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ABSTRACT

Weather affects our daily lives as well as choices. We define the term weather derivative. It is a 

new class of investment that is yet to gain ground in Africa since the underlying security 

(weather) is not a trade able asset. In our study we look at 6 different pricing methods for 

temperature based derivatives. We settle on the one proposed by Alaton and incorporate one of 

his suggestions, that is, allowing for temperature volatility to be a stochastic process rather than 

some piecewise constant function. Finally, we use the actuarial method of valuation and find out 

that the option price greatly depends on our value of the strike price. We conclude that allowing 

for the mean reverting parameter to also be a stochastic function will greatly improve our option 

price.
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CHAPTER ONE: INTRODUCTION

Weather derivatives are financial instruments that are used as risk management tools to hedge 

against losses and volatility of profits due to unfavorable weather. The class of weather 

derivatives includes weather options, weather futures and forward contracts, weather swaps and 

weather linked bonds.

Weather derivatives are usually defined by the following characteristics the:

1. The contract period: a starting date and a finishing date

2. A measurement station

3. A weather variable, measured at the measurement station, over the contract period;

4. An index, which collects the weather variable over the contract period in some way

5. A pay-off function, which converts the index into the cash flow that settles the derivative 

shortly after the end of the contract period.

6. For some kinds o f contract, a premium paid from the buyer to the seller at the start o f the 

contract. (Jewson, S. & Brix, A, 2005)

The Weather derivatives market is relatively young. The first transaction in this market took 

place in the US in 1997(Considine, 1999). It was executed between Aquila Energy and 

Consolidated Edison. In its few years of existence the market has recorded an impressive growth. 

The weather derivatives market grew by 20% in 2010-2011 to $11.8 billion. (Weather Risk 

Management Association, 2011). In comparison to other derivatives market, this amount seems 

small. Nonetheless, the strong growth highlights the realization that we can no longer afford to 

ignore weather risk. Currently, the countries that trade in weather derivatives are US, Japan, 

Canada, Norway and Sweden. In Africa, we only have South Africa and Morocco as the only 

two countries that actively participate in the weather derivatives market.

The potential impacts o f adverse weather include loss of life and livelihoods, destruction of 

property and infrastructure and stagnation in terms of economic development due to lost revenue 

from Agriculture, Tourism and other related industries. In Kenya, Tourism, Agricultural and 

Forestry activities account for more than 30% of our GDP (Kenya National Bureau of Statistics,

2009). These adverse weather events however are not exclusive to Kenya. They are a global
1



phenomenon. I ake the US for example. The US Department of Energy estimates that a seventh 

of its economy is affected by weather (John C. Hull, 2008). Travis L. Jones (2007) noted that the 

onset of the El Nino events of 1997 made companies in the US realize the importance of hedging 

their seasonal weather risk.

Kenya experiences various types of extreme weather events. These include flooding, droughts, 

landslides (mudslides) and thunderstorms. Muthama et al (2002) outlined the adverse effects that 

floods and drought have on Kenya’s agricultural sector, water sectors, and horticultural and 

tourism industry. Persistent crop failure being experienced by most farmers throughout the 

country is mainly attributable to reduced rainfall and increased temperature. Hydro power 

generation is now proving an unreliable source of energy due to erratic rainfall. Wildlife and 

Tourism is also under threat from these poor weather conditions. From this, it is somewhat clear 

that our economy is largely weather dependent.

Weather derivatives are not the same as weather insurance. Though both try to eliminate weather 

risk, weather derivatives cover low risk high probability events whereas weather insurance 

covers high risk, low probability events. For example, a farmers Sacco in Nyeri may use a
o

weather derivative contract to hedge against temperatures that meteorologists predict may be 3 

Celsius higher than expected. They may also opt to buy a weather insurance policy to safeguard 

against any losses they may incur due to flooding. It is quite plausible for Nyeri to experience 

dry weather (a high probability event) but not flooding (a low probability event). Other 

differences between derivatives and insurance may include the frequency of revaluation of the 

contracts, tax liabilities involved and other contractual details.

Several weather variables are used as the underlying ‘asset’ of the weather derivative. Among 

these are temperature, wind, precipitation, snow and fog. The most commonly used variable is 

temperature and the indices mostly used for temperature based contracts are degree day (DD) 

indices, average temperature indices, cumulative average temperature indices and event indices. 

Various models have been proposed by different authors to describe the evolution of temperature 

with time. Previous literature point to two methodologies used in constructing the temperature 

models. The first approach is discrete and favors the use of a time-series model. The second 

approach is continuous. The proponents prefer to use a continuous financial process and then
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discretize it. This study is interested in comparing some of the different temperature forecasting 

models proposed for pricing weather derivatives. To assist in our endeavor, we shall use 

temperature data from the weather station in Kisumu.

The following is an outline of the rest of the study. The second chapter is a literature review of 

some six different temperature models that have been proposed by various authors. We discuss 

these models and the conclusions drawn about them. Chapter three is divided into 2 sections. In 

section 1, we state the model we are going to use to describe the temperature process. We also 

state the methods we will use to estimate our parameter values and simulate the temperature 

dynamics. Section 2 dwells on the model set-up. This gives a detailed analysis of how we come 

up with our temperature model and we summarize the assumptions we make throughout. In the 

fourth chapter we reveal our parameter values and compare our derivative prices. Finally, we 

give our conclusions and recommendations based on our findings in the fifth chapter.
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1.1 STATEMENT OF THE PROBLEM

A lot of research has been done on the pricing of weather derivatives. The common denominator 

in these researches is the lack of an effective pricing model. The weather derivatives market 

lacks a universal starting point like the Black Scholes model for the option markets. Though 

many models have been proposed, no consensus has been reached as to which model is 

acceptable across the market. The result of this delay has been a large bid/ask spread (Cao and 

Wei, 2003). The difficulty in pricing weather derivatives is largely due to the fact that the 

weather market is incomplete and the underlying weather variable is not a trade-able asset. 

Dichel, B. (1998a), Mark Garman et al (2000) and Campbell and Diebold (2002) give reasons 

why the Black-Scholes model is inappropriate. The lack of an effective pricing method has 

restricted further growth of the market. Further compounding the problem, major weather 

derivatives market player are reluctant to share the models they have developed with other 

participants due to the strong financial incentive to keep it secret. Market players in the industry 

do not communicate in a common language.

Insofar as air temperature is the underlying weather variable, prior studies have set about 

constructing temperature models using two methods: The time series approach and the financial 

approach. This research intends to construct a temperature model using one of the approaches 

and analyze their strengths and/or weaknesses in valuing weather derivatives. Of particular 

interest will be finding out if the parameter values of our model are significant. The weather 

derivative to be evaluated using this model will be a generic call option. Our underlying weather 

variable will be daily minimum and maximum temperature measurements from the Kisumu 

weather station covering a period of 12 years.

4



1.2 OBJECTIVES OF THE STUDY

1. Compare the various temperature-based stochastic models that have been constructed and 

used in evaluating weather derivatives.

2. Construct a model that best describes the temperature dynamics in Kenya.

3. Find out if our model can accurately price weather options by comparing it with the 

Black Scholes model.

5



1.3 SIGNIFICANCE OF THE STUDY

1. Meteorologists and financial players/regulators in the market will appreciate the need to 

work together to mitigate weather risk.

2. Spur interest in Kenya on the benefits of using weather derivatives as risk management

tools.

6



CHAPTER TWO: LITERATURE REVIEW

In this chapter, we review in detail some of the proposed models that have been used to describe 

temperature dynamics. Previous studies have shown that there are two distinct modelling 

approaches. The first approach relies on the time series approach. This approach has been used 

by Cao and Wei (2001), Campbell & Diebold (2002) and Roustant et al (2003). Others include 

Caballero, Jewson & Brix (2002) and Caballero & Jewson (2003). The second approach 

incorporates the statistical features of temperature into financial diffusion processes. Dichel, B 

(1998a, 1998b) pioneered this, basing his study on interest rate derivative models developed by 

Hull and White, (1990). Alaton, Djehiche, and Stillberger (2002), and Benth and Saltyte-Benth 

(2005, 2007) also preferred to first use the financial approach, and then discretize it into a time 

series model.

Cao and Wei (2001) stated the seven desirable features a daily temperature model should 

possess. These features were: its ability to capture seasonal cyclic patterns and incorporate the 

autoregressive property in temperature change. The other feature was that the daily variations in 

temperature should be around some average normal temperature. Forecasting should play a key 

role in projecting temperature paths in the future and that this projected temperature path should 

be bound within the normal range of the temperature for each future projection. The final aspect 

of the model is that it should reflect the global warming trend. Whilst agreeing that a mean -  

reverting diffusion process can accommodate most of these features, Cao and Wei (2001) chose 

to model temperature using the time series approach. They rationalized that a one factor 

diffusion process could not incorporate autocorrelations in temperature advances for lags beyond 

one. They proposed to use a discrete autoregressive model. They define the de-meaned and de­

trended residual of the daily temperature as Uyr,t

Uyr.t = *v,t -  iy ,t  Vyr =  1,2,... n & t =  1,2,... 365 (2.1)

where Yyr>, represents the temperature on date t (/=1, 2, 3....365) in year yr (yr=l, 2...w) and 

Yyr t is the adjusted average temperature.
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(Kt) (below), denotes the mean temperature and *l>t the standard deviation on date t where

—  ” iiyfci ~  J~^yr<=l[^rrj~^t) » Y f = l , 2 ,  ... 365 (2 2)

Cao and Wei (2001) assume the temperature residual t/Jrl follows a k-lag autocorrelation 

system of the form:

^yrX =1 Pi ̂yrx-i **yrx * %yrx (2 .3 )

°yr* -  ao - » 1  |» in (’rt/ 3 6 5 +  <#>) | (2 .* )

ty rs '^L i.d  A '(0,1)

V y r  -  1,2 ...» & l  -  1,2,3 ....363

where ( yr t models the randomness in temperature change and p 4 is the ACF at lag / V /= 

l,2 ....k

The data used covered 20 years and the historical temperatures were recorded in the cities of 

Atlanta, Chicago, Dallas, New York and Philadelphia. The parameter captures the proper

starting point of the sine wave. The daily temperature volatility specification using the sine wave 

reflects the aspect that the extent of variation must be bigger in the winter and smaller in the 

summer. In order to determine h, the number of lags, Cao and Wei (2001) estimate the system 

sequentially for k = /, 2 ....and perform maximum likelihood ratio tests ( / 2tests). They ceased at

k=3, i.e when the maximum likelihood value ceases to improve.

Cao & Wei (2001) proposed the implementation of their model because it allowed for easy 

estimation (the maximum likelihood method) and incorporated the key features of the daily 

temperature dynamics such as seasonal cycles and uneven variations throughout the year.

The dataset Campbell and Diebold (2002) used exhibited seasonality. They noted that a seasonal 

component would be essential in any time series model fit to daily average temperature. In order 

to model the seasonality, they opted to use a low-ordered, Fourier series as opposed to daily 

dummies. There were two main advantages of doing this. Firstly, the use of a low-ordered 

Fourier series produced a smooth seasonal pattern unlike the discontinuous pattern that had been 

proposed by Cao & Wei (2001). Secondly, the Fourier approximation greatly reduced the 

number of parameters that were to be estimated, thus significantly reducing computing time and
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Cao & Wei (2001) proposed the implementation of their model because it allowed for easy 

estimation (the maximum likelihood method) and incorporated the key features of the daily 

temperature dynamics such as seasonal cycles and uneven variations throughout the year.

The dataset Campbell and Diebold (2002) used exhibited seasonality. They noted that a seasonal 

component would be essential in any time series model fit to daily average temperature In order 

to model the seasonality, they opted to use a low-ordered, Fourier series as opposed to daily 

dummies. There were two main advantages of doing this. Firstly, the use of a low-ordered 

Fourier series produced a smooth seasonal pattern unlike the discontinuous pattern that had been 

proposed by Cao & Wei (2001). Secondly, the Fourier approximation greatly reduced the 

number of parameters that were to be estimated, thus significantly reducing computing time and 

enhancing numerical stability. Campbell and Diebold (2002) acknowledged that trend and cycle 

were the other non- seasonal factors that became apparent but since their relevance was not 

observable on the simple time series plots, they allowed for a deterministic linear trend and 

depicted the cyclical dynamics of daily average temperature using autoregressive lags.

Campbell & Diebold (2002) proposed the following model:

V ,  « S( g t) + sin ( g .))
P=1

+ 2 a 1 y r t - i ° y r t € yrx
(Z.5)

k=l

' “ ( s m * ) 1 r *« a in ( a 6 S ‘ ) } 1 2  ( 2 6 )
q= 1 r=1

N(0,1)

This model was estimated by the ordinary least squares, regressing average temperature on 

constant trend, Fourier and lagged average temperature terms, using twenty-five autoregressive 

lags (K=25) and three Fourier sine and cosine terms (P=3). They used the Akaike and Schwarz 

information criteria to set K-25 and P=3.

9



Campbell & Diebold (2002) further stated that the addition of the conditional variance equation 

(2.6) allowed for two types of volatility dynamics that were relevant in time-series contexts 

These are the volatility seasonality and autoregressive effects in the conditional variance 

movements. They proposed to approximate volatility seasonality in the conditional variance 

equation through a Fourier series of order Q. On the enduring effects of shocks to the conditional 

variance, the authors explain that this is accommodated by incorporating R autoregressive lags of 

squared residual following Engle (1982) (ARCH models). Just as before, the parameters of Q 

and R  are chosen in the same way as those of K and P The optimum values for Q and R were 2 

and 1.

By using Engle’s (1982) two-step approach, they estimated the model in the following way. 

Campbell and Diebold (2002) first estimated the conditional mean equation by ordinary least 

squares, regressing average temperature on constant, trend, Fourier and lagged average 

temperature terms. They then proceeded to estimate the variance equation by regressing the 

squared residuals from the conditional mean equation on constant, Fourier and lagged squared 

residual terms and they used the square root of the inverse fitted values c y as weights in a 

weighted least squares re-estimation of the conditional mean equation.

Roustant et al (2003) chose a simple ARMA model that would capture the major characteristics 

of temperature: seasonality of the values, seasonality of the dispersion, quick reversion to the 

mean and correlations between today’s temperature and tomorrow. The proposed model was:

Xt — m f -I- s t 4- ox. Zt (2-")

Where:

• m t represents the trend;

• st is the seasonal component;

• <rt is a deterministic and periodic process with an annual periodicity representing the

standard deviation o f ; we assume that

• Zt is an ARMA process with variance 1:

Z, I -  I 4>PZ ,-P I e, I 0 ,* ,- !  I ••• I 0 ,* , - ,  (2 .8)

where ( tf) is a Gaussian white noise. Furthermore, we assume that:

10



(2 .9)m t = d t  + e

" f
*t =  ^ ( a f cos(i. 4u. t )  +  b t sin(i. o*. t) ) (2 .10)

i=l

<rt =  a  +  b  cos(a>. t )  +  c s in i or t ; (2.11)

2

5f =  ^ ( a x cos(i. cu. t ) +  sin(i. at. t ) ) (2 .12)
1=1

with *. =  2 V s 63

This allowed for easy computation of the maximum likelihood estimator. The choice of 

frequencies for the seasonal component is achieved by means of a preliminary spectral analysis

of the normal temperature of each series. For the Paris data, the seasonal component retained the
. .

- form:
z

st =  ^  ( c t cosfi. at. t ) +  bi sin(i. at. t ) )  (2-12)

The orders of the ARMA,p=3 and q=0, were selected after the estimation of rnx,st and ov

Roustant et al (2003) proceeded to compute the price of a weather derivatives contract using the 

parameters defined in the temperature model. They observed that the model had defects. The 

model showed great uncertainty towards option prices. They concluded that the trend and 

seasonality parameters were responsible for the uncertainty. To improve on the existing models, 

the authors suggested that new models should allow for the modelling of trend and seasonality.

Alaton et al (2002) used the financial approach. They used historical data from Bromma Airport 

in Sweden covering 40years to build a stochastic process that described temperature movements. 

Starting at F ,= jc the model they put forward was:

iT ,  =  ( ~ ] ?  +  a ( 77  - T , ) ) d t  + <r,dW,, t>  s (2.13)

11



whose solution is

T, =  > - l 7 ) e +  1 7  +

r

/ r ^ d W 1t (2 .14 ;

where

17* = / l  +  jy r+  Csin(a>r +  4?) (2 .13)

and

dT™
=  B +  u)Ccos{a)t +  <p) (2 .16)

Their model assumes that a t is a piecewise constant function with a constant value each month. 

The use of the Weiner term in the model is to underscore the fact that temperature is not 

deterministic.

The Omstein-Uhlenbeck process is a solution to the above Stochastic Differential Equation. This 

mean-reverting process was proposed by Domier and Queruel (2000). This temperature model 

fitted quite well into their dataset. They however admit that their model was a simplification of 

the real world and suggested the use of a model; sophisticated enough to capture the driving 

noise process. The other improvements they proposed were the inclusion of stochastic volatility 

process in the model and the use of larger models where temperature would be one of many 

different variables.

Benth and Saltyte-Benth (2005) proposed the following model:

d T [ tJ =  d s it)  +  -  s ( t ) ) d t+  < r(t)d l(t) (2 17)

where

s ( t )  =  A +  B t+  Csin(c«>t +  <f>) describes the mean seasonal variation. 

h (a constant) is the speed at which the temperature reverts to its mean

L (t) is the Levy noise 

T (t) is the temperature at time 0 < t < 00
12



Applying Ito’s formula leads to the following explicit solution to (2.17):

r ( l )  =  *(») -I- (r(O ) -  s ( 0 ) ) « "  +  f  ^ ( u )  '2  18)

As they pointed out, the difference between their model and the one suggested by Dormer & 

Queruel (2000) and Alaton et al. (2002) was that their model included a L6vy noise rather than 

Brownian motion. In addition, Benth and Saltyte-Benth (2005) criticized Alaton et al. (2002) for 

not providing normality tests to justify the use of the Weiner process as the driving noise in the 

Omstein- Uhlenbeck process. Benth and Saltyte-Benth (2005) argument for using the class of 

generalized hyperbolic L£vy processes was; it enabled them to capture the semi-heavy tails and 

skewness observed on Norwegian temperature data and also allowed for modelling of the 

dynamics of the squared residuals from daily observed temperature variances. They also claimed 

that a simple regression model for the deseasonalized temperature in conjunction with a time- 

dependent variance function at could better explain the fractionality observed for the Norwegian 

temperature data rather than introducing a fractional Brownian motion. Benth and Saltyte-Benth 

(2005) proceed to derive a time-discrete version of (2.17) which they use to analyze their

Norwegian temperature data. The model is:

T , - s ,  =  (1  +  k ) (T , . ,  -  i , - ,  ) +  <rtEt, t  =  1 .2 .... ( 2 1 9 )

They reconstituted (2.19) into an additive time series of the following form:

Tt =  s t +  ct +  £t , t  = 0 , 1, Z ,...... (2 .20)

st =  +  (2 .21)

ct =  a (T t_t  — Sf_4) where a  =  1 +  k  (2 .22)

2t — <rt ct (2.23)

st denotes the seasonality component, C/the cyclical component and the residual.

To estimate the parameters of the seasonality component, Benth and Saltyte-Benth (2005) used 

the nlinfit function in MATLAB. We model the cyclical component by regressing today’s

13



deseasonalized temperature against the deseasonalized temperature recorded the previous day. 

The residuals were estimated using a multiplicative time series model.

They concluded that their model could not reveal why the residual noise (from the daily average 

temperature) had a positive correlation at lag 1 and a negative correlation at lag 2. They 

suggested the use of either a moving-average time series model or a GARCH- model to explain 

this effect.

Benth and Saltyte-Benth (2005) followed up their study with another publication in 2007. They 

proposed an Omstein-Uhlenbeck model to show the evolution of temperature with time: 

dT(t] = ds\t) +  h(T(t) -  s(f))dt+ <r(t)dB(t) (2.24)

Where T (t) is the daily average temperature, B(t) is a standard Brownian motion, s(t) is a 

deterministic function modelling the trend and seasonality of daily average temperature and <r(f) 

is the daily volatility of temperature variations. They use the Brownian motion instead of a Levy 

process to drive the temperature dynamics because their main interest was a model where 

analytical pricing is possible. The explicit solution for the model is given by Ito’s formula 

(Tomas BjOrk, 2003)

r ( t )  =  i ( 0  +  (7(0.) -  < 0 ) K '  +  I « (u )« ‘ (,-*°dB(u) (2 .25)
Jc

In the temperature model, both s (t) and rr2 (£)are modeled as a truncated Fourier series

y-i

<r2 ( 0  =  c  +  I p ,  C|Sin ( 7 —  + l{ = , d f cos ( 7 ^ ) (2 2 7 )

They discretize the model and use the following time series model to analyze Swedish 

temperature data:

r ,4 i  =  I n o * ,  <2-2 8 )
14



where:

ATO. 1)

/r =

* 0 )  =  «*(*)

Benth and Saltyte-Benth (2007) concluded that though the model was simple, it was powerful 

enough to describe seasonality and mean-reversion in temperature data. The simplicity of their 

model allowed for explicit calculation of futures prices for HDD/CDD, CAT and PRIM futures 

quoted on the Chicago Mercantile Exchange.

In the next chapter we construct a temperature model using the financial approach in the same 

way as has previously been done by Alaton et al. (2002). We choose his model because of its 

simplicity. However, as an improvement to his original model, we assume temperature volatility 

to be a stochastic process rather than some piecewise function with constant volatility every 

month. We suppose that this will make the model more accurate and mathematically tractable.

15



CHAPTER THREE: METHODOLOGY

SECTION 1: METHODOLOGY

We have a dataset comprising of 12 years of temperature data from the Kisumu Meteorological 

Station. Our dataset has 12 missing observations, (around 0.3% of the total dataset). We replace 

the missing values by averaging the preceding 14 consecutive days. We use the Root Mean 

Squared Error (RMSE) statistic to test the efficacy of the method described above.

Once we have filled in our missing values, we proceed to develop the temperature model, similar 

to Alaton’s model. The continuous equation for the temperature process is given as:

We use the ordinary least squares (OLS) regression methods to estimate the parameters (A, B, C 

& <p) o f seasonality. To estimate the mean reversion parameter a, we use the martingale

estimation functions method of Bibby and Sorensen (1995):

(3.1)

dTt =  a(0 t -  Tt)d t+  y t dW t 

The equation for the temperature seasonality is given by 

9t =  A  +  B t  -I- Csini ajf +  <p)

(3 4)

We assume that volatility is also a mean reverting process given by:

(r + *rdwt
We estimate a ,  and <rr using the formula below:

(3.5)

(3.6)
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In order to simulate the temperature process and the volatility, we use Euler’s method to obtain 

the following discrete sets o f equations:

r,+i -  r, + u(0, -  r() + o, + rnz, (s.a)

r « _ r B-» + « * r ( r n w < - r « - t ) + ffr z 2 (3 -9)

where Zj, Z2 ~ N (0,1) and 0, is the differentiated parameter for seasonality.

We also make the following assumptions in constructing the temperature model

1. The missing values in our dataset have no significant impact on our parameter values.

2. The temperature process follows a predictable pattern around some seasonal mean. 

(Mean reverting property).

3. The temperature seasonality follows some sinusoidal function.

4. The daily temperature deviations are normally distributed & temperature dynamics are 

driven by some Brownian motion.

5. The volatility is also a mean reverting stochastic process.

6. There are no leap years in our dataset, i.e. we omit February 29 temperature values so 

that we have 365 temperature readings annually.
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SECTION 2: MODEL SET-UP

The purpose of this thesis is:

•  To find a stochastic model that describes temperature movements.

•  To use the model above to evaluate weather derivatives (options).

We begin by defining some terminologies with regards to weather derivatives. Then we perform 

quality tests for our dataset and also state the attributes of a generic call option. We finish this 

section by showing how to construct a temperature model, estimate its parameters and use it to 

evaluate a call option price.

DEFINITIONS
The dataset we have collected includes temperature observations at the Kisumu Weather station. 

These observations are the daily minimum and maximum temperatures (in degrees Celsius). 

Definition 3.1: The average daily temperature for a specified weather station is defined as the 

average o f the daily minimum and the daily maximum in day L

r , =
j*mar j-mm

(3.1.1)

where T*1™denotes the maximum daily temperature in day i and r*"1" denotes the minimum 

daily temperature in day i.

Definition 3.2: A Cooling Degree Day (CDD) is measured in the summer and is defined by the 

quantity

CDDt =  m ax[Tt -  Tref. o} (3 1 2)

Definition 3.3: A Heating Degree Day (HDD) is measured in the winter and is defined by the 

quantity

HDD, =  m ax[T„f  -  T,. 0} ( a  1.3)

Where Trej  is the reference temperature.

18



It is the industry standard in the US to set the reference temperature at 65° Fahrenheit (or 18° 

Celsius). This is because when the temperature drops below 18°C, people use more energy to 

heat their homes and when the temperature rises above 18°C, people start using their air 

conditioners for cooling. (Alaton et al, 2002).

A generic weather option can be expressed if the following parameters are specified:

• The contract type (call or put)

• The contract period

• The underlying index (HDD or CDD)

• An official weather station from which the temperature data are obtained

• The strike level

• The tick size

• The maximum payout (if there is any). (Alaton et al, 2002).

To formulate the payout of an option, let K denote the strike level and A the tick size. The tick 

size refers to the amount o f money that a writer of a weather derivative is exposed to for each 

unit o f the underlying variable (in our case it is the temperature) that is in the money. Let the 

contract period consist of n days. Then the number of HDDs and CDDs for that period is given 

by:

Un -'E t= 1ttD D i, and  Cn - 1?=1 CDD; (#•!•*)

Now the payout function of an uncapped HDD option is:

/  = A * max{Hn -  K, 0) (3-1.5)

Our sample period extends from 1st January 1991 to 31st December 2002 resulting in a total of 

4380 observations. We have some missing observations in our data series which we have simply 

replaced with the average temperature of the consecutive 14 days preceding our missing value. 

We employ this naive approach because our missing observations are 12 (less than 0.3% of our 

total observations). We can safely assume that this will not significantly alter our findings.

The table below shows the root mean squared error (RMSE) of some random observations taken 

during the year of our missing values and replaced by the method we ve described above.
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Date Observed Value Predicted Value Deviation
Squared
deviations

7/29/1992 27.40 28.10 -0.70 0 49
3/12/1993 29.50 31.40 -1.90 3.61
7/28/1993 30.80 29.40 1.40 1.96
6/20/1994 26.80 27.30 -0.50 0.25
4/3/1997 29.40 32.10 -2.70 7.29

8/31/1997 32.20 31.00 1.20 1 44
2/23/1998 30.90 28.80 2.10 4.41
8/18/1998 30.50 30.40 0.10 0.01
11/8/1998 29.00 29.50 -0.50 0.25
1/30/1999 33.20 29.90 3.30 10.89
5/22/2001 28.20 28.90 -0.70 0.49
9/15/2002 31.50 31.20 0.30 0.09

Table 3.1:RMSE

RMSE=1.611934655

Where the RMSE is given by =  ^ X ? =1(Tobs “  Tpr*d)2 • Though the standard deviation

1.62°C is significant, given the few number of missing observations in our data, its impact 

negligible.

Now, we proceed to explain how we construct the temperature model.

of

is

3.1 CONSTRUCTION OF THE TEMPERATURE MODEL

We begin by plotting the evolution of daily temperature against time. As we can observe, the 

historic data shows some cyclical nature. The seasonal variation is between 39°C and 23°C. 

Interesting to note is that unlike previous studies, our data suggests a very weak cooling 

trendline. Using EXCEL, we are able to evaluate and find out that our trendline equation is:

y= -0.00006.x + 29.96
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where y  represents the average temperature at a particular date and x  the date of the observation 

Our model should recognize that over time, temperature tends to get drawn back to some average 

level. We assume therefore that the temperature process is a mean reverting process. Our 

temperature data seems to be oscillating around some average mean level as can be observed in 

figure 1.

Daily Temperature Evolution for Kisumu 
Meteorological Station (1/1/1991 -12/31/2002)

40.0

Dates (1/1/1991 -12/31/2002)

FIGURE Is Daily evolution of temperature at Kisumu meteorological station (1/1/1991 -  
12/31/2002)

In order to create a HDD and CDD Index, we need to determine the monthly mean temperature 

for the total observations and classify our weather into warm periods and cold periods. With the 

aid of figure 2, we can visually identify these periods.
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Evolution of the monthly mean temperature at 
Kisumu Meteorological Station (1991 - 2002)
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Figure 2: The evolution of monthly mean temperature at Kisumu Meteorological Station 
(1/1/1991 -12/31/2002)

The mean temperature is 29.94°C. Our cold period starts from April up to August while our 

warm period begins in September and lasts until March. We shall use the mean temperature 

(29.9°C) as our standard reference temperature.

We now plot a histogram of the frequency (number of observations) against the daily 

temperature deviations. We then use STATISTICA to fit a normal distribution curve to the 

histogram.
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Figure 3: Daily temperature deviations Histogram for Kisumu Meteorological Station 
(1/1/1991 -  12/31/2002)

The histogram plotted indicates some form of normal distribution driven by some noise. To 

further investigate the normality assumption, we carry out a QQ test. This test will help us figure 

out if the temperature deviations follow a normal distribution.
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Quantile-Quantile Scatter plot 
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Figure 3b: QQ scatterplot of the daily temperature deviations at 99% confidence interval.
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Figure 3c: A histogram of daily temperatures (blue) superimposed with a normal 
probability density curve (red).
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The straight line represents what data would like if it is perfectly normally distributed. It is 

evident that the residuals of Kisumu City fall approximately along the reference line, indicating 

that the assumption of normality is a good model. We also plot a normal probability probability 

plot to enable us to arrive at this conclusion. In figure 3d, a normal pp plot of daily temperature 

deviations is plotted using the software STATISTICA. The plotted data follows the straight line 

and it is rational to say that the Normal distribution provides a good approximation for this set of 

daily temperature deviations for Kisumu City.

Probabiity-Robab ilty Plot of Daily Tenperature Deviations 

Distribution: Norm al(-0.00054794511.44722)

Theoretical cumulative distribution

Figure 3d Normal P-P plot of Daily temperature Deviations for Kisumu Meteorological 
Station (1/1/1991 -12/31/2002)

We can therefore conclude that the temperature process is driven by some normal noise. We 

assume this driving force to be a Brownian motion. We assume the driving force of the 

temperature dynamics should be a Brownian motion rather than a Levy process because we are 

interested in a model that can be used to analytically price a weather derivative.
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Next, we now consider an equilibrium mean reverting model. The Vasicek model (Vasicek, O. 

A., 1977) is our natural starting point. Vasicek’s model is widely used in interest rate derivatives 

to derive the risk-neutral process of the short-term interest rate r.

dr =  a ( b  -  r ) d t  + adz (3.1.7)

where a, b and a  are constants. The speed of mean reversion is a, the mean to which the short 

rate r is pulled back to is b, a is the volatility of the model and dz is a normally distributed 

stochastic term. In the same way, we can model the temperature process whereby we replace 

r with Tt b with 0t and yt with a. The model now becomes:

dTi -  «(Ot - T t: d t + r tdlVt (3.2)

Where 9 t describes the sinusoidal nature of our data. We assume the sine-function to be

s in (a> t+  <p) where =  (“ ) and <p represents the phase angle, the proper starting point of the

sine wave. We earlier indicated that our data showed some negative linear trend. A deterministic 

model for the mean temperature should thus have the equation shown in (3.3):

0t =  .4 +  B t+  Csin(a>* +  <p) .

A-\- B t depicts the linear trend while sin(cot-f ^pjdepicts the cyclical nature of the historic data.

The solution to (3.2) is the mean reverting Omstein-Uhlenbeck process. To ensure that (3.2) 

reverts back to 0 t, we introduce the term to (3.2). Starting at some point, say T =x, we get

following temperature process:

dTt -  [a(0t - Tt)  + d t  +  Y td W f t > 5  (3*1

Trivially, =  R +  *>ros(/iif +

We now need to estimate the mean parameters (A, B, C and<p), the speed of mean reversion a 

and the volatility y t.
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From elementary trigonometry, we know that; 

sin (6*r+  cp) =  sim  a>r)cos(<p) +  cos '£« jr)siii(^ (3 1 9

We can therefore rewrite (3.1.8) as 0t —A +  B t+  C[sin(uif) cos(^) + cos(<ot) sin(^) ]. 

We can make this look more linear by changing some variables.

0t = rjx +  tj2 1 4- ij3 sin(iot) + tf4 cos(iot) (3.2.0)

where

.4 = i f t
3  =  l z

Through regression by ordinary least squares, we can obtain the parameter values of seasonality 

for Kisumu meteorological station.

To estimate the mean reversion parameter a, we use the martingale estimation functions method 

(Bibby and Sorensen, 1995) as shown in equation (3.4) to obtain:

a =  - l o g

r>n 1T
•*-«=!-----------*-------------rr-1

T„
rr-1

Alaton et al (2002) assumed that <rf is a piecewise constant function with a constant value each 

month, i.e. We assume that volatility is a stochastic process; we proceed to model it in

the following way;

1. Calculate the standard deviations of each month of our dataset

2. Plot these standard deviations against time.
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Evolution of m onthly volatility at Kisumu 
M eteorological Station 

(1/1/1991 - 12/31/2002)

y = *0.00002x 4-2.09 
R*=0.004

— —  M o n th ly  Std Dev 
---------- Linear (M o n th ly  Std

Figure 4: The evolution of monthly volatility at Kisumu Meteorological Station (1/1/1991 
12/31/2002)
It can be seen that the volatility is also a mean reverting process whose stochastic differential 

equation (5.5) is given by:

dY, = V rV rM d -  Y , )d t  + <rr dW,

Since Ytrm d ' s constant, we only need to estimate Oy and <ry. The mean reversion parameter will 

be estimated as shown in (3.7).

^ 2 = J _ r vM- i  y  (3.6)
jvm^ = c i r r w  n )

/i — the specific month

Np =  the number of days in the specific month.

/  =  1 , ........

Now that our parameter values are known, we discretize the temperature process and the

volatility process in order to simulate the temperature:
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Euler’s method gives us equations (3.8) and (3.9),

Tt-*l * r r +  Qt + Ynz l

Y n  = Kn-1 + ̂ (/freni “ T«-l) + ̂ Z2

where Zy, Z2 ~  N(0,1).

The following is an algorithm used to implement the Euler’s method:

1. Define f  (t, y).

2. Input the initial values to and yo.

3. Input the step size h and the number of steps n.

4. Set t = to and y = yo.

5. Output t and y.

6. Set k = 0.

7. If  k = n, then end the algorithm; otherwise, move on.

8. Do the following:

(ii) Set y = y + h • f  (t, y).

(iii) Set t = t + h.

(iv) Output t and y.

(v) Set k = k + 1.

(v) If k < n, then go to (i); otherwise, move on.

9. End the algorithm.

Yn is simulated using (3.9). The simulated yn is then used to simulate temperature for a whole 

month. The diagram below shows the simulated temperature for the period 1/1/2003 to 3/1/2005.
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40

Simulated temperature for Kisumu 
meteorological station

--------Simulated temperature

--------Linear (Simulated temperature)

1/1/2003 1/1/2004 1/1/2005

Days (1/1/2003 - 6/30/2005)

Figure 5: Simulated temperature for Kisumu meteorological station (1/1/2003 -  3/1/2005) 
using Euler's method.
The weak cooling trend is evident and continues through the simulation two and a half years 

later.

3.2 THE PRICING FUNCTION OF A TEMPERATURE DERIVATIVE.

Let us now embark on pricing a European call option. A European call option is a contract which 

gives its holder the right to buy an asset by a certain date for a predefined price. The price of the 

weather option can be expressed as the expected value of its discounted payouts. A HDD call 

option is sold to protect the buyer from loss of profits due to cold periods. Various methods have 

been used to price weather derivatives. These include the actuarial pricing method, the bum 

analysis method and the index modelling method. Other valuations are based on the models of 

temperature dynamics.

The actuarial pricing method consists of determining appropriate historical meteorological data 

and meteorological forecasts. Meteorological historical data needs to be cleaned and corrected of

gaps and discontinuities (Jewson, 2004). We then use a model for the daily average temperature
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to generate a set o f paths from which we construct a HDD index. The HDD index is then used to 

calculate the payoffs. The expectation of the weather derivative price is then equivalent to the 

average payoff from all the generated paths. If we assume that there is no arbitrage, then we need 

not consider any martingale measure. In addition, various authors have taken the safety loading 

to be an arbitrary value or a figure near zero.

In the bum analysis method, the method is based on the idea of evaluating how a contract would 

have performed in previous years. One might ask the question: “What would I have paid out had 

I sold a similar option every year in the past 20 years? 30 years? What about 40 years?” The 

method proceeds as follows: We collect the historical weather data (temperature data). We then 

proceed to convert the weather data (temperature data) to degree days, either HDD or CDD and 

we make some corrections. This corrections may include omitting the 29th February date in a 

leap year, the weather station may have been moved due to construction, the “urban island 

effect” (where heavy industrial activity, construction or pollution results in gradually wanner 

weather in that area), the period of historical data that one should consider and the extreme 

weather patterns that occur in some years, notably El Nino and La Nina. Next, we determine 

what the option would have paid out for every past year. We then find the average of these 

payout amounts. Finally, we discount back to the settlement date. As we can observe, we have no 

need for using Monte Carlo simulations or fitting of distributions.

The main Assumption of this method is that the data values for different years are independent 

and identically distributed. To price a weather option, we simply calculate the historical pay-offs 

o f the option, then we calculate the mean of the historical pay-offs. This historical mean is an 

estimate of the historical payoff. The main disadvantage of bum analysis is that we have no idea 

o f the probabilities of events more extreme than those that occurred during the historical period 

that has been considered.

The Index Modelling approach extends the bum analysis by estimating the distribution of the 

weather index. If the distribution can be estimated relatively well, the Index Modelling approach 

yields more stable price estimation than the bum analysis. But questions such as should the 

distribution be discrete or continuous and parametric or non-parametric still linger. In our 

opinion, it is better to choose a distribution that is likely to be an accurate representation of the
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real unknown index distribution. This way, parameter estimation and hypothesis testing becomes 

much simpler and easier.

In this paper, we will use the actuarial pricing method. Corbally and Henderson (2001) noted that 

the classic actuarial method was dominant in the early stages of pneing weather denvatives 

Brix, Jewson and Ziehmann (2002) and Roustant et al (2003) also proposed using the actuanal 

pricing method to value weather derivatives. The price of a weather call option at time t=0 is 

calculated as

C(0, t) = + 4>cx) (3.1.9)

W here A is the tick size, r is the risk free interest rate, and t is the time to maturity 4> is the safety 

loading which denotes the risk premium (<p is a real and positive number), ay is the standard 

deviation of the payoff and E(%) is the expected payoff under the real world probability 

measure P. (See Milica Latinovic, 2007)

We use the Monte Carlo simulation to calculate the expected value of the derivative. The Monte 

Carlo simulation tends to be numerically more efficient than other procedures when there are 

more stochastic variables. This is due to the fact that the time taken to carry out a Monte Carlo 

simulation increases linearly with the number of variables, whereas the time taken for most other 

procedures increases exponentially with the number of variables. Another advantage is that it can 

provide a standard error for the estimates that it makes. Moreover, as an approach, it can 

accommodate complex payoffs and stochastic processes. The Monte Carlo simulation can also 

be used when the payoff depends on some function of the whole path followed by a variable, not 

ju st its terminal value. (John C. Hull, 2008)

We could also use the following number of variance reduction procedures that significantly 

lessen our computation time.
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3.2.1 ANTITHETIC VARIABLE TECHNIQUE

In this technique, we calculate two values of the derivative. The first value, fi is calculated in the 

usual manner while the second value, f2 is calculated by changing the sign of all random samples 

from the standard normal distributions. Denote f as the average of 11 and f2 i.c.

If to is the standard deviation of the f a  , and M  is the simulation trial, the standard error of the 

estimate is

3.2.2 STRATIFIED SAMPLING
Stratified sampling is a probability sampling technique wherein the researcher divides the en re 

population into different subgroups or strata, then randomly selects the final subjects 

proportionally from the different strata. It is important to note that the researcher must use simple 

probability sampling within the different strata.

Suppose we wish to take 5000 samples from a probability distribution. We could d.vtde the 

distribution into 5000 equally likely intervals and choose a representative value for each interval.

In the case o f a standard normal distribution, when there are n intervals, we can calculate the

representative value of our /th interval as. 

rt -0 .5
-  m
where HT1 is the inverse cumulative normal distribution. The function AT1 can be calculated 

using the NORMSINV function in Excel.

3.2.3 QUASI -  RANDOM SEQUENCES
This are also called a low d.screpancy sequence. It is a sequence of n-tup.es that fills - p a c e  

more uniformly than uncorrelated random points. The outputs are constrained by a ow- 

discrepancy requrrement that has a net effect of points being generated in a highly corre ate

manner.
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Let us specify the terms of this call option. The underlying ‘‘asset' is the Heating Degree Days 

(HDDs). The Contract period runs from January 1, 2003 to March 31, 2003, i.e. it is a 3 month 

call option. Our weather station is the Kisumu Meteorological Station while our strike price is 

12. The tick amount is Kes 5000 and our reference temperature is 29.9°C.

The HDD & CDD Index is shown in the table below

M O N T H

M O N TH LY

INDEX

HDD/CDD

VALUES STRIKE PRICE

JAN HDD 3.12 6

FEB HDD 4.74 9

MAR HDD 5.41 12

APR CDD 1.56 6

MAY CDD 1.37 6

JUN CDD 0.32 3

JUL CDD 1.23 3

AUG CDD 0.19 3

SEP HDD 9.77 15

OCT HDD 8.41 12

NOV HDD 3.91 9

DEC HDD 3.23 6

Table 3.2: HDD & CDD Index values for the year 2003

W e use the daily simulated temperatures covering our contract period of 3 months We get our 

HDD measures 3.12,4.74 and 5.41 for the months of January, February and March respectively. 

The cumulative HDD is 13.27, The payoff for this uncapped HDD option thus becomes:

=  KesS,OOO max(13.27 -  12,0)

=  K esS .0 0 0  (1.27) = Kes 6350
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We now price the same option using Black Scholes method, with the following assumptions The 

risk free interest rate r is 4.3%. This was the prevailing 90 day Treasury bill rates in January 

2003. To accurately get the payoff of the Black Scholes model, we use the formula

=Kes 5,000 max(13.27-e 0043,a25 *12,0)

=  Afes5,000 (1.398)=  Kes6990.

Suppose we now change our strike price to 10. The new option payoff function becomes:

=  K esS , 000  m ax (1 3 .2 7  — 10 ,0 )

=  K esS , 000  (3 .2 7 ) =  K es  16 .350

as per our model. But according to the Black-Scholes model, the option payoff becomes 

= K es  5,000 max(13.27-e 0043,025 *10,0)

=  K es5,000 (3.377)= Kes 16,884.

Suppose that now we change our strike price to 8. The new option payoff function becomes 

~ K csS , OOO max(l3.27 — 8,0)

=  K esS, OOO (5.27) = K es  26,350

as per our model. But according to the Black-Scholes model, the option payoff becomes 

= /fe s  5,000 max(13.27-e o-043*0-25 *8, 0)

=  Afef 5,000 (5.356)= Kes26,7Q0

It is important to note that our model under prices the call option payoff when we use the Black 

Scholes model as our benchmark model. In the first scenario, it underpriced the option payoff bv 

9.16% , in the second scenario; it underpriced the option payoff by 3.16/o while in the third

35



scenario: it underpriced the option payoff by 1.61%. We can therefore conclude that the model 

simulates the payoff within certain confines pretty well.

To get the option prices we use the Monte Carlo simulation method After performing 40,000 

simulations and averaging the values and the standard deviations, we get the following (4) best 

option prices as per our strike prices.

K=12

A) O ur Model Option Price B) Black -  Scholes Option 

Price

Difference between A & B

(•/.)

6.3590 5.3449 15.94

6.5535 5.5106 15.91

6.3959 5.3825 15.85

6.4414 5.4421 15.52

T able 3.3 Comparative values of the option prices when the strike price K=12

K=10

A) O ur Model Option Price B) Black -  Scholes Option 

Price

Difference between A & B

(%)

6.3905 6.9006 7.98

6.3188 6.8015 7.64

6.4375 6.9080 7.31

6.2550 6.6966 7.07

Table 3.4: Comparative values of the option prices when the strike price K-10
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K=8

A) Our Model Option Price B) Black -  Scholes Option 

Price

Difference between A & B

(*/.)

7.2518 7.2300 0.30

7.1606 7.1522 0.12

7.2962 7.3208 -0.34

7.2548 7.3254 -0.96

T able 3.5: Comparative values of the option prices when the strike price K -  8

A s it can be seen, the strike price greatly affects our option price. A strike price of 12 results in 

huge pricing errors of up to 15.94% whereas a strike price of 10 results in a minor pricing error 

o f  up to around 8%. A strike price of 8 results in pricing errors in the neighborhood of + 1%. 

W e can therefore conclude that a lower the strike price will result in a more accurate option 

pricing model. It is imperative to note therefore that we should choose a strike price that gives us 

a low er discrepancy between our option pricing model and the Black — Scholes option pricing 

m odel.
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CHAPTER FOUR: DATA ANALYSIS AND RESULTS

We begin this chapter by presenting the findings of our study and interpreting their meaning 

and. or relevance. Our dataset comprised of daily mean temperatures observed at the Kisumu 

meteorological station over a period of 12 years (01/01/1991 to 12/31/2002). The total number of 

observations was 4380. The weather station is located in Kisumu city, the western part of Kenya 

A table o f descriptive statistics associated to the Kisumu weather station is given below.

K isum u Meteorological Station

, M ean 29.94
M edian 29.70
M ode 29.80
M inim um 23.00
M axim um 38.90
R ange 15.90
Standard Deviation 1.993249
Skew ness 0.368054
K urtosis 0.545576

T ab le  4.0 Descriptive statistics for dai y average temperature

O ur dataset is weakly positively skewed. The kurtosis is also positive. The values of the kurtosis 

and skewness validate the assumption on the normality of our dataset. Figure 6 below shows the 

peakedness of our dataset relative to the normal distribution.
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Figure 6: The daily temperature deviation histogram showing the peakedness of our 
dataset.
W e also notice that our values are widespread around the mean. The range between the mean, 

m ode and median is quite small (less than 0.2°C). This explains the peakedness of the graph 

observed above. The value of our standard deviation also lends credence to our earlier 

assum ption that temperature is a mean reverting process. It tends to oscillate around the mean.

D a iy  temperature deviations Histogram  for K isunu  Meteorological Staton (1/1/1991 -12/31/2002)
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Daily Temperature Deviations

In our data analysis we did not find any significant linear trend (see figure 1). The value of R‘ 

for the trend line was 0.11%. Our dataset extends to over 10 years. When we compare this to the 

datasets o f Alaton et al. (2002) and Campbell and Diebold (2002) they contain temperature data 

recorded for approximately 40 years. We observed that there is a negative trend in the daily 

m ean temperatures in Kisumu meteorological station. This negative trend is aptly captured in the 

by the estimated seasonality parameters. We modeled the seasonality using a simple sine 

function. The parameters were as follows:

39



^2

*3

-6.5093 XlOr5 

-3.7066X1a 3

1.0516

Table 4.1: Param eter values of the eta’s

r

where1

V

A -  //t
t* = l 2

The parameter values of A, B> C and <p are summarized in the table below.

A 29.9945

B -6.5093 XKT*

C -1.0516

<P -1.5673

T able  4.2: Parameter values of A, B, C and <p

Parameters A and B estimate the trend in the seasonal component while C and 

p  estim ate the cyclical component of the seasonality parameter. As we can see, the est.mate for 

param eter B is negative (illustrating a weak cooling trend). Our equation for seasonality can thus 

be written as:

0 (* ) =  29 .995  6.S00X10*5t 1.0S2sin(<*it 1.S67)

where *=7,2,..... refers to the number of days from 01/01/1991
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C the amplitude of the sine function is around -1.052oC  Therefore the difference between daily

.em perature during the cold and warm periods is about 2.1*C

V\e use the values generated for 0 ( 0  to estimate the speed of mean reversion (a) for our 

tem perature process. By performing the calculation in (3.4), we find that a=€.366592375 This 

is consistent with our dataset since it does not exhibit extreme jumps. The speed of mean 

reversion for the volatility process is calculated through (3.5) and we find out that 

« r= 0 .25711152045. Again we notice that the speed of mean reversion is small. Our temperature

process is volatile but only to a small extent.

U sing  Euler’s method, we simulate the future temperature for the penod 01/01/2003 up to 

03/31/2005. This is done in order to evaluate a 3 month derivative from 0101 2003 up to 

03/31/2003. The simulated temperature is shown in figure 5.0. We also evaluate the performance 

o f  o u r model by calculating the error between the actual and modeled temperature. The graphs 

b e lo w  show the comparison between the actual and modeled temperature tor the period 

01/01/2000 -  12/31/2001. We show the best 4 simulations we got. We chose the first simulation 

(fig u re  5 . 1) since it had the least standard deviation of 3.07’C.
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F ig u r e  5.1: Simulation 1, standard deviation 3.070°C
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F ig u r e  5.2: Simulation 2, standard deviation 3.116*C
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Figure 5.3: Simulation 3, standard deviation 3.084°C
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F igure 5.4: Simulation 4, standard deviation 3.093 C

W e c an  observe that our margin of error lies between (-3.5, 3.5] and that out of 730 observations 

we h ad  517 observations within the margin of error and 213 observations out of error marg 

7 0 .8 2 %  o f  our values were within the margin of error. We can therefore conclude that our mode

forecasts  temperatures with some degree of accuracy.

In our the methodology section 2, we evaluated a 3 month European call option with a strike 

price o f  12 using the HDD index and also using the Black Scholes model where we chose our 

risk free  interest rate as 4.3%. This rate is equivalent to the 90 day Treasury bill interest rates i

January  2003(CBK Annual Bulletin, June 2003).

The difference in pricing was quite significant. Our temperature model underpriced the opti y 

about 16%  when we used a strike price of 12. But we showed that this can be remedied using a 

low er strike price of 8. This reduced the percentage error on our payoff function, and a so ga 

us an  equally good pricing function.
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

Weather derivatives are a relatively new class of financial instruments. In Kenya, the use of 

derivatives is not well documented. Despite immense interest in weather derivatives, pneing 

issues appear to be the greatest impediment in unlocking its full potential since weather is not a 

trade able asset. Therefore, it exists in an incomplete market. Meteorologists and interested 

stakeholders should appreciate that their roles are not independent of each other and should 

therefore strive to come up with a temperature based pricing model that could act as a benchmark 

pricing model in our economy.

In this paper, we constructed a stochastic temperature model with a stochastic volatility process 

that could be used to price temperature based weather derivatives. As we observed, our 

temperature model consistently overpriced the options, exposing the buyer of the option to great 

risk and loss. Although our temperature model forecasted temperature within reasonable range of 

accuracy, it did not do so when it came to option pricing. The overpricing could be due to several 

factors. We had a limited dataset of 12 years whereas Alaton et al. (2002) and Campbell and 

Diebold (2002) had data covering more than 40 years. If we had more data, we suppose that our 

temperature process would yield much better results (in terms of pricing). Secondly, we 

restricted our simulation to Euler’s method. We believe better estimates can be obtained if 

Milstein’s scheme of approximation or Monte Carlo simulation method is used.

The temperature data we analysed showed that over a period of 12 years, temperature levels in 

Kisumu have been declining, albeit insignificantly. This is unlike other parts of the world that 

have been experiencing a phenomenon called global warming. We have also seen that 

temperature in Kisumu can be modeled using well known stochastic mean reverting processes.
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FURTHER RESEARCH

As a possible improvement to our temperature model, it would be interesting to find out if 

modelling the speed of mean reversion instead of assuming it to be a constant as suggested in 

Zapranis, A. and Alexandridis, A (2008) could significantly change our temperature model.

Our temperature model is simplistic because it fails to capture other factors that affect weather, 

for example humidity, atmospheric pressure, wind. We believe that a better model should be able 

to capture these phenomena as our model assumes that temperature can be modeled on its own.
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