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Abstract

Exponential distribution is one of the continuous probability distributions that in most

cases has been used in the analysis of Poisson processes and is the most widely used in

statistical studies of reliability applications. In this project we are aiming at computing

the sums of exponential random variables that have found a wide range of applications in

real life mathematical modelling. In many processes involving waiting time of services,

exponential distributions plays a signi�cant role in making responsible statistical inferences

for signi�cant system output. In this study we have constructed di�erent distributions for

the sums of exponential random variables considering various cases where the parameter

rates may be independent and identical or distinct.

The generalization of the sums of exponential random variables with independent and

identical parameter describes the intervals until n counts occur in the Poisson process. This

forms an Erlang random variable as well proved in this project as well as hypo-exponential

random variable for the case of independent and distinct parameters. The results obtained

indicates variation e�ects depending on the sample size of the distribution and nature

of parameter rates on the e�ciency of the estimation techniques chosen in comparing

respective outputs in applications.

Estimation of properties is determined using the method of moments and maximum

likelihood estimation for some cases attempted. Owing to the relationship of exponential

distribution to Poisson process, a study on the compound mixed Poisson distribution have

also been provided. We have also considered to derive the probability density functions

for hypo-exponential distribution for the general cases where the model parameters form

arithmetic and geometric sequences.
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1 INTRODUCTION

1.1 Background Information

This project embarks on the some important aspects of sums of n≥ 2 exponential random
variables, a very important continuous distribution in Applied Mathematics and Statistics.

The sum of exponential random variables in particular have found wide range of ap-
plications in mathematical modelling in so many real life domains including insurance
[Minkova, 2010], communications and computer science [Trivedi, 2002], Markov processes
[Kordecki, 1997], reliability and performance evaluation [Bolch et al. 2006] and spatial
diversity [Khuong and Kong, 2006].

Nadarajah (2008) presented a review of some the results on sums of random variables
which provided a useful point of reference for this research. In many studies of market
segmentation, these distributions helps to understand and make relevant statistical in-
ferences in relation to human capital placement, predict the process trends and quality
services provided for maximum clientèle satisfaction to determine the survival and success
of service providers.

In nature, independent distributions may have identical or distinct parameter rates which
determines the selection of the distribution and parameter estimation. For cases of
independent and identically distributed exponential random variables, it has has been
noted that the sum of n≥ 2 exponential random variables forms an Erlang distribution.
On the other hand, the sum of n ≥ 2 independent non-identical exponential random
variables with distinct parameter rates is forms hypo-exponential distribution. There are
also cases where the distribution may have both identical and distinct parameter rates for
the sum of n exponential random variables.

Historical background dates back to the introduction of the gamma family by Karl Pearson
(1895) and works of A. K. Erlang (1905) who was working on telephone tra�ic congestion.
Following several studies over time, observations between two successive Poisson occur-
rences indicated to follow exponential distribution hence establishing the relationship of
exponential distribution with Poisson Process. A number of extensions on this area have
been made including by Weibull (1951) and Berre�oni (1964) on the use of exponential
distributions in industrial quality control. Balakrishnan and Basu (1995) also pointed out
exponential distributions as a special case of the gamma distribution. Lai et al (2006) used
the distribution in the study of reliability and survival analysis.
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This study is divided into seven chapters. Rest of this chapter gives the definitions,
notations and terminologies used in this work. It also describes the problem statement,
objectives of this current study, related work done so far and a few descriptions on the
applications of the sums of exponential distributions studied in this project.

Chapter 2 deals with the construction of the probability distribution functions and
cumulative distribution functions for a fixed sum of independent and identically distributed
exponential random variables. The chapter concludes by computing some of the properties
related to the distributions obtained.

Chapter 3 describes compound distribution in relation to exponential distribution using
Laplace Transform. In this wok we also included the study of their relationship of the sums
of independent and identically distributed exponential random variables compounded
with some of the discrete distributions.

Chapter 4 focused on the compound mixed Poisson distribution as well as a discrete
Erlang mixture resulted from the consideration of the random sum of independent and
identically distributed exponential random variables. It also extends to study various
compound mixed Poisson distributions and their desirable properties useful in various
modelling processes.

Chapter 5 embarked on hypo-exponential random variables in cases where the random
variables have distinct parameter rates with non-identical parameters. In this study we
make use of convolution approach, Laplace Transform and moment generating func-
tions techniques and also compute some of their related properties. Eventually, we also
presented the probability distribution functions for the models constructed when the
parameter rates forms an arithmetic sequence and geometric sequence.

Chapter 6 gives a brief description of some of the real life applications of both Erlang
distribution and hypo-exponential distribution.

Chapter 7 concluded the study and giving suggested areas for future studies.

1.2 Definitions, Notations and Terminologies

Let X1,X2, · · · ,Xn be independent exponential random variables with identical or distinct
parameter rates λi, for i = 1,2, · · · ,n. This distribution can also be expressed as Xi ∼
Exp(λi).
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We define the sums of exponential random variables as

Sn = X1 +X2 + · · ·+Xn

=
n

∑
i=1

Xi

The sum, Sn is termed as an Erlang distribution when all parameter rates of Xi are identical
otherwise called hypo-exponential distribution.

The sum Sn may be fixed for n ∈ N and n≥ 2 or random for N is also a random variable
and independent of X ′i s.

The following are some of the notations used in this study:

1. Xi - Exponentially distributed random variable

2. λi - Parameter rate for the exponentially distributed random variable Xi

3. Sn - Sum of exponential random variables

4. n - Number of Xi exponential random variables in the distribution

5. cdf - cumulative distribution function

6. pdf - probability distribution function

7. f (x) - pdf of the random variables X

8. F(x) - cdf of the random variables X

9. L{·} - Laplace transform

10. i.i.d - independent and identically distributed

11. MX(t) - The moment generating function of X

12. g(λ ) - Probability density function of a mixing distribution

13. ∏
n
i=1 - product of all parameter rates

14. mgf - moment generating function
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1.3 Problem Statement

Nadarajah (2008), presented some of the review of results on sums of random variables.
Many of the research works in these area have concentrated on the discrete random
variables than continuous distributions. Exponential distribution is one of the most
applied continuous distribution with very wide applications in applied mathematical
modelling. This called for the selection for the research and study.

It also called for the study of their related properties and estimation of some of the
distributions so far obtained including the resulting e�ects of the mixing distribution on
the compound distributions resulted from exponential distributions.

1.4 Objectives

Main Objective

The main aim of this dissertation is to present methods of finding the distribution of the
sums of n≥ 2 independent exponentially distributed random variables with identical and
with distinct parameter rates.

Specific Objectives

1. To derive the general case for the fixed sums of independent and identically distributed
exponential random variables and its properties.

2. To establish the results of Compound mixed Poisson distributions.

3. To derive the general case of sums of exponential random variables with distinct
parameters and its properties.

4. To present the probability distribution functions for the sums of exponential random
variables with distinct parameters forming arithmetic or geometric sequences.

1.5 Methodology

The following methods were adopted for use in this project on the sums of exponential
random variables:

(i) Convolution Technique

(ii) Laplace Transform
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(iii) Moment generating function

(iv) Arithmetic sequence and Geometric sequence

1.6 Applications

Sum of exponential random variables provides a very wide range of applications in real
life testing and reliability studies:

1.6.1 Communication and Computer Science

Sums of exponential random variables according to Hans and Lars (2007) forms neces-
sary basic tools for Erlang intra-node computer programming. These distributions helps
through the sending and receiving constructs between links and monitors to build robust
applications to survive in the process.

1.6.2 Markov Processes

Continuous time Markov chains provide very useful models in predictability of perfor-
mance in various systems. It also provides very flexible, powerful and e�icient means to
describe and analyse dynamic system properties.

1.6.3 Insurance Application

The sums of exponential random variables provides insurance risk theory knowledge
necessary for the evaluation of the ruin probabilities and claims distribution . Useful
computational formulas are made available for risk assessment and insurance claims
modelling.

1.6.4 Reliability and Performance Evaluation

E�iciency of a system depends on the quality and kind of functions that can be performed
by the system. Sums of exponential random variables explains the reliability of a system
determined by independent components forming up the system.
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2 LITERATURE REVIEW

2.1 Introduction

Sums of exponential random variables have been a focal point of interest by researchers
owing to its wide application in real life modelling. The pioneer work was provided by
A.K. Erlang (1909) a tele-tra�ic engineer.

Saralees Nadarajah (2008) provides a brief review of results on sums of random variables
in sums of exponential random variables. In his paper he provided a review of the known
results on sums of exponential, gamma, lognormal, Rayleigh and Weibull random variables.
Further, he sited a few examples of applications in the wireless communications where
these sums of random variables are useful. This review served us with the need to advance
in this area of sums of exponential random variables.

Khaledi and Kochar (2011) also provides a review paper on the convolution of independent
random variables due to its typical applications in real life areas. Most popular applications
of the reviewed area include in reliability theory (Bon and Paltanea, 1999), in actuarial
sciences (Kaas et al, 2001) and non-parametric goodness-of-fit (Serfling, 1980). Gamma
distribution has been widely used to model total insurance claim distributions through
its right skewness, non-negative and uni-modal properties (Furman, 2008). In their paper
they pointed out that several works only concentrated on the convolutions of exponential
random variables due to the complicated nature of gamma distributions that provides
probability models for the waiting times.

Withers and Nadarajah (2011) studied compound Poisson-gamma random variable tak-
ing into account of its properties including estimationby the methods of moments and
maximum likelihood estimation.

In this paper we consider three conditions that parameter rates of an exponential distri-
bution may take to determine the sum of n random variables. These include:

(i) Where the sum of exponential random variables have independent and identical pa-
rameter rates

(ii) Where the sum of exponential random variables have independent and distinct param-
eter rates
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(iii) Where the sum of exponential random variables have identical parameters and others
have distinct parameters in the distribution.

2.2 Exponential Sum for Independent and Identical Parameter Rates

In this area the earliest recorded study was done by A.K. Erlang (1909) working on telephone
tra�ic congestion giving rise to Erlang distributions. Since then a number of studies have
been done in this area including by Molina, Lindley, Bailey, Kendall, Bhat, Conway, Neuts
and Satly among many others.

Bartle� (1965) used the first and second moments of gamma random variables to evaluate
an excess loss ratio premiums and came into conclusion to have agreed with the the risk-
theoretic loss distribution. Bowers (1966)in his paper followed through several observations
made by various authors at the time to study the distribution of the total claims in the
risk-theory following the assumption made of using incomplete gamma distribution.

Jasiulewicz and Kordecki (2003) computed a formula for the case of independent and
identical random variables resulting to Erlang distribution. They used Laplace transform
to derive the formula.

Kundu and Gupta (2003) discussed the convenient expression of gamma distribution using
the generalized exponential random variable for the shape parameter lying between 0
and 1. Through acceptance-rejection principle the method was compared with the most
popular Ahrens and Dieter method and the method proposed by Best.

Akkouchi (2005) gives a simple formula for the sum of n gamma random variables to solve
the complicated one given by Mathai (1982) for the case of sum of exponential random
variables. Akkouchi’s method involved the use of elementary computations expressing
the results in multiple integrations that included generalized beta function.

Hu and Beaulieu (2005) provides a simple and an accurate closed-form for approximation
of the cumulative density functions and probability density functions of the sum of inde-
pendent and identically distributed Rayleigh random variables. Rayleigh and exponential
random variables are regarded as special cases of gamma distribution.

Doyle (2006) computed the convolution of two exponential densities for identical random
variables only. The paper also went ahead to present the properties of the distribution with
the generalized distribution of the exponential random variable though did not provide
the proof to the case.

Rajic (2013) estimated the parameters for two independent random variables from gamma
distribution using the maximum likelihood estimation method and asymptotic distribution
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to construct confidence intervals. In addition they performed a simulation study to show
the consistency property on the maximum likelihood estimators.

Rather and Rather (2017) in their research article demonstrated a generalized exponential
distribution as a special case of the gamma random variables. This paper discussed the
moment generating functions of the newly introduced distribution in relation to the one
proposed by Weibull(1951). In conclusion, the paper introduced distribution as a special
case of k-generalized exponential random variables.

2.3 Exponential Sum for Independent and Distinct Parameter Rates

Hypo-exponential distribution is characterized by sum of several independent exponential
random variables having di�erent parameter rates, Amari and Misira (1997) and Akkouchi
(2008). Its application have found wide significance including tele-tra�ic engineering and
queueing system. Mathai (1982) studies the sum of exponential distribution to provide
with the formula.

Khalid et al(2001) modelled hypo-exponential distribution with three di�erent parameters
in his work on the study of the input-output of a multiple processor system. He also used
Erlang distribution on the same to measure the performance of the system.

The convolution of exponential random variables with distinct parameter rates were given
by the works of Sheldon M. Ross (2003). However, he did not consider into the properties
of the distributions obtained.

Moreover, in the domain of reliability and performance evaluation of systems and so�ware,
some authors used arithmetic and geometric parameters, such as Gaudion and Ledoux
(2007), Jelinski and Moranda (1972) and Moranda (1979).

Mohamed Akkouch (2008) used convolution of exponential random variables to get the
general case for the distribution with di�erent parameter rates. In his work he considered
the method applied by Kordecki (2003) in deriving to the result through Laplace Transform
technique. He used the generalization results provided by Sen and Balakrishnan (1999)
that were also done by Jesiulewicz and Kordecki (2003)in establishing the formula without
any conditions on the parameter rates.

Steifano and Stephen (2008) considered an alternative technique to obtain the probability
density function of the sum of exponential random variable. In their work they considered
the logarithmic relationship between beta and exponential distribution functions and the
Wilks’ integral representation for the products of independent beta random variables by
providing a closed-form expression for the distribution of the sum of independent random
variables.
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Maode (2009) in his paper a�empted to fit Coxian distribution to study the exact time for
the service and hypo-exponential distribution to study the service time for an interrupted
process in an optical burst switching network.

Samimi and Azmi (2009) presented an approximate method in evaluating the cumula-
tive density functions for the sum of independent non-identical random variables. This
method proposed is based on the convergent infinite series technique. However, in this
paper involved complicated integrals to compute the probability density functions. This
approximation method is used to evaluate the use of sum of independent random variables
in analysing the system performance.

Sheldon Ross (2010) used mathematical induction method to obtain the general case
for exponential distribution and some of its properties. In their work, they based on the
convolutions of exponential random variables for non-identical parameters termed as
hypo-exponential random variables.

Smaili et al (2013) used the moment generating function and the Laplace transform
technique to derive the hypo-exponential distribution with n distinct parameters. They
also used these two techniques to obtain properties.

Daskalakis (2013) on non identical independent random variables also investigated the
sum of the distributions and their properties.

Oguntunde et al (2014) on their work obtained the distribution through convolution
approach the sum of two exponentially distributed random variables.The paper also
provided statistical properties on the resulting model of the two random variables. They
went further to obtained the first four moments and cumulants as well as the mean, the
variance, skewness and kurtosis of the distribution.

2.4 Exponential Sum for both Identical and Distinct Parameter Rates

Khuong and Kong (2006) used characteristic function approach to propose their simple
way of determining the distribution for sum of n exponential random variables. In their
work they considered a case where some of the parameter rates may be identical or have
di�erent parameters. There is no any suggested general formula so far for this particular
case since k random variables have the same mean and n− k remaining random variables
have di�erent mean.
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3 A FIXED SUM OF INDEPENDENT AND
IDENTICALLY DISTRIBUTED EXPONENTIAL
RANDOM VARIABLES

3.1 Introduction

In this chapter we will consider the fixed sum of n independent and identically distributed
exponential random variables, establish their probability density function and provide
some of their related properties.

In this case let us consider the distribution X ′i s where i = 1,2, · · · ,n exponential random
variables with equal or identical parameters that is λi = λ j for all λ1,λ2, · · · ,λn. Therefore,
this distribution be represented as:

Sn = X1 +X2 + · · ·+Xn (3.1.1)

3.2 Construction Using Convolution Approach

3.2.1 Sum of two Exponential Random Variables

In the section we need to consider the sums of two exponential random variables with
independent and identical parameters.

Let

S2 = X1 +X2 (3.2.1)

Let Fi(xi) and G(s2) be the cumulative distribution function for Xi and S2 respectively.

Cumulative Distribution Function

From the definition the cumulative distribution function is given by:
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G(s2) = Prob[S2 ≤ s2]

= Prob{X1 +X2 ≤ s2}
= Prob{X2 ≤ s2− x1}
= Prob{0≤ X1 ≤ ∞,0≤ X2 ≤ s2− x1}
= Prob{0≤ X1 ≤ s2,0≤ X2 ≤ s2− x1}

=
∫ s2

0

∫ s2−x1

0
f (x1) f (x2)dx2dx1

=
∫ s2

0
λe−λx1

[∫ s2−x1

0
λe−λx2dx2

]
dx1

=
∫ s2

0
λe−λx1

[
−e−λx2

]s2−x1

0
dx1

=
∫ s2

0
λe−λx1

[
1− e−λ s2+λx1

]
dx1

=
∫ s2

0

(
λe−λx1−λe−λ s2

)
dx1

=
∫ s2

0
λe−λx1dx1−

∫ s2

0
λe−λ s2dx1

=
[
−e−λx1

]s2

0
−
[
x1λe−λ s2

]s2

0

∴ G(s2) = 1− e−λ s2− s2λe−λ s2 (3.2.2)

Therefore from the above equation (3.2.2) it can be concluded that

lim
s2→∞

G(s2) = 1

and

lim
s2→0

G(s2) = 0 (3.2.3)

Probability Distribution Function

From equation (3.2.2) therefore

g(s2) =
d

ds2
G(s2)

=
d

ds2

[
1− e−λ s2− s2λe−λ s2

]
= λe−λ s2 +λ s2λe−λ s2−λe−λ s2

= λ
2s2e−λ s2 (3.2.4)

as required.
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3.2.2 Sum of three Exponential Random Variables

In the section we need to consider the sums of three exponential random variables with
independent and identical parameters.

Let

S3 = X1 +X2 +X3

= S2 +X3 (3.2.5)

Let Fi(xi) and G(s3) be the cumulative distribution function for Xi and S3 respectively.

Cumulative Distribution Function

From the definition the cumulative distribution function is given by:

G(S3) = Prob[S3 ≤ s3]

= Prob{S2 +X3 ≤ s3}
= Prob{X3 ≤ s3− s2}
= Prob{0≤ s2 ≤ ∞,0≤ X3 ≤ s3− s2}
= Prob{0≤ s2 ≤ s3,0≤ X3 ≤ s3− s2}

=
∫ s3

0

∫ s3−s2

0
g2(s2) f (x3)dx3ds2

=
∫ s3

0
λ

2s2e−λ s2

[∫ s3−s2

0
λe−λx3dx3

]
ds2

=
∫ s3

0
λ

2s2e−λ s2
[
−e−λx3

]s3−s2

0
ds2

=
∫ s3

0
λ

2s2e−λ s2
[
1− e−λ s3+λ s2

]
ds2

=
∫ s3

0
λ

2s2e−λ s2ds2−
∫ s3

0
λ

2s2e−λ s3ds2

=−s3λe−λ s3− e−λ s3 +1− 1
2

s2
3λ

2e−λ s3

∴ G(S3) = 1− s3λe−λ s3− 1
2

s2
3λ

2e−λ s3− e−λ s3 (3.2.6)

Therefore from the above equation (3.2.6) it can be concluded that

lim
s3→∞

G(s3) = 1

and

lim
s3→0

G(s3) = 0 (3.2.7)
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Probability Distribution Function

From equation (3.2.6) therefore

g(s3) =
d

ds3
G(s3)

=
d

ds3

[
1− s3λe−λ s3− 1

2
s2

3λ
2e−λ s3− e−λ s3

]
=−λe−λ s3 + s3λ

2e−λ s3− s3λ
2e−λ s3 +

1
2

s2
3λ

3e−λ s3 +λe−λ s3

=
λ 3

2
e−λ s3s2

3

=
λ 3

Γ(3)
e−λ s3s3−1

3 (3.2.8)

as required.

3.2.3 Sum of four Exponential Random Variables

In the section we need to consider the sums of four exponential random variables with
independent and identical parameters.

Let

S4 = X1 +X2 +X3 +X4

= S3 +X4 (3.2.9)

Let Fi(xi) and G(s4) be the cumulative distribution function for Xi and S4 respectively.

Cumulative Distribution Function

From the definition the cumulative distribution function is given by:

G(S4) = Prob[S4 ≤ s4]

= Prob{S3 +X4 ≤ s4}
= Prob{X4 ≤ s4−S3}
= Prob{0≤ s3 ≤ ∞,0≤ X4 ≤ s4−S3}
= Prob{0≤ s3 ≤ s4,0≤ X4 ≤ s4−S3}

=
∫ s4

0

∫ s4−s3

0
g(s3) f (x4)dx4ds3
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G(S4) =
∫ s4

0

λ 3

2
e−λ s3s2

3

[∫ s4−s3

0
λe−λx4dx4

]
ds3

=
∫ s4

0

λ 3

2
e−λ s3s2

3

[
−e−λx4

]s4−s3

0
ds3

=
∫ s4

0

λ 3

2
e−λ s3s2

3

[
1− e−λ s4+λ s3

]
ds3

=
∫ s4

0

λ 3

2
e−λ s3s2

3ds3−
∫ s4

0

λ 3

2
e−λ s3s2

3e−λ s4ds3

∴ G(S4) =−s2
4

λ 2

2
e−λ s4− s4λe−λ s4− e−λ s4 +1−λ

3e−λ s4
s3

4
6

(3.2.10)

Therefore from the above equation (3.2.10) it can be concluded that

lim
s4→∞

G(s4) = 1

and

lim
s4→0

G(s4) = 0 (3.2.11)

Probability Distribution Function

From equation (3.2.10) therefore

g(s4) =
d

ds4
G(s4)

=
d

ds4

[
−s2

4
λ 2

2
e−λ s4− s4λe−λ s4− e−λ s4 +1−λ

3e−λ s4
s3

4
6

]
=−s4λ

2e−λ s4 +
s2

4λ 3e−λ s4

2
−λe−λ s4 + s4λ

2e−λ s4 +λe−λ s4−
s2

4λ 3e−λ s4

2
+

s3
4λ 4e−λ s4

6

=
s3

4λ 4e−λ s4

6

=
λ 4

Γ(4)
e−λ s4s4−1

4 (3.2.12)

as required.

3.2.4 Sum of five Exponential Random Variables

In the section we need to consider the sums of five exponential random variables with
independent and identical parameters.
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Let

S5 = X1 +X2 +X3 +X4 +X5

= S4 +X5 (3.2.13)

Let Fi(xi) and G(s5) be the cumulative distribution function for Xi and S5 respectively.

Cumulative Distribution Function

From the definition the cumulative distribution function is given by:

G(S5) = Prob[S5 ≤ s5]

= Prob{S4 +X5 ≤ s5}
= Prob{X5 ≤ s5− s4}
= Prob{0≤ s4 ≤ ∞,0≤ X5 ≤ s5− s4}
= Prob{0≤ s4 ≤ s5,0≤ X5 ≤ s5− s4}

=
∫ s5

0

∫ s5−s4

0
g(s4) f (x5)dx5ds4

=
∫ s5

0

λ 4

Γ(4)
e−λ s4s3

4

[∫ s5−s4

0
λe−λx5dx5

]
ds4

=
∫ s5

0

λ 4

Γ(4)
e−λ s4s3

4

[
−e−λx5

]s5−s4

0
ds4

=
∫ s5

0

λ 4

Γ(4)
e−λ s4s3

4

[
1− e−λ s5+λ s4

]
ds4

=
∫ s5

0

λ 4

Γ(4)
e−λ s4s3

4ds4−
∫ s5

0

λ 4

Γ(4)
e−λ s5s3

4ds4

∴ G(S5) =−
s3

5λ 3e−λ s5

Γ(4)
−

3s2
5λ 2e−λ s5

Γ(4)
− 6s5λe−λ s5

Γ(4)
− 6e−λ s5

Γ(4)
+

6
Γ(4)

−
s4

5λ 4e−λ s5

4Γ(4)
(3.2.14)

Therefore from the above equation (3.2.14) it can be concluded that

lim
s5→∞

G(s5) = 1

and

lim
s5→0

G(s5) = 0 (3.2.15)
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Probability Distribution Function

From equation (3.2.14) therefore

g(s5) =
d

ds5
G(s5)

=
d

ds5

[
−

s3
5λ 3e−λ s5

Γ(4)
−

3s2
5λ 2e−λ s5

Γ(4)
− 6s5λe−λ s5

Γ(4)
− 6e−λ s5

Γ(4)
+

6
Γ(4)

−
s4

5λ 4e−λ s5

4Γ(4)

]

=−
3s2

5λ 3e−λ s5

Γ(4)
+

s3
5λ 4e−λ s5

Γ(4)
− 6s5λ 2e−λ s5

Γ(4)
+

3s2
5λ 3e−λ s5

Γ(4)

− 6λe−λ s5

Γ(4)
+

6s5λ 2e−λ s5

Γ(4)
+

6λe−λ s5

Γ(4)
−

4s3
5λ 4e−λ s5

4Γ(4)
+

s4
5λ 5e−λ s5

4Γ(4)

=
s4

5λ 5e−λ s5

(5−1)Γ(5−1)

=
λ 5

Γ(5)
e−λ s5s5−1

5 (3.2.16)

as required.

3.2.5 Generalization case of Sum of Exponential Random Variables

In the section we need to consider the generalization of sums of n exponential random
variables with independent and identical parameters.

Proposition 1

Let

Sn = X1 +X2 + · · ·+Xn (3.2.17)

for n≥ 2 be the sum of n exponential random variables, then the pdf for the distribution
will be given by:

g(sn) =
λ n

Γ(n)
e−λ snsn−1

n where λ ,sn > 0 and n = 1,2,3, · · · (3.2.18)

Proof

Let Fi(xi) and G(sn) be the cumulative distribution function for Xi and Sn respectively.
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Cumulative Distribution Function

From the definition the cumulative distribution function is given by:

G(Sn) = Prob[Sn ≤ sn]

= Prob{Sn−1 +Xn ≤ sn}
= Prob{Xn ≤ sn− sn−1}
= Prob{0≤ sn−1 ≤ ∞,0≤ Xn ≤ sn− sn−1}
= Prob{0≤ sn−1 ≤ sn,0≤ Xn ≤ sn− sn−1}

=
∫ sn

0

∫ sn−sn−1

0
g(sn−1) f (xn)dxndsn−1

=
∫ sn

0

λ n−1

Γ(n−1)
e−λ sn−1sn−2

n−1

[∫ sn−sn−1

0
λe−λxndxn

]
dsn−1

=
∫ sn

0

λ n−1

Γ(n−1)
e−λ sn−1sn−2

n−1

[
−e−λxn

]sn−sn−1

0
dsn−1

=
∫ sn

0

λ n−1

Γ(n−1)
e−λ sn−14sn−1

n−1

[
1− e−λ sn+λ sn−1

]
dsn−1

∴ G(Sn) =
∫ sn

0

λ n−1

Γ(n−1)
e−λ sn−1sn−2

n−1dsn−1−
∫ sn

0

λ n−1

Γ(n−1)
e−λ snsn−2

n−1dsn−1 (3.2.19)

Solving the above equation (3.2.19)and considering equation (3.2.14)then it can be con-
cluded to follow the same condition and therefore

lim
sn→∞

G(sn) = 1

and

lim
sn→0

G(sn) = 0 (3.2.20)

Probability Distribution Function

From equation (3.2.19) and considering equation (3.2.16) then

g(sn) =
d

dsn
G(sn)

=
λ n

Γ(n)
e−λ snsn−1

n where λ ,sn > 0 and n = 1,2,3, · · · (3.2.21)

Hence the prove which is an Erlang Distribution with parameters n and λ .
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3.3 Properties of the Distribution

3.3.1 Moments

For

fsn(s) =
λ ne−λ snsn−1

Γ(n)
(3.3.1)

The rth moment for the fixed sum of exponential random variables are given by:

E(sr
n) =

∫
∞

0
sr

n f (sn)dsn

=
∫

∞

0
sr

n
λ ne−λ snsn−1

Γ(n)
dsn

=
λ n

Γ(n)

∫
∞

0
sr

ne−λ snsn−1
n dsn

Let
z = λ sn⇒ sn =

z
λ

dz = λdsn

Therefore

E(sr
n) =

1
Γ(n)

∫
∞

0

( z
λ

)r
λ

ne−z
( z

λ

)n−1 1
λ

dz

=
1

Γ(n)

∫
∞

0

zr

λ r λ
ne−z zn−1

λ n dz

=
1

λ rΓ(n)

∫
∞

0
zr+n−1e−zdz

=
Γ(r+n)
λ rΓ(n)

=
(r+n−1)!
λ r(n−1)!

(3.3.2)

for positive value of integers of r and n.
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Thus

E(sr
n) =

(r+n−1)!
λ r(n−1)!

Hence,

E(sn) =
(n)!

λ (n−1)!
=

n
λ
= µ (3.3.3)

E(s2
n) =

(n+1)!
λ 2(n−1)!

=
n(n+1)

λ 2 =
n2 +n

λ 2 = µ

(
n+1

λ

)
(3.3.4)

Thus,

Var(sn) = µ2 = E[sn−µ]2 = σ
2

= E(s2
n)−2µE(sn)+µ

2

= E(s2
n)−µ

2

=
n2 +n

λ 2 − n2

λ 2

=
n

λ 2 (3.3.5)

Therefore,
σ

2 =
n

λ 2

σ =

√
n

λ

Also,

E(s3
n) =

(n+2)!
λ 3(n−1)!

=
n(n+1)(n+2)

λ 3

=
n3 +3n2 +2n

λ 3
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∴ µ3 = E[sn−µ]3

= E(s3
n)−3µE(s2

n)+3µ
2E(sn)−µ

3

=
n(n+1)(n+2)

λ 3 −3.
n
λ
.
n2 +n

λ 2 +3.
n2

λ 2 .
n
λ
− n3

λ 3

=
n3 +3n2 +2n

λ 3 − 3n3 +3n2

λ 3 +
3n3

λ 3 −
n3

λ 3

=
2n
λ 3 (3.3.6)

Therefore

E(s4
n) =

n(n+1)(n+2)(n+3)
λ 4 =

(n+3)!
λ 4(n−1)!

∴ µ = E[sn−µ]4

= E(s4
n)−4µE(s3

n)+6µ
2E(s2

n)−4µ
3E(sn)+µ

4

=
(n+3)!

λ 4(n−1)!
−4.

n
λ

(
n3 +3n2 +2n

λ 3

)
+6
(

n2

λ 2

)(
n+n
λ 2

)
−4
(

n3

λ 3

)( n
λ

)
+

n4

λ 4

=
n4 +6n2 +11n2 +6n

λ 4 − 4n4 +12n3 +8n2

λ 4 +
6n4 +6n3

λ 4 − 4n4

λ 4 +
n4

λ 4

=
3n3 +6n

λ 4

=
3n(n+2)

λ 4 (3.3.7)

3.3.2 Moment Generating Function

Let,
SN = X1 +X2 + · · ·+XN

Let Sn = y where n ∈ N
when

g(y;n,λ ) =
λ n

Γ(n)
e−λyyn−1 (3.3.8)

The mgf of the fixed sum of exponential random variables is given by;
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MY (t) = E
[
ety]

=
∫

∞

0
etyg(y)dy

=
∫

∞

0
ety λ n

(n−1)!
yn−1e−λydy

=
λ n

(n−1)!

∫
∞

0
yn−1e−y(λ−t)dy

Let,
u = y(λ − t)

⇒ y =
u

λ − t
du = (λ − t)dy

MY (t) =
λ n

(n−1)!

∫
∞

0

(
u

λ − t

)n−1

e−u du
(λ − t)

=
λ n

(n−1)!

∫
∞

0

un−1

λ − tn−1 .
1

λ − t
e−udu

=

(
λ

λ − t

)n ∫ ∞

0

un−1

Γ(n)
e−udu

=

(
λ

λ − t

)n

(3.3.9)

3.3.3 Mode

Let,
SN = X1 +X2 + · · ·+XN

Let Sn = y where n ∈ N
when

g(y;n,λ ) =
λ n

Γ(n)
e−λyyn−1

The mode of the model can be computed if the following condition is maintained:

d
dy

g(y) = 0

Therefore
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d
dy

[
λ n

Γ(n)
e−λyyn−1

]
= 0

−λ n−1

Γ(n)
e−λyyn−1 +

λ n

Γ(n)
e−λy(n−1)yn−2 = 0

λ n−1

Γ(n)
e−λyyn−1 =

λ n

Γ(n)
e−λy(n−1)yn−2

λ
−1 = (n−1)y−1

∴ y = λ (n−1) (3.3.10)

3.4 Parameter Estimation

In the classical method for obtaining point estimators for unknown parameters, we will
consider the following methods of estimation as follows:

3.4.1 Methods of Moments

Let Sn = X1 +X2 + · · ·+Xn be the fixed sum of independent and identically distributed
exponential random variables from Erlang (n,λ ).

Let
Sn = Y

The first two moments about origin are given by

µ1 = E[Y ] =
n
λ

µ2 = E[Y 2] =
n2 +n

λ 2

From the distribution the sample moments can be obtained as follows:

M1 =
1
n

n

∑
i=1

Yi

and

M2 =
1
n

n

∑
i=1

Y 2
i
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Now, using the methods of moments, we obtain,

M1 = µ1

⇒ 1
n

n

∑
i=1

Yi =
n
λ

⇒ λ̂ =
n
Y

(3.4.1)

and

M2 = µ2

This implies

1
n

n

∑
i=1

Y 2
i =

n2 +n
λ 2

=
n2 +n

n
.Y

= (n+1)Y (3.4.2)

For solving n, we obtain

nY =
1
n

n

∑
i=1

Y 2
i −Y

=
1
n

n

∑
i=1

Y 2
i −nY

2nY =
n

∑
i=1

Y 2
i

∴ n̂ =
1

2Y

n

∑
i=1

Y 2
i =

S2

2Y
where S2 =

n

∑
i=1

Y 2
i (3.4.3)

Therefore, the method of moments estimators of n and λ are

λ̂ =
n
Y

n̂ =
S2

2Y
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3.4.2 Maximum Likelihood Estimation

Let S1,S2, · · · ,Sk be the fixed sums of independent and identically distributed exponential
random variables resulting to Erlang distribution with the pdf given by:

f (s;k,λ ) =
λ k

Γ(k)
e−λ ssk−1;0 < s < ∞;λ > 0 (3.4.4)

The likelihood function is given by:

L(s;k,λ ) =
n

∏
i=1

[
λ k

Γ(k)
e−λ sisk−1

i

]
=

λ nk

(Γ(k))n e−λ ∑
n
i=1 sisk−1

i

The log likelihood function is given by;

log(L(s;k,λ )) = nklogλ −nlogΓ(k)−λ

n

∑
i=1

si +(k−1)
n

∑
i=1

si

Taking the partial derivative of the log likelihood function with respect to λ and se�ing it
to 0

δ

δλ
log(L(s;k,λ )) =

nk
λ
−

n

∑
i=1

si = 0

∴
nk
λ

=
n

∑
i=1

si

= ns

⇒ λ̂ =
k
s

(3.4.5)

Taking the partial derivative of the log likelihood function with respect to k and se�ing it
to 0

δ

δk
log(L(s;k,λ )) = nlogλ −n

Γ′(k)
Γ(k)

+
n

∑
i=1

si = 0
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⇒ nΓ′(k)
Γ(k)

= nlogλ +
n

∑
i=1

si

∴
Γ′(k̂)
Γ(k̂)

= logλ̂ + s (3.4.6)

as required.
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4 COMPOUND DISTRIBUTIONS IN TERMS OF
LAPLACE TRANSFORM

4.1 Introduction

Let

SN = X1 +X2 + · · ·+XN (4.1.1)

where X ′i s are independent and identically distributed exponential random variables and
N is also a random variable independent of the X ′i s.

4.2 Expectation Approach

In terms of Laplace Transform and Probability generating function

LSN (s) = E
[
e−sSN

]
= EE

[
e−sSN |N

]
= E{E(e−s(X1+X2+···+XN))}
= E{E(e−sX1)E(e−sX2) · · ·E(e−sXN )}
= E{LXi(S)}

N

= FN [LXi(S)] (4.2.1)

which is called a compound distribution, where

FN(S) = E(SN) (4.2.2)

which is the probability generating function of N.
Therefore

LSN (S) = FN

(
λ

λ +β

)
(4.2.3)
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4.3 Considering Compound Distributions

(i) If N is Poisson, then LSN (S) becomes a compound Poisson distribution. Suppose N is
Poisson with parameter α , then

LSN (S) = e−α(1−LXi(S))

= e−α

(
1− λ

λ+β

)

= e−α

(
λ+β−λ

λ+β

)
= e−

αβ

λ+β (4.3.1)

(ii) If N is Bernoulli, then LSN (S) becomes a compound Bernoulli distribution. Suppose N
is Bernoulli with parameter p, then

LSN (S) = q+ p[LXi(S)]

where q = 1− p
Therefore

LSN (S) = (1− p)+ p
(

λ

λ +β

)
= (1− p)+

pλ

λ +β

=
(1− p)(λ +β )+ pλ

λ +β

=
λ +β − pλ − pβ + pλ

λ +β

=
λ +(1− p)β

λ +β
(4.3.2)

(iii) If N is Binomial, then LSN (S) becomes a compound Binomial distribution. Suppose N
is Binomial with parameters n and p, then

LSN (S) = [q+ pLXi(S)]
n
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where q = 1− p
Therefore

LSN (S) =
[

1− p+
pλ

λ +β

]n

=

[
λ +(1− p)β

λ +β

]n

(4.3.3)

This implies that when n = 1, we obtain the results of Bernoulli distribution.

(iv) If N is Geometric, then LSN (S) becomes a compound Geometric distribution. Suppose
N is Geometric with parameter p, then

LSN (S) =
pLSN

1−qLSN

if |LSN (S)|< q−1, and where where q = 1− p
Therefore

LSN (S) =
p
(

λ

λ+β

)
1− (1− p)

(
λ

λ+β

)
=

pλ

λ+β

1− λ−λ p
λ+β

=

(
pλ

λ +β

)(
λ +β

β + pλ

)
=

pλ

β + pλ
(4.3.4)

(v) If N is Negative Binomial, then LSN (S) becomes a compound Negative Binomial distri-
bution. Suppose N is Negative Binomial with parameter p, then

LSN (S) =
pLSN

1−qLSN
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if |LSN (S)|< q−1, and p+q = 1
Therefore

LSN (S) =

 p
(

λ

λ+β

)
1− (1− p)

(
λ

λ+β

)
n

=


(

pλ

λ+β

)
1− λ−pλ

λ+β

n

=

[(
pλ

λ +β

)(
λ +β

β + pλ

)]n

=

[
pλ

β + pλ

]n

(4.3.5)

This implies that when n = 1 we obtain the results of Geometric distribution.
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5 COMPOUND MIXED POISSON DISTRIBUTIONS
AS DISCRETE MIXTURES

5.1 Introduction

Let

SN = X1 +X2 + · · ·+XN

where X ′i s are independent and identically distributed random variables and N is also a
random variable independent of X ′i s.
According to Klugman, Panjer and Willmot (2008), the distribution of N is called primary
distribution and that of X ′i s is called secondary distribution.
The distribution of SN is called a compound distribution.
If N is mixed Poisson distributed, then SN is compound mixed Poisson distribution.
The compound distribution of SN can be expressed as a discrete mixture as shown below:
Let

h(y) = Prob{SN = y (5.1.1)

Then

h(y) = Prob{X1 +X2 + · · ·+XN = y}
= ∑

n
Prob{X1 +X2 + · · ·+XN = y,N = n}

= ∑
n

Prob{X1 +X2 + · · ·+XN = y|N = n}Prob{N = n}

= ∑
n

Prob{X1 +X2 + · · ·+XN = y}pn}

= ∑
n

f ∗y pn (5.1.2)

where f ∗y pn is the nth - fold convolution.
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5.2 Continuous Mixed Distribution

Let,

Pn = Prob{N = n}

=
∫

∞

0
Prob{N = n,∧= λ}dλ

=
∫

∞

0
Prob{N = n|∧= λ}Prob{∧= λ}dλ

=
∫

∞

0
Prob{N = n|∧= λ}g(λ )dλ (5.2.1)

Where
Prob{N = n|∧= λ}= the conditional pmf or pdf = the continuous mixing distribution
and
Pn = a continuous mixture or continuous mixed distribution.
If
Prob{N = n|∧= λ}= e−λ λ n

n! ,n = 0,1,2, · · ·
is a Poisson distribution (pmf),
then

Pn =
∫

∞

0

e−λ λ n

n!
g(λ )dλ (5.2.2)

which is a continuous mixed Poisson pmf with

E(N) = EE(N|∧) = E(∧) (5.2.3)

and

VarN =VarE(N|∧)+EVar(N|∧)
=Var∧+E(∧) (5.2.4)

Sarguta (2017) obtained continuous Poisson mixtures for various cases of mixing distribu-
tions.



32

5.3 Discrete Erlang Mixture Based on continuous Mixed Poisson
Distributions

In this study, Xi is exponentially distributed with parameter λ . Therefore

f ∗y = Prob{X1 +X2 + · · ·+Xn = y}

=
λ n

Γ(n)
e−λyyn−1, y > 0,n = 1,2, · · · (5.3.1)

This is an Erlang distribution which is a gamma distribution with parameters n being a
positive integer and λ > 0. The discrete mixing distribution Pn is a continuous Poisson
mixture.
Therefore the distribution of SN is

h(y) = Prob{SN = y}

=
∞

∑
n=1

{
λ n

Γ(n)
e−λyyn−1

∫
∞

0

e−λ λ n

n!
g(λ )dλ

}

=
∞

∑
n=1

{
λ n

Γ(n)
e−λy

Γ(n+1)
yn−1E(∧ne−∧)

}
(5.3.2)

The problem is to obtain Prob{SN = y} for various cases of continuous mixing distributions,
g(λ ).

E[SN ] = E(N)E(X) = E(∧)(EX) (5.3.3)

and

Var[SN ] =VarN[E(Xi)]
2 +E(N)VarX

= [Var∧+E(∧)][E(Xi)]
2 +E(∧)VarX

=Var∧ [E(Xi)]
2 +E(∧)[E(Xi)]

2 +E(∧)VarX (5.3.4)

Therefore

Var[SN ] =Var∧ [E(Xi)]
2 +E(∧)

{
[E(Xi)]

2 +VarX
}
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Since Xi ∼ exp(λ ), then

E[SN ] =
E(∧)

λ
(5.3.5)

Var[SN ] =
1
λ
{Var∧+2E(∧)} (5.3.6)

Remark:
In actuarial science, N is the number of claims and Xi is the amount of the ith claim
(severity). SN is the total or aggregate claim or loss.
Therefore,
Prob{SN = y}=the probability of aggregate loss y > 0.
The probability of number of claims is

Prob{SN = 0}= 1−Prob{SN > 0}

= 1−
∫

∞

0
Prob{SN = y}dy (5.3.7)

5.4 Compound Mixed Poisson Distribution

5.4.1 Poisson-Exponential Mixing Distribution

g(λ ) = βe−βλ ,λ > 0;β > 0 (5.4.1)

Therefore, the mean

E(∧) = 1
β

(5.4.2)

and variance,

Var∧=
1

β 2 (5.4.3)
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E(∧ne−∧) =
∫

∞

0
λ

ne−λ
βe−βλ dλ

= β

∫
∞

0
λ

ne−(1+β )λ )dλ

=
βΓ(n+1)
(1+β )n+1

∴ Prob{SN = y}=
∞

∑
n=1

λ n

Γ(n)
e−λy

Γ(n+1)
yn−1

β
Γ(n+1)

(1+β )n+1

= βe−λy
∞

∑
n=1

λ nyn−1

Γ(n)(1+β )n+1

=
λβe−λy

(1+β )2

∞

∑
n=1

(
λy

1+β

)n−1 1
(n+1)!

=
λβe−λy

(1+β )2 .exp
{(

λy
1+β

)}
=

λβ

(1+β )2 .exp
{
−λy

(
1− 1

1+β

)}
=

λβ

(1+β )2 exp
(
− βλy

1+β

)
,y > 0 (5.4.4)

Therefore

∴ Prob{SN = 0}= 1−Prob{SN > 0}

= 1−
∫

∞

0
Prob{SN = y}dy

= 1−
∫

∞

0

λβ

(1+β )2 exp
(
− βλy

1+β

)
dy

= 1− λβ

(1+β )2 .
1+β

λβ

= 1− 1
1+β

=
β

1+β
(5.4.5)

5.4.2 Poisson-Gamma Mixing Distribution

g(λ ) =
β α

Γ(α)
e−βλ

λ
α−1,λ > 0,α > 0,β > 0 (5.4.6)
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Mean,

E(∧) = α

β
(5.4.7)

and variance,

Var(∧) = α

β 2 (5.4.8)

Therefore

E[∧ne−∧] =
∫

∞

0
λ

ne−λ β α

Γ(α)
e−βλ

λ
α−1dλ

=
β α

Γ(α)

∫
∞

0
λ

n+α−1e−(1+β )λ dλ

=
β α

Γ(α)

Γ(n+α)

(1+β )n+α

∴ h(y) =
∞

∑
n=1

λ n

Γ(n)
e−λyyn−1

Γ(n+1)
β α

Γ(α)

Γ(n+α)

(1+β )n+α

=
β α

Γ(α)

∞

∑
n=1

Γ(n+α)

Γ(n)Γ(n+1)
λ ne−λyyn−1

(1+β )n+α

= β
α

∞

∑
n=1

Γ(n+α)

n!Γ(α)

λ n

Γ(n)
e−λyyn−1

(1+β )n+α

= β
α

∞

∑
n=1

(
α +n−1

n

)
λ n

Γ(n)
e−λyyn−1

(1+β )n+α
,y > 0 (5.4.9)

∴
∫

∞

0
h(y)dy = β

α
∞

∑
n=1

(
α +n−1

n

)
λ n

Γ(n)
1

(1+β )n+α

∫
∞

0
yn−1e−λydy

= β
α

∞

∑
n=1

(
α +n−1

n

)
λ n

Γ(n)
1

(1+β )n+α

Γ(n)
λ n

= β
α

∞

∑
n=1

(
α +n−1

n

)
1

(1+β )n+α

=

(
β

(1+β )

)α ∞

∑
n=1

(
α +n−1

n

)(
1

1+β

)n

=

(
β

(1+β )

)α ∞

∑
n=1

(−1)n
(
−α

n

)(
1

1+β

)n
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=

(
β

(1+β )

)α ∞

∑
n=1

(
−α

n

)(
− 1

1+β

)n

=

(
β

(1+β )

)α
[(

1− 1
1+β

)−α

−1

]

∴
∫

∞

0
h(y)dy =

(
β

(1+β )

)α
{(

β

1+β

)−α

−1

}

= 1−
(

β

1+β

)α

∴ h(0) =
(

β

1+β

)α

(5.4.10)

5.4.3 Poisson-Transmuted Exponential Mixing Distribution

Transmuted probability distribution is given by

F(x) = (1+α)G(x)−α[G(x)]2,−1 < α < 1 (5.4.11)

where G(x) and F(x) are the old and new cumulative distributions functions respectively.

f (x) = (1+α)g(x)−2αG(x)g(x),−1 < α < 1 (5.4.12)

where g(x) and f (x) are the old and new probability distribution functions respectively.
For an exponential distribution,
g(x) = λe−λx and G(x) = 1−λe−λx, x > 0;λ > 0
Therefore, the transmuted exponential distribution becomes

f (x) = (1+α)λe−λx−2α(1−λe−λx)λe−λx

= λe−λx{(1+α)−2α(1− e−λx)}
= λe−λx{1+α−2α +2αe−λx)}
= λe−λx{1−α +2αe−λx}
= (1−α)λe−λx +2αλe−2λx,x > 0;λ > 0;−1 < α < 1 (5.4.13)
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which is a finite mixture of an exponential distribution with λ with another exponential
distribution with parameter 2λ .
We shall thus denote the transmuted exponential mixing distribution as:

g(λ ) = (1−α)θe−θλ +2αθe−2θλ ,λ > 0;α > 0 (5.4.14)

Therefore mean is given by:

E(∧) =
∫

∞

0
λg(λ )dλ

=
∫

∞

0

{
(1−α)θλe−θλ

}
dλ +

∫
∞

0
2αθλe−2θλ dλ

= (1−α)θ
Γ(2)
θ 2 +2αθ

Γ(2)
(2θ)2

=
(1−α)

θ
+

α

2θ

=
2−2α +α

2θ

=
2−α

2θ
(4.4.15)

This implies

E(∧2) = (1−α)
∫

∞

0
λ

2e−θλ dλ +2αθ

∫
∞

0
λ

2e−2θλ dλ

= (1−α)θ
Γ(3)
θ 3 +2αθ

Γ(3)
(2θ)3

=
2(1−α)

θ 2 +
2α

(2θ)2

=
8−8α +2α

4θ 2

=
4−3α

2θ 2 (5.4.16)

Variance,

Var∧= E(∧2)− [E(∧)]2

=
4−3α

2θ 2 −
(

2−α

2θ

)2
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=
4−3α

2θ 2 −
(

4−4α +α2

4θ
2

)
∴Var∧=

8−6α−4+4α−α2

4θ
2

=
4−2α−α2

4θ
2 ,0 < α < 1 (5.4.17)

Next,

E(∧ne−∧) =
∫

∞

0
λ

ne−λ (1−α)θe−θλ dλ +
∫

∞

0
λ

ne−λ 2αθe−2θλ dλ

= (1−α)θ
∫

∞

0
λ

ne−(1+θ)λ dλ +2αθ

∫
∞

0
λ

ne−(1+2θ)λ dλ

= (1−α)θ
Γ(n+1)
(1+θ)n+1 +2αθ

Γ(n+1)
(1+2θ)n+1 (5.4.17)

∴ h(y) = Prob{SN = y}

=
∞

∑
n=1

λ n

Γ(n)
e−λy

Γ(n+1)
yn−1

{
(1−α)θΓ(n+1)

(1+θ)n+1 +
2αθΓ(n+1)
(1+2θ)n+1

}
=

∞

∑
n=1

λ n

Γ(n)
e−λyyn−1 (1−α)θ

(1+θ)n+1 +
∞

∑
n=1

λ n

Γ(n)
e−λyyn−1 2αθ

(1+2θ)n+1

=
λ (1−α)θe−λy

(1+θ)2

∞

∑
n=1

(λy)n−1

(n−1)!(1+θ)n−1 +
2αθλe−λy

(1+2θ)2

∞

∑
n=1

(λy)n−1

(n−1)!(1+2θ)n−1

=
λ (1−α)θe−λy

(1+θ)2 e
λy

1+θ +
2αθλe−λy

(1+2θ)2 e
λy

1+2θ

=
λ (1−α)θ

(1+θ)2 exp
{
−λy

(
1− 1

1+θ

)}
+

2αθλ

(1+2θ)2 exp
{
−λy

(
1− 1

1+2θ

)}
=

λ (1−α)θ

(1+θ)2 exp
{
− θλy

1+θ

}
+

2αθλ

(1+2θ)2 exp
{
− 2θλy

1+2θ

}
= θ

[
λ (1−α)

(1+θ)2 exp
{
− θλy

1+θ

}
+

2αλ

(1+2θ)2 exp
{
− 2θλy

1+2θ

}]
(5.4.19)

as obtained by Bhati et al (2016).
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Next,

∫
∞

0
h(y)dy =

θ(1−α)λ

(1+θ)2

∫
∞

0
e−

θλy
1+θ dy+

2αλθ

(1+2θ)2

∫
∞

0
e−

2θλy
1+2θ dy

=

[
θ(1−α)λ

(1+θ)2

][
1+θ

θλ

]
+

[
2αλθ

(1+2θ)2

][
1+2θ

2θλ

]
∴
∫

∞

0
h(y)dy =

1−α

1+θ
+

α

1+2θ
(5.4.20)

Therefore probability of no claim is

h(0) =
1−α

1+θ
+

α

1+2θ
(5.4.21)

5.4.4 Poisson-Lindley Mixing Distribution

g(λ ) =
θ 2

1+θ
(1+λ )e−θλ ,λ > 0,θ > 0 (5.4.22)

Mean,

E(∧) = θ 2

1+θ

∫
∞

0
λ (1+λ )e−θλ dλ

=
θ 2

1+θ

∫
∞

0
λe−θλ dλ +

∫
∞

0
λ

2e−θλ dλ

=
θ 2

1+θ

(
Γ(2)
θ 2 +

Γ(3)
θ 3

)
=

θ 2

1+θ

(
1

θ 2 +
2

θ 3

)
=

1
1+θ

(
1+

2
θ

)
=

θ +2
θ(1+θ)

(5.4.23)

E(∧2) =
θ 2

1+θ

∫
∞

0
λ

2(1+λ )e−θλ dλ

=
θ 2

1+θ

∫
∞

0
λ

2e−θλ dλ +
∫

∞

0
λ

3e−θλ dλ

=
θ 2

1+θ

{
Γ(3)
θ 3 +

Γ(4)
θ 4

}
=

θ 2

1+θ

{
2

θ 3 +
6

θ 4

}
=

1
1+θ

{
2
θ
+

6
θ 2

}
(5.4.24)
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Therefore variance is given by:
Var∧= E(∧2)− [E(∧)]2

Var∧=
1

1+θ

(
2
θ
+

6
θ 2

)
− 1

(1+θ)2

(
1+

2
θ

)2

=
1

1+θ

(
2
θ
+

6
θ 2

)
− 1

(1+θ)2

(
1+

4
θ
+

4
θ 2

)
=

1
(1+θ)2

{
2(1+θ)

θ
+

6(1+θ)

θ 2 −1− 4
θ
− 4

θ 2

}
=

1
(1+θ)2

{
2
θ
+2+

6
θ 2 +

6
θ
−1− 4

θ
− 4

θ 2

}
=

1
(1+θ)2

{
(2−1)+

(
2
θ
+

6
θ
− 4

θ

)
+

(
6

θ 2 −
4

θ 2

)}
=

1
(1+θ)2

(
1+

4
θ
+

2
θ 2

)
(5.4.25)

E(∧ne∧) =
∫

∞

0
λ

ne−λ θ 2

1+θ
(1+λ )e−θλ dλ

=
θ 2

1+θ

∫
∞

0
λ

n(1+λ )e−θλ−λ dλ

=
θ 2

1+θ

∫
∞

0
λ

n(1+λ )e−(1+θ)λ dλ

=
θ 2

1+θ

∫
∞

0
λ

ne−(1+θ)λ dλ +
∫

∞

0
λ

n+1e−(1+θ)λ dλ

=
θ 2

1+θ

{
Γ(n+1)
(1+θ)n+1 +

Γ(n+2)
(1+θ)n+2

}
=

θ 2Γ(n+1)
(1+θ)n+2

{
1+

n+1
1+θ

}
=

θ 2Γ(n+1)
(1+θ)n+3 (n+θ +2) (5.4.26)

Therefore

h(y) = Prob{SN = y}=
∞

∑
n=1

λ n

Γ(n)
.
e−λyyn−1

Γ(n+1)
.
θ 2Γ(n+1)(n+θ +2)

(1+θ)n+3

∴ h(y) =
∞

∑
n=1

λ ne−λyyn−1θ 2(n+θ +2)
Γ(n)(1+θ)n+3

=
θ 2e−λy

(1+θ)3

∞

∑
n=1

λ nyn−1

(1+θ)n
(n+θ +2)
(n−1)!
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=
θ 2e−λy

(1+θ)3

{
∞

∑
n=1

(
λ

1+θ

)n

yn−1
(

n−1+θ +3
(n−1)!

)}

=
θ 2e−λy

(1+θ)3

{
∞

∑
n=1

(
λ

1+θ

)n

yn−1
(

1
(n−2)!

+
θ +3
(n−1)!

)}
,y > 0

∴ h(y) =
θ 2e−λy

(1+θ)3

{
∞

∑
n=1

y
(

λ

1+θ

)n yn−2

(n−2)!
+

∞

∑
n=1

(
λ

1+θ

)n

yn−1 (θ +3)
(n−1)!

}

=
θ 2e−λy

(1+θ)3

{(
λ

1+θ

)2

ye
λy

1+θ +
λ

1+θ
(θ +3)e

λy
(1+θ)

}

=
θ 2e−λy

(1+θ)3

{(
λ

1+θ

)2

y+
λ

1+θ
(θ +3)

}
e

λy
(1+θ)

=
θ 2

(1+θ)3

{(
λ

1+θ

)2

y+
λ

1+θ
(θ +3)

}
e−λy(1− 1

1+θ )

=
θ 2λ

(1+θ)5 {λy+(θ +1)(θ +3)}e−
λy

1+θ ,y > 0 (5.4.27)

∴
∫

∞

0
h(y) =

λθ 2

(1+θ)5

{
λ

∫
∞

0
ye−

θλ

1+θ
ydy+(θ +1)(θ +3)

∫
∞

0
e−

θλ

1+θ
ydy
}

=
λθ 2

(1+θ)5

{
λ
(1+θ)2

(θλ )2 +(1+θ)(3+θ)
(1+θ)

θλ

}
=

λθ 2

(1+θ)3

{
λ

(θλ )2 +
3+θ

θλ

}
=

1+θ(3+θ)

(1+θ)3

=
1+3θ +θ 2

(1+θ)3 (5.4.28)

∴ h(0) = Prob{SN = 0}

= 1− 1+3θ +θ 2

(1+θ)3

=
(1+θ)3− (1+2θ +θ 2 +θ)

(1+θ)3

∴ h(0) =
(1+θ)3− [(1+θ)2 +θ ]

(1+θ)3

=
(1+θ)3− (1+θ)2−θ

(1+θ)3

=
(1+θ)2(1+θ −1)−θ

(1+θ)3
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=
θ(1+θ)2−θ

(1+θ)3

=
θ

(1+θ)3 [(1+θ +1)(1+θ −1)]

=
θ 2(θ +2)
(1+θ)3 (5.4.29)

5.4.5 Poisson-Generalized Three Parameter Lindley Mixing distribution

Consider the following finite mixture:

g(λ ) = ω1g1(λ )+ω2g2(λ ) (5.4.31)

where ω1 +ω2 = 1, ω > 0,ω2 > 0

Suppose

ω1 =
θ

θ + γ
⇒ ω21 =

γ

θ + γ

∴ g(λ ) =
θ

θ + γ
g1(λ )+

γ

θ + γ
g2(λ ) (5.4.31)

If
g1(λ )∼ Γ(α,θ) and g2(λ )∼ Γ(α +1,θ),

Then

g(λ ) =
θ

θ + γ
.

θ α

Γ(α)
e−θλ

λ
α−1 +

γ

θ + γ

θ α+1

Γ(α +1)
e−θλ

λ
(α+1)−1

=
θ α+1

θ + γ

{
e−θλ

Γ(α)
λ

α−1 +
γ

Γ(α +1)
e−θλ

λ
α

}

=
θ α+1

θ + γ

{
λ α−1

Γ(α)
+

γλ α

Γ(α +1)

}
e−θλ
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=
θ α+1

θ + γ

{
1

Γ(α)
+

γλ

Γ(α +1)

}
λ

α−1e−θλ

=
θ α+1

(θ + γ)Γ(α +1)
{α + γλ}λ

α−1e−θλ for λ > 0,α > 0,γ > 0andθ > 0 (5.4.32)

This is a 3-parameter generalized Lindley distribution with the following special cases:
(i) α = γ = 1,

g(λ ) =
θ 2

1+θ
(1+λ )e−θλ , λ > 0,θ > 0 (5.4.33)

which is the one-parameter Lindley distribution.
(ii)γ = 1

g(λ ) =
θ α+1

(θ +1)Γ(α +1)
(α +λ )λ α−1e−θλ (5.4.34)

This is a 2-parameter generalized Lindley distribution as obtained by Zakerzadeh and
Dollati(2010).
(iii) α = 1,
we have a 2-parameter generalized Lindley distribution given by

g(λ ) =
θ 2

θ + γ
(1+ γλ )e−θλ ,λ > 0,γ,θ > 0 (5.4.35)

as obtained by Bhati et al (2015).

Mean

E(∧) =
∫

∞

0

θ α+1

(θ + γ)Γ(α +1)
{

αλ + γλ
2}

λ
α−1e−θλ dλ

=
θ α+1

(θ + γ)Γ(α +1)

{
α

∫
∞

0
λ

αe−θλ + γ

∫
∞

0
λ

α+1e−θλ dλ

}
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=
θ α+1

(θ + γ)Γ(α +1)

{
α

Γ(α +1)
θ α+1 + γ

Γ(α +2)
θ α+2

}
=

{
αθ α+1

(θ + γ)Γ(α +1)
Γ(α +1)

θ α+1 +
γθ α+1

(θ + γ)Γ(α +1)
Γ(α +2)

θ α+2

}
=

θ α+1Γ(α +1)
θ + γΓ(α +1)

1
θ α+1

{
α +

γ(α +1)
θ

}
=

1
θ +1

{
α +

γ(α +1)
θ

}
(5.4.36)

E[∧ne−∧] =
∫

∞

0
λ

ne−λ θ α+1

(θ + γ)Γ(α +1)
(α + γλ )λ α−1e−θλ dλ

=
θ α+1

(θ + γ)Γ(α +1)

∫
∞

0
λ

ne−λ (α + γλ )λ α−1e−θλ dλ

∴ E[∧ne−∧] =
θ α+1

(θ + γ)Γ(α +1)

∫
∞

0
λ

n+α−1(α + γλ )e−(1+θ)λ dλ

=
θ α+1

(θ + γ)Γ(α +1)

{
αΓ(n+α)

(1+θ)n+α
+

γΓ(n+α +1)
(1+θ)n+α+1

}
=

θ α+1Γ(n+α)

(θ + γ)Γ(α)(1+θ)n+α

{
α +

γ(n+α)

(1+θ)

}
=

θ α+1Γ(n+α){α(1+θ)+ γ(n+α)}
(θ + γ)Γ(α +1)(1+θ)n+α+1

=
θ α+1Γ(n+α){α +αθ + γn+ γα}

(θ + γ)Γ(α +1)(1+θ)n+α+1

=
θ α+1Γ(n+α)

(θ + γ)Γ(α +1)

{
(α + γn)+(θ + γ)α

(1+θ)n+α+1

}
=

Γ(n+α)

Γ(α +1)

{
α +

α + γn
θ + γ

}(
1

1+θ

)n(
θ

1+θ

)α+1

(5.4.37)

∴ Prob{SN = y}=
∞

∑
n=1

λ n

Γ(n)
e−λyyn−1

Γ(n+1)
Γ(n+α)

Γ(α +1)

{
α +

α + γn
θ + γ

}(
1

1+θ

)n(
θ

1+θ

)α+1

∴
∫

∞

0
h(y)dy =

∞

∑
n=1

λ n

Γ(n)
Γ(n)
λ n

1
Γ(n+1)

Γ(n+α)

Γ(α +1)

{
α +

α + γn
θ + γ

}(
1

1+θ

)n(
θ

1+θ

)α+1

=
∞

∑
n=1

Γ(n+α)

n!Γ(α +1)

{
α +

α + γn
θ + γ

}(
1

1+θ

)n(
θ

1+θ

)α+1

=
∞

∑
n=1

Γ(n+α)

n!Γ(α)

{
1+

1
θ + γ

+
γn

α(θ + γ)

}(
1

1+θ

)n(
θ

1+θ

)α+1
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=
∞

∑
n=1

Γ(n+α)

n!Γ(α)

{
α(θ + γ)+α + γn

α(θ + γ)

}(
1

1+θ

)n(
θ

1+θ

)α+1

=
α(θ + γ)+α

α(θ + γ)

∞

∑
n=1

(
α +n−1

n

)(
1

1+θ

)n(
θ

1+θ

)α+1

+
∞

∑
n=1

(
α +n−1

n

)
γn
(

θ

1+θ

)α+1

=

(
1+

1
θ + γ

)(
θ

1+θ

)α+1 ∞

∑
n=1

(
α +n−1

n

)(
1

1+θ

)n

+

(
θ

1+θ

)α+1 ∞

∑
n=1

(
α +n−1

n

)
n
(

1
1+θ

)n

=

(
1+

1
θ + γ

)(
θ

1+θ

)α+1
[(

1− 1
1+θ

)−α

−1

]

+ γ

(
θ

1+θ

)α+1 ∞

∑
n=1

nΓ(α +n)
n!Γ(α)

(
1

1+θ

)n

=

(
1+

1
θ + γ

)(
θ

1+θ

)α+1
[(

θ

1+θ

)−α

−1

]

+ γ

(
θ

1+θ

)α+1 ∞

∑
n=1

nΓ(α +n)
(n−1)!Γ(α)

(
1

1+θ

)n

∴
∫

∞

0
h(y)dy =

(
1+

1
θ + γ

)(
θ

1+θ

)(
1−
(

θ

1+θ

)α)
+ γ

(
θ

1+θ

)α+1
α

1+θ

∞

∑
n=1

(
α +n−1

n−1

)(
1

1+θ

)n−1

=

(
1+

1
θ + γ

)
θ

1+θ

[
1−
(

θ

1+θ

)α]
+ γ

(
θ

1+θ

)α+1
α

1+θ

∞

∑
n=1

(
(α +1)+(n−1)−1

n−1

)(
1

1+θ

)n−1

(5.4.38)

∴
∫

∞

0
h(y)dy =

(
1+

1
θ + γ

)
θ

1+θ

[
1−
(

θ

1+θ

)α]
+ γ

(
θ

1+θ

)α+1
α

1+θ

∞

∑
n=1

(−1)n−1
(

α +1+n−1−1
n−1

)(
1

1+θ

)n−1

=

(
1+

1
θ + γ

)[
θ

1+θ
−
(

θ

1+θ

)α+1
]

+ γ

(
θ

1+θ

)α+1
α

1+θ

(
1− 1

1+θ

)−(α+1)

(5.4.39)

as required.
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6 HYPO-EXPONENTIAL RANDOM VARIABLES
WITH DISTINCT PARAMETERS

6.1 Introduction

In this chapter we will consider the sum of n ≥ 2 exponential random variables with
distinct parameters, obtain their distributions and study the properties.

For this case let us consider the distribution X ′i s, where i = 1,2, · · · ,n independent expo-
nential random variables with parameters λi, for i = 1,2, · · · ,n with λi 6= λ j, and i 6= j

wri�en as λ1,λ2, · · · ,λn. These kind of sum of exponential random variables,
n
∑

i=1
Xi, are

called hypo-exponential random variables.

Let

Sn = X1 +X2 + · · ·+Xn (6.1.1)

where Xi′s are independent exponential random variables with parameters λi for i =
1,2, · · · ,n.

Consequently, we will also consider circumstances where these hypo-exponential random
variables with distinct parameters form an arithmetic sequences and geometric sequences
and hence derive some of their general results.

6.2 Hypo-exponential Distribution of two Independent Random
Variables with Distinct Parameters

6.2.1 Construction Using Convolution Approach

In this section we consider the distributions of the hypo-exponential random variables
with two di�erent parameters. Therefore let

S2 = X1 +X2 (6.2.1)

Let Fi(xi) and G(s2) be the cumulative distribution function for Xi and S2 respectively.



47

Cumulative Density Function

From the definition the cumulative density function is given by:

G(s2) = P(S2 ≤ s2)

= Prob(X1 +X2 ≤ s2)

= Prob(X2 ≤ s2− x1)

= Prob(0≤ X1 < ∞,0≤ X2 < s2− x1)

= Prob(0≤ X1 < s2,0≤ X2 < s2− x1)

=
∫ s2

0

∫ s2−x1

0
f1(x1) f2(x2)dx2dx1

=
∫ s2

0
f1(x1)

[∫ s2−x1

0
f2(x2)dx2

]
dx1

=
∫ s2

0
λ1e−λ1x1

[∫ s2−x1

0
λ2e−λ2x2dx2

]
dx1

=
∫ s2

0
λ1e−λ1x1

[
−e−λ2x2

]s2−x1

0
dx1

=
∫ s2

0
λ1e−λ1x1

[
1− e−λ2s2+λ2x1

]
dx1

=
∫ s2

0

[
λ1e−λ1x1−λ1e−λ2s2ex1(λ2−λ1)

]
dx1

=
∫ s2

0
λ1e−λ1x1dx1−λ1e−λ2s2

∫ s2

0
ex1(λ2−λ1)dx1

= 1− e−λ1s2−λ1e−λ2s2

[
e(λ2−λ1)s2−1

λ2−λ1

]

= 1− e−λ1s2 +
λ1e−λ2s2

λ2−λ1
− λ1e−λ1s2

λ2−λ1

∴ G(s2) = 1+
λ1

λ2−λ1
e−λ2s2− λ2

λ2−λ1
e−λ1s2 (6.2.2)

Therefore from the above equation (6.2.2) it can be concluded that

lim
s2→∞

G(s2) = 1

and

lim
s2→0

G(s2) = 0 (6.2.3)

Probability Density Function

From equation (6.2.2) we can derive the probability density function of the hypo-exponential
random variables with two parameters. This follows that:
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g(s2) =
d

ds2
G(s2)

=
d

ds2

[
1+

λ1

λ2−λ1
e−λ2s2− λ2

λ2−λ1
e−λ1s2

]
=

(
λ1

λ2−λ1

)
−λ2e−λ2s2 +

(
λ2

λ2−λ1

)
λ1e−λ1s2

=

(
λ1

λ1−λ2

)
λ2e−λ2s2 +

(
λ2

λ2−λ1

)
λ1e−λ1s2

Hence g(s2) =
λ1λ2

λ2−λ1

(
e−λ1s2− e−λ2s2

)
where s2 > 0, λ2 > λ1 > 0 (6.2.4)

as required.

Hazard Function

From the definition, the hazard function is given by:

h(s2) =
g(s2)

1−G(s2)

Using the equation (5.2.4)

h(s2) =
λ1λ2(e−λ1s2− e−λ2s2)

λ2−λ1
�

λ2−λ1

λ2e−λ1s2−λ1e−λ2s2

= λ1λ2

[
e−λ1s2− e−λ2s2

λ2e−λ1s2−λ1e−λ2s2

]
(6.2.5)

Validity of the Model

The model g(s2) is said to be valid if it satisfies the condition,∫
∞

0
g(s2)ds2 = 1

Proof

From the equation (6.2.4)

g(s2) =
λ1λ2

λ2−λ1

(
e−λ1s2− e−λ2s2

)
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⇒
∫

∞

0
g(s2)ds2 =

λ1λ2

λ2−λ1

∫
∞

0

(
e−λ1s2− e−λ2s2

)
ds2

=
λ1λ2

λ2−λ1

[
1
λ2

e−λ2s2− 1
λ1

e−λ1s2

]∞

0

=
λ1λ2

λ2−λ1

[
λ2−λ1

λ1λ2

]
= 1 (6.2.6)

As required, hence the model is said to be valid.

6.2.2 Construction Using Moment Generating Function Approach

The moment generating function for hypo-exponential random variables S2 is given by:

Ms2(t) = E(ets2); where S2 = X1 +X2 (6.2.7)

From the moment generating function properties then

Ms2(t) = MX1+X2(t)

= E(etx1) �E(etx2)

=

(
λ1

λ1− t

)(
λ2

λ2− t

)
⇒Ms2(t) =

λ1λ2

(λ1− t)(λ2− t)

= λ1λ2[(λ1− t)(λ2− t)]−1

= λ1(λ1− t)−1
λ2(λ2− t)−1

=
2

∏
i=1

λi[λi− t]−1 (6.2.8)

6.2.3 Properties of the distribution

Moments

The rth raw moment of the hypo-exponential random variables with two parameters can
be given by:

E[Sr
2] =

drMs2(t)
dtr |t=0
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But from equation (6.2.7) we have

Ms2(t) = MX1+X2(t)

= E(etx1) �E(etx2)

From this the first four moments can be obtained as follows:

First moment

E[S2] = M′s2
(0)

=
d
dt

λ1λ2[(λ1− t)−1(λ2− t)−1]|t=0

= λ1λ2
[
(−1)(λ1− t)−2(−1)(λ2− t)−1 +(−1)(λ2− t)−2(−1)(λ1− t)−1] |t=0

= λ1λ2
[
(λ1− t)−2(λ2− t)−1 +(λ2− t)−2(λ1− t)−1] |t=0

= λ1λ2

[
1

λ 2
1 λ2

+
1

λ 2
2 λ1

]
=

1
λ1

+
1
λ2

=
2

∑
i=1

λ
−i
i (6.2.9)

Second moment

E[S2
2] = M”s2(0)

=
d
dt

λ1λ2
[
(λ1− t)−2(λ2− t)−1 +(λ2− t)−2(λ1− t)−1] |t=0

= λ1λ2
[
2(λ1− t)−3(λ2− t)−1 +(λ2− t)−2(λ1− t)−2 +2(λ2− t)−3(λ1− t)−1] |t=0

+λ1λ2
[
(λ1− t)−2(λ2− t)−2] |t=0

= λ1λ2
[
2(λ1)

−3(λ2)
−1 +(λ2)

−2(λ1)
−2 +2(λ2)

−3(λ1)
−1 +(λ1)

−2(λ2)
−2]

= λ1λ2

[
2

λ 3
1 λ2

+
2

λ 2
1 λ 2

2
+

2
λ1λ 3

2

]
= 2

[
1

λ 2
1
+

1
λ1λ2

+
1

λ 2
2

]
= 2

2

∑
i=0

λ
−(2−i)
1 λ

−i
2 (6.2.10)
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Third moment

E[S3
2] = M3

s2
(0)

=
d
dt

2λ1λ2
[
(λ1− t)−3(λ2− t)−1 +(λ2− t)−2(λ1− t)−2 +(λ2− t)−3(λ1− t)−1] |t=0

= 2λ1λ2
[
3(λ1− t)−4(λ2− t)−1 +(λ2− t)−2(λ1− t)−3 +2(λ1− t)−3(λ2− t)−2] |t=0

+2λ1λ2
[
2(λ2)

−3(λ1− t)−2 +3(λ2− t)−4(λ1− t)−1 +(λ1− t)−2(λ2− t)−3] |t=0

= 2λ1λ2
[
3(λ1)

−4(λ2)
−1 +3(λ2)

−2(λ1)
−3 +3(λ2)

−3(λ1)
−2 +3(λ2)

−4(λ1)
−1]

= 6
[

1
λ 3

1
+

1
λ 2

1 λ2
+

1
λ1λ 2

2
+

1
λ 3

2

]
= 3!

[
1

λ 3
1
+

1
λ 2

1 λ2
+

1
λ1λ 2

2
+

1
λ 3

2

]
= 3!

[
λ
−3
1 +λ

−2
1 λ2 +λ1λ

−2
2 +λ

−3
2
]

∴ E[S3
2] = 3!

3

∑
i=0

λ
−(3−i)
1 λ

−i
2 (6.2.11)

Fourth moment

E[S4
2] = M4

s2
(0)

=
d
dt

6λ1λ2
[
(λ1− t)−4(λ2− t)−1 +(λ2− t)−2(λ1− t)−3 +(λ2− t)−3(λ1− t)−2] |t=0

+
d
dt

6λ1λ2
[
(λ2)

−4(λ1− t)−1] |t=0

= 6λ1λ2

[
4(λ1− t)−5(λ2− t)−1 +(λ2− t)−2(λ1− t)−4 +2(λ2− t)−3(λ1− t)−3

]
|t=0

+6λ1λ2
[
3(λ1)

−4(λ2− t)−4(λ2− t)−2 +3(λ2− t)−4(λ1− t)−2] |t=0

+6λ1λ2

[
2(λ1− t)−3(λ2− t)−3 +4(λ2− t)−5(λ1− t)−1 +(λ1− t)−2(λ2− t)−4

]
|t=0

= 6λ1λ2

[
4λ
−5
1 λ

−1
2 +4λ

−4
1 λ

−2
2 +4λ

−3
1 λ

−3
2 +4λ

−2
1 λ

−4
2 +4λ

−1
1 λ

−5
2

]
= 24λ1λ2

[
1

λ 5
1 λ2

+
1

λ 4
1 λ 2

2
+

1
λ 3

1 λ 3
2
+

1
λ 2

1 λ 4
2
+

1
λ1λ 5

2

]
= 24

[
1

λ 5
1 λ2

+
1

λ 4
1 λ 2

2
+

1
λ 3

1 λ 3
2
+

1
λ 2

1 λ 4
2
+

1
λ1λ 5

2

]
= 4!

[
λ
−4
1 +λ

−3
1 λ

−1
2 +λ

−2
1 λ

−2
2 +λ

−1
1 λ

−3
2 +λ

−4
2
]

∴ E[S4
2] = 4!

4

∑
i=0

λ
−(4−i)
1 λ

−i
2 (6.2.12)

This implies that the rth raw moment for S2 can be generally expressed as

E[Sr
2] = r!

r

∑
i=0

λ
−(r−i)
1 λ

−i
2 (6.2.13)
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Therefore from the above properties of the hypo-exponential random variables with two
di�erent parameters the following can be obtained:

Mean

E[S2] =
1
λ1

+
1
λ2

(6.2.14)

Variance

Var[S2] = E[S2
2]− (E[S2])

2

= 2
(

1
λ 2

1
+

1
λ1λ2

+
1

λ 2
2

)
−
(

1
λ1

+
1
λ2

)2

=
2

λ 2
1
+

2
λ1λ2

+
2

λ 2
2
− 1

λ 2
1
− 2

λ1λ2
− 1

λ 2
2

=
1

λ 2
1
− 1

λ 2
2

(6.2.15)

Mode

The mode for the model is given when

d
ds2

g(s2) = 0

This implies that

d
dS2

(
λ1

λ1−λ2

)
λ2e−λ2s2 =−

(
λ2

λ2−λ1

)
λ1e−λ1s2

−
(

λ1λ2

λ2−λ1

)
λ2e−λ2s2 =

(
λ2λ1

λ2−λ1

)
λ1e−λ1s2

⇒−λ1e−λ2s2 = λ2e−λ1s2

−lnλ1 +λ2s2 = lnλ2−λ1s2

λ1s2 +λ2s2 = lnλ2 + lnλ1

∴ s2 =
lnλ2 + lnλ1

λ1 +λ2
(6.16)

Asymptotic Behaviour of the Model

In seeking the asymptotic behaviour of the model formed in equation (6.2.4) the we
consider the behaviour of the model when s2→ 0 and as s2→ ∞. That is

lim
s2→0

g(s2) and lim
s2→∞

g(s2)
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Therefore,

lim
s2→0

g(s2) = lim
s2→0

[
λ1λ2

λ2−λ1

(
e−λ1s2− e−λ2s2

)]
=

λ1λ2

λ2−λ1

(
lim

s2→0
e−λ1s2− lim

s2→0
e−λ2s2

)
=

λ1λ2

λ2−λ1
(1−1)

= 0

and also

lim
S2→∞

g(s2) = lim
S2→∞

[
λ1λ2

λ2−λ1

(
e−λ1s2− e−λ2s2

)]
=

λ1λ2

λ2−λ1

(
lim

s2→∞
e−λ1s2− lim

s2→∞
e−λ2s2

)
=

λ1λ2

λ2−λ1
(0−0)

= 0 (6.2.17)

From the two results it confirms that from the equation (6.2.4) the model has only one
mode that is Uni-modal model.

Cumulant Generating Function

The cumulant generating function of a random variable S2 can be obtained by:

Cs2(t) = log[Ms2(t)]

= log
{

λ1λ2

(λ1− t)(λ2− t)

}
Using Maclaurin series through expansion the following equation can be obtained:

Cs2(t) =
∞

∑
i=1

(i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i
]

t i

i!
(6.2.18)

From the definition of cumulants, the cumulant Ki of a random variable S2 can be obtained
using the coe�icients of t i

i! in equation (6.2.18).
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Hence,

Ki = (i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i
]

(6.2.19)

Therefore the first four cumulants can be given as follows:

K1 = (1−1)!
[

1
λ1

+
1
λ2

]
=

1
λ1

+
1
λ2

K2 = (2−1)!

[(
1
λ1

)2

+

(
1
λ2

)2
]

=

(
1
λ1

)2

+

(
1
λ2

)2

K3 = (3−1)!

[(
1
λ1

)3

+

(
1
λ2

)3
]

= 2

[(
1
λ1

)3

+

(
1
λ2

)3
]

K4 = (4−1)!

[(
1
λ1

)4

+

(
1
λ2

)4
]

= 6

[(
1
λ1

)4

+

(
1
λ2

)4
]

From the above results the following conclusions can be made:

(i) K1 which forms the first cumulant gives the mean of the random variable S2.

(ii) K2 which forms the second cumulant gives the variance of the random variable S2.

(iii) Skewness

=
K3

K
3
2
2
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=

2
[(

1
λ1

)3
+
(

1
λ2

)3
]

[(
1
λ1

)2
+
(

1
λ2

)2
]3/2 (6.2.20)

(iv) Kurtosis

=
K4

K2
2

=

6
[(

1
λ1

)4
+
(

1
λ2

)4
]

[(
1
λ1

)2
+
(

1
λ2

)2
]2 (6.2.21)

6.2.4 Estimation Using Method of Moments

Let us consider a hypo-exponential distribution with two parameter rates λ1 and λ2

respectively. Assuming that λ1 < λ2 and considering a random sample of size n denoted
by S12,S22,S23, · · · ,S2n to indicate the total observed service time.

From subsection (6.2.3)the first two raw moments fr the sample m1 and m2 are given as:

m1 = E[S2] and m2 = E[S2
2]

Therefore using equation (6.2.14) and (6.2.15) we get:

Mean = E[S2] =
1
λ1

+
1
λ2

= m1

and

Variance =Var[S2]

= E[S2
2]− (E[S2])

2

=
1

λ 2
1
+

1
λ 2

2

= m2−m2
1
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Let us now denote 1
λi
= ti where ti represents the time taken in ith stage.

Therefore from the assumption λ1 < λ2 it implies that t1 > t2.

Substituting the values of λ1 and λ2, the following equations are obtained:

t1 + t2 = m1⇒ t2 = m1− t1 ...................................................................... (i)

and

t2
1 + t2

2 = m2−m2
1 .............................................................. (ii)

⇒ t2
1 +(m1− t1)2 = m2−m2

1

⇒ t2
1 +m2

1−2m1t1 + t2
1 = m2−m2

1

⇒ 2t2
1 −2m1t1 +2m2

1−m2 = 0

Using the quadratic equation formula we get

t1 =
m1±

√
2m2−3m2

1

2

From equation (i) above then we get

t2 = m1−
m1±

√
2m2−3m2

1

2

=
m1∓

√
2m2−3m2

1

2

Therefore from the assumption that t1 > t2 then the estimated values will be given as:

(t̂1, t̂2) =

m1 +
√

2m2−3m2
1

2
,
m1−

√
2m2−3m2

1

2


Now substituting the values of t1 and t2, therefore the parameter rates for the hypo-
exponential distribution with two parameter rates can be estimated as:

(λ̂1, λ̂2) =

 2

m1 +
√

2m2−3m2
1

,
2

m1−
√

2m2−3m2
1
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6.2.5 The Case of Arithmetic Sequence for two distinct Parameters

Using the equation (6.2.4) and given that the model parameters takes an arithmetic
sequence that is λ2 = λ1 +d where d is the common di�erence, Therefore

From g(s2) =
λ1λ2

λ2−λ1
e−λ1s2 +

λ1λ2

λ1−λ2
e−λ2s2

⇒ g(s2) =
λ1λ2

(λ1 +d)−λ1
e−λ1s2 +

λ1λ2

λ1− (λ1 +d)
e−λ2s2

=
λ1λ2

d
e−λ1s2 +

λ1λ2

−d
e−λ2s2

= λ1λ2

(
e−λ1s2

d
− e−λ2s2

d

)
(6.2.24)

6.2.6 The Case of Geometric Sequence for two distinct Parameters

From the equation (6.2.4) if the model parameters takes the form of geometric sequence
with the a common ratio r given by λ2

λ1
implying that λ2 = rλ1. Therefore

From g(s2) =
λ1λ2

λ2−λ1
e−λ1s2 +

λ1λ2

λ1−λ2
e−λ2s2

=

(
λ2

λ2−λ1

)
λ1e−λ1s2 +

(
λ1

λ1−λ2

)
λ2e−λ2s2

⇒ g(s2) =

(
rλ1

rλ1−λ1

)
λ1e−λ1s2 +

(
λ1

λ1− rλ1

)
λ2e−λ2s2

=
λ1e−λ1s2

1− r−1 +
λ2e−λ2s2

1− r
(6.2.25)

6.3 Hypo-exponential Distribution of three independent random
variables with distinct parameters

6.3.1 Construction Using Convolution Approach

In this sub-section we want to consider the distributions for the sum of three independent
exponential random variables with distinct parameters.

Let

S3 = X1 +X2 +X3

S3 = S2 +X3, where S2 = X1 +X2 (6.3.1)
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Let Fi(xi) and G(s3) be the cumulative distribution function for Xi and S3 respectively.

Cumulative Density Function

From the definition the cumulative density function is given by:

G(S3) = Prob(S3 ≤ s3)

= Prob(S2 +X3 ≤ s3)

= Prob(X3 ≤ s3− s2)

= Prob(0≤ s2 ≤ s3,0≤ X3 ≤ s3− s2)

=
∫ s3

0

∫ s3−s2

0
g(s2) f (x3)dx3ds2

=
∫ s3

0
g(s2)

[∫ s3−s2

0
f (x3)dx3

]
ds2

=
∫ s3

0
g(s2)

[∫ s3−s2

0
λ3e−λ3x3dx3

]
ds2

=
∫ s3

0
g(s2)

[
1− e−λ3(s3−s2)

]
ds2

=
∫ s3

0

[
g(s2)−g(s2)e−λ3s3+λ3s2)

]
ds2

=

(
λ1λ2

λ2−λ1

)∫ s3

0

(
e−λ1s2− e−λ2s2

)
ds2−

(
λ1λ2

λ2−λ1

)∫ s3

0

(
e−λ1s2− e−λ2s2

)
e−λ3s3+λ3s2ds2

=

(
λ1λ2

λ2−λ1

)∫ s3

0
e−λ1s2−

(
λ1λ2

λ2−λ1

)∫ s3

0
e−λ2s2ds2

−
(

λ1λ2

λ2−λ1

)
e−λ3s3

∫ s3

0
e(λ3−λ1)s2ds2 +

(
λ1λ2

λ2−λ1

)
e−λ3s3

∫ s3

0
e(λ3−λ2)s2ds2

=

(
λ1λ2

λ2−λ1

)(
1− e−λ1s3

λ1

)
−
(

λ1λ2

λ2−λ1

)(
1− e−λ2s3

λ2

)

−
(

λ1λ2

λ2−λ1

)
e−λ3s3

(
e(λ3−λ1)s3−1

λ3−λ1

)
+

(
λ1λ2

λ2−λ1

)
e−λ3s3

(
e(λ3−λ2)s3−1

λ3−λ2

)

=
λ2

λ2−λ1
− λ2

λ2−λ1
e−λ1s3− λ1

λ2−λ1
+

λ1

λ2−λ1
e−λ2s3− λ1λ2

(λ2−λ1)(λ3−λ1)
e−λ1s3

+
λ1λ2

(λ2−λ1)(λ3−λ1)
e−λ3s3 +

λ1λ2

(λ2−λ1)(λ3−λ2)
eλ2s3− λ1λ2

(λ2−λ1)(λ3−λ2
e−λ3s3

= 1+
−λ2(λ3−λ1)−λ1λ2

(λ2−λ1)(λ3−λ1)
e−λ1s3 +

λ1(λ2−λ3)−λ1λ2

(λ2−λ1)(λ2−λ3)
e−λ2s3

+
λ1λ2(λ3−λ2)−λ1λ2(λ3−λ1)

(λ2−λ1)(λ3−λ1)(λ3−λ2)
e−λ3s3
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∴ G(S3) = 1−
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)
e−λ1s3−

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
e−λ2s3

−
(

λ1

λ1−λ3

)(
λ2

λ2−λ3

)
e−λ3s3 (6.3.2)

Therefore, from the above equation (6.3.2) it can be concluded that

lim
s3→∞

G(s3) = 1

and

lim
s3→0

G(s3) = 0 (6.3.3)

Probability Density Function

The probability density function of the sum of three independent exponential random
variables can be obtained from the derivative of G(s3) in equation (6.3.2) with respect to
s3. That is:

g(s3) =
d

ds3
[G(s3)]

=
d

ds3

[
1−
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)
e−λ1s3−

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
e−λ2s3

]
− d

ds3

[(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
e−λ3s3

]
=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1e−λ1s3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2e−λ2s3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3e−λ3s3

∴ g(s3) =
3

∑
i=1

{
λie−λis3

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)}
where s3 > 0, λ3 > λ2 > λ1 > 0 (6.3.4)

Hazard Function

From the definition, the hazard function is given by:
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h(s3) =
g(s3)

1−G(s3)

But

1−G(s3) = 1−1+
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)
e−λ1s3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
e−λ2s3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
e−λ3s3

=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
e−λ1s3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
e−λ2s3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
e−λ3s3

=
3

∑
i=1

e−λis3
3

∏
j=1, j 6=i

(
λ j

λ j−λi

)

⇒ h(s3) =

3
∑

i=1

{
λie−λis3

3
∏

j=1, j 6=i

(
λ j

λ j−λi

)}
∑

3
i=1 e−λis3 ∏

3
j=1, j 6=i

(
λ j

λ j−λi

)
=

3

∑
i=1

λi (6.3.5)

Validity of the Model

The model g(s3) is said to be valid if it satisfies the condition∫
∞

0
g(s3)ds3 = 1

Proof∫
∞

0
g(s3)ds3 =

λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)

∫
∞

0

{
(λ3−λ2)e−λ1s3− (λ3−λ1)e−λ2s3

}
ds3

+
λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)

∫
∞

0
(λ2−λ1)e−λ3s3ds3

=
λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)

[
λ3−λ2

λ1
− λ3−λ1

λ2
+

λ2−λ1

λ3

]
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=
λ2λ3

(λ2−λ1)(λ3−λ1)
− λ1λ3

(λ2−λ1)(λ3−λ2)
+

λ1λ2

(λ3−λ1)(λ3−λ2)

=
λ2λ3(λ3−λ2)−λ1λ3(λ3−λ1)+λ1λ2(λ2−λ1)

(λ2−λ1)(λ3−λ1)(λ3−λ2)

=
λ2λ 2

3 −λ 2
2 λ3−λ1λ 2

3 −λ 2
1 λ3 +λ1λ 2

2 −λ 2
1 λ2

λ2λ 2
3 −λ 2

2 λ3−λ1λ 2
3 −λ 2

1 λ3 +λ1λ 2
2 −λ 2

1 λ2

= 1

Alternatively∫
∞

0
g(s3)ds3 =

∫
∞

0

3

∑
i=1

{
λie−λis3

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)}
ds3

=
3

∑
i=1

λi

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)∫
∞

0
e−λis3ds3

=
3

∑
i=1

λi

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)
�

1
λi

=
3

∑
i=1

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)
=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
=

λ2λ3(λ3−λ2)−λ1λ3(λ3−λ1)+λ1λ2(λ2−λ1)

(λ2−λ1)(λ3−λ2)(λ3−λ2)

=
λ2λ 2

3 −λ 2
2 λ3−λ1λ 2

3 −λ 2
1 λ3 +λ1λ 2

2 −λ 2
1 λ2

λ2λ 2
3 −λ 2

2 λ3−λ1λ 2
3 −λ 2

1 λ3 +λ1λ 2
2 −λ 2

1 λ2

= 1 (6.3.6)

As required, hence the model is said to be valid.

6.3.2 Construction Using Moment Generating Function Approach

The moment generating function for the sum of three independent exponential random
variables S3 is given by

Ms3(t) = E(ets3); where s3 = X1 +X2 +X3 (6.3.7)
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From the moment generating function properties then

Ms3(t) = MX1+X2+X3(t)

= E(etx1) �E(etx2) �E(etx3)

=

(
λ1

λ1− t

)(
λ2

λ2− t

)(
λ3

λ3− t

)
⇒Ms3(t) =

λ1λ2λ3

(λ1− t)(λ2− t)(λ3− t)

= λ1λ2λ3[(λ1− t)(λ2− t)(λ3− t)]−1

= λ1(λ1− t)−1
λ2(λ2− t)−1

λ3(λ3− t)−1

=
3

∏
i=1

λi[λi− t]−1 (6.3.8)

6.3.3 Properties of the distribution

Moments

The rth raw moment of the sum of three independent exponential random variables can
be obtained by:

E[Sr
3] =

drMs3(t)
dtr |t=0

From equation (6.3.7) we have

Ms3(t) = MX1+X2+X3(t)

= E(etx1) �E(etx2) �E(etx3)

Therefore, the first four moments can be obtained as follows:

First moment

E[S3] = M′s3
(0)

=
d
dt

λ1λ2λ3[(λ1− t)−1(λ2− t)−1(λ3− t)−1]|t=0

= λ1λ2λ3
[
(λ1− t)−2(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−1(λ3− t)−1] |t=0

+λ1λ2λ3
[
(λ3− t)−2(λ1− t)−1(λ2− t)−1] |t=0

= λ1λ2λ3

[
1

λ 2
1 λ2λ3

+
1

λ 2
2 λ1λ3

+
1

λ1λ2λ 2
3

]
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=
1
λ1

+
1
λ2

+
1
λ3

=
3

∑
i=1

λ
−1
i (6.3.9)

Second moment

E[S2
3] = M”s3(0)

=
d
dt

λ1λ2λ3
[
(λ1− t)−2(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−1(λ3− t)−1] |t=0

+
d
dt

λ1λ2λ3
[
(λ3− t)−2(λ1− t)−1(λ2− t)−1] |t=0

= 2λ1λ2λ3
[
(λ1− t)−3(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−2(λ3− t)−1] |t=0

+2λ1λ2λ3
[
(λ3− t)−2(λ1− t)−2(λ2− t)−1 +(λ2− t)−3(λ1− t)−1(λ3− t)−1] |t=0

+2λ1λ2λ3
[
(λ3− t)−2(λ2− t)−2(λ1− t)−1 +(λ3− t)−3(λ1− t)−1(λ2− t)−1] |t=0

= 2
[
λ
−2
1 +λ

−1
1 λ

−1
2 +λ

−2
2 +λ

−1
1 λ

−1
3 +λ

−1
2 λ

−1
3 +λ

−2
3
]

= 2

[
2

∑
i=0

λ
−(2−i)
1 λ

−i
2 +

2

∑
i=1

λ
−(2−i)
1 λ

−i
3 +λ

−1
2 λ

−1
3

]
(6.3.10)

Third moment

E[S3
3] = M3

s3
(0)

= 2
d
dt

λ1λ2λ3
[
(λ1− t)−3(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−2(λ3− t)−1] |t=0

+2
d
dt

λ1λ2λ3
[
(λ3− t)−2(λ1− t)−2(λ2− t)−1 +(λ2− t)−3(λ1− t)−1(λ3− t)−1] |t=0

+2
d
dt

λ1λ2λ3
[
(λ3− t)−2(λ2− t)−2(λ1− t)−1 +(λ3− t)−3(λ1− t)−1(λ2− t)−1] |t=0

= λ1λ2λ3
[
3(λ1− t)−4(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−3(λ3− t)−1] |t=0

+λ1λ2λ3
[
3(λ3− t)−2(λ1− t)−3(λ2− t)−1 +3(λ2− t)−3(λ1− t)−2(λ3− t)−1] |t=0

+λ1λ2λ3
[
3(λ3− t)−2(λ2− t)−2(λ1− t)−2 +3(λ3− t)−3(λ1− t)−1(λ2− t)−1] |t=0

+λ1λ2λ3
[
3(λ2− t)−4(λ1− t)−1(λ3− t)−1 +3(λ3− t)−2(λ2− t)−3(λ1− t)−1] |t=0

+λ1λ2λ3
[
3(λ3− t)−3(λ2− t)−2(λ1− t)−1 +3(λ3− t)−4(λ1− t)−1(λ2− t)−1] |t=0

= 6
[
λ
−3
1 +λ

−2
1 λ

−1
2 +λ

−2
1 λ

−1
3 +λ

−1
1 λ

−2
2 +λ

−1
1 λ

−1
2 λ

−1
3
]

+6
[
λ
−1
1 λ

−2
3 +λ

−3
2 +λ

−2
2 λ

−1
3 +λ

−1
2 λ

−2
3 +λ

−3
3
]

= 3!

[
3

∑
i=0

λ
−(3−i)
1 λ

−i
2 +

3

∑
i=1

λ
−(3−i)
1 λ

−i
3 +

2

∑
i=1

λ
−(3−i)
2 λ

−i
3 +

3

∏
i=1

λ
−1
i

]
(6.3.11)
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Fourth moment

E[S4
3] = M4

s3
(0)

= 2λ1λ2λ3
d
dt

[
3(λ1− t)−4(λ2− t)−1(λ3− t)−1 +(λ2− t)−2(λ1− t)−3(λ3− t)−1] |t=0

+2λ1λ2λ3
d
dt

[
3(λ3− t)−2(λ1− t)−3(λ2− t)−1 +3(λ2− t)−3(λ1− t)−2(λ3− t)−1] |t=0

+2λ1λ2λ3
d
dt

[
3(λ3− t)−2(λ2− t)−2(λ1− t)−2 +3(λ3− t)−3(λ1− t)−1(λ2− t)−1] |t=0

+2λ1λ2λ3
d
dt

[
3(λ2− t)−4(λ1− t)−1(λ3− t)−1 +3(λ3− t)−2(λ2− t)−3(λ1− t)−1] |t=0

+2λ1λ2λ3
d
dt

[
3(λ3− t)−3(λ2− t)−2(λ1− t)−1 +3(λ3− t)−4(λ1− t)−1(λ2− t)−1] |t=0

= 4!
[
λ
−4
1 +λ

−3
1 λ

−1
2 +λ

−2
1 λ

−2
2 +λ

−1
1 λ

−3
2 +λ

−4
2
]

+4!
[
λ
−3
1 λ

−1
3 +λ

−2
1 λ

−2
3 +λ

−1
1 λ

−3
3 +λ

−4
3
]

+4!
[
λ
−3
2 λ

−1
3 +λ

−2
2 λ

−2
3 +λ

−1
2 λ

−3
3
]

+4!
[
λ
−1
1 λ

−1
2 λ

−1
3
]

= 4!

[
4

∑
i=0

λ
−(4−i)
1 λ

−i
2 +

4

∑
i=1

λ
−(4−i)
1 λ

−i
3 +

3

∑
i=1

λ
−(4−i)
2 λ

−i
3 +

4

∏
i=1

λ
−1
i

]
(6.3.12)

This implies the rth raw moment for S3 can be expressed by

E[Sr
3] = r!

[
r

∑
i=0

λ
−(r−i)
1 λ

−i
2 +

r

∑
i=1

λ
−(r−i)
1 λ

−i
3 +

r−1

∑
i=1

λ
−(r−i)
2 λ

−i
3 +

r

∏
i=1

λ
−1
i

]
(6.3.13)

Therefore other properties for the sum of three independent exponential random variables
with distinct parameters can be obtained as follows:

Mean

E[S3] =
1
λ1

+
1
λ2

+
1
λ3

(6.3.14)

Variance

Var[S3] = E[S2
3]− (E[S3])

2

= 2
(

1
λ 2

1
+

1
λ1λ2

+
1

λ 2
2
+

1
λ1λ3

+
1

λ2λ3
+

1
λ 2

3

)
−
(

1
λ1

+
1
λ2

+
1
λ3

)2

=
2

λ 2
1
+

2
λ1λ2

+
2

λ 2
2
+

2
λ1λ3

+
2

λ2λ3
+

2
λ 2

3
− 1

λ 2
1
− 2

λ1λ2
− 2

λ1λ3
− 2

λ2λ3
− 1

λ 2
2
− 1

λ 2
3

=
1

λ 2
1
− 1

λ 2
2
− 1

λ 2
3

(6.3.15)
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Mode

The mode for the model is given when the following condition is maintained

d
ds3

g(s3) = 0

This implies that

d
ds3

g(s3) =−λ1

(
λ1λ2λ3

(λ2−λ1)(λ3−λ1)

)
e−λ1s3−λ2

(
λ1λ2λ3

(λ1−λ2)(λ3−λ2)

)
e−λ2s3

−λ3

(
λ1λ2λ3

(λ1−λ3)(λ2−λ3)

)
e−λ1s3

⇒ d
ds3

(λ3−λ2)e−λ1s3 =
d

ds3
(λ3−λ1)e−λ2s3− d

ds3
(λ2−λ1)e−λ3s3

−λ1(λ3−λ2)e−λ1s3 =−λ2(λ3−λ1)e−λ2s3 +λ3(λ2−λ1)e−λ3s3

−lnλ1 + ln(λ3−λ2)−λ1s3 =−lnλ2 + ln(λ3−λ1)−λ2s3 + lnλ3 + ln(λ2−λ1)−λ3s3

−λ1s3 +λ2s3 +λ3s3 = lnλ1− ln(λ3−λ2)− lnλ2 + ln(λ3−λ1)+ lnλ3 + ln(λ2−λ1)

s3(λ2 +λ3−λ1) = lnλ1− lnλ3 + lnλ2− lnλ2 + lnλ3− lnλ1 + lnλ3 + lnλ2− lnλ1

⇒ s3 =
lnλ2 + lnλ3− lnλ1

λ2 +λ3−λ1
(6.3.16)

Asymptotic Behaviour of the Model

In seeking the asymptotic behaviour of the model formed in equation (6.3.4) then we
consider the behaviour of the model when s3→ 0 and as s3→ ∞. That is

lim
s2→0

g(s2) and lim
s2→∞

g(s2)

This implies that

lim
S3→0

g(s3) =

[
λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)

]
lim

S3→0

[
(λ3−λ2)e−λ1s3− (λ3−λ1)e−λ2s3 +(λ2−λ1)e−λ3s3

]
=

λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)
[(λ3−λ2)− (λ3−λ1)+(λ2−λ1)]

= 0

Alternatively
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lim
S3→0

g(s3) =
3

∑
i=1

{
λi lim

S3→0
e−λis3

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)}

=
3

∑
i=1

{
λi

3

∏
j=1, j 6=i

(
λ j

λ j−λi

)}

=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3

=
λ1λ2λ3[(λ3−λ2)− (λ3−λ1)+(λ2−λ1)]

(λ2−λ1)(λ3−λ2)(λ3−λ2)

=
λ1λ2λ 2

3 −λ1λ 2
2 λ3−λ1λ2λ 2

3 +λ 2
1 λ2λ3 +λ1λ 2

2 λ3−λ 2
1 λ2λ3

(λ2−λ1)(λ3−λ2)(λ3−λ2)

= 0

and also

lim
S3→∞

g(s3) =

[
λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)

]
lim

S3→∞

[
(λ3−λ2)e−λ1s3− (λ3−λ1)e−λ2s3 +(λ2−λ1)e−λ3s3

]
=

λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ3−λ2)
(0)

= 0 (6.3.17)

From the two results it confirms that from the equation (6.3.4) the model has only one
mode that is Uni-modal model.

Cumulant Generating Function

The cumulant generating function of a random variable S3 can be obtained by:

Cs3(t) = log[Ms3(t)]

= log
{

λ1λ2λ3

(λ1− t)(λ2− t)(λ3− t)

}
Using Maclaurin series through expansion the following equation can be obtained:

Cs3(t) =
∞

∑
i=1

(i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+

(
1
λ3

)i
]

t i

i!
(6.3.18)

From the definition of cumulants, the cumulant Ki of a random variable S3 can be obtained
using the coe�icients of t i

i! in equation (6.3.18).
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Therefore,

Ki = (i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+

(
1
λ3

)i
]

(6.3.19)

Therefore the first four cumulants can be obtained as follows:

K1 = (1−1)!
[

1
λ1

+
1
λ2

+
1
λ3

]
=

1
λ1

+
1
λ2

+
1
λ3

K2 = (2−1)!

[(
1
λ1

)2

+

(
1
λ2

)2

+

(
1
λ3

)2
]

=

(
1
λ1

)2

+

(
1
λ2

)2

+

(
1
λ3

)2

K3 = (3−1)!

[(
1
λ1

)3

+

(
1
λ2

)3
]

= 2

[(
1
λ1

)3

+

(
1
λ2

)3

+

(
1
λ3

)3
]

K4 = (4−1)!

[(
1
λ1

)4

+

(
1
λ2

)4

+

(
1
λ3

)4
]

K4 = 6

[(
1
λ1

)4

+

(
1
λ2

)4

+

(
1
λ3

)4
]

From the above results the following conclusions can be made:

(i) K1 which forms the first cumulant gives the mean of the random variable S3.

(ii) K2 which forms the second cumulant gives the variance of the random variable S3.
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(iii) Skewness

=
K3

K
3
2
2

=

2
[(

1
λ1

)3
+
(

1
λ2

)3
]

[(
1
λ1

)2
+
(

1
λ2

)2
+
(

1
λ3

)2
]3/2 (6.3.20)

(iv) Kurtosis

=
K4

K2
2

=

6
[(

1
λ1

)4
+
(

1
λ2

)4
+
(

1
λ3

)4
]

[(
1
λ1

)2
+
(

1
λ2

)2
+
(

1
λ3

)2
]2 (6.3.21)

6.3.4 The Case of Arithmetic Sequence of three Parameters

Using the equation (6.3.4) and given that the model parameters takes an arithmetic
sequence that is λ2−λ1 = λ3−λ2 = d where d is the common di�erence. It then implies
that λ j−λi = ( j− i)d. Then

g(s3) =

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1e−λ1s3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2e−λ2s3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3e−λ3s3

⇒ g(s3) =

(
λ2

(λ1 +d)−λ1

)(
λ3

(λ1 +2d)−λ1

)
λ1e−λ1s3

+

(
λ1

λ1− (λ1 +d)

)(
λ3

(λ1 +2d)− (λ1 +d)

)
λ2e−λ2s3

+

(
λ1

λ1− (λ1 +2d)

)(
λ2

(λ1 +d)− (λ1 +2d)

)
λ3e−λ3s3

= λ1λ2λ3

(
e−λ1s3

2d2

)
+λ1λ2λ3

(
e−λ2s3

−d2

)

+λ1λ2λ3

(
e−λ3s3

2d2

)
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= λ1λ2λ3

[(
e−λ1s3

2d2

)
+

(
e−λ2s3

−d2

)
+

(
e−λ3s3

2d2

)]

=
3

∏
i=1

λi

{
3

∑
i=1

e−λis3

(−1)i−1(i−1)!(3− i)!d3−1

}

=
3

∏
i=1

λi

{
3

∑
i=1

e−λis3

γi,3

}
where γi,3 = (−1)i−1(i−1)!(3− i)!d3−1 (6.3.21)

6.3.5 The Case of Geometric Sequence of three Parameters

If the model parameters takes the form of geometric sequence with the a common ratio r.
That is λ2

λ1
= λ3

λ2
= r. This implies that λ2 = rλ1 and λ3 = r2λ1.

Therefore, from equation (6.3.4) we get

g(s3) =

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1e−λ1s3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2e−λ2s3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3e−λ3s3

⇒ g(s3) =

(
rλ1

rλ1−λ1

)(
r2λ1

r2λ1−λ1

)
λ1e−λ1s3 +

(
λ1

λ1− rλ1

)(
r2λ1

r2λ1− rλ1

)
λ2e−λ2s3

+

(
λ1

λ1− r2λ1

)(
rλ1

rλ1− r2λ1

)
λ3e−λ3s3

=

(
1

1− r−1

)(
1

1− r−2

)
λ1e−λ1s3 +

(
1

1− r

)(
1

1− r−1

)
λ2e−λ2s3

+

(
1

1− r2

)(
1

1− r

)
λ3e−λ3s3

=
λ1e−λ1s3

(1− r−1)(1− r−2)
+

λ2e−λ2s3

(1− r)(1− r−1)
+

λ3e−λ3s3

(1− r2)(1− r)

=
3

∑
i=1

λie−λis3

∏
3
j=1, j 6=i(1− ri− j)

(6.3.22)
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6.4 Hypo-exponential Distribution of four independent random
variables with distinct parameters

6.4.1 Construction Using Convolution Approach

In this sub-section we need to consider the distributions for the sum of four independent
random variables with distinct parameters. Therefore let

S4 = X1 +X2 +X3 +X4

S4 = S3 +X4, where S3 = X1 +X2 +X3 (6.4.1)

Let Fi(xi) and G(s4) be the cumulative distribution function for Xi and S4 respectively.

Cumulative Density Function

From the definition the cumulative density function is given as follows:

G(S4) = Prob(S4 ≤ s4)

= Prob(S3 +X4 ≤ s4)

= Prob(X4 ≤ s4− s3)

= Prob(0≤ s3 ≤ s4,0≤ X4 ≤ s4− s3)

=
∫ s4

0

∫ s4−s3

0
g(s3) f (x4)dx4ds3

=
∫ s4

0
g(s3)

[∫ s4−s3

0
f (x4)dx4

]
ds3

=
∫ s4

0
g(s3)

[∫ s4−s3

0
λ4e−λ4s4dx4

]
ds3

=
∫ s4

0
g(s3)

[
1− e−λ4(s4−s3)

]
ds3

=
∫ s4

0

[
g(s3)−g(s3)e−λ4(s4−s3)

]
ds3

=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1

∫ s4

0
e−λ1s3ds3 +

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2

∫ s4

0
e−λ2s3ds3

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3

∫ s4

0
e−λ3s3ds3

−
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)
λ1e−λ4s4

∫ s4

0
e(λ4−λ1)s3ds3
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−
(

λ1

λ1−λ2

)(
λ3

λ3−λ2

)
λ2e−λ4s4

∫ s4

0
e(λ4−λ2)s3ds3

−
(

λ1

λ1−λ3

)(
λ2

λ2−λ3

)
λ3e−λ4s4

∫ s4

0
e(λ4−λ3)s3ds3

∴ G(S4) =

{
λ2λ3

(λ2−λ1)(λ3−λ1)

}[
1− e−λ1s4

]
+

{
λ1λ3

(λ1−λ2)(λ3−λ2)

}[
1− e−λ2s4

]
+

{
λ1λ2

(λ1−λ3)(λ2−λ3)

}[
1− e−λ3s4

]
−
{

λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ4−λ1)

}[
e−λ1s4− e−λ4s4

]
−
{

λ1λ2λ3

(λ1−λ2)(λ3−λ2)(λ4−λ2)

}[
e−λ2s4− e−λ4s4

]
−
{

λ1λ2λ3

(λ1−λ3)(λ2−λ3)(λ4−λ3)

}[
e−λ3s4− e−λ4s4

]
=

λ2λ3

(λ2−λ1)(λ3−λ1)
− λ2λ3

(λ2−λ1)(λ3−λ1)
e−λ1s4

+
λ1λ3

(λ1−λ2)(λ3−λ2)
− λ1λ3

(λ1−λ2)(λ3−λ2)
e−λ2s4

+
λ1λ2

(λ1−λ3)(λ2−λ3)
− λ1λ2

(λ1−λ3)(λ2−λ3)
e−λ3s4

− λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ4−λ1)
e−λ1s4 +

λ1λ2λ3

(λ2−λ1)(λ3−λ1)(λ4−λ1)
e−λ4s4

− λ1λ2λ3

(λ1−λ2)(λ3−λ2)(λ4−λ2)
e−λ2s4 +

λ1λ2λ3

(λ1−λ2)(λ3−λ2)(λ4−λ2)
e−λ4s4

− λ1λ2λ3

(λ1−λ3)(λ2−λ3)(λ4−λ3)
e−λ3s4 +

λ1λ2λ3

(λ1−λ3)(λ2−λ3)(λ4−λ3)
e−λ3s4e−λ4s4

⇒ G(S4) = 1−
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
e−λ1s4

−
(

λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
e−λ2s4

−
(

λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
e−λ3s4

−
(

λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
e−λ4s4 (6.4.2)

as required.

Therefore, from the above equation (6.4.2) it can be concluded that
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lim
s4→∞

G(s4) = 1

and

lim
s4→0

G(s4) = 0 (6.4.3)

Probability Density Function

The probability density function of the sum of four independent exponential random
variables can be obtained through finding the derivative of G(s4) from equation (6.4.2)
with respect to s4. This follows that:

g(s4) =
d

ds4
[G(s4)]

=
d

ds4
1− d

ds4

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
e−λ1s4

− d
ds4

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
e−λ2s4

− d
ds4

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
e−λ3s4

− d
ds4

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
e−λ4s4

=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
λ1e−λ1s4

+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
λ2e−λ2s4

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
λ3e−λ3s4

+

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
λ4e−λ4s4

⇒ g(s4) =
4

∑
i=1

{
λie−λis4

4

∏
j=1, j 6=i

(
λ j

λ j−λi

)}
where s4 > 0, λ4 > λ3 > λ2 > λ1 > 0

(6.4.4)

as required.
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Hazard Function

From the definition, the hazard function is obtained as follows:

h(s4) =
g(s4)

1−G(s4)

But

1−G(s4) = 1−1+
(

λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
e−λ1s4

+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
e−λ2s4

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
e−λ3s4

+

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
e−λ4s4

=

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
e−λ1s4

+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
e−λ2s4

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
e−λ3s4

+

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
e−λ4s4

=
4

∑
i=1

{
e−λis4

4

∏
j=1, j 6=i

(
λ j

λ j−λi

)}

⇒ h(s4) =
∑

4
i=1

{
λie−λis4 ∏

4
j=1, j 6=i

(
λ j

λ j−λi

)}
∑

4
i=1

{
e−λis4 ∏

4
j=1, j 6=i

(
λ j

λ j−λi

)}
=

4

∑
i=1

λi (6.4.5)

Validity of the Model

The model g(s3) is said to be valid if it satisfies the condition

∫
∞

0
g(s4)ds4 = 1
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Proof ∫
∞

0
g(s4)ds4 =

∫
∞

0

4

∑
i=1

λie−λis4
4

∏
j=1, j 6=i

(
λ j

λ j−λi

)
ds4

=
4

∑
i=1

4

∏
j=1, j 6=i

(
λ j

λ j−λi

)
λi

∫
∞

0
e−λis4ds4

=
4

∑
i=1

4

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 1 (6.4.6)

As required, hence the model is said to be valid.

6.4.2 Construction Using Moment Generating Function Approach

The moment generating function for the sum of four independent exponential random
variables S4 with distinct parameters is given by

Ms4(t) = E(ets4); where s4 = X1 +X2 +X3 +X4 (6.4.7)

Using the moment generating function properties then

Ms4(t) = MX1+X2+X3+X4(t)

= E(etx1) �E(etx2) �E(etx3) �E(etx4)

=

(
λ1

λ1− t

)(
λ2

λ2− t

)(
λ3

λ3− t

)(
λ4

λ4− t

)
⇒Ms4(t) =

λ1λ2λ3λ4

(λ1− t)(λ2− t)(λ3− t)(λ4− t)

= λ1λ2λ3λ4[(λ1− t)(λ2− t)(λ3− t)(λ4− t)]−1

= λ1(λ1− t)−1
λ2(λ2− t)−1

λ3(λ3− t)−1
λ4(λ4− t)−1

=
4

∏
i=1

λi[λi− t]−1 (6.4.8)

6.4.3 Properties of the Distribution

Moments

The rth raw moment of the sum of four independent exponential random variables can be
obtained by:
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E[Sr
4] =

drMs4(t)
dtr |t=0

From equation (6.4.7) we have

Ms3(t) = MX1+X2+X3+X4(t)

= E(etx1) �E(etx2) �E(etx3) �E(etx4)

Therefore,the first four moments can be obtained as follows:

First moment

E[S4] = M′s4
(0)

=
d
dt

λ1λ2λ3λ4
[
(λ1− t)−1(λ2− t)−1(λ3− t)−1(λ4− t)−1] |t=0

= λ1λ2λ3λ4
[
(λ1− t)−2(λ2− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+λ1λ2λ3λ4
[
(λ2− t)−2(λ1− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+λ1λ2λ3λ4
[
(λ3− t)−2(λ1− t)−1(λ2− t)−1(λ4− t)−1] |t=0

+λ1λ2λ3λ4
[
(λ4− t)−2(λ1− t)−1(λ2− t)−1(λ3− t)−1] |t=0

=
1
λ1

+
1
λ2

+
1
λ3

+
1
λ4

=
4

∑
i=1

λ
−1
i (6.4.9)

Second moment

E[S2
4] = M”s4(0)

=
d
dt

λ1λ2λ3λ4
[
(λ1− t)−2(λ2− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+
d
dt

λ1λ2λ3λ4
[
(λ2− t)−2(λ1− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+
d
dt

λ1λ2λ3λ4
[
(λ3− t)−2(λ1− t)−1(λ2− t)−1(λ4− t)−1] |t=0

+
d
dt

λ1λ2λ3λ4
[
(λ4− t)−2(λ1− t)−1(λ2− t)−1(λ3− t)−1] |t=0
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= 2λ1λ2λ3λ4
[
(λ1− t)−3(λ2− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ2− t)−2(λ1− t)−2(λ3− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ3− t)−2(λ1− t)−2(λ2− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ4− t)−2(λ1− t)−2(λ2− t)−1(λ3− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ2− t)−3(λ1− t)−1(λ3− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ3− t)−2(λ2− t)−2(λ1− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ4− t)−2(λ2− t)−2(λ1− t)−1(λ3− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ3− t)−3(λ1− t)−1(λ2− t)−1(λ4− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ4− t)−2(λ3− t)−2(λ1− t)−1(λ2− t)−1] |t=0

+2λ1λ2λ3λ4
[
(λ4− t)−3(λ1− t)−1(λ2− t)−1(λ3− t)−1] |t=0

= 2
[

1
λ 2

1
+

1
λ1λ2

+
1

λ1λ3
+

1
λ1λ4

+
1

λ 2
2
+

1
λ2λ3

+
1

λ2λ4
+

1
λ 2

3
+

1
λ3λ4

+
1

λ 2
4

]
= 2

[
2

∑
i=0

λ
−(2−i)
1 λ

−i
2 +

2

∑
i=1

λ
−(2−i)
1 λ

−i
3 +

2

∑
i=1

λ
−(2−i)
1 λ

−i
4 +λ

−1
2 λ

−1
3 +λ

−1
2 λ

−1
4 +λ

−1
3 λ

−1
4

]
(6.4.10)

Third moment

Considering the trend from the previous sections the third moment can be given as

E[S3
4] = M3

s4
(0)

= 3!

[
3

∑
i=0

λ
−(3−i)
1 λ

−i
2 +

3

∑
i=1

λ
−(3−i)
1 λ

−i
3 +

3

∑
i=1

λ
−(3−i)
1 λ

−i
4 +

2

∑
i=1

λ
−(3−i)
2 λ

−i
3

]

+3!

[
2

∑
i=1

λ
−(3−i)
2 λ

−i
4 +

2

∑
i=1

λ
−(3−i)
3 λ

−i
4 +

3

∏
i=1

λ
−1
i

]
(6.4.11)

Fourth moment

Considering the trend from the previous sections the fourth moment can be given as

E[S4
4] = M4

s4
(0)

= 4!

[
4

∑
i=0

λ
−(4−i)
1 λ

−i
2 +

4

∑
i=1

λ
−(4−i)
1 λ

−i
3 +

4

∑
i=1

λ
−(4−i)
1 λ

−i
4 +

3

∑
i=1

λ
−(4−i)
2 λ

−i
3

]

+4!

[
3

∑
i=1

λ
−(4−i)
2 λ

−i
4 +

3

∑
i=1

λ
−(4−i)
3 λ

−i
4 +

4

∏
i=1

λ
−1
i

]
(6.4.12)
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This implies the rth raw moment for S4 can be expressed by

E[Sr
4] = Mr

s4
(0)

= r!

[
r

∑
i=0

λ
−(r−i)
1 λ

−i
2 +

r

∑
i=1

λ
−(r−i)
1 λ

−i
3 +

r

∑
i=1

λ
−(r−i)
1 λ

−i
4 +

r−1

∑
i=1

λ
−(r−i)
2 λ

−i
3

]

+ r!

[
r−1

∑
i=1

λ
−(r−i)
2 λ

−i
4 +

r−1

∑
i=1

λ
−(r−i)
3 λ

−i
4 +

r

∏
i=1

λ
−1
i

]
(6.4.13)

Therefore other properties for the sum of four independent exponential random variables
can be obtained as follows:

Mean

E[S4] =
1
λ1

+
1
λ2

+
1
λ3

+
1
λ4

(6.4.14)

Variance

Var[S4] = E[S2
4]− (E[S4])

2

= 2
[

1
λ 2

1
+

1
λ1λ2

+
1

λ1λ3
+

1
λ1λ4

+
1

λ 2
2
+

1
λ2λ3

+
1

λ2λ4
+

1
λ 2

3
+

1
λ3λ4

+
1

λ 2
4

]
−
(

1
λ1

+
1
λ2

+
1
λ3

+
1
λ4

)2

=
1

λ 2
1
+

1
λ 2

2
+

1
λ 2

3
+

1
λ 2

4
(6.4.15)

Mode

The mode for the model g(s4) can be obtained when

d
ds4

g(s4) = 0
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This implies that

d
ds4

g(s4) =−λ1

(
λ1λ2λ3λ4

(λ2−λ1)(λ3−λ1)(λ4−λ1)

)
e−λ1s4

−λ2

(
λ1λ2λ3λ4

(λ1−λ2)(λ3−λ2)(λ4−λ2)

)
e−λ2s4

−λ3

(
λ1λ2λ3λ4

(λ1−λ3)(λ2−λ3)(λ4−λ3)

)
e−λ3s4

−λ4

(
λ1λ2λ3λ4

(λ1−λ4)(λ2−λ4)(λ3−λ4)

)
e−λ4s4

=−λ1(λ3−λ2)(λ4−λ2)(λ4−λ3)e−λ1s4 +λ2(λ3−λ1)(λ4−λ1)(λ4−λ3)e−λ2s4

−λ3(λ2−λ1)(λ4−λ1)(λ4−λ2)e−λ3s4 +λ4(λ2−λ1)(λ3−λ1)(λ3−λ2)e−λ4s4

=−lnλ1− ln(λ3−λ2)− ln(λ4−λ2)− ln(λ4−λ3)+λ1s4

+ lnλ2 + ln(λ3−λ1)+ ln(λ4−λ1)+ ln(λ4−λ3)−λ2s4

− lnλ3− (λ2−λ1)− ln(λ4−λ1)− ln(λ4−λ2)+λ3s4

+ lnλ4 + ln(λ2−λ1)+ ln(λ3−λ1)+ ln(λ3−λ2)−λ4s4

=−lnλ1−2ln(λ4−λ2)−2ln(λ4−λ3)+λ1s4 + lnλ2−λ2s4

+2ln(λ3−λ1)− lnλ3 +λ3s4 + lnλ4−λ4s4

⇒ s4 =
lnλ2 + lnλ4− lnλ1− lnλ3−2ln(λ4−λ2)−2ln(λ4−λ3)+2ln(λ3−λ1)

λ2 +λ4−λ1−λ3
(6.4.16)

Asymptotic Behaviour of the Model

In this section from equation (6.4.4) we consider the behaviour of the model g(s4) when
s4→ 0 and as s4→ ∞. That is

lim
s2→0

g(s2) and lim
s2→∞

g(s2)

This implies that

lim
S4→0

g(s4) =
4

∑
i=1

λi lim
S4→0

e−λis4
4

∏
j=1, j 6=i

(
λ j

λ j−λi

)

=
4

∑
i=1

λi

4

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 0
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and also

lim
S4→∞

g(s4) =
4

∑
i=1

λi lim
S4→∞

e−λis4
4

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 0 (6.4.17)

From the two results it confirms that from the equation (6.4.4) the model has only one
mode that is Uni-modal model.

Cumulant Generating Function

The cumulant generating function of a random variable S4 can be obtained by:

Cs4(t) = log[Ms4(t)]

= log
{

λ1λ2λ3λ4

(λ1− t)(λ2− t)(λ3− t)(λ4− t)

}
Using Maclaurin series through expansion the following equation can be obtained:

Cs4(t) =
∞

∑
i=1

(i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+

(
1
λ3

)i

+

(
1
λ4

)i
]

t i

i!
(6.4.18)

From the definition of cumulants, the cumulant Ki of a random variable S4 can be obtained
using the coe�icients of t i

i! in equation (6.4.17).

Therefore,

Ki = (i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+

(
1
λ3

)i

+

(
1
λ4

)i
]

(6.4.19)

Therefore the first four cumulants can be obtained as follows:

K1 = (1−1)!
[

1
λ1

+
1
λ2

+
1
λ3

+
1
λ4

]
=

1
λ1

+
1
λ2

+
1
λ3

+
1
λ4
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K2 = (2−1)!

[(
1
λ1

)2

+

(
1
λ2

)2

+

(
1
λ3

)2

+

(
1
λ4

)2
]

=

(
1
λ1

)2

+

(
1
λ2

)2

+

(
1
λ3

)2

+

(
1
λ4

)2

K3 = (3−1)!

[(
1
λ1

)3

+

(
1
λ2

)3

+

(
1
λ3

)3

+

(
1
λ4

)3
]

= 2

[(
1
λ1

)3

+

(
1
λ2

)3

+

(
1
λ3

)3

+

(
1
λ4

)3
]

K4 = (4−1)!

[(
1
λ1

)4

+

(
1
λ2

)4

+

(
1
λ3

)4

+

(
1
λ4

)4
]

= 6

[(
1
λ1

)4

+

(
1
λ2

)4

+

(
1
λ3

)4

+

(
1
λ4

)4
]

From the above results the following conclusions can be made:

(i) K1 which forms the first cumulant gives the mean of the random variable S4.

(ii) K2 which forms the second cumulant gives the variance of the random variable S4.

(iii) Skewness

=
K3

K
3
2
2

=

2
[(

1
λ1

)3
+
(

1
λ2

)3
+
(

1
λ3

)3
+
(

1
λ4

)3
]

[(
1
λ1

)2
+
(

1
λ2

)2
+
(

1
λ3

)2
+
(

1
λ4

)2
]3/2 (6.4.20)
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(iv) Kurtosis

=
K4

K2
2

=

6
[(

1
λ1

)4
+
(

1
λ2

)4
+
(

1
λ3

)4
+
(

1
λ4

)4
]

[(
1
λ1

)2
+
(

1
λ2

)2
+
(

1
λ3

)2
+
(

1
λ4

)2
]2 (6.4.21)

6.4.4 The Case of Arithmetic Sequence of four Parameters

Using the equation (6.4.4) and given that the model parameters takes an arithmetic
sequence that is

λ2−λ1 = λ3−λ2 = λ4−λ3 = d

where d is the common di�erence.

Therefore
λ3−λ1 = λ4−λ2 = 2d

This then implies that

λ j−λi = ( j− i)d (6.4.24)

Therefore

g(s4) =

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
λ1e−λ1s4

+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
λ2e−λ2s4

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
λ3e−λ3s4

+

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
λ4e−λ4s4

⇒ g(s4) =

(
λ2

(λ1 +d)−λ1

)(
λ3

(λ1 +2d)−λ1

)(
λ4

(λ1 +3d)−λ1

)
λ1e−λ1s4

+

(
λ1

λ1− (λ1 +d)

)(
λ3

(λ1 +2d)− (λ1 +d)

)(
λ4

(λ1 +3d)− (λ1 +d)

)
λ2e−λ2s4

+

(
λ1

λ1− (λ1 +2d)

)(
λ2

(λ1 +d)− (λ1 +2d)

)(
λ4

(λ1 +3d)− (λ1 +2d)

)
λ3e−λ3s4

+

(
λ1

λ1− (λ1 +3d)

)(
λ2

(λ1 +d)− (λ1 +3)

)(
λ3

(λ1 +2d)− (λ1 +3d)

)
λ4e−λ4s4
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= λ1λ2λ3λ4

(
e−λ1s4

6d3

)
+λ1λ2λ3λ4

(
e−λ2s4

−2d3

)

+λ1λ2λ3λ4

(
e−λ3s4

−2d3

)
+λ1λ2λ3λ4

(
e−λ4s4

−6d3

)

= λ1λ2λ3λ4

[(
e−λ1s4

2d2

)
+

(
e−λ2s4

−d2

)
+

(
e−λ3s4

2d2

)
+

(
e−λ4s4

2d2

)]

=
4

∏
i=1

λi

{
4

∑
i=1

e−λis4

(−1)i−1(i−1)!(4− i)!d4−1

}

=
4

∏
i=1

λi

{
4

∑
i=1

e−λis4

γi,4

}
where γi,4 = (−1)i−1(i−1)!(4− i)!d4−1

(6.4.25)

6.4.5 The Case of Geometric Sequence of four Parameters

If the model parameters for n= 4 takes the form of geometric sequence with the a common
ratio r that is λ2

λ1
= λ3

λ2
= λ4

λ3
= r. This implies then λ2 = rλ1,λ3 = r2λ1, and λ4 = r3λ1.

Therefore

g(s4) =

(
λ2

λ2−λ1

)(
λ3

λ3−λ1

)(
λ4

λ4−λ1

)
λ1e−λ1s4

+

(
λ1

λ1−λ2

)(
λ3

λ3−λ2

)(
λ4

λ4−λ2

)
λ2e−λ2s4

+

(
λ1

λ1−λ3

)(
λ2

λ2−λ3

)(
λ4

λ4−λ3

)
λ3e−λ3s4

+

(
λ1

λ1−λ4

)(
λ2

λ2−λ4

)(
λ3

λ3−λ4

)
λ4e−λ4s4

⇒ g(s4) =

(
rλ1

rλ1−λ1

)(
r2λ1

r2λ1−λ1

)(
r3λ1

r3λ1−λ1

)
λ1e−λ1s4

+

(
λ1

λ1− rλ1

)(
r2λ1

r2λ1− rλ1

)(
r3λ1

r3λ1− rλ1

)
λ2e−λ2s4

+

(
λ1

λ1− r2λ1

)(
rλ1

rλ1− r2λ1

)(
r2λ1

r3λ1− r2λ1

)
λ3e−λ3s4

+

(
λ1

λ1− r3λ1

)(
rλ1

rλ1− r3λ1

)(
r2λ1

r2λ1− r3λ1

)
λ4e−λ4s4
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=
λ1e−λ1s4

(1− r−1)(1− r−2)(1− r−3)
+

λ2e−λ2s4

(1− r)(1− r−1)(1− r−2)

+
λ3e−λ3s4

(1− r−2)(1− r)(1− r−1)
+

λ4e−λ4s4

(1− r3)(1− r2)(1− r)

=
4

∑
i=1

λie−λis4

∏
4
j=1, j 6=i(1− ri− j)

=
4

∑
i=1

λie−λis4

Pi,4
where Pi,4 =

4

∏
j=1, j 6=i

(1− ri− j) (6.4.26)

6.5 Hypo-exponential Distribution for a fixed sum of n independent
random variables with distinct parameters

6.5.1 Construction Using Convolution Approach

Extending from the previous sections for N = n fixed sum of independent exponential
random variables to suggest the general formula of ge�ing the distributions for n ≥ 2
random variables.

Proposition 2

Let

Sn = X1 +X2 + · · ·+Xn (6.5.1)

for n≥ 2 then the pdf will be given by:

g(sn) =
n

∑
i=1

{
λie−λisn

n

∏
j=1, j 6=i

(
λ j

λ j−λi

)}
(6.5.2a)

=
n

∑
i=1

{(
n

∏
j=1, j 6=i

λ j

λ j−λi

)
λie−λisn

}

=
n

∑
i=1

Ci,nλie−λisn (6.5.2b)

where

Ci,n = ∏
j=1, j 6=i

λ j

λ j−λi
(6.5.3)
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Proof

Using the induction formula for the case where N = n and let consider n + 1 arbi-
trary independent exponential Xi random variables with di�erent parameters λi, for i =
1,2, · · · ,n+1.

Now let

Sn+1 = X1 +X2 + · · ·+Xn +Xn+1

= Sn +Xn+1 where Sn = X1 +X2 + · · ·+Xn (6.5.4)

Let Fi(xi) and G(sn+1) be the cumulative distribution functions for Xi and Sn respectively.

Cumulative Density Function

Here we use the same method as in the previous section to get the cdf for the distribution
Sn+1. This follows that

G(Sn+1) = Prob(Sn+1 ≤ sn+1)

= Prob(Sn +Xn+1 ≤ sn+1)

= Prob(Xn+1 ≤ sn+1− sn)

= Prob(0≤ sn ≤ sn+1,0≤ Xn+1 ≤ sn+1− sn)

⇒ G(Sn+1) =
∫ sn+1

0

∫ sn+1−sn

0
g(sn) f (xn+1)dxn+1dsn

=
∫ sn+1

0
g(sn)

[∫ sn+1−sn

0
f (xn+1)dxn+1

]
dsn

=
∫ sn+1

0
g(sn)

[∫ sn+1−sn

0
λn+1e−λn+1sn+1dxn+1

]
dsn

=
∫ sn+1

0
g(sn)

[
1− e−λn+1(sn+1−sn)

]
dsn

=
∫ sn+1

0

[
g(sn)−g(sn)e−λn+1(sn+1−sn)

]
dsn

But from equation (6.5.2b)

g(sn) =
n

∑
i=1

Ci,nλie−λisn
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Therefore

G(Sn+1) =
n

∑
i=1

Ci,n

∫ sn+1

0
λie−λisndsn−

n

∑
i=1

Ci,ne−λn+1sn+1

∫ sn+1

0
λie(−λn+1−λi)sndsn

=
n

∑
i=1

Ci,n

[
1− e−λisn+1

]
−

n

∑
i=1

Ci,ne−λn+1sn+1

[
e(λn+1−λi)sn+1

λn+1−λi

]

=
n

∑
i=1

Ci,n−
n

∑
i=1

Ci,ne−λisn+1−
n

∑
i=1

Ci,n
λie−λisn+1

λn+1−λi
+

n

∑
i=1

Ci,n
λie−λn+1sn+1

λn+1−λi

=
n

∑
i=1

Ci,n−
n

∑
i=1

Ci,n

(
λn+1

λn+1−λi

)
e−λisn+1 +

n

∑
i=1

Ci,n

(
λi

λn+1−λi

)
e−λn+1sn+1

From equations (6.3.6) and (6.4.6) it is indicates that

n

∑
i=1

Ci,n = 1

Hence the result

G(Sn+1) = 1−
n

∑
i=1

Ci,n

(
λn+1

λn+1−λi

)
e−λn+1sn+1−

n

∑
i=1

Ci,n

(
λi

λi−λn+1

)
e−λn+1sn+1 (6.5.5)

Therefore, from the general cdf expression in equation (6.5.5) it can be concluded that

lim
sn+1→∞

G(sn) = 1

and

lim
sn+1→0

G(sn) = 0 (6.5.6)

Probability Density Function

From equation (6.5.5) we can now derive the pdf for the general sum of n+1 independent
exponential random variables Sn +1. This follows that

g(sn+1) =
d

dsn+1
[G(sn+1)]

=
d

dsn+1

[
1−

n

∑
i=1

Ci,n

(
λn+1

λn+1−λi

)
e−λisn+1−

n

∑
i=1

Ci,n

(
λi

λi−λn+1

)
e−λn+1sn+1

]

=
n

∑
i=1

Ci,n

(
λiλn+1

λn+1−λi

)
e−λisn+1 +

n

∑
i=1

Ci,n

(
λn+1λi

λi−λn+1

)
e−λn+1sn+1



86

=
n

∑
i=1

Ci,n

(
λn+1

λn+1−λi

)
λie−λisn+1 +

n

∑
i=1

Ci,n

(
λi

λi−λn+1

)
λn+1e−λn+1sn+1

=
n

∑
i=1

Ci,n

(
λn+1

λn+1−λi

)
λie−λisn+1 +Kn+1λn+1e−λn+1sn+1 (6.5.7)

where

Kn+1 =
n

∑
i=1

Ci,n

(
λi

λi−λn+1

)
(6.5.8)

But

Ci,n =
n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
=

(
λ1

λ1−λi

)(
λ2

λ2−λi

)
· · ·
(

λn

λn−λi

)

Therefore

Ci,n

(
λn+1

λn+1−λi

)
=

(
λ1

λ1−λi

)(
λ2

λ2−λi

)
· · ·
(

λn

λn−λi

)(
λn+1

λn+1−λi

)
=

n

∏
j=1, j 6=i

λ j

λ j−λi
, for j = 1,2, · · · ,n+1

=Ci,n+1

This implies that the formula (6.5.7) becomes

g(sn+1) =
n

∑
i=1

Ci,n+1λie−λisn+1 +Kn+1λn+1e−λn+1sn+1 (6.5.9)

where Kn+1 is a constant which does not depend on sn+1.

Equation (6.5.4) can be rewri�en as

Sn+1 = X1 +Sn where Sn = X2 +X3 + · · ·+Xn+1 (6.5.10)
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Using the proposition 2 the pdf for the distribution Sn in the above equation (6.5.10) can
be given by

g(sn) =
n+1

∑
i=2

{
λie−λisn

n+1

∏
j=2, j 6=i

(
λ j

λ j−λi

)}

=
n+1

∑
i=2

C∗i,n+1λie−λisn (6.5.11)

where

C∗i,n+1 =
n+1

∏
j=2, j 6=i

λ j

λ j−λi

Therefore the cdf of the distribution can also be given by:

G(sn+1) = Prob(Sn+1 ≤ sn+1)

= Prob(Sn +X1 ≤ sn+1)

= Prob(X1 ≤ sn+1− sn)

= Prob(0≤ sn ≤ sn+1,0≤ X1 ≤ sn+1− sn)

=
∫ sn+1

0

∫ sn+1−sn

0
g(sn) f (x1)dx1dsn

=
∫ sn+1

0
g(sn)

[∫ sn+1−sn

0
f (x1)dx1

]
dsn

=
∫ sn+1

0
g(sn)

[∫ sn+1−sn

0
λ1e−λ1x1dx1

]
dsn

=
∫ sn+1

0
g(sn)

[
1− e−λ1(sn+1−sn)

]
dsn

=

[∫ sn+1

0
g(sn)−g(sn)e−λ1(sn+1−sn)

]
dsn

=
n+1

∑
i=2

C∗i,n+1

∫ sn+1

0
λie−λisndsn−

n+1

∑
i=2

C∗i,n+1λie−λisn+1

∫ sn+1

0
e(λ1−λi)sndsn

=
n+1

∑
i=2

C∗i,n+1

[
1− e−λisn+1

]
−

n+1

∑
i=2

C∗i,n+1λi

[
e(λ1−λi)sn+1−1

λ1−λi

]

=
n+1

∑
i=2

C∗i,n+1−
n+1

∑
i=2

C∗i,n+1e−λisn+1−
n+1

∑
i=2

C∗i,n+1

(
λi

λ1−λi

)
e−λisn+1

+
n+1

∑
i=2

C∗i,n+1

(
λi

λ1−λi

)
e−λ1sn+1

∴ G(sn+1) = 1−
n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
e−λisn+1−

n+1

∑
i=2

C∗i,n+1

(
λi

λi−λ1

)
e−λ1sn+1 (6.5.12)

Similarly as sn+1→ ∞ it can be deduced that
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lim
sn+1→∞

G(sn+1) = 1

From the above equation (6.5.12) the pdf of Gsn+1 can be given as:

g(sn+1) =
d

dsn+1
G(sn+1)

=
d

dsn+1

[
1−

n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
e−λisn+1−

n+1

∑
i=2

C∗i,n+1

(
λi

λi−λ1

)
e−λ1sn+1

]

=
n+1

∑
i=2

C∗i,n+1

(
λiλ1

λ1−λi

)
e−λisn+1 +

n+1

∑
i=2

C∗i,n+1

(
λ1λi

λi−λ1

)
e−λ1sn+1

=
n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
λie−λisn+1 +

n+1

∑
i=2

C∗i,n+1

(
λi

λi−λ1

)
λ1e−λ1sn+1

=
n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
λie−λisn+1 +K1λ1e−λ1sn+1 (6.5.13)

where

K1 =
n+1

∑
i=0

C∗i,n+1

(
λi

λi−λ1

)

Comparing the equations (6.5.9) to (6.5.13), then

n

∑
i=1

Ci,n+1λie−λisn+1 +Kn+1λn+1e−λn+1sn+1 =
n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
λie−λisn+1 +K1λ1e−λ1sn+1

But,

C∗i,n+1

(
λ1

λ1−λi

)
=

[
n+1

∏
j=2, j 6=i

(
λ j

λ j−λi

)](
λ1

λ1−λi

)
=

[(
λ2

λ2−λi

)(
λ3

λ3−λi

)
· · ·
(

λn+1

λn+1−λi

)](
λ1

λ1−λi

)
=

(
λ1

λ1−λi

)(
λ2

λ2−λi

)
· · ·
(

λn+1

λn+1−λi

)
=Ci,n+1
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This implies that

n

∑
i=1

Ci,n+1λie−λisn+1 +Kn+1λn+1e−λn+1sn+1 =
n+1

∑
i=2

Ci,n+1λie−λisn+1 +K1λ1e−λ1sn+1

that is

C1,n+1λ1e−λ1sn+1

+
n

∑
i=2

Ci,n+1λie−λisn+1 +Kn+1λn+1e−λn+1sn+1 =
n

∑
i=2

Ci,n+1λie−λisn+1

+Cn+1,n+1λn+1e−λn+1sn+1 +K1λ1e−λ1sn+1

C1,n+1λ1e−λ1sn+1 +Kn+1λn+1e−λn+1sn+1 =Cn+1,n+1λn+1e−λn+1sn+1 +K1λ1e−λ1sn+1

Comparing the coe�icients of λn+1e−λn+1sn+1 , we get

Kn+1 =Cn+1,n+1

Also comparing the coe�icients of λ1e−λ1sn+1 , we get

K1 =C1,n+1

Thus

g(sn+1) =
n

∑
i=1

Ci,n+1λie−λisn+1 +Kn+1λn+1e−λn+1sn+1

=
n

∑
i=1

Ci,n+1λie−λisn+1 +Cn+1,n+1λn+1e−λn+1sn+1

=
n+1

∑
i=1

Ci,n+1λie−λisn+1

=
n+1

∑
i=1

∏
j=1, j 6=i

(
λ j

λ j−λi

)
λie−λisn+1 (6.5.14a)
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Alternatively,

g(sn+1) =
n+1

∑
i=2

C∗i,n+1

(
λ1

λ1−λi

)
λie−λisn+1 +K1λ1e−λ1sn+1

=
n+1

∑
i=2

Ci,n+1λie−λisn+1 +C1,n+1λ1e−λ1sn+1

=C1,n+1λ1e−λ1sn+1 +
n+1

∑
i=2

Ci,n+1λie−λisn+1

=
n+1

∑
i=1

Ci,n+1λie−λisn+1 (6.5.14b)

hence the result.

Hazard Function

From the definition, the hazard function of the sum of n independent exponential random
variables sn is defined by:

h(sn) =
g(sn)

1−G(sn)

=
∑

n
i=1Ci,nλie−λisn

∑
n
i=1Ci,ne−λisn

=
n

∑
i=1

λi (6.5.15)

Validity of the Model

For the model g(sn) to be said valid if it satisfies the condition∫
∞

0
g(sn)dsn = 1

Proof ∫
∞

0
g(sn)dsn =

∫
∞

0

n

∑
i=1

λie−λisn
n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
dsn

=
n

∑
i=1

n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
λi

∫
∞

0
e−λisndsn

=
n

∑
i=1

n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 1 (6.5.16)

As required, hence the model is said to be valid.
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6.5.2 Construction Using Moment Generating Function Approach

The moment generating function for the fixed sum of n independent exponential random
variables, sn can be obtained by:

Msn(t) = E(etsn); where sn = X1 +X2 + · · ·+Xn (6.5.17)

From the moment generating function properties then

Msn(t) = MX1+X2+···+Xn(t)

= E(etx1) �E(etx2) � · · · �E(etxn)

=

(
λ1

λ1− t

)(
λ2

λ2− t

)
· · ·
(

λn

λn− t

)
⇒Msn(t) =

λ1λ2 · · ·λn

(λ1− t)(λ2− t) · · ·(λn− t)

= (λ1λ2 · · ·λn)[(λ1− t)(λ2− t) · · ·(λn− t)]−1

= λ1(λ1− t)−1
λ2(λ2− t)−1 · · ·λn(λn− t)−1

∴Msn(t) =
n

∏
i=1

λi[λi− t]−1 (6.5.18)

6.5.3 Properties of the Distribution

Moments

The rth raw moment of an independent exponential random variable can be given by:

E[Sr
n] =

drMsn(t)
dtr |t=0

But from equation (6.5.17) and following the trend from the previous sections on moments
we can now obtain the first four moments as follows:

First moment

E[Sn] = M′sn
(0)

=
1
λ1

+
1
λ2

+
1
λ3

+ · · ·+ 1
λn

=
n

∑
i=1

λ
−1
i (6.5.19)
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Second moment

E[S2
n] = M”sn(0)

= 2

[
2

∑
i=0

λ
−(2−i)
1 λ

−i
2 +

2

∑
i=1

λ
−(2−i)
1 λ

−i
3 +

2

∑
i=1

λ
−(2−i)
1 λ

−i
4 + · · ·+

2

∑
i=1

λ
−(2−i)
1 λ

−i
n

]
+2
[
λ
−1
2 λ

−1
3 +λ

−1
2 λ

−1
4 + · · ·+λ

−1
2 λ

−1
n + · · ·+λ

−1
n−1λ

−1
n
]

(6.5.20)

Third moment

E[S3
n] = M3

sn
(0)

= 3!

[
3

∑
i=0

λ
−(3−i)
1 λ

−i
2 +

3

∑
i=1

λ
−(3−i)
1 λ

−i
3 + · · ·+

3

∑
i=1

λ
−(3−i)
1 λ

−i
n

]

+3!

[
2

∑
i=1

λ
−(3−i)
2 λ

−i
3 + · · ·+

2

∑
i=1

λ
−(3−i)
2 λ

−i
n

]

+ · · ·+3!

[
2

∑
i=1

λ
−(3−i)
n−1 λ

−i
n +

n

∏
i=1

λ
−1
i

]
(6.5.21)

Fourth moment

E[S4
n] = M4

sn
(0)

= 4!

[
4

∑
i=0

λ
−(4−i)
1 λ

−i
2 +

4

∑
i=1

λ
−(4−i)
1 λ

−i
3 + · · ·+

4

∑
i=1

λ
−(4−i)
1 λ

−i
n

]

+4!

[
3

∑
i=1

λ
−(4−i)
2 λ

−i
3 + · · ·+

3

∑
i=1

λ
−(4−i)
2 λ

−i
n

]

+ · · ·+4!

[
2

∑
i=1

λ
−(4−i)
n−1 λ

−i
n +

n

∏
i=1

λ
−1
i

]
(6.5.22)

This implies the rth moment for sn can be expressed by

E[Sr
n] = Mr

sn
(0)

= r!

[
r

∑
i=0

λ
−(r−i)
1 λ

−i
2 +

r

∑
i=1

λ
−(r−i)
1 λ

−i
3 + · · ·+

r

∑
i=1

λ
−(r−i)
1 λ

−i
n

]

+ r!

[
(r−1)

∑
i=1

λ
−(r−i)
2 λ

−i
3 + · · ·+

(

∑
i=1

r−1)λ−(r−i)
2 λ

−i
n

]

+ · · ·+ r!

[
2

∑
i=1

λ
−(r−i)
n−1 λ

−i
n +

n

∏
i=1

λ
−1
i

]
(6.5.23)
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Therefore other properties for the sum of n independent exponential random variables
can be obtained as follows:

Mean

E[S4] =
1
λ1

+
1
λ2

+ · · ·+ 1
λn

(6.5.24)

Variance

Var[S4] = E[S2
4]− (E[S4])

2

=
1

λ 2
1
+

1
λ 2

2
+ · · ·+ 1

λ 2
n

(6.5.25)

Asymptotic Behaviour of the Model

In determining the asymptotic behaviour from equation (6.5.2b)we consider the behaviour
of the model g(sn) when sn→ 0 and as sn→ ∞. That is

lim
sn→0

g(sn) and lim
sn→∞

g(sn)

Therefore,

lim
Sn→0

g(sn) =
n

∑
i=1

λi lim
Sn→0

e−λisn
n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
=

n

∑
i=1

λi

n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 0

and also

lim
Sn→∞

g(sn) =
n

∑
i=1

λi lim
Sn→∞

e−λisn
n

∏
j=1, j 6=i

(
λ j

λ j−λi

)
= 0 (6.5.26)

From the two results it confirms that from the equation (6.5.2b) the model has only one
mode that is Uni-modal model.

Cumulant Generating Function

The cumulant generating function of a random variable Sn can be obtained by:
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Csn(t) = log[Msn(t)]

= log
{

λ1λ2 · · ·λn

(λ1− t)(λ2− t) · · ·(λn− t)

}
Using Maclaurin series through expansion the following equation can be obtained:

Csn(t) =
∞

∑
i=1

(i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+ · · ·+
(

1
λn

)i
]

t i

i!
(6.5.27)

From the definition of cumulants, the cumulant Ki of a random variable Sn can be obtained
using the coe�icients of t i

i! in equation (5.5.27).

Hence,

Ki = (i−1)!

[(
1
λ1

)i

+

(
1
λ2

)i

+ · · ·+
(

1
λn

)i
]

(6.5.28)

Therefore the first four cumulants can be obtained as follows:

K1 = (1−1)!
[

1
λ1

+
1
λ2

+ · · ·+ 1
λn

]
=

1
λ1

+
1
λ2

+ · · ·+ 1
λn

K2 = (2−1)!

[(
1
λ1

)2

+

(
1
λ2

)2

+ · · ·+
(

1
λn

)2
]

=

(
1
λ1

)2

+

(
1
λ2

)2

+ · · ·+
(

1
λn

)2

K3 = (3−1)!

[(
1
λ1

)3

+

(
1
λ2

)3

+ · · ·+
(

1
λn

)3
]

= 2

[(
1
λ1

)3

+

(
1
λ2

)3

+ · · ·+
(

1
λn

)3
]

K4 = (4−1)!

[(
1
λ1

)4

+

(
1
λ2

)4

+ · · ·+
(

1
λn

)4
]

= 6

[(
1
λ1

)4

+

(
1
λ2

)4

+ · · ·+
(

1
λn

)4
]
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From the above results the following conclusions can be made:

(i) K1 the first cumulant gives the mean of the random variable Sn.

(ii) K2 the second cumulant gives the variance of the random variable Sn.

(iii) Skewness

=
K3

K
3
2
2

=

2
[(

1
λ1

)3
+
(

1
λ2

)3
+ · · ·+

(
1
λn

)3
]

[(
1
λ1

)2
+
(

1
λ2

)2
+ · · ·+

(
1
λn

)2
]3/2 (6.5.29)

(iv) Kurtosis

=
K4

K2
2

=

6
[(

1
λ1

)4
+
(

1
λ2

)4
+ · · ·+

(
1
λn

)4
]

[(
1
λ1

)2
+
(

1
λ2

)2
+ · · ·+

(
1
λn

)2
]2 (6.5.30)

6.5.4 The Case of Arithmetic Sequence of A Fixed sum with distinct Parameters

Following the trend of the first four distinct parameters sum of n≥ 2 exponential random
variables with the parameters are forming an arithmetic sequence.

From equation (6.4.24) that is
λ j−λi = ( j− i)d

where d is the common di�erence in the arithmetic sequence of parameters, it follows
that the general formula can be suggested as:

g(sn) =
n

∏
i=1

λi

{
n

∑
i=1

e−λisn

(−1)i−1(i−1)!(n− i)!dn−1

}

=
n

∏
i=1

λi

{
n

∑
i=1

e−λisn

γi,n

}
where γi,n = (−1)i−1(i−1)!(n− i)!dn−1

(6.5.31)
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6.5.5 The Case of Geometric Sequence of A Fixed sum with distinct Parameters

Using the general equation for the fixed sum of n≥ 2 independent exponential random
variables with distinct parameters and then from equation (5.4.26), it follows to suggest
the general formula as:

g(sn) =
n

∑
i=1

{
λie−λisn

n

∏
j=1, j 6=i

(
λ j

λ j−λi

)}

=
n

∑
i=1

{
λieλisn

∏
n
j=1, j 6=i(1− ri− j)

}

=
n

∑
i=1

Pi,nλieλisn where Pi,n =
1

∏
n
j=1, j 6=i(1− ri− j)

(6.5.32)

Hence the result.
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7 APPLICATIONS OF SUMS OF EXPONENTIAL
RANDOM VARIABLES

7.1 Applications of Erlang Distributions

In an Erlang distribution it is assumed that the rate parameters of the process are inde-
pendent and identically distributed. Therefore, if the number of phases in a process is
known and the rates assumed to be equal, then the coe�icient of variation C for the total
time of the process satisfies:

1√
n
≤ c

1√
n−1

f or n ∈ Z+

Therefore an Erlang distribution of n distribution gives a be�er fit for the total time of
the process (Adan, 2001). The following are some of the application examples that can be
modelled through an Erlang distributions:

7.1.1 Times of waiting

When independent events with an average rate occur in an exponential process, the times
of waiting between the n number of exponential occurrences of such events results to an
Erlang distribution.

If the time of waiting is modelled as an exponential distribution having the same parameter
rates λ > 0, then the total waiting time for an nth turns will form the sum of n exponential
random variables with identical parameter rates λ . Therefore, if we let X1,X2, · · · ,Xn of
the successful waiting times and Xi ∼ exp(λ ) where i = 1,2, · · · ,n then total waiting time
for nth turn will be given by Sn = X1 +X2 + · · ·+Xn which is the sum of n exponential
random variables with similar parameter rates λ hence resulting in an Erlang distribution
Sn ∼ Erlang(n,λ ).

For instance, in a call reception centre, the Erlang distribution can be used to measure an
average time within the call comparing with the expected time for each incoming call. The
information that can be deduced from the tra�ic load measured within the Erlang may
be very important to inform determination of the human resources at the call reception
centre for optimal result for instance in the call customer care service or emergence call
reception centres in medical service providers.
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In the business economic market Erlang distributions may be helpful to determine the
inter-purchasing time to inform about the business trend and time for re-stocking in
anticipation of avoiding losses or wastage.

In the banking sector the distribution may help to determine the number of employees
that may be likely required to serve its customers more be�er and be able to set service
target.

7.1.2 Stochastic Processes

In the long-run of the sum of n independent and identically distributed exponential
random variables, the rate at which events are occurring results to the reciprocal of the
expectation of the sum Sn, which is λ

n . The age specific for the distribution gets monotonic
in x for n > 1 as it is increasing from 0 for x = 0 to λ as x→ ∞.

7.1.3 Insurance

Erlang distribution is useful in modelling insurance and financial risks management in
insurance companies.It can be used to understand whether the insurance company is
making profit or loss by knowing sum total of compensation in a particular period of time
and hence enable the company to make right decisions to enable its success or survival in
the market.

7.1.4 Machine Repairing System

In the process of repairing a machine, it requires some sequential steps to followed. If
the time of repair the sequential steps takes exponential distribution at each step with
similar rates then the total time for repairing the machine can be modelled in an Erlang
distribution.

7.1.5 Computer Science

In computer programming several blocks are sequentially processed one a�er the other
with the time spending at each block following an exponential distribution with the same
independent rate. The total time spent in the compilation of all the computer programmes
requires models it to form an Erlang distribution.

7.1.6 Tele-tra�ic Engineering in tele-communication network

In case arrival of call and service time at a customer care service call centre follows an
exponential distribution with the same parameter rate λ and if we want to find the
probability of the least time t taken by n people to call. Let Si to represent the interval call
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arrival time between (i−1)th and ith call. Si also follows and exponential distribution with
the same parameter rate λ . Therefore, the total time S of receiving n successful calls forms
the sum of n exponential random variables that is S = S1 +S2 + · · ·+Sn which forms an
Erlang distribution.

7.2 Application of Hypo-Exponential Distributions

In service provisions where the process forms exponential distribution with di�erent
parameter rates, then Hypo-exponential distribution forms the best distribution model for
the total service time of the process. A hypo-exponential distribution forming the Erlang
distribution generalization fits in many life service processes with more versatile uses.

7.2.1 Reliability and Performance Evaluation

A compound system performs di�erent functions whereby its e�iciency is determined by
the quality and the functions its components. This describes the reliability of the system.

In a compound system each component has a�ached the following conditions:
(i) the probability of failure
(ii)the rate of failure
(iii)the distribution of time of failure and
(iv) the steady state and instantaneous unavailability of the component.

All these conditions makes the assumption that the failure and repair events of each
component is independent. Another assumption is that there is simple logical relationship
between the system and its components that forms it up. Kordecki and Szajowki(1990)
gives more properties of the combinatorial nature of such generalized reliability structures.

In this case, a good example is the performance of the computer hard disk which contains
three components in it that is the disk seek, disk latency and disk transfer. Data processing
time between the components takes exponential distribution with distinct parameter rates
hence making hypo-exponential distribution the best model in this case.

The survival time in the performance of each component in the system form the reliability
of the system. If one component in the system fails to perform therefore the reliability of
the whole system fails.

7.2.2 Computer Science and Communication

In many daily life experiences it has been observed overtime that the service time for an
input-output operations in computer system (Trivedi, 2002) more o�en displays hypo-
exponential distribution. The transfer of information in the two phases in the computer
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which includes the control and data transfer operations takes the hypo-exponential
distribution with di�erent parameters.

The response time of the time of the router or web service depends on the performance of
the metrics. The percentiles of the time of the metrics provides a be�er understanding of
the mean value of the system.

In computer communication, the percentile takes hypo-exponential distribution that can
be seen as a generalized Erlang distribution where from each phase i with distinct rate λi

(Bushara and Perros, 2011).

The CDF of the hypo-exponential is given by:

c =
n

∑
0

{
(1− c−λisn)

n

∏
j=1, j 6=i

λ j

λ j−λi

}

then the cth percentile gives the arithmetic sum of the sum of the individual percentile
that determines the service time.

A computer input-output operation involves two processes that is the control operation
and data transfer operation that works in a sequence. Therefore the service time of these
sequential processes can be modelled in a two phases hypo-exponential distribution since
each phase has distinct rate in operation.

7.2.3 Heavy Tra�ic Modelling in �euing Systems

In heavy tra�ic customer flows these distributions helps to model the queuing systems for
instance in modern communication systems where a lot of people are involved, transporta-
tion and even computer systems with heavy tra�ic. It helps to determine the performance
of the systems, queuing length and waiting time distribution in the system. The asymp-
totic behaviours of the various models provides and understanding on the significance of
the service systems.

7.2.4 Risk Measures

In actuarial applications, these distributions help to model insurance performance in order
to avoid losses. Risk managers use these distributions too in determining prices, make
reservations and responsible risk decisions for an organization.
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7.2.5 Aggregate Loss Models

Insurance companies survives due to their ability to sum individual risks to an aggregate
risk that is manageable for the company. This enables the insurance to determine the
premium that a�ractive to the customers to avoid losses or get trapped in debts.
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8 CONCLUSION

This project has considered sum of n fixed exponential random variables with identical
parameters as well as for the distinct parameters. The study provided general cases and
some of the properties able to be established.

A simple general method of obtaining the probability density function for a fixed sum of
independent and identically distributed exponential random variables forming and Erlang
distribution has been described. Statistical properties for the distribution have been done
and proof made through the moment generating function for an Erlang distribution. Also
by methods of moments and maximum likelihood estimation method estimators for the
parameters of an Erlang distribution were obtained.

By use of Laplace transform we developed compound distribution of exponential random
variables in relation with various discrete distribution. This provided several compound
distributions that may be useful in various applications. Compound distributions obtained
include: Poisson, Bernoulli, Binomial, Geometric and Negative Binomial distributions.

In this project we have proposed compound mixed Poissons distributions with desir-
able properties for modelling claim frequencies. Compound mixing Poisson described in-
clude the Poisson-Exponential, Poisson-Gamma,Poisson-Transmuted Exponential, Poisson-
Lindley, and Poisson-Generalized three parameter Lindley mixing distributions. The results
obtained may be used to derive formulae to determine total claims density when the
distribution comes from the exponential random variables.

Hypo-exponential distribution for the random variables with distinct parameters have
been studied thereby establishing the cumulative density function and probability density
function through use of convolution approach and moment generating function technique.
Some of the properties related to hypo-exponential distribution were provided progres-
sively using two parameters in the sum of exponential distribution to the general case
proposed as a simple formula that can be used.

The probability density function for the hypo-exponential distribution models when the
parameters form arithmetic sequences and geometric sequences were also derived.

Finally, provided are some of the applications of the distribution studied here in math-
ematical modelling. The scope of application is enormous that only a few were dealt
with.
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8.1 Scope of Future Works

Following this interesting study and need for extensive application of sum of exponential
random variables, the following areas have been observed and proposed for further studies:

(i) The computation of the kth derivative of the sum of exponential random variables.

(ii) The pdf for models for both Erlang and hypo-exponential random variables when some
of the parameters are identical and others are not identical in the distribution and their
related properties.

(iii) Parameter estimation for the general cases of hypo-exponential distribution.
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