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Abstract

In part one of this project, we discuss the problem of two-type step-wise group screening
designs with errors in observations and equal prior probability of factor being defective;
wherein f factors are subdivided into groups of k; factors each, forming g, group-factors called
first order group-factors. The first order group-factors are then studied using fractional factorial
designs of type given by Placket and Burman (1946) in gi+h runs. The two versions of the first
order group-factors are formed by maintaining all component factors at their upper and lower
levels respectively. All the first order group-factors found to be defective are subdivided into g
second order group-factors of sizes k, factors each. In type-one search steps of the
experiments, the second order group-factors are tested for their effects using fractional
factorial designs. Then the effects of individual factors from the second order group-factors
declared defective are studied in type-two search steps of the experiments using non-
orthogonal fractional factorial designs. The expression for the expected number of runs for
two-type step-wise group screening designs is obtained and used to generate tables by
numerical approximation. In part two of this project, we discuss the problem of two-type step-
wise group screening designs with errors in observations and unequal prior probability of a
factor being defective, wherein f factors are subdivided into g; first order group-factors of sizes
kyi factors each. Then the group-factors and individual factors are tested for their effects as in
part one, the expression for expected number of runs is obtained for two-type step-wise group
screening designs with errors in observations and unequal prior probability of factor being

defective.
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CHAPTER 1

1.1: Concept of group screening designs

The problem of detecting defective factors in a large population consisting of defective
and non-defective factors has been tackled in various ways. Designs used in this kind of
investigation have been called screening designs. One such class of designs is the group
screening designs. In group screening designs, the factors or members of the population are
divided into groups called group-factors. The group-factors are then tested for their significance
and classified as either defective or non-defective. If a group-factor is classified as non-
defective, then it is dropped from further investigation since it is assumed that all the factors
within that group-factor are non-defective. If however a group-factor is classified as defective,

individual factors from the group-factor are investigated further.

Group screening experiments can be carried out in several stages. In a two stage group
screening design the group-factors formed are tested in the first stage and factors from
defective group-factors are only tested in the second stage. In a three stage group screening
design, the first stage consists of dividing the factors into group-factors known as first order
group-factors which are then tested and classified as defective or non-defective. In the second
stage of the experiment, each first order group-factor classified as defective in the first stage is
further divided into smaller group-factors called second order group-factors which are then
tested and classified as defective or non-defective. Finally in the third stage all the factors
belonging to the second order group-factors found to be defective in the second stage are
tested individually and classified as either defective or non-defective. This can be extended to

n-stage group screening designs (n>3)

In a step-wise group-screening design the analysis is carried out as follows; in the initial

step, the factors are divided into first order group-factors. Then the first order group-factors are



tested for their significance. Those that are found to be non-defective are set aside. In step two,
we start with any defective first order group-factor and test the factors within it one by one till
we find a defective factor. We set aside the factors which are found to be non-defective,
keeping the defective factor separate. The remaining factors are then pooled into a group. In
step three we test the group-factor obtained after step two is performed. If the group-factor is
a non-defective, we terminate the test procedure. If the group-factor is defective we continue
with step four. In step four, factors within a group-factor found to be defective in step three are
tested one by one till a defective factor is found. Factors which are found to be non-defective
are again set aside keeping the defective factor separate. The remaining factors are grouped
into a group-factor. In step five the group-factor obtained in step four is tested. The test
procedure is repeated until the analysis terminates with a test on a non-defective group-factor.
Steps two onwards are carried out of all the first order group-factors found to be defective on
step one. Two-type stepwise group screening design is carried in three steps; initial step, factors
are grouped into first order group-factors and tested for their significance, in step two the first
order group-factors declared defective are further divided into second order group-factors
which again are tested for their significance using type-one search steps. In step three the
individual factors from the second order group-factors declared defective are tested for their

significance using type-two search steps.

The main objective of group screening is to reduce the number of tests or observations by
eliminating a large number of non-defective factors in a bunch thus reducing the cost of

experiment.

1.2: Literature review

The method of group testing was first introduced by Dorfman (1943), who proposed that
instead of testing each blood sample individually for the presence of rare disease, blood

samples be pooled and analyzed together.

Sterrett (1957) proposed that individual items from defective pooled sample be tested one

at a time until a defective item is found. The remaining items from the defective pooled sample



were again tested in pool. If the result was negative the work was complete for the pooled
sample. Otherwise testing items individually was continued with until another defective item
was found. The remaining items were again tested in a pool. The process was continued until all

the defective factors from a pooled sample were weeded out.

Watson (1961) introduced the two stage group screening procedure. This method was
generalized to more than two stages by Li (1962) and Patel (1962). In particular, Patel discussed
multi-stage group screening designs in which all the factors had the same prior probability of

being defective.

Ottieno and Patel (1984) extended the idea of the two stage group screening with unequal
prior probabilities to include situations when no prior information is available so that no natural

partitioning can be assumed.

Odhiambo and Patel (1986) extended the work done by Ottieno and Patel (1984) to multi-

stage group screening designs.

The group testing procedure first introduced by Sterrett (1957) was extended by Manene
(1985). Patel and Manene (1987) worked along the line adopted by Sterrett and called their
designs step-wise group screening designs. They restricted themselves to what we shall call one

type step wise group screening designs.

Manene et.al (2002) extended step-wise group screening designs to multi-type step-wise
group screening designs. They considered the case when all factors have the same prior

probability of being defective.

Later Manene (2005) extended multi-type step-wise group screening designs to a case

where factors have different prior probabilities of being defective.

Achia (2004) re-examined Dorfman- Sterrett procedures with and without errors. He
derived an expression for the expected number of runs in multi-step Dorfman-Sterrett
procedure and he compared the results with expected number of runs in Dorfman procedure

and the (unrestricted procedure) proposed by Sterrett



Manene and Odhiambo (1987) studied the one-type stepwise group screening designs with

errors in observations.

Manene (2003) extended the work done by Manene and Odhiambo (1987) to the case

when we have unequal group sizes.

The problem of two-type stepwise group screening designs with errors in decisions has not
been addressed so far. In my project | decided to address and discuss this problem of two-type

step-wise group screening designs.

1.3: Design, Structure and Assumptions

We shall assume that there is a single response variable y, which is related to a set of f

factors through the first order linear regression model.

f
=1

where Y;; is the i response Bo is a constant term common to every response, B;(j= 1) is the
linear effect on the | factor, X; = +1 is the level of the " factor in the i"" run and ¢ is the i"

error term.
In addition to model (1.3.1) .We shall make the following assumptions;

i) All factors have independently the same a priori- probability ‘p” of being
effective(defective)

ii) Defective factors have the same effect A>O i.e.

B {1, if the factor is defective
B = 0,if the factor is non — defective



iii) None of the factors interact

iv) The required designs exist.

v) The directions of possible effects are known

vi) The errors of all observations are independently normal with a constant known
variance o°

vii) The total number of factors is f=k,g;1, where g; is the number of first order group-

factors and ki is the number of factors in first order group-factors.

In testing the significance of the first order group-factors and second order group-factors,
we shall use orthogonal fractional factorial designs of type given by Plackett and Burmann
(1946). In testing the significance of individual factors and group-factors in subsequent steps,
we shall use non-orthogonal designs to simplify computations. To test the significant of group-
factors, we shall use usual tests based on the normal distributions, since 0% is assumed to be
known. In addition to above in testing the significance of the first order group-factors we shall
use a; as level of significance and in testing second order group-factors we shall use a; as the

level of significance.

For later development with unequal a-priori probabilities we shall assume that it is
possible to partition the f-factors into a fixed number g; of first order group-factors such that
the i first order group-factor contains ky; factors. The factors will be partitioned into first order
group-factors of unequal sizes by selecting a set of numbers (p; < p2 <. <pg,, 0<pi<l)
and identifying p; as the probability that a factor belonging to i" first order group-factor is
defective. Thus p; and ky; will be variables. This is generalization of natural partitioning when pi’s

are actual probabilities.
The following modified assumptions are made:

i) The total number of factors f = Zlel ky; where ky; is the number of factors in the i™"
first order group-factor.

ii) pi >0,i=1,2,........ g1 is the a-priori probability that a factor in the i first order group-
factor is defective

iii) A; >0, i=1, 2.....g4, is the effect of a factor within the i*" first order group-factor.

5



iv) None of the factors interact

v) The directions of possible effects are known

vi) The required design exist

vii) The errors of all observations are independently normal with a constant known
variance o”

viii)  aythe level of significance for testing the i first order group-factor in the initial step
and ay; is the level of significance for testing the second order group-factors within

the i" first order group-factor which has been declared defective in the initial step.

1.4: The objective of the study

There are investigations where a large number of factors need to be examined. In such a
situation we have to run an experiment to identify the influential factors. Once these have been

isolated, future experimentation can study them in greater detail.

By reducing the size of the experiment at the screening stage, one can conserve resources
and more efficiently study the important factors. To study this we have to derive an expression
for the expected number of runs required to analyze the whole procedure in two-type step-

wise group screening designs.

1.5 Methodology

The goal of the group screening procedure is to minimize the number of tests (runs) required
to isolate all the defective factors. There have arisen various methods obtaining designs that

minimize the expected number of runs. Some of these methods are;

i) Computer simulation:
We use computer surge to generate the best combination of group-factor sizes and

the probability of factor being defective for which the number of runs for the design



is minimum. These values are then used to compare the efficiency of the design with

other designs.

ii) Numerical approximation:
We are going to use testing of hypothesis as our approach. The hypothesis will be
used in the following steps;
a) Ho: 1% order group-factor is declared non-defective.

H, : 1° order group-factor is declared defective.

b) Ho : 2" order group-factor is declared non-defective

Hy : 2" order group-factor is declared defective
c) Ho: Afactoris declared non-defective
H; : A factor is declared defective

Using the distribution functions of the 1* and 2" order group-factors declared
defective we derive an expression for the expected number of runs required for two-type

stepwise group screening designs with errors in observations for two cases.

1.6: List of symbols and their definitions

Symbol Definition

f Number of factors under investigations

g1 Number of first order group-factors in the initial step

g Number of second order group-factors in the type-one
search steps




ke

The size of the first order group-factor in the initial step

ky The size of the second order group-factor in the type-one
search steps

p The a-priori probability that a factor is defective (q=1-p)
The probability that a first order group-factor in the initial
step is defective

my
The probability that a second order group-factor in type-

T one search steps is defective

ny Number of defective first order group-factors in the initial
step.

n, Number of defective second order group-factors in the
type-one search steps

f(n1) Probability distribution of n;

f(na|ny) Conditional probability distribution of n; given n;
Probability that the second order group-factor is defective

. given that it is within defective first order group-factor.

5

n The probability that a second order group-factor chosen at
random from the first order group-factor in the initial step
that has been declared defective is defective.

011 The probability of declaring a non- defective second order
group-factor defective.

Y11 The probability of declaring a defective second order

group-factor defective




=

The probability that second order group-factor chosen at
random from the first order group-factor that has been
declared defective in initial step is declared defective in

subsequent steps of type-one search steps

The proportion of first order group-factors that are
declared defective but second order group-factors within

them are declared non defective.

By, 1)

The probability that exactly j; second order group-factors
that are declared defective in initial step are declared

defective in type-one search steps.

Eg, (Rj,)

The expected number of runs required to declare as
defective or non-defective all the g, second order group-

factors within the defective first order group-factors

The probability that a factor chosen at random from
second order group-factor in type-one search steps
containing s defective factors that have been declared

defective is defective.

Qs

The probability of declaring a non defective factor

defective

Vs

The probability of declaring a defective factor defective in

the type-two search steps

The probability that a factor chosen at random from
second order group-factor that has been declared

defective in type-one search steps is declared defective in




subsequent steps of type-two search steps

Proportion of the second order group-factors that are
declared defective but the factors within them are

declared non-defective

Py, ()

Probability that defective second order group-factor

contains exactly j, defective factors

E,(2)

Expected numbers of runs required to declared as
defective or non-defective all factors within a defective

second order group-factor

0
R,

Number of runs required to declare as defective or non-
defective all g; second order group-factors within a

defective first order group-factor

1

Number of runs required to declare as defective or non-

defective all n;g; second order group-factors

0
Rt,

Number of runs required to declare as defective or non-
defective all the k; factors within a defective second order

group-factor

2

Number of runs required to declare as defective or non-
defective all nyk; factors within the defective second order

group-factors

Total number of runs required to investigate the f factors

Ri

Number of runs required to declare the g; first order
group-factors as defective or non-defective in the initial

step

10




oy The level of significance of tests in the initial step

Qa; The level of significance of tests in type-one search steps
A The effect of a factor

o’ The error variance

my(6®y,a4) The power of the test in the initial step

T (6,,05) The power of the test in type-one search steps

When screening with unequal group sizes the above symbols have been slightly modified,

subscripting them appropriately.

11




CHAPTER 2

Two-type step-wise Group Screening Designs With Equal prior
probabilities and Errors in observations.

2.1: Introduction.

When screening with two-types of search steps, we first divide the f-factors into g first
order group-factors each of size k; (f=k;g;). In the initial step, the first order group-factors are
tested for their effects. Let n; be number of first order group-factors found to be defective in
the initial step. Each defective first order group-factor is further divided into g, second order

group-factors each containing k, factors (ki=k,g>).

In the first of type-one search steps, we start with any of n; defective first order group-
factors. We test the second order group-factors within it one by one till we declare second
order group-factor defective. The second order group-factor declared defective is kept
separate. In second of the type-one search steps we test the remaining second order group-
factors in pooled group. If the pooled group-test is declared non-defective, then the test
procedure is terminated. Otherwise in the third type-one search steps, we continue testing the
remaining second order group-factors one by one till another second order group-factor is

declared defective

The second and the third type-one search steps are repeated successively in the
subsequent type-one search steps till the analysis terminates with a pooled group-factor
declared non-defective or a single second order group-factor declared non-defective. This test
procedure is performed on all the n, first order group-factors declared defective in the initial

step.

Finally factors within each second order group-factors found to be defective in type-one

search steps are declared as either defective or non-defective using type-two search steps.

12



2.2: Expected number of runs

Suppose f-factors are divided into g; first order group-factors of k; factors each in initial
step. Each first order group-factor is tested at two levels. Assuming that all interactions effects
are negligible, we shall require,

Ri=gi+4-g; (mod4)
=g,+h, h=1, 2, 3, 4 2.2.1
runs to estimate the main effect of g; first order group-factors orthogonally.
Let G; be the estimate of the main effect of any first order group-factor in the initial step
with 8 (=1, 2, ..., k1) defective factors each with effect A >0. Then,

0.2

bl

E(G,) = 64 and var(G,) = ol

where o is the error in observation. Now define

A

_ G1 - 5A
/_U__
g1 +h

=y, —09P;.

Gq 4
— and &, = —
gith Ng1+h

Assuming that the observations are normally distributed, z; is a standardized normal

where y; =

variate. We shall say that a first order group-factor is non-defective if 6=0, which implies that
8®,=0. On the other hand a first order group-factor will be defective if 5¢,20. Therefore our

hypothesis will be expressed as,

13



In testing the above hypothesis we shall use normal deviate test if 6° is know, otherwise

we shall use the t-test if 0% is estimated from the experiment.

Let ity (69, a;) denote the power of test in the initial step. Then,

1 —z}
(6P, ap) = f Eexp (Tl> (7 74 (RN B 8 >

z1(a1) =6,

where z; (a4) is given by

j \/_exp <_Z )621 i i e e AR i A st

zy(ay)

A
When 6=0 or p = 0, we have iy (0 a;) =a; and when 6#0 and % is large, then we have

JAST (éq)l' OLl) =1.

Let Ty denote the probability that first order group-factor is declared defective in the initial

step. Then,
Ky iy
t = z ((;)105(1 D) IS (8D, A1) o o o o e e e s 227
5=0

14



Further let n; be the number of the first order group-factors declared defective in the initial

step. Then the probability function of n; is given by,

0
g1 «11 *\ g1 — g 0o _
f(ng) = p(n1 = Tlg) = (ng) H (1 - 7-[1).9 " ’ ny = 1.2, w01
0, otherwise ................2.2.8

Thus

*

fr3

E(ny) = gym} = T
1

Now suppose n; first order group-factors are declared defective and each of these first order
group-factors are divided into g, second order group-factors of size k,. Then in total we have

n.g, second order group-factors to test.

Let G, be the estimate of the main effect of any second order group-factor with s (=0, 1,

2...k;) defective factors each with A>0. Then,

E(G,) = sAand var(G,) = e e e 229

where o?is the error in observation. Define,

Gz - SA

0'2
nyg, +h
=y, — s,

., 4

where y, = ——=——= and &, =

_o? _o?
nig1th nig1+h

15



Again in type-one search steps we assume that the observations are normally distributed,
then z, is a standardized normal variate. We shall say that a second order group-factor in type-
one search steps is non-defective if s=0, which implies that s®,=0. On the other hand a second

order group-factor will be defective if s®,#0. Therefore our hypothesis in type-one search steps

is expressed as,
Ho : Sq)2=0

....................................................... 2.2.11
H1 i S(D2¢O

To test above hypothesis we shall use normal deviate test if 6% is known. Otherwise we shall

use the t-test if o%is estimated from the experiment.

Let i (s®,, o) denote the power of test in the type-one search steps. Then,

r 1 —2z3
T,(sP,, a,) = f \/__exp< 2)622 S — . .

Zy(ap)—sP,

where z, (a;) is given by

fm ! <_Z )a 2.2.13
27[ P 5 2 -

zy(az)
When s=0 or% = 0, we have i, (0 a;) =a; and when s#0 and 3 is large, then we have
119 (SCDZ, az) =1.

Let 7r; denote the probability that a second order group-factor is declared defective in

type-one search steps. Then,

ka

k
Ty = Z ( ;) pS(1 — ) 1Sy (5Dy, @g) won v e e v e v e 2.2.14

s=0

16



Also let T[;, denote the probability that the second order group-factor is declared
defective given that it is within a first order group-factor that was declared defective in the
initial step. Then,

*

i = 2
2 T %
US

Then the conditional probability of n, the number of second order group-factors declared

defective at the end of type-one search steps given n; is given by,

n?gZ *rng 1 o 91—71(2) 5 5
f(m3/n?) = n? m, (1-m) : n; =12, ..,9,
0, otherwise ..........c.......2.2.15

Then
E(n3/n?) = ndg,ms
E(nQ) = E{E(n/nd)} = E(g,m3 ny)

i
_ * ok
= 019, T,

ks -
Let U be the probability that a second order group-factor chosen at random from the first
order group-factor containing r defective second order group-factors that have been declared

defective is defective. Then,

g2
T, gz — 1) r-1 _
= — 5 (1—-—my)e T (60, a
Tt T (7‘—1 m, (1—-m3)8 "'y (6P, aq)
=
o
T4

17



g2 _ -
Where TF = Z grz_ll)n;r (1 —m3)8 ' (D4, ay) is the probability that
r=1

the first order group-factor containing at least one defective second order group-factor is

declared defective in the initial step.

Let ay; be the probability of declaring a non-defective second order group-factor defective
and y1; be the probability of declaring a defective second order group-factor defective in type-
one search steps. Further let § be the probability that second order group-factor chosen at
random from a first order group-factor that has been declared defective in initial step is

declared defective in type-one search steps. Then,

.E = 7T+V11 +a;,(1—m")

T+ T2+
= =" +a (1 ——T )
V11 o 11 -

,8+
Us
Where Bt =m;(y11 — @)t + miagy
Let aj be the proportion of the first order group-factors that are declared defective but
second order group-factors within them are declared non-defective. Obvious a7 is different in

all steps of type-one search steps but because of simplicity in algebra we shall assume it is

constant.

Let B, (j1), j1=1, 2,...,82 be the probability that exactly j; second order group-factors from
the first order group-factor that has been declared defective in the initial step are declared

defective in the type-one search steps. Then,

1 _

1-—{1-(1- B0 =0, 2217
* [ _ 1
sz(ll) 1792\ 5. = ;
—(P)prra-gheh, =12,
1 N1

18



Let Egz (le), j1=1,2,...,82 be the expected number of runs required to declare as defective
or non-defective all the g, second order group-factors within a first order group-factor which
has been declared defective if exactly j; second order group-factors are declared defective.

Then following Manene and Odhiambo (1987) we have,

( gZ jl = O
] ' ' +j, —2
.]192 4y - St _11(92 J1 )
Jit+1 Ji+1 g2(g, — 1)
E> (R; )= ] ] j 2
gz( j) = 9 ele 92 _ ' Ji I J1 )
i+l ji+1 g—1 g,(g,—1)
(1 — o,
_]1( $1)(92 ]1)’ For Ju =170 s 65

\ g2(g9, — 1)
......................................... 2.2.18

Where

_ (0, if a; =0
1= {1, otherwise
In type-two search steps we shall use non-orthogonal designs. We use one of the h runs in
the initial step as the control run. Let p_ be the probability that a factor chosen at random from
the second order group-factor containing s defective factors which has been declared defective

is defective. Then,

k;
T ky—1\ _
p :n—; <52_1>ps 11 = p)esSmy(sPy, ay)
s=1
7T+
| 2,219
T,
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Where 715 :Z (k2 DpSTH(A - p)eTST, (s, ay)

Let a, be the probability of declaring a non-defective factor defective and y; be the
probability of declaring a defective factor defective in the type-two search steps. Further let §*
be the probability that a factor chosen at random from second order group-factor which has

been declared defective in type-one search steps is declared defective in type-two search steps.

Then,

Where B—l* = p(ys - as)ﬂf + ma;
Let a; be the proportion of second order group-factors which are declared defective but
individual factors within them are declared non-defective. Obvious a; is different at every stage

but because of simplicity in algebra we shall assume it is constant.

Let P, (J2) j2=1, 2... K; be the probability that exactly j, factors from the second order group-
factor that has been declared defective in type-one search steps are declared defective in the

type-two search steps. Then,

(1=81) %), =0, 2220

sz(fz) =

1 /k, 72
—| . *201 — Br)ka i, =12,..,k
7T2 (]2> ( ,81) ]2 2
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Further let E} (R;,) denote the expected number of runs required to declare as defective
or non-defective all the factors within a second order group-factor that has been declared

defective in type-one search steps if exactly j, factors are declared defective. Then,

( k,, jz =0
Kk ' (ko +j, — 2
'Jz 2 4y +- J2 _]2( 2 T2 )
J2+1 J2+1 ky(k, — 1)
l; }?' — kf . . i)
kz( ]2) ] Fai(- 2___ Jo )2 n Jz )
]2+1 ]2+1 kz_l kz(kz_l)
(1 - o
_]2( $2)(ky — J2) for jp =12, ...k,

\ ky(k, —1)
......................................................................... 2.2.21

Where

fz={0' ifa; =0

1, otherwise

Denote R?l the number of runs required to declare as defective or non-defective all the g,
second order group-factors within a defective first order group-factor using type-one search

steps. Then,

92
E(Rg) = Z Egz(le) Pg*z (]1)

j1=0
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:gz_%{1—(1—ﬁ_+)gz}_ﬂ%‘{(2_fl)ﬁ_++f1:§+2}
+i*{gz 14 g, _‘8_%[1_(1 _E+)gz+1]}

1 - +1 = = .5 il = = 7
[1- (=" ~gaB (1 - )] - 1-B* + 5

+ﬁ{_
m Bt

........................................... 2.2.22

Let R;, be the number of runs required to declare as defective or non-defective all n,g;
second order group-factors within n; defective first order group-factors using type-one search

steps. Then,

Rt1 = nlE(Rg)
Thus

E(R:,) = E{myE(R)}

+fﬁ_+[i—2_—€1—a—;]—L{l—(l—[?*)kl} LA

..................................................... 2.2.23

Denote Rto2 the number of runs required to declare as defective or non-defective all the k;

factors within a defective second order group-factor using type-two search steps. Then,

ko
E(R)) = Z Ex, (Rj,)Pi, U2)

j2=0
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ks 1 3 e
=l = {1 - (1= )"} - =@ - 05 + 657

1 1 N
+—;{k2+1+kzﬁ;—7*[1—(1—ﬁ+)k2 1]}

*

+ —{— [1- (=5 = kB (1 - B7)"

T —1-6;+pB1)

N
| S

.......................................... 2.2.24

Let R, be the number of runs required to declare as defective or non-defective all n,k;
factors within n, second order group-factors found to be defective at end of type-two search

steps. Then,

R, =n,E(RY)
Thus

E(R.,) = E{n,E(R}.)}

_f+f+f7t2+f,81[ —2—%—2—;] F{1-(1- ")

— szlgi" {1 — (1 — IB_ik)k2+1} (1 _ a;) _flgl (52 B a;) _faz

ky ey
—faz(1-B;)"

«:2:2.25

Theorem.

The expected total number of runs in a two-type step-wise group screening designs with
errors in observations, in which k; is the size of each first order group-factor and k; is the size

of second order group-factor where all symbols are as stated earlier is given by
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BR) =h+ Lt Loy pry 2 p [0 8]y B 6, oy 4

2 )15 -3 -
“5){(1‘35)k2 =7 {1—(1—131)"2“}}7(1— ap @2

E {1_(1_ +)k1+k2}

Proof

The number of runs required in initial step is R, the number of runs required in type-one
search steps is E(Rtl) and the number of runs required in type-two of search steps is E(th).
Thus

E(R) =R, +E(R;,) + E(R,) and
E(R) = R; + E{n,E(RY)} + E{n,E(RY.)}

The expression for expected number of runs required reduces to that in the theorem on
substituting the expressions in equations (2.2.1), (2.2.23) and (2.2.25) and simplifying it. This

completes the proof.

Special case

If there are no errors in observations, then a;; = a; =& =&, = af = a; = 0, where all
symbols have usual meanings. Also 8; = p andf™ = p, y11=ys=1and 5 = 1 — ¢*2 and

m; = 1 — g*timplying my=m,=1.
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Therefore the expected total number of runs required to analyze all f factors using two-type

step-wise group screening design is

o f 2f o fl=g%) 2 L
E(R)—h+k—2+~la+f(1—qk)+—k2—“‘fp<1_k_2>+fp<k_2_a)

) f 5 f _L — glkatka

+fq~ —*—(1 q" 1)+k2 klp(1 )
f 2f L f Zoy  F F o, A
h+k_2+_+f fk+k kzqk +fp - kz k2 k_zqk k_l
f 2 2 f 2+ f 1 f(l—qRZ)_l
k1 gz + fq* _E—(l q" 1)+Eqk_ k, (1

qk2+k1)

..2.2.26
Simplifying the second equation (2.2.26) we get

_ f pr DTN NI ISR e
E(R) = h+f+ +fr— % kzq +k1q kzp(l qeT)

gy
ASs

(1 —q'=*)

which the expression obtained by Manene (1987).

Corollary 2.1

A . .
For large values of p and arbitrary values of p, the expected total number of runs required

in two-type step-wise group screening designs is approximately equal to
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2 1, %
hb L+ D - (- g+ L - - ey - [E 4

ok kK
1 — A)? 1 — B)?
+f{—( 2 ) (fz_a;)‘l'—( I ) (51_“1}
2 1

+f{(1—A)[1—2_52—-a—;]+(1—8)[—1——3_—€1—ﬁ]

(=) B (1-p
—f(l—az){A —m}_f(l _a1){k2 - k.(1—B)
where
A=1-{p(—ay)+a,(1—a,)q*}
B=1-{p(1—-ayy)+a;;(1—a;)q"}
Proof

A, : -
If —is large, we have the following approximations,

T =1—= (1= a)q" et et 2.2.27
T =1—(1=a)q% e 2.2.28
V11 = Vs = Lot e s e e oot et e e e e e e e o0 22229
T =T = 1 s e s von comiman wes men cam ave wm ans svn ws sns s wes Bos 30
LT =p(1l—ay) +a;;(1—(1—a)gk ... .2.2.31
Bi=p(1—a) +a,(1—1A—a)gk ... 2.2.32
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The corollary follows immediately on substituting the above approximations on the

theorem above. This completes the proof.

Corollary 2.2

A .
For large values of; and small values of p, the expected total number of runs in two-type

step-wise group screening designs is approximately equal to

h + i—f + {1 — ay)pk, + ay} + kL{(l — ay)pk, + a}

- (1=, et DO )
E 2
L 2-6 K
+fp(1_a11){k_2_k—l_'k‘2‘
by + k) + ko = D0 = ot
e e BT

Proof

A * * .
If; is large then ai , a3, , ay; ay, and agare relatively small, we have

1= —a)q" = kP + g e e et e e 0. 2.2.33

1—(1—ay,)q" = (1 —a)kp + Ag eeeev e v e e 2.2.34

The corollary follows immediately on substituting the approximate values given above in the
expression in corollary (2.1) and approximating the resulting expression to terms of order p.

This completes the proof.
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CHAPTER 3

TWO-TYPE STEP-WISE GROUP SCREENING DESIGNS WITH UNEQUAL
PRIOR PROBABILITIES AND ERRORS IN OBSERVATIONS

3.1: Expected number of runs.

Suppose f-factors are divided into g; first order group factors of k;; factors each in initial step.
Each first order group factor is tested at two levels. Assuming that all interaction effects are

negligible. We shall require

Ri=g; +4 -g; (mod 4)
T U 1 U T OSSO S 3.1.1

runs to estimate the main effects of g; first order group factors orthogonally.

Let Gy; be the estimate of the main effect of the i" first order group factor in the initial step

with &; (i=1, 2...kq;) defective factors each with effect Ai>0.Then

2

E (Gli) =61Ai and Var (Gli)z \/QE;}:
Next define
G.: — 8:A:
DT i U &y
0—2
g1+ h
=y1i-0id1;
where
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Vi = —
g1 +h
4;
Dy = 2
g1 +h

Assuming that the observations are normally distributed. Z;; is a standardized normal
variate. We shall say the i"" first order group-factor is non-defective if §;=0, which implies that

6id1;=0 and it is defective if ;20 or 6i¢p1#0. Thus we wish to test the hypothesis,
o : 6id1=0
.................................................. 3.1.3
Hl 3 6i¢1i¢0

Assuming o is known, we shall use the normal deviate test, and otherwise we would use a

corresponding t-test. The power of the test for the i" first order group factor is

2

1
1 (6; Py, ;) = \/T—T[QXP (

102y e e 314

z1i(@1)) =i ;

where z,;(a;;) is given by

which is the size of the critical region for testing significance of the i" first order group-factor.

When §;=0 or %zo we have,

m1;(0, a1;) = oy

When 6;#0 and %1 is large, then we have

29



1 (8, 1) = 1

Let r;; denotes the probability that the i'" first order group-factor is declared defective in

initial step. Then,
k1i

. kii\ s o

Iy = (5i )pi (1 — p)) %y ; (6; Py, Agf) wn con cee vee v .3.15
5;=0

where p; is the probability that a factor in the i" first order group factor in initial is step

defective.

Define a random variable U;; as

U = 1 if the it" first order group factor is defective
i 0 if the it" first order group factor is non — defective

Then
E (Uy) = my;
Now let n; be the number of first order group- factors declared defective in initial step. Thus
—\Y9 N ) *
n, = i=11 Uy; and E(ny) = i=11 Ry

If ny is the number of first order group-factors found to be defective in the initial step. Then
the i™" first order group-factor found to be defective is further divided into g,; second order

group-factors each containing kj; factors such that.

kyi=k2ig2i
In total we have Z‘igzll U;;g,; second order group-factors to test.
Let G,;be the estimate of the main effect of the i second order group-factor in type-one
search steps with s; (=1, 2............. k,i) defective factors each with A;>0. Then,

2

E(Gzi) = SiAi and Var(@zi) = \/ﬁ

Now define,
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Zy; = ' . £, -

?;1 Uli.gzi +h

=Y2i-Sidbyi
Where
B G
Yoi =
a2
?jl UliQZi + il
4;
D, =
a2

2 Usigai +h

Assuming that the observations are normally distributed, z,; is standardized normal variate.
Then the i second order group-factor is non-defective if s; =0 or s;®,=0 and its defective if s;#0

or si®,#0.Thus we test the following hypothesis,

Ho : si$2=0

........................................................ 3.1.7

If o is known we shall use normal deviate test or otherwise we would use the corresponding

t-test. The power of the test is given by

oo 1 B
T[Zi(siq)zi' a'zl-) = j \/—Z:ﬁexp ( > )aZzi et eee e e e 0 3.1.8

Z2i(@zi)=Siv,;
where z,;(ay;) is given by
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j exp ( 7 2025

ZZL(QZL

which is the size of critical region for testing the significance of the i'" second order group-

A; . Y
factor. Also when s;=0 or ;‘ = 0 we have 1,;(0, ay;) = a,; and if s;z0 and is ;‘ large then,

T2 (5;Py) = 1

Let z;; be the probability that a second order group-factor is declared defective in type-one

search steps. Then,
kai

* = Kai\ st 1 —pat=Sig. . (5:D0s. s 31.9
T < ) Pi (1-p)) Mo (S; Dy, Agi) v e e ee e w3010
L

Also let H;: denote the probability that the second order group-factor is defective given that

it is within defective i*" first order group-factor

Let ny; be the number of second order group-factors declared defective among g, second
order group-factors within the i first order group-factor which was declared defective in the

initial step, then for n,=1,2,3,...,g2;and i=1,2,.....,8;.

E(nzl/Ull) = ngT".;L and E(lel) == gzin;i.............................3.1.10

Let 7; be the probability that a second order group-factor chosen at random from the it
first order group-factor containing r; defective second order group-factors that have been

declared defective is defective. Then
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82i

* Uss 92i — 1 #Ti—1 * _——
m=— ( o 1 )“21 (1 — m3;) 827"y ( 6; Py, @qy)

82i
. 920~ 1) "7 (] _ ot )Bai i
where TT;" = Z (ril—l ) Moi (1= 15827y (8 Py, ;)

ri=1

Let a;;; be the probability of declaring a non-defective second order group-factor
defective from the i first order group-factor and let y;; be the probability of declaring a
defective second order group-factor defective in type-one search steps. Further let 3; be the
probability that a second order group-factor chosen at random from the i" first order group-
factor that has been declared defective in initial step is declared defective in type-one search

steps. Then

B = ”;Vui + ay4; (1 — ”;)

T[;ini-l_ "Zi"?
— ot 1=
= Vi1i T T Q114 ”
: Usy; UsTi
_ B
Ty

N+ __ * e *
where 8" = 15;(Y11; — A11)T; + 10445

Let aj; be the proportion of first order group-factors that are declared defective but
second order group-factors within them are declared non-defective. We shall assume aj; is

constant for all steps for simplicity in algebra.

Denote Pg*zi(jl), j1=1,2,...,82 be the probability that exactly j; second order group-factors
from the i first order group-factor in the initial step that has been declared defective in type-

one search steps are declared defective
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—{1-(-g)"™}, =0
* . _ 1i
szi(]1) - il

(Sjjl) Y = B9, 0 =1,2,.. 9y

*
UsTi

............................... 3.1.12

Let Egzi(Rj1) ji=1,2,...,82i be the expected number of runs required to declare exactly j;

second order group-factors defective from the i initial step first order group-factor which has

been declared defective in the initial step. Then,

( 92i ji=0
J192i . J1 _f1(92i +Jj1—2)
jl+1 TR T 9ulgn- D
Eg,.(R;,) =1 ( Ji h n Ji )
i + 1 Jit1l gai—1 g2(92i — 1)
_]1(1 511)(921 J1) for ji =1,2, .., gy

\ 92i(g2i — 1) ’
...3.1.13

Where

o {O, if aj; = 0

1, otherwise
In type-two search steps we shall use non-orthogonal designs. Let p; be the probability that
a factor chosen at random from the i second order group-factor containing s; defective factors
that has been declared defective in type-one search steps is defective in type-two search steps.

Then,
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, _ D (kzi_l

si—1 Koi—5s
; 1 — p;)%2isi . ; ’ :
bi n;l S; — 1 )pl ( pl) T[21(SLCD2U aZl)
si=1
+
OO % K. 7
oy

Koi
4 k,;i—1 si—1 Koi—s:

si=1

Let ag; be the probability of declaring a non-defective factor from the i second order
group-factor in type-two search steps as defective and y,; be the probability of declaring a
defective factor as defective in type-two search steps. Further let B_l* be the probability that a
factor chosen at random from a second order group-factor that has been declared defective in

type-one search steps is declared defective in type-two search steps. Then,

Bl* = pl{]/SL' + asi(l - p{)

+ -
PiTtq; piTty;
:]/Si T[* l+a5i<1_ *'l>

20

_ Bu
T
Where By; = p; (Vsi — as)Ts; + 5t
Let a3; be the proportion of second order group-factors which are declared defective but
the factors within them are declared non-defective. Obvious a3; is different in all steps of type-
one search steps but we shall assume it is constant in all steps of type-one search steps for

simplicity in algebra.

DenotePy,,(J2), (j2=1,2,...ka) the expected number of runs required to declare exactly j;
factors defective from the i'" second order group-factor which has been declared defective in

type-one search steps. Then,

35



K2 .
- A-g)™L j=0
Py,;G2) = 1 kZL
<] ) *12(1 ﬂ )kZL ]2 j2 = 1,2,..k2i
2

*
UPTi

..3.1.15

Further let Ey, (R;,) denote the expected number of runs required to declare as defective
or non-defective all factors within a second order group-factor if exactly j, factors are declared

defective. Then,

( ki, J2=0
ey i (ki + 7, — 2
.]2 2i Ly 4 - J2 _]2( 2i T J2 )
J2 +1 J2 +1 koi(ky — 1)
Ekzi(sz) = ki J2 J2 ]22
+a21( _ + . )
+ 1 J2 +1 kzi 1 ky(ky —1)
]2(1 $2i) (kai — J2) )
- , or j, =1,2,...,k,;
SRR for 1z 2

............................ 3.1.16

Where

0, if as; =0
52i={ f 2

1, otherwise

Let R?l be the number of runs required to analyze the i"" first order group-factor once it

has been declared defective in the initial step. Then,
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g2i

E(RS) = ) By, (R;)Py,, (i)

j1=1

— iﬂ{l_@ 5)°%) -

1i

)BT+ fli:éi+2}

{gZL + 1+ g,:8 ,31+ {1 — (1 — .B_;r)gnﬂ}}

ll i

*

1i 1 5+\92it1 o+ H+\9z2i o+ o+2
Gl(1 = (=A™ —gubt (1 =B} =1 =B + B

1i i

............................ 3.1.17

Denote R, the number of runs required to analyze all the first order group factors

declared defective in initial step. Then,

91
R, = > Uy E(RS)
i=1
91
E(Rtl) = z {”;igzi - gzi{l - (1 - .B_f)gﬂ} -2 - fll)ﬁ—:- + Szuﬁfz}
i=1
+ ;{gu +1+ g2t ~ %{1 = (L=Bry 3t

iau{gl (1 (=B} - gaibt (1 - B0} 1= B + B

............................................. 3.1.18

Let R?Z be the number of runs required to analyze the i second order group-factor once it

has been declared defective in type-one search steps. Then,
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ko

E(R?Z) = Z Ekzi(Rjz)szi(iZ)

J2=1

= ky; — %{1 - (1 .Bu)km}

21

— &P + fztﬁfiz}

1 _ 1 +1
+TMWH+@%—Fﬁ—O Bi) ™ h

21 1i

Ko+

(1-51) — kaiBri(1 - Efi)kn} —1- B + B}

Zl :811
.....3.1.19

Denote by R, the total number of runs required to analyze all the second order group-

factors declared defective in the type-one search steps. Then,

91
R,, = ) Usinyi E(RS)
i=1

E(R.,) = Eﬁwwmkﬂvn Bi)™} - @ — &)Bl + €}

+Z k {kZL +1+ kZLﬁll ﬁl {1 - (1 - Bll)k21+1}} +

1i

g1 "
kijay; 1

k2l ﬁll

{1 -(1- 511)%“} ka1 — Br)¥et — 1 — By + Bii)

i=1

........................................... 3.1.20
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Theorem

The expected total number of runs required to analyze all the factors in two-type step-wise

group screening designs with unequal a prior probability is given by,

g1
ER) —h+291+z et (=B A - +

91

.1 2-&; aj; _ .
> teasfi G — 2 = 2 — & — )} -
=1 k2i 1i 1i

% (1—a;) —ag;} +

i{ 1 . (1 IBL_*_)klﬁkzi)

g1

* N * - f [ a *
2 {1 + kaimty; — g + ko <1 X ,21 2 — B1i (&2 — a3)} +
= 2i 21 ZL
gl k21+1
1-(1-51)
k21 1l *
k {kZL(l :311) (1—-ay) - ( ) (1—ay)}
=i Kai :811
Proof:

We note that

E(R) =R, +E(R,) +E(R.,)
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Then,

g1 g1
E(R)=R,+E Z Uy; E(R?l) +E Z i E(R?z)
=1 =1

The expression for the expected number of runs reduces to that in the theorem on

substituting the expressions in the equations (3.1.1), (3.1.18) and (3.1.20) and simplifying

Special case

If there are no errors in observations then a;,; = ay; = &;; = &; = af; = a3; = 0,where all
symbols have their usual meanings. Also ]; = p; and 5 = p; with yi;=1and ys=1.71;; = 1 —

qf” andm;; =1 — qu" with my=1 and my=1

Then the expected total number of runs required to analyze two-type stepwise group

screening design without errors in decision is,

k kai 2 koi
t )% {1+ k(1= q;*") + kaip; (1 ——,) + kpiq"*
21

1

~— (1 - ghe))
pi

Simplifying the equation above reduces to
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et
E(R) - h + f + Z{qum + klipl — (1 — ql((ZL) (1 _ kll+k21)}

1
kzx koi+1
— 29 — _(1 = 2i )
Z kZL Pi Pi q }

which is the expression obtained by Manene (2005).

Corollary 3.1

A; . .
For large values of ;‘ and arbitrary values of p; the expected total number of runs in two-

type step-wise group screening design with the i" first order group-factor of size ky;i=1,2,...,81 is

approximately equal to

h+2g; + Z 1= - a)g + Bi(1 - a})

1 2-§&; ay; .
+ Z{ku(l = By [k T —— kll] — (1 - By)?[¢y; — a3i]
i 2i 1i 1i
g1 (1 _ Bik1i+k21)
[=
: . 2—&; ay
+ k(1 — (1 — ay)q; 21) + az; + k(1 —Ay) [1 % ,ZL — sz]
21 21

— (1 —-AD?[& —ag] + kZiAi'CZi(]‘ — ay;)
(1 a0

1— 4

(1 —a3)}
where A; =1 —[p;(1 —ag) + ag(1 — aZl)qRZL]

kqi
B; =1—[pi(1 — ay4;) + a14;(1 — Q’u)q M.
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Proof

A; . oL
If;’ are large, then we have the following approximations,

Ty = 1= (1= )G oot et e e e 3,121

My = 1= (1= @) G % e oee oo oo vt e e ene2.3.1.22

V11i = Vei = L oo oo eoe e oo oo o eee e eee oo o 31,24
B =p(1 —ayqy) + (1 — ali)qf” e e e e e 3.1.25
B = pi(1 — ag) + agi(1 — @) Q1% woe v vee e r.3.1.26

The corollary follows immediately on substituting the above approximate values on expression

(3.1.20). This completes the proof.

Corollary 3.2

A; .
For large values of ;‘ and small values of p; the expected total number of runs in two-type

step-wise group screening designs with g; first order group-factors in the initial step, the i™" first

order group-factor being of size ky; i=1,2,...,81 is approximately equal to
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g1
k..
h+2g; + Zk—zl{l + (1 —as)pikay + @i — (1 — aqa)piles; — @)
i=1 <
g1

1 2-¢,
+ Z{Piku’(l — a11;) [k % .“]
= 21 1i

g1
kii + ko — Dpi(1 — aqq;
+Z{(k1i+k2i) [1_( 1i 20 )pi( 11)_aiil_aii}
i=1

2

gi

I

+ zﬁ{l + a5 + (1 — ay)pikd; + kyipi(1 — agy) [1 S
= =

+ koi[1 — koipi (1 — ag) — a3

(ke + 1) [1 B kzipi(lz— Asi) a;i]}

2 = fzi]
ko

Proof

A : .
If;‘ are large, then ay;, ay;, a;, a5;, @11; and ag; are relatively small. Hence if pi's are small

we have,

kqi

(1 - all)ql - (1 - all)kllpl + ali sluia ‘wimin: ialnst aas| wiue simial el tejain 31.29
(1- azl-)qu" = (1 — ay))koip; + Agj e ceeveevee e e e .. 3.1.30

The corollary follows immediately on substituting the approximate values given above in
corollary (3.1) and approximating the resulting expression to terms of order p;. This completes

the proof.
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CHAPTER 4

4.1: Concluding Remarks.

The usual sampling inspection plan consists of drawing samples from the population. All
the items in the sample(s) are then examined. If the proportion of defective items in the
sample(s) is small, then they are replaced by good ones and all items in the population are
accepted. In such cases some items are passed without being inspected. In group screening
designs however every item is subject to inspection either in groups or individually. Group
screening designs are thus some kind of 100% sampling inspection plans. Thus screening
efficiency of two-type stepwise group screening design can be measured in terms of expected

number of runs E(R). The small value of E(R) indicates the better performance on average.

When screening with errors in observations the value of the expected number of runs is
higher than the value for the corresponding case when screening without errors in observations

in two-type step-wise group screening designs as seen in tables in appendix.

The result presented in tables 1, 2, 3 and 4 are only for illustration and are intended to

indicate that it is possible to use corollary (2.1) to show how two-type stepwise group screening
. . & 4 A :
design works for certain values of p, ay, a,, aj, @3, ag, a414, k1, k1 and p such that E(R) is

minimized.

Group screening techniques can be used in industries in sorting out defective items from
non-defective ones with substantial saving in cost of inspection and time. In chemical industry,

the technique has been used for example in;
i.  classifying an unknown chemical element,

ii.  selecting the best catalyst for chemical reaction from a large number of compounds

which was are possible candidates.

Group screening techniques have also been applied in biological experiments.
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4.2: Recommendations for Further Research.

The value of a factor being defective should always be small for this design to work.

This design, one can extend to three-type stepwise group screening designs and
generalize to multi-type step-wise group screening designs with errors in observations

considering the two cases that is equal and unequal prior probability of factors being

defective.
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APPENDIX

Simulation of Tables.

Using the corollary (2.1) for expected number of runs required to analyze the f-factors in

the two-type step-wise group screening designs which is

h+L+g£+f{1—(1—a2)q’<z}+ /

- (F1- (1 - @)} - f[“l “2]

1 — 2 1— 2
+f{( 2)(52 a;)+%(51—aik}

(1- Ak2+1) Bk1 (1 — Bk2+k1)
k,(1—A) } B B

- fQ - a3) {Akz -

where

A=1—{p(1—a)+ a1 —ay)q"}

B=1—-{p(1—ay;)+a;;(1- a1)qk1}

where the symbols above have the usual meanings as stated before.

We then generate some tables for specified values of p with the best combination of k;
and k, which gives the minimum number of runs required to analyze two-type stepwise group
screening design with errors in observations and equal prior probability of factor being

defective, we then compare with the case when we have no errors in observations.
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Table 4.1

f=100,h =3,a;, = a, = 0.005,a; = a; = 0.005,and a; = a;, = 0.002

p k1 ko E(R) with errors in E(R) without errors in
observations observations
19.6581 17.0182

0.001

50 23

0.002 45 18 23.2323 21.0894

0.003 35 13 27.5916 25.8969

0.010 25 10 43.2445 41.9011

0.020 15 8 62.8761 61.6136

0.030 15 7 73.3567 72.0303

Table 4.2

f=100,h =3,a, = a, = 0.01,a] = a} = 0.01 and a, = a,, = 0.01
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p ky ko, E(R) with errors in E(R) without errors in
observations observations
0.01 35 9 44.1574 39.3938
0.02 25 7 59.3295 55.5443
0.03 15 6 75.0831 71.6544
0.04 15 6 84.2162 80.9174
0.05 15 5 92.5327 89.1929
Table 4.3

f=200,h=3,a; =a, =0.005,a; =a; =0.005and a5, = a;; = 0.002

P kq ko E(R) with errors in E(R) without errors in
observations observations
0.001 50 21 36.2646 31.3087
0.002 35 17 47.0039 42.8924
0.003 20 14 64.1534 60.6594
0.010 15 9 97.3544 94.7718
0.020 15 7 122.1501 119.62954
0.030 15 6 143.0944 140.3087
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Table 4.4

f=200h=3,a; =a, =0.01,a; = a; =0.01 and a; = a,; = 0.01

E(R) with errors in
observations

E(R) without errors in
observations

P k1 k,

0.010 45 9 83.1829 73.6100
0.020 25 7 115.6590 108.0886
0.030 15 6 147.1663 140.3087
0.040 15 6 165.4324 158.8349
0.050 15 5 182.0655 175.3858
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