proof . Since A is normal then A*A = AA*
So A*A = I7TAAN*T



65

but AA* = (A*)*A* thus A*A = I~ (A*)*A* Lo (4)
Now A* + A=A+ A* = (A")" + A*
S AN FA=T YA AT (17)
The results (i) and (77) imply that AZ5A* O

Proposition 4.2.21.
LetU € B(H), if U is a unitary, then A € B(H) is isometric iff A& U

Proof . Suppose A%’U, then there is T € G(H) which satisfy
NA=TT'UUT =0T =1

i.e. A*A = [ thus A is isometric.

Now let A be isometric then A € ¢

thus we can find T € G(H) with A%T implying Y is isometric by proposi-
tion 4.2.5, thus T is unitary and hence A%’U []
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4.3 Spectral properties of almost similar operators

Proposition 4.3.1.
Let A, = € B(H) and A%S=. Then (A + X )%5(Z + M) for all real \

Proof . If A%’=, we can find T € G(H) satisfying
ANA="1ZEY ()

AM+A=T1E + ) o, (44)

Now from (ii) we have
AN+ A="T"E"T+ YT 'E
So that
NHAF 22 =TT+ T IET + YT 2T =T HE + 24207

= (A" + XD+ (A+ M) =T HE + M)+ E+ DT

= (A+ M)+ A+ X)) =T HE+ M)+ (E+AD]T ... (441)
So that
MF MM AN =T DET T IDET TN o (iv)

Thus adding (i) and (iv) we have
ANA+ AN+ AN+ N =T IEET + T IAZT + TIAET + TIN2Y

S AMAFAM LI F N =TI EEFAE FAZE+ AT
= (A +ADA X)) =Y E +AD)E+AD T (v)

but(A+A)*=A"+ A and (Z+MN)*=Z="+ A for \ € R
Thus (v) becomes

A+AD)A+AN) =T EFADE+ADT ., (vi)

The results (ii7) and (vi) imply that (A + \)%5(Z 4+ ) O
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Remark 4.3.2.
The following corollary gives the conditions under which the spectra of almost
similar operators are equal.

Corollary 4.3.3.
Let A, = € B(H) and A%S= such that (A + \I)% (= + M) for all real \. If
A and = are Hermitian or projections then

o(A) =o(2)

Proof. Since A%= then we can find T € G(H) which satisfy
ANA="YTZEY ()

ANM+A=THE D) o, (44)

If A and = are Hermitian, i.e. A* = A and =* = = then 77 becomes
A+ A=T Y E+ZR=2A=T122T

= A="T127

i.e. A ~ = and therefore

o(A) =o(2)

so (i) becomes
AM=TT"EEY=> A =T"2T=A="T""2T

i.,e. A ~ = and hence
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5.1

CONCLUSION AND RECOMMENDATION

Conclusion

In this project we have seen that a Hilbert space is a Banach space H where
the norm on objects in H is induced by the I.P function.
The set of all operators in B(H) is a Banach space.

o(\) is the compliment of the p(A) and subset of Ci.e 0(A) = {p(\)}¢ C
C.

If A € B(H) the o0(A) = op(A) Uoc(A) Uogr(A) but if H is finite dimen-
sional we have o(A) = op(A) since o¢(A) and or(A) are empty sets.

To A € B(H), the 7(A) C o(A) but if A is normal, 7(A) = o(A).

In general op(A) Uog(A) C w(A).

Similarity of operators is an equivalence relation and similar operators
have equal spectra.

T € B(H) is invertible if it is left or right invertible i.e. if TV = ¥T =
I,V € B(H). Therefore a unitary operator U is invertible since U*U =
uvu* = 1.

Unitary equivalent operators are also similar operators, i.e. Unitary equiva-
lence = similarity.

If T and U are quasi-affinities, then there composites, inverses and there
ad-joints are also quasi-affinities.

Quasi-similarity is an equivalence relation and the spectra of quasi-similar
hypo-normal operators are equal since quasi-similar hypo-normal operators
are similar.

Normal operators are also hypo — normal and therefore the spectra of
quasi-similar normal operators are also equal.

Two operators which are similar are also quasi-similar, so that we have
a chain of implication: unitary equivalence = similarity = quasi —
stmalarity.
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Almost similarity of operators is an equivalence relation and Hermitian
almost similar operators have equal spectra since they are similar.

Also two projections which are almost similar have equal spectra.

Two quasi — similar operators A, = € B(H) are also almost similar if they
have equal unitary quasi-affinities and H has finite dimension.

A normal operator is almost similar to its ad-joint operator.
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5.2 Recommendations for further research

1. We have seen that quasi-similar operators A, = € B(H) are almost simi-
lar if they have equal unitary quasi-affinities and H is finite dimensional.

«  We need to investigate whether there are other conditions under
which quasi-similar operators can be almost similar.

«  We also need to find out the conditions under which we can have
the converse.

2. If an operator A is normal then we have the implication: A is normal
= A is quasi — normal = A is hypo — normal = A is paranormal
We have seen that quasi-similar hypo-normal operators have equal
spectra.

We have similar results for quasi-similar normal operators.

«  We need to investigate whether there are some conditions under
which paranormal operators can have equal spectra.

3. Almost similar operators have equal spectra if they are Hermitian or
projections.

«  We need to research the behaviour of subsets of their spectra.
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