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Abstract

The fundamental problem that led to the development of the theory of error correcting 

codes was that of having a reliable communication over unreliable channels. A commu

nication channel can be as simple as the air between the voicebox of one adressing an 

audience and the ears of the listeners. Copper wires connecting telephones or modems 

can also be considered as channels. In the case of data storage, say in a magnetic tape or 

disc, the magnetized field in the magnetic tape or disc is the channel.

One property of these channels is their capacity to distort the information. For instance, 

the copper wires connecting telephones may get heated resulting in background interrup

tions. Magnetisation on the tape may re-align over time, or the head of the drive reading 

the tape or disc may be ill positioned and the right magnetisation be misread! Such 

distotortions to our good information will be referred to as noise.

There are two main ways of handling noise; physical means and system means. Under 

physical means, one "targets" the cause of noise and seeks to eliminate it,. For instance if 

the drive head misreads the magnetisation, then a better drive is used as a replacement 

for the "now faulty drive". As for system means, one "sandwiches" the channel between 

two devices; an encoder and a decoder (see figure 0.1) so that any form of noise can be 

detected and possibly corrected. The theory of error correcting codes is involved in this.

For our purpose we will consider an abstract communication channel called the Binary 

Symmetric Channel (BSC). In BSC, information to be transmitted is encoded as a string 

of 0's and Ts. An error is then considered as an interchange between the binary digits in 

the sent and received information symbols.

... Encoder Channel Decoder

.fig-0.1 A simple Communication Channel.
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Below is a diagramatic representation of a binary symmetric channel.

fig.0.2 A Model of BSC.

Until 1948, encoding with minimal error was done at the expense of information rates. 

Information symbols to be transmitted were repeated several times with more efficiency 

gained by higher order repetitions. If n, say is the order of repetition, then each bit 

represented 1/n of the information and this value aproaches zero as the order of repetition 

becomes very large. Shanons ground breaking work [lj created a platform for the launch 

of error correcting codes (see history of coding in the introduction). Since then, various 

mathematical disciplines have lead to the development of this theory. In this Dissertation, 

we will consider the "contributions'* from Algebra and Geometry in Coding Theory.
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List of Symbols and abbreviations

• BSC:- Binary Symmetric Channel.

• BCH code:-Bose Chaudhuri and Hocquenghem code.

• Bit:-Binary digit.

• RS code:-Reed-Solomon code.

• F7[xi • • • , xn]:-the ring of polynomials over the field F. in indeterminates x\ • • • , x n

• (n ,k ,d )—code:-A code of length n, dimension k, and distance d.

• A n : — An n —affine space.

• Pn : — A projective space.

• G R S  code:- The Generalised Reed-Solomon code.

• M D S —codes:-Maximum distance separable codes.
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Introduction

Chapter 1

Information revolution is in full swing today. The number of web page's on the computers 

connected to the internet runs from hundreds of millions to billions. With all these terabits 

per second flying around the world, reliability of the networks becomes a major concern.

Loosing just 0.001% of data on a network link whose capacity is one gigabit per second 

amounts to loss of 10000 bits per second. On average, a typical newspaper story has 

1000 words which can be estimated to be 42000 bits. Thus such a loss as above can be 

equivalent to loosing one newspaper story every four seconds, or put another way, loosing 

900 newspaper stories every hour! Even a small error rate becomes impractical as data 

rates increases to statospheric levels as they have over time.

It is a fact that all networks corrupt the data sent through them. The question is, can we 

find a means of ensuring that good data gets through poor networks intact? Coding theory 

seeks to adress this problem. The major concerns of coding theory are the construction 

of efficient coding schemes that are capable of:

1. Correcting a relatively large number of errors.

2. Achieving a relatively high rate1 of information transmission.

3. Attaining relatively simple and economical procedures to encode and decode the

To get a deeper understanding of these ideas we need to abstract a communication system. 

A block diagram of a simple communication system employing an error-correcting code 

is shown below.

'the concept of rate is explained in the next chapter

messages.
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Coded
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Coded Estimate of

message original
received message

fig. 1.1 A Model Channel that uses Error-Correcting Codes.

1.1 A Brief History of Coding
The Ground Breaking Work By Shannon and Its Signifficance

The history of error-correcting codes began in 1948 with the publication of a famous paper 

by Claude Shannon. Shannon showed that associated w ith  any com m unication channel 

or storage channel is a number C  (measured in bits per second), called the capacity2 
of the channel. The significance of this association is that, whenever the information 

transmission rate R (in bits per second)of a system is less than C  then, by using an error- 

correcting code, it is possible to design a communication system for the channel whose 

probability of output error is as small as desired. In fact, an important conclusion from 

Shannon’s theory of information is that it is cheaper and ultimately more effective to use 

a powerful erro-coll ecting code at the terminal device of communication system, instead 

of making a communication channel error-free.

2the maximum number of information symbol a channel can convey per unit time.
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Advances Over the Years

Shanon gave no idea on how to find suitable codes; his contribution was to prove that they 

exist and to define their role. Throughout the 1950s, much effort was devoted to finding 

explicit constructions for classes of codes that would produce the promised arbitrarily 

small probability o f error with meager progress. In the 19G0s, for the most part, there 

was less obsession with this ambitious goal; rather, coding research began to settle down to 

a prolonged attack along two main avenues. The first avenue has a strong algebraic flavor 

and is concerned primarily with block cod«*s. The first block codes were introduced in 1950 

when Hamming described a class of single-error-correcting block codes. Shortly thereafter 

Muller (1954) described a class of multiple-error-correcting codes and Reed (1954) gave 

a decoding algorithm for them. The Hamming codes and the Reed-Muller codes were 

disappointingly weak compared with the far stronger codes promised by Shannon and so 

the search went on!

The major advances came when Bose and Ray-Chatidhuri (1960) and Hocquenghem 

(1959) found a large class of multiple error-correcting codes (the BCH codes), and Reed 

and Solomon also discovering another class of codes; the Reed Solomon(RS) Codes (1960). 

Although these remain among the most important classes of codes, the theory of the sul>- 

ject since that time has been greatly strengthened, and new codes continue to be discov

ered. The discovery of BCH codes led to a search for practical methods of designing the 

hardware or software to implement the encoder and decoder. The first good algorithm 

was found by Peterson (1960). Later, a powerful algorithm for decoding was discovered 

by Berlekamp (1968) and Massey (1969), and its implementation became practical as new 

digital technology became available. Now many varieties of algorithms are available to fit 

different codes and different applications.

The second avenue of coding research is more probabilistic in nature. Early research 

was concerned with estimating the error probability for the best family of block codes 

despite the fact that the best codes were not known. Associated with these studies were 

attempts to understand encoding and decoding from a probabilistic point of view, and 

these attempts led to the notion of sequential decoding. Sequential decoding required the 

introduction of a class of nonblock codes of indefinite length, which can be represented by 

a tree and can be decoded by algorithms for searching the tree, hence the convolutional 

codes.

In 1970's, Goppa defined a class of codes that is sure to contain good codes, though 

without saying how to identify the good ones. The 1980s saw encoders and decoders 

appear frequently in newly designed digital communication systems and digital storage 

systems. A visible example is the compact disk, which uses a simple Reed-Solomon code 

for correcting double byte errors. Reed-Solomon codes also appear frequently in many 

magnetic tape drives and network modems, and now in digital video disks. Meanwhile, 

mathematicians took the search for good codes based on the Hamming distance into

3



the subject of algebraic geometry and there started a new wave of theoretical progress 

that continues to grow. Algorithms for decoding of large uonbiiiary block cod«*s defined 

on algebraic curves have been explored. In particular, decoders for the codes known 

as hermitian codes are now available and these codes may soon appear in commercial 

products. At the same time, the roots of the subject are growing even deeper into the 

rich soil of mathematics.
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1.2 Objective
In this Dissertation, I seek to;

• Survey the I heory of Error Correcting Codes along two main fronts;

— Algebra.

-  Geometry.

• Establish if any the interrelationship between the codes discussed.

The probabilistic account will not be tackled and any interested reader is referred to |19|.

In the next chapter, I discuss some Algebraic concepts which will prove necessary for the 

introduction of the notion of codes. I then use these concepts to introduce the notion 

of codes, in Chapter 3 giving simple examples. In Chapter 4, I give a summary of some 

results in Algebraic Geometry necessary for code description. I do this carefully to capture 

the transition between "Algebraic" coding and "Geometric" coding. As a matter of fact 

it will be seen that some of the most important codes that were earlier discussed from the 

point of view of Algebra are actually instances of Geometric codes! As a concession to 

the dissertation I try to establish any possible inclussion relationship among the classes 

of codes that are featured in the write-up.
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Chapter 2

Some Algebraic Concepts

2.1 Algebraic Systems
In order to fully comprehend the theory of error correcting codes, we need an under

standing o f structure of some sort which will allow for construction of codes as well as 

enable the practical instrumentation of the codes. We start by considering a well defined 

collection S  of objects. Such a collection will be called a set. On this set, we define a 

rule that assign to any pair of elements, an element in S and call it a binary operation. 

A  binary operation is normally denoted by symbols like *, + , •, ©, ®, e.t.c. If for

any pair of elements, a,b e S, a binary operation * is such that;

a * b — b * a (2.1.1)

then * is said to be commutative otherwise * is non-commutative. For the case when 

a * (b *  c) =  (a *  b) * c for all a, b, c € S  *, is said to be associative. A set together with 

atleast a binary operation is called an algebraic system.

2.2 Groups and subgroups
The simplest algebraic system comsist of a set S together with an associative binary 

operation. Such a system is referred to as a semigroup.

D efin ition  2.2.0 .1 (Group). A G roup  is a set G  together with a binary operation * 

defined on it and is such that the following conditions hold:

i). the binary operation * is associative.

ii). G contains a unique element e, such that for any element a in G . a * e  =  e * a  =  a. 

This element is called the id en tity  elem ent o f the group G.

6



in ). For any element a in C  there exists a unique element a' in G  such that;

a * a1 =  a1 a =  e

the element a' is the inverse of a and vice versa.

If in addition equation 2.1.1 holds in G, then G  is a called commutative or abelian group. 

A group with finite number of elements is said to be finite.

N ota tion  2.2.0.2. It is sometimes written (G , *) to mean a group G  together with the 

binary operation *.

D efin ition  2.2.0.3. A multiplicative group G is saul to In cy c lic  i f  there is an element 

of a G G which generates the group. In such a case any element say b € G  is expressible 

as b =  a3 fo r  some integer j .  We call the element a G G the generator o f G  and denote

G = ( a )

D efin ition  2.2.0.4 (Equivalence Relation). A subsi t II o f S x S  is called an equivalence  

re la tion  on a set S  if  it has the following properties;

a ) . (s ,s ) G l i  Vs G S  (reflexivity)

b ) . (s, t )  G R  => (£, s) G R (symmetry)

c )  . (s, t )  G R (t,u ) G R => (s,u ) G R (trensitivity)

Equivalence relation R on a set S  pattitions S  i.e. the relation induces a representation 

of S  as a union of non-empty mutually disjoint subsets of S.

the collection of all elements of S  equivalent to s forms an equivalence class o f s, denoted 

by [s] =  { t  G 5 | (s, t) G R}

D efin ition  2.2.0.5. For any arbitrary integers a and b and a positive integer n we say 

that a is congruent to b modulo n and write a =  b(mod n), i f  the difference a — b is a 

multiple o f n. i.e. a =  b +  kn fo r some integer k.

Congruence mobulo n partitions the set of integers into the foilwing equivalence classes.

[0] =  (• • • , —2 n, —n, 0, n, 2 n, • • •)

[1] =  (• • • , - 2n A-1, — n +  1, 1, n +  l , 2n +  1, • • •)
(2.2.1)

[n -  1] = (• • • , -2n -  1. —n -  1,-1,n -  l,2n— 1,* • •)

We can define on the set R =  { [0], [1], • • • , [n — 1] } a binary operation '+ ' by;

[a] -I- [6] =  [a +  b]

Then the set R together with the binary operation forms a group.

7



Subgroups

D efin ition  2.2.0.6. I f  a subset I I  of a group G  forms a group with n sped to the binary 

operation of G, then H is called a subgroup of G.

D efin ition  2.2.0.7. Let (G , * )  be. a group and (//.*) a subgroup o f G. Let a € G. Then 

the set of elements a * H  :=  {a * h \ h e H ]  is called the left coset o f II  determined by 

a G G. We can immitate this construction fo r  the right coset.

Clearly, for a commutative case, the right and left cosets are identical, and since we 

are primarily concerned with commutative groups, no distinctions will be made. Coset 

decomposition partitions a Group into distinct orbits.

2.2.1 Homomorphism

If (G\ *) and (G\ •) are two groups, then a map

/ : <7 -  G'

is called a homomorphism of G  into G' if Va, b 6 G

f(a  *b ) =  / (a) • f (b)

If in addition, / is onto then / is called an epimorphism.
A  one-to-one homomorphism of G  onto G ' is called an isomorphism of G  onto G  . In this 

case G  and G' are isomorphic. We call / an automorphism if G =  G

2.2.2 Rings and Fields

D efin ition  2.2.2.1. A rin g  is a set l i  with two binary operations namely; "addition” 

denoted by +  and "multiplication" denoted by •, such that the following properties hold:

i )  . (R , 4-) is an abelian group.

i i )  . (/?,•) is a semigroup.

Hi), multiplication is distributive over addition.

Such a ring is sometimes denoted by ( R , + , •).

If a ■ b =  b • a Va.b € R  then R  is a commutative ring. Similarly we say that R is a ring 

with identity if it has a multiplicative identity.

8



D efin ition  2.2.2.2. A commutative nng with identity each o f whose non-zero elements 

has a multiplicative inverse is called a fie ld .

A noil-commutative ring each of whose non-zero elements has a multiplicative inverse is 

called a division ring or a skew field. The minimum number of elements a field can ever 

have is two, since the field must have the additive identity and multiplicative identity. 

The addition and multiplication table of such a field is as below:

Tabic 2.1: Addition table

Table 2.2: Multiplication ta

+ 0 1
0 0 1
1 1 0

1 trt >le dr a
• 0 1

0 0 0
1 0 1

a field with two elements

>le for a field with two elements

2.2.3 Vector Spaces

D efin ition  2.2.3.1. Let F be a field. A vector space over F is a system (V, + ,• ) in which 

the following axioms are valid.

1 ) . (V, + ) is an abelian group.

2 ) . For any a G F and an element v 6 V, a • v is an element o f V.

3 ) . For an elements u ,v  6 V, and a,b € F

a - { u  +  v)  =  a-  u -\-a-v  

(a +  b ) - v  =  a-  v +  b- v

4 )  ■ For any v £ V and any a, 6 £ F

(a • b) ■ v =  a • (b • v )

where a. • b is the usual product of two scalars and b • v is the multiplication of the 

vector v by a scalar b according to the composition laws of the vectoT space.

5 ) . Let 1 be the unit element of F then fo r  fo r  any v e  V , l  ■ v =  v

D efin ition  2.2.3.2. A subset S of V is called a vec to r subspace of V if  (S ,+ ,- ) is a

vector space.

T heorem  2.2.3.3. The set of all linear combinations of a set o f vectors {wi, ,Vk} o f 

a vector space V is a subspace o f V.
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D efin ition  2.2.3.4. A set S =  , v * } in a vector spaa V is said to be linearly

independent if and only if  £2* , c,i>, = 0 implies that all r, ’s an all 2eros.

D efin ition  2.2.3.5. I f  the set S  =  {v i,*** ,v * } generates a vector space V, then the set 

is said to span and we write V  =  span(v j,*** ,v*).

Such a set S if  linearly independent us called a basis for V , and the number o f vectors in 

S is called the d im ension  of the vector space V .

I heorein 2.2.3.6. I f  a set of k vectors , t spans a victor spaa that contains a

set o f m linearly independent vectors tij, • • • , um, then k > rn.

Theorem  2.2.3.7. I f  two sets of linearly independent victors span the same space, then 

there are the same number of vectors in each set.

Theorem  2.2.3.8. I f  V is a k — dimensional vector space, then any set o f k linearly 

independent vectors in V is a basis for V .

R em ark  2.2.3.9. Theorem 2.2.3.8 above points to the fact that tin basis of a vi ctor spaa 

is not unique, and any two bases have same cardinality.

Notice also that in light of theorems2.2.3.6, and 2.2.3.7, we can view a basis o f a vector 

space as a m axim a l linearly independent set in V, or as a m in im a l spanning set of V .

D efin ition  2.2.3.10. An in n er product or dot product o f two n —tuples us a field 

element and is defined as follows:

(a,\, a2, • • • ,an) • (6i , 62, • • • ,bn) =  {a\b\ +  a2&2 4-------+■ anb„)

Such a relation is commutative with • distributive over +. I f  the inner product of two 

vectors is zero, then the vectors are said to be orthogonal.

Th eorem  2.2.3.11. The set of all n -tuples orthogonal to a subspace V\ of n-tuples  

forms a subspace T2 o f n — tuples.

The subspace V2 in Theorem 2.2.3.11 is called the null space, of \ i

Any vector which is orthogonal to every vector of a set which spans \ is in the null space

o f V.

2.2.4 Matrices

An m x n matrix is an ordered set of mn elements in a rectangular array of m rows and

n columns:
(  an ai2 • *• ain ̂

( ai , j )  ~
; •

a m2 ’ amn/

Generally the elements a,j of a matrix may be considered to be elements of any ring, but 

for our purpose we will consider the matrices with elements in a field.

10



D efin ition  2.2.4.1. The set of all linear combinations of rou .s (n  sptctively columns) o f 

a matrix is the row space (respectively co lum n sjmce) of tin matrix. Tin dimension o f 

the row space always equals the dimension o f the column space. Thus dimension is called 
the rank of the matrix

For any matrix, we can perform the following operations;

1. interchange any two rows.

2. multiply a row by a non-zero field element.

3. add a scalar multiple of one row to another row.

The process can be carried out so that the resulting matrix has a zero below every leading 

entry. We can further make each leading entry to have a zero above it as well and make 

the leading entry to be unity. A matrix of this form will lx* said to be in standard form.

Th eorem  2.2.4.2. I f  one matrix is obtained from another by a succession of operations 

1,2 and 3 above, then both matrices have the same row spare.

The transpose of an rn x n matrix A/ is an n x in matrix, denoted by A/7, whose rows 

are the columns of M , and thus whose columns are the rows of A/.

l\vo m  x n matrices can be added, element by element:

(flij) T  (bij) (fljj +  b,j)

W ith this definition it is easily verified that matrices form an Abelian group under addi

tion.

An n x A: matrix (atj) and a k x m  matrix (60 ) can be multiplied to give an n x m product 

matrix (pi j ) by the rule;
k

Pij = aubii
i=l

The null space of the row space of a matrix is called the null space of the matrix. A 

vector is in the null space of a matrix if it is orthogonal to each row’ of the matrix. If the 

n —tuple v is considered to be a 1 x n matrix, v is in the null space of an m x n matrix 

A/ if and only if v M J =  0.

Th eorem  2.2.4.3. I f  the dimension of a subspace of n — tuples is k, the dimension of the 

null space is n -  k.

11



2.3 Some Additional Theory on Rings
Let R  be a ring and a 6 R. If 36 -A 0 in R such that ab = 0 then we call b a zero divisor 

o f a and conversely. If R  has no zero divisors i.e. a6 = 0 => a =  0 or 6 =  0 for a, b £ R  

then R is an integral domain. A commutative integral domain with a unit element is 

called a Unique factorisation domain (UFD) if;

• every non-unit of R is a finite product of irreducible factors.

• every irreducible element is prime.

An example of a UFD is the ring of integers.

Consider now a subring J of R in which the product ar or ra is well defined for a G .7 

and r  G R. Then J is called an ideal of R. For a commutative case (i.e where R is 

commutative), J is generated by one element of a G It . We write J — (a) and call .7 a 

principal ideal. A commutative ring R in which every ideal is principal is referred to as a 

principal ideal domain(PID). Any two elements a and b in a FID have a gcd which can 

be obtained as the generator of the ideal (a, 6). Since ideals are normal subgroups of the 

additive group of a ring, it follows that an ideal J of a ring R defines a partition of R 

into disjoint cossets called residue classes modulo .7. We denote the residue class of an 

element a G R modulo .7 by [a] =  a +  .7. The set of residue classes of R modulo .7 forms 

a ring with respect to the operations;

• (a +  J ) +  (6 +  ,7 =  (a + b) +  J

• (a +  .7) (6 +  J ) — ab +  J

Such a ring is called residue class ring or factor ring of It modulo ./ and is denoted by 

R/J.

D efin ition  2.3.0.4. An ideal M  of R is said to be m axim a l if  M  C .7 C R  => .7 =  M

or J =  R.

The following is a useful characterisation of a maximal ideal.

Theorem  2.3.0.5. Let R  be a commutative ring with identity. 7 hen an ideal M of It is 

maximal i f  and only i f  R/M is a field.
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D efin ition  2.3.O.G. An integral domain R i§ $tdd to be a Euclid* <m Ring if fo r  every 

a ^  0 in R, their, is a defined nonnegative integer u(a) such that;

i )  . fo r  all a,b G l i  both nonzerou(a) < u(ab)

i i )  . fo r  any a.b £ II , both nonzero there exist t , r  6 II such that

a =  tb +  r

where r  =  0 or is(r) <  u(b).

T h eorem  2.3.0.7. let l i  be a Euclidean Ring. Then;

• R is a principal ideal domain.

• any two elements a,b e R have a greatest common divisor d. Moreover,

d =  \a +  pb

for some A, p € li.

D efin ition  2.3.0.8. Let R be a commutative ring with unit element (identity). An de

ment a e R is a unit in R if  there exists an element b € II such that ab = 1.

N o te  2.3.0.9. Do not confuse a unit with a unit elem ent! A unit in a ring is an 

element whose inverse is also in the ring.

D efin ition  2.3.0.10. In the Euclidean nng li, a non unit n is said to be a p rim e  tIt rnt nt

o f ft if  whenever ir =  all where a, b are in R  then one of a or b is  a unit m R.

Lem m a 2.3.0.11. Let R be a Euclidean Ring. Then every element in R is either a unit 

in R or can be written as the product of a finite number of prime elements of ft.

2.3.1 Polynomials

D efin ition  2.3.1.1. Let R be an arbitrary Ring. A po lynom ia l is an expression of tht 

form ; n

f ( x )  =  a’ j i  =  a° +  a' x  +  tt2x2 +  +  anX"

where n is a nonnegative integer. a.: 0 <  i <  n are elements o f ft and is a symbol

not belonging to ft called an in d e te rm in a te  over ft. We refer to a„ ±  0 the lent ing 

coefficient, ao /  0, the constant term. The integer n is called the degree of the polyno

mial, denoted by d e g (f (x ) ).  By convention, deg(0) =  -oo . Here 0 stands fo r the zero 

polynomial. I f  ft has identity and the leading coefficient of is then f { x )  

be m on ic.
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We shall consider the polynomials

/ ( * ) = x ^ * 1
km |

n

y(x ) ■  X fc,x'
km 1

to be equal if and only if a, =  6j for 0 < i <  n

We can add polynomials in a natural way. The sum of two polynomials /(./ ) and <y(x) is 

the polynomial s(x); n
s(x) =  / (x ) +  g (x ) =  ]ST(a* -I- 6,)x'

kml
We can also multiply two polynomials. Let

n

/ w  =  X ® * * '
k=\

m

= X 6̂
fc=i

Then the product of / (x ) and gf(x) is the polynomial p(x)\

n

p(x) =  f { x ) g { x )  =  X ^ fc
Jt=i

where C* =  ]T]fc a»̂ j> i  +  j  =  k.
W ith these operations, the set of of all polynomials over R with one indeterminate ./ foi ms 

a ring. We call this ring the polynomial ring and denote it by R[x\.

T h eorem  2.3.1.2. Let R  be a ring. Then;

i )  . R[x] is commutative if  and only if  R is commutative.

i i )  . R[x] is a ring with identity if  and only if  R has an identity.

in ). R[x]is an integral domain if  and only if R is an integral domain.

R em ark  2.3.1.3. From now on we will be concerned with the case where R is a Euclidean 

Ring. In fact fo r coding purposes we will in future be. interested in polynomials over fields,

more specifically finite fields.

Th eorem  2.3.1.4 (D iv is ion  A lgo r ith m ). Let g ^  0 be apolynomial in R[x], Then for  

any f  6 R[x]  there exist polynomials q ,r  G F[x]  such that,;

f  =  Q9 +  r

wheredeg(r) <  deg(g)
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Remark 2.3.1.5. Ih< fact that H i junntts a division algorithm implies that every ideal 
of  H\x] is principal. Infact /?[.rj is a Euclidean Ring if wt consider the degree function. 

I  herefore we can have the following generalisation of the GCD.

I heorem  2.3.1.6. Let f i ,  fa - ■ ■ ,/n be polynomials in /?(x] not all o f which air. 0. Then 

there exists a uniquely determined monic polynomial d e R\x\ unth tin following properties;

i). (I divides each /,, 1 <  i  <  n

ii). any polynomial c 6 R[x) dividing each f j ,  1 <  j  <  n, divides d.

Moreover, d can be expressed in the form;

d =  b\f\ +  • • • +  bnf n

where b\,62 • • • , bn G R\x]

T h eorem  2.3.1.7. Let f\, f 2 "  ' ,fn  be polynomiab in R[x] not all o f which are 0. I hen 

there exists a uniquely determined monic polynomial m € R[x\ with the following proper

ties;

i). m is a multiple o f each f j, 1 <  j  <  n

i i ).  any polynomial b 6 /2[x] that is a midtiple of each f j , \ < j < n ,  i sa multiple of m. 

The polynomial m is called the least common multiple 0/ / j. • ■ •

Irreducible Polynomials

When g{x)  divides f ( X )  wit hout a remainder, then g{x)  is a factor of f { x ) .  A polynomial 

f ( x )  over a field F is said to be irreducible over F if f { x )  can not be expressed as a product 

o f two polynomials both over F and of degree lower than that of f [ x ) .  We sometimes 

refer to an irreducible polynomial as prime polynomial.The ring of polynomials over a 

finite field has an irreducible polynomial of every degree.

N o te  2.3.1.8. Irreducibility of polynomials depends on the field under consideration. For 

example x2 — 2 6 Q[x] is irreducible over Q. However over R. r 2 — 2 =  (x  +  >/2)(.r — \/2).

2.4 Field Extension
Recall that a field F is a commutative ring with identity whose nonzero elements form a 

multiplicative group. Suppose k is a subset of F and k. is itself a field with respect to the 

binary operations of F, then we call k a subfield of F. For example, the field IR of real 

numbers can be considered as a subfield of the field C of complex numbers.
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D efin ition  2.4.0.9 (Extension Field). Let n be a sub jit Id of F and M  l» a subset of F. 

1 hen the intersection o f all subsets containing both k and M  is called an extens ion  

f ie ld  o f k obtained by adjoining the elements o f M . It us denoted by k ( M ) .

I f  M  =  ,0„) then n{\l )  := (0, , . . .  ,0a). // M  =  0. then (0 ) w called a sim ple
ex ten tion .

D efin ition  2.4.0.10. Let F be an extention field of k . I f  F considered as a vector 

space over n is finite dimensional then F is called a fin ite  extens ion  o f k . We. call this 

dimension the degree o f ¥ over k .

D efin ition  2.4.0.11. Let k be a subfield of ¥ and 0 6 F. I f  0 satisfies a polynomial

equation

onx u +  •••-{• a\X +  Oq =  0 (2.4.1)

in  /c[x], then 9 is said to be algebraic over n. otherunse 0 is trancedental. We call an 

extension F over n algebraic if  all the elements of F are algebraic over k .

D efin ition  2.4.0.12. Let 6 be an algebraic element over k . Then the unique monic poly

nomial g 6 k [.t ] generating the ideal J =  / € k [x ]; f (0)  =  0 of k [x ] is called the m in im a l 

po ly n om ia l o f 6 over k . It is irreducible and if any polynomial h (x )  6 k [x ] is such 

that h(6) =  0, then g (x )  \ h[x) .

N o te  2.4.0.13. Any element of an extension field of degree m over k //as a minimum 

polynomial of degree m  or less.

A  polynomial / G «[ar] is said to split in an extension field F if / is expressible as a product 

o f linear factors in F[x] i.e. there exists elements Q i.a2i • • • 6 F such that;

f ( x )  =  a(x -  o i ) (x  -  q2) • • • (x -  « „ )

The field F is called the splitting field of / over k , if / splits in F and F =  k ( q \, Q2, • • • , ckn) f 

that is if it is the smallest field containing the roots of /.

T h eo rem  2.4.0.14 (Existence and Uniqueness o f Sp litting F ie ld ). I f  a is a field 

and f  is any polynomial of positive degree in k [x ], then there exists a splitting field of f  

over k . Any two splitting fields of f  over k are isomorphic under an isomorphism which 

keeps the elements of n fixed and maps roots of f  into each other.

2.5 Structure of Finite Fields
A field is said to be finite if it has finite number of elements. The residue class ring 

Z/pZ  of integers modulo a prime p is an example of a finite field. This field is sometimes 

denoted by Fp. It is a prime field 1 with p elements.

! a field with no proper subfields

16



P rop os ition  2.5.0.15. Let ft be a field with q elements. Then then exist a prime p such 
that;

i )  . Fq C « .

i i )  . q =  pn fo r  some integer n.

in ). a q =  a Vo 6 k .

T h eorem  2.5.0.16 (Existence and Uniqueness o f Finite F ields). For every prime 

V and every positive integer n there exists a finite field with //' elements. Any finite field 

with q =  pTl elements is isomoiphic to the splitting field of rq r over Fp

Lem m a 2.5.0.17. The field Fpm is a subfield of Ff>n if and only if  m  divides n.

P rop os ition  2.5.0.18. For every finite field F9 the multiplicative group F* o f non-zero 

elements of Fq is cyclic.

D efin ition  2.5.0.19. A generator of the cyclic group F* is called a p r im it iv e  dement 

o f Fq.

2.6 Roots
Since the set of roots of an irreducible polynomial over a finite field will lx1 essential in 

description of codes, we take a look at some information that can lx* derived from it.

Lem m a 2.6.0.20. Let f  6 Fq[x] be an irreducible polynomial over F, o f degre m. Then 

f ( x )  divides xqm -  x  i f  and only if  m divides n. Moreover the splitting field of f ( x )  over 

Fq is given by F̂ m Here q =  pn.

An irreducible polynomial in Ff/[.r] of degree m has a root a in Fq™. Furthermore, all the 

roots of / are simple (|14|,27) and are given by the m distinct elements a, a9, • • • aqm of 

F,r . Any two irreducible polynomials in Fq[x\ of the same degree have isomorphic splitting

fields.

D efin ition  2.6.0.21. Let Fqm be an extension of Fq and let a € F,r . Then the elements 

c*, aq, • • • aq"' are called the conjugates o f a with respect to Fqm.

2.7 Arithmatic in F2

We now look at a suitable field that we will prove useful in code construction. Since our 

binary symbols are strings of l's  and 0's taken from Z2 perhaps we could use it. However 

it has only two digits, thus if each character is to be represented in the field, we will need
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a bigger field. I his field can be obtained by considering the set on integers modulo a 

power of 2, say 2,n. I hus we can consider the field Z-^ where m is to be determined.

But we soon realize that ordinary arithmetic in Z-2«. does not meet the criterion for 

inverses. For example in Z 2< (containing interges 0, 1,... 15), 2 has no inverse. Thus, Z?* 

is not a field with standard multiplication as Z2 is. Ordinary arithmetic fails because 

1̂6 ~  (il> aIK  ̂^he generator of (16) is a composite number. Remember Z/> — ^  is a field 

for p a prime.

We thus need a different operation at least for the sake of multiplication. This operation 

is readily offered by polynomials. We know that Zp(q ) = when p(x)  is a minimal 

polynomial with root a. Its degree n is such that

p" = o(Zp(0)) (2.7.1)

We have thus successfully replaced the non prime 2m with a prime polynomial. 1 his 

isomorphism asserts the existence of the required field. In general we consider the ring 

IF2 [a:] of polynomials over F2. In order to construct a field with 16 elements, Equation 

2.7.1 asserts that the prime polynomial need to be of degree 4 since 24 =  16. In addition, 

this polynomial must be primitive in F24 I hese two conditions lead us to the choice of 

between two polynomials, namely

x4 +  x3 +  1 and x4 +  x +  1

Where F =  Z2 dim[Z2{a)  : Z] =  3 with the basis {0. l .a } .

So, we begin by the basis elements of the extension field and perform all the arithmatic 

modulo p(x)  =  x4 +  .t3 +  1 raising r* to powers successively identifies rv2 and nA as 

members of the extension field. We note the fact that a4 =  a 3 + 1 and use it as an identity 

for reducing each power of a greater than three. All the elements of Z 24 generated by the 

polynomial p(x)  =  x4 -t* xyi +  1 are tabulated below.
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element Polynomial representation binary reoresentation
0 0 (0,0,0,0)
1 1 (0,0,0, 1)
a a (0,0, 1,0)
a2 a2 (0, 1,0,0)
a3 a3 ( 1,0,0.0)
a4 a3 +  1 ( 1,0,0, 1)
a5 a3 + a + 1 ( 1,0, 1, 1)
cv6 a3 + a2 +  a + 1 ( 1, 1, 1, 1)
a7 a2™ + 1 (0, 1, 1, 1)
a8 a3 +  a2 + a ( 1, 1, 1,0)

a9 a2 +  1 (0, 1,0, 1)

a 10 a3 +  a ( 1,0, 1,0)

a 11 a3 + a 2 -1-1 ( 1, 1,0, 1)

a 12 a +  1 (0,0, 1, 1)

a 13 9ara (0, 1, 1,0)

a 14 a 3 +  rv2 ( 1, 1,0,0)

a 15 =  1 1 (0,0,0, 1)

Table 2.3: elements of Z 2< generated by the polynomial p(x)  =  .r4 +  r 3 +  1
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We can also use the primitive polynomial x4 + x +  1 to obtain the same elements of Z ^ .

Table 2.4: elements of Z 2< generated by the jolvnomial p ( j )  = i 4 + i  +  1

element Polynomial representation binary representation

0 0 (0,0,0,0)

1 1 ( 1, 1. 1, 1)
Or a (0,0, 1,0)

a 2 a2 (0, 1,0,0)

or3 r*3 ( 1,0,0,0)

a 4 Q +  1 (0,0, 1, 1)

a 5 9era (0, 1, 1,0)

a 6 a3 +  a 2 ( 1, 1,0,0)

a 7 a3 -I- a  +  1 ( 1,0, 1, 1)

a 8 a2 +  1 (0, 1,0, 1)

a 9 a3 +  a ( 1,0, 1,0)

O'10 0!20' +  1 (0, 1, 1, 1)

O'11 a3 +  a 2 +  a ( 1, 1, 1,0)

a 12 a3 +  a2 +  a +  1 ( 1, 1, 1, 1)

a 13 a3 +  a 2 +  1 ( 1, 1,0, 1)

a 14 a3 +  1 ( 1,0,0, 1)

a 15 =  1 1 (0,0,0, 1)
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To examine why a primitive polynomial is needed to generate all the field elements, we 

use the non primitive polynomial q{x) =  x4 +  i 3 +  j 2 +  i +1. Meehni<ally,these fields are

Table 2.5: elements of Z2* generated by the polynomial p(x)  -  j 4 -t- j -3 +  1
element Polynomial representation binary reoresentation

0 0 (0,0,0,0)
1 1 (1,1,1,1)
a Q (0,0,1,0)
a 2 Q2 (0,1,0,0)
a 3 Q3 (1,0,0,0)

a 4 q3 +  a2 +  a + 1 (1,1,1,1)
a 5 1 (1,1,1,1)
a6 a (0,0,1,0)

Of7 o2 (0,1,0,0)

a 8 a3 (1,0,0,0)

a 9 a3 +  a2 +  a +  1 (1,1,1,1)

a 10 1 (1,1,1,1)

a 11 a (0,0,1,0)

a 12 a2 (0,1,0,0)

c*13 a3 (1,0,0,0)

a 14 a3 + a2 +  a +  1 (1,1,1,1)

easy to generate. Multiplication of an element by a. result in a left shift of the previous 

binary value. If a ’1’ is shifted out of the fourth degree, it constitutes a polynomial of 

the fourth degree and the result is reduced by subtracting the generator polynomial (mm 

the result. However, the subtraction in the binary arithmatic is merely exclussi\e OH 

function. So an encoder for the field elements is easy to build in logic circuits.

2.8 Cyclotomic polynomials
For 6 ^  0 in a field K, the exponent o f b is the smallest positive integer n (if it exists) 

such that bn =  1 .That is 6 is a root of x "  -  1 hut not of xd -  1 for any smaller d. The 

polynomial <I>„ e  K|x] such that 4<„(6) =  0 if and only if b is of exponent n is called the 

nth order cyclotomic polynomial of b.

21



C oro lla ry  2.8.0.22. The function xn -  1 has no repeated roots in K[x] if  and only if th i 

characteristic of K  does not divide n.

P rop os ition  2.8.0.23. For n >  1 define inductively tht n"‘ order q/clotom ic polynom ial

# » ( * )  as;
T xn 1vj/ — --------------------------------------------------- -

1cm o f  all xd -  1 0 <  d < n; d\n

with the 1cm monic, then we have the following properties;

( i )  is a monic polynomial.

( i i )  fo r  a  £ K  (scalar) tyn(a)  =  0 if  and only if  a n =  1 and a* ±  0 fo r all 0 <  t <  n

(H i) gcd{^m{x), ^ ( x ) )  =  1 fo r  m < n with m \ c, n \ c  where c is the characteristic of

the field K.

(iv ) The degree o f , ^ ( x )  =  ip(x) -the Euler's phi-function.

(V)  tyn(x) =  n i < d < n X ,JM*d(x))

(v i) x n -  1 =  I I 1 <d<n: d\n * * & ) )

We conclude by using the polynomial x63 -  1 and its factorisation over F2 to illustrate 

some concepts already discussed. We pick a primitive element a of =  F^. I lien all 

the field elements can be expressed as a power of this element o, and they aie.

0, l , a , a 2, a\ • • • , a<>2

Each of the elements in F 4̂ are roots of a:63 — 1, i e. we have the fac torisation

x63 -  1 =  a(x -  l ) ( x  -  a) ( x  -  a2) •• • {x -  aG~)

F *4 is cyclic by corollary 2.5.0.18, and a  is primitive, a r’3 =  1. We then have that a 21 is 

of order 3 and so is « 42. By Lagranges theorem, the order of each element must divide 

63, which is the order of the group. As such, the possible orders ol the integers m are 

1.3.7.9,21,63. Morover we pick the smallest such m so that (or*1)'* =  1» yet rv is 

considered of order 3 and not of order 9. We have the orders of the roots as follows;

a 21 _  4 2 are o f  order 3

a 27,a 36, a 45, a 54 are o f order

« 28,« 35, a 49, a56 are of order
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I lu'n* flic 21 elements of order 21. Ihese are multiples of 3 that are divisible by neither 

7 nor 9. 1 he rest of the elements are of arder 63. The cyclotomic polynomials are;

'Pi =  x -  1

and so on.

Then x 63 -  1 =  'Pi'P3'P74'9'p2i ,P63

Upto cyclotomic polynomials, we have the following factorizations;

X21 -  1 =  ^211 7̂ 3̂ ,

x9 -  1 = <P9<P3<P, 

x7 -  1 = ^7^1 
x3 -  1 = #3^1

X — 1 =  I

where 'P, =  'Pj(x) 

Thus:

^63

'Pi =  x — 1

*3

*7

x3 -  1

x7 - l

#1

^3^1
x21- l

x63-  1

*P 21^,9t/,7 ^ 3 ^ , l

degree 1 

degree 2

degree 6

degree 6

degree 12

degree 36

R em ark  2.8.0.24. The order e of an element (5 of the extension field ¥q divides qk -  1 but 

no smaller number of the form qn -  1 where k is the degree of the minmmum polynomial

o f (3.
e =  3, 3 | 2” -  1 fo r  which we have n =  2

Therefore the number of elements of order 3 should have a minimum polynomial over F, 

with degree 2 because they are elements of F22. Thus vP3(x ) is irreducible over F2 

similarly, fo r e =  7 7 | 23 — 1, so that n =  3
Thus the elements of order 7 belong to F23 and have a minimin function of degree 3 over 

F2. A ll the other elements F2o are elements o f no subfield, and therefore all their minimum 

polynomials have degree 6 over F2g.

Note also that because all the roots of an irreducible polynomial have the same order, if  

one root of an irreducible polynomial p{x) has order i , all the roots have order 1 and are 

therefore roots o/’P jfx) and thus p{x)  divides 'P.(x). Therefore, ty9(x )  must be irreducible, 

vp2j (x ) has two factors of degree 6, and 4*63(30 has six factors of degree 6.
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Chapter 3

Some Coding Theory

3.1 Linear Block Codes
With the backgroung information in Algebra, vve are now ready to handle some coding 

theory. We introduce the notion of a code and quickly give it nice mathematical structure 

to obtain an object amenable to mathematical analysis.

D e fin ition  3.1.0.25. We Let Z + denote the set o f even integers and F a finite, set. This 

finite set constitute our alphabet and its elements are called letters. Then

V =  | * i € F f l < * < n ;  n e  Z + }

is the set o f all possible size n-tuple of letters (repetition allowed) from F. A subset C o f V 

is referred to as a Code and the elements of C are called codewords. For a Jived ii € Z * , 

we refer to a subset C o f V  a blockcode of length n if  each of its elements is n-tuple of 

elements of F. Without loss of Generality we take the finite set F to be a finite field. If 

C has k information symbols (k is the dimension of C as a vector space over F, then we 

will sometimes refer to C as an (n ,k ) code. The quantity R =  £ gives the in fo rm a tion  

rate.

The choice of the field F is quite deliberate. The design of electronic circuitry requires 

that we we work with the field F which consist of elements 0,1. I his is the field Z2. 

Thus the information is transmitted as blocks of digits of uniform length comprising of

0's and l's.

What is the motivation behind the description of a code as par Definition 3.1.0.25. The 

answer follows from the following argument. We concider the simplest technique used in 

error detection; the parity check, in which a single 0 or 1 is added at the end of the data 

block so that the block has an even number of Ts. If during transmission a sigle error (in 

one place) is committed then the received block of data will have an odd number of 1 s. 

The receiver can then request for a re-transmission. However, in satellite communication,
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iet,i.uihmission is prohibitively expensive and often time consuming. A better strategy 

would then involve encoding the data in a way that allow the receiver to detect and to
correct errors!

A very intuitive strategy would involve the introduction of redundant symbols. One way 

ol doing this would involve transmitting each binary digit (bit) of the original message a 

specified number of times, say r. The decoder on receiving the possibly garbled message 

then decodes by replacing the r-tuple by t he modal bit. Suppose the encorder transmits 

00000 but 00101 is received instead, then the decoder on realising that there are more O'* 

than l'.s decodes the block as 00000. Such codes are called repetition cod* s. It is clear 

that the code above detect up to 4 errors and correct 2 of them.

Rem ark 3.1.0.26. i). In general, repetition codes arc can detecting the presence of up

to r — 1 errors and con'eding up to [ ^ J  1 errors in each r-tuple.

ii). Repetition codes can be mewed as (n,k) codes, where n — kr , and R ~. This

shows that the information rate decreases with increase in r .

Another way of introducing ridundancy is by sphere packing. In this case the information 

is transmitted as sets of points in higher dimensional space, say an n—dimensional space. 

If k is the number of information symbols (in our case binary digits) to be transmitted, 

then n -  k symbols are adjoined to it in a more systematic way than mere repetition. 

This is the concept of parity check. This notion can be represented diagramatically as;

The idea is to have an even number of i's in each sphere. An important, decoding scheme 

1 [zj is the smallest integer < x
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we will see in a later section (syndrome decoding) will involve finding, mathematically, 

the bits that have been eroneously changed on transmission resulting in odd number of
l's in certain spheres.

Since words to be encoded are of fixed length k, we can think of them as elements of F* 

and the code as elements of F r‘ . The encoding process is defined as a one-to-one map

E : F* -  F"

Ihe image C  =  E (F ) is called the code. With this map, we can associate the decoding 

operation

D -> F k

such that

D • E  =  IFk

By defining the domain of this function £, wre have our codewords hence the information 

to be encoded. But how do we define the domain of the function? For large block 

codes without proper internal structure, it may be difficult to even determine codewords, 

let alone defining the code. This motivates the idea of additional structure which will 

facilitate characterization of codewords. We make some restriction to our map so that it 

is linear. We then have that a code is a vector subspace of F" of dimension k. We can 

now think of E  as a linear transformation. Matrix description then follows automatically.

By considering the set of basis vectors of a linear block code C. as the row's of a matrix G, 

say, we then realise that a vector c is a code vector if and only if it is a linear combination 

of the rows of G. The matrix G  can therefore be used to generate the code C. We call 

such a matrix the generator matrix of the code C.

An alternative description o f C by matrices arises from the following argument. Since C 

is a sub-space of dimension k , its null space is a vector space C  of dimension n -  k. A 

matrix I I  of rank n — k whose row space is C' can be made with a basis for C as rows. 

Then C is the null space of C', and a vector c is in C if and only if it is orthogonal to every 

row of //, that is, if and only if;

cH 7 = 0  or 

H ct  =  0.
(3.1.1)

If c =  (c1; c2, c3, • • • , Cn). Denote the element in the i th row and j th column of // by hxj , 

then Equation 3.1.1 implies that for each i (that is, each row of //),

=  0 (3.1.2)

j

Thus, the components of C  must satisfy a set of n -  k independent equations. These 

equations are called generalized parity checks, since in the binary case they aie siinph 

checks for even parity on certain sets of symbols in the code w’ord. I hat is, foi each row
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of //, the number of l/s in c that corresponds to l's in that row of H is even (for th<* 

binary case) if and only if c satisfies Equation 3.1.2. The matrix II is called a parity-check 

matrix o f C.

D efin ition  3.1.0.27. Two codes C andC1 are said to b< equivalent if they differ only in 

the arrangement of symbols.

Equivalent codes have same probability of errors.

By performing elementary row operations on the matrix G . we obtain a matrix G' =  

[Ik : A\. Then G and G' generates the same code. We say that G' is the standard form. 

An easy calulation shows that the parity check matrix I I  in standard form is [—A 7 \ln k 

We now consolidate the concepts by a rather detailed example.

E xam ple 3.1.0.28. Consider a binary (5,3) code. The vectors,

(0,0,0,0,0)(1,0,0,1,1), (0,1,0,1,0), (1,1,0,0,1), (0,0,1,0.1),
(1,0,1 ,1,0 ),(0 ,1,1,1,1) and ( 1, 1,1 ,0,0 ) (3.1.3)

forms a vector space say C . The code C is a rowspace of;

/1 0 0 o o\

0 1 0  1 0  
^ 0 0 1 0 1 /

or v
/ l 0 0 1 V

1 1 0  0 1
^ 1 1 1 0  0/

The two matrices are combanitorially equivalent (one of the matrices can be obtained from  

the other by a combination of row operations and column permutations) hence generates 

the same code. The form er is most preferable fo r  generating a (5,3) code.

Any message x\,x2,x 3 € F3 : F =  F2 is encoded as a 5— tuple

(X\,X2,X3,X\,X$) =  {xi ,X2,X3)G

=  {Xi,X2,X3,Xi +  X2,X\ +  £3)

hence;

£4 — X\ +  x2 

£5 =  x l  +  * 3

(a total o fn  — k equations) are the parity check equations. Thus fo r  (x„ i 2. * » ,* « .  * * )  to 

be an encoded message c, it must satisfy the parity check equations;

( —£1) +  ( —£2) +  £4 =  0 

( -£ l )  + ( - £ 3)+ £ 5  = 0
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In matrix terms;

i.e. I IxT  =  0 where;

H  =

which has the form  [ —A 1 | /„_*.]

0 1

-1  0 ' )

1 -1 0 1 0

1 0 -1 0 1

=  0

3.1.1 Decoding Process

A code is o f no use if the encoded message does not get to the intended party in a manner 

that can be understood. The information is considered conveyed if the encoded message is 

correctly decoded back to the original message. Several techniques have been employed to 

decode information. The simplest one is the nearest neighbourhood decoding. Syndrome 

decoding has also proved to be an important decoding scheme. It is important to note 

that there are other more complex algorithms for decoding. We are not going to discuss 

them here. An iterested reader is referred to [8], [G| for more on decoding.

Before illustrating the decoding process, let us look at more code parameters.

D e fin ition  3.1.1.1. The weight wl of a codeword x  G C is defined as;

w t(x) =  | { i : Xi ^  0}|

and is simply the number of non-zero components o f the codeword

D efin ition  3.1.1.2. For any two codewords x,y  G C the distance d between them is 

gived by;

D (x ,y ) =  | {t: Xi ±  y,}|

and is the number o f components in which they differ. It is a distance function Cleaily

d{x, y) — w t(x — y)

We can also define the distance between a codeword and a code as l ) (x ,  (  ) — min {d (.i, < ) \ c € C}

T h eo rem  3.1.1.3. Let C be a code such that for all x ,y  G ( C IF* satisfy

d(x. y) >  d fo r  d >  1. Any d -  1 or fewer errors in a received word can be detected.

I f  d >  21. +  1 fo r  t >  1, then i or fewer errors can be detected.

Proof. Given x and suppose that e is an error of x. If no more than d -  1 of bits are 

changed then d (x ,e ) <  d -  1 so that e G (where Bd. x{x ) is an open sphere of

radius d -  1 centered at x ) which contradicts the minimum distance. 1 hus, an error can
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be detected.

If d >  2/ +  1 then for all z E FJ by triangle inequality

d (x ,z ) +  d(z,y) > d {x ,y )
(3.1.4)

> 2t +  1

This implies that c/(x, z) >  /. or d(y, z) > l so that Bt(x )  ft Bt{y) = 0 so that /lt( * )  =  { x } 

for all .r. Suppose x has an error e! so that .r appears as x' — r  +  e' to the receiver. Since ( '  

is a vector space, x, e! , x ' E C  and more importantly if x ' and x differ by no more than / -  1 

errors (that is, fewer than t errors are introduced), then x, x ' € Bt(x ) =  {x } .  Therefore 

x ' lies within a sphere of radius t about a codeword x, then x' is the zero codeword. We 

have thus recovered our original message.

Maximum-likelihood decoding

Consider the (n ,k ) code C with generator matrix of the form C — [/* | A\, so that the 

original message Xi • • • , x* is encoded as x =  X\ • • • x*Xjfc_i • • • xn =  (x i-**x * )G . The 

original message comprises of the first k—components of the encoded message.

Suppose after transmission the message received is x =  X\ • ■ • xn. If xG E C , then the 

received message is decoded as the first components of x. I wo cases may arise; either 

x =  x or x  ^  x. Whichever the case X\ • • • , Xk is presumed to be the original message 

(even though enough errors may have occurred during transmission like in the former 

case). If x ^ C then an error has occured. In this case Br(x ) ^  { x }. 1 hen x is decoded as 

x, with x chosen so that d (x ,x ) is minnimised (and x ^  x). Since Bt(x ') — {x ,x } ,  then 

this algorithm will choose x, i.e. the nearest neighbor, as the candidate for decoding!

N o te  3.1.1.4. Since we need to look through all x E C. this operation takes n(q ) miming

time.

Syndrome Decoding

Syndrome decoding algorithm is a faster algorithm (in comparison with the maximum- 

likelihood decoding) that makes use of the vector space structure inherent in C. Suppose 

x =  wG  is a codeword for w E F£ and e E F" is an error that is introduced in the 

transmission of x such that the receive message is decoded as x =  x + e. I hen

x 'H t  =  (x  +  e )H T =  x H t  +  e U T =  0 +  e//T =  eHT

so that xH T depends only on e \lT E F ”~k The elements e llT are called syndromes. For 

efficient processing, each of the elements arc computed before the decoding process, and 

the coset representative with the smallest number of non-zero entries is chosen to be the 

coset leader. The algorithm works as follows:
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•  I f  x  6 FJ is received, s — x H T is computed and compared to the coset lead<i /

associated to s.

• If l is unique, replace x by x ' =  i  -  I . which is an element of C since C is a vector

space.

• If / is not unique, report an error.

• If fewer than t errors occur in x, then x' represents the unique codeword closest to 

the received word. Thus, E ~ l {x ') is returned.

R em ark  3.1.1.5. Unlike the Nearest Neighbor Decoding Algorithm, this requires only 

o(qn~k) running time. While this running time is better than nearest neighbor algorithm, 

it is still "slow". In fact, decoding algorithms are known to be NP-complete so our present 

algorithm is only relatively fast.

E xam ple 3.1.1.6. Consider the codeC = { 00000, 10110,01111, 11001} .  This is an (n, k,d) 

(5 ,2 ,3 ) binary code, containing four coded messages, with t =  [{d — l)/2] =  [(3 — l)/2] = 

1. Hence, it can detect whether 1 up to d — 1 = 2  errors have occurred, and can correct 

t =  1 error. The code has

G =  1 °  1 1 ° )
’ \0 1 1 1 o )

and

H =

/l 1 1 0 

1 1 0  1 

^ 0 1 0 0

as generator matrix and parity check matrix.

For the decoding table,

Table 3.1: Standard array and syndromes for a (5.2.3) binary code.

Syndromes Coset Leader

000 00000 10110 01111 11001

110 10000 00110 m i l 01001

111 01000 11110 00111 10001

100 00100 10010 01011 11101

010 00010 10100 01101 11011

001 00001 10111 o in o 11000

011 01100 11010 00011 10101

101 01010 11100 00101 10011

N o te  3.1.1.7. Each n -tup le  with weight atmost t will be the unique vector o f the smallest 

weight in its coset and will thus be the coset leader. Two or more n -tuples of weight atmost 

t can not appear in the same coset.
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In table below we illustrate how the encoded message can be recovered from the* received 

message when the weight of the error vector is at most t. and what can go wrong when 

its weight is greater than t.

Fable 3.2: Error correction for the (5,2,3) binary code having generator matrix C  =  (A*

*4).
Example X X e i x — i

1 10110 10100 00010 00010 10110
2 11001 10101 01100 01100 11001

3 10110 10101 00011 01100 11001

4 01111 11011 10100 00010 11001

In this case x  — i is assumed to be the encoded message that was sent.

In example 1. wt{e) =  1 <  t and the theorem holds. In example 2., wt(e) >  t but since 

/ =  e, the encoded message is recovered. In example 3., we aren’t so lucky as / < e. In 

example 4., x is in a coset whose leader has weight atmost t and so we cannot recover the 

message.

3.2 Cyclic Codes
In order to construct good codes and to have practical decoding algorithm, we need to 

consider codes with more algebraic structure. In this section, we describe a class of < odes 

with more algebraic structure, cyclic codes. We will realise that many of the important 

linear block codes are equivalent to cyclic codes. Once again we will consider a code to 

be a binary code unless stated otherwise.

D efin ition  3.2.0.8. A linear code C is said to be c y c l i c  if  C =  (cn,cj,C2, • • • t ^ - i )  is a 

codeword whenever C  =  (cj, c2, • • • , Cn) is.

We recall that a code C is a subspace of FJ. Since vectors in a vector space V  can be 

represented as polynomials in an indeterminate say rr, i.e. we can define a homomorphism 

(indeed an isomorphism) say,

II; a — ♦ fl(z )

where a G V  is given by a =  (ao- flit * * * an -i) an^ a(x ) =  + a] J +  a2-J 4 " ' '  +  an_, r
If we consider the correspondence between the vectors a and the class a{x) in the factor

ring of polynomials in x with coefficients from F modulo the id< al of

generated by xn -  1, multiplication by |x| in this ring corresponds to performing a cyclic 

shift in our vectorspace. Therefore the cyclic code is merely an Ideal of R and conversely.
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Since H is a principal ideal ring, if y (x ) 6 F[x] is a inonic polynomial of least degree, then 

(j(r.) generates an ideal in /?. Thus g (x ) divides i n -  1 since (.rn -  1 ,g (x ) ) € (g (r ) ) .  Recall 

that the gcd of two polynomials is a linear combination of the* two polynomials with the 

coefficients from the field (by Theorem 2.3.1.6) i.e (xn -  l ,g (x ))  =  a (x n -  1) 4- (3g(x) \ 

cx,P £ F[x] and ( x n — l,^ (x ) )  6 {g (x )) (since R is a P.I.D). This unique polynomial is the 

generator o f the ideal or for our case the code. It is a polynomial of degree n -  k where 

k is the dimension of the cyclic code C generated by g(x ).

P ropos ition  3.2.0.9. I f  C is a cyclic code of length n with the generator polynomial

g (x ) =  gi +  g2x +  g3x2 +  • • • +  gkxk~1

then the gene ra to r  matr ix ofC is the (n -  k +  1) x 71 matrix given

( g\ 02 03' •0/t 0 0 o - - o \

0 01 02 ' * 0fc-1 0fc 0 00

A = 0 0 01 *' 0Jfc-2 0fc-l 0fc 00

U 0 0- • * * * • • • 9k /

Proof. The rows of G  are easily seen as linearly independent. Hence if we show that any 

codeword can be written as a linear combination of these row's, then we are home. Now by 

definination a vector C  =  (cq, c\ • • • r^-i) is a codeword iff the corresponding polynomial 

c ( x )  =  Co +  Cix  +  • • • +  Cn-iZn_1 is of the form c ( x )  =  g { x ) f { x ) { m o d { x n -  1)) for some 

polynomial / which can be taken to be of degree < n — 1. But this means (in the olnious 

notation) that;

c ( x )  =  g { x ) ( f o  + f\X H------ \-fn-\xU !)
n—1

= ^ 2  fiXg(x){mod{x11 -  1))
t=0

and this in turns is exactly the statement that

C =  /og +  /lg(1) +  --- +  /n-.g '’” 1)

where g  =  (31,92 • • ■ gn) and g (t) denotes the cyclic shift of g  by k places. We can thus say 

that that a cyclic code is completely' specified by a polynomial g { x ) that divides ./

We can alternatively say that the code is a nullspaee of the ideal g< in rated by;

The polynomial h ( x )  is referred to as the parity check polynomial of the code C generated 

by g ( x )  hence h ( x )  =  ( xn-  1) | g (x ) it can be used as a generator polynomial of another 

cyclic code. Such a code is equivalent to the dual code of C. In the context of cyclic code,
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it is simply referred to as the dual code of the cyclic code C. The generator matrix of this 

code is given by;

< 0 0 ••• 0 hk hk-l ** • h, h{

H  =
0 0 ••• hk hk-1 hk-2 * • /lo 0

\hk hk-i • • ho 0 0 •• • 0 V

Exam ple 3.2.0.10. consider the polynomial x 7 -  1 over G F (2 ). The polynomial splits 

into;

(x 1 -  1) =  (x  — l ) (x 3 4- x 4- l ) (x 3 -h a:2 -h i)

consider a case where g (x ) =  x3 4- x2 +  1. This polynomial generates a (7,4) code 

(i.e .n  =  7, deg (g (x )) =  3 therefore, k =  7 - 3  =  4)

/ l 1 0 1 0 0 0\

c _  0 1 1 0 1 0 0  

0 0 1 1 0  1 0  

\0 0 0 1 1 0 1/

For the parity check polynomial;

h {x ) =
x7 - \

g (x )

=  (x -  l ) (x 3 4- x 4- 1) 

=  x4 4- x3 4- x2 4- 1

(3.2.1)

The code C can be defined as the null space of the ideal (h (x ) ) . In this case,

I !  =

/0 0 1 1 1 0 1> 

0 1 1 1 0  1 0  

V1 1 1 0 1 0 0/

Since cyclic codes are linear codes we can put the generator inatiix and th< parit> < In < k 

matrix in the standard form. Needless to say, the standard form is much iiiok useful in 

encoding and decoding. Rather than first computing the generator matrix and tin paiit\ 

check matrix, we can make use of the generator polynomial to generate tin two matrixes 

in a single algorithm. To achieve this, we let r* to be the remainder after divieling ./ 

g(x)  i.e. x l =  g(x)qi(x) 4- rx(x). Then x' — rx(x) =  g(x)(Ji{x ) ks a code vector. If these 

polynomials; for i  =  n -  1, n -  2, • • • ,n -  k are taken as rows of the generator matrix,

then
G =  [Ik, - R ]

where I k is a k x k: identity matrix and - H  is a k x  (n -  k) matrix whose j  row is the 

veertor o f coefficient o f - r n- j ( x ) .  The parity check matrix therefore has the form;

H =  [Rt , /„_*]

The j th row of l I T is the vector coefficient of rn. j ( x ), even for j  < n - k .
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Exam ple 3.2.0.11. Consider again the binary cyclic code generated by g (x ) — j * 4 . r  ♦ 1

xb =  <l(x)(x3 +  I 2 4- x ) + X1 4- x

then

and

x5 =  g (x ) ( j?  +  x +  1) +  x + 1

x4 =  g (x ) (x  + 1 ) 4- x1 +  x 1

x3 = 2(a;)(l) 4-x2 +1

x2 =  g (x ) ( 0) +  x2

x =  g (x ) (  0) 4* x

x° =  g (x ) (  0) 4- 1

G =

/I 0 0 0 1 1 

0 1 0 0 0 1

H =

0 0 1

\0 0 0

/ l 0 1

1 1 1

0\
1

1

i j

1 1

0 0

\0 1 1 1

1

0 0

o o\
0

1/

(3.2.2)

R em ark  3.2.0.12. We have previously seen that all that is important about a code is the 

generator matrix and the parity check matrix. Since for cyclic codes, these can be obtained 

from the generator polynomial, than cyclic codes are completely specified by the generator 

polynomial.

We now look at a theorem which give a suggestion on the minimum distance of a cyc lic

code.

Theorem  3.2.0.13. /19/ Let g (X )  be the generator polynomial of a cyclic code of length 

n over F? and, let aei,a e2... ,ocen~k be the roots of g {X ),  possibly in an extension field, 

where o. is an element o f order n. The minimum distance of the code is greater than tin 

largest number o f consecutive integers modulo n in the set e =  (e j,e2, .. • en-k )

R em ark  3.2.0.14. The bound on the minimum distance follows from the fact that any 

21 or fewer columns are independent, from a van der Monde argument.

As a consequence of the above theorem, we have the following.

C oro lla ry  3.2.0.15. /19/A cyclic code with roots a c+1, ... , qc+j(<<0" 2) andpossibly others, 

where a  is an element o f order n, has minimum distance do or greater provided ( j ,n )  — 1

R em ark 3.2.0.16. Note that Theorem 3.2.0.13 suggest some sort of a bound on the 

minimum distance and does not give the actual minimum distance. Thus even though 

Cyclic codes are completely specified by the generator polynomial, the information on the 

minimum distance is not quite clear just by having the generator polynomial. However, by 

choosing wisely the generator polynomial, the information on the minimum distance can 

be gained.
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We conclude this section on cyclic codes by considering a class of cyclic code whose 

generator polynomial is "carefully chosen."

3.2.1 Special Classes of Cyclic Codes 

BCH Codes

I he BCH abbreviations stand for the discoverers Bose and Chaudhuri(19G0) and in

dependently Hocquenghem(1959). These Codes form a large class of multiple random 

error-correcting codes.

The class of B C I !  codes is rather parametrised in the sense that the generator polyno

mial, is carefully chosen, the creterion of which lies in Theorem 3.2.0.13, and Corollary 

3.2.0.15. Such codes therefore enjoy simplified decoding algorithm. Apart from sim

plicity in decoding, codes of this nature enjoy flexibility which allows control over block 

lengths and acceptable error threshold. Thus a custom code can be designed to a given 

specifk*ation(subject to mathematical constraints)

D efin ition  3.2.1.1 (B C H  Codes). Let a 6 ¥qm. For any specified mo and do, (see The

orem 3.2.0.13, and Corollary 3.2.0.15) the code C generated by g {X ) is a BCH code if  and 

only if  g (X )  is the polynomial of the lowest degree over F9m for which o m°Qm°+1, . . . ,  a 10 d< 

are roots. We call the code C primitive if cxn =  g"‘ -  1 narrow sense if mo =  1- The 

lenth of C is the lcm of the orders of the roots.

R em ark  3.2.1.2. The most important BCH codes are the binary codes obtained by l< tting 

ex be a prim itive element o f¥ 2m and letting mo =  1 and do =  2fo +  1- Then {/ (-7) }  is <1 

code vector i f  and only if;
2 3  , „ 2 t 0,o  , • • • ,01

are roots o f f ( x ) .  However, every even power of a is a root of the same minimum function 

as some previous odd power of ex. Therefore, an equivalent statement is that. { /(■/)} is a 

code vector if  and only if;
3 2 t 0 - l  cx, a ,a

are roots o f f ( x ) .  Thus, the generator polynomial of the code is

g (X )  =  LC M (m \ (x ), m3(x), • • • , m2t0- 1)

where m j(x ) is the minimum polynomial of ex' Therefore g (. i) has degree at most mto, 

the code has at most m l parity checks. Hence the corollary;

C oro lla ry  3.2.1.3. For any positive integers m and to <  §, there is a B ( II binary rode 

o f length n =  2m -  1 which com ets all combinations of t0 or fewer errors and has no 

more than mto parity check symbols.
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E xam p le  3.2.1.4. Consider a case when you autnquite to correct upto 3 error' 

to =  3. Let us choose m — 4, then n =  2"' — 1. We thus construct a code using jr15 1

over F2. Let a be a primitive element in F^. We make use o f a pnmttive polynomial we 

already know; p (x ) =  1 +  x  +  x4

mi(x ) =  l +  i  

m3(x ) =  1 +  x +  x2 +  x3 +  x4 

m5(x ) =  1 +  x +  x2 

g (x ) =  /X’A/(m1(x )m 3(x)m 5(x )) 

=  m i(x )m 3(x )m 5(x ) 

=  1 +  x  +  x2 4- x4 +  x5 4- x8 +  x 1M

The code is a (15, 5) cyclic code.

Reed-Solomon Codes

In 1960, Irving Reed and Gus Solomon published a paper in the Journal of the Society 

for Industrial and Applied Mathematics [17|. This paper described a new class of error- 

correcting codes that are now called Reed-Solomon (RS) codes. Ihese codes have great 

power and utility, and are today found in many applications from compact disc players to 

deep-space applications. This class of codes has very close relation with the HC // codes 

and more often considered as a non binary instance B C H  code ([22|,|17]).

As with all BCH codes, we consider m  consecutive roots, but the roots are taken from the 

ground field itself and not an extension field of it. Thus taking a for the primitive root 

in F7, the other roots are o ‘ , and all have minimal polynomial of degree equal to unity, 

(x  -  a*). Thus the generating polynomial is;

g (x ) =

We have (n  -  k) =  m d =  m 4- 1 =  n -  k +  1 for the distance. Notice that this is 

the maximum possible value for d since there are only (n  — k ) rows in II and thus any 

(n - k .  +  1) columns of I I  are linearly independent. Where the length of the code is q, the 

error correcting capability t is t =  • Singleton, in 1964, showed that this was tin

best possible error correction capability for any code of the same length and dimension

[21]. Codes that achieve this "optimal" error correction capability are called maximum 

distance separable (MDS).

We now look at a sample construction of an RS  code. For convenience we choose m0 -  0

for the sequence
Qmoia mo+l . ..  ?Qm°+m 1
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W e take d* =  5 so that the RS code is constructed over F23. Let l ,a ,a 2,o J where a is a 

primitive in F23 i.e. n: can be taken as a root of r J +  x +  1. I his gi\<*s.

q3 =  q + 1 

a 4 =  a2 + a 

a 5 =  a2 + a +  1 

a 6 =  a2 +  1

(3.2.3)

so that

m (x ) =  (x +  l ) (x  +  a )(x  +  a )(x  +  a )

=  (x2 +  x +  ct3x +  x +  a )(x 2 +  x 4* a 5x +  x + o ) 

=  x4 4" x 4* a2x3 +  x + ft x +  x + o 

= =  x4 +  a 2x3 +  a5x +  x +  a6

This gives a (7 ,3 ) RS code

and

on F23 with d =

G =

/ l  0 0 
0 1 0 

0 1

II =

/ a 1

a 3 a4 

a 6 a 2 

^r*6 o

n - fc +  1 == 5,

a a 3 a6 a 6\

1 a 4 a2 a

a2 Q5 a5 a6)

a2 1 0 0 0\

a5 0 1 0 0

a5 0 0 1 0

a6 0 0 0 l )

(3.2.4)
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Chapter 4

Some Algebraic Geometry in Coding 

Theory

4.1 Introduction
The use of Algebraic Geometry codes had its inception when Goppa ([16|.|18|) made the 

crucial observation that codes can be constructed by evaluating a set of rational functions 

at the points on an algebraic curve. In making this step, many of the tools needed to 

determine the important parameters of the code, or bounds on them, such as the code 

length, dimension, and minimum distance, already existed in the elegant theorems of 

Algebraic Geometry, notably the Hasse-Weil theorem and the Riemann-Roch theon m.

The theory of Algebraic-Geometry codes makes use of the relatively deep and fundamental 

results of algebraic geometry. For our purpose we will bypass most of the underlying 

Algebraic Geometry and provide only a brief overview of those concepts from Algebraic 

Geometry needed to appreciate the development. I he theorems in this chapter and tin 

proofs there o f follow from [3],[4], [5], [10|, [20] where a much rigorous and complete 

survey of algebraic-geometry codes has been documented. In the next section we set the 

platform for description of Algebraic Geometry Codes. We consider anothe i construction 

of RS codes redefine BCH codes in such a manner that makes natural the extension of 

constructions to codes from algebraic curves. The mathematical background lequircd to 

understand the application of Algebraic Geometry to Coding is outlined in Section 4.2. 

Most of the facts here are stated without proof, but effort is made to convey the intuition 

as much as possible. Section 4.3 uses the ideas developed in Section 4.2 to outline the 

construction of codes that are derived from algebraic curves. We will see that Goppa 

codes are instances of Algebraic-Geometry codes and so are RS codes, and souk instances 

of BCH Codes.
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4.1.1 Transition

One construction of a Reed-Solomon (RS) code over the finite field F, is as follows;

Let { qo.Q], • • • , c ^ . i }  be a set of n distinct elements from ?q and let l  C F,[x] denote 

the set of polynomials of degree less than k < n. Define the code C b\,

t ) ......./ ( « » - » ) ) ; / €  /-}

which has length n and dimension k, since a monomial basis easily leads to a gcneratoi 

matrix of rank k. Since a polynomial of degree less then k has at most k -  1 zeros, each 

codeword has weight at least n - ( f e - l )  =  n - k + l .  As it is easy to construct polynomials 

with exactly this many zeros, this is the minimum distance of the code, so the code is

MDS.

Further, let { „ „ ,  u ,, • • • vn]  be a set of nonzero, not necessarily distinct elements from F,. 

C  =  {{vo fio to ),V if(a  1), • • • t 'n / K ))  I

The code has the same parameters as the previous code and is referred to as the (jcneraliz 

RS (G R S ) code with vector {v0, vu  ■ * * « » }•

To prepare for a definition of Goppa codes, the definition of BCH codes is first rea 

Consider the computation

( * n -  d  £  = £  «< * "  -
i=0 1=0i= 0  

n—1

(4.1.1)
_  ^ 2  c - — - . ( i + + x 2° 21+ • "  ^

i=0 T
n-1 n-1

1=0 j=0 

n—1 n~ t= x y x > (a,+,)'
For j  =  1,2, - ■■ , <1 — 2, the inner s l m m l n  is zero, by definition (Since c(*> ) =  0; 1 <

j  <  d -  2). Thus

c , . , n , i .  the summation is divisible by x * '1 (since the result is a
for some polynomial f { x ) ,  tnc ‘ .
polynomial with no constant term of degree at least -

Ci — =  0 mod x2t z—̂ x  -  a - *
i=0

J , ,  . ,  € F ) is a codeword if and only if it satisfies the
Consequently, a word (ci.Ci, • • ■ - ’  RS Qr BCH codc depending on the field
above equation. The construction vu 111 0
of definition. Notice that the polynomial x *  has a zero of order 21
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The passage fiom the above definition to that of Goppa codes will involve nothing more 

than replacing the sequence of n th roots of unity with an arbitrary set of distinct elements 

and the polynomial x 21 with a more general polynomial g(x).

N o te  4.1.1.1. Note that this is not the generator polynomial used in the BCH <nu'truc-

tion. It is conventional to use g (x ) in both cases.

D efin ition  4.1.1.2. Let L =  ao,ai,* • • , a n_i be a set of n distinct elements in ¥qm aud 

g (x )  be a monic polynomial such that g (a i) ±  0. i =  0 ,1 ,... ,n — 1. Then the Goppa 

code  r (l ,g) is ^ e  set o f words (co,Ci,... ,0,,-!) 6 IF," such that

n- 1
V  — — - =  0 mod g(x)

' x — o r *
i=0

The polynomial g (x ) is referred to as the Goppa polynomial.

Comparing to the previous formulation, if g(x ) =  x2' and, L =  { o _'.0 < i < n — 1}, 

where q is a primitive nth root of unity, then is a BCH code with designed distance 

d. although it is noted that not all BCH codes are Goppa codes [26). It is also noted that 

r (Lt5) is a subfield subcode of the dual of a generalized RS code.

To put the transition to codes from algebraic curves in perspective, it will be of i n t e r e s t  to 

recast the definition of Goppa codes. Consider a polynomial corresponding to a code woid

(co> Ci> • • • Cn—l )

r( \ _ S T  ^

T (4.1.2)

A(.t;) =  I I ( *  ”  e
i

and degu(x) <  degX(x) =  n. Then

d  =  f ( x ) ( x  -  ati) |x=oi

is obtained by cancelling the simple pole in f { x )  at a* and evaluating th< result

it is the residue of f ( x )  at a*. Let

"  x A ( x )

» ( * ) -  n  (*  -  = ( T ^ T )

and let
, ,  , u(x )  _  g(x)g(x)  
/ ( x )  "  X(x) ~  X(x)

since by definition g(x)\f (x) .  Note that the residue of f ( x )  at a, can be expressed as

# , x u(x)(x-oti) i g âiKi(a )
M I )  =  A (r )—  I * - "  ^ " (a i)

whicli is zero only if q(o«)  =  0 as g (a i),Xi(<*) *  °  . by  definition. Now define a vector

space L  of rational functions f ( x ) ,  such that;
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i f ( x )  has zeros where g ( x )  has zeros, with multiplicity at least those of g ( x )

ii f ( x )  has poles only contained in the set L and in that case only poles of order one.

Consider the set of n,-tuples C ' over ¥qm defined by,

C ' =  (Resaof , Res0J , . . . ,  ResQn_ J )

where the residue o f a rational function is defined in t lie usual manner. It is seen immedi

ately that the Goppa code is the subficld subcode of this set over ¥q. The two important 

perspectives to be drawn from this section, perspectives that will survive the transition 

to codes from algebraic curves intact, are the notions of defining codewords in the first 

instance, as the evaluation of a rational function at a fixed set of distinct places, and in 

the second instance, as the set of residues of a rational function at a fixed set of places. In 

the setting of Algebraic Geometry, the fixed set of places will be drawn from the points 

on a curve in an Algebraic Geometry. The determination of code parameters, however, 

will depend in crucial ways on the theory of algebraic curves. I he next section will serve 

as an overview of this theory, in preparation for Section 4.3, which considers classes of 

codes that use these notions for their construction.

4.2 Some Basic Algebraic Geometry
We introduce the basic notions of Algebraic Geometry, in order to extend the < onstruc tion 

and properties o f codes discussed in the previous section to Algebraic-Geomt try codes, 

to be discussed in the next section. We will give no proofs but refer to tlu standard 

textbooks (|7],[4|). The central concepts required are outlined in the most elementary 

way, with illustrative examples. In other words, our aim is to attempt to comet th< k<\ 

concepts required to appreciate the application of Algebraic Geometry to coding.

4.2.1 Affine and Projective Varieties

D efin ition  4.2.1.1. Let ¥q be the finite field with q elements and Fg its algebraic closure. 

The n-dimensional affine space A" is the set

A " =  { (a i ,u 2,-- « n )h  e  ^q} (4‘21 )

An element P  € A n is called an a ffine point, and if  P  =  (fli, a2, * * • <*n) with a{ € ¥q 

then the elements a* are called the coordinates of P, the point. I f  K is a subficld < f ¥ q 

that contains F^ and P  is a point with coordinates in K  , then P  is called a K -ra tio n a l 

p o in t and the set o f ^-rational points of A " is denoted by A  K.
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On the set An+1 \ {0 ,0 , . . . ,  0 } an equivalence relation =  is given by

( aCh ai , - . . a n) =  (h0, h j,... bn) <=> 3A G Fq \ {0 } (4.2.2)

such that hi =  A a, i  =  0,1, • • • , n.

The equivalence class of (ai, a2, ... an) is denoted by (a\ : a2 : • • •: an).

Definition 4.2.1.2. The n-dimensional pro jective space P" is th< set of all equivalf no 

classes (a0 : a\ \ . . .  \ an)\a* G F7, not all a* =  0. An element P  =  (a0 : aj : • • • : an) G 

P* is called a point and (a0 : ai : • • • : a,t) are called homogeneous coordinates of 

P. If  K  is a sub field of ¥q which contains ¥q and P  is a point for which there exist 

homogeneous coordinates (ao, a\,... an) , then P  is called a K -ra tiona l point and tin 

set of K-rational points of Pn is denoted by Pn (K) .  The set I I  =  (0 : ai : ... : an) G P" is 

called the hyperplane at in fin ity  and the points Q  G II are the points at infinity. I he 

mapping ip : A n — > Pn \ {0 } defined by

p>(ai ,a 2, • • • an) =  (ao : ai : • • •: an) (4.2.3)

embeds A n in Pn.

As a matter of notation, Q  will be reserved throughout to denote a point at infinity. 1 he 

one-dimensional projective space (1 : n,i)|al G F9, also called the projective hue, consists 

of the points together with the point at infinity (0 : 1). and this set will be used later 

for the construction of RS codes, thereby showing that the class of Algebraic Geometi y 

codes is a special case of Reed-Solomon codes. A polynomial / G F(/[ ' i r  ' '  »Jn\ can 

considered as a map / : A n — * F, defined by

f ( P )  =  f ( a u a2, . . . a n) (4-2-4)

If  f ( P )  =  0 we call P  a zero of /. More generally, with every C F ,| i,.......x„\ we

associate the zero set of T

Z ( T )  =  { P  € A "  | /(p) =  0 V/ 6 7 '} (4-2-5)

D efin ition  4.2.1.3. A subset V of A "  is called an algebraic set if  there exists a T C 

F7[a:i) . ..  , x n\ such that V =  Z ( T ) .

D efin ition  4.2.1.4. Let V C A" be an algebi'aic set. I  he set

I (V )  = {F,(.r......  ,xn)\f(p) = 0 f e v e r y

is called the ideal o f V .

It is easy to see that # , (* , .......  xn]is indeed an ideal of V . The ring F,[.r,,. . . ,x „] is

Noetherian, that is, every ideal is finitely generated.
Recall that an ideal 1 with a single generating element is called principal and an 

prime if it is not the whole ring and whenever ab G / then a G I  or b G /. An ideal 

maximal in a set A if there is no proper ideal of A that properlv contains /.
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Lemma 4.2.1.5 (H ilb e r t  Nullstellensatz[15]). Every maximal ideal of ......../

is of the form (x\ — a\, . . . ,  xn -  an) with £ Fq. For every element P  =  (a\.a2, .. .a „ ) € 

A" the singleton { P }  is an algebraic set with ideal I ( P )  =  (xj — a j, . . . , xn — an) .

Definition 4.2.1.6. An affine variety V  in A n is an algebraic set where l ( V )  is a prime 

ideal.

Remark 4.2.1.7. A variety is simply a set of solutions to the polynomial equations f, -  0.

The set of K -rationa l points of V is denoted by V (K ) . If I (V ) has a set of generators in 

K [x i,... ,a:n], we say that V  is defined over K  and write V’JG. In this case we associate 

with the variety V\K  the ideal

/ (V  I K ) =  / (K )n K [n .......4

Defin ition 4.2.1.8. Let V be an affine variety. The quotient ring

Fq[V] =  Fq{xl l . . . , x n]\I(V) (4.2.6)

is called the coord in a te  r in g  of V . I f  V is defined over K, the quotient ring K[V ] 

K [x i, ... , x n]\I (K\G)  is called the coordinate ring of V\K.

Rem ark 4.2.1.9. The coordinate ring of a variety V can be considered as a set of 

polynomial functions with values in F defined at every point of \ . let g £ Fq £ [1 J 

and G £ F > l5. . .  ,.rn] such that g =  G  +  I(V). Put g ( P )  =  G ( P )  . This defini

tion is independent o f the choice of the representative G : i f  G  € . . . ,  xn]> an(l

G ' +  I(V) =  G +  I(V), then G ' - G  £ I(V) and thereforeO =  (G ' -  G )P  =  G ' ( P )  -  G ( P )  

hence G ' ( P )  =  G ( P )  . Since the ideal o f the variety is a prime ideal the coordinate ring 

is a domain. The following definition is therefore possible.

D efin ition  4.2.1.10. Let V be an affine variety. The field of fractions o f f q\V\ , denoted 

F , (K ) , is called the fu n c tio n  field o f V. It follows from the definition of the function 

field that it is a finitely generated extension o f f ,  , that is, there exists elements
x u - . . , x k e  F , (K ) such that ¥ , ( V )  =  F",(x!.......xk). The dimension of an affine variety

is the transcendence degree o f F q(V )  over Fq.

D efin ition  4.2.1.11. An affine curve is a variety of dimension 1.

R em ark  4.2.1.12. • An affine curve is an algebraic curve since it is defined over an

algebraically closed field. We will be considering plane algebraic curves i.e. curves 

difined over Fq(x, y) fo r our illustrative examples, though the concepts apply even to 

curves defined in n—dimensional algebraically closed field.

• .4s a matter o f notation we will use X to denote a curve in an algebraic geometry 

When it is defined by a polynomial, we will denote the polynomial by Fx or simply 

F  when the curve is understood.
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E xa m p le  4.2.1.13. Let F  € Fq[x.y] be an irreducible polynomial. Consider th<

X =  {F  =  0 } =  { P  6 A2 | C{ P )  =  0 }

Clearly the function field ¥q(\)  has a transcendence degree one, and therefore is an affine 

curve, and since it is contained in A 2, (every point, is defined by a 2- tupplt i it is called 

an affine plane curve.

A  point ( x0,y0) on a curve with equation F(x ,y )  =  0 is said to be nonsingular if the 

partial derivatives do not both vanish at the point. The tangent l in e  at a  point is a  l i n e a r  

polynomial (i.e. a polynomial of degree one) described by the equation

lxo,yo(x -. y) =  Ex(*o, :Vo)(x -  *o) +  Fy(xo, yo)(y -  y0) 

where Fx(x, y) and Fy(x , y) are partial derivatives of F  with respect to i  and y respectively.

D e fin ition  4.2.1.14. A curve x is said to be nonsingu lar (o r smooth or regular) if

all the points on the curve are nonsingular, otherwise the curve is singular.

A  polynomial F  which is the sum of monomials of the same degree is said to be homo

geneous. A  homogeneous polynomial F  £ • • • ,xn] is said to have a zero at a point

P  =  (aQ : ai : • • • : an) 6 f  if F ( « 0, « i , • • • , an) =  0. O f course this makes sense since 

F (  Aao, Aaj, • • • , A On) =  ArfF (ao,al5 • • • , an) if F  is homogeneous of degree d. For a poly

nomial f { x ) E F9[x ] of degree d, the polynomial ydf{f/) wih homogeneous of degrer* 

d. Conversely, one can reduce a homogeneous polynomial of degree d in n vaiiables to a 

(nonhomogeneous) polynomial in n — 1 variables, through a process of dehomogenization.

E xam p le  4.2.1.15. As an example over a finite field F,, where q =  H  =  P2m consult r 

the Hermitian curve, which is described by the polynomial F(x ,y )  — y -+ y ~  x • ^ i( 

curve is nonsingular since the derivatives

Fx(x ,y )  =  - ( r  +  l )x r =  x r

and
Fy(x ,y ) =  n r '  + 1 = 1

have no roots in common.  ̂^
The homogeneous form of this curve is given by F ( X , Y ,  Z )  — 1 Z \ ) Z  A

N o ta tio n  4.2.1.16. For non-homogeneous polynomials, we use lower-case letters x ,y  (is 

the indeterm mates while we use capital letters A,V and Z  homogeneous polynomial.

More generally, with every set T  of homogeneous polynomials from we

associate the zero set of T

Z ( T )  ={P6 P"|f ( P )  =  0 V/ 6
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D efin ition  4.2.1.17. A subset V o/P" is called a projective algebraU f there exists

a set T  o f homogeneous polynomials such that

V =  Z {T )

D efin ition  4.2.1.18. Le tV  C P" be a projective algebraic set Thi ideal tn¥q |r0- ' 

which is generated by all homogeneous polynomials A with F { l  ) — t) for n  ( nj I € 

called the ideal o fV  and is denoted by l {V) .

D efin ition  4.2.1.19. A projective variety V  C P" a projective set such that

I { V )  is a prime ideal 115].

The set o f K -ra tiona l points of Vis denoted by V (K ). If l ( V )  has a set of homogeneous 

polynomials from K [xn, * j ,  • • • , * J  «•  generators, we say that V is defined over 

case we associate with V/K the ideal

I (V/K)  =  I ( V )  H K[x0,Xi, • • • ,Xn\

D efin ition  4.2.1.20. Let V  C Pn be a nonempty projective variety. The quotient n  g

ra(VO =  fljlI o . * i r - ‘

rs called the homogeneous coordinate nng oJV. IJ V  is defined overK then

r* (V /K ) =  K [ i0> * i r “  . I »]//( v'/K ^

„ r j  f — F  + H V ) where F  is a
An element / 6 r * (V )  is called a form  of degree d if / -

homogeneous polynomial of degree d.

The function field of V  is defined by,

F,

and

I(V )  =  { | | f f , f t 6 r a (V )  are form s o f  same and h o }

K ( V )  =  { f \ g , h e r „ ( V / K )  are form s o f  the same degree and h +  o }

• fV V  is the transcendence degree of F , (V ) over F. 
The dimension of the projective variety V is

Definition 4 .M .M . A  * * * * *  —  < *  ^  " * *  ”  ..............

W . * *  the connection bet—  * * * * *  • » "  F"  *

F  =  F ( x , * » )€ F [X i , - - -

of degree n set
F ’  =  x i F ( x l /xo ,-"  ,X n /io )eF lio ,-- - .-r "]
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Then  F m is a homogeneous polynomial of degree d in n + 1 variables 

( 'ainsider now an affine variety V G An, and the corresponding ideal l{V)  G F[t0,

Define the projective variety V G P" as follows:

V  =  { P  G Pn|F*(P) =  0 VFel {V)}

T h is  variety is called the projective closure of \ .

On the other hand, let V 6 P" be a projective variety and suppose that

w = V n  {(c i : • • • : Cn) G P n |cd ^  0} ^  0

Define <p : A n —> IP” by

Then

is an affine variety and

V?(ai> '”  i ai)  ”  (1 : 01 * “  ‘ Cln̂ 

V  =  ip-l (W)

I ( V ) =  | f (1 : n  : ••• :x „ )| F e  / (V ')}

and the projective closure of is V. If is an a
affine variety and V its projective closure,

f  (V ,  are isomorphic and V  and 9  have the same dimens,on.

q v „r+l
the function fields F<dV) and f q

E x a m p le  4.2.1.22. The projective closure of the hermitian curve /( ,V)

is a variety with the equation
yrz +  yzr - x r =  0

This curve has only one point at infinity, namely (0 .1 .0 )

4.2.2 Local Ring at a Point

U . V * . » « - e . v . « " " '

is said to be defined at P.

T h e r i, ’ S o A V )  =  {/  e  UnfdeI ined al P }

is called the local ring at P. . _  , p w u  p )  [n the affine case and in

The evaluation of / € O p ( V )  is dcfinc as . where G and H are
y > „ -  r  +  I ( V ) ,  h =  H +  IKV) 1 w  >'

the projective case let g — +
homogeneous polynomials of degree d. L

Since

p  =  (a0 : « i  : * ’ • : a" )
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w e  can have

f ( P )  =  G (oq, • • • , « n)/ / / K .. .  ,0*)

i f  / / (P )  ^  0 O p (K ) is indeed a local ring, and its maximal ideal is given by

M p ( V )  =  { f e o P( V ) \ m  =  o)

D e f in i t io n  4.2.2.1 (Valuation Ring). A valuation ring of the func tion field ¥q(V)  is a

r in g  O  with the properties

i). Fg C O C ¥q{V)

ii). F o r any z G Fq( V ) , z  G O ,or z 1 G O  

T h e o r e m  4.2.2.2. Let O be a valuation ring of the function field Tq{V). Then

i )  . O is local ring and has as unique maximal ideal V  — 0  \ O

where O* =  {z  G O  | 3w G O  : wz =  1}

i i )  . For 0 ^  x  G Fq( V ) ,  x G V  x~ O

H i). V  is a principal ideal.

iv ).  I J V  =  to then any0 ±  z£ F ,(V ) has a unique representation of the =  l " «

fo r  some n G Z, u £ O *.

v ). O  is a principal ideal domain. I f  P  =  tO  and {0  } ^ I Q O i s  an ideal then I =  P (>

fo r  some n G N.

D e fin it io n  4.2.2.S. Let 0  be a valuation ring and V  its unique maximal ideal

with V  =  tO  . Then z € F (V ) has a unique representation z «  11,1 " -  1

We define U'p(z) =  n and i'p(O) =  oo.

Observe that this definition does not depend on the choice of gcncratoi

D e fin it io n  4.2.2.4. 4 discrete valuation o f t , ( V )  is a function u : F ,d  ) -  ZU  (o c }

with the following properties:

i )  . uv {x)  =  oo <=> x  =  0.

i i )  . up(xy)  =  vv{x ) +  vv(y )

in ).  vv (x  +  y ) >  min{ « * ( * ) ,  Mv))■ holding « * ( * )  *

iv ). There exists an element z such that ~

v). */p(a) =  0 fo r  any 0 /  a G F?.
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Theorem  4.2.2.5. Let \ be a curve (projective or affine) and P  a point of \ I i$

n on s in gu la r if  and only i f  is a Op{x) discrete valuation ring.

I f  the variety is defined over K  one can also consider the function Add *00- T>je 

definitions and the theorems still hold when one exchanges F, and K. If e >■ 
valuation of K  with valuation ring Oand maximal ideal V then the pair ) 
a closed point o f V and d =  \0/V : K] is called the degree of the print If K , 

the closed points correspond to the nonsingular points and all have d g

Exam ple 4.2.2.6. Consider the projective plane curve with equation V +V ** 
th e  fie ld  F2. Here Q  =  (0 : 1 : 1). We can take as a local parameter t -  -• U t I

W e w ill determine pq (/ ). We have;

x x3 _  =  fg  =  r 2g

\y -  z) = *2y +  *2y + x2z

and the second factor is a unit in O q {\) s0 )

o T^r\ and the Theorem of Riemann- 
4.2.3 Divisors, the Vector Space L (G ) ,

Roch

, . , tc- The free abelian group generated
L e t  x  be a regular projective curve e m u  o ' ’  elements of this group are called 
b y  the points of x is called the divisor group of X- The eta

divisors  of x- In other words’ a divls01 °°f X * ° " n

5 > P
P e x

(4.2.7)

, , „ ro The degree of D is;
where nP 6 Z  and all but finitely many nP s a,e zero.  ̂g)

degD =
PCX

where nP is an integer equal to 0 for all hut a finite =  £ pex npP and

o f D  is defined by supp(D) G X ■ nP

D ' =  E Pe* n'pP  are added in the natural Way (4 2 9)

D +  O' :=  ^ ( n p  +  n p ) P
PGX

.. . r is y  npP  with nP = 0 for any P 6 X- It Wl1 
T h e  zero element of the group divisor u 2^pgx

be denoted by 0. , f ^ bv D  <  &  ** n? -  Vp f° r
A  partial ordering on the group or e ffect' e, The degree of D is the

sum of all integers np , that is; (4.2.10)
deg(D)  =  £ _ .np

PGX
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We will mainly be concerned with a subgroup of the divisor group. A K -divisor is a 

divisor D =  ^2P€x u p P  such that nP =  n'p whenever P'  =  a ( P )  with o in the GaloLs 

group of K  over K, K  being the algebraic closure of K. Note that any divisor whose 

support is contained in the set of K-rational points of \ is a K-di visor. The set of all 

K-divisors is a subgroup o f the group divisor, and it will be denoted by D x.

Definition 4.2.3.1. Let f  £ f q(x)-  The order of f  at a point P  6 X »  defined to be 

vP{ f )  where vP is the discrete valuation corresponding to the valuation ring 0 P(\). If 

i/P( f )  >  0, / is said to have a zero at P , and if  vP ( f )  < 0, / is said to have a pole at P.

Remark 4.2.3.2. For the sake of simplicity, from now on by the word divisor we will 

mean a K-rational divisor.

Given a rational function /, it is natural to associate a divisor to /, in the following way

via the valuation map:

(/ ) : « $ > ( / ) / ’

Such a divisor is the zero divisor if and only if / £ K, otherwise a pole divisor, f  € K 

be written as a difference of two effective divisors i.e (/) =  (/)o — (/)oo ''hen* (/ )o 

Y ^ pU) > a M f ) P  zero divisor of /, and (/ )«, =  E«/P(/)<o ~ l/p( f )P^ ls ^K‘ l>ol(

divisor of /. We call (/ ) a principal divisor.

D efin ition  4.2.3.3. Two divisors D  and D ' are called linearly eg ninth nt if I ) D (./1

fo r a rational function J'.

D efin ition  4.2.3.4. I f  G  € Dx, we can define iht Riemann-Roch Spact associated with 

G by:
L ( G )  =  {/  e  F ,(*)| (/ ) +  G  >0} U {0 } (4.2.11)

Which kind of functions arc admissible in the space so defined? Notice that if

r s

»=i j =i

with n, >  0,m j >  0, then L(G)consist of all elements / £ F, such that

• fhas zeros of order >  vn, at Q j ,for j  =  1 , . . . . s- and

.  / may have poles only at the places P ,.......P „  with the pole order at P, being

bounded by ni} (i  =  1 ,..., r).

R em ark  4.2.3.5. Let G  € D x. Then;

a ) , f  e  L ( G )  i f  and only if  vP ( f )  >  ~ v P{G) for  all P.

b)  . L { G )  ^  {0} i f  and only if  there is a divisor G ' is equivalent to G.
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Lemma 4.2.3.6. Let G  E D x • Then we have:

a) . L(G)  is a vector space over Fq.

b) . I fG'  is a divisor equivalent to G. then L (G)  is isomorphic to L (G ') as a vet tor span s
over F9.

Remark 4.2.3.7. Notice that the divisor of a product of two functions is tin sum of tht 

respective divisors, ( f . h ) =  ( f ) ( h ) ,  and the divisor of the sum of two functions satisfies 

(/ + /i) >  m in { ( f ) ( h ) } , i.e., the minimum coefficient is chosen, point by point.

The maps

L (G ) -> F „  

/ -  fg -

L {G ') -  F „  

f  - *  f9 ~ l -

are Fq— linear and are inverses of each other. Infact ip is an isomorphism from L{G)  to 

L (G ')

L(G)  is a finite-dimensional vector space over Fq(x)  , its dimension is denoted 1(G) |3j. 

The theorem of Riemann says that there exists a nonnegative integer m such that for 

every divisor G  of x

1(G) >  deg(G) 4-1 -  m (4.2.12)

and the smallest nonnegative integer with this property is called the genus and is denoted 

by g(x )  or simply g. We now consider objects of the form fdh where / and h aie iational 

functions, i.e. elements of Fg(x), such that the map which sends h to dh is a derivation. 

We denote the set of differentials on x  by T2(x)- We can also think of the zeros and poles 

of differentials. At every closed point P  there exists a local parameter that is, a function 

u such that vP (u)  =  1, and for every differential u  there exists a function / such that 

uj =  fdu. The valuation up (lj) is now by definition v P ( f ) ,  so that ^  has a zero of order p 

if p =  uP ( f ) >  0 and a pole of order p if p =  - v P ( f )  >  0. The divisor of uj is by definition 

(<j) =  5 > P (u )P . The divisor of a differential is called canonical and always has degree 

2 (7-2 .

In the same way as we have defined L ( G )  for functions we now define tin \<<t<>i spare 

PL(G) with zeros and poles prescribed by G  as;

Q (G ) =  {u  6 I cv =  0 or (u;) >  G )

One could then defined the genus as the dimension of the vector space of differentials 

wuthout poles, that is, of, $2(0), wdiere 0 is the divisor with coefficient zero at every dosed 

point. The dimension of u ( G )  is called the index of speciality of G and is denoted by

i (G ) .
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Remark 4.2.3.8. The theory of differentials is key in understanding/ Hu ire of

Riemann-Roch space. Understanding this theory requires much effort.. He trill not dust nss 

this theory here. For more theory on differentials, one is referred to [10/. [12/ and [20/

Theorem 4.2.3.9 (R iem an n -R och ). For a divisor G of a curve of genus g

1(G) =  deg(G) +  1 - g  +  i (G)  (4.2.13)

Furthermore, i ( G )  =  l ( K  -  G )  fo r  all divisors G and canonical divisors K.

Moreover it is a consequence of the Riemann-Roch theorem we have;

Corollary 4.2.3.10. For any divisor with deg(G) >  2g — 2

1(G) =  deg(G) +  1 - g

Proof. By Rieinann-Roch Theorem we have 1(G) =  deg(G) +1 —g-\-l( A — C).  where l\ is 

a canonical divisor. As dey(G ) >  2g — 1 and deg(K)  =  2g — 2, we have deg( l\ G ) < 0. 

Now 0 ^  f  e L (K  -  G ) would mean / has atleast a zero but no pole which is impossible' 

Hence L (K  -  G ) =  0 and l (K  -  G ) =  0, and the corollary is provad.

Note 4.2.3.11. In texts like [20/,[26/, it is shown that nonsingular curves \ which in

tersects the line at infinity in a single point, Q say, are important for the construction 

of Algebraic Geometry codes. Such codes are often referred to as one-point Goppa <od<s. 

However, two-point codes have been constructed and studies on them corn! aided / -//. Foi 

our purpose we will only consider the case of one-point, codes.

4.2.4 Counting Points on Curves

There are several approaches in counting the number of points on a emu . Finding tl 
points explicitly may be impractical especially when the dimension of tin fit 1 1 i g 

Morover, what we may be interested in is whether these points an mam or hu. T 

we make use of a bound given by Hasse-Weil theorem.

Th eo rem  4.2.4.1 (H asse-W eil Bound). I he number A — A( / ) of plan .1 7 /

degree one satisfies the inequality;

\ N - ( q + l ) \  <2<w1/2-

Curves that attain this bound with equality are called maximal uirus. An <xa I 

such a curve is the hermitian curve [5j.
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4.3 Algebraic geometry In Coding
4.3.1 Algebraic Geometry Codes

Recall that L ( G )  is a Fg—vector space for any rational divisor G on a curve defined over 7(/ 

Recall also that a linear code is simply a vector subspace of F" for some positive integer n. 
But L(G)  is a vector space of functions, so it is not immediately a code. In this chapter, we 

show how the linear property of the Riemann-Roch spaces can be exploited to construct 

linear codes. Furthermore, we will use the Riemann-Roch theorem to determine the ranks 

and (designed) minimum distances of these codes. This highlights the importance of the 

Riemann-Roch theorem to the theory of AG-codes.

We first emulate the construction of RS codes for the case when the sequence of points is 

obtained from curves in an algebraic geometry.

Defin ition  4.3.1.1. Let P\ • ■ • Pn be n distinct Fq-rational points of \ and tet G € h)x 

such that vPi(G)  = 0 f o r  i  = 1,..., n. Let

4> : L ( G ) — + FJ

/  — * ( / ( P l ) , - , / ( P n ) )

(4.3.1)

which is an Fg-/mear map. Set D  := P\ +  +  Pn-

The (G e o m e tr ic )G o p p a  code associated with I ) and G is ( d,g := 4>(L(G ')).

Clearly, C D q is a linear code since L{G)  is a vector space.

Lem m a 4.3.1.2. Let k := dim(CD,G) and d be the minimum distance of Cp,G- 'Ihen 

i). k =  1(G) -  l (G  -  D )

ii). d >  n — deg(G )

Proof, i). The map 4> is surjective from L(G)  to C D,G■ Then, by linear algebra, k -  

1(G) -  dim(ker(4>)). We claim that ker 0 =  L (G  -  D ), so that k =  1(G) -  l(G  -  D )

ii). Let x =  (/ (P i), - * -  J ( P n ) )  such that w(x)  =  d (for a linear code, the minimum 

distance is the same as the minimum weight of a non zero codeword).

Then there exist (a codeword with zeros in n - d  positions) n - d  points, say 

Pi,,, -Pin d » such that f(Pi} ) = o ,  i.e. uPij( f )  > L Then / € L (G - ( p il,-- -Pin̂ d)) 
and hence deg(G ) -  (n -  d) >  0 from which the result follows.

□
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proof o f  cla im . It is clear that / G ker </> if and only if f ( Pf )  =  0 for t -  1.2...... u.

therefore uP. ( f )  >  1. So (/ ) -  £ "= i Pi > 0. Since / G />((7) and /  has a zero at eath of 

the P,s, we can deduce that / G L (G -  X] Pi) =  L (G  -  D). Hence kertf being a subspace 

is given by; ker 0 =  L ( G  -  D) ,  and so dim ker (f) =  l (G -  D). Thus the code so construeied 

can be regarded as an [n,k,d\ code with parameters k and d as in the lemma above, 

with the length n — deg(D) .  This follows from the fact that, the points of D are rational, 

the length of the code n must then be the same as the degree of D.

Proposition 4.3.1.3. Let Cp,G be a Goppa code with parameters k and d as abort Let

g be the genus of the underlying curve.

i). Let n >  deg(G ), then k =  1(G). Furthermore, a generator matrix of CD G is given 

by;
f l ( P l ) ■■■ f l (Pn)\

M  -.= : : •

\A(P< )  ■■■ fk(Pn)/

where /i, • • • , fk is an F9— basis of L (G) .  

ii). I f  n >  deg(G) >  2g — 2, then k =  deg(G ) +  1 -  <7-

Proof, i). We have that L (D  -  G ) =  {0 }  and lienee the first part of (1) follows from 

lemma 4.3.1.2 and the Riemann-Roch theorem. lo  see that M  is a generatoi mattix 

of C o g we have to show that the rows X\, • • • ,Xk of M  are F^—linearly ind< p< ndc nt. 

Suppose that X^=i =  0 with a* ^ ^ ^  îen 5Zt=i a«/«(Pj) =  0 f°r J — 1' * "  » n - 
Then ^ f =1 (kfi  € L ( G  -  D )  and so a, =  0 for each i. This completes the proof of

( 1).

ii). The claim follows from (1) and Corollary 4.2.3.10.

□

We now consider the other construction of AG codes, the residue const met ion of Goppa 

codes. We did not develop the theory of differentials necessary for a proper account of 

the construction of such codes, however, we will resort to a definition vhkh will still 

sufficient for our purpose. It can be noted that the canonical < oust i iu tion of C D G does not 

play a part in the description of the t heory covered here. A more canonic al const rue ti 

o f C q q  can be looked up in ((12), 138), from it follows most of our arguments as well as 

results unproven. We make use of a the fact that C ’DG is the dual code of the code C D<G 

already described.

D efin ition  4.3.1.4. Let D and G  be as befoi'e. I  hen

Cb.c ■■= | (A ,  A .  • • •. in ) € r  I £  I M P i )  =  °w> € H Q  }
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is a linear code o f length n =  d(D),  rank k =  n -  1(G) + l(G  -  D ) ... * and 

distance d >  d (G)  -  (2g -  2) where g is the genus of \-
minimum

Clearly n =  d ( D )  as in the previous argument. Since C*DG is the dual of ( ' d c - we have

dim,C*DG +  dim,C£,c =  n (4.3.2)

By Lemma 4.3.1.2, dimCo,G =  1(G) — l(G  — D). Substituting this in Equation!.3.2 above 

we obtain the required result. For the minimum distance, it is clear that if d(G) <  

2g -  2.Suppose d <  d(G)  -  (2g -  2). Let C =  (ci.c2,--- ,Cn) € C*DXS be a word of 

minimum weight. Consider the set / of indices of c where c* ^  0. Clearly. |/| = <1. so we 

have,

which yields;

By Riemann-Roch we have;

= d  f e  P < < rf<G) - Pfl - 2>) 

d f G “  z L  Pi j  > 2g ~  2

f g  -  £ a j = rf(G) -d+1 - s

Now let j  E /, then we have;

= d ( G ) - ( d - i ) + i - 9 > i ( c - Y ; pcJ

So there exists € L ( G  -  but V *  L (C -  ^  P* €

and Pi $ supp(G) ,  we must have vp, >  1 f°rab 1 ^  •?’ imp'ying * 1,11 r ' ....

Similarly since <  0, we must have u(P j )  *  0. By D  -  £ ie, '■ *  6 ' we 1,ave *  4

and by the definition of Cd .g we have

cp p (P i)+ c i< fi(p2j + ' - ' + ^ a . )  = ()

, r , — n the above equation reduces to
If r € / then * , ( 0 )  =  0 and if • *  / then ft -  0, so the, . / n and this is a contradiction, since v?(/j) 7* u.
c M P j )  =  0. But j  € I  which implies cj  ±  0, and tms

Therefore we must have d >  d(G ) -  (2// — 2) if > 9

U^\ o 9 The code Cn r  has rank  ̂=  n ~  + 9 ~
T h eorem  4.3.1.5. Suppose d(G)  >  2/7 2.

1 +  l ( G  — D) .

x , if A(r\ >  2a -  2. Substitute into the 
Proof. By Riemann- Roch, 1(G) -  d(G)  +  1 g d d(

equation (* ) above, we get the result.
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Definition 4.3.1.6 (D esigned  M inim um  Distance, Minimum distance). The d< -

signed minimum distance of C*DG is defined to be d* := d(C)  -  (2g -  2). We sometnm s 

denote d* as d*(C*DG ) to emphasise that the code is C*DG. Define tm := , and U t

d (C *DG) denote the true minimum distance ofC*DG.

Rem ark 4.3.1.7. The designed minimum distance is only useful if  d (G ) > 2y -  2.

We now looking at an example of code construction over a harmitian curve. We need 

a basis for the Riemann-Roch space constructed from a carefully chosen divisor. The 

construction of this basis requires a little more theory which is not presented here. More 

can be looked up in [9|.

Exam ple 4.3.1.8. Consider the Hermitian Curve defined by f  =  X  ' +  ) ~Z + ) Z~. It is 

non-singular with genus 1. It has 9 rational points and one point at infinity, Q =  [0 : 1 : 0]. 

Consider C * (D , aQ) where D is the sum o f all the rational points except Q. The code has 

designed minimum distance d* =  a — (2g — 2) = a. So letting a = 5 will allow the 

correction of 2 errors. The codes has rank 8 — <7 4-1 — 1 = 8 r/ =  3 if  a — 5. We have 

L (5Q ) =  1 , y. x2, xy. Define F4 := F2 [cu»] where w2 +  w +  1 — 0. Let:

Pi =  ( 0 : 0 : 1 )  P2 =  (0 :1 :1 )  P3 =  (1 : w : 1) P4 =  (1 : w2 : 1)

Ph =  ( ui - . w: \)  P6 =  ( u : u i 2 : 1) P7 =  (w2 : u  : 1) P8 =  ( u2 : w2 : 1) (4.3.3)

The code C*D 5q has parity check matrix.

/ 1 1

l ( P l )  x ( P 2) ■■■ 

y (P i ) y (p2) ■■■

I 2(P ,) x2(P 2) •••

\xy(P i) x y ( P2) ■■■

which evaluates to;
/ l 1 1 1 1 1

0 0 1 1 uj u
0 1 u  uj2 u  w2 

0 0 1 1 u 2 u2

0̂ 0 u  u 2 uj2 1

4.4 Summary
Goppa codes prove to be the easiest to construct and impl< me nt as Alg( brait Ca 

readily provide tools for construction and analysis of codes. The R iemann-Roch 1 heorem, 

for instance, readily gives enough information as to the code length, the rank and the 

minimum distance are known. All that remains is to choose an appropriate emu ,

1 \

x(Ps)

V(P>)
x2(P »)

x y (P »))

l l >

U2 Uj2

u  w2 

u  u  

1 u )
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on theories deeply founded in Algebraic Geometry. The Structural properties of curves, 

mainly t he number of rational points and genus qualifies or disqualify a curve from being 

a piefeiable candidate for code construction. For example, curves with small genus and 

large numbers o f [joints are of interest in constructing codes. The quantity Nq(g), the 

largest number o f points over F<j for any curve of genus g, has been studied by several 

authors (e.g., [ 13] ) and the results find implications in coding theory.

Most recent contributions into the area coding theory have involved the search of new 

maximal curves |25|. Several authors have also studied construction of function fields via 

some restriction, and the end product has been the discovery of new codes [23]. Tint 

search for decoding algorithm has also formed a an opening for more research in coding 

theory as evident in [25]. All in all the theory of coding has become more a mathematical 

problem than a problem in information theory. Hermitian codes for example has been 

extensively studied and digital systems bearing it aplications may soon be in the market!

4.5 Conclussion
As a conclussion of this dissertation, we try to establish the relationship if any among 

some classes of codes already discussed. That;

Linear Codes D Cyclic Codes D  B C I I  Codes

D Goppa codes (4.5.1)

D Reed — Solomon codes

is obvious. What remains is to establish how the BCH codes and the Goppa codes relate. 

Consider the construction of the RS and extension to GRS in Section 4.1.1. We can view 

the code in a different manner by the following argument;

We know that the projective line of order q can be described by giving the points coor

dinates (a q ,^ ) where (£1,22) and (Ax^Aaq) are the same point P  E Fq. If a(x ,y ) and 

b(x, y) are homogeneous polynomials of the same degree, then it makes sense to study the 

rational function a(x,y)/b(x, y) on the projective line (since a change of coordinates does 

not change the value of the fraction). We pick the point Q :=  (1,0) as a special point on 

the line. The remaining points have as coordinates (0,1) and (a*, 1), (0 <  i <  q — 1),

where a again denotes a primitive element of Fq. We now consider those rational func

tions a (x .y ) jy l for which / <  k (and of course a (x ,y ) is homogeneous of degree /). This 

is a vector space (say K )  of dimension k. Looked at in this manner, the description of RS 

codes given above amounts to numbering the points of the line in some fixed order (say 

P0, Pi, • • • , Pq- 1) and taking as codewords (/ (P 0, • • • J { P q- 1), where / runs through the 

space K. The functions have been chosen in such away that we can indeed calculate their 

values in all the points P,’s; this is not so for Q. Thus we conclude based on our previ

ous discussions that the simplest examples of algebraic geometry codes are Generalized
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Reed-Soloinon, constructed by replacing the projective line by a projective curve in some 

projective space.

We also once again revisit the BCH construction for clues of inter relationship. Let a 

be a primitive nth root of unity in an extension field of F „  say F,"». n | gm -  1 and let 

g(x ) 6 F,[x] be the polynomial of smallest degree with zeros

{a 4;t = 1,2, - * * 24}

for some integer t >  1. Let the degree of g(x), referred to as the generator polynomial of 

the code, be n — k. The maximum number of distinct cyclotomic cosets of these elements 

is 21, each containing at most m elements. Then

C =  {a (x )g (x )  | deg(a(x)) < k, n(x) € F,[.r]}

is a BCH code of length n, dimension k > n -  2 tm,, and minimum distance d >  2t +  1. 

By considering the polynomial;

it
h(x) = -  a1) € Fflm[x]

i=l
then the above code, with g (x )  replaced by h.(x) and the field of definition. IP, replaced bv 

F,m, is an RS code C\ of length n, dimension exactly k , and minimum distance exactly 

d =  2t +  1. The BCH code is then a subfield subcode of C.' i.e.,

C =  C  n FJ

i.e., the set of all codewords in with all coordinates in the field F. 1 herelore 

BCH Codes C GRS Codes.

Diagramatically, we can have the representation below (not to scale).
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Linear block

fig.4.1 Diagramatic representation of Inclussion of Some Codes.

Since we did not exhaust all the codes discovered so far, it would be interesting if one 

does a detailed work on codes thereby coniming up with a diagramatic representation as 

above, possibly drawn to scale, and fitting in most if not all of the classes of codes.
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