" ON THE SPECTIRAL PROPERTIES OF 2-ISOMEJRIC AND relatted operatrors on a hilibert space. "

A DISSERTATION SUBMITTED IN PARTIAL FULAFILMEN'T OF' THE REQUIREMENTS FOR THE AWARD OF THE DECAREE OF MASTER OF SCIENCE IN PURE MATHEMATICS AT THE SCHOOL OF MATIIEMATICS,UNIVERSITY OF NAIROBI, KENYA.

BY
KIRATU BETH NYAMBURA

AUGUS'T,2011

University of NAiROBI Library

DECLARATION

This dissertation is my original work and has not been presenter for a degree award in any University.
Signature. Pryor Date. $03 / 08 / 2011$ KIRATUB.N

(1). BELRNARD NZIMBI, SCHOOL OF MATHEMATICS, TILE UNIVERSITY OF NAIROBI B, P.() BOX 30197-00100, NAIROBI, KENYA.

AI3STIRAC'T

We investigate the spectral properties of 2 -isometric operatoms on a Hilhert Space A bomed linear operator T is a 2 -isometry if;

$$
T^{1 * 2} T^{2}-2 T^{*} T+I=0
$$

2-isometric operators arose from the stody of bomeded linear transommantions T of a complex Hilbert space that satisfy an identity of the form,

$$
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} T^{* k} T^{k}=0
$$

for a positive integer m,such operators are said to be m - isometries.
'Ihe case $m=1$, gives rise to the class of isometries on a Hilbert spare which has been widely stmdied due to its fmolamental importance in the theory of stochastic processes, the intrinsic problem of morlelling the genoral contractive operator via its isometric dilation and many other areas in appled mathemandies.

The case $m=2$, is the chass of 2 -isometries on a Hilbert space, which comtains the class of Brownian mitaries which play an essential role in the Weory of non-shationary stochastic processes related to Brownian motion. Brownimn motion or I'edesis(Greck for leoping) is the presmathly ramem drifting of particles suspended in a fluid(a liquid or a gas) or the mathematical model nsed loo clescribe such random movements, which is often called particte theory.
'The mathematical model of brownian motion has several real world applications . An often cuoterl example is the stook market fluctuations.
It. has been shown in [1], that the genemal 2 -isometry has the fomm, $13=$ Thm, where 13 is the block form

$$
B=\left(\begin{array}{cc}
V & \sigma E \\
0 & U
\end{array}\right)
$$

where $\sigma>0$ is comstant, V is an isometry, V is mitary, E is a Hilhert space isomomphism onto ker V^{*} and $M /$ an invariant sulspace for T^{\prime}.'The operators I3 are refered 10 as Brownian mitaries of convariance σ.

3

Acknowledgement:

I wonld like to acknowledge the advice and guidance of ny Supervisor 1)r. Bernard Nzimbi who has smported me thronghont my researeh work with his patience and knowlegde whilst allowing me lo work in my own way.

I am heartily thankful to my lecturers l'rof. J.M Khalaghai, Dr. S.W Laketero, 1)r Charles Nyandwi, Prof Manene just to mention but a few, for their moflinehing gatidance and support from the initial stage to the final level.

I would like to thank my collongues Ben (Obiero, David Kihato amel Isaiah Sitali.I appreciate their support.

I acknowledge the University of Nabobi for their linancial suppot, thenghont my Master's Course.

Dedication

I would like to dedicate this work to my parents for their support and prayers. My faller Cyms Kiratu for showing me the joy of pursul of knowlealge since i was a child, my mother Tabitha who sincerely mased me with caring and gently love.
(Goompe, Steve and Hope for being supportive and canting siblings.

This page is cledicated to my lmshand Harrison Ng'mg'a, whose dedication, love, persistent and confidence in me has taken the load wit my shoulder .I owe him for not allowing his intelligence,phasions and anmitions collide will mine.

LIST OF NOTATIONS

H, H_{1}, H_{2}; Hilbert Spaces.
\mathbb{C}; Space of complex numbers
l2. Space of infinte square summable sequences
$C^{\prime}(22)$; Space of complex valued functions that are continumis on $s=$
13(II); Bamach algebra of bounded sequences on II
R(T); Ramge of T
$N(T)$; Noll space of T
$M \oplus N$;Direct sum of M and N
I'M; Orthogonal projection onto a closed subspace M
M^{\prime}; (Othengonal complement of M .
$\overline{\mathbb{I D}}=\{z \in \mathbb{C}:|z| \leq 1\}$
() $\mathbb{D}=\{z \in \mathbb{C}:|z|=1\}$
T^{*}; Acljoint. of T^{\prime}
$|T|=\left(T^{*} T\right)^{\frac{1}{2}}$
II. $\|$; Norn
\langle,$\rangle ; Immer product function$
$\sigma(T)$; Spectrum of T
$\sigma_{p}(T)$; Point spectrum of T
$\sigma_{r}(T) ;$ Contimuous Spectrmm
$\sigma_{r}(T)$; Residhal Spectrom
$\sigma_{u p}(T)$; Approximate Point Spectrum
$\sigma_{c p}(T)$; Compression spectrmm
$\mathrm{I}_{0}\left(T T^{\prime}\right)$; sel of eigenvalues of finite multiplicity.
$\omega(T)$; Weyl spertrim.
$s_{\omega_{n}}$; Weighted milateral shift.
$S_{e_{n}}$; Unilateral shift
$\|^{\circ}(T) ; \quad$ Nunerical range of T
w(T); Numerical radius
$r(T)$; Spectral radius
$r(T)$; Crawford mumber

INTRODUCTION

Origin of Spectral Theory

Spectral theory is one of the branches of functional malysis, which can be described as trying to "classify" linear operators. In order to understand its importance, we shall give a brief history of fuctional analysis.
Finnctional analysis is the branch of mathematics where vector spaces and onerators(functions) on them are in focus.In linear algebra, the focus is on finite dimensional vector(linear) spaces over any field of scalars and the functions are viewed as matrices with scalar entries, but in functiomal amalysis the vecLor spaces are infinite dimensional and not all operators can be represented by matrices.
Functional analysis has its origin in the theory of ordinary and partial differential equations which was used to solve several physical problems, which included the work of Joseph Fourier (1768-1830) on the thoory of heat in which he wrote difierential equations as integral equations. His work triggered not. only the development of trigonometric series, which required mathematicians to consider what is a function and the meaning of convergence, this concieved Lebescue Integral which could accomodate broader functions compared lo the classicat Reimamian Integral.It also gave bith to the spectral theory which is a central concept: of functional analysis.
ln the begiming of the 20 th centmy functional analysis stamed to form an rise ipline of its own via integral efuntions. The first internsive stmely of inlegral equations was given by Swedish astronomer amblathematician Ivar Protholm in a series of papers in the year 1900 to 1903 , in which he developed a theory of "determinants" for integral equations of the form;
$\mathrm{f}(\mathrm{x})-\lambda \int_{a}^{h} K(x, y) f(y) d y=g(x) \quad$ where $K(x, y)$ is the Kernel function. (1)

Frecholn defined a "detemmant" $D_{K}(\lambda)$ associated with the kernel λK°, and showed that D_{K} is an entire function of λ. The roots of the equation $D_{K}(\lambda)=$ () are called eqgenvalues and the corresponding solution to the homogeneons equation $g(x)=0$ are called eigenfunctions.
The work of Fredholm got immediate attention from mathematicians all over the workd and David Hilbert(1862-1943) was one of the most cuthnsiastic,during the years 1904-1906, he published six papers on integral expations, in which he started transforming the integral equations to a finite system of equations under the restriction that the kernel function is symumetric. Both Fredholm and Hilbert studied eigenvalues in the sense that the operator $\lambda K-I$ is not invertible As a result, spectral theory of operators was initiated and operators were classified in terms of their spectral properties on a Hillert space. The restriction to this space was becanse linear operators on it are fairly concrete oljects and the study of their spectrom shows how operators stretch the spaces in diflerent factors and in mutually perpentionlar directions.
Hilloert, space refers to an infinite dimensional complete normed linear space which has an additional strncture -ealled an imer product. The imer product is itself a generalization of the scalar product of elementary cartesian vector malysis
The scalar product is usually defined in terms of the components of the vector, lut in accordance with standard tacties in functional analysis, the algelmaic properties of the scalar product are taken as axions in the alstract context. The presence of the scalar product entiches the geometrical properties of the space.

What is Spectral Theory?

Spectral theory can be described as trying to "classify" all thear operators which was motivated by the need to solve the linear ecfuations $T(u)=w$ hetween Hillert spaces.It was introduced by David Hilbert, during his initial formulation of Hilbert space theory. The restriction to a Hilbert space occurs since Hilloert spaces are distinguished among Banach spaces by being closely linked to plane Euclidean geometry which is the correct description of our miverse at many scales.
Finite dimensional linear algebra suggests that two linear maps
$T_{1}, T_{2}: H_{1} \rightarrow H_{2}$ which are linked lyy the formula $T_{2} o U_{1}=T_{2}$ of T_{1} for some invertible operators $U_{i}: H_{2} \rightarrow H_{i}$, which share many similar properties. This is becanse the U_{2} correspond to the changing of basis in H_{i}, which shomld be an operation that does not affect intrinsic properties of the operators, therefore it possible to diagonalize operators T_{1} and T_{2} using the change of basis matrix. As a result the "classification" problem is succesfully solved by the theory of eigenvalues, eigenspaces, minimat and characteristic polynomials, in which operators are represented ly square matrices and eigenvalue decomposition is possible only when the operator is cliagonalizable.
This interpretation fails in the case of an infinte dimensional Hillort spare since an operator may fail to have eigenvalues, so we need to replace the notion of eigenvalue with something more general; complex mumber λ such that $T-\lambda /$ is not invertible, the set of all such λ is callerl the spect,rum of ' T '. In peneral spectral theory can be defined as the infinite dimensional version of diagomalization of a normal matrix(i.e a matrix that commmes with its aljoint.).
Note:We define the spectrom of the operator T as the sed of λ such that $T-\lambda /$ is not invertible.'This means that a λ, in the sense of Fredholm is an rigenvalues iff $\frac{1}{\lambda}$ is an eigenvalue in our sense.

Structure of the Dissertation

In Chapter 1 , we shall give some basic definitions and concepts in operator theory, especially properties of bounded linear operators since T is taken io be bommed. The notion of Invariant spaces will play a vital mole in the tecompositions of T.
In Chapter 2, we shall look at the spectrmm of T and its partitions, he: momerical range, maximal generalized inverse(Moore-Penrose inverse) of T and the reduced minimm modulus of T.
In chapter 3, we shall introduce the class of 2 -isometric operators, their spectral properties. In particular, we show that the spectrmm,mmerical range anel The Weyl spectrum of 2-isometry are equal to the closed mit dise. In addition we shall look at the von Neuman Wold Decomposition of 2 -isometrios, recomposit ion of an operator splits it into operators that are easy 1.0 morlerstand, herefore plays a vital role in the theory of 2 -isometries.
In chapter four, we are going to give other classes of Hillert space operatons rolated to 2 -isometries. Finally we shall give a conchasion on suggested rescarch topics that arose during our study.

Contents

1. Preliminaries 13
1.1 Notations and terminologies 13
1.2 Invariant Subspaces 15
1.3 Properties of hounded linear operators 16
1.4 Some classes of Hilbert space operator 21
2 The Spectrum of an operator 25
2.1 Classification of the spectrim 25
2.2 The mumerical range 30)
2.3 Spectral characterization of closed range operators 32
3 2-isometric Operators 38
3.1 Properties of 2 -isometric operators 38
3.2 The milateral weighted shift operators 49
3.3 A von Nemmam-Wold Decomposition for 2-isometries 55
4 Operators related to 2 -isometries 60
2. 1 quasi-jsometries (i)
4.2 Composition Operator (i2
4.3 A-2 isometric operators (3) 3
3. 4 ()perators of chass \mathcal{Q} (i.)
4.5)(m, p)-Isometries (6.)
4.6 Conchusion 66

Chapter 1

Preliminaries

1.1 Notations and terminologies

Definition 1.1.1. Lel H denote a vector space ouer the field of rompleat numbers. An mner product is a complex valued function. \langle,$\rangle on. H \times \|$ such that for whll $f, g, h \in I$ and or a complex number, the folloumag amoms hold:
$\langle f, f\rangle \geq 0$ and $\langle f, f\rangle=0$ iff $f=0$
$\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$
$\langle f, g\rangle=\overline{\langle g, f\rangle}$ where the bar denotes the complex conjugate.
$\langle\alpha f, g\rangle=\kappa\langle f, g\rangle$

A space H equiped with an imer product is known as a pre-hilbert space or an inner product space.

Bxample 1.1.2. For an infinte dimenszonal complex vector space, the appropriate anner product is, with
$f=\left(f_{1}, f_{2}, f_{3}, \ldots\right)$ and $g=\left(g_{1}, g_{2}, g_{3}, \ldots\right)$
$\langle f,!\eta\rangle=\sum_{j=1}^{\infty} f_{j} \overline{I_{j}}$
Exannple 1.1.3. An mner product may easaly be constructed for the set of complea: valued functuons $C(\Omega)$ by setting $\langle f, g\rangle=\int_{\Omega} f(x) \overline{g(x)} d x$

Theorem 1.1.4. For any element $x, y \in H$ the follomany propertaes hohd: $|\langle x, y\rangle| \leq\|f\|\|!\| \|$ (Schuartz Incquality)
$\|x+y\| \leq\|x\|+\|y\|$ (Triangle mequality)
$\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|a\|^{2}+\|y\|^{2}\right) \quad x \perp y$ (Paralleloyram law)
Theorem 1.1.5. A pre-hilbert space is a normed vector space with the norm, $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$

A pre-hilbert space which is complete with respect to the nomm is called a Hilbertspace

The symbol H will henceforth always denote a Hilbert space.
$I I$ is cabled a separable space if there exists vectors v_{1}, v_{2}, \ldots which span a sulospace dense in II.

Proposition 1.1.6. Every Separable Hibert space has an orthonormal hasus.

Recall:Let M denote any subset of H. Then the set of vectors orthogomat (o) M denoted M^{\perp}, meaning $x \in M \quad, y \in M^{\perp} \quad \Rightarrow \quad\langle x, y\rangle=0$

Theorem 1.1.7 (Projection Theorem). Let M be a closed subspace of H. The I^{\perp} is a closed subspace, and $I I=M \oplus M^{\perp}$.

1.2 Invariant Subspaces

Sometimes properties of an operator $T \in B(H)$ can be determined rather easily by considering simpler operators which are restrictions of T to cortain sulspaces of $I l$, known as invariant spaces.
We now present some elementary facts about invariant sulspaces.

Definition 1.2.1. Leet $T \in B(H)$, a subspace M of I is invariund under T if $T^{\prime}(\Lambda) \subseteq M$.

A subspace M of H reduces T if both M and M^{\perp} are invariant ander T.
If M is invariant under T, then relative to the decomposition $I=M \oplus$ M^{\perp}, T can be written as

$$
T=\left(\begin{array}{cc}
\left.T\right|_{M} & X \\
0 & Y
\end{array}\right)
$$

for operator $X^{*}: M{ }^{\llcorner } \rightarrow M$ and $Y: M M^{\perp} \rightarrow M^{\llcorner }$where $\left.T\right|_{M I}: M \rightarrow M$ is a restriction of T to M and $X=()$ iff M reduces T.

Definition 1.2.2. A part of an operator is a restrestion of it 10 an imparant. subspace.

A divect summand of an operator is a restriction of it to a reducing sub spuces.

Remark 1.2.3. An operator is completely non-umitary if the restrictuon to any non-zero reducing subspace is not unitary. In particular; T has no nonzero unitary divect summand.

Definition 1.2.4. An operator $T^{\prime} \in B(I I)$ is reduczble if it has a nomtrimal reducible subspace(equivalently, it has a proper non-zero direct summand), othervise it is said to be irveducible.

A unilateral shift of multiplicity one is irreducible.

1.3 Properties of bounded linear operators

Thronghont this section H, H_{1}, H_{2} denote Hilbert spaces over the whplex plane and $B(H)$ denotes the Banach algelora of bonnded operators on II.

Definition 1.3.1. A function T which maps I_{1} info I_{2} is colled a lincar operator if for all $x, y \in I_{1}$ and a a complex number,
$T(x+y)=T(x)+T(y)$ and
$T(c x:)=\operatorname{rr}(T(x))$

Definition 1.3.2. The linear operator $7^{\prime}: H_{1}, \rightarrow H_{2}$ is called loumded if;
$\operatorname{silp}_{\|x\| \leq 1}\|T x\|<\infty$

The norm of T, written $\|T\|$ is given by;
$\|T\|=\sup _{\|x\| \leq 1}\|T x\|$

Thus an operator is a bounded linear transformation of a non-zero complex Hilbert space into itself.

Example 1.3.3. Let $S_{v}: l_{2} \rightarrow l_{2}$ be defined by;
$S_{r}^{\prime}\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)$
S_{r} i.s called the forward shift operator. S_{r} is linear and $\left\|S_{r} x\right\|=\|x\|, \quad x \in$ l.2. In. particular , $\left\|S_{r}\right\|=1$

1'oposition 1.3.4. Let $T: H \rightarrow H$ be a non-zero linear operator.
The following are equivalent;

- $I R(T)$ is a closed subspare of H
- Tis a bounded linear operator.
- $N(T)$ is a closed subspace of H

Lemma 1.3.5. Let T be an operator such that for all $x \in\|\| T, x \| \geq$ $c\|x\|$, where c is a posituve constant. Then $R(T)$ is closed.

Proof

Let $\left(y_{n}\right)$ be an convergent seguence of elements in $I P(T)$ converging 10 \% Then $y_{n}=T x_{n}$. Fon some $\left(x_{n}\right)$.Since $\left(y_{n}\right)$ is convergent, it, is a Canchy sepuence. Now
$\left\|x_{n}-r_{m}\right\| \leq \frac{1}{1}\left\|T\left(x_{n}-x_{m}\right)\right\|=\frac{1}{c}\left\|y_{n}-y_{m}\right\|$
$\Rightarrow x_{n}$ is a Canchy sequence and hence convergent to wome olement a.'Then since T is contimons
$y=\lim y_{n}=\lim T x_{n}=T x$
$\Rightarrow\left(y_{n}\right) \rightarrow y \in R(T)$. Thus $R(T)$ contains its limit, points, hence closed.

Definition 1.3.6. If $T \in B(H)$ then its adjomb T * is the unique operator in $B(H)$ that satisfies
$\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \forall x, y \in H$

An operator $T \in B(H)$ is called self-adjoint if $T^{*}=T$.
Theorem 1.3.7. [9]
Let $T \in B(H)$, the follouing results hold;
$1 T^{*} T$ is a positive self adjoint operator.
2. $R(T)$ is closed iff $R\left(T^{*} T\right)$ is closed.
3. $\overline{R\left(T^{*}\right.}=N(T)^{\perp}=N\left(T^{*} T\right)^{\perp}=\overline{R\left(T^{*} T^{2}\right)}$
4. $N\left(T\right.$ and $N(T)^{\perp}$ are invariant under $T^{*} T$.

Proof

We have $\left(T^{*} T\right)^{*}=T^{*}\left(T^{*}\right)^{*}=T^{*} T \Rightarrow T^{*} T$ is self adjoint.

To slow that its positive consider,
$\left\langle T^{*} T x, x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2} \geq 0$.Thus $T^{*} T$ is positive, hemee (1) holds.

To show that (2) holds, assume $R(T)$ is closed.

J3y defintion, $\left\|T^{*} T\right\|=$ sup $)\left|\left\langle T^{*} T x,\right\rangle\right|=\|T\|^{2}$.

Since $R(T)$ is closed, then $\|T\| \leq c\|x\|$ for some positive constand c, squaring both sides we have, $\|T\|^{2} \leq c^{2}\|x\|$

Therefore $\left\|T^{*} T\right\| \leq c^{2}\|x\|^{2}$, taking $\|x\|=1$ we have, $\left\|T^{*} T\right\| \leq c^{2}\|x\|$

By definition, $\left\|T^{*} T T^{\prime}\right\|=\sup \left\|T^{*} T x\right\|$, it follows that $\left\|T^{*} T x\right\| \geq c^{2}\|x\|$
hence by lemma1.3.5 $R\left(T^{*} T\right)$ is closed.

Conversely, assume $R\left(T^{*} T\right)$ is closed, then by $p^{r o p .1 .3 .2}$ we have $T^{*} T$ is bonnded, i.e there exists a posit.ve constant b such that, $\left\|T^{*} T\right\| \leq b\|x\|$ since $\left\|T^{*} T\right\|=$ $\|T\|^{2}$ we have, $\|T\| \leq \sqrt{b}\|x\|$, hence by prop.1.3.2 $I P(T)$ is closed.

To prove (3), we first show that $\overline{R\left(T^{*}\right)}=N(T)^{\perp}$

Led $x \in N(T) \Rightarrow T x=0$, take my $y \in H$
'Then $0=\langle T: x, y\rangle=\left\langle x, T^{*} y\right\rangle$
$\Rightarrow T^{\prime *} y \in N(T)^{\mathrm{L}}$
$\Rightarrow R\left(T^{*}\right) \subseteq N\left(T^{\prime}\right)^{\perp}$ \qquad

Conversely, let $y \in R\left(T^{*}\right) \Rightarrow \exists \quad z \in H \mid T^{*} z=y$ and $x \in N(T)$
'Then $\langle x, y\rangle=\left\langle x, T^{*} z\right\rangle=\langle T x, z\rangle=0$
$\Rightarrow N\left(T^{\prime}\right) \subseteq R\left(T^{*}\right)^{\perp} \Rightarrow N(T)^{\perp} \subseteq R\left(T^{*}\right)$. \qquad (**)
From (*) and (**) and the fact that $R(T)$ is closed $\Leftrightarrow R\left(T^{*}\right)$ is closed, we have $N(T)^{\perp}=\overline{R\left(T^{*}\right)}$
Similarly $N\left(T^{*} T\right)^{\perp}=\overline{R(T * T)}$.

To show that (3) holds, it suffices to show that $N(T)=N\left(T^{+} T\right)$, therefone suppose that $x \in N(T) \Rightarrow T x=0$ applying T^{*} wo have $T^{*} T: x=0 \rightarrow x \in$ $N\left(T^{*} T\right) . \Rightarrow N(T) \subseteq N\left(T^{*} T\right)$

Conversely, len $x \in N\left(T^{*} T\right) \Rightarrow T^{*} T r=0$, let $y \in I|\mid \eta \neq 0,1$ hen,
$0=\left\langle T^{*} T x, y\right\rangle=\langle T x, T y\rangle \Rightarrow T x=0 \Rightarrow x \in N\left(T^{\prime}\right)$, ,thus $N\left(T^{*} T\right) \subseteq N(T)$, it follows that $N\left(T T^{*} T\right)=N(T)$, hence the proof.

To prove (4) we first define an invariant subspace, a closed subspace M of $I I$ is said to be invariant under an operator T if $T(M) \subset M$ or $R\left(\left.T\right|_{M} \subseteq M\right.$, from (3), we have $N(T)^{\perp}=R\left(T^{*} T\right)$, it follows that $N(T)^{\perp}$ is invariant umder $T * T$. Therefore $a: N(T)^{\perp} \Rightarrow T^{*} T x \in N\left(T^{\prime}\right)^{\perp}$, waing the conjugate on both sides we have $\bar{x} \in N(T) \Rightarrow T^{*} T x \in N(T)$, thus $N(T)$ is invariant muder T*T. Hence the proof.

1.4 Some classes of Hilbert space operator

Definition 1.4.1. An operator $T \in B\left(H_{1}, H_{2}\right)$ is callect mavertable if theme exists an operator $T^{1} \in B\left(H_{1}, H_{2}\right.$ such that:
$T^{-1} T x=x$ for every $x \in H_{1}$
$T T^{-1} y=y$ for every $y \in H_{2}$

The operator T^{-1} is called the inverse of T.
Theorem 1.4.2. An operator $T^{\prime} \in B(H)$ is invertible if and only if the following properties hold;

- There exists a posztive number co such that $\|T x\| \geq c\|x\|$ for any $\cdot \boldsymbol{r} \in I$
- $l(T)$ is dense in. II

Theorem 1.4.3. If $T \in B(H)$ is self-adjoint then $N\left(T^{\prime}\right)^{\perp}=\overline{R(T)}$. Thus. by theorem. 1.2.4 $H=N(T) \oplus \overline{R(T)}$

Definition 1.4.4. Any tuo complex Hulbert spuces H_{1}, H_{2} of the sume dimension are equavalent in the sense that there exists an operator $U \in B\left(H H_{1}, H_{2}\right)$ such that U is surjective and $\|U x\|=\|x\|$ for all $x \in H$

An operator U which satisfies the property $\|U x\|=\|x\|$ for all $x \in I$ is called an Isometry.

The forward shift operator $S_{r} e_{i}=e_{i+1}$ on l_{2} is an example of an isome1.7y.

Definition 1.4.5. An operator $K \in B(H)$ is compact if for each sequence of unit vectors $\left\{x_{n}\right\}$ in H, the sequence $\left\{K x_{n}\right\}$ has a convergent subsequence.

Example 1.4.6. The integral operator K where $f \in C(\Omega)$ and
$\kappa f(x)=\int_{\Omega} K^{\prime}(x, y) f(y) d y$ as compuct.

Definition 1.4.7. A linear isometry which maps $I I$ onto itself is called a Unitany ()perator.

Lemma 1.4.8. Lat $T \in B(H)$ be unitary then;

1. Thas an inverse T^{1} which is unitary.
2. T is linear.
3. The adjoint operator coincides with its inverse.

Example 1.4.9. Let a(t) be a Lebesque measurable function on $[a, h]$ such that $|a(t)|=1$ almost ceverywhere. The operator U defined on $L_{2}[n, b]$ by $(l f f)(t)=u(t) f(t)$ is unitary.

Definition 1.4.10. Let T_{1} and T_{2} be operators on H_{1} and H_{2} respectionely, T_{1} is saxd to be unitarity equivalent to T_{2} if there exists a unitary operator $U \in B\left(H_{1}, H_{2}\right)$ such that $T_{2}=U T_{1} U^{*}$.

Definition 1.4.11. An operator T acting on a Hilloct space Il is staid to bo completely nonunitary if it has no non-trivial reducing subsapce N such thal the restriction $\left.T\right|_{N}$ of T to N is unitary.

Definition 1.4.12. An operator T is Fredholm if $R(T)$ is closed, $N(T)$ and $R\left(T^{\prime}\right)^{\perp}$ are finite dimensional.
The index of T denoted by $i(T)$ is defined by
$i(T)=\operatorname{dim} N(T)-\operatorname{dim} R(T)^{\perp}$.
T is Weyl if it is Fredholm and of index zero.

Additional operators on a Hilbert space are defined as;

An operator $T \in B(H)$ is;

Normal if $T^{*} T=T T^{*}$

Normaloid if $r(T)=\|T\|$

Partial isometry if $T \Gamma^{*} T^{\prime}=T^{\prime}$

Quasinommal if T commutes with $T^{*} T$

Hyponomal if $T^{*} T \geq T T^{*}$

Qumsi-lyponomal if $T^{*}\left[T^{*}, T\right] T^{\prime}$ is mon-megative

Parmomal if $\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|$ for all $x \in I I$
m-isometry if $\sum_{k=0}^{m}(-1)^{m-k}\binom{n}{k} T^{* k} T^{k}=0$

Dominant if $R\left(T^{\top}-\alpha I\right) \subset R\left(T^{*}-\bar{a} I\right)$ for a complex momber a

Quasi-isometry if $T^{* 2} T^{2}-T^{*} T$

I'ositive if $\langle T x, x\rangle \geq 0$ for all $x \in H$

Idempotent if $T^{2}=T$

Nilpotent if $T^{\prime \prime}=0$ for some positive integer n.

Contraction if $\|T\| \leq 1$ (Equivalently $\|T x\| \leq\|x\|$ for all $x \in H$.)

Proper Contraction if $\|T\| \leq 1$

Strict Contraction if $\|T\|<1$

These operators are related by the following inchasions

Hyponormal Quasi-hyponormal Paranormal a Normatoid

Strict Contraction \subset Proper Contraction \subset Contraction

Chapter 2

The Spectrum of an operator

2.1 Classification of the spectrum

Definition 2.1.1. A complex number λ is said to be a regular value of an operator T if the operator $T-\lambda I$ is invertible.

The resolvent set denoted by $\rho(T)$ is the sel of regular values of T.

The sel of all those λ, which are not regular values of T is called the Spectrum. of the operator T and is denoted by $\sigma(T)$.

Definition 2.1.2. If there is a non-zero solution of the equation.Tx $-\lambda x$, then λ is said to be an eigenvalue of T and x the eagennector comespondina (1) the eigenvalue λ.

The linear span of all eigenuectors corresponding to the eigenomalue λ is said to be an eigenspace of the operator T and is denoted by $N(T-\lambda I)$.

An element $x \in H$ such that $(T-\lambda I)^{n} x=0$ for a positive integer n is said to be a principal vector corresponding to the cigenvalue λ.
The lincar span of all principal vectors corresponding to an eigonvalue λ is said to be a principal space.

The dimension of a principal space is the multiplicity of the comespondiny cigrnvalue.

Proposition 2.1.3. Eigenvalues of a square matrix $T=\left[a_{j k}\right\}_{j, k=1,2, \ldots n}$ arf the roots of the equation $\operatorname{det}(T-\lambda I)=0$.

Example 2.1.4. What are the eigenvalues and cigenvectors of
$T=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$
drt $(T-\lambda I)=(1-\lambda)(4-\lambda)-4=0$
$\Rightarrow \lambda^{2}-5 \lambda=0 \Rightarrow \lambda=0$ or $\lambda=5$
Eigenvalups of T are $\lambda_{1}=0$ and $\lambda_{2}=5$.
For $\lambda_{1}=0$
$(T-0 I) x=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)\binom{y}{z}=\binom{0}{0}$
$\Rightarrow y+2 z=0$
and $2 y+4 z=()$
\Rightarrow if $z=-1, y=2$
Therefore the comesponding engenvector is $\binom{2}{-1}$
For $\lambda_{2}=5$
$(T-5 I) x=\left(\begin{array}{cc}-4 & 2 \\ 2 & -1\end{array}\right)\binom{y}{z}=\binom{0}{0} \Rightarrow-4 y+2 z=0$
$2 y-z=0 \Rightarrow$ if $y=1, z=2$
Therefone the corresponding eigenvector is $\binom{1}{2}$
The spectrmen of an operator $T \in B(H)$ can be split into many disjoint parts.A classical partition comprises of the point spectum, contimus speetrim and the residnal spectrum.

Definition 2.1.5. The point spectrum denoted by $\sigma_{p}(I)$, is the set of all cigenualues of T
$\sigma_{p}\left(T^{\prime}\right)=\{\lambda \in \mathbb{C}: N(T-\lambda I) \neq 0\}$
The continuous spechnom denoted by $\sigma_{c}(T)$ is defined as follous: $\lambda \in \sigma_{r}(T)$ iff $\lambda \in \frac{\sigma(T)}{\sigma_{n}(T)}$ and $R(T-\lambda I)$ is dense in H.
$\sigma_{c}(T)=\left\{\lambda \in \mathbb{C}:(T-\lambda I)^{-1}\right.$ is unbounded and $\overline{R(T-\lambda I)}=I I$

Eaample

(On $L_{2}[0,1]$ define $T: L_{2}[0,1] \rightarrow L_{2}[0,1]$ with T ? $=$ tax (t), then $\sigma(T)=\sigma_{r}(T)=[0,1]$

The residual spectrum is the sel; $\sigma_{r}(T)=\left\{\lambda \in \mathbb{C}:(T-\lambda I)^{1}\right\}$ raist.s unul $I R(T-\lambda I) \neq I I$
From the definition it follows that;
$\sigma_{r}=\frac{\sigma_{p}\left(T^{*}\right)^{*}}{\sigma_{p}(T)}$.

Proposition 2.1.6. $\sigma(T)$ is a closed set.
Proposition 2.1.7. $\sigma(T)=\sigma_{p^{\prime}}\left(T^{\prime}\right) \cup \sigma_{c}\left(T^{\prime}\right) \cup \sigma_{r}\left(T^{\prime}\right)$ holds, wherra $\sigma_{p}\left(T^{\prime}\right), \sigma_{c}(T), \sigma_{v}\left(T^{\prime}\right)$ are mulually disjoint parlas of $\sigma(T)$.
I)efinition 2.1.8. The compression spectrum $\sigma_{c p}(T)=\{\lambda \in \mathbb{C}: \overline{R(T,-\lambda I)} \subset \Pi\}$

The set $\sigma_{\text {ap }}(T)$ of all complex numbers λ surh that there exisls a sequencer of unit vectors x_{n} such that $\left\|T x_{n}-\lambda x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ is sand to be approximate point spectrum.

Iroposition 2.1.9. $\sigma(T)=\sigma_{a p}(T) \cup \sigma_{c p}(T)$ holds, where $\sigma_{a p}(T)$ and $\sigma_{c p}(T)$ are not mecessarily disyoint parts of the spectrum.

Also $\sigma(T)=\sigma_{r}(T) \cup \sigma_{a p}(T)$ holds.

I'roposition 2.1.10. $\sigma_{u r}(T)$ is non-emply, includes the boundary $\partial(\sigma(T)$ of the spuctrum
.$j(\sigma(T) \subset H(T)$.
Definition 2.1.11. The Weyl spectrum denoted by $\omega(T)=\left\{\lambda \in \mathbb{C} \mid(T-\lambda I)^{-1}\right.$ i.s not. Weyl.

Definition 2.1.12. Let Ω be a non-empty set, the smallest convex set conlaming Ω denoted by comv(Ω) is knowm as the convex hull of Ω
'Theorem 2.1.13. i) The entire spectrum of a self adjoint operator' T 's confinced between it.s bounds
$M=\operatorname{sul}_{\| \| x \|=1}|\langle T x, x\rangle|$ and $m=\inf _{\|x\|=1}|\langle T \Gamma, x\rangle|$.
ii) 'The bounds M and mof every self-adjoint. operator belong to its spectrom.

Proof

Suppose $\lambda \notin[m, M I]$ and $\lambda<m$ since $\langle T x, x\rangle \geq m$, we have $\langle(T-\lambda I) x, x\rangle \geq$ m. $-\lambda$

Bul arcorling to Shwartz inequality $|\langle(T-\lambda I) x, x\rangle| \leq\|(T-\lambda) x\|\|x\|$
$\Rightarrow\|(T-\lambda I) x\| \geq m-\lambda$
$\Rightarrow \lambda \notin \sigma(T)$

Similarly for $\lambda>M$

By definition $\|T\|=M \Rightarrow \exists x_{n} \in H$ for which
$\left\langle T x_{n}, x_{n}\right\rangle \rightarrow M$
$\Rightarrow T x_{n} \rightarrow M I x_{n}$.
Therefore $0 \leq\left\|T x_{n}-M x_{n}\right\|^{2}=\left\|(T-\Lambda I) x_{n}\right\|^{2}$
$=\left\langle(T-M I) x_{n},(T-M I) x_{n}\right\rangle$
$=\left\|T x_{n}\right\|^{2}-2 M\left\langle T x_{n}, x_{n}\right\rangle+M^{2}$
$\leq 2 M^{2}-2 M\left\langle T x_{n}, x_{n}\right\rangle \rightarrow 0$
$\Rightarrow M I \in \sigma(T)$

Similarly for $m \in \sigma(T)$.
'Theorem 2.1.14. Let $T \in B(H)$, then

$$
\sigma\left(T^{*} T\right)=\left(\sigma (T ^ { * } T) | _ { N (T) } \cup \left(\left.\sigma\left(T^{*} T^{\prime}\right)\right|_{N(T)^{\perp}}\right.\right.
$$

lroof

From theorem $1.2 .7, H=N(T) \leftrightarrow N(T)^{\perp}$, relative to this decomposition and since both $N(T)$ and $N(T)^{\perp}$ are invariant under $T^{*} T$, we have
$T^{*} T=\left(\begin{array}{cc}E_{1} & 0 \\ 0 & E_{2}\end{array}\right)$
Where $E_{1}: N(T) \rightarrow N(T)$, and $E_{2}: N(T)^{\perp} \rightarrow N(T)^{\perp}$
1.1 111s $\sigma\left(T^{*} T\right)=\left(\left.\sigma\left(T^{*} T\right)\right|_{N(T)} \cup\left(\left.\sigma\left(T^{*} T\right)\right|_{N(T) \perp}\right.\right.$

Remark 2.1.15. Since $T^{*} T$ is a positve self adjoinl operator and theorem 2. 忽. $8\left\|T^{\text {* }} T\right\|=\|T\|^{2}, \sigma\left(T^{*} T\right) \subseteq\left[0,\|T\|^{2}\right]$

2.2 The numerical range

Definition 2.2.1. For an operator T, the mumerical range $\mathbb{F}(T)$ of T is a subset of the complex plane, given by, $\|(T)=\left\{\left\langle T, r, x_{i}\right\rangle\|x \in H ;\| x \|=1\right\}$

The following properties of the numerical range are well known;

1. $W(a T+b I)=a W(T)+b$
2. $W^{\prime}\left(B\left(H C^{\prime}\right)=\operatorname{comv}\left\{W(B) \cup W^{\prime}\left(C^{\prime}\right)\right\}\right.$
3. $W(T)$ is a convex set(Hauselorff-Tocplitz).
4. $W(T)$ is bounderl.
5. W $\left(T^{\prime}\right)$ is closed if $\operatorname{dim}(H)<\infty$

Definition 2.2.2. The numerical radius u(T) of T' is defincel by; $w\left(T^{\prime}\right)=\sup \{|\lambda|: \lambda \in W(T)\}$.

The crauford mumber $c(T)$ of T defined by; $r(T)=\operatorname{iuf}\left\{|\lambda|: \lambda \in \mathbb{I}^{\prime}\left(T^{\prime}\right)\right\}$.

The spectral radius $r(T)$ of an operator T is defined by $r\left(T^{\prime}\right)=\sup \{|\lambda|: \lambda \in \sigma(T)\}$, which is the smallest circle on the complex plane \mathbb{C} which contains the spectrum of T.

Definition 2.2.3. The essential numerical range $W_{e}(T)$ is defined as; $W_{r}(T)=\cap \overline{W(T+k)}, K$ compact.

Let $T=\left(T_{1}, T_{2}, \ldots T_{n}\right)$ be an n-luple of operators acting on. H. The gont. numerical mange of T ' is defined as;
$W_{j}(T)=\left(\left\langle T_{1} x, x\right\rangle,\left\langle T_{2} x, x\right\rangle, \ldots\left\langle T_{n} x, x\right\rangle\right)$.

Proposition 2.2.4. Let $T \in B(H)$ then $\sigma_{p}\left(T^{\prime}\right) \subseteq W^{\prime}\left(T^{\prime}\right)$.

proof

Suppose $\lambda \in \sigma_{p}(T) \Rightarrow \exists \quad x \neq 0 \quad \in H: \lambda x=T^{\prime} x$
'Therefore $\lambda=\lambda\langle x, x\rangle=\langle\lambda x, x\rangle=\langle T x, x\rangle$
$\Rightarrow \lambda \in H^{\prime}(T)$
Therofore $\sigma_{p} \subset W^{\prime}(T)$
Corollary 2.2.5. $\sigma_{p}\left(T^{\prime}\right) \cup \sigma_{r}\left(T^{\prime}\right) \subseteq \|^{\prime}\left(T^{\prime}\right)$
proof
Suppose $\lambda \in \sigma_{p}(T) \Rightarrow \lambda \in W(T)$

If $\lambda \in \sigma_{r}\left(T^{\top}\right)$ then $\bar{\lambda} \in \sigma_{p}\left(T^{*}\right) \Rightarrow \lambda \in W\left(T^{T}\right)$ since $\frac{\sigma_{\nu}(T)^{\prime}}{\sigma_{p}(T)}$ Hence $\sigma_{p}(T) \cup$ $\sigma_{r}(T) \subset W(T)$

Proposition 2.2.6. Let $T \in B(H)$ then $\sigma(T) \subseteq \overline{W(T)}$.

proof

Rucall: $\sigma(T)=\sigma_{r}(T) \cup \sigma_{a p}(T)$

Suppose $\lambda \in \sigma_{u p}\left(T^{\prime}\right)$
$\therefore 0 \leq\left|\lambda-\left\langle T w_{n}, x_{n}\right\rangle\right|$
$=\left|\left\langle(T-\lambda I) x_{n}, x_{n}\right\rangle\right|$
$\leq\left\|(T-\lambda I) x_{n}\right\|\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$
$\Rightarrow \lambda \in \overline{W(T)}$

Therefore $\sigma_{a p}(T) \subseteq \overline{W(T)}$
$\Rightarrow \sigma(T) \subseteq \bar{H}(T)$

Theorem 2.2.7. conv $(\sigma(T)) \subseteq \overline{W(T)}$. This follows from the proposzhon abones.

Definition 2.2.8. An operator $T \in B(H)$ is sand to be;

- Convenoud if $\bar{W}(T)=\operatorname{comn}(\sigma(T)$
- Normaloid if $r(T)=\|T\|$
- Spertraloid if $w(T)=r(T)$.

2.3 Spectral characterization of closed range operators

Definition 2.3.1. A boumded linear operator $S \in B(H)$ is said to be a generaluzed inverse of $T \in B(H)$, if $T^{\prime} S T=T$ and $S T S=S$.
The Gencralized Spectrum is defined by replacmu the notion of invertibuity which appears in the classical definition of the spectrum by erastence of amulytic generalized inverse.

Definition 2.3.2. For $T \in B(H)$, the minimum moduhus is defined by the number
$\gamma(T)=\inf \left\{\|T x\| ;\|x\|=1, x \in N(T)^{\perp}\right\}$.
$\gamma(T)=\infty$ if $T=0$
$\gamma(T)>0$ implies injectivity of T, the converse does not hold true in general.

Definition 2.3.3. The Maxmal Generalized Inverse of T^{\prime}, denoled by T^{\dagger}, is a unique lincar operator with domain $D\left(T^{+}\right)=R(T) \oplus^{\perp} R(T)^{\perp}$ and $N\left(T^{+}\right)=$ $R\left(T^{\prime}\right)^{\perp}$ satisfying the following properties,
(i) $R(T) \subseteq D\left(T^{+}\right)$
(ia) $R\left(T^{+}\right) D\left(T^{-}\right)$
(i2i) $T^{+} T x=P_{R\left(T^{+}\right)} x$, for all $x \in D(T)$
(i.v) $T T^{+} y=I \overline{n(T)}$, for all $y \in D\left(T^{+}\right)$

In general, an mrn matrix T has many generalized inverses unless $m=n$ and T is invertible It is possible to add conditions to the delinition of a generalized inverse so that there is always a midue generalized inverse.
T^{+1} is callerl a Moore-Penrose inverse of T if it satisfies;

- $T^{\prime} T^{+} T^{\prime}=T$ and $T^{+} T T^{+}=T^{+}$
- $\left(T^{\prime \prime} T^{++}\right)^{*}=T T^{+} \operatorname{andl}\left(T^{+} T\right)^{*}=T^{+} T$

Proposition 2.3.4. [10]
L.t $T \in B(H)$. Then we have the following, (i) $R(T)$ is rlosed, the $\gamma(T)=\frac{1}{\|T+\|}$
(1i.) $\gamma\left(T^{*} T\right)=\gamma(T)^{2}$

proof(i)

Assimme $l\left(T^{\prime}\right)$ is closed $\Rightarrow R(T)=D\left(T^{+}\right)$, hy definition
$\left.\left\|T^{1+}\right\|=\sin \right)\left\{\frac{\left\|y^{+}\right\|}{\|y\|}: 0 \neq y \in D\left(T^{+}\right)\right\}$
$=\sin ,\left\{\frac{\left\|T^{+}\right\|}{\|n\|}: 0 \neq y \in R\left(T^{\prime}\right)\right\}\left(\right.$ since $R(T)=D\left(T^{++}\right)$ind $)$
$=\sin)\left\{\frac{\|s\|}{\|T r\|}: 0 \neq x \in N(T)^{\perp}\right\}\left(\right.$ since $R\left(T^{+}\right)=N(T)^{\perp} \Rightarrow \exists 0 \neq x \in N\left(T^{\prime}\right)^{1}$
$\left.T^{\prime}: y=0\right)$
$=\inf \left\{\frac{\|T \cdot x\|}{\|r\|}: 0 \neq x \in N(T)^{\perp}\right\}^{\prime}$
$=\gamma\left(I^{\prime}\right)^{-1}$
proof(ii)
$\gamma\left(T^{\bullet} T^{\prime}\right)=\frac{1}{\left\|\left(T^{\bullet} T^{\prime}\right)^{+}\right\|}=\frac{1}{\left\|T^{+}\right\|^{2}}$
$=\gamma\left(T^{\prime}\right)^{2}$ (since $\left\|T^{*} T\right\|=\|T\|^{2}$)
Proposition 2.3.5. [10]
I'or $T \in I B(H)$, the following statements are equinalent.
(D) M(T') a.s closed.
(ii) $\mathrm{R}\left(T^{*}\right)$ is closed
(iii) $\gamma(T)>0$
(iv) I^{+}is bounded.
(v) $\gamma\left(T^{\prime}\right)=\gamma\left(T^{*}\right)$
(vi) Led $\lambda \in(0, \infty)$. Then $\lambda \in \sigma\left(T^{\prime}\right) \Leftrightarrow \frac{1}{T} \in \sigma\left(T^{+}\right)$ If T^{-1} exishs, then $0 \neq \lambda \in \sigma\left(T^{\prime}\right) \Leftrightarrow \frac{1}{\lambda} \in \sigma\left(T^{-1}\right)$

Definilion 2.3.6. An operator $T \in B(H)$ as sand to be posulave if $\langle T, r, x\rangle>0$ for all $x \in I I$.

1'roposition 2.3.7. [10]
lel $T \in B(H)$ be a positive operator: Then the following results hold. (1.) T^{+}is posilive.
(iii) $\sigma\left(T^{\prime}\right) /\{0\}=\sigma\left(T_{o}^{\prime}\right) /\{o\}$ where $T_{0}=\left.T^{\prime}\right|_{N(T)}$
(im) $\sigma\left(T^{+}\right) /\{0\}=\sigma\left(T_{o}^{-1}\right) /\{0\}$

proof(i)

Ind $\quad T \in I B(I)$ be a positive operator. Then T is a sell adjoint operator
Let $!=T v+u$ where $u \in N(T)^{\perp}$ and $v \in R\left(T^{\top}\right)^{\perp}$.

Since $\left.l)\left(T^{+}\right)=I R\left(T^{\prime}\right) \oplus\right)^{\perp} R\left(T^{\perp}\right)^{\perp}$ we have,
$\left\langle T^{+} y, y\right\rangle=\left\langle T^{-1} y, T u+u\right\rangle$
$=\left\langle T^{++}, y, T^{\prime} u\right\rangle+\left\langle T^{+}, y, v\right\rangle$
$=\left\langle T^{++} y, T^{\top} u\right\rangle\left(\right.$ since $\left.R(T)^{\perp}=N\left(T^{+}\right),\left\langle T^{+} y, v\right\rangle=0\right)$
$=\left\langle\left. P\right|_{\left.\left.\frac{R(T)}{} y, u\right\rangle=\langle T u, u\rangle \geq 0\right\rangle=0.0 \mid}\right.$
$\Rightarrow T^{+4}$ is positive.
proof(ii)
Sinco T is solf adjoint, it is reducjble by $N(T)$
i, e $T(N(T)) \subseteq N\left(T^{\prime}\right)$ and $T\left(N(T)^{\perp}\right) \subseteq N(T)^{\perp}$
by theorem 2.0.9 we have $\sigma(T)=\sigma\left(\left.T^{\prime}\right|_{N(T)) \cup a\left(\left.T\right|_{\left.N(T)^{1}\right)}\right)}\right.$
i.e $\sigma\left(T^{\prime}\right)=\{0\} \cup \sigma\left(T_{\circ}\right)$
hence $\sigma(T) /\{0\}=\sigma\left(T_{o}\right) /\{0\}$.
mroof(iii)
Since T^{+}is self arljoint, it is reducible by $N\left(T^{+}\right)=R\left(T^{+}\right)^{\perp}$
simee $\left.T^{+}\right|_{R\left(T^{\prime}\right)}=T_{a}^{-1}$,(11) implies that.
$\sigma\left(T^{+}\right) /\{0\}=\sigma\left(T_{r}^{-1}\right) /\{0\}$
'I'heoren 2.3.8. [10]
Led $T \in B(H)$ be a posituve operator and
$d(T)=\inf \{|\lambda|: \lambda \in \sigma(T) /\{0\}\}=d(0, \sigma(T) /\{0\})$
Then $\gamma(T)=d\left(T^{\prime}\right)$

proof

(ase $\mathrm{L}: \gamma(T)=1)$
If $\gamma\left(T^{\prime}\right)>0$, then $R(T)$ is closed. In this case T_{s}^{-1} and T^{t} are bommedeself adjoint operators with

$$
\begin{aligned}
& \left\|T_{0}^{-1}\right\|=\left\|T^{+}\right\|=\frac{1}{\gamma(T)} \\
& \quad \text { heuce } \gamma(T)=\frac{1}{\left\|T^{+1}\right\|} \\
& \left.=(\sin)\left\{|\mu|: \| \in \sigma\left(T_{n}^{-1}\right)\right\}\right)^{-1} \\
& \left.=(\operatorname{sil})\left\{(\lambda)^{-1}: 0 \neq \lambda \in \sigma\left(T_{o}\right)\right\}\right)^{-1} \\
& =\operatorname{inl}\left\{|\lambda|: 0 \neq \lambda \in \sigma\left(T_{0}\right)\right\}=d(T)
\end{aligned}
$$

Case $2: \gamma(T)=0$
Simee T^{++}is positive, $\gamma\left(T^{\prime}\right)=0 \Rightarrow T^{+}$is mbonmeleal \Rightarrow $\sigma\left(T^{+}\right)$is molomuled.
\therefore for all $11=1,2,3, \ldots, \exists \lambda_{n} \in \sigma\left(T^{+}\right)$such that
$\lambda_{n}>n \Rightarrow \frac{1}{\lambda} \in \sigma\left(T^{\prime}\right)$
and $\frac{1}{\text { An }} \rightarrow 0$ as $n \rightarrow \infty$
Hencer $d\left(T^{\prime}\right)=0$

Theorem 2.3.9. [10

Suppose $T \in B(H)$ is a positive operalor and 0 is an isolalod sperfral malurd of T' Then 0 is an eigenvalue.

proof

Since 0 is an isolated spectral value,d $(T)>0$ then by proposation 名. 5 $\gamma(T)>0 \Rightarrow R(T)$ is closed.
If 0$) \in \sigma_{p}(T)$, hen $N(T)=\{0\} \Rightarrow I R(T)=I I$
making ' T ' one to one and onto, hence invertible, a comerarliction.
Remark 2.3.10. The converse of these theorem need not be trme.'To ser this consider $T: l^{2} \rightarrow l^{2}$ defined by
$T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=\left(0,2 x_{2}, \frac{1}{3} x_{3}, 4 x_{4}, \frac{1}{5} x_{5}, \ldots\right)$

How T is a positive operator:Sinese T is not one to one , $0 \in \sigma_{p}(T)$ but it is mol an isolated point of the spectrum pont of the spectrum,
$\sigma(T)=\left(0,2, \frac{1}{4}, 4, \frac{1}{3}, \ldots\right)$
L.emmar 2.3.11. [10]

Let T'E B(H) be self adjoint. Then $R(T)$ is closed iff 0 is mot an' accumulation poine of $\sigma(T)$

prool

Wo know that $I R(T)$ is closed iff $\gamma(T)>0$ since $d(T)=\gamma\left(T^{\prime}\right)$, it follows that. $d(T)>0,1$ has 0 is not an accmmilation point of $\sigma(T)$

Chapter 3

2-isometric Operators

3.1 Properties of 2-isometric operators

1) efinition 3.1.1. An operaton $T \in B(H)$ is an m-isometry if it suthsfies,

$$
\begin{equation*}
\sum_{k=0}^{n k}(-1)^{m-k}\binom{2}{k} T^{* k} T^{k}=0 . \tag{}
\end{equation*}
$$

\qquad
for some positive integer $m>0$
The study of m-isometries ariginated from the study of boumded lineat foremsformations T on a Hilloert, space which satisfy

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{2}{k} T^{* m-k} T^{k}=0 . \tag{}
\end{equation*}
$$

\qquad
for some positive integer $m>0, T$ is said to be m-symmetric
A gler ctal in [1] studied the properties of m-isometries and some of the hasic propertjes included; m-isonetry is an $m+1$-isometry, that m-isometries are le emuled below and that their spectrum lies in the closed unit dise. We wamt 1. , specialize for the case $m=2$, this gives the class of 2 -isometrios.

Iroposition 3.1.2. If $T \in B(H)$ is a ${ }^{2}-$ isometry then,
$\sum_{k=0}^{2}\binom{2}{k}\left\|T^{k} x\right\|^{2}=0$

proof

Assmme T is a 2-isometry. Then (*) holds.
Therefore, $0=\left\langle\sum_{k=0}^{2}(-1)^{2-k}\binom{2}{k} T^{* k} T^{k}, r, r\right\rangle$
$=\sum_{k=0}^{2}(-1)^{2} N\binom{2}{k}\left\langle T^{* k^{\prime}} T^{*} x, x\right\rangle$
$=\sum_{k=11}^{2}(-1)^{2-k}\binom{2}{k}\left\langle T^{k} x, T^{k} x\right\rangle$
$=\sum_{k=0}^{2}(-1)^{2-k}\binom{2}{k}\left\|T^{k_{k}} \cdot\right\|^{2}$
Iroposition 3.1.3. Euery isometry is a 2-isometry

proot

Suppose $T \in B(H)$ is an isometry then, $T^{*} T=I$

Therefore $T^{* 2} T^{2}-2 T^{*} T+I$
$=T^{*} 7^{*} T T-2 I+I$
$=T^{*} I T-I=0$

If follows from $\left(^{*}\right.$) that T is a 2 -isometry'

13emark 3.1.4. As a resull we have the molusion.
unilary \subset isometry $\subset 2-$ isometry

Therefore if both T and T^{*} are 2 -isometries then T is imprtible and so must. be umalny. In particular if T is an invertible ${ }^{2}-$ isometry, then T is an isometry. In general an $m+1$-isometry is m-isometry.

Lemma 3.1.5. [17]

Let T be a 2-isometry, then the following statements are
cquinalent;
(i) T is normal.
(ii) T is invertible
(iu) T is. unitary.

Dedinition 3.1.6. An operator $T^{\prime} \in B(H)$ is said to be unitarily crqumalent to $s \in B(H)$ if there exist a unitaty operator $U \in B(H)$ such that $U^{*} T U=S$.
'Theorem 3.1.7. [17]
Let. 'T be a d-isometry,
(i) If S is milarily equvalent T, then S is a to 2-isometry.
(ii) If $M \subseteq I$ is an invariant subspace for T, then $\left.T\right|_{M}$ is a 2 -isometry.
(in) If' T commutes with an isometry S, then TS is a ${ }^{\prime}$-isometry.
1roposition 3.1.8. [12]
A pouver of a 2 -isometry is a 2 -isometry.
Theorem 3.1.9. [12]
A pouer bounded 2-isometry is an isometry.

proof

Let T be a power bomded 2 -isometry.Then there exists a positive real mumber $M /$ such that
$\left\|T^{n}\right\| \leq M$ for $n=1,2,3, \ldots$

The definition of a 2-isometry yields,
$\left\|T^{2}\right\|^{2}+1=\|T\|^{2}$

By induction we have
$\left\|T^{\prime 2}\right\|^{2}=2^{n}\|T\|^{2}-2^{n}$

It. follows that, $\frac{\mu^{2}}{2^{n}}=\|T\|^{2}-1$, leting $n \rightarrow \infty$ we have $\|T\|=1$ Thns $\|T\|=\operatorname{sul}_{\|F\|=1}\|T x\| \Rightarrow\|T x\| \geq 1$
and since $T \in B(H),\|T x\| \leq\|T\|\|x\| \Rightarrow\|T: x\| \leq 1$
$\Rightarrow\|T x\|=1=\|x\|$

Hence T is an isometry.
1)efinition 3.1.10. A bounded linear operator is said to be regular if it can be wrilten as a lincar combination of positive operators.

Iroposition 3.1.11. [12]

Every self-adjome 2-isometry is regular.
Isemma 3.1.12. [12] Let $T \in B(H)$ be a non-unitary ${ }^{2}-$-isometry, Ihen $\sigma_{a p}(T)$ lies on the unit circle $\partial \mathbb{D}$.

proof

Assume T is a 2 -isometry and let. $\lambda \in \sigma_{a p}(T) \Rightarrow \exists\left\{x_{n}\right\} \in H \mid\left\|x_{n}\right\|=1$

Such that $\|(T-\lambda I)\|\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$

By induction, $\left\|\left(T^{k}-\lambda^{k} I\right)\right\|\left\|x_{2}\right\| \rightarrow 0$ as $n \rightarrow \infty$

Therefore $0=\left\langle\sum_{k}^{2}(-1)^{2-k}\binom{2}{k} T^{* k} T^{k} x_{n}, x_{n}\right\rangle$
$=\sum_{k}^{2}(-1)^{2-k}\binom{2}{k}\left\langle T^{* k} T^{k} x_{n}, x_{n}\right\rangle$
$\rightarrow \sum_{k}^{2}(-1)^{2-k}\binom{2}{k}\left\langle\lambda^{k} x_{n}, \lambda^{k} x_{n}\right\rangle=\sum_{k}^{2}(-1)^{2-k}\binom{2}{k}\left|\lambda^{k}\right|^{2}=\left(\left|\lambda^{2}\right|-1\right)^{2} \Rightarrow|\lambda|=1$
Hence the result.

Theorem 3.1.13. [1]
Let $T \in l 3(H)$ be a non-unitary S-isonetry, then $\sigma(T)=\sigma_{\text {ap }}(T)$ is the alosed unit disc $\overline{\mathbb{D}}$.

proof

Since $\partial(\sigma(T)) \subseteq \sigma_{a p}(T)$, then from the lemma alove we have $\sigma_{a p}(T) \subseteq$ $\sigma(T)$

If $\lambda \notin \sigma_{a p}(T)$, then $\exists \epsilon>0$ such that $\left\|T_{y}-\lambda_{y}\right\| \geq c\|y\|$, for all $y \in H$ with $\|y\| \leq 1$

If $\eta \perp R(T-\lambda I)$ then
$0=\langle(T-\lambda I) x, y\rangle=\left\langle x,\left(T^{*}-\bar{\lambda}\right) y\right\rangle$
and therefore $T^{*} y-\bar{\lambda} y=0 \Rightarrow y=0$

It follows that, $R(T-\lambda I)=\{0\}$. So that $H=\overline{R(T-\lambda I)}$. i.e., $T-\lambda I$ has bomuded inverse so $\lambda \notin \sigma(T) \Rightarrow \sigma(T) \subseteq \sigma_{n p}(T)$. \qquad

From (i) and (ii) equality holds. Since $\sigma_{n p}(T)$ lies on the unit circle $\partial \mathbb{D}$, it frollows that $\sigma(T)=\sigma_{a p}(T)=$ the closed unit disc $\overline{\mathbb{D}}$.
'Theorem 3.1.14. [12]
A nom-unilary 2-isometry similar to a spectraloid operator is an isometry.

proof

Led T be a 2 -isometry similar to a spearabloid operator A

Thew $r\left(T^{\prime \prime \prime}\right)=r\left(A^{n}\right)=w\left(A^{n}\right)$ for $n=1,2,3, \ldots$

Since $\sigma(T)$ is the closed unit disc $\overline{\mathbb{D}}$, il follows that $r(T)=1=w\left(A^{n}\right)$
By definition, $\left.\left\|A^{n}\right\| \sup \right)\left|\left\langle A^{n} x, x\right\rangle\right|=u\left(A^{n}\right)=1$.
'Therefore A is power bomeded and similarity of T and A show that I is power bounded, it follows from theorem 3.1.6 that T is an ismetry.

Corollary 3.1.15. [12]
Let T be a mon-unitary 2-isometry, then $\mathrm{L} \in \sigma\left(T^{*} T^{\prime}\right)$.

proof

Suppose $1 \notin \sigma\left(T^{*} T\right) \Rightarrow A=\left(T^{*} T-I\right)$ is invertible.

From the definition of a 2-isometry we have
$T^{* 2} T^{\prime 2}-T^{*} T=T^{*} T-I$
$\rightarrow T^{*}\left(T^{*} T-I\right) T=T^{*} T-I$
$\Rightarrow T^{*} A T=A$
$\Rightarrow \sigma\left(T^{*} A T^{\prime}\right)=\sigma(A)$
which implies that T is similar to an isometry and so mont be bun isomet.ry. This contramets our assmmption that $1 \notin \sigma\left(T^{*} T{ }^{\prime}\right)$
'Theoren 3.1.16. [5]
Let'T be a non-umitary ${ }^{2}$-isometry. Then,
(i) $z \in \sigma_{a p}(T) \Rightarrow z^{*} \in \sigma_{a p}\left(T^{*}\right)$
(ii.) $z \in \sigma_{p}(T) \Rightarrow z^{*} \in \sigma_{p}(T *)$
(im) Eigenvectors of T corresponding to distinct cigenmburs ane ontagonal.

proof(i)

Let $z \in \sigma_{a p}(T)$, and $\left\{x_{n}\right\}$ as sequence of mit. vecetors in $I I$.
'Then $(T-z I) x_{n} \rightarrow 0 \Rightarrow\left(T^{2}-z^{2} I\right) x_{n} \rightarrow 0$
$\Rightarrow\left(T^{* 2} T^{2}-z^{2} T^{* 2}\right) x_{n} \rightarrow 0$

Since T is a 2 -isometry we have

$$
\begin{aligned}
& 0=T^{* 2} T^{2}-2 T^{*} T+1 \\
& =T^{* 2} T^{2} x_{n}-2 T^{*} T x_{n}+x_{n} \\
& \rightarrow z^{2} T^{* 2} x_{n}-z^{\prime} T^{*} x_{n}=\left(z T^{*}-I\right)^{2} x_{n} \\
& \Rightarrow\left(T^{*}-z^{*} I\right)^{2} x_{n} \rightarrow 0 \\
& \Rightarrow z^{*} \in \sigma_{a p}\left(T^{*}\right)
\end{aligned}
$$

proof(ii)
lot $z \in \sigma_{p}(T) \Rightarrow \exists x \neq 0$ such that.
$(T-z I) x=0$
$\Rightarrow\left(T^{* 2} T^{2}-z^{2} T^{* 2}\right) x=0 \operatorname{and}\left(T^{*} T-z^{*} T^{*}\right) x=0$

Since T is a 2 -isometry we have,
$0=T^{* 2} T^{\prime 2}-2 T^{*} T+I$
$=T^{* 2} T^{2} x-2 T^{*} T x+x$
$=z^{2} T^{* 2} a-z T^{*} x=\left(z T^{*}-I\right)^{2} x=\left(T^{*}-z^{*} I\right)^{2} x$
$\Rightarrow z^{*} \in \sigma_{p}(T)$

proof(iii)

led and a bedistinct eigenvalues corresponding to the eigenvertors or amd y
i.e $\beta \cdot r=T x:$ and $r y=T y$
since is a 2 -isometry we have,
$0=\left\langle\left(T^{* 2} T^{2}-2 T^{*} T+I\right) \cdot r, y\right\rangle$
$=\left\langle T^{2} x, T^{2} y\right\rangle-2\langle T x, T y\rangle+\langle x, y\rangle$
$=\left\langle\gamma^{2} x, \alpha^{2} y\right\rangle-2\langle\beta x, \alpha y\rangle+\langle x, y\rangle$
$=\left(\beta^{2} \alpha^{* 2}-2 \beta \alpha^{*}+1\right)\langle a, y\rangle$
since $\beta \neq \alpha$, , hen $\left(\beta^{2} \alpha^{* 2}-2 \beta \alpha^{*}+1\right) \neq 0$
$\Rightarrow\langle x, y\rangle=0$, , hans x and y are orthogomal.
'Theorem 3.1.17. [5]
Let T be a nom-unitary 2 -isometry. Then the numerical range of T is the rlosed unit dise $\overline{\mathbb{I D}}$.

proof

from theorem 2.3.7 we have conv $(\sigma(T)) \subseteq \overline{W(T)}$, we know the mmerical range of in operator T is convex and since T is a 2 -isometry $\sigma(T)$ isthe elosed mit rlise $\overline{\mathbb{I D}}$, therefore $\overline{W^{\prime}(T)}$ is the closed mit dise $\overline{\mathbb{D}}$.

Since -1 and 1 are eigenvalues of T, this belongs to IV (T).Hence $H(T)$ is (heo closed mit, dise $\overline{\mathbb{D}}$.

Leminna 3.1.18. [7, problem182]
If the difference between operators is compact, then their spection apthe same cacepl for eigenoalues. More explicilly, if $A-B$ is compacl, and if $\lambda \in \sigma(A)-$ $\|_{o}(A)$ then $\lambda \in \sigma(B)$

Definition 3.1.19. Weyl's theorem refers to my theorem that chavactevizes the spectrum of an operator as a subset of the weyl spectrum, whose classical definition is
$\omega(T)=\cap \sigma(T+K): K$ is compact.

1. has been shoum in [7] lemma 2.3 that for any bounded operator $T, \omega(T)=\sigma(T)-$ $I_{0}(T)$

'Theorem 3.1.20. [12]

The Weyl's theorem holds for 2-isometries.

proof

If T is mitary then it has no eigenvalues except 0 , therefore the result holds. If T is non-mitary then $\sigma(T)-\overline{\mathbb{D}}$ inmplyg that $\Pi_{o}(T)=$ d therefore the result holds.

Corollary 3.1.21. The weyl spectrum of a 2-isometry is the closed unit disc.
IRemark 3.1.22. From the properties of D-isometries, it is identified that the spectorm,weyl spectrum, numericul range and approximale poind spectrum ore equal to the closed unit dise \bar{D}, if T is non-umitary.
'Theorem 3.1.23. [5]
Let T be a bounded self-adjoint operator on H. Then Thas dense range if an omly if 'T' is a 2 -isometric operator.

"roof

Assmme T has dense range $\Rightarrow \overline{R(T)}=\|$
Siuce T is bommed, $R(T)$ is closed.
13y theorem 1.9.7
$\eta=R(T) \oplus R(T)^{\perp}$
$=\overline{R(T)} \oplus \overline{R(T)^{\perp}}$
$\rightarrow R\left(T^{\prime}\right)^{\perp}=\{0\}$

Since T is self-adjoint,
$N\left(T^{*}\right)=N(T)=R(T)^{\perp}=\{0\}$

13y theorem 1.3.6 (3)
$N\left(T^{*}\right)=N\left(T^{*} T\right)=\overline{R\left(T^{*} T\right)^{\perp}}=\Pi(T)^{\perp}=\{0\}$
${ }^{\prime}$ Then $R\left(T^{* *} T\right)^{\perp}=\{0\}$
It follows that $R\left(T^{*} T\right)=H$ and since $M\left(T^{*} T\right)$ is closed,$\overline{M\left(T^{*} T\right)}=I I \Rightarrow$ $T^{*} T x=x$, for all $x \in H$
$\Rightarrow T^{*} T=I$
'Thus T*'T' is an isometry and hence at 2-isometry.

Conversely, assmme T ' is a 2 -isometric operator i.e
$T^{* 2} T^{\prime 2}-2 T^{\star} T+T=0$

Sice T is self-adjoint, we have $T^{*} T=I \Rightarrow T^{*} T^{\prime} x=x$ for all $x \in H$
(learly $N\left(T^{*} T\right)=\{0\}$ and since $H=N\left(T^{*} T\right) \oplus N\left(T^{*} T^{*}\right)^{1}$
We lave, $N\left(T^{*} T\right)^{-1}=I I$
By theorem 1.3 .6 (3)
$N\left(T^{* *} T^{\prime}\right)^{\perp}=\overline{R\left(T^{*} T^{\prime}\right)}=\overline{R\left(T^{* *}\right)}=H$
Since T is self-incljuint, $\overline{R\left(T^{*}\right)}=\overline{R(T)}=I$
Hence T has dense range.
'Theorem 3.1.24. Let T be the nom-zero self-adjoint 2-isometric operator ons H. Then 0 is not an accumulatuon(lamat)pont of $\sigma\left(T^{*} T\right)$

Proof

Assume T^{\prime} is a non-zero self-adjoint 2 -isometric operator, then The dense range on $I I$

Consider the operator
$\left.A \cdot T^{*} T\right|_{N(T) \perp}: N(T)^{\perp} \rightarrow N(T)^{\perp}$

Siner $N(T)=\{0\}, A$ is injelive.

13y theorem 1.3.6 (2)
$R\left(T^{\prime}\right)$ is closed $\Leftrightarrow R\left(T^{*} T T^{\prime}\right)$ is closed
$\Leftrightarrow A$ is injertive.
$\Leftrightarrow 0 \& \sigma(A)$
$\Leftrightarrow-J r>0: \sigma(A) \subseteq[r, \infty]$

By theorem 2.2.13 we have
$\sigma\left(T^{* *} T\right)=\left(\left.\sigma\left(T^{*} T\right)\right|_{N(T)} \cup\left(\left.\sigma\left(T^{* *} T^{1}\right)\right|_{N(T)^{\prime}}\right)\right.$
$\subset\{0\} \cup\left[r,\|T\|^{2}\right\}$
Ilence 0 is not an accumulation point of $\sigma\left(T^{*} T\right)$

3.2 The unilateral weighted shift operators

In this section we look at an example of 2 -isometric operator and its spertrat poperties. Bermuder et al. in [3] gave a characterization for woighted shift operators on in separable Hilbert, Space which are m-isometries. We nse the results obtained for the case when $m=2$.

Definition 3.2.1. An operator S_{r} acting on a Halbert spuce It is a matateral shifl if there exists a sequence of (panmise) orthogomal subspaces $\left\{H_{k}: k_{i}=0\right\}$ such that. $H=\left(D_{k=0}^{\infty} H_{k}\right.$ and S_{r}^{r} maps each H_{k} isomedrically onto H_{k+1}. In partioulan consider the Hilbert space l_{2} of square summable sequences, ,the unilateral shift is the operator U on l_{2} defined by $U\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)=\left(0, \xi_{1}, \xi_{2}, \ldots\right)$
'Theorem 3.2.2. If V is the unilateral shift then
$\sigma(U)=\sigma\left(U^{*}\right)=$ the closed umit dise $D, \sigma_{p}(U)=\phi, \sigma_{\text {ap }}(U)=$ Unit comole $\left({ }^{\circ}, \sigma_{a p}\left(U^{*}\right)=I\right)$ and $\sigma_{p}\left(U^{*}\right)$ is the open unit dise..

lroof

Consirler the matrix representation of U given by
$U=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & \ldots \\ 1 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & \ldots \\ 0 & \ldots & \\ \ldots & \ldots & & \\ 0 & 0 & 0 & \ldots \ldots\end{array}\right)$ and $U^{*}=\left(\begin{array}{cccc}0 & 1 & 0 & \ldots \ldots \\ 0 & 0 & 1 & 0 \\ 0 & \ldots \\ 0 & 0 & 0 & 1\end{array}\right)$
Let $\lambda \in \sigma_{p}(U)$ the $U x=\lambda x$, where $x=\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)$ then
$\left(\lambda \xi_{0}, \lambda \xi_{1}, \lambda \xi_{2}, \ldots\right)=\left(0, \xi_{1}, \xi_{2}, \ldots\right)$ so that, $0=\lambda \xi_{0} \Rightarrow \lambda=0$, and hence $\sigma_{p}(U)=\phi$.

If $U^{*}: x=\lambda x$ where $x=\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)$ then
$\left(\lambda \xi_{0}, \lambda \xi_{1}, \lambda \xi_{2}, \ldots\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)$
So that $\xi_{n+1}=\xi_{n}$.If ξ_{0}, then $a=0$ a contradiction, therefore a necossary and sufficient condition for $x \in l_{2}$ is that $|\lambda|<1 \Rightarrow \sigma_{p}\left(U^{*}\right)$ is the onsen mit dise.

Since $\sigma_{p}(U) \subset \sigma(U)$ and $\sigma(U)$ is a closed set, it follows that $\sigma(J)$ is the chosed mit dise, similarly $\sigma\left(U^{*}\right)$ is the closed mit rlise.
for $\lambda \in \sigma(U)$, Since U is an isometry then we have
$||\lambda|-1|\|x\|=|\|\lambda x-\|-\|U x\|| \leq\|(\lambda I-U) \cdot x\|, \forall x \in H$

If $\lambda \neq 1$, then $\lambda J-U$ is bomaded below, a contradiction. Therefore $|\lambda|=1$ since $)^{\prime} \sigma(U) \subset \sigma_{a p}(U)$, it follows that $\sigma_{a p}(U)$ inclucles the unit circle.

For $U^{* *}$ the situation is clifferent. Since $\sigma_{p}\left(U^{*}\right) \subseteq \sigma_{n p}\left(U^{*}\right)$ and since $\sigma_{p}\left(U^{*}\right)$ is the open mat dise, it follows thent $\sigma_{a p}\left(U^{*}\right)$ is the closed mit rlise.

Since $\sigma(U)=\sigma_{a p}(U) \cup \sigma_{c p}(U)$. Then $\sigma_{r p}(U)$ is the open mit. disk and
$\sigma_{c p}\left(U^{*}\right)=\phi$.
1)efinition 3.2.3. A unilateral meighted shift operator is the produet, of the umilateral shift operalor and a compatible diagonal operalor. More erplicilly suppose that $\left\{e_{n}\right\}$ is an orthormormal basis $(n=0,1,2, \ldots)$ and suppose $\left\{\omega_{n}\right\}$ is a bounded sequence of complex numbers. A uniluteral weighled shiff operafor S_{ω} is an operator of the form $S_{r} P$, where S_{r}^{\prime} is the umilateral shifl and P is the diagonal operator with diagonal $\left\{\omega_{n}\right\}\left(P e_{n}=\omega_{n} e_{n}\right)$

Proposition 3.2.4. Let $S_{i w}$ be the anilateral weighted shift opervetor on $1 /$ with meight sequence $\left(\omega_{n}\right)_{n \geq 1}$. If S_{ω} is a a-isometry, the $\omega_{n} \neq 1$ for all $n>1$

Proof

Assmue there exists a positive integer n such that $\omega_{n}=0$, Since $s^{k}{ }^{k}{ }^{\prime} n=0$ for all $k \geq 1$, we obtain
$\sum_{k=11}^{2}(-1)^{2-k}\binom{2}{k}\left\|S_{S_{k}}^{k} C_{n} x\right\|^{2}=1$.

A contratiction since S_{ω} is a 2 -isometry Hence $\omega_{n} \neq 0$ for all $k \geq 1$.
Proposition 3.2.5. Let S_{ω} be the unilateral weighted shift opervator on It whith weighted sequence $\omega_{n} \geq 1$. Then S_{w} is a 2-isometry iff
$\sum_{k=0}^{2}(-1)^{2-k}\binom{2}{k}\left|\omega_{0} \ldots \omega_{n+k-1}\right|^{2}=0$.
for all $n \geq 1$, where $\omega_{0}:=1$.

Proof

Lell $r=\sum_{n=1}^{\infty} \cdot r_{n} e_{n} \in H$..Assume S_{ω} is a 2 -isometry then
$0=\sum_{k=1}^{2}(-1)^{2-k}\binom{2}{k}\left\|S_{\omega}^{k} r_{n}\right\|^{2}$
$=\|x\|^{2}+\sum_{k=1}^{2}(-1)^{2-k}\binom{2}{k} \sum_{n=1}^{\infty}\left|\omega_{n} \ldots \omega_{n+k-1}\right|^{2}\left|x_{n}\right|^{2}$

Taking $a=r_{n}$ and multiplying by $\left|\omega_{0} \ldots \omega_{n-1}\right|$, we have;

Corollary 3.2.7. Let S_{ω}^{\prime} be a non-isometric milateral weighted shift with wemphts $\left\{\omega_{n}\right\}$. If S_{ω} z.s a d-isometry then the followning assertions hold;

1. $\left\{\left|\omega_{n}\right|\right\}$ is a strictly dectensing sequence of real mumbers converging to 1 .
2. $\sqrt{2}>\left|\omega_{n}\right|>1$ for each $n>1$.

proof

Sinpose $\left|\omega_{n+1}\right|>\left|\omega_{n}\right|$

From the thenem above we
$\left|\omega_{n+1}\right|^{2}=\frac{2 \mid \omega_{n} n^{2}-1}{\left|\omega_{n}\right|^{2}}$
$=\left|\omega_{n}\right|^{2}-\frac{\left.\left(1-\mid \omega_{n}\right)^{2}\right)^{2}}{\left|\omega_{n}\right|^{2}}$.
Which implies that $0 \geq\left(1-\left|\omega_{n}\right|^{2}\right)^{2}$ or $\left|\omega_{n}\right|^{2}=1 \Rightarrow\left|\omega_{n}\right|=1^{\prime}$ 'lhis cont traticts (2) in theorem 3. 2.6, therefore $\left\{\left|\omega_{n}\right|\right\}$ is strictly dectoasing secpuence of real numbers and so must be convergent and $\left|\omega_{n}\right| \rightarrow 1$.
ho proof (2) we have
$\left|\omega_{n+1}\right|^{2}+\frac{1}{\left|\omega_{n}\right|^{2}}=2$
Since $\left|\omega_{n+1}\right| \leq\left|\omega_{n}\right|$
$\Rightarrow\left|\omega_{n}\right|^{2}+\frac{1}{\left|\omega_{n}\right|^{2}} \geq 2$
$\Rightarrow\left|\omega_{n}\right|<\sqrt{2}$ since $\left|\omega_{n}\right|>1$.
${ }^{\prime}$ 'lhen $\sqrt{2}>\left|\omega_{n}\right|>1$ for each $n>1$.

Remark 3.2.8. The chass of 2 -isometries contains operators which are not boumded.

Example

(:onsiden the milateral weighted shift (non-ispmetric), since $S_{\omega}^{3} e_{n}=\omega_{n} C_{n+1}$
$\left\|\cdot S_{\omega}^{\prime \prime}\right\|=\sup _{1}\left\|S_{\omega}^{n} e_{n}\right\|$
$=\left.\sup \left|\omega_{n}\right|\right|^{2}>1$

Since $\left|\omega_{n}\right|>1$ for ead $n>1$
$\Rightarrow\left\|S_{\omega}^{\prime n}\right\|>1$

Since S_{ω} is a 2 -isometry, we conclute that the class of 2 -isometries contains operators which have arbitrarily large nom, hence now bomeded.

3.3 A von Neumann-Wold Decomposition for 2-isometries

Decomposition means separation into "parts". As far as operators we eoncemed this msuatly is done by product (factorization) or by sum.
Por instance, the polar decomposition says that every operatom (an low lantorized as the product of a pariad isometry and a nom-megadive operator () On the of her hand , the cartesian decomposition is one by (ordinary) ammevery Opmator T ' can be written as $T=\operatorname{Re}(T)+\operatorname{Im}(T)$, where $\operatorname{Re}(T)=\frac{r^{\prime}+T}{?}$ and $/ m\left(T^{\prime}\right)=\frac{-1}{2}\left(T^{\prime}-T^{*}\right)$ are self-adjoint operators.
However, in this section we shall deal with decomposition by dimect smms which (o) "isolate the parts", hy restriction to contractions only, so that the appropriate drompositions will isolate mitary direed smmmands.

Recoll: Λ contraction is an operator $T^{\prime} \in B(H)$ such that $\|T\| \leq 1$.

Some of the well-known basic results on contractions include;
(i) T is a contraction iff $T^{* *}$ is a contraction
(ii) A contraction T converges strongly to m operator A if for $n \geq 1$ $\left\|\left(T^{* * n} T^{n}-A\right) s\right\|=0$ for every $x \in H$. Moreover, A is mon-megative contraction (i.e $0 \leq A \leq I$).
(iii) $\|A\|=1$ whenever $A \neq 0$.
(iv) $\left\|T^{n n} x\right\| \rightarrow\left\|A^{\frac{1}{2}} x\right\|$ for every $x \in I I$.
(v) $N(A)=\left\{x \in H: T^{n} \rightarrow 0\right\}$
$N(I-A)=\left\{x \in I:\left\|T^{n} x\right\|=\|x\| \forall n \geq 1\right\}$
$=\{x \in H:\|A x\|=\|x\|\}$
(vi) $T^{* n} A T^{\prime \prime}=A$ for every $n \geq 1$.(so that, T is an ismetry whenever $A=1$)

Delinition 3.3.1. An operator $T \in B(H)$ is umformly stable if the poner sequence $\left\{T^{n}\right\}_{n \geq 1}$ connerges uniformly to the null operator (i.e $\left.\left\|T^{n}\right\| \rightarrow 0\right)$
II. is strongly stable if $\left\{T^{n}\right\}_{n>1}$ converges strongly to the null operator (i.es $\left\|T^{n} x\right\| \rightarrow 0$ for cucry $x \in H$

Delinition 3.3.2. Nagy-Foias class of contractions

Suppose $T^{* n} T^{n} \rightarrow A$ and $T^{n \prime} T^{* n} \rightarrow A$.
(i) (in, elasss of rontractions whose adjoint is strongly stable (i.e $N(A+=H$ (nud $\left.A_{*}=0\right)$
(i), class of strongly stable contructions.
(iii) C_{1}, if T is such that $T^{\text {" }}$ does not converge to 0 for all $x \in H(i . p$ if $N(A)=\{0\})$.
('।.ar T^{*} is such that $T^{* n}$ does not converge to ofor all $x \in H$ (i.e if $N\left(A_{*}\right)-$ $\{0\})$.

All combinations are possible and these leads to classes $C_{\text {in }}^{\prime}, C_{01}, C_{10}^{\prime}, C_{11}$, define ly;
$' \in\left(\begin{array}{l}\prime \\ \prime\end{array} \Leftrightarrow A=A_{*}=0\right.$
$T^{\prime} \in C_{01}^{\prime} \Leftrightarrow A=0, N\left(A_{*}=\{0\}\right)$
$I^{\prime} \in C_{10}^{\prime} \Leftrightarrow A_{*}=0, N(A=\{0\})$
$T \in C_{11} \Leftrightarrow N(A)=N\left(A_{*}=\{0\}\right)$

Remark 3.3.3. If T^{7} is a strict contraction, then it is uniformly slable, and hence of class C_{00}. Thus a contractoon not in Cow is necessarily nom-strict. (i.e. $T \in C_{10}$, then $\|T\|=1$). In particular, contractions in C_{1}. or in C_{1} are nomstricl.

Theorem 3.3.4. [4] Nagy-Foias Langer Decomposition
Lel TherucontractiononaHilbertspace Hanssel.
$M=N(I-A) \cap N\left(I-A_{*}\right)$
M is a reducing subspace for T. Moreover, the decomposition,

$$
T=C \oplus U \circ n . H=M \oplus M M^{\perp}
$$

such that $C:=\left.T\right|_{M 1}$ is complete non-unitary contraction and $U:=\left.T\right|_{M 1}$ is unatary.

Remark 3.3.5. This type of decomposition exhibits a reduciny subspuee for a contraction that is the largest reducing subs.spare on which it is untitary. If T is an isometry(i.e $A=I$), then the completely non-unitary direct summanul becomes a unilateral shift.
If A is non-zero projection, then the completely non-unitary divect summand is the direct sum of a strongly stable contraction and a unilateral shift.
Since an operator is a milateral shift iff it is a completely non-unitary isometry, we !et the following corollary for theorem 3.3.4.

Corollary 3.3.6. [4] von Neumann-Wold decomposition for üsometries If 'Tisumisometryonuhilbertspace H, then $N(I-A *)$ is a returing subspure for T'Alorconer the decomposition.

$$
T-S_{+} \oplus U \text { on } H=N\left(I-A_{*}\right) \oplus N\left(I-A_{*}\right)^{\perp}
$$

 unitary.

RECALLA An operator $T \in B(H)$ is pure if it has no mormal direct summands, T is said to be completely nom-mormal. Since every mitary operator is nommal, follows that every completely non-nomal operator is completely nom-mitary.

Therefore ta present a von Nemman-Wold decomposition for "-isomet bes on a general Hilloert space, we show that, for every 2 -isometry we can find apur 2-isometry which is mitarily equivalent to a milateral shitt so that the von Nemmam-Wold decomposition for isometries holds for 2-isometries.

Definition 3.3.7. An operator $T \in B(H)$ is sand lo be concane if

$$
\left\|T^{2} x\right\|^{2}+\|x\|^{2} \leq 2\|T x\|^{2} \forall x \in H
$$

By definition T is a 2 -isometry if, $\left\|T^{2} r\right\|\left\|^{2}+\right\| x\left\|^{2}=2\right\| T x \|^{2} \forall x \in H$, therefore every 2-isometry is concave. Also not that if $T \in B(H)$ is comeave, the sequence $\left\|T^{\prime \prime} x\right\|^{2}$ is increasing, since it is both nom-negative and concave, thas a concave operator is expansive, that, is $\|T x\| \geq\|x\|$ for $x \in H$

Proposition 3.3.8. [2]
Lat $T \in I 3(I I)$ be a conatave opperator; then the space $I_{0}=\cap_{k>1} T^{\prime k}(I I)$ is a weducing subspuce for T and the restriction to this, space is matary.

Proof

Define an operator $L=\left(T^{*} T^{\prime}\right)^{1} T^{* *}$. Note $\left(T^{*} T^{\prime}\right)^{-1}$ exists since T^{\prime} is bromelel. Let $x \in H_{0}$, sulustituting $L^{2} x$ for x in $\left\|T^{2} x\right\|^{2}+\|x\|^{2} \leq 2\|T x\|^{2}$, we see that $\left\|L^{2} x\right\|^{2}+\|x\|^{2} \leq 2\|L x\|^{2}$
Thons $L \|_{H_{o}}$ is concave and therefore expansive. Since L is a contraction and 1.he restriction $\left.L\right|_{n_{0}}$ is an isometry, which means $T \mid I_{0}$ is an isometry which implies that I_{0} is invartant moler T ?

Tho show that H_{0} is invariant muler T^{*}, define the defect operator by l -$(T+T-1)^{\frac{1}{2}}$.
since T is and isometry (i.e $\|T x\|=x$ for all $x \in H_{0}$), we have $D x-0$ for such r Now $T^{*} T x=x$ for $x \in H_{o}$, and we see that
$T^{*} x=T^{*}\left(T^{*} T x\right)$
$=\left(T^{*} T\right) L x$
$=L x \in H_{o}$ if $x \in H_{o}$

Thus I_{0} is invariant muder T^{*}.
It follows that I_{0} is invariant moder T and T^{*} and hence a rednemgs sulspace for T^{\prime}.Since T is isometric on H_{0}, the restriction $\left.T\right|_{\|_{0}}: H_{0} \rightarrow H_{0}$ is mitary Lal ' $T^{\prime} \in B(H)$. A mitary operator $U \in B(K)$ defined on a larger Hilbet space K contaming H as a chosed subspace is called a mitary extension ol T il 'T $x=U x$, for all $x \in I J$

Remark 3.3.9. To present a non Neumann-Wold decomposition for edsomelries, let $T \in B(I)$ be a \%-isometry, consuder the defect operutor $D=\left(T^{*} T-I\right)^{\frac{1}{2}}$ sinere $\left.T\right|_{H_{o}}$ is unitary, we have $\left.D\right|_{H_{o}}$ is an zasometry. Therefore from the udentaty of a 2-isometry, $\|D T: x\|^{2}=\|D x\|^{2}$. Thus for a 2-isometry T the mudured mup $T_{1}=\overline{R(D)} \rightarrow \overline{R(D)}$ definced by $T_{1}: D x \rightarrow D T x$ and continanty is an asomcit?
The non Neumann-Wold decomposilion for 2-isometrics, as buspd on the whsembataon that if T_{1}^{\prime} is a pure ${ }^{6}$-isometry that is $H_{0}=\{0\}$. Therefone $H_{0}^{+}=\|$ since, T_{1} is non-runtary, $\left.T_{1}\right|_{\text {an }}$ 2s equatalent to the unduterul strift As a ve-
 rsometries. It follows that T_{1} can be decomposed into $T_{1}=S_{+}{ }^{〔}{ }^{\prime} / \quad H=$ $H_{0}(\dagger) \|_{0}^{\perp}, U^{\prime}=\left.T\right|_{H_{0}}$ and $S_{\dagger}=\left.{ }^{\prime}\right|_{H_{n}}$

Chapter 4

Operators related to 2-isometries

In this chapter we shatl look at Hillert space operators which are related to two isometries and the conditions numer which they are 2 -isomet ic.

4.1 quasi-isometries

Dofinition 4.1.1. A bounded linerar operator I' on a complex Milbet space is sund to a partial isometry provided that $\|T x\|=\|a\|$ for every $x \in N(I)^{\perp}$ and $T T^{*} T=T$ (.$e T^{*}$ is a generalized inverse of T)
T is quasi-isometry if $T^{* 2} T^{2}=T^{*} T$

Lemmat 4.1.2. [13]
Let T be an operator whith right handed polar decomposition $T=U I^{\prime}(U$ un isometry and I^{\prime} a projection.).Then T is a quasi-isometry iff PU is a partinal isometry with $N(P U)=N(U)$
'Theoren 4.1.3. [13]
If T is quasi-isometry and $\left\|T^{\prime}\right\|=1, T$ ns hyponormal i.e $T^{*} T^{\prime} \geq T^{\prime} T^{*}$

Iroof

Suppose T ' is a quasi-isometry, then
$\left\|T x-T^{*} T^{2} x\right\|=\left\langle T^{*} x-T^{*} T^{2} x, T r-T^{*} T^{2} x\right\rangle$
$=\|T x\|^{2}+\left\|T^{*} T^{2} x\right\|^{2}-2 \operatorname{Re}\left\langle x, T^{* 2} T^{2} x\right\rangle$
$=\left\|T^{\prime} x\right\|^{2}+\left\|T^{*} T^{\prime 2} x\right\|^{2}-2\left\|T^{\prime} x\right\|^{2}=0($ since $\|T\|=1)$

Thas $T^{*}=T^{* 2} T$
Hence $T^{*}=T^{* *^{2} T} T$, since $P^{2} \leq I$, we find $U^{*} I^{2} U \leq U^{*} U \geq U U^{*} \geq U P^{2} U^{*}$, this loarls to $I^{\prime} U^{*} T^{*} T U P \geq P^{\prime}\left(T^{*} T\right) I^{\prime}$
since $I^{2}\left(T^{*} T\right)=\left(T^{*} T\right)$ by lemma 3. $4.2, I^{\prime}$ commmutes with $T T^{* *}$, herefore we have
$T^{*} T=T^{* 2} T^{2} \geq P^{\prime}\left(T^{*} T\right) P^{P}=P^{2}\left(T T^{*}\right)=T T^{*}$, hus T^{\prime} is hypornommal.

Corollary 4.1.4. [13]
If T is a quasi-isometry and quasi-milpolent, then $T^{n}=0$ (i.e T is milpolent).
Note: T is satid to be (quasi-milpotent if $\sigma(T)=\{0\}$

I'rool'

Suppose' T is quasi-isometry and (pasi-milpotent the $r(T)=0$, since $\left\|T^{m}\right\| \leq 1$ lon some positive integer u, since T^{n} is a phasi-isometry, $\left\|T^{n /}\right\|=1$. By theorem $4.1 .3^{2} T^{n}$ is hyponormal $\Rightarrow \quad\left\|T^{n \prime}\right\|=r\left(T^{n}\right)=0 \quad \Rightarrow T^{n}=0$

Remark 4.1.5. From the results obtamed we observe that an operator' T with polan decomposition $T=U P$
(i)If a quasi-isometry T is quasi-nilpotent, then it becomes a 8 -isomediy
(ii) If $P U$ is a partial isomelvy with $N(I U)=N(U)$ and $\sigma(P U)=\{0\}$, then l'U is a ${ }^{2}$-isomedry.

4.2 Composition Operator

Definition 4.2.1. Let $\left(X, \sum, \lambda\right)$ be a sigma fimbe measure spare and let $T: X \rightarrow X$ be a non-singular measurable tran.sformation. The equatuon C'f $f=f \circ T, f \in L^{2}(\lambda)$ defines a transformatuon on $L^{2}(\lambda)$ colled the: composilion operator.

Note:Every essentially bounded complex valued measmable function f_{0} incluces a bomeded operator $M f_{0}$ on L^{2} which is defined by $M f_{o}(f)=f_{o} f$ for every $f \in L^{2}(\lambda)$. Furt her $C_{T}^{*} C_{T}=f_{0}$ and $C_{T}^{* 2} C_{T}^{2}=f_{o}^{2}$.

Theorem 4.2.2. [14]

Proof

Suppose Cr is chasi-isomentry,
$\Leftrightarrow C_{r}^{*} C^{2}+C_{T}^{*} C_{T}^{1}$
$\Leftrightarrow\left\langle\left(C_{T}^{\prime 2} C_{T}^{\prime 2}-C_{T}{ }^{\prime} C_{T}^{\prime}\right) f, f\right\rangle=0$ for every $f \in L^{2}(\lambda)$
$\Leftrightarrow \int_{1:}\left(f_{0}^{2}-f_{0}\right)|f|^{2} d \lambda-0$ for every $E \in \sum$
$\Leftrightarrow f_{0}^{2}=f_{0}$ we
Dxample
1, $X-\mathbb{N}$, he set of all matural mumbers and λ be the combting monsure on
it. D) (fine $T^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ as
$T(n)=n$ if n is even.
$T^{\prime}(n)=n+1$ if n is ockl.
Since $f_{a}^{2}=f_{0}$, a.e for every n, C_{r} is a g fasi-isometry.
Rocall: Λ bomed linear operator is a m-isometry if,
$\sum_{k}^{m \prime \prime}(-1)^{k} m C_{k} T^{*(m-k)} T^{m-k}=0$
Theorem 4.2.3. [14]
The compostion operator C_{T} on $L^{2}(\lambda)$ is m-isometry iff
$\sum_{k}^{2 m}(-1)^{k} m C_{k} \int_{o}^{m-k}=0$

Proot＇

Suppose C_{7} is m－isometry
$\Leftrightarrow \sum_{k}^{m}(-1)^{k} m C_{k} C_{I}^{*(m-k)} C_{l}^{m-k}=0$
$\Leftrightarrow\left\langle\left(\sum_{k}^{, a}(-1)^{k} m C_{k} C_{T}^{*(m-k)} C_{T}^{m-k}\right) f, f\right\rangle=0$ for cvery $f \in L^{2}(\lambda)$
$\Leftrightarrow \int_{L^{\prime}}\left(\sum(-1)^{k} m C_{k} \int_{o}^{m-k}\right)|f|^{2} d \lambda=0$ for every $E \in \sum$
$\Leftrightarrow \sum_{k}^{m}(-1)^{k} m C_{k} \int_{o}^{m-k}=0 \quad$ a．e
Corollary 4．2．4．［14］
The composition operator C_{T} on $L^{2}(\lambda)$ is called $⿱ ㇒ ⿻ 二 乚 ⿴ 囗 十 心$ isometry iff $\int_{1}^{2}-2 \int_{0}+1=0$ ．
Example 4．2．5．Let $X=\mathbb{N}$ ，and λ be the comuting merasure on it
Define 7 ＇： $\mathbb{N} \rightarrow \mathbb{N}$
a．s $T(1)=1, T(2)=1$ and $T(n)=n-1$ for all $n \geq 3$

4．3 A－2 isometric operators

Definition 4．3．1．［11］Let．$A \in B(H)$ be positive，$A \neq 0$ ，an operator $T \in B(I J)$ 2．s said to an A－comtraction or an A－isometry if it sutasfics the incopulaty；

$$
T^{*} A T<A
$$

If T＇and T^{*} are A－isometries，we say（han T is an A－milary operator．
Eximmple 4．3．2．（i）Recull．T is a quast－isomelty if $T^{* 2} T^{\prime 2}=T^{*} T$ ，In crefore （1）фunasi－isometry is a $T^{*} T$－rsometry．
（ii）A 2－isometry can be uritten as
$T^{* *}\left(T^{*} T-I\right) T=T^{*} T-1$
\Rightarrow A 2－isometry T is a $\left(T^{*} T-I\right)$－isomedry．
Definition 4．3．3．T is a purc A－contiraction on H if T is an A－contivetion and there exusts no non－zero reducing subspace for A and T in which T is an， A－isometry．

Note that any positive operator $A \in B(H)$ defines a positive semi-flefinte sespuilinear form:

$$
\begin{gathered}
\langle,\rangle_{A}: H x H \rightarrow r \\
\langle x, y\rangle_{A}-\langle A x, y\rangle \text { for all } x, y \in H
\end{gathered}
$$

'Therefore, if ' T is an A-2-isometry then it satisfies; $\left\|T^{2} x\right\|_{A}^{2}+\|x\|_{A}^{2}=2\| \| T x \|_{A}^{2}$.

Simple computation shows that if $A=I$ an A-2-isometry beromes a 2 isometry.

4.4 Operators of class \mathcal{Q}

Dofinition 4.4.1. An operator T is of cluss \mathcal{Q} if
0) $\leq Q=T^{* 2} T^{2}-2 \Gamma^{*} T+I$

Lंqumalently $T \in \mathcal{Q}$ if $\left\|T^{\prime} x\right\|^{2} \leq \frac{1}{2}\left(\left\|T^{2} x\right\|+\|x\|^{2}\right)$ for cuer $y x \in I I$.
I.emmoa 4.4.2. [6]
low any real λ and any operator $T \in B(H)$,
$\lambda\left\|T^{\prime 2} x\right\|\|x\| \leq \frac{1}{2}\left\|T^{2}\right\|^{2}+\lambda^{2}\|x\|^{2}$
and in particular if $\lambda=1$
$\left\|T^{2} x\right\|\|x\| \leq \frac{1}{2}\left(\left\|T^{2}\right\|^{2}+\|x\|^{2}\right)$
Rocall: An operator $T \in B(H)$ is paranomand if $\|T x\|^{2} \leq\left\|T^{2} a\right\|\|x\|$ Cor "very $x \in I /$

'I'heorem 4.4.3. [6]

An operator T is paranomand iff $T^{2} T^{2}-2 \lambda T^{*} T+\lambda^{2} \geq 0$ holeds for all $\lambda>1$.
IRemank 4.4.4. Prop 4.4.3 implies that pery operator of flass \mathcal{Q} is paranormal. Also note that, taking $\lambda=1$ and if equality hold, we observe that Tr becomes a 2 -isometry, thius we have the inclusion;
d-isometries
\subset cluss \mathcal{Q}
\subset Paranormal.

$4.5 \quad(m, p)$-Isometries

An operator $T \in B(H)$ is callex an (m, p)-Isometry if there exists an $m \in$ $\mathbb{N} \quad m>1$ and an $p \in[1, \infty]$ such that;
for all $x \in H \quad \sum_{k=0}^{\infty}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}=0[15]$
$T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in $\left(\mathbb{C}^{2},\|\cdot\|_{2}\right)$ is a $(3,2)$-Isometry
IRemark 4.5.1. Note that all basic properties of m-isometries on a Ifibert spare carry over (m, p)-Isometries on Banach spuces.

Proposition 4.5.2. If T is an muertible (m, p)-disometry and m is cuen, T is. an ($m-1, p$)-Isometry.

The result follows from Agler et.al[1], (proposition 1.23).
Definition 4.5.3. An operator $T \in B(H)$ is called (m, ∞)-Isometry iff $\max _{k-0, \ldots, \ldots k}\left\|T^{k} x\right\|=\max _{k=0}, \ldots m_{k \text { ood }}\left\|T^{k} x\right\|$ for all $x \in H$

Note that this definition does not imply evely (m, p)-Isometry is an (m, ∞)-Isometry.

Proposition 4.5.4. [15]
If we have for $T \in B(H)$ that $\left\|T^{n \prime \prime}\right\|$ and $\left\|T^{\prime \prime \prime} a\right\| \geq\left\|T^{k} a\right\|$,
$k=0, \ldots, m-2$, for all $x \in H$ This condition is also necessary if $m=2$

Proof

The first part, follows from the definition of is (m, ∞)-Isometry.
Let 'I' be a $(2, p)$-Isometry. By definition $\|T x\|=$ max $\left\{\left\|T^{2} x\right\|,\|x\|\right\}$ for all $x \in I$.
Hence $\|T x\| \geq\left\|T^{2} x\right\|$ and $\|T x\| \geq\|x\|$.
Furthermore, the defining equation lokls for $x \in R(T)$, thus $\left\|T^{2} x\right\|=$ max $\left\{\left\|T^{3} x\right\|,\left\|T x^{2}\right\|\right\}$ and therefore $\left\|T^{2} x\right\| \geq\|T x\|$.So we have ecpuality which proves the statements.

Corollary 4.5.5. [15]
If $T \in B(H)$ is an (m,p)-Isometry and ($2, \infty$)-Isometry then it is an isomemy.

Remark 4.5.6. Since every isometry is a 2 -isometry corollary 4.5.6 gives a necessary condilion under which an (m,p)-Isomehry becomes a \%-isometry.

4.6 Conclusion

The study of speetral properties of 2 -isometries and related operators on at litbert gave basic results on the "structure" of a 2 -isometry.Since this class of operators has not be studied extensively, we would like to suggest possithe areas that can be investigated in future.

(1)Bergman Shift operators that are m-isometries

Definition 4.6.1. A Bergman space A^{p} is a function space consesstiong of functions.s that are analytic on. ID and salisfy;
$\int_{D}|\cdot f(z)|^{\prime \prime}<\infty$ for a non-zero positive miteger p.
We would like study conditions under whid Bergman shift operators make comade with m-isometries and consider the case when $m=2$.

(II)Similarity and Quasi-similarity of 2-isometries.

It has been shown that every cyclic analytic 2-isometry cam be represented ats a multiplication by z on a Dirichlet-type space $D(\mu)(\mu$ denotes the finite Borel measure). This representation theorem can be nsed to investigate similarity and (Quasi-similarity of 2-isometrics.
(III)Hyponormality and Subnormality properties of 2-isometries.

We would like to investigate the relationship, between a m-isometries and m-hyponomal operators. Also establish a relationship between a 2 -isometry and submomal operators(ann operator that has a mormal extension) this will estallish a condition for a mormal 2-isometry.

Bibliography

[1] Agler J. and Stankus M, m-isometric transformations of a Hilbert Space I,integral equations and operator theory,21,(1995).38:3-429)
[2] Auders Olofsson, A uon Neumam-Wold decomposition for 9-2.sometries, Acta sci.Math. (Szeged)70(2004), 715-726.
[3] Bemmulez T,Antonio Martinon and Emilio Negrin, Weighted shift. operators which are m-isometries, integr.Equ.(Oper.Theory.68(2010),301312.
[4] Carlos S.Kubrusly, An Introduction to Models and Decompositions in Operator Theory, Birkhauster.Boston(1997)
[5] Devika. A and Malarvishi M, spechral properties of 2-isometric operutors,int.I. contemp.math. science, vol 5,2010,no 25,123:3-124()
[6] Duggal B.P,Kubrusly C.S and Levan.N, contractions of class \mathcal{Q} and invariant subspaces,Bull Korean math.soc.42(2005)(1)(167-1i7)
[7] Halmos P'R, A Hillert space problem book;2nd Ed.,Text in Ciraduate. Math,Springer-Verlag New York(1982)
[8] Joln V.Baxley, On the Weyl Spectrum of a Hilbert Space operator, proc.Math.Soc.Vol 34(2)August 1972.
[9] Kulkarni S.II,Nair M.T, A characterization of closed range operators, hadian J. Pure Appl.Math 31(14)2000,353-361
[10] Kolkarni S.H,Nair M.T and Ramesh G,some properties of mbounded operators with closed rongequroc. indian acad.sci(Mathsci)118(2008)61:3(i25)
[11] Mohmond ().A.Ahmed S.l), Suddi.A,A-m-isometric operalors in semp-Hibertian spaces, linear algebra.appl(2010)
 $37(57) 2002,141-145$
[1:3] D'atel S.M,A mote on \quad quasi-isometries, Cilansik
Matematicki. Vol35(55)(200(0) $307-312$
[14] l'anayapans S, some asometric composithon operalors, lat J.cont(ent).Math.sci.vol 5(13),2010,615-621.
[15] [hilip Hoffuan and M.Mackey, (on the second parameler of an (m,p)-Isometry,arXiv:1106:0339v4[math F.A], June 2011.
[16] Takayuki Furuta, Invitation to linear operators from matriees to bounded lmear operators on a Hilbert Space, Taylor Francis,L.t.d Lomilon 2001.
[17] Youngol Yang and Cheonl J.Kin, (On the Spectra of 2-isometric: operators, J. Forean Math.Educ.Ser.B:Pure Appl.Math.Vol16(3)(2009)277-281

