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ABSTRACT

In this work, we consider a class of mixture distributions generated by randomizing the success
parameter p of a Binomial distribution. We derive the density functions of the mixture
distributions, and in some cases, give their simple properties, such as the mean and variance.
We also derive the density functions of mixing distributions that may be new to the reader. This
is important because these densities are then used in the mixing procedure. The reader can

then follow through with the process and calculations therein.

We find that the Beta distribution is a most tractable mixer for the Binomial, and therefore
dedicate a whole Chapter to various Beta generalizations in the unit interval, and their derived

Binomial mixtures. Chapter three then looks at viable alternatives to the Beta in this regard.

The remaining Chapters are dedicated to various transformations that enable us to move
beyond the unit interval in which the parameter p is restricted. A summary of our findings and

further areas of research is given in Chapter eight.

Xi
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CHAPTER 1

INTRODUCTION

1.1 Probability Distributions
One major area of statistics is Probability Distributions.

Let /(x)be afunction of a random variable X . If

00

fix) > 0 and J fix)dx =1 (1.1

—

then /(x)is called a probability density function of a continuous random variable X . If

0<fix) <1 and 1 (1.2)

then /(x)is called a probability mass function of a discrete random variable X .
Various methods have been developed for constructing fix), such as:

e Power series based distributions

e Transformations based distributions

e Distributions based on mixtures

< Distributions based on recursive relations in probabilities

e Lagrangian distributions

e Distributions based on hazard functions of survival analysis
» Distributions emerging from stochastic processes

e Sum of independent random variables

1.2 Constructing Binomial distribution

1.2.1 Power series based distribution
Consider the binomial expansion of



(a+ b)n = akhn- k
k=0

When b = pand a = gsuch thatp + q = 1, then (1.3) becomes

I =£(>vVv-*

This is a binomial distribution with parameters n and p .

ii. Puta = 1and b= 6

Then
(! + «)' = £ q <¥
fc=0
Therefore
nx 0*
m 1 0O (1+0)n
k=0
And,

%U(l iKO)n

ek
= &) (@ + o)l + 0)n-k

ek
, k=01,...,
PK 0k (1 + 9)k(I + B)nk :

Which is a Binomial distribution with parameters n andi+0‘

1.2.2 Binomial distributions based on mixtures

(1.3)

(1.4)

(1.5)

In (1.4) we have a Binomial distribution with parameters n and p, where n = 1,2 3,..., that is,

nis a positive integer,and 0 < p < 1.

Suppose n is varying, and p is fixed, then we have

PK\n = Prob (X = QAN =n) = Q)pkan-k



Thus

1221

Then

Pk = ~ Prob (X= RN =n)Prob(N = n)

Binomial-Binomial distribution

AR\
Ph= (jOn(l-0)M-n ; n=012..M
M
Pk=y Q) Pkgn~k(*) On(l - 0O)Mn
n=0
M
= | Q )O pV -« "a -«)«-"
n=0
M
= X C)(n) @KOD(L* OMn
M
= (O0Op)kE Q) (") (O)n-fd - P)n-k(i - e)M-n
n=0
M

= «W * ® (7) (91 - p))n-*a - B)*-

- (6Pt (M("1> [ (M - »<* - P»'I>(1

-W

(1.6)



M
1 Ml

](OP) Z R(h —K\ (M —n)! (0(l-p))n k(lI-0)M"
n=0

(M- for M! (0 (I “Kk(1 "
= (Op)klzofc!(M “fe)i(n-fo)r(Mm ohyr (O (=P ))nTk(1-0 )M

M
-m HI v (0O(1 _ vAn-k(1_e)Mn
kA (M —FAZi (n—f (M —n)t ~ " P) (0)

= («p)(")X {MZ k) (e(1-p>r*« " 8>"n
n=0
= 9p) " (")O- 9p+ 1- 9)""*
= (9p)' (")a-ep) MO

Thus,

Pk = (Op)fc(~)(1-0 p )M-k . fe= 0O,l.... M
(1.7)

Using the pgftechnique, we have

G(s)=
k=0

=ZMZM 0 p" pnk(n) G{L_QMInk
:gof\ t‘Z 0 (Lmrrk(n) NKK1-

= £(9ps)E © (9(1-p))"* (") (1-9)-"
k=0 n=0



k=0 n=

M M
—Y N\ * | M (M —K)\
_k>§0 =0 fe!(n-fc)!(M -fe)!(M -n)!
M M
- VEfl A MLV _ o
£ VS M- forfazi(n- KM - n)!(O(I p))n"k(I-0)
M M
T 0 (*) z & - £)(®0- p>r*o - e>"-"
M
= ~"O0ps)k(™)[0-0p +i-e M
k=0
M
= ~(0p5)k(~)[I-0p MK
fc=0
G(s) = [Ops + 1- Op]M
Hence,
C(s) = (©) [dps + 1- OpIM (18)

Which is the pgf of a Binomial distribution with parameters Op and M . Therefore, the

Binomial-Binomial distribution is a Binomial distribution. /

1.2.2.2 Hypergeometric-Binomial distribution
Let

Prob(X = k\n,M,N) , k=01, ..n

And M be a random variable with probability function

Prob(M) = (y)pMgN-M, M =0,1,...,Ni



Then

Ml (& —M)!Int (N-n)\N\ pMgN~-M
K (N - K\ (M —K) N\(N—M —n + K\ (N = M)\MI

n! (N - n)! pMgN~-M
Kl (n- K\ (M—K\ (N-M -n + K\

n (N—n)! » pMgN M
fel(n-fe)t Lu (M - K\ & - M- n+ K\
PMaN-M
M—O(M —Kk\ (N-M -n + fo)

Therefore

——n
~



jt+k=N
Pk = © pV - £ (N-n)P-,«->-<
j+k=0

=© pv_k ™ (w;-n)p79W n)y
j=-k

=O©pv-kX (V)pv""nwW
j-0

For(N” ")to hold, V- ft < N- n

Thusn < fc
and k>n.
Alternatively,y <N -n = N- Kk.thus, fc=n

Therefore

Pk = © pV -M

and

Pk = © pV k > fe=0,..,n
(1.9)

This is a Binomial distribution with parameters n and k .

1.2.3 Sums of Independent Random Variables
LetSN = Xi + X2H----h XN, where then's are iid random variables.

Let
G(s) = E(SX), the pgf of X

P(s) = E(SN), the pgf of N



H(s) = E(SSn), the pgfofS,v
Case 1: When \ s fixed
Here,
W(s) = E(Ss") = (ESX*)N= (G(s))N
IfXjis fim (I,p)then G(s) = q+ ps
Therefore,

W(s)

(a+ ps)N
SNis Bin(N.p), that is

hj = Prob(SN=7) = (NpJgN=J , 7= 0,1, ...,

IfXj~Bin(n, p), then

G(s) = (@+ps)n
W(s) = (g +ps)Ww
And
SN~Bin(nN,p)
That is

Case 2: Nis also a random variable independent ofX'-s
H(s)= Fn(Gx(s))

Hin(s) = @+ ps)n

Then

H(s)= (g9 +pG(s))n

IW{~Btn(l, 0), then

N

(1.10)



G(s) = [(1- 0)+ 05]

Therefore
H(s)= (@+pI[(l - 0) + Os])n
= (@ +p—p0+ pOs)n
= (l-p +p—p0 + pOs)n
= (1- p0 + pOs)n
Thus,

f/7(s) = (l-p0O0 + pOs)n

This is the pgf of the Binomial, with parameters n and pO .

1.2.4 Conditional probability distribution given sum of two Poisson random variables

Let Xand Y be two independent random variables from a Poisson distribution, i.e.

X~Poi(A)and Y~Poi(p)
Then
Prob(X = x\X + Y =x+Yy)

Prob(X = X \X + K= x + y)
Prob(X + Y=Xx+vy)

{xHn)xrye- (xHt
(*+y)!

ApY(X + Y\ e- (A+n
“ XA\Y\(A + p)*+ye-W+#)

(x +y)! A*py
~ X\y! (A + p)*+y

r :% - h ferr

(1,11,



LetX +y =n

Therefore

for* = 0,1, —n

which is B (n«

1.3 Mixtures
From Feller (1957) we can develop a class of probability distributions in the following manner.

LetFx be a distribution function depending on the parameter#, and letFbe another distribution
function. Then

is also a distribution function.
Feller calls distributions generated in this manner, mixtures.

Mixtures can thus be generated by randomizing a parameter(s) in a parent distribution.

1.3.1 Binomial Mixtures

The Binomial distribution has two parametersnandp, either, or both of which may be
randomized, to give a binomial mixture.

This project discusses cases in which the parameterphas a continuous mixing distribution with
probability densityg (p)so that

where/(x)is a Binomial mixture distribution.

10



1.4 Literature Review
We now look at the various works that has been done in the literature on Binomial mixtures.

Skellam (1948) came up with an expression for the standard Beta-Binomial distribution. He
studied various properties of this distribution, and described an iterative procedure for
obtaining Maximum likelihood estimates of the parameters of the Beta mixing distribution
using the digamma function.

Ishii and Hayakawa (1960) also derived the Beta-Binomial distribution, and further examined its
various properties and extensions.

Bhattacharya (1968) used truncations of the Beta and Gamma distributions to derive mixing
densities for the Binomial in the interval[0,1]. He went on to give expressions for the mean and
higher moments, including its characteristic function, and Bayes estimates of the mixing

densities.

Grassia(1977) derived new distributions from the two parameter Gamma distribution by using
log-inverse transformations of the type t= In(~)ort = In @ ) He noted that these

distributions presented many of the characteristics of the Beta, and could therefore be used as
mixers with the Binomial. He obtained the Binomial mixture densities, studied their shape
properties and simple moments. He also considered their applicability in problems in which the
inoculation approach was used to estimate bacteria or virus density in dilution assays with host
variability to infection.

Bowman et al (1992) also derived a large number of new Binomial mixture distributions by
assuming that the probability parameter p varied according to some laws, mostly derived from
frullani integrals. They used the transformation p = e_tand considered various densities for
the transformed variables. They also gave graphical representations for some of the more
significant distributions.

Alanko and Duffy(1996) developed a class of Binomial mixtures arising from transformations of
the Binomial parameter p as 1 —e-/lwhere Awas treated as a random variable. They showed
that this formulation provided closed forms for the marginal probabilities in the compound
distribution if the Laplace transform of the mixing distribution could be written in a closed
form. They gave examples of the derived compound Binomial distributions; simple properties,
and parameter estimates from Moments and Maximum likelihood estimation. They further
illustrate the use of these models by examples from consumption processes.

Karlis and Xekalaki (2006) studied the triangular distribution as a tractable alternative to the
Beta. They noted its limited applicability, attributing this to its inflexibility in acquiring many



shapes. They went ahead to examine its use as a prior to the Binomial, deriving the Binomial-
Triangular distribution.

Gerstenkorn (2004) studied a mixture of the Binomial-as a special case of the Negative
Binomial-with a four parameter generalized Beta distribution using a transformation for the
parameter p . He obtained expressions for the factorial and crude moments.

Li Xiaohu et al (2011) studied the mixed Binomial model with probability of success having the
Kumaraswamy distribution. They considered two models for this distribution, derived their

density functions and other simple properties. They also discussed their stochastic orders and
dependence properties. They employed the Kumaraswamy-Binomial models to real data sets
on incidents of international terrorism and made comparisons with the Beta-Binomial model.

1.5 Statement of the problem and objectives of the study

From the literature, we find that the Binomial distribution can be expressed in two forms,
namely:

i. By the direct use of p

Q)p*(l-p)»-* ; x=01..n
ii. By the substitution p = e~"we have

(J)e-te(l-e -tr ; *=0,1...n
iii. By the substitution p = 1 —e_twe have

The corresponding mixed Binomial distributions are:

o /(*)= JOG)P *(1-P)n-*S(p)dp
«w [W = [*(>-"(!- <r)n-*<7(p)dp
iL /(*) =J0 Q)e-~-~Cl- e-0x5(p)dp

e Since p is restricted in the domain[0,l Jthe choice of mixing distributions seems limited.
The commonly used one being the classical beta.

e Most of the integrands between [0, 1] and[0, oojcannot be evaluated in closed forms.

12
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Research Questions:

1 How can we generate tractable mixers for the Binomial, in the [0,1] and [0, 00] domain?
2 What are other forms of expressing the Binomial mixtures?

Obijectives
Main Objectives

| To generate more mixers
2. To examine alternative forms of the Binomial mixed distributions.

Specific Objectives

1 jo use the classical beta distribution and its generalizations in the interval [0, 1] as prior
distributions

2. To use distributions beyond the classical beta, lying in the interval [0,1], as mixers.
To construct new distributions in the [0, 1] domain, based on the log-inverse
transformationsy = —Inv ory = —In (I —u)fory > 0.

4. To apply distributions in the[0, 00] domain as mixers for the binomial, when the success
parameter is transformed, such that p = e _for p = 1 —e-t.

1.6 Applications
1.6.1 Academic pass rate

Consider X the number of subjects passed by every student at a university during an academic
year. X depends on n , the number of subjects for which the student was registered (which is
known a priori). For this type of data, the binomial distribution provides a poor fit since it would
be unreasonable to consider the probability of success p to be constant for all students.
Considering the students as having different probability of success according to.their ability is
more natural. Thus, binomial mixtures can be used to analyze the overdispersion of X and its
relationship with n (see Karlis & Xekalaki, (2006))

1.6.2 Daily alcohol consumption

Binomial mixtures can be used to analyze sociological experiments about the number of days
per week X, in which alcohol is consumed (see Alanko & Duffy, (1996)).

13
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CHAPTER 2

BINOMIAL MIXTURES BASED ON CLASSICAL AND [0,1] DOMAIN
GENERALIZED BETA DISTRIBUTIONS

2.1 Introduction
The classical Beta pdf is given by

O<x<l;a,/?>0

Special cases of this pdf are:

e Uniform distribution
« Power function distribution

e Arc sine distribution

The classical Beta density is a two parameter distribution. Libby and Novick () [] extended itto 3
parameters, and McDonald suggested a 2 and 3 parameter generalization for it.

The Beta distribution is a premier prior to the Binomial density. It allows many differently
shaped mixing density functions, hence is a very flexible tool in modeling a variety of
continuous distributions for the success probability p.

In deriving the Binomial mixtures, we use the following methods:

e Moments method
This Method follows from the definition of a binomial mixture /(*)," in the domain
[0,1], so that

Further evaluation gives us
i

/(*) =0 X (nk*) (-1)k/ PXHOW dP
k= o]
’ 1
)=X 0

14



n!

J_x:Xx! (n —7) 0 ~x)\E(Pi}

/(*) = 2-1

forj > xand 0ifj < x
where£(P;) isthe jth moment of the mixing distribution (see Sivaganesan &
Berger, (1993))

e Direct substitution and integration.

e Recursive relations.

2.2 Classical Beta-Binomial distribution

2.2.1 Classical Beta distribution

Construction

Let Xt and X2 be 2 stochastically independent random variables that have Gamma distributions
and joint pdf

fx' A =w oot

With(0 < xx < (0 < x2< °°), a,p > 0, and zero elsewhere.
letV =X +X2and P = X
Xr+x2
Then
Si(P.y) = n ajnp) (py)g"1ly (1 - P)]/? le'pye”y+pyl7
dxj dxi
— dy dp

Where [/l = 50 axe lilp 41 - I-yl =y

dy dp

NEY) = @m0 P

Withd0<y<oo; 0<O<l|

15



The marginal pdf of p is

rja + P) yCt+p-lg -y

92(P) r(@)r(/?) na+p)dy
Thus

NCl-p/-1
- P P o<p<lNa,p>o (2.2)

g2p)\s called a Classical Beta distribution with parameters aand /7.

Properties

The jth moment of this distribution,E(P7) is

“pjta-1Q _ py/2-l
E(PI) , dp

fip' + a,/?)

Therefore

O+a-1)! (a+7/2-1)!
£(P>) = (2.3)
/+*+/?2-1)1 (o-1)!

Thus the mean is

EP) =,

and the variance is

«[?
(a+P)2a+/r+1)

Var(P) ={e (P2 - (E(P))2}

16



2 2.2 Classical Beta mixing distribution
The Binomial probability function being

BM = Qp*(l-p)"-*, X=01..n0<p<1

Then the Classical Beta-Binomial probability function becomes
i
m = f Q p x(i-P)nxff(P)dP
0

wherep(p)is the pdf of the Classical Beta distribution.

Thus,

1

/()= JQopr(i-p)n
0

,Pal(l-p)n-1
Bia.p) \Y (2.4)

(M Bix + a,n —x + (1) "Pxta-la _ pn-x+p-
U B(a,p) (JQ B(x + a,n —x + P)

' Bix + a n—x+ /7

u Bia.p)
0, elsewhere (2.5)

fix) X=0,1,...,n; a,p >

From the Moments method, this distribution can also be written as

rt
IW 13 !:X’!(n_A a_/\ g(f>,)
forj > xand 0ifj < X

Theyt/imoment of the Classical Beta distribution, from (2.3) isl

17



B(j + a,p)

E(P>)
B(a,p)
Thus
/ nl SO + a,/?) o
/()= L ad (n=)! (I-9)1E(<*.1?) ar= oL anaal =

0 , elsewhere

From(2.4), a recursive expression for /(o:)can be determined as follows:

f /n\ Pa *(1 —p)» 1
/w = f(gl ))(i-P)-))p ( p) N
Then
=0
0
fwWB(a,P) = j pXta-1(1 _ p)n-X+p-ldp
Let

/(x)fi(a,/?)

Ix = Jp*+«-I(I-p)n-x+fi-l1dp

Using integration by parts to evaluate the integral on the RHS, we put
w= (1 —p)n~x+P~1= du = d(n — + /?—1)(1 —p)n~x+P~2dp

And

f
dv = p*+* 1 = Vv = ]p*+a ldp= -—---
P J =

Therefore

18
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. x+a n—x+p—1 :
K = @=pynxed—  + F—=J px+a(1- p)n-x+fi-2 dp

a X +

n-x+p-1

= e e o+
R T

/(x)B(a,p) fix- x+p- I\f(x + 1)B(a,p)
C) v *+a ] (’«)

/A =X+ p —IN\n\(n —x —1) (x + 1)!

m * o+« ") xIn! (n —x)!

/(x+1)

2.7)

Properties of the Classical Beta-Binomial distribution
The mean is

«*)--««-(ST?)

and the variance, is
Var(JOo = nE(P) - n£(P2 + n2Var(P)

_( a \ a(a + 1) _ nZap
= 7la+p)~"(aTpK +pTi)+(aTp)2(aTp+Tj

nap(a + p + n)
(aTpTlj(a +P)2

2.3 McDonald's Generalized Beta-Binomial distribution

2.3,1 McDonald's Generalized Beta distribution

Construction

Given a Classical Beta distribution with pdf

19
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B(a,b)

forOo<x < l;a,b >0

LetX= Yp
Then
(YP)aa (1-y P)t~-1
g(y) = B(a.b)
whereUl = |f] = Pypl1l
Therefore

py“P-1(1 —yp)b 1

O<y< ILabp>0
0(y) B(a.b) y<ZLahbp

This is the McDonald's Generalized Beta pdf, with parameters a, b and p

(See Nadarajah & Kotz(2007))

The jth moment of McDonald's Generalized Beta distribution is

_ fyTIap-Ip(1-ypl~ldy
1" (J)

Letz = yp

Then

vy fZP°+ap p (I —z)b I1zP 1dz
"0t =/ p B(a, fo)

1>>ap-p)(1_2)b_1

m/ B(a,b) dz

20
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E>")= B

2 3.2 McDonald's Generalized Beta mixing distribution
The Binomial-McDonald's Generalized Beta distribution is given by

/(*) = ] Q yxil- y)nXxgiy)dy
o

where”(p) is the pdf of the McDonald's Generalized Beta distribution.

Thus,
1
fM= J(")yx(l - (1 _
1
= B&J)O - ypYo-ldy
0
b- 1
- * - ~*
0 b5 » E:OC yy-="y
b—
= 0 BfTTjZC k") +4“P+PI" - JCH«
for* = 0,1............ n;ab,p>0

for j > xand 0ifj < x

21
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The yt/imoment of McDonald'sGB distribution from (2.9) is

E(P’) B(a, b)

Thus

1

B(a, b)l_ A\ (n-y)! 0 —x)! (2.11)

forx = 0,1 b,p>0

2.4 Libby and Novick's Generalized Beta-Binomial distribution

2.4.1 Libby and Novick's Generalized Beta distribution

This pdf due to Libby & Novick is given by

capa1(l-p)b-1 (2.12)
9(P)  B(a, fc){l —(1 —c)platb

forO<p<1l;abc>0
(seeLibby & Novick, (1982)).

The jth moment about the origin of this distribution is

pfpn - C° fPMala-P)b-1,
() B(a,b)JO {1- (1- c)p}atbdp

CGB(j + a,b) r p;+a-I(l _ p)b-I
~ B(a,b) JOB(j+a,b){|-(|-c)p}a+bdp

But
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f ta-Irl _ ty-I
2Fl(a,y:a + b;z) =

Thus
caB(J+ a b)

E(pi) = B(a, b) 2F1(J+ aa+ bb+j+al—c) 213)

2.4.2 Libby and Novick's Generalized Beta mixing distribution
The Binomial-Libby and Novick's Generalized Beta distribution is given by
[

fix) = J (") px(1- p)nxg(p)dp

(0}

where”(p) is the pdf of the Libby and Novick GB distribution.

Thus
I _r pa_1(l - p)b'1 d
1 —@ —c)pra P
a /M\ fp*+a_1(1 —p)n-X+o~
Biazb)U J {1- (1- owdymtb dp
caB(x + a,n —x + b) ,n x+0-17~ _ .pMnx+b-1
Bia, b) 01 B(x+an—Xx+6){1—(1 —C)p}a'"bdp
But
_ _ r ta~1(i- O i1
2Fi(@. y:ax biz) i B(a, fo){l —zt)Y~”
Thus
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n\ caB(x + a,n —x + b)
2FI(x +a,a+bn+a+b1l-c

/ <« = O B(a, b) (214)
forx = 0,1 b,c>0
From the Moments method, this distribution can also be written as
n
Iox!(,-")!
j=X
forj > xand 0if; < x
The/t/imoment of Libby and Novick's GB distribution from (2.13)is
N caB(j + a b) .
E(P))= — ——"2F1(J+aa+bb+j+al—c)
Thus
ca sr' mM\BJ+ab) .
/(*) = ) ] 2FlJ+aa+bb+j+al—c)
B(a,b)Zjx\ (n -j)! (J- X\ (2.15)
J=X .

forx=0,1,..., n:abc>0

2.5 Gauss Hypergeometric-Binomial distribution
2.5.1 Gauss Hypergeometric distribution
Construction

Given the Gauss Hypergeometric function

ta~\l ~ t)b-1

. _ - t
2Fl(a,y; a+ b\-2) J F(a, 6)(1 + Zt}Y

(0}

forO0 <t<l;ab>0 ; —<y<ao
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Dividing both sides by 2Fl(a,y; a + b\-z)we have

% B(a,b){l+zt}Y2Fl(a,y;a + b;—z)
Thus, the pdf of the Gauss Hypergeometric (GH) distribution is

() = ta-1(l-t)b 1
B(a, b){ 1+ zt]Y2FI(a,Y', a + b; —2)

forO<t<1l;ab>0;-00<y< 00
(seeArmero & Bayarri, (1994)).

The jth moment of the GH distribution is

oy = 7 td+a- 1(1 -t ) b-1dt
(7>)= B(a, b)2Fl(ayasbv) J 1+ Z8Y
B(j + a,b) rttjﬂrﬂ"‘iﬁ_ - t)b-i dt
B(a, b)2Fl(a;y;a+ b;-z)3 B(j +a b )}{1 + zt}Y
Thus
B(J + a,b)
F(T>) = 2F1(J+ a Y,b+ +a -z)

B(a, fc2Fl(a,y;a + b,—z)

2.5.2 Gauss Hypergeometric (GH) mixing distribution

The Binomial-GH distribution is given by
i

/() = T (")px(i - p)rxg(p)dp

(0}

whereg(p) Is the pdf of the GH distribution.
Thus,

25
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b-1

* fpr(1- pyr AP
1(*) = B (a,ft)2F I( a|ya+?t__—_2)tv (1- p)r {1 + zpi»
B(x + ai—x+ft) fun r oXtacl,oyn-xtbl .
fl(a, ft)2Fl(a,y;a + ft;-z) W J B(x + a,n —x + ft){l + zp}»
fl(x + a,n —x + ft) 2E | ft 4
X +ay;n+ ftda —
/ « - Ok B(a, ft)2FI(a, y;a + ft;-2) ( Y )
forx =0,1...n;a,ft>0; -00 <y < 0
From the Moments method, this distribution can also be written as
i
'« = %:*r! (,-")!' 0 -*)IE(P<)
for; > xand 0ifj < X
The ytftmoment of the GH distribution from (2.17) is
B(J + a, ft) 2F1(J @
— + yft+, +a, —
bM = B, f)2FI(a, y; a + ft; —2) &y )
Thus
. 1 n n! B(y + a. ft)
/") = B(a,ft)2F I(a,y;a + ft;-z)2_ix! (n-;)! 0 —x)! +a,K' +7/

+a; -z)

forx —0,1,,n;a,ft>0; —w<y<o.

2,6 Confluent Hypergeometric (CH)-Binomial distribution
2.6.1 Confluent Hypergeometric (CH) distribution

Given the Confluent Hypergeometric function
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1
ta-\l - tNe -7 dt

IFl(a,a+ b\ -x) = ] B(a, b)

Dividing both sides by IFI(a, a + b\ -x)we have

1
ta- 1( |- t) b- le~txdt

J B(a, b)IFl(a, a+ b, —x)
Thus the pdf of the Confluent Hypergeometric distribution is

ta 1(1 - t)b-le-tx
fi(a, b)IFI(a,a + b; —)

g(t) =
forO<t< 1l;a >0;-00 < x< o00.
(seeNadarajah & Kotz, (2007)).

The jth moment of the CH distribution is given by

c e B(a+j,b) rtatj-1(1-t) b- le~tx
' B(a,fc)lFl(a, a+ b\ —x)J B(a+j,b)

But

ya 1(1 —y)b xe yxdy

IFl(a, a + b;
B(a, b)

Thus

. B(a +),b) ) .
E(T = ;
)= fi@b)IFl(a, a+ b —) 1@ *hbra+i—)

2 6.2 Confluent Hypergeometric (CH) mixing distribution
The Binomial-CH distribution is given by
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X

/(*) = £ Q vx@-vT~xg{p)dp

wherep(p) Is the pdf of the CH distribution.

Thus,

foin  B(a+ Xm—x+b) fpatx~11—p)nxtb~le~Px

X 'x>BRa, b)IFi(a,a + b; —x) fi(a + x,n —x + fg
0

n\ fi(a+X’n —X + b) - 3
+ + + -
Q- Ba b)IFI(a, a+ by —x) @+ x0 2 —x)

forx = 0,1..... n; a,b>0;-00<x<o0o0.

From the Moments method, this distribution can also be written as
ii
fM= 1| XIC-flio-—*>Ig(P<)
forj > xand 0ifj < X

The yt/imoment of the CH distribution from (2.21)is

E(p/)= B ~ A~ rh -= 7 )1IFl(a+i’b+a+i'-x)

Thus

/(*)

i Vv nt 2@+ jf,fe)lFl(a+7,b+ a+ 7,—x)
Ba, 7)IFla a+ b —)Z_i X! (n—N! 0'-*)-
y=*

forx 0,1,..n;ab>0;—00<x< 0.
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2.7 Binomial-Uniform distribution

2 7.1 Uniform distribution

Construction
Given a random variable P on [0,1] that is Beta (a,/?) distributed with pdf given in (2.2.1) as

p~Nci-p)*-1

O<p<laP>0
S(p) = *(«,« P a

leta=P =1

Then we have the Uniform density [0,1] given by,

o H . O<p<1
9iP) = 0, elsewhere

Properties

The moment of order j about the origin of p(p) is

o
E(Pi)= | pidp

o]
1
E(P1) =
T (2.24)
Thus the mean is
E(P) = i
and the variance is
var(P) = {E(P2) - (E(P))2}=1-1 = -L
29
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2 7.2 Uniform mixing distribution

The Binomial-Uniform distribution is given by
A

/(*) = 1 Q px(1- p)nxg(p)dp

wherep(p) is the pdf of the Uniform distribution.

Thus,
1
(2.25)

/«= jQp'a-pr-'dp

AN b (1 —p)
( B+ ln-x+1) g Bixﬁl.n—;(":r_l) R

n x! in —x)!
(n—x)!Ix! (n+ 1)!

1
(n+1)
! =01
fIX) = in+ 1) 1 x=01, ...,n
0, elsewhere (2.26)

/(x)is a discrete type of uniform distribution, also called the discrete rectangular distribution
(See Johnson, Kotz and Kemp (1992) pp. 272-274.).
From the Moments method, this distribution can also be written as

n!

fIX) - ¥jx!(n—j)l I —=x)!

E{P’)

forj >xand 0if; < x
Theyt/imoment of the Uniform distribution from (2.24) is
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E(Pj) =
7+1
Thus
N\
1) = (n-NH\ (j-x)1d + i)

(2.27)

withx = 0,1,..., n ; and zero elsewhere.

From (2.25) a recursive expression for /(x)can be determined as follows:

/(*) = j QPx(l - p)n~xdp
(0]

Then
/(*) = Q J px(1- p)n xdp
0
1
n = jp*a-Pr-"dp
Let
IXx =T~r = pxn -p r ~ xdp

0

Using integration by parts to evaluate the integral on the RHS, we put

u= (1 —p)nrx= du= —I(n —x)(l —p) adp
And
X+
du = = =] dp =
u pXx \Y; pxdp <+ 1
Therefore
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1
n—x f
Trig Pl - )" dp

X+l
n—x P

K= (-P) "y

n —x
X = 7TTT /L
/(*) /n- Xx f{x + 1)
© ~~+1j U)

n—x\n!'(n —x —1)! (x + 1)!

™ -0 x!n!(n —x)! fix +1)

/n—x\ (x + 1)
= (7T )~ j/rx+ 1

fix + 1) = fix) 2.28)

Properties of the Binomial-Uniform distribution
The mean is

EiX) = nEip) = £
and the variance, is

7ar(Ar) = nEiP) - nEiP2 + n2l/ar(P)

n n n2
“ 2 3+ 12
/
n2+ 2n
12
2.8 Binomial-Power function distribution
2.8.1 Power function distribution
Construction
Consider the Beta distribution
' pa-1(I —p)~-1



and zero elsewhere.

Letting/? = 1 , we have
p“-1(a)!
°o(P) = @ _1

O<p<l;a>0

= r ; elsewhere (2.29)
This pdf is that of the power function distribution, with parameters.
Properties
The moment of orderyabout the origin of the Power function distribution is given by
i
E{P> = | prap*-1dp
0
1
= al pJaidp
J+a]
= a.
] +a
F(P") = .
at. (2.30)
The mean is
a
EP) = a4+
and the variance is
— a
Var(P) = (E(p2 - (E(P))2} = —
(a+1)2 (a+2)(a+1)2
33



2 8.2 Power function mixing density

The Binomial-Power function probability function is given by

1
/*) =) @ p*(1- p)xgip)dp
(0]

Where gip) is the pdf of the Power function distribution.

Therefore,

fix) =aj Q pxil- p)nxpa'dp

(2.31)
0
[
=aj Q px+'_1(1~ p)nxdp
0
fix)= a( )B{x+an—x+ 1)
(2.32)

with* = 0,1,...,n; a > 0 and zero elsewhere.
This is the density function of the binomial-power function distribution.

From the Moments method, the Binomial-Power function distribution can also be written as,

nto(-1)'-*

G-x)\in-i\ E{P') , x=01, ,n

fix) =

forj > xand 0ifj < X
The Jth moment,fc(pf) of the Power function distribution is;Lj from (2.30).

Thus,
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n! C-1)j~x a
It 0 —*)i(n —7)1a+] (2.33)

with* = 0,1,..., n;a>0 and 0, elsewhere

From (2.31) a recursive expression for/(x)is
1
/(*) =aj Q pxi\-p)nxVa-'dp

Then
A
/(*)= Qalp —
N = ] px+a-1(1 —p)n—xdp
©
Let
- . ,dp
X/ - %r— d-rr-

Using integration by parts to evaluate the integral on the RHS, we put

u= (1 - p)nxX= du= —I(n - x)(I - p)rx-"dp
And
r x+a
dv = ;r)*+a 1 = Vv = Jpx+a Idp = -y
Therefore
x+ar
x = (1-p)"-*>2+a X+/a\1{')[ RX+a(1' p)"-*-1dp
n—xr
ly — X+ alx+1
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/(%) /n-x\fjx + 1)

0 At+at (>
/- X\n'(n-x- 1 x+1)!a
/(x) = \ ——————— )— -——— i /(x + 1)
7 X + ay x!nl(n —x)!a

(x + 1) (2.34)

properties of the Binomial-Power function distribution

The mean is

E£ffl = nE(P)=n (7 )

and the variance, is

Var(X) = n£(P) - nE£(P2 + n2var(P)

"fec+l) " fc+l) +n' ((a+ 2)a+1)2

na n2a
(a+Hha+2)+(a-t+t2(a+1)2

na(a+n+ 1)
(a+ 2)(a+1)2

2.9 Binomial-Truncated Beta distribution
2.9.1 Truncated Beta distribution

Construction

Consider a two-sided truncated Beta function given by

P

I P“-ia-p )b-1dp
a

Where0<a<p<£<ijab=>0
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This function can be expressed in terms of incomplete Beta functions as

P P a
J - p)b-1dp = J pa_1(l —p)b-1dp —J pa_1(l —p)b-1dp
o) o)

Thus,

pa-1(1 -p) P21

J Bp(ab) - Baa b P = 1

This gives us the Truncated-Beta distribution, g(p)with parameters a, /?, a, and b.

" pall-p)b-1
O<a<p<Pc<lI; b>0
9(P) = Bp(a,b)~ Ba(a,b) P 3
0, elsewhere (2.35)

Properties

The moment of order j about the origin of the Truncated-Beta distribution is given by

py-Hi-p)*-1
Bp(a,b) - Ba(a,b) P

Bp(j + a,b) —Ba(J + a, b)

Bp(a, b) - Sa(a, b) (2.36)

2.9.2 Truncated-Beta mixing distribution

The Binomial-Truncated Beta distribution is given by

P
/0) = (™MJ Px(1- p)nxg{p)dp

a

Where 5 (p) is the Truncated-Beta distribution.



Thus,

nx r px+ta~\I-p)ntb~1-*

fX) = W J Bp@b)- Ba@b) dp

{K\ Bp(x + a,n —x + b) —Ba(x + a, n —x + b)
Bp(a, b) —Ba(a, b)

'sn\ Bp{x + a,n —x + b) —Ba(x + a,n —x + b)
/(*) = v Bp(a, b) - Ba(a, b)
0, elsewhere (2.37)
=0,1,..., n:a,b>0;0<a< <1

asobtained by Bhattacharya, (1968).

From the Moments method, this probability distribution can also be written as.

~1)J X ro\
Hx Oj_x*ji(ﬁ_q E(P) > X=0Ll..n

forj > xand 0ifj < x
The Jth moment, E (P 7) of the Truncated-Beta distribution is

BsO'+ab)-BaO+al>)

Bp(a,b)-Ba(a,p) ~romM-(2:36).
Thus,
f,v_ vV n (-1y~x Bp(J + a,b) —Ba(J + a, b)
Zjx! 3—x)1(n—)!' Bp(a,b) - Ba(a,b) 2.38)

with x _ 01,...,n;ja,b>0;0<a</2<1and a,b>0.
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2 10 Binomial-Arcsine distribution

2 10.1 Arc-sine distribution
Consider a Beta distribution with pdf

Pa X(1 —p)b 1

O(p) B(a, b)
whereQ ~Ap "N ANQ.
Putting a= b - -we have
1 1
P 2(1—P) 2
0i(p)
«(#1)
rdr(i). 4
ni
Thus
I
0i(P) =
T e iop) (2:39)

forO<p<1l;a,b>0

This is the pdf of an arc-sine distribution.
2.10.2 Arc-sine mixing distribution

The Binomial-arc sine distribution is given by

/(*) = Q J px(1- p)mxg(p)dp
0

Where g{jp) is the arc-sine density function.

Thus,

/(*) = Q)~J Px(1~P)n-*P_2(1 « P)_2dp (2.40)
(0]



:CH frto-pr***
(0]

m = O IB(Xx+5-n-x +S (2.41)

From (2.40) a recursive expression for f(x)can be determined as follows:

/(*): Q)~JIP*(I“P)n*P Al “P) 2

Then
/(’“9'7!’ = }lel(l-p)" " LdP
(0]
Let
f(x)n [ i w i

ffF=+7~r =J)Jp 2Ad-p) 2dp
O
Using integration by parts to evaluate the integral on the RHS, we put

u=(1-p)n*2= du= —(n —x —}(1 —p)n X 2dp

And
dv = p*2 = v = "p*2dp= 2%
J X H—
Therefore
i
1 px+H n—x —
Ix = (1- p)"-*-p + T-lJ(l- p)"t 2pX+2dp
X+ - X +
2J0 2 0
nL—X -
= 1-771n1
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CHAPTER 3

BINOMIAL MIXTURES BASED ON DISTRIBUTIONS BEYOND BETA
3.1 introduction

In this chapter, we considermixing distributions that are not based on Beta distributions, but
whose random variables are defined between 0 and 1.

They include the following distributions:

e Triangular distribution

e Kumaraswamy (I) and (Il) distribution
e Truncated Exponential

e Truncated Gamma

e Minus log distribution.

The mixing is done using the following methods;

* Moments method
» Direct integration and substitution.

3.2 Binomial-Triangular Distribution

3.2.1 Triangular distribution
Construction

figure 1:
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The Triangular distribution 7(0,1,0) .arises from the conjunction of two lines which share the

same vertex (see figurel).

The points(0,0)and(l,0)determine the initial points of two hypotenuses that intersect
at(o,2)forming a triangle with vertices at(0,0), (I,0)and(0,2).

The density function of the Triangular 7(0,1,0)distribution is defined as
9i(p). ifO<p<6®6
9(P) = 92(P). if 6<p <1

0 , elsewhere

Where,
5i(p)is e equation of the line(o,0), (0, 2)computed as
Noo= giving o:(p) = Yy

g2(p)\s the equation of the line(l,0), (0, 2)computed as

Thus the density function of the Triangular 7(0,1,0)is

2
( yp. O<p<1

(3.1)
v 0 , elsewhere

Properties
The moment of order; about the origin of the triangular distribution is given by
e i
0 0

2p' 2 2 [p>+l pj+2Vv
00"+ 2)jo + 1-0[/+1 j+2\g
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o7+1  0O7+2
2002 2 1 +

00+2) "1-0 0+DO" +2) 7+1 7+2

20'+z(1 - 0) + 20'+3 | 1 Oj+1
(1- 0)00'+2) + 1-0[0+1)0+2) y+1

2 ei+2 2 1 07+1-
(1-0)00+2) '1-0 [0+ 1)0+2) y+I]

2 1-0'+10 + 2) + 0;>10 + i)
1-0 o0 +1)0 + 2)
2 1- 0;+1
W)= 1.0 [0o+DO +2)J
Thus the mean is
1+0
F(P) =
and the variance is
q2 I
Var{P) = [E(P2 - (E(P))2} = —— N

3.2.2 Triangular mixing distribution
The Binomial-Triangular probability function is given by

fix) = J(") px(1- p)nxgip)dp
0

Where p(p) is the pdfof the Triangular distribution.

Therefore,

/(*>= [p*a-p)n-*ydp + / Qp»(i-p)~2(*;ftdp
o 0
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V

I
= % y Px+1(1- p)nxdp + Y Tjj fo(l- p) n~x+1dp

2 Q)\]jBe(x+ 2,n-x+ 1)
+ YZTgW * + hn - x+ 2)- Bg(x+ I,n- x+ 2)}

Where
a

Be{a,p)= f t“ 1(l - O'kidt
is an incomplete Beta function.

Thus,

n\rl
/(*) = 2Q [-fiO@@a+2,n-x +1)

+ +1,n-x +2)- Be(x+I,n-x + 2)} (3.3)

Forx =0,1,..,n;0<6<1
asobtained by Karlis & Xekalaki, (20086).

From the Moments method, this probability distribution can also be written as,

_1 a a J ) 1 £(pJ) R X=0,1,..n

forj > xand 0 ifj < x

The Jth moment,f(P;) of the Triangular distribution is
2 I - e+l

1-0 +1)0+2
from (3.2).

Thus,
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nt (-1)'"* 2 i - ei+l
~oxt (j-x)\(n-j)n-o la+D 0'+2)]
J:

2 no(-iv o »o_ 10+

(3.4)
1-0 jZ_j(x! O'-*)I(n-;)10o+1)0 +2)

Withx =0,1,..#n;0<0<1
properties of the Binomial-Triangular distribution

The mean is

and the variance, is

Var(X) = nE(P) - nE(P2) + nz2Var(P)

nin+3) n(n-3)0(1- 0)
= 18 18

3,3 Binomial-Kumaraswamy (l1) distribution

3.3.1 Kumaraswamy (ll) distribution
Construction

One major disadvantage of the Beta distribution is that it involves a special function, and its cdf

is an incomplete beta ratio, which can not be expressed in a closed form.
To circumvent this special function, Kumaraswamy (1980) modified the Beta function to

xa—31(1 _ xa)b-ldx 0<X<1

Whose integral is
*(1 —xa)b-1 dx
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Putting t = \-xa

\We have
dt
a
o

Therefore

f xa"1ld - x a)b-1 dx

0
andf*abxa-\ | -x~*"1dx = 1
Thus

g(x) = abxa 1(l1-xab 1 , 0<x<1
(3.5)

this is called a Kumaraswamy (Kw) distribution, with the parameters aand b . It is also called
the Minimax distribution (see Jones (2007)).

This p.d.f. can also be constructed as the minimum of a random sample from the power
function distribution, as is shown below:

LetPi < P2< <= < Pp denote the order statistics of a random sample of size /? from the power
function distribution, having pdf

9i (apa 1, O<p<l;a>0
v) [ 0 , elsewhere
Then the pdf ofPlis
cipi ji/?[l - F(pYI~-1/(pi) , O<Pl<1
(P1) ( 0 , elsewhere
WhereF(Pi) = at"'1dt
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Pi
Thus,
Oi(Pi; a.p) = as?[1-Plalp 1pla1
(3.6)
with 0 < Pi < 1; a/? > 0 and 0, elsewhere.
We denote this distribution as the Kw (Il) distribution.
(seeJones (2009), (2007)).
Properties
The moment of ordery'about the origin of this distribution is given by
i
o}
Lettingpa = tfor 0<t<1; a >0
We have
i
o}
[
o}
3.7)
The mean is
E(P) =
and the variance is
Var(P) = {E(P2 - (£(P))2} = + 1,/?)- P2B2(i +1,/?)
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3.3.2 Kumaraswamy (Il) mixing distribution
The Binomial-Kw (11) probability function is given by

/(%) :J Qp*(I-p)" xg(p)dp

(0}

Where gip) is the pdf of the Kw (ll) distribution.
Therefore,

fix) = J Q Pxil- p)n-x/tap“-1(l - pay~xdp
0

1

= apj Q px+“-1(l - p)nxil- p8)*-1 dp
o

a+ ak,n—x+ 1)
(3.8)

with* = 0,1,...,n; a,p > 0 and O, elsewhere
asobtained by Li Xiaohu et al (2011)

From the Moments method, this probability distribution can also be written as,

n! (-1)>- o .
> =
«*)- ]lzlx\X\ O'*)!in-;)_.F( ) X Jon

forj > xand 0ifj < x

The Jth moment,£'(PJ) of the Kw (ll) distribution from (3.7) is

Thus.
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n! (-1y~x

Z < (I-x)\in-j)\ »)

N

with* = 0,1, a,/?7> 0 and 0, elsewhere
Properties of the Binomial-Kumaraswamy (ll) distribution

The mean is

N/ (=)l
E(X) = nEiP) = ~

(;+™M)!
and the variance, is

VariX) = nEiP) - nE{P2 + n2var(P)

+n2
G+0)l (;+7)!

3.4 Binomial-Kumaraswamy () distribution
3.4.1 Kumaraswamy () distribution
Construction

Given the Kw (Il) distribution with pdf

gip) = a/3]l —pa]P~lpa~1l, 0<p<1; ap>0

LetP = Ua, O<u<1l a>0

Thenp(u) = a/2(l- u /-1 ui-awn

where = |*E ijr 1l
=l - b

Thus
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g{u) = /7201 -uP 1, O<u<l;/?>0

and zero elsewhere.

This pdf is that of the Kumaraswamy (l) distributionwith parameter/?.
We denote it as the Kw (I) distribution

Properties

The moment of order) about the origin of this distribution is given by

1

E(Uj)= #\uJ(l-u)P-ldp
(0]

= pB(J + 1./7)

The meanF(f/)is

2+ 1

and the variance!/ar(\J) is

1
B - ENA= 1 90040 a2+ D2

3.4.2 Kumaraswamy () mixing distribution
The Binomial-Kw (I) density function is given by

(0}

Where g(p) is the pdf of the Kw (l) distribution.

Therefore,
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/(*) = JQ p x(1-p)n xg(p)dp
(0]

1

= Q fifp x(I- p ) n>+Hi-1dp
0

/(*)= (")?B(x+Il,n-x+P), *=01...n;/?2>0
(3.12)

and zero elsewhere.
asobtained by Li Xiaohu et al (2011).

From the Moments method, the Binomial-Kw (l) distribution can also be written as,

V1 nl(—)-* .
m = 5:>><(! (J-xy.(n-jy.E{P )
forj > xand 0ifj < x
The Jth moment, E(Pj) of the Kw (1) distribution from (3.11) is
PB(j + I,P)
Thus,
it -
i) = MUY i+ 1) 3.13
= NN T (313

with x = 0,1,..., n;@>0 and 0, elsewhere

Properties of the Binomial-Kumaraswamy (l) distribution

The mean is

E(X) = nE(P) =
P+ 1
and the variance, is

VariX) = nEiP) - nE(P2 + n2Var(P)
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n 2n

2+ | W+ 2?2+ 1) + (2+ 2)(/?2+ 1)2

n/?Q? + n + 1)
(0 +2)(/?+1)2

3.5 Binomial-Truncated Exponential distribution

3.5.1 Truncated Exponential distribution

Construction

Let Y be a one sided truncated exponential, TEX(A, b)random variable, then, the pdf of Y can
be evaluated as,

b vy
l-e~
o]
Dividing throughout by 1 —e ~we have
Lettingy = pb we have,
Thus,
s(p) < b>0<p<Il;fo>0,A>0
l1—e a (3.14)
v 0 elsewhere
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3.5.2 Truncated ExponentialTEAfCA, b) mixing distribution
The Binomial-TruncatedExponential distribution is given by

X

fix) = Q | px(I - p)n~xgip)dp

Where gip) is the pdf of the TruncatedExponential distribution

Thus
1 b
m = 0 fp*(i-pr-"-t—~dp
(o] l1-e »
1
/m\ b C
= (j-7 = Px(! “ P)n Xe *dP
X X[\-e-yO0
But,
" (a)r( )
. . r(g)r(c - a
NtANdl-ty-~dt = IFI(g,c;
] € I y (g,c:x) r(c)

where IFI1(q, c; x)is a confluent hypergeometric function.

Thus,

fti\br(x + 2)r(n —x 4-1)
0 Fi(x +1L,n+2,—)

“A(l -e"1) F(n + 2)

Therefore the Binomial-TEX(A, ~distribution has the pdf

fix)
ren\. Fix+ 2)F(n —x + 1) 7/ —£A\
( jt Fix+I,bn+2,— ), x=01,...,n; M
AM - e~j Fn+2) V A
o , elsewhere
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3.6 Binomial-Truncated Gamma distribution

3.6.1 Truncated Gamma distribution
Construction

Consider an incomplete gamma function given by

a
y(/?2,a) = J d t
o}
So that
te-xe-*
1 —dt
K/?. a)
Putting t = ap , we have,
1 \] YiP> @
Therefore
aflp/?_le~ap
s(p) = veP. a (3.16)

for0O<p<1a/?>0

This is the pdfof a truncated-gamma distribution, with parameters a, /?

3.6.2 Truncated Gamma mixing distribution
This distribution is given by

fix) = Q J p*(1- p)rxg(p)dp
(o)

Whem g(p) is the distribution of the Truncated Gamma

Thus
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anp™-le-ap

m = Q /Op a-p) y(/,)a)
) I
i X+p-I vy -X e-ap
X dp
Y(P. a) |
Butgle-«Pp*+/»-i(i - p)»-* dp = 1F1((x + P). (n + £+ 1); -a)
Thus
77\ F(ec+/?) f(n —a+ 1) 1k s e P
/(* X+ /?),(n+ 7
(*) Wy(/?.a) r(n+/7+1) (3.17)
+1); -a)

withx = 0,1,....n ;a/? >0

asobtained by Bhattacharya, (1968).

3.7 Binomial-Minus Log distribution
3.7.1 Minus Log distribution

Construction

Let the random variable X have the uniform pdf U [0,IJand letY1(.~denote a random sample
from this distribution. The joint pdf of~and”is then

fixi) /(a2 , 0< <1, 0<x2<1
0, elsewhere

Consider the two random variables P = XIX2and Y = X2

The joint pdf of P and Y is

g(.py)= 111
dxj Y
wherely| ;fz :Xz y y2
o o 0 1
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Thus,

(1
- O<p<y<l1
P(p.y) 1y
0, elsewhere
The marginal pdf of Pis
9(P) = jndy
v

- llogylp

= 0- logp
Thus

_ logP , O0<p<1
p(p) = 0, elsewhere (3.18)

We refer to this distribution as the Minus-Log distribution.
Properties

The moment of orderj about the origin of the Minus-log distribution is given by

J

E{P>)= JpJ(-logp)dp

Lettinga = —logp

We have.

E(PY = - \] e~al+l)a da

Using the negative outside the integral to swap the limits, we have

()
E(pi)= | e-<0+i)ada
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JT+Ty (3.19)

Thus the mean is

and the variance is

vartP) = (E(P2 —(E(PNA =y 5 = 1,

3.7.2 Minus-Log mixing distribution
The Binomial-Minus Log distribution is given by

I
/() = (") fPX(' - p)mxg(.p)dp
0

Where g{p) is the pdf of the Minus Log distribution

Thus
/(*) = (x) fo(1~ P)n *(- logp) dp
o]
Letting a = —logp
We have.
n-x [e0])
/(*) = Q £ (n* X(-l)* f e-«(*+fc+Da da

X k=0 o]

Thus,

QLLC (x+|i+|)2

ar>dthe Binomial-Minus Log density function is
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x=20,,...,n

fix) K0 (x+ k+1)2’

elsewhere

From the Moments method, this probability distribution can also be written as,

1 nl (—1lvV—*

x\ 0 -x)l(n-j)\E~ ' X =

forj > xand 0 ifj < x

The Jth moment, E (P 7) of the Minus Log distribution from(3.19) is

1
0+ 1)2
Thus,
\Y n' (-1); * _
fix) = by’ 0-\(n )0+ 2" T

0 elsewhere
Properties of the Binomial-Minus log distribution
The mean is

EOO0 = nE(P) = j4

and the variance, is
Var(X) = n£(P) - n£(P2 + n2Var(P)

n n 7n2

4 9+ 144
2 On+ 7n2
144
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3.8 Binomial-Standard Two sided power distribution
3.8.1 Two sided power distribution

Construction

The Standard Two sided power distribution can be viewed as a particular case of the general
two sided continuous family with support [0, 1] given by the density

o<p<e
e 622
& ) . e<p<l| ‘
where z{. |0)is an appropriately selected continuous pdf on [0, 1] with parameter(s) 0.
The density z (. \Xj)\s called a generating density, so that, when
z(y) = kyk1 , O<y<l;/c>0
(@ power function distribution)
Then
0O<p<O0;k>0
S(p) = (3.23)

O<p<lI;fc>0

This is the pdf of the Standard Two sided power distribution, with parameters kand 8
(seeDorp & Kotz, (2003)).
3.8.2 Standard Two sided (STSP) powermixing distribution

The Binomial-Standard two sided power distribution is given by

i
/() = (7) fPX(l' p)n~xg(p)dp
0

Where g(p) js the pdf of the STSP distribution
Thus
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I(AT) = (- p)»-rd f dp(")

( 6

= (> Jp~™N-ci-p)-»dp+ J p*(i - p)»-»*-*dp
(0} e

fio(x + fc.n —x + 1)
) mo* f Ok-i

(3.24)
+ N (@(*+ 1n- x+fo)- gfix + I,n —x + /c))|

3.9 Binomial-Ogivedistribution
3.9.1 The Ogive mixing distribution

The general form of the ogive distribution is given by the pdf

| = 2m(m + 1) "szI 1-—m2
Ip 2 + O<p<l; m>20
3m + 1 3m + 1

(seeDorp & Kotz, (2003)).

The Binomial-Ogivedistribution is given by

X

/(*) = Q J Px(1- p)n~xgip)dp

Where g{p) is the pdf of the Ogive distribution

Thus

3im+1

le -— /n\ c 2m(m +1) ” dP
JPH(I-P )« * A P2

/N f 1-n2
+Q Jpa_p) 3sttp dp

61



O IB™ (@ +0s~1rdP 0-P @b

MmN\ 2m(m + 1) /2x+ m+ 1

-,n —x + 1
=0 3m+1 BV )
n\l—mZB( 1 1
+ X+ m+ 1,n—x +
O'3m+ 1 )
/M\2m(m + 1) /2x+ m + 1 \
Ot TTtM — 2— n -* +1)
(3.25)
n\ 1—m2

Bx+ m+ 1,n—x +1)
(¥ 3m+ 1

forx =0,1.....nm >0

3.10 Binomial-Two sided ogivedistribution

3.10.1 The Two sided ogivedistribution

Construction

The Two sided ogive distribution can be viewed as a particular case of the general two sided

continuous family with support [0,1] given by the density (3.22) as

z(en) 0<p<6
o{p\o,z(.\\I))}

where z(. |i/>)is an appropriately selected continuous pdf on [0, 1] with parameter(s) ip.
The density z(. |i/>)is called a generating density, so that, when

2m(m -1-1) m+ 1-m?2
z(y) = oo v 2 4+ 0O<y<Il;m>0
AIm+1 * 3m -1

(anogive distribution).

Then
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a(p)
2m(m + 1) (PVT1 1- m2fp™m

3m+1 VAi/ + 3m+1W
2m(m + 1) /I —pxT" 1—m2/1 - p\m
<3m+1 VI-0/ + 3m+1VI—0/

O<p<Om=>0
(3.26)

O<p<l;m=>0

This is the pdf of the Two sided ogive distribution, with parameters m and 9

The Two sided ogive distribution is smooth at the reflection point(p = 6). This is in contrast to
the Two sided power distribution (see (3.8.1)).

3.10.2 The Two sided ogive mixing distribution
The Binomial-Two sided ogivedistribution is given by
o

1y =u ] px(1- pnxg(p)dp
(0]

Where g{p) is the pdf of the Two sided ogive distribution

Thus

— 1—m®/p

/(*)=O{)Vn-»v"("© T amn®  *
o ID(i- Py
0 (3m+1'||-0/

N 1—m2(1- pv
3m + 1V1- 0/
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/m2m(m+1) 1 f ..m-1

0 2

1- mZC 1/
3m + 1 )9” " P)'-’ dP

N\ 2m(m + 1) L
+ 0 3m+1 . ToPX(l-p)nxn dp

1—m2/n _
3m+;|_0 (14 ~jp”™-vr-~dP

/(%)
2m(m + 1)1 / m+ 1 \

= O 3m+1 r +_T ”ln“*+ij

/1 —m2\ 1
+(torTTj~Ss(x+m+1'n“ ::+1)

/2m(m + 10\ 0 (x + 1,n —x + —) —Bg(x + I,n —x + —) (3.27)
+

\' 3m+1 ) (1- 0)—

/1 —m2\B(X+ I,n —x +m + |) _Bg(x+ I,n —x +m + 1)

\3m + 1) (1- 6)m

forx=01,...nm>00<0< 1
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CHAPTER 4
BINOMIAL MIXTURES BASED ON TRANSFORMATION OF THE

PARAMETERP
4.1 Introduction

In this chapter, we investigate Binomial mixtures obtained by transforming the parameterpto
include mixing distributions in the interval[0, oo].

The following transformations are used:

e-torp=1—e_tfort> 0 .

e p=1cy, 0<cy< 1, whereYisarandom variable.

When p = e~l, the Binomial mixture is

/co= Q j e-txa-e-tr-xgm t
(0]

Further evaluation gives

00

wherel0° e t%+k>g(t) dt is the Laplace transform E(e (*+k)t)of g(t)
denoted byLt(x + k).

Thus

(4.1)

Withx = 0,1, ...,n
(See Bowman et al (1992))

The mean of /(x)is

E(Xj) = Et{E(XI\T))
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wherefiVdenotes expectation with respect to the distribution of T .

Hence
E(X) = £[F(A'IP)] = nE(P)

= 7iE(e-t) = nLt(1) (4.2)
And the Variance Var(X)is
nE(P) - nE(P2 + n2Var(P)
= nf£'(e_t) — nE(e~2t)+ n2Var(e-t)
= nLt(l) — nLt(2) + n2[E(e~2t) - [E(e_1)]12]
= nLt(l) — nLt(2)+ n2[Lt(2) - [Lt(1)]2] 43)
When p = 1—e-t
or- o JeAM) e etyoltdt
0
. oo
=0 kQ (~1)kf e~t(n-X+K) 9(t) dt
0 0
=0 Z,Q (-1)*I*(n- x+k) (4.4)
The mean is
E(X) = E[E(X\P)] = nE(P)
= nE(lQ —e~t)
= n(I-Lt(l)) (4.5)

And the Variance is
Var(P) = nE(P) —nE(P2 + n2Var(P)

NE{l1—e-t) —n£((l —e-t)2) + n2Var(l —e-t)
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= n[l - Lt(1)] - n[1- 2Lt(l) + Lt(2)]

+ n2[l - 2Lt(1) + Lt(2) - (1 - Lt(1))2]

= nLt(l) - nLt(2) + n2[1,(2) - (L,(1))2

asobtained byAlanko and Duffy (1996).

4.2 Usingp = exp(-t)
4.2.1 Binomial- Exponential distribution

4.2.1.1 Exponential distribution
The p.d.f. of the Exponential distribution is given by

g(t) = Pe~tp, t> 0:/7>0

Its Laplace transform is

Lt(s)= E(e~ts) = j FPe~t(s+p) dt
0

(s + /1?)

4.2.1.2 Exponential mixing distribution
The Binomial-Exponential distribution is given by

'mgr+ (t)= < dbjfrom|4'71

Thus
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n I M= o0 - (-1
» - ngor m(x+k+p) 4.8)

withx =0,1,...n; P>0

Properties of the Binomial-Exponential distribution

The mean is
nP
E(X) = nLt(1) = P+
And the Variance is
Var(X) = nLt(l) — nLt(2) 4- n2[Lt(2) —[Lt(1)]2]
np np p
p+1 P+2 " " prs R
np n2p
ip + i)(p + 2) " (p + 2xp + 1y
npip+1)+n2p

(P + 2XP + 1)2

4.2.2 Binomial-Gamma with 1 parameter distribution

4.2.2.1 Gamma with 1 parameter distribution
The general form of the Gamma with 1 parameter (Gamma (1)) distribution is

'e-"t*-1
git) = na) '
0 , elsewhere

t>0a >0

Its Laplace transformZ.t(s)is

E(e~ts) = J J ™ e~t(stl) dt
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e-t(s+1)(s + 1)adf
(s + 1)

1
(s +1)" (4.9)

4.2.2.2 Gamma with 1 parameter mixing distribution
The Binomial- Gamma (1) distribution is given by

/w =0 Z (nk + x>
fc=o

w*+« =s N  from(49>

Thus

f|\/|:O "!nr l@ » x+ /cl+ 1)« (4.10)

withx =0,1,....n;a>0
Properties of the Binomial-Gamma (1) distribution

The mean is
E(X) = nLt(l) = £
And the Variance is

Var(r) = nLt(l) - nLt(2) + n2[Lt(2) —[Lt(1)]2]

n n 2 1 1
2II~ 3“ + ” 131 _ 2*“

4.2.B Binomial- Gamma with 2 parameters distribution

A.2.3.1 Gamma with 2 parameters distribution

general form of the Gamma with 1 parameter distribution is



// uu/ u

0 , elsewhere

Putting y = t/3we have

r(a)
witht> 0; a,/? > 0
wherelyl = \ = P
Thus
e-iPt™-Ipa
5(0 = ' ria) AR (4.11)

0 , elsewhere

This is the p.d.f. of the Gamma distribution, with 2 parameters a and /?. We denote it as the
Gamma (II) distribution.

Its Laplace transform/”(s)is

E(e-ts) = | — e-~+Vpvdt

Pa
(s+P)

0(0 = (4.12)

4.23.2 Gamma with 2 parameters mixing distribution
The Binomial- Gamma (Il) distribution is given by



Ld+V - L it) ,r°m<12)

Thus

/w = (C)h (T ) ( 1Kk(x+k+fi) mX= 0X...(4.13]
0 , elsewhere

Properties of the Binomial-Gamma (Il) distribution

The mean is

And the Variance is

var(X) = nLt(l) - nLt(2) + n2[Lt(2) - [Lt(1)]Z]

4.2.4 Binomial-Generalized exponential with 1 parameter distribution

4.2.4.1 Generalized exponential with 1 parameter distribution

The general form of the Generalized exponential with 1 parameter is

1 e\ t>0a>0

t) =
9(t) elsewhere

Its Laplace transform!/(s)is

E(e t9 = al (1 —e t)a xe t(s+1) dt

0
Bui Bia.fi) = X0V ta(l-e-"-'dt
where B(a,f})is the Beta function.
Thus
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Lt(s) = aB(s+l,a)

(4.14)
4.2.4.2 Generalized Exponential with 1 parameter mixing distribution
The Binomial-Generalized Exponential (1) distribution is given by
k=0
Lt(x +k) = aB(x + k+ 1,a)from(4.14).
Thus
(%) = k )(-)kB(x+k+1,a), x=0,1, a>0
(*) = k=o (4.15)

0 , elsewhere

Properties of the Binomial-Generalized Exponential with 1 parameter distribution
The mean is

E(X) = nLt{1) = na B(2,a)

n
a+1

And the Variance is
Var(X) = nLt(l) - nLt(2) + n2[Lt(2) - [Lt(1)]2]

= naB{2a)—naB(3,a) + n2[aB(3,a)- (a B{2,a))

n 2n 2 2 / 1 \2
at+tl~ (a+2)(a+1)+ U (a+2)(a+1) \a + 1/
na nZ2a

(a+2)(a+1)+ (ad2)(a +1)2

na(a +n+ 1)
(a+2)(a+1)2
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4.2.5 Binomial-Generalized Exponential with 2 parameters distribution

4.2.5.1 Generalized Exponential with 2 parameters distribution
The general form of a Generalized Exponential (I) distribution is

a(l—e Aa le x X>0;a>0
" 0 , elsewhere

gw
Putting X=tp , t>0
Then ~(A)becomes

a/?(l —e tp)a 'e tp, t>0,a,p>0

0i(O =
( 0 , elsewhere (4.16)

This is the p.d.f. of the Generalized Exponential distribution, with 2 parameters a and /?. We
denote it as the Generalized Exponential (Il) distribution.

Its Laplace transformLt(s)is

00

E(e~ts) = afij (I —e_tM)a le~ts+ dt

o}
Letting a = tp , then

oo

E(e~ts) = al (1 —e-a)a-le~aP-"da

o}
But B(a,p) = /0°e-tar(l — dt ,
where B(a,P)\s the Beta function.
Thus

Lt(s)= aB (~

(4.17)

*e2.5.2 Generalized Exponential with 2 parameters mixing distribution

The Binomial-Generalized Exponential (Il) distribution is given by



= OZ (Y-

Lt(x + k)= aB(™y”n,a)from(4.17).

Thus
n—
/X +fe+
/«. o™Nzr™c-Nr fF mmAf=ai...n
k=0

0 f elsewhere

Properties of the Binomial-Generalized Exponential with 2 parameters distribution

The mean is

E(X)= nLt(1) = nafi(-~*Aa)

And the Variance is

Var(X) = nLt(l) - nLt(2) + n2[Lt(2) - [Lt(1)]2]

rl +/?

= naB

ILT 'a)~naBsr r ’a) +"2aS{A7n“)~ (“® 4

n 2n
+ rr
a+1 (a+ 2)a+ 1) l(a+2)a+1) fcn)’l

4.2.6 Binomial-Variated Exponential distribution

4.2.6.1 Variated Exponential distribution
Consider an exponential distribution given by

- {ae at>0a>0
5(0 0 , elsewhere

where a is randomized, and takes on the distribution—| 7(’\)-
dainia

withO<a<a<b
Then the Variated Exponential distribution” (t)becomes
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0i(0 = t>00<a<b

(4.19)
This is the p.d.f. of the Variated Exponential distribution, with parameters aand b .
Its Laplace transform/”(s)is
E(e~ts) dt
1 7 e-t(s+a) _ e-t(s+h)
dt
7
But,
f f(at) - f(bt) dt r /b\
J J =[/(»)-1(«)] In(-)
0
which is a frullani integral
Thus
Lt(s) =
(s) (4.20)

asobtained by Bowman et al (1992).

Ne26.2 Variated Exponential mixing distribution
The Binomial-Variated Exponential distribution is given by
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Lt(x + fc) = n from(4.20)
inu

Thus

, Xx=01..n; 0
/= 0-snW Sg*’ T T e

0 , elsewhere

4.2.7 Binomial-Variated Gamma{2, a)distribution

4.2.7.1 Variated Gamma(2, redistribution
Let

(a2te 0O t>0;a>0
m = I 0 , elsewhere

where a is randomized, and takes on the distribution
W)

with0<a<a<b

Then the Variated Gamma(2, redistribution .~(Obecomes

b
Using integration by parts,/ udv = uv — f vdu
letu= a then— =1
da
du = da
anddv = e “fthen v= Je atda
_eat
V=
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b
_ae a J “P-at

J ate~atda = da
a
_ge-at g-atj"
t t2 ja
t \ae a ea be-
In (-
And
9i(t) = — — [e-at(at+1)- e~bt(bt+ 1)]
tin (- (4.22)
witht>0;0<a<b
Its Laplace transform/”(s)is
E(e~*) = fe-‘s-[e-°(at + 1) - e~b'(bc+ 1)] dt
n(-Ja )
@
1 re~tsta)at+1) - e-«stbXbt + 1) gt
In rgn) &
v e-t(s+a) _ g-t(s+h) ® @®
/ t mdt + ] ae-f(s+ta)dt - | be~«shdt
= * s £+ N «
L (E = s+a s+b
In (a) N+
Thus
* * *
MW - .Ih(s+ +-2
s+a S+b (4.23)

as obtained by Bowman et al (1992).
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4.2.7.2 Variated Exponential mixing distribution
The Binomial-Variated Exponential distribution is given by

k=0

Lt(X * k) F‘(-J—El(_m ?(fkf% + x+k:r_a-““;<_+fc_+bjlfrom%'23)'

Thus
n-x
fU\ v /n—x\, .1 r /x+ K+ Db\ a
*) =
V= Qaz( k)uy +
(4.24)
x+k+b
withx = 0,1,...,n;0 < a b
4.2.8 Binomial-Inverse Gaussian distribution
4.2.8.1 Inverse Gaussian distribution
Construction
The pdf of the Inverse Gaussian distribution is given by
- -~ 2
(0 V r-ou ) - A.>0.p>0.<p>Il
\27tA3/ eXp\  2n2 ! =9,p=0,=p (4.25)

Putp= (2a) 2 = (2a)-1
Then

1 2\
-0 A-(2a) 2>

1
\2nA3 X 2(2a)-1A
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i.2\
—0(2a) (a —(2a) 2)
exp

2A
—0 (2a)Y 1
— (S f ), 2A m|A2 —2A(2a) 2+ (2a)1
= (27N) »*p{[-2«* +*(2 «)j-U } (4.26)
The Laplace transform is given by
La(s)= | e~sXg(X)dX
:6( 2 explH -W +~° -Jx\}dX

00 1

=exp(Maty j (5723) exp{[-s2 - Xap- ~]) M

Thus

th(5) = «*P(*(2»)»)/ (2~ 3' e~fH<'a+f)',-n) "

@® 2

tA(S9= exp(Maty f (4.27)

The exponent in formula (4.26) is
1 0
-Aa0 + 0(2a)z ——

Substitute a by a + :FtJO become
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-~ (arn) T (2(a )

which is the exponent of formula (4.27), without the middle term. To include it, the exponent of
formula (4.27) becomes

1 1
Therefore
La(s) = exp (0(2a>) exp
\
+0
/
(4.28)
But(2a) 2= p => (2a) 1=p2
Therefore
La(s) = exp
(o /1 2sy
= exp
(2a)"'1 0
1 2s\2
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(4.29]

Further, let a = 0 in (4.26) and (4.28).

Then

(4.30)

and

h(s) = exp

La(s) = exp{-k\[s) (4.31)

as obtained by Bowman et al (1992).
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4.2.8.2 Inverse Gaussian mixing distribution
The Binomial-Inverse Gaussian distribution is given by

h(x+j) =exp(-kVCxT/))

Thus

fix) = Q ~ (" mX) C-l)kexp (- Ky/Z(x+j))

7=0 1

for*=0,1,....n; k>0

43 Usingp = 1- exp(-t)
43.1 Binomial-Exponential distribution

The Binomial-Exponential distribution is given by

X

/m =
k=0

L,(n-x + k) = — ™ ,wfrom[4.7)

Thus

(-t
=\ (n—x 4-k+ P)

withx = 0,1,...,n; /27> 0

Properties of the Binomial-Exponential distribution

The mean is
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EQO= n(l-£,,(») = "('-(tTfi))

4.3.2 Binomial-Gamma with 1 parameter distribution

The Binomial- Gamma (l) distribution is given by

fix) = Q ~ Q (-1)kLt(n- x + K)
k=0

W * + « = in- *t.1)> °m]|49)-

Thus

(4.33)
k=0
withx =0,1,....n;a >0
Properties of the Binomial- Gamma (I) distribution
The mean is
W) =n(l-Lt(l)) =n(I-7)
4.3.3 Binomial- Gamma with 2 parameters distribution
The Binomial- Gamma (ll) distribution is given by
*
/(*)y=0 £ Q (-")% (* -X +Kk)
k=0
i,(n-x +k)= (™ ~ ) afrom(4.12).
Thus
_ - 1* 4 [e*_ 0
/ « = O XEQ (, y = r/ . > (4.34)

elsewhere

asobtained by Alanko and Duffy (1996).
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Properties of the Binomial- Gamma (ll) distribution

The mean is

E«(*)= n(I-Lt(]))

4.3.4 Binomial-Generalized Exponential with 1 parameter distribution

The Binomial- Generalized Exponential (I) distribution is given by

X

fix) = (")~ Q (-1)ki*(n ~x + k)

k=0

Lt(n —x + k) = a B(n —x + k+ 1,a)from(4.14).

Thus

(=NDkB(n- x+k+1,a), x- 0,1,
k=0
, 0 , elsewhere

Properties of the Binomial-Generalized Exponential (I) distribution

The mean is

E(X) = n(l - Lt(1)) = n(l —aB(2 a))

n

a+7

4.3.5 Binomial-Generalized Exponential with 2 parameters distribution
The Binomial- Generalized Exponential () distribution is given by

X

/« = (") Q ~x+Kk)
k=0
Lt(n- x+ k)= aB (n a)from(4.17).
Thusl
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n—x+ k+ /7

m - ]0“Z 0 (-1)*B( a), x =01, a>

(4.36)
0 , elsewhere
Properties of the Binomial-Generalized Exponential (Il) distribution
The mean is
£(*)= n(l-Lt(l)) =
44 Usingp = cy
4.4.1 Binomial-Generalized Beta with 4 parameters distribution
4.41.1 Generalized Beta with 4 parameters distribution
Consider a Beta distribution with p.d.f.
pGi-Ott-pr-1
3(p) =
where 0 < p< 1;r,aw> 0and 0,elsewhere .
_ Ya
Letting P = B
We have
9(y) =
dp
wherely| dy
Thus
(4.37)
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for 0 <y < (W)a ; aw,r,b> 0 and zero elsewhere.
g(y)is the p.d.f. of a Generalized Beta distribution, with 4 parameters a, w,rand b .

We denote this distribution as the Generalized Beta (4) distribution.

4.4.1.2 Generalized Beta (4) mixing distribution

The Binomial-Generalized Beta (4) distribution is given by
t

fix) = j (cy)“(l - cy)mxg(y)dy , 0<y <t
o

where <?(y)is the p.d.f. of the GB4 distribution.

Thus

(oway (k) | bir‘b\W“L

dy
(bw)°

Putting t = bve have

L(t/nv)a(x+k+r 1)(1 - tyw" 1 4

(bw)o o

where dy - £t—)lly)—(rjldt
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1 x+k+r x+k

*(1 —t)w bw) “

dt
™ = 0O N |(T X - » f (bw)a
Therefore
owa X+ K+
(" k )(-c)k(fcw>B( a (4.38)
k=0

with x = 0,1,...,n;ar,bbw>0

as obtained by Gerstenkorn (2004).
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CHAPTER 5

BINOMIAL MIXTURES BASED ON LOG-INVERSE DISTRIBUTIONS IN THE
[0,1] DOMAIN

5.1 Introduction
Let /(x)be the pdfof Xsuch that 0 < X < 00. if

Y=exXx = X= —log¥Y
Then the pdf of Y is given by

dx
0(y) = /() 4

1
= /(-logy)
—/(—logy) - O<y <1 (5.1)
Next, letZ = 1 —Y.Then y = 1—zand dy = —dz
Therefore the pdf of Z is given by
dz )
hz) = g(y) 4 =0iy) = 0(1-2)
! /(-1 I 1 (5.2)
1—z (-log(l-z)) , 0<z< .

In using the derived pdf fi(z)as a prior distribution for the Binomial, we make use of the

methods used in chapters 2 and 3:

e Moments
« Direct substitution and integration.
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5.2 Binomial-Type 1 Log inverse Exponential distribution

5.2.1 Type 1Loginverse Exponential distribution
Construction

The general form of the exponential distribution is

pe-Py, , y>0p>0
0 , elsewhere

Putting Y = In ~yields the distribution

g(p;P) =

where|/| = |g| =

foro< p < I;/?>0 and zero elsewhere .

Thus

O<p <1-,p>0
0, elsewhere

This isthe p.d.f. of the Type 1 Log inverse exponential distribution with parameter p . We
denote this distribution as Type 1 LIE distribution. It can also be referred to as the power
function distribution.

For properties, and details on the corresponding Binomial mixture, refer to (2.8).

5.3 Binomial-Type 2 Log inverse Exponential distribution

5.3.1 Type 2 Log inverse Exponential distribution
Construction

Given a Type 1 LIE distribution with pdf

O<p<lI] p>o
elsewhere

lgaP=i-u , O<u<1.

fheng(p)becomes
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g(u) = /2(i-u)”™-1jy

wherely| = || = 1

Thus

ou) = L[ 1-uwrl 0<u<Il/?>0
I 0, elsewhere

This is the p.d.f. of the Type 2 LIE distribution with parameter ~ . It is also called the
Kumaraswamy (l) distribution.

Properties

The moment of order j about the origin of the Type 2 LIE distribution is given by

.J
E(U>) = J u>Pi1- uy-'du
(0]
J
- pJurni—ue tau
0
= p B+ 1,P)

Thus the mean is

EiU) = pBi2,P)=

and the variance is

2 1

VariU) = {EiU2) - (E(f/))2} =
)= ) (B3 iP+2)/2+ 1) iP+1)2

P
iP + 2)ip + 1)2

5.3.2 Type 2 LIE mixing distribution
The Binomial-Type 2 LIE distribution is given by
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1
/(*) = Q fp x(I-p)n>g(p)dp

Where #(p) is the pdf of the Type 2LIE distribution

Thus
1
rw = Q fif pxd - p)n-xd - py-1dP
0
1
= Q filJp x(l-p)*-x+"'-1dp
0]
= | +1n-x+/?)
And

(")@BB(x+1n-x+/?, x=01,.,n;83>0
/(*) = (5.6)
0 , elsewhere '

From the moments method this probability distribution can also be written as,

Nt (~1)j~x
Zx\ (-x)\(n- NE(PIA * %= 01..n

J=X

forj > xand 0 ifj < x

The Jth moment, £'(?-') of the Type 2 LIE distribution is [3B(J + 1,/?) = -

-frorn (5.5)
(.P+jV-

/
Thus,

Z" nt (-1)7-* i~
/(*) = xI 3-x)I(n-)I({/?2+;)! * =04...P>"

(5.7)
elsewhere

Properties of the Binomial-Type 2 LIE distribution

The mean is
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rP+1
and the variance, is
Var(X) = nE(P) - nE(P2 + n2Var(P)

n 2n n2p
7+T~ (7+2)0?2+ 1)+ (ft+2)(/? +1)2

n/?2(/? + n+ 1)
?+2)/?+1)2

5.4 Binomial-Type 1 Log inverse Gamma with 1 parameter distribution

5.4.1 Type 1Llog inverse Gamma with 1 parameter distribution
Construction

The general form of the gamma distribution is

(e-yya 1
g(y-a) = r(a)

0 , elsewhere

y>0,a>0

Using the Type 1transform Y = In ~yields the distribution

gnp , ™ va-i

P = 1@ () w

wherel;i = |§p|| = D

forO<p<l;a>0

Thus

0O<p<1l;a>0

p(p;«) (5.8)

0, elsewhere

“is is the p.d.f. of the Type 1 Log inverse Gamma with the parameter a distribution. We
denote this distribution as Type 1 LIG (I) distribution.
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It is also referred to as the Standard unit gamma distribution
Properties

The moment of orderj about the origin of this distribution is given by

()= /" (""())  T/jdp

LettingihQ) = a; a>0

We have

00

E(PJ)= J e-«O>ia«-i_L da

o]
1
0 +Da
Thus the mean is
Py = L
and the variance is
Var(P)= {E(P3 - (E(P))2= - (1)’

54.2 Type 1UG (I) mixing distribution
The Binomial-Type 1 LIG distribution with (1) is given by

1

/(*) = (r)f Px(! - p)nxg(p)dp
0

Where g(p) is the pdf of the Type 1 LIG (l) distribution.

Thus

/*)= Qjva-p)"-'
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Putting a= InQ) , a> 0

We have,
@®
/to = Q j e-«<*+1)(l da
" % 0 0
Thus,
/ n-x
*) = -1)* e * — ] fa>
/(*) 0 ézo(n/ ) (1) (rTFFr) ai...n:a=>0 (5.10)
0 , elsewhere
From the Moments method, this probability distribution can also be written as,
=D E(Pj 01
- , x=01,..,n
roo fgf-x**! 0 —x)! (n —jf)! (P1)
for>xandO0ify <x
The Jth moment, E(P*) of the Type 1 LIG (1) distribution from (5.9).
Thus,
nto(-1)""* 1
™ ] JI_X 0 —x)!'(n—j)\(j+ 1" (5.11)

*'thx = 0,1..... n;a> 0
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5.5 Binomial-Type 2 Log Inverse Gamma with 1 parameter distribution

5.5.1 Type 2 Log inverse Gamma with 1 parameter distribution
Construction

Given a Type 1 LIG (I) distribution, withdensity function

O<p<l;a>0
k 0, elsewhere

letp=1—u, O<uc<1l1.

Then p(p)becomes

1
u
g(u) Tia) 7
wherely] = ™ 1=1
Thus
O<u<l;a>o0
g(u) !

(5.12)
0, elsewhere

This is the p.d.f. of the Type 2 LIG (l) distribution with parameter a .

Properties

The moment of order j about the origin of the Type 2 LIG (1) distribution is given by

Lettmgln¥u = a; a>0

We have

00

E(W) = }(1 - e-aye~aaa y—— da

r(a)

(0]
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= X3 1) (rrfrk-° (ke da

= I(i)~(FTTF

Thus the mean is

and the variance is

Varw) = (ITU2) - (E(U))2} =

55.2 Type 2 LIG (I) mixing distribution
The Binomial-Type 2 LIG (l) distribution is given by

|
I(*) = Q \]px(l- p)n~xgip)dp
(0]

Where g(jp) is the pdf of the Type 2 LIG (I) distribution,

Thus

fM = Q fp "fl-

Putting a= In(~ ) , a>0

We have.

fix) = Q f(l - e~a)xie~a) n—x+laa~x

- 0X0-.-J

k=0
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da

da

(5.13)

dp



Therefore,

0 , elsewhere

From the Moments method, this probability distribution can also be written as,

n' (—Hy -r
Zx\ @—x)!(n—)\EP ) x = 0'l...n

J=X
forj > xand 0 if; < x
The Jth moment, E(Pj) of this distribution is£{_0(j[)(-I)k ~"~"~from (5.13).

Thus,

fM = vy 2IM  2Z 1 yrA ( »» 1

Zijic! (j-x)\(n-\N@+1)“zjwvic/1 ; (fc+1)a

with x = 0,1,....n ;a > 0;

5.6 Binomial-Type 1 Log inverse Gamma distribution with 2 parameters

5.6.1 Type 1Log inverse Gamma distribution with 2 parameters
Construction

Consider a 2 parameter Gamma distribution

r - -
a-l -yp y>0 ap>0
elsewhere

Using the Type 1transform Y = In ~yields the distribution
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(5.14)
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wherelyl = g | =

for 0<p<1; a,p >0 and zero elsewhere .

Thus

5(P) = - Pjj r(a) » O<p<1;ap>0

(5.16)
0, elsewhere

asobtained by Grassia (1977).

This is the p.d.f. of the Type 1 Log inverse Gamma distribution with parameters a and /? We
denote this distribution as the Type 1 LIG (ll) distribution.

It is also called the Unit Gamma (Log-gamma) or the Grassia 1 distribution (see McDonald &
Yexiao, (1995))

Properties

The moment of order j about the origin of this distribution is given by

o]
Lettingln = a a>>»0
We have
®
0
0
Therefore,

(5.17)
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Thus the mean is

and the variance is

- ] = (h = 1 p2 Y
Var(P) = {P(P2) - (E(P))2} b+ 2/ wp2+2p i

5.6.2 Type 1LIG (II) mixing distribution
The Binomial-Type 1 LIG (Il) distribution is given by
I

/(*)= (") f px(i - p)rxg(p)dp
0

Where g(p) is the pdf of the Type 1 LIG (Il) distribution.

Thus

/()= O /p'd-pr-'Hi)) r(a)

1
k=0 0
But,
P \a
M - s f

Therefore,

/w - Q o ky -» * U hii) (5.18)

with x = 0,1, ...,n ; a,/? > 0 and zero elsewhere.

from the Moments method, this probability distribution can also be written as,
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n
n!

fix) = Zx G-x)n-jp FFT x=0L.n

forj > x and 0 ifj < x
The Jth moment, E (P 7) of the Type 1 LIG (ll) distribution is(-’\-} from (5.17).
vy+p

Thus,

n! (- 1)>~* / p s

fix) =
0'-*)I(n-y)IV +~

*
1=V

with x —0,1,..., n:a,/? > 0;and zero elsewhere.

5.7 Binomial-Type 2 LIG (Il) distribution

5.7.1 Type 2 LIG (ll) distribution
Construction

Given a Type 1 LIG (Il) distribution, with density function

"o \\“-1/7ap*-1

o) = (""\@y r(ot) O<p<l;a,?>0
0, elsewhere

letP=1- U, O<it< 1.

Then g(p)becomes

~ oo
P(u) = In(£ )1 r(a) Ul
where,yl = 1£1 = 1
Therefore,
1.if N (l-u/m1
0(u) = 1_” T(a) , O<u<l;a,/?>0
0, elsewhere
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This is the p.d.f. of the Type 2 LIG (ll)/Grassia 2 distribution with parameters a, /?.
asobtained by Grassia (1977).

Properties

The moment of orderj about the origin of this distribution is given by

E(UI) =
Lettingin(~ ) = a, a>0
We have
E(U)) =
(:0 0
-rK:OWfaJ (5.21)
0

Thus the mean is

««- »-(th )"
and the variance is

« a n 2(jt
var-W) = {£u2) - EWU)Z= (™) - (™)

5.7.2 Type 2 LIG (Il) mixing distribution
The Binomial-Type 2 LIG (Il) distribution is given by
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/(*) = Q J px(1- p)n xgip)dp
(0]

Where gip) is the pdf of the Type 2 LIG (ll) distribution.

Thus

X

a-l
W - 0fprd-P )t (idr)] L APIM

r(a)
Puttingin () = a,a>0
We have,
71 na f
fix) = Q J - e-a)*a“-le-a dp
0
= Z ':u(l I(T d
QI@O’Q( (o] P
fco
Thus,

i = « A - + + ! =
fix) 0 a(:OU (Dk(n- X+« P X zO>1}....n>a,p>Q (5.22)
0o elsewhere

From the Moments method, this probability distribution can also be written as,
n' i-1)J~x
Zx! g-x)(n-j)'E(PJ) ' X=01...n
J=X
forj > xand 0 ifj < x

The Jth moment, F (P 7) of the Type 2 LIG (ll) distribution

A 8Ei-0(k)(-1)fcG ~ )Bf«>m(5.21).
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Thus,

a
/w= me
5.23
¥XX\ 0 —x)!'(n —/)! Ir=n ( )
with x = 0,1,...,n;a,/? > 0;and zero elsewhere .
5.8 Binomial-Type 1 Log inverse Gamma distribution with 3 parameters
5.8.1 Type 1 Log Inverse Gamma distribution with 3 parameters
Construction
Consider a Type 1 LIG (Il) distribution, with p.d.f.
, 0, elsewhere
Putting P=j , s> 0
We have
S
Therefore,
(5.24)

v 0, elsewhere

This is the p.d.f. of the Type 1 Log inverse Gamma distribution with 3 parameters a, s and /?.
We denote this distribution as the Type 1 LIG (lll) distribution.

Properties
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The moment of orderj about the origin of this distribution is given by

Letting y = as

We have

let—lna = t

Then,

Thus,

Thus the mean is

and the variance is

p-i
*0") = F"©tas VY

Pa f (as)+P 1r /as\ia_1

£(a) [-""(H] -

b
1

Pa i )
r(a)J aj+P Isj(—lna)a 1 da

0
E(Y)) = —~ ] e~tJ+P~Isha~le~t dt

Pa
e tV+P ~"sHa xe f dt
r(a) /

E(W) = | dt

s>pa

i+pr (5:25)

spa
(1 +/2)"

£00 =
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5.8.2 Type 1 LIG (lll) mixing distribution
The Binomial-Type 1 LIG (lll) distribution is given by

/(*) = ()] (cy)x(1- cy)mxg(y)dy

Where g(y) is the pdf of the Type 1 LIG (lll) distribution

Thus
a fi-i
fix) = "YJicy)xil- cy)n=x[-In 0 .
) " Y) y)mx [ ] ria)s dy
Putting- In0 = a, 0O<a<
We have,
/T\ pacx
fx) = O « " k J(se-r™~-'a-"'se-
k=0 n
Therefore,
m =0 iQ h £Ck?m¥*) j da
k=0 a

= (v (V)< -cTix+k+/o)

fix)
~x+k

-, xXx=01..n;a,p>0

ix + k + /?) (5.26)

k=0
o , elsewhere
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5.9 Binomial-Type 1 Log inverse Generalized Exponential distribution with 1 parameter

5.9.1 Type 1Log inverse Generalized Exponential distribution with 1 parameter
Construction

The general form of the 1 parameter Generalized Exponential distribution is

L(1- t>0;a>0

9(0 = { elsewhere

Putting T = In ~yields the distribution,

g(p) = a (I —e,np)a_lelnp|/|
where = = £
Iyl &) 2
forO0< p <1;a >0 and zero elsewhere.

Thus

a(l- p)*-1,0 <p<1l;a>0

9P) = 0, elsewhere (5.27)

This is the p.d.f. of the Type 1 Log inverse Generalized Exponential distribution with
parameter a .We denote this distribution as Type 1 LIGE (1)
It is also referred to as the Kumaraswamy (1) distribution.

For properties and the corresponding Binomial mixture, refer to (3.4).

5.10 Binomial-Type 2 LIGE (I) distribution

5.10.1 Type 2 LIGE (I) distribution
Construction

Given a Type 1 LIGE (l) distribution, with density function

_ crl- p)al,0<p<1,a>0
9(p) = 0, elsewhere
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Then g(p; a)becomes

g{u) = aua 1J/|

where[/| = fﬁ 1

Therefore,

audl O0O<u<1 a>0

g(w) = { 0, elsewhere (5.28)

This is the p.d.f. of the Type 2 LIGE (I) distribution, with parameter a . It is also called the
power function distribution.

For properties, and details on the corresponding Binomial mixture, refer to (2.8).

5.11 Binomial-Type 1 Log inverse Generalized Exponential distribution with 2 parameters

5.11.1 Type 1 Log inverse Generalized Exponential distribution with 2 parameters
Construction

The general form of a 2 parameter generalized exponential distribution is,
. Vilt-1
I afi{f\ —e~£") e-tf, t> 0;a,/?>0

5(0
0 , elsewhere

Putting T = In Q~gives us the distribution,

g(p) = a(i(l —eAnP)* V InP

wherely| = Ild_p = :

for 0<p<1; a/?>0 and zero elsewhere.

Thus

ap(l-pP)a~V 10 <p<l;a,~>0 (5.29)

ff(p) 0, elsewhere
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This is the p.d.f. of the Type 1 Log inverse Generalized Exponential distribution with
parameters a and /?. We denote this distribution as Type 1 LIGE (lI)

It is also referred to as the Kumaraswamy (ll) distribution.

For details on properties and the corresponding Binomial mixture, refer to (3.3).

5.12 Binomial-Type 2 Log inverse Generalized Exponential distribution with 2 parameters

5.12.1 Type 2 Log Inverse Generalized Exponential distribution with 2 parameters
Construction

Given a Type 1 LIGE (ll) distribution, with density function

0, elsewhere

letP=1—U, O<u<1.
Then ~(p)becomes

g(u) = a/?(l- A-uY)a 1l uP I\\
where|;] = — =1

Therefore,

a/?(l- (1 - u)P)all-u)*-1 O<u<1la>d
0, elsewhere (5.30)
This is the pdf of the Type 2 LIGE (ll) distribution, with parameters a,/?.

Properties

The moment of orderj about the origin of this distribution is given by

X

E(Uj) = a(l uy(1—(1 —Uy)a X1 —u)P 1du
(0]
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Letting t = (1 - u)™, for 0 <t < 1 ,we have,

E(WW)= aJ(l-t*) (1-ty-1dt
(0]

J i
= af () (-1

maz (D (-i),B(|+1a) (5.31)

5.12.2 Type 2 LIGE (Il) mixing distribution
The Binomial-Type 2 LIGE (ll) distribution is given by

fix) = Q J pxil- p)n—xgip)dp
o}

Where gip) is the pdf of the Type 2 LIGE (ll) distribution.

Thus
1
fix) = afiQ J pxil- p)n—x(1- (1 - p)*)* *(1 - p)P~xdp
o}
a-1 j
= af("~ (-D*(ak J P*(I* p)n-*+HD+0-1dp
k=0
a-1
ap Q) (ak1l) (-kS(x +1,n- x+ kp+P)
k=0
fix)
a-1
j (HkBix+ 1,n—x+ kp+P), x=01,..,n; a,p>0 (532
k=0

0o , elsewhere

from the Moments method, this probability distribution can also be written as,
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nto(-1V ~*

fix) = : :
(G-x)\(n-J)N\

forj > xand 0 ifj < x

The Jth moment, E(Pj) of the Type 2 LIGE (ll) distribution is a
from (5.31)
Thus,

n' (-1y~x

fix) = A (j-x) (N i)\

with x = 0,1,...,n,a,p > 0; and zero elsewhere.

X =0,1,...,

+ 1,a),

(5.33)



CHAPTER 6
BINOMIAL MIXTURES BASED ON DISTRIBUTIONS GENERATED FROM
CUMULATIVE DISTRIBUTION FUNCTIONS
6.1 Introduction

In this chapter, we derive mixing distributions using the generator method, as pioneered by
Eugene et al (2002).

6.1.1 The generator method
Theorem 7.1.1

LetG(x)be the cdf of a random variable. A method to generalize distributions, consists of
defining a new cdfF(x)from the baselineG(x)by

G(x)
F(G(x)) = j f(t)dt
o
Proof
Consider
X
fix) = J fit)dt , - P Xx<c©°
—00
Then the cdf of the random variableA'is
F(—°) =0 andF(<») = 1
/
So that
0< Fix) <1
Concentrating on 0 < X < 1 we have,
X
Fix) = J fit)dt 0<x<1
o

Thus
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cty)
F(G(y)) = f fCOdt

WhereG(y)is the cdf of another random variable/ |

—0<y<00

Note that sinceG(y)is a cdf, then 0 < G(y) < 1.

Put
H(y) = FIG(Y)]
Then
G(y)
tily) = f
0
(-) = FG(=s)] = £(0) =0
And
W(o) = F[C(0)] = F(1) =1
Therefore
0</lly) <1
Hence//(y)is also a cdf.
Thus,
c(y)
dy 0
= oo
Using Leibnitz technique of differentiation, then
hiy) = fIG(y)laly) . - 0<y <o
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wherefi(y)is the p.d.f. of the new distribution.
We identify 2 classes of these distributions:

e Beta-generated

e Kumaraswamy-generated distributions.
6.2 Beta-generated distributions (Beta-G distributions)

The cumulative distribution function (cdf) of the class of generalized Beta (Beta-G) distributions,
is defined by

c(0
a>0b>0
o]

whereG(t)is the cdf of the parent random variable,and

B(a, b)is the Beta function.

The Beta-G distributions generalize the distributionGof a random variable, with cdfG(t).
To find/(t)the p.d.f. of the Beta-G distribution, we proceed as follows

Since,

b-1

Thus

(6.3)
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We note that,/(t)will be most tractable when the cdfG(t)and the p.d.f..,g(t)have simple
analytic expressions.

6.2.1 Binomial-Beta Exponential distribution
6.2.1.1 Beta Exponential distribution
Construction

The p.d.f. of the Beta Exponential distribution is given by the formula (6.3) as
gw = i - F(t)]*-1, a,b>o

Where
/(t)is the p.d.f. of the exponential distribution and,
F(t)is the cdf of the exponential distribution, found asl —

Thus

g(t) = iB!(ad,b( i e-tF)a-1[i_ (i_ e-tF)]t-1

pe-t(P+pb-p)

B(a, b) (I-e-~)a"

[
B(a,b)(l_e_ ) abP>0t>0 (6.4)

This is the p.d.f. of the Beta Exponential distribution as obtained by Nadarajah & Kotz, (2006).

The Laplace Transform of the Beta Exponential distribution is

£ J - )«
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Lettingt = ~

We have
0]
@®
1 f fs+Pb\
0
Butl0®e-ta(l —e-t)i,-1dt = B(a, b)
Thus
Lt(s) (6.5)

fi(a, fc)

6.2.1.2 Beta Exponential mixing distribution

The Binomial-Beta Exponential distribution is given by

mo =0 X (nk*)(~i)"t(x+

From (4.1).
b(~" .a)
ButLt(x + fc) = B(a,b) * from (6.5),
Therefore
m - O k=Eo o ) * B(a, 6) (6.6)

with jc=0,1,..., n,a b @3>0



6.2.2 Binomial-Beta Generalized Exponential distribution
6.2.2.1 Beta Generalized Exponential (BGE) distribution

Construction

The p.d.f. of the BGE distribution is given by the formula

g(t)= -£~F (t)a-1[I-F (t)]1-1, a,b>o0
o(a, b)

Where
/(t)is the p.d.f. of the Generalized Exponential distribution and,

F(t)is the cdf of the Generalized exponential distribution, found as follows

t
F(t) = asd (| —e~*P)a 1 dX
o]
Letting 1 — = uwe have
i-e-'P
F(t)= ap J (u)g~*(l —u) du
0
Thus
l-e-W
Fit) (u)a 1du
-«
= (1 -e _/\)8
Therefore, pdf of the BGE distribution is
‘ * b-1
30= oAl g’ vV " I0- - (1- <r«T]
( )aa-l
gn(l-e-n)° e-g . |
B(a, b) (I —(I —e f*)a] . a,a,bp>0t>0
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asobtained by Barreto-Souza et al(2009).

The Laplace Transform of the BGE distribution is

Lt(5) =
o
= /- e (1 - -1-e-nT'dt
bj(b~21 (-1*J - e-N)M*aa' dt
B(a, b
@, )k=0 o
Letting z = t/? we have
b-1
Vo 1/ft - i -
H) = Bab Y(-«xs > rw(l akraal
’ )k:o
Thus
b-1 @
dz
feo
But/°°e ta(l —e f)b *dt = B(a,b)
Thus

S+ /P
(6.7)

6.2.2.2 Beta Generalized Exponential mixing distribution

The Binomial-Beta Generalized Exponential distribution is given by

1<>=0 X (V) (- )Wx+t)

Butfrom (6.7)
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a v ifb—I1\ ,h (X+ k4B \
"X+ )= B (0 FZ( " )("1) @(— p— = +a")

Therefore
i>-l
t=0 =0
+ aa )
with x = 0,1, aabft>0

6.2.3 Binomial-Beta Power distribution
6.2.3.1 Beta Power distribution
Construction

The p.d.f. of the Beta Power distribution is given by the formula

<70= ~ % F(t)a"1[l-~ (0]b-1.

Where
/(t)is the p.d.f. of the Power distribution and,

F(t)is the cdf of the Power distribution, found as follows

L
F(t) = al p“_1dp
Thus
F(t)= [paY0
ta
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Therefore, p.d.f. of the Beta Power distribution is

at“a-1(l - ta)b-1 _
B(a.b) aab>00<t<1 69)

The jth moment of the Beta Power distribution is

00

dt
E(r')=
Lett" =z
Then
+-j
a f aa+j-i . L Z«
WabT))Q (- z) — dz
@®
1 f aa+j
—— 1 Z a 1(1 —z)b_1dz
B
E(TJ =

6.2.3.2 Beta Power mixing distribution
The Binomial-Beta Power distribution is given by

I

ax)= Q ftxa-tr-xgwt

0
where g(t)is the pdf of the Beta Power distribution.
Therefore

m = O bF‘“v ~ - dt
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=0 2 (hpfCin(-i)i ~ ak,(i- tn xdt

b-1

m =0 Bth)f?;_(o(V) + <’ -* 4«

with x = 0,1,...,n; a,a,b >0

dt

(6.11)

Using the Moments method, the Binomial-Beta Power distribution can also be expressed as

forj > xand 0 ifj < x
The yt/imoment of the Beta Power distribution from (6.10) is
E(T>) =
(T>) B(a,b)

Thus

/(X)= Zx! (n—)\ (jax)IBCa,b)

with x =0,1,...,n;aba>0

6.3 Kumaraswamy-generated distributions (Kw-G distributions)

The cdf of the class of generalized Kw distributions is defined by

ey
F{t) = J aftxa-1(l —xa)P~xdt
(0]
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where G(t)is the cdf of the parent random variable.

To find fit), the p.d.f. of the Kw-G distribution, we proceed as follows:

G(t)
Fit) dt
Thus
P-1 G(t)
Fit) = 4p 2 K+ ) (-1)K i k~i dt
pk—o ) ( )0| xa+ak~i
P-1 . [Ya+ak‘G(t)
= as {Pkla( A [a + ak
k=0
And,
) P-i
fit) dFjt)
1t
dt k=0

fit) = aflGity-1git)[1- Gityy-1 (6.13)

6.3.1 Binomial-Kumaraswamy Exponential distribution
6.3.1.1 Kumaraswamy (Kw) Exponential distribution
Construction

The p.d.f. of the Kw Exponential distribution is given by the formula

git) = ccpf{t)F{ty~x[i - (F(O)Y'1- «/*>0
Where
/(t)is the p.d.f. of the exponential distribution and,
F(t)is the cdf of the exponential distribution, found asl —e~a

Thus
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g(t) = Xafie tA(l —e 11 —(1 —e ta® . Xalr>0; t>0 (14

This is the p.d.f. of the Kw Exponential distribution.

The Laplace Transform of the Kw Exponential distribution is

®
Lt(s) = afiX j e~tse~a(l - e_a)“_1[I - (I - * dt
0
®
= ajiX J e-t(N)(i_e-a)«-1[i_(i- e-tA)Y'1ldt
o]
1 ®
= ctpx” ~ (-1 ) e“ts+A)(I - e-"N)a+aj 1 dt
j=o0 1 0
Let a = tX
Then
Lt(s) = afiXE T*)(-1)"j e~f(stA)(l - c-a)«+«/-ii da
7=0 N 0
But/0°e-ta(l —e-t)b-1dt = B(a,b)
Thus
Lt(S) = ap£ (* 7 *) ('l)l* K+ a/) / (615)
7=0

6.3.1.2 Kumaraswamy-Exponential mixing distribution

The Binomial-Kw Exponential distribution is given by

m =0 ik90~ Ky - in’'<*t»

Butfrom (6.15)
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p-i

" ~1\, ., (X+Kk+A A
Lt(x+fc) = a/12 "~ = N a+ajj
Therefore
(6.16)
k=0 j=0
with * =0,1,..,n; a,”7A>0
6.3.2 Binomial-Kumaraswamy Power distribution
6.3.2.1 Kumaraswamy (Kw)-Power distribution
Construction
The p.d.f. of the Kw-Power distribution is given by the formula
git) = a0/(t)F()“_1[1 - (F(t))“I* a.p>0
Where
/(t)is the p.d.f. of the Power distribution and,
F(t)is the cdf of the Power distribution, found to be tk
Therefore, the p.d.f. of the Kw-Power distribution is
git) = apktk- Jtkla~1]1 - tka}™ 1
= aOfct*a-1[I-t*a]* 1 , ctkp>0,0<t<1 (6.17)

The jth moment of the Kw-Power distribution is

i

E(T>) = apk J d+ka-x[l -t ~ - 1dt

Lettak = a
Then
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r X X « UKa
E(T)) = a(ik J ano+ka 1)(1 - a)¥'1l-~ ~ da

0
(€)]
pjan~Q - a)*1lda
0
m U b(e +w ) (6.18)

6.3.2.2 Kumaraswamy Power mixing distribution
The Binomial-Kw Power distribution is given by

/(*)= Q J t*(l-t)n-*5(t)dt
(0]

where £?(t)is the p.d.f. of the Kw Power distribution.

Therefore
i
f(x) = Q apkJ tx+te-1(1- On_r(l - tka)™_ 1 dt
0
p-i i
= Q apkt£E (-1)mJ tx+ak+kam-1(1 - t)n_x dt
m=0 0
0-1
/0) = N )Y (-1)mB(x + ak + kma,n - x + 1)’ (6.19)
m=0
With x = 0,1, a,p,k>0

Using the Moments method, the Binomial-Kw Power distribution can also be expressed as

forj > xand 0 ify < x
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The ythmoment of theKw Power distribution, from (6.18)is

E(TI) = ps(E+ 1.~ )

Thus

with x =0,1,...,M\\ a,p,k> 0
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

This literature was dedicated to the construction of Binomial mixture distributions based on
continuous mixing distributions for the success parameter p .

Sincepis restricted to the range[0,lJour main problem was in finding mixing distributions
beyond those naturally available in this domain.

In the first Chapter, we introduced the Binomial distribution upon which these mixtures are
based.

In the second and third Chapters, we explored mixing distributions in the unit interval[0,l], in
which the Beta remained the premier distribution of choice. Chapter two was thus dedicated to
the Beta distribution, and its generalizations, while Chapter three investigated alternative
mixing distributions to the Beta, hence the title: Beyond the Beta.

Chapter four focused on Binomial mixtures based on a transformed success parameter p . This
Chapter was motivated by the works ofBowman et al(1992) and (Alanko & Duffy, (1996) who
used the transformations p= e-tand p = 1 — e-tto extend p into the interval[0, oojthrough
the random variable t for t > 0 . From this transformation it was evident that 0 < e~l < 1. We
were therefore able to shift our attention to mixing distributions beyond the domain[0,l]. A
major limitation to our work with this class of distributions was that this formulation only
provided closed forms for the marginal probabilities in the compound distribution if the Laplace
transform of the mixing distribution could be written in a closed form. To improve this
situation, we then took recourse to methods of generating distributions with tractable Laplace
transforms in this domain, hence Chapters six and seven.

Chapter five extended the work of Grassia (1977) in deriving mixing distributions in the
interval[0,I1by applying the log-inverse transform directly to distributions defined in the
interval[0, oo]. Binomial mixtures in this chapter were found to be similar to those derived in
chapter 4, where a transformed parameter p had been used. The table below provides a
summary of these results.
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Comparing results when the transformations p = exp (-t)and Y = —In (/are used.

p = exp(-t)
[g(t) is the pdf of the mixing
distribution]
5(0 = fie-#
t>0, P>0
e~lta
500 = pa)
t>0 a>0
e-tpta-ipa
50 = 10
t>0ap>0
50 =
a(l -
t>0a>0
5(0 =

al?(l —e-tNa »X_tn

t>0a,p>0

T=-InP
t> 0; O<p<1
[9(p) is the pdf of the mixing
distribution]

giv) = /ipe-1

o<p<l;/?>0

S(P) = (In(i))"

0<p<1l;a>0

. al
S(p) = (Ing)) r(a)

0O<p<1l,ap>0

gip) = a(l-p)al

0<p<1l,a>0

gip) =
ap{¢l-p",)" "l

0O<p<1;aP>0
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Mixed Binomial

(x)

f{x) =
(-1)*
JE2=S (K] (x+k+P)

x=01—n;/?>0
fix) =

C)SSSoR (-»

(x+k+1)"

x=01,..,n;a>0
scrxo N f

x=01..n;ap>0

<

“BEO (TK-«* s<*+
1a

X o
+ —

x=01..n;,a>0

AM = © a

h io(T)e 1% (Et 1£'%)

x=01,..n,ap>0



Comparing results when the transformationsp = 1 —exp (-t) and Y = —In (I —f/)are

used.
p=1- exp(-t)
(g(t) is the pdf of the mixing
distribution]
5(0 = pe ffi
t>0;, p>0
e~It
9(t) = "y
t>0;, a>0
e-tpta-\pa
>0 =" 1@

t>0;, a,p>0

T= -In(l-y)
t>0; O<u<1
[9(u) is the pdf of the mixing

distribution]
5CD: pa-uy-1
O<u<l; p>0
*<t> = [In(ri)]”

O<ux<l;a>0

500 =

i Mg-1
M r;)] r(a)
O<u<l; aP>0

Mixed Binomial

fix)
m =
k' (n-x+k+p)

x=01,..n;p>0
f(x) =

(-Dk
C)»-0© dn-x+/ctH)“
x=0,1,.,7i,a>0
ru) =C)P“

(r O )"

Other observations that were made in this chapter, involved the newly constructed

distributions. It was found that:

1. The Generalized exponential distribution is a result of applying the Log-inverse
transform on the Kumaraswamy distribution

2. The exponential distribution is a result of applying the Log-inverse transform on the

power distribution.

Finally, Chapter six explored mixtures based on generalized Beta and Kumaraswamy

distributions obtained through the generator method pioneered by Eugene et al (2002).

The work in this project can be summarized using the following frameworks as a guideline:
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A FRAMEWORK FOR BINOMIAL MIXTURES
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7.1.2

A FRAMEWORK FOR THE MIXING DISTRIBUTIONS

Further research areas

We identified the following areas of further research:

1)

2)

3)

5)

From the work of Bowman et al (1992) it was discovered that a large humber of new
distributions could be derived based on frullani integrals. These new distributions have
tractable Laplace transforms mostly expressible in closed forms, hence possible mixers
for the Binomial parameter pin the interval[0, oo]. Further study of these new
distributions would be of import.

More work needs to be done on the use of mixture/variated distributions as mixing
distributions. In Chapter 4, sections (4.2.7) and (4.2.8) we look at two such instances.
The transformation p —exp(—t)orp = 1 —exp(—t)could be extended to other
distributions that have a parameter p lying in the domain[0,l]particularly with regards
to mixing procedures.

Methods of expressing Laplace transforms of various distributions in closed forms,
where such forms do not exist.

The use of the Beta-generated and Kumaraswamy-generated distributions in mixing
procedures.
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