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The aim of the study was to determine the validity of satellite derived rainfall 

estimates for use in Kenya. This will improve monitoring of rainfall in Kenya. The 

study analyzed eleven years of monthly rainfall estimates (1998-2008) produced 

by Tropical Rainfall Measuring Mission (TRMM)’s 3B-43 algorithm and compared 

them with gridded monthly rainfall totals from twenty six synoptic and 

Agrometeorological stations over Kenya for the same period.

The quality of rain gauge records was assessed before they were included in this 

study. These monthly rain gauge records were then gridded using Kriging method 

to a grid scale of 0.25 0 by 0.25 0 to match with the TRMM satellite’s rainfall 

estimates. The two gridded data sets were then compared by plotting scatter 

diagrams for a dry season (January to February), a wet season (March to May) 

and for the whole period of study. From the scatter plots, both variables were 

compactly arranged displaying a strong joint behaviour (correlation) of these two 

data sets.

The results from simple correlation analysis revealed significant correlation 

between gridded rainfall and TRMM satellite’s rainfall estimates. The largest value 

of correlation obtained was 0.9 for the dry season while the smallest value was 

0.847 in wet season.

Principal component analysis was performed in both spatial and temporal modes 

to investigate the underlying physical processes which gave rise to the two data 

sets. The first principal components were presented on spatial maps for both 

Kriged rainfall and satellite rainfall estimates respectively. A pair of maps with 

similar patterns, one for each variable, was obtained for the wet season, dry 

season and for the whole period of study. Time series of the first and the second 

principal components of the Kriged rainfall and TRMM satellite’s rainfall estimates

revealed a common trend. , " ‘
\  ‘ '
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The mean absolute percentage errors ranged from zero to 99.9% for PCA’s

spatial mode against a target of 10% and threshold of 15%. The temporal mode
iii
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generated large errors ranging from 0.27% to 212%, however some of these high 

errors in this mode are outliers since the average was 44.4%. Mean errors (Bias) 

ranged from -0.024 to +0.03 for spatial mode while temporal mode had errors 

ranging from -0.093 to +0.09 against the target of ±0.025 and threshold of ±0.038. 

Mean absolute errors (MAE) in spatial mode ranged from 0.009 to 0.061 while 

those in temporal mode which ranged from 0.033 to 0.1727. The targeted and 

threshold MAE values were 0.025 and 0.038 respectively. Root mean squared 

errors (RMSE) ranged from 0.039 to 0.22 and 0.012 to 0.06 for temporal and 

spatial modes respectively. The RMSE targeted and threshold values were 0.027 

to 0.041. From these results, temporal mode generated larger errors than the 

spatial mode. In spatial mode more than half of the country had errors within the 

acceptable range. The TRMM’s 3B43 algorithm tended to overestimate rainfall 

during the wet season.

Canonical correlation analysis was done to determine a linear combination of 

each of the two sets of variables such that the correlation between two functions is 

maximized. CCA which is equivalent to multiple regressions was also used to 

develop models for estimation of areal rainfall using satellite derived rainfall 

estimates. The results from CCA revealed high correlation coefficients between 

Kriged rainfall and TRMM rainfall estimates. For the overall period of study eight 

out of ten Eigen vectors analyzed had CCA coefficients greater than 0.5.

Based on these results it was concluded that satellite rainfall estimates can be 

modeled to represent areal rainfall in areas with inadequate ground based rainfall 

observations, especially over Northwestern, Northern, Northeastern and Southern 

Kenya. In this study an attempt was done to design these models.
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CHAPTER ONE 

1 Introduction

1.1 Background

Precipitation is one of the major components of the earth’s climate system. It is 

the result of upward movement of air, which causes cooling by expansion beyond 

the level of condensation. Precipitation takes various forms such as rain, snow 

and hail. In the tropics precipitation consists almost entirely of rainfall, Nieuwolt, 

(1977).

Many countries in the tropics depend on rainfall for the agricultural and 

hydrological activities which are dominant in their economies. For example, in 

Kenya, agriculture is the mainstay of the economy supporting the livelihoods of 

about eighty per cent of the rural population. The agricultural sector employs 70% 

of the national labor force through forward and backward industrial linkages, thus 

providing food and incomes to individuals and households. Agriculture’s 

contribution to Kenya’s GDP is twenty six percent, Omiti et al, (2009).

The process of precipitation provides an amount of latent heat release to the 

atmosphere. This heating is one of the strongest driving forces of the atmospheric 

general circulation in the tropics, Fisher, (2004).

Rainfall information is therefore a crucial aspect not only for sustainable social- 

economic development of many countries but also for study of atmospheric 

circulations, climate analysis and global energy balance. Hence it is important to 

use reliable and accurate rainfall data in any planning.

Rainfall data can be acquired through in situ measurements or estimation 

methods.

One of the oldest and most common methods of measuring precipitation amount 

is to collect and measure- amount of rainfall over a set period of time using a rain 

gauge. Methods that use standard rain gauges involve the conversion of the point

1



rainfall values given by a network of rain gauges in to an estimate of th^ areal 

average for the catchment. These methods include the arithmetic mean, 

Thiessen’s polygons, Isopercentile and Isohyetal, Ouma, (1988).

Most of rainfall data in Kenya is derived from rain gauge records. They a|^o only 

accurately indicate rainfall in a localized area, Ouma, (1988). Although 

improvements in satellite observations of precipitation are sought, it Sh0jjld be 

noted that gauge measurements provide the only long-term direct measure °f 

precipitation and should not be overlooked, Gruber and Levizzani, (2008)

Recently, more accurate automatic weather stations have been introduc^d but 

their network is too sparse due to their high cost.

In many parts of the world especially African continent the rain gauge netw/o rk 's 

too sparse to produce reliable areal rainfall estimates. In Kenya, the number 

rain gauge stations is limited and the distribution of rain gauges is very urieven, 

with most stations located near main towns. As a result, these gauges m^y  not 

represent the rainfall over the rural areas where the information is needed most. 

Even where data exist, there are other limitations including short historica 1 time 
series, missing data and reading errors.

Many researchers are therefore focusing upon getting better and alterr/nat've 

methods of collecting areal rainfall data. One of the modern methods being useb 

to acquire rainfall data is remote sensing. Remote sensing is the science ar00* art 
of obtaining information about an object, area or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, ar'ea or 

phenomenon under investigation, Lillesand, (1979). Remote sensing rnethcVds of 
rainfall estimation use information received from radar and weather satellite b?ased 

sensors.

The radar based techniques for rainfall estimation involves the hypothesis of 

raindrop size distribution (DSD). This hypothesis states that the rain drops a, re as 

homogeneously distributed in space and time as randomness alloWs This 

hypothesis forms the basis of the sampling theory of in situ rainfall observations

2



and can be considered one of the cornerstones of the physical theory of 

precipitation induced pulse-to-pulse echo fluctuations in weather radar 

observations, R. Uijlenhoet et al, (2009). The rain drop size distribution 

determines the microwave radiometric brightness temperature, the attenuation 

and optical extinction as well as liquid water content, Nzeukou A. et al, (2004). 

The drop size distribution (DSD) describes the distribution of rain water in the 

atmosphere and is used to derive relationships between bulk rain variables (total 

liquid water per unit of air volume, the attenuation and scattering of 

electromagnetic waves propagation through the rain and the rain erosivity) and 

the rain intensity. The rain drop distribution is expressed using distribution function 

that gives the mean number of drops per unit of air volume, Sempere Torres et al, 

(1994). The drop size distribution is characterized by three parameters namely 

diameter, concentration and shape of the drops. These parameters are used to 

develop algorithms based on radar observables (the radar reflectivity factor of rain 

(Z) and rain rate (R)) or polarimetric radar algorithms based on reflectivity at 

horizontal polarization, Zh, differential reflectivity, Zjr and specific differential

phase fc Jp, for rainfall estimation, Bringi et al, (2003).

The use weather radar is hampered by a few problems. The area of effectiveness

of radar is relatively smaller than that of satellite. The intensity of the radar beam
/

decreases with the distance from the radar and hence for coverage of an 

adequate area, many radar stations need to be set up. Serious difficulties arise in 

mountainous regions where the beam loses intensity due to blocking. Very heavy 

precipitation may also reduce the intensity of the beam.

The satellite techniques of rainfall estimation use sensors to collect radiation from 

clouds and rain drops. Algorithms are then used to estimate the surface rainfall 

intensity and amount based on physical and statistical relations between radiation 

and precipitation, Fisher, (2004).

Satellite based remote sensors have many advantages over rain gauge based
> i t

measurements. These include the spatial coverage, especially over the oceans 

where rainfall measurements are sparse. Temporal sampling capabilities for large 

areas are also a major advantage. Only timely satellite estimates permit the
3



development of real time or near-real time applications. Satellite data are also 

more homogeneous and objective than gauge data, Tapiador et al, (2004).

The satellite-derived rainfall estimates need to be validated so that they can be 

used for many diverse meteorological, climatic, hydrological, agricultural and other 

applications Nicholson et al, (2003). Validation is a systematic process for 

reviewing data against a set of criteria to provide assurance that the data are 

adequate for their intended use.

This study aims at validating satellite-derived rainfall estimates retrieved from 

TRMM’s monthly rainfall retrieval algorithm, (3B-43 algorithm), over Kenya. The 

details of the objectives are highlighted in the following section.

1.2 Objectives of the study

The overall objective of this study is to determine the validity satellite derived 

rainfall estimates over Kenya using gridded rainfall field. This will enhance the 

usage of these estimates in areas with inadequate rain gauges and therefore 

strengthen the monitoring of rainfall in this country.

The specific objectives are:

• Develop gridded rainfall field based on the rain gauge data.

• Perform a principal component analysis on data set to identify patterns in the data 

and to highlight their similarities and differences.

• Determine the validity of the TRMM rainfall estimates.

• Develop temporal and spatial models for estimating areal rainfall using TRMM 
satellite’s estimates.

f
\ . <
\  _» t* «

4



1.3 Justifications of the Study

Weather and climate are important aspects in social-economic planning, climate 

analysis study of atmospheric circulations and global energy balance. Despite its 

importance, precipitation is one of the most difficult atmospheric parameters to 

measure because of large variability in space and time, Kim (2004). It is especially 

difficult to measure precipitation over mountainous regions and oceans because 

surface-based observations such as radars and rain gauges are rare, Fisher 

(2004). We therefore need to find an alternative method of getting rainfall data. 

Estimation of precipitation from satellite data will therefore fill in this gap.

Sensors on board satellites observe the distribution of precipitation more 

homogeneously than rain gauge network. They monitor large areas and yield 

spatially continuous data.

If the methods of estimating rainfall using data retrieved from satellites are close 

to the rain gauge observations, then satellites can be used to estimate 

precipitation in areas where rain gauge network is sparse. Thus validation should 

be done to ensure confidence in satellite derived rainfall estimates for various 

meteorological and hydrological applications, Nicholson et al, (2003).

1.4 Area of study

Kenya lies astride the equator and is situated between longitudes 34°E to 42°E 

and latitudes 5.5°N and 5°S. Uganda borders it to the west, Tanzania to the south, 

Somali and the Indian Ocean to the east and Ethiopia and Sudan to the north. 

The total area of the country is about 582,646 sq. Km. Kenya has complex 

topography ranging from Coastal lowlands to snow-capped mountains among 

them Kenya (5199 m) and Elgon (4321 m), large lakes, and Great Rift Valley.

The main rainfall generating system over the study area is the convergence zone 

between the northeast monsoon and the southeast monsoon referred to as inter- 

tropical convergence zone (ITCZ), Asnani, (2005). The ITCZ moves northward

5



passing over East Africa during March to May (MAM), while the southward 

movement takes place during October to December (OND), Okoola,(1999). Local 

features such as topography and large water bodies generate mesoscale systems 

which also play role in modulating the weather and climate over the country 

leading to spatial variation of rainfall, Ininda, (2008).

Figure 1 gives the location of Kenya and the synoptic stations used for this study.
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2 Literature review

2.1 Rainfall interpolation methods

Interpolation is the method of constructing new data points within the range of a 

discrete set of known data points. Data sets of spatially irregular meteorological 

observations are interpolated to a regular grid and are important for climate 

analyses, Naoum and Tsanis, (2004). Interpolated data sets allow best estimates 

of climate variables at locations away from observing stations, thereby allowing 

studies of local climate in data-sparse regions. Principal component analysis and 

canonical correlation analysis techniques prefer regularly spaced observations so 

as not to bias the eigenvalues to regions with a higher density of observations, 

Haylock et al, (2008).

Interpolation of observed data sets to regular or equal grids is referred to as 

gridding. Construction of a gridded data set where each grid value is a best 

estimate average of the grid square observations is the most appropriate data set 

for validation of the model or algorithm estimates, rather than comparison 

between the model/ algorithm estimates and point observations directly, Haylock 

et al, (2008).

There is a variety of spatial interpolation methods which range from simple 

intuitive predictions to more complex procedures. Among these techniques are 

Kriging, Spline, Inverse distance weighting, Theissen polygons, Isohyetal, Trend 

surface and Polynomial, Naoum and Tsanis, (2004). *

Taesombat and Nutchanart, (2009), compared Thin plate spline technique and 

two conventional techniques, the isohyetal and Thiessen polygon techniques to 

approximate areal rainfall over the upper Ping river basin in Thailand. They did 

this study for the purpose of improving the accuracy of runoff and flood estimation 

tor mitigation of water related problems. Two data sets of maximum rainfall
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registered in August 2001 and September 2003 at 68 non-automatic rainfall 

stations located in the basin and nearby areas were used in the analysis. The Thin 

plate spline technique proved to provide more accurate results of rainfall 

estimation than the other two techniques.

Sun and Ebert, (2003), combined rain gauge measurements with satellite data for 

the year 1997-1998 to estimate rainfall over Australia. The study was done in 

order to provide better and more effective ways of improving daily raining area 

delineation and spatial rainfall interpolations. They used rain gauge data from a 

network of one thousand and five hundred stations which collect data on a daily 

real time basis. Estimates were generated in two steps:

• The indicator Kriging technique was used first to delineate the raining 

areas.

• Then ordinary Kriging was used to determine the rainfall estimates in these 

areas.

To implement indicator Kriging technique, a binary variable was used to describe 

the rain gauge rainfall. The satellite rainfall probability of occurrence was 

calculated from its infrared temperature. They used CoKriging to merge the two 

spatial observational data sets. Using a two-year period of rain gauge and satellite 

data, the results of delineating the raining areas from indicator Kriging show an 

improvement over the results from using rain gauge data only and without 

indicator Kriging, especially in rain gauge data-sparse areas.

Naoum and Tsanis, (2004), ranked some of spatial interpolation techniques used 

in studying rainfall variability. These techniques are Spline (regularized and 

tension), inverse distance weighting, Kriging (linear, Gaussian, circular, spherical, 

exponential and universal 1 & 2), second order Polynomial and Theissen 

polygons. Ordinary Kriging which is represented by spherical, circular, 

exponential, Gaussian and linear methods, was generally found to be the best 

interpolator and therefore adapted in this study.
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2.2 Satellite based rainfall estimation methods and findings

2.2.1 Tropical Rainfall Measuring Mission (TRMM)

Earlier research on satellite rainfall estimation used infrared or visible channels 

data. These methods include the use of cloud top temperature, cloud brightness, 

cloud type and duration as parameter in quantifying the area rainfall, Ouma, 

(1988). However significant errors existed because these channels could not 

penetrate cloud layers. The rainfall intensity was frequently over estimated when 

high cirrus cloud or anvil clouds appeared in infrared and visible data.

Microwave channel data are less influenced by cloud layers and are therefore 

more suitable for rainfall intensity estimation. The importance of microwave 

remote sensing has been demonstrated by some new experiments such as 

Tropical Rainfall Measuring Mission (TRMM), Bowman, (2004).

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in 

November 1997 as a joint scientific initiative between the National Aeronautical 

and Space Administrational (NASA) of USA and National Space Development 

Agency (NASDA) of Japan. The TRMM satellite collects precipitation information 

within a large sampling domain that extends from 40°N to 40°S, Fisher, (2004). 

The primary rainfall instruments on TRMM are the TRMM Microwave Imager 

(TMI), the precipitation radar (PR) and the Visible and Infrared Radiometer 

System (VIRS), (fig 2). Additionally, the TRMM satellite carries two related Earth 

Observing System (EOS) instruments in the Clouds and Earth’s Radiant Energy 

System (CERES) and the Lightning Imaging System (LIS).

The TRMM Microwave Imager (TMI) is a Multi-channel dual-polarized passive 

microwave radiometer. It utilizes nine channels with frequencies of 10.65 GHz, 

19.35 GHz, 21.3 GHz, 37 GHz and 85 GHz. The TMI instrument provides data 

related to rainfall rates over oceans, but less reliable data over land, where non- 

homogeneous surface emissions make interpretation difficult. The TMI data 

combined with the data from the PR and VIRS are also utilized for deriving

9



precipitation profiles, JAXA/EOC, (2006). TMI quantifies water vapour, the cloud 

water and the rainfall intensity in the atmosphere. Figure 3 gives main parts of

TMI.

TMI I
TRMM Microwave Imver I

Fig 2: TRMM space craft

Source:http://disc. sci. gsfc. nasa. gov/precipitation/additional/instruments/trmm_instr 
shtmiJune, 2010.

The VIRS is a five-channel imaging spectro-radiometer with bands in the 

wavelength range from 0.6 to 12 pm. The VIRS data is used to observe 

precipitation using visible and IR techniques. It also provides a link between the 

derived precipitation and similar data both historical and contemporaneous, from 

geosynchronous and low earth orbiting sensors. Comparison of the microwave 

data with VIRS visible and infrared data provides the means whereby precipitation 

is estimated more accurately than by visible and infrared data alone. The VIRS 

instrument serves as a background imager and provides the cloud context within 

which the passive microwave and radar observations are made. Data from the 

VIRS instrument is used' in rain estimation algorithms based primarily on the 

passive and active microwave sensors, JAXA/EOC, (2006).

10
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Source http .//disc. sci. gsfc. nasa. gov/precipitation/additional/instruments/trmm_instr 
.shtml, June, 2010.

The Precipitation Radar (PR) is the primary instrument onboard TRMM. The most 

innovative of the five TRMM instruments, the PR is the first quantitative rain radar 

instrument to be flown in space, Kummerow et al, (1998). The major objectives of 

the PR instrument are as follows:

• Provides a 3-dimensional rainfall structure,

• Achieves quantitative measurements of the rain rates over both land and 

ocean,

• Improve the overall TRMM precipitation retrieval accuracy by combined use 

of active (PR) and passive (TMI and VIRS) sensor data.

When combined with TMI measurements, the PR data is instrumental in obtaining 

the height profile of the precipitation content', from which the profile of latent heat 

release from the Earth can be estimated. The rain rate is estimated from the radar
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reflectivity factor when the rain rate is small by applying conventional algorithms 

used for ground-based radar. For large rain rates, a rain attenuation correction is 

made using the total-path attenuation of land or sea surface echoes, JAXA/EOC, 

(2006).

CERES measures the energy at the top of the atmosphere and estimates energy 

levels within the atmosphere and at the earth’s surface. It helps reduce one of the 

major uncertainties in predicting long-term changes in the Earth's climate. CERES 

also provides information to determine the surface radiation budget, which is 

important in atmospheric energetics, studies of biological productivity and air-sea 

energy transfer, JAXA/EOC, (2006).

Lightning Imaging Sensor (LIS) is an optical staring telescope and filter imaging 

system that acquires and investigates the distribution and variability of both intra­

cloud and cloud-to-ground lightning over the Earth. The LIS data also is used with 

PR, TMI and VIRS data to investigate the correlation of the global incidence of 

lightning with rainfall and other storm properties, JAXA/EOC, (2006).

One of the major goals of the TRMM is to produce quantitative and accurate mean 

monthly rain estimates with errors not exceeding 10%-15% of the true 

precipitation for 0.25 0 x 0.25 0 grid spaces. There are three possible errors 

caused by instrument noise and statistical effects of thermal emission, retrieval 

and sampling methods.

However studies have been done to minimize these errors. The study by Fisher 

(2004) introduced an error model that empirically estimates sampling and retrieval 

errors for the TMI and PR. The methodology is fundamentally dependent on 

statistical rain estimates from gauges that have been sub sampled at the satellite 

overpass times.

t
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12



2.2.2 Radar based techniques

Active and passive sensors on board satellites are used for precipitation 

estimation. Relative to passive sensors, important satellite radiation 

measurements occur for visible/ infrared (VIS/IR) spectrum and microwave (MW) 

spectrum.

Various techniques to estimate rainfall using these satellites based sensors have 

been developed and a lot of studies have been done on these techniques.

Precipitation measurement using active microwave from space or ground based 

sensors involves use of radars. The radar techniques of rainfall estimation 

involves hypothesis about raindrop size distribution. The rainfall size distribution 

(DSD) determines the microwave radiometric brightness temperature, the 

attenuation and optical extinction as well as liquid water content. The radar 

reflectivity factor of rain (Z) and rain rate (R) are linked by a relation of the form

Z = a R h

Where, a, b are coefficients of raindrop size distribution (DSD).

The above approach was used by Nzeukou A. et ai, (2004) to estimate 

precipitation over West Africa. They found out that the shape of the averaged 

raindrop size distribution (DSD) was very similar from one year to the next. From 

rain rates R higher than about 20mm/h, the slope of (DSD) was tending towards a 

constant value. The coefficients of the Z-R relation, between the radar reflectivity 

factor Z and R were different for convective and stratiform parts of squall lines. 

However the Z-R relations for convective rain intersect the relation for stratiform 

'ain for high rates. Hence they used a single Z-R relation to correct representation 

>f the whole Z and R range variation in West Africa. The coefficients of Z-R 

elation were found to be close to that of the stratiform and to that of observed in 

ther West African areas. The conditional probability density function of rain rate, 

(R), was found to be very stable year after year. The coefficient of variation of R 

as found to be constant and close to 2.24 and was observed at many other sites. 

Pm P(R), the linear coefficient S(x) of the relation that links the area-averaged
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rain rate to the fractional area where the rain rate was higher than the threshold 

(t ) was computed and was found to be very stable for values of I  close to MR ,

the mean climatic value of R (around 5-6 mm/h). Since the sub-Sahara West 

African sites have a similar MR, comparison showed that S(t) was homogeneous 

over this area. The results suggested that S(t) can be used with confidence for 

average rainfall estimation over a climatically homogeneous region.

Similar approach was applied by Gabremichael et al, (2005) to estimate 

precipitation over Mississippi River basin. They compared these rainfall estimates 

with global precipitation climatology project daily rainfall model. The authors found 

out that in comparison with radar-based estimates the model overestimated 

rainfall.

Studies have shown that shown that there is improvement in rainfall estimates if 

polarization radar is used. In addition to conventional radar reflectivity factor Z, 

polarimetric radar is capable of measuring the differential reflectivity ZDR, specific 

differential phase KDP and the cross-correlation coefficient between two 

orthogonally polarized radar returns. This improves the quality of the data.

This approach was used by Ryzhkov et al, (2005) to test the capability of KOUN
/

radar (Norman, Oklahoma weather surveillance radar) to estimate rainfall over 

Oklahoma. A dense gauge network was used to validate different polarimetric 

algorithms for rainfall estimation. One hour totals were estimated from the KOUN 

radar using conventional and polarimetric algorithms and were compared with 

hourly accumulations measured by gauges. Both point and areal rain estimates 

were examined. The use of the synthetic polarimetric algorithms resulted in 

significant reduction in root mean squared errors (RMSE) of hourly rain estimates 

when compared with the conventional non polarimetric relation.

/
\
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Passive sensors on board satellites measure radiation for visible/irifrared 

spectrum and for the microwave spectrum.

Ouma, (1988) discussed various methods that use the visible and infrared 

radiation to estimate areal average rainfall. These methods are classified into 

seven groups as methods that use:-

• Visible and infrared characteristics of clouds separately and/ or collectives

• Cloud cover and cloud types,

• Cloud top heights or cloud top temperatures,

• Convective cloud area,

• Factional cloudiness and

• Cold cloud duration in estimating rainfall.

Infrared and visible based rainfall estimation methods offer unique a d van tag es  of 

extensive coverage at relatively high temporal sampling rates.

Hong et al, (2004), used a satellite based algorithm, which extracts local and 

regional cloud features from infrared (10.7pm) geostationary satellite imaged in 

estimating fine scale, ( 0.04° x 0.04° every 30min), rainfall distribution. The 

algorithm processes satellite clouds into pixel rain rates by.

Separating cloud images into distinctive cloud patches,

Extract cloud features including cloud temperature, geometry and textile, 

Clusters cloud patches in to well-organized subgroups and 

Calibrates cloud top and rainfall (Tb-R) relationship for the classified cloud gro»uPs 

using gauge-corrected radar hourly rainfall data.

Hong et al, (2004), used radar and gauge rainfall measurements to evaluate the 

algorithm’s rainfall estimates at a range of temporal and spatial scales, ffhe 

evaluation results showed correlation coefficients of 0.45 to 0.59 for temporal ŝ nd 

0.57 to 0.63 for spatial scales respectively.

2.2.3 Visible / infrared techniques
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2.2.4 Passive microwave techniques

Currently, research is ongoing on microwave channels. This has been enhanced 

by the Tropical Rainfall Measuring Mission (TRMM). The passive microwave 

observations from radiometers on board low earth-orbiting platforms have better 

physical connection to precipitation processes as compared to the visible\infrared 

sensors that can offer quasi-continuous coverage from space. The measurement 

by passive microwave radiometers is less sensitive to the presence of cirrus 

clouds, which is one of the major problems in infrared based rainfall estimation 

algorithms.

Klepp et al, (2003) used rainfall estimates derived from the Special Sensor 

Microwave Imager (SSM/I) on board National Oceanic and Atmospheric 

Administration (NOAA) National Environmental Satellites to study rainfall 

processes associated with frontal and cyclonic systems over North Atlantic. A 

multi satellite method was applied for complete coverage of North Atlantic twice a 

day. Different special sensor microwave imager precipitation algorithms were 

tested for individual cyclones and compared to the Global Precipitation Project 

datasets. An independent rainfall pattern and intensity validation method was 

presented using voluntary observing ship datasets and AVHRR images. The 

results showed that mesoscale backside rainfall events contributed up to 25% of 

the total amount of rainfall in North Atlantic cyclones.

2.2.5 Data fusion procedures and finding

Passive microwave based estimates suffer from poor temporal sampling and 

coarse spatial resolution but determine rainfall more directly. Infrared based 

sensors provide better temporal resolution and moderate spatial resolution but 

determine rainfall indirectly by inference from cloud top temperatures. Data fusion 

is therefore necessary.
f
* * *
\

Data fusion procedures aim to combine both datasets with precipitation radar 

datasets without their limitations while reinforcing their strength.

i
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Tapiador et al, (2004) evaluated an operational procedure to produce half-hourly 

rainfall estimates at a 0.1 spatial resolution which combined rainfall estimated by a 

Neural Network (NN) approach utilizing passive microwave and infrared satellite 

measurements. Half hourly rain gauge data over Andalusia, Spain, were used for 

validation purposes. Results showed fused methodologies improved the 

performance of estimations.

Nesbitt and Zipser, (2003) combined the Tropical Rainfall Measuring Mission 

(TRMM) satellite measurements from the precipitation radar and microwave 

imager to yield a comprehensive 3-year database of precipitation features (PF) 

throughout the global Tropics (± 36° latitude).

Furuzawa and Nakamura, (2005) used Tropical Rainfall Measuring Mission 

precipitation radar (PR) and TRMM Microwave Imager, to investigate the 

performance of TMI rainfall estimates. The results showed that TMI 

underestimates rainfall with low cloud height and overestimate rainfall with high 

cloud height. Combination of microwave imager and precipitation radar improved 

rainfall estimates.

2.3 Comparison of rain gauge, precipitation radar and satellite based 

rainfall estimates

Satellite derived rainfall estimates can only meet acceptable or standard 

requirements if they are supported by correlative data of known quality and are 

continually challenged by reliable ground based observations and qualitative 

science. Hence remote sensing measurements should be validated and 

calibrated. These activities ensure the scientific value of the data.

Studies in to validating rainfall estimates have been carried out by several 

scientists. Bowman, (2005), Compared four years of precipitation retrieved from 

Tropical Rainfall Measuring Mission (TRMM) satellite with data from 25 surface 

rain gauges on the National Oceanic and Atmospheric Administration / Pacific
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Marine Environment Laboratory (NOAA/APMEL) in Tropical Pacific. The ai/jthor 

found out that:-

• When precipitation is correlated with itself both in space and/ or |;ime, 

maximum correlation r were in range of 0.6 to 0.7.

• For large satellite averaging areas, correlation with gauges are smal|er and 

the optimum gauge-averaging time is longer.

• Relative RMSE difference between satellite data and a gauge is ^  the 

range of 40% to 70%.

• The bias between gauges and satellite retrieves was estimate by 

correlating the long-term time-mean precipitation estimates across set 

of gauges. TRMM microwave imager (TMI) gave r (squared) of 0.97 a nd a 

slope of 0.97 indicating very little bias with respect to gauges.

A similar study was done by Fisher, (2004). He analyzed 4 years of precipitation 

estimates (1998-2001) produced from data collected by TRMM microwave irr^ger 

(TMI) and precipitation radar PR and compared them with correspon ding 

estimates computed using 5-min rain accumulation from 66 rain gauges in 

Oklahoma Masonet. The methodology he applied estimated bulk climate-s ,cale 

sampling and retrieval errors and bias for the (TMI) and PR at two resolutions: 

1°by 1° and 2° by 5°.This approach generated two gauge-inferred graded 

estimates of monthly precipitation over the study period:

• G(), which was computed by performing a complete integration of monthly 

gauge time series and

• G s. , which consisted of gauge-inferred rain rates sub sampled to Tf^MM 

overpass at a gridded resolution of 1°by 1°.

The author found out that the overall randopi sampling and retrieval errors f0r'  PR 

exceeded the TMI errors for the period of study. PR showed a greater reduction in 

errors when the scale was increased to 2° by 5°. Annual coefficients of variation
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were lower for the PR than the TMI at this scale. PR retrievals biases were 

positive over all 4 years and exceeded the TMI biases in every year of study.

Kim et al, (2004) validated maritime rainfall retrieved from TRMM microwave 

radiometer. They used Kwajalien ground based radar (KR) observations as the 

reference data. They found out that TRMM microwave radiometer overestimated 

surface rainfall with respect to KR by 16%.

An evaluation of version-5 precipitation radar (PR- algorithm 2A25) and TRMM 

microwave imager (TRMM-algorithm 2A12) was performed by Nesbitt et al (2004) 

across the tropics in two ways:-

By comparing long term TRMM rainfall products with Global Precipitation 

Climatology Centre (GPCC), global rain gauge analysis. This was done to 

evaluate the overall biases of the TMI and PR relative to ‘ground truth’ in order to 

examine regional difference in the estimates

By comparing the rainfall estimates from the PR and TMI on a rainfall feature-by- 

feature basis within the narrow swath of the PR using a 1 year database of 

classified precipitation features. This allowed a direct comparison of the estimates 

with the same sampling area and identified relative biases as a function of storm 

type.

The authors found out that TMI overestimated rainfall in most of the deep tropics 

and mid latitudes warm seasons over land with respect to both GPCC gauge 

analysis and the PR. The PR agreed well with GPCC gauges in deep tropics 

globally. The analysis by feature type revealed that TMI overestimated rainfall 

relative to the PR.

Dinku and Anagnostou, (2005) used precipitation radar (PR) rainfall estimates for 

calibrating overland Tropical Rainfall Measuring Missiqn (TRMM) microwave 

imager (TMI) rain algorithm in four geographic regions consisting of Central Africa,

19



the Amazon, the USA Southern plains and the Ganges-Brahmaputra- Meghna 

River basin in Southern Asia. The algorithm consisted of:-

• Multi channel based rain screening and convective/stratiform classification 

schemes,

• Non linear/ linear regressions for rain rate retrieval of stratiform/ convective 

rain regimes.

They also examined regional differences in the algorithm performance. Year 2000 

and 2001 data was used for calibration while validation was done using year 2002 

data. The algorithm was compared with the latest version [V6] TRMM product in 

terms of rain detection and rain rate retrieval error statistics on the basis of PR 

reference rainfall. The results showed reduction in random error by 24% to 165% 

for the four regions respectively.

The validation approach by Nesbitt et al, (2004), Bowman, (2005), Fisher, (2004) 

and Dinku and Anagnostou, (2005) were adapted in this study.

/
\
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CHAPTER THREE

3 Data and Methodology

3.1.1 Rainfall Data

The rainfall data used in this study was obtained from Kenya meteorological 

department and consisted of monthly totals of rainfall from 26 synoptic and 

Agrometeorological stations all over the country for the thirty years (1998 to 2008). 

The list of rainfall stations used in this study is shown in table 1.

LONGITUDE LATITUDE STATION
36.75 -1.3 DAGORETTI
35.28 0.53 ELDORET
37.45 -0.5 EMBU
39.63 -0.48 GARISSA
34.77 0.28 KAKAMEGA
37.23 -1.58 KATUMANI
35.27 -0.37 KERICHO
34.78 -0.68 KISII
34.75 - 0.1 KISUMU
34.98 1 KITALE
40.9 -2.27 LAMU
35.62 3.12 LODWAR
37.83 -2.28 MAKINDU
40.1 -3.23 MALINDI
41.87 3.93 MANDERA
37.98 2.32 MARSABIT
37.65 0.08 MERU
39.62 -4.03 MOMBASA
39.05 3.53 MOYALE
36.07 -0.28 NAKURU
35.87 -1.1 NAROK -
36.35 0.03 NYAHURURU
36.95 -0.42 NYERI
37.1 -1.02 THIKA
38.57 -3.4 VOI
40.07 1.75 WAJIR

Table 1: List of rain gauge stations and their Ocation
t
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3.1.2 TRMM rainfall data and Algorithm

Monthly retrievals were obtained from the Tropical Rainfall Measuring Mission 

(TRMM) which is a joint scientific initiative between NASA and National Spac^ 

Development Agency of Japan. The retrievals were done by TRMM’s 3B-433 

algorithm, which is executed once per calendar month to produce the single, bes^- 

estimate monthly precipitation and Root Mean Squared precipitation-errQir 

estimate field (3B-43) by combining the 3-hourly merged high-quality/IR estimate^ 

with the monthly accumulated Climate Assessment and Monitoring Syster^n 

(CAMS) or Global Precipitation Climatology Centre (GPCC) rain gauge analysis 

(3A-45). The 3-hourly merged high quality/IR estimates are summed for th ^  

calendar month, and then the rain gauge data are used to apply a large-scale bia^ 

adjustment to the 3B-42 estimates over land. The monthly gauge-adjustecd 

merged estimate is then combined directly with the rain gauge estimates usings 

inverse error variance weighting.

This data is available to the public through Goddard Earth Science (GES) an^d 

viewed by TRMM online visualization and analysis system, (TOVAS). The dat^ 

has a resolution of 0.25° x 0.25° grid on a global scale over latitude band 50° N-$ 

http://mirador.gsfc.nasa.gov/cgi-bin

The data used in this study was for Kenya, (34° E to 42° E and 5.5°N to -5°S).

,
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3.2 Methodology

Several methods were used in this study and their details are outlined in the 

following sections.

3.2.1 Data quality control

3.2.1.1 Estimation of missing rain gauge data and satellite derived 

rainfall estimates

Before undertaking any study it is necessary to estimate all the missing rainfall 

data. One of the methods used for this purpose is linear correlation method. In this 

method it is assumed that some relation exists between station (or grid point) A 

and an adjacent station (or a grid point) B, whose data are to be used. This 

requires the knowledge of a neighboring station (grid point) B which is best 

correlated to the station (grid point) A with missing data, Basalirwa, (1979) and 

Nyakwada, (1991). The first step is to identify a neighboring station which has the 

highest correlation (r) with the station with the missing data. The correlation 

coefficient quantifies the degree of correlation between pairs of variables.

. The neighboring station with the highest correlation coefficient (r) and reliable 

record is used to estimate the missing record as shown in equation (1).

X A,
*B, X a •(1)

XA is the missing record of station (grid point) A in the j  month , x B is the

record for station (grid point) with reliable records B in the month j and and
X a

Xb
are long term averages for stations (grid points) A and B respectively based

on the period of records available at A.
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Estimation of missing records ensured point to point comparison of satellite 

derived rainfall estimates with the gridded rainfall.

3.2.1.2 Homogeneity test

The data homogeneity test was done using mass curve analysis to investigate the 

behavior of the observed data and to determine whether there was a need for 

corrections to the data to account for changes in the data collection procedures or 

other local conditions.

In this technique, the observed values were compared with the preceding ones. 

Cumulative records of a station were plotted against time for each station used in 

this study. These plots were fitted with trend line. Any break in slope of the 

resulting curve would indicate inconsistency.

If the dataset was heterogeneous, a cumulative plot of the station’s data against 

two or more neighboring homogeneous station was performed. The graph 

obtained (double mass curve) was used to adjust the heterogeneous records 

accordingly.

3.2.2 Gridding

Rainfall data sets of spatially irregular observations were interpolated to a regular 

grid for direct comparison with TRMM’s 3B-43 algorithm’s data. This was done by 

Kriging method.

Kriging is a stochastic technique that uses a linear combination of weights at 

known points to estimate the value at an unknown point. The most commonly

applied form of Kriging uses a semi-variogram which is a measure of spatial
/  • *»

correlation between pairs of points describing the variance over a distance or lag, 

Hartkamp et al, (1999).
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The variogram model mathematically specifies the spatial variability of the data 

set and the resulting grid. The interpolation weights, which are applied to data 

points during the grid node calculations, are direct function of variogram model, 

Hartkamp et al, (1999). Kriging also provides a measure of error or uncertainty of 

the estimated surface.

In this study, Kriging was done by Surfer, a grid based contour program which has 

several gridding methods. Surfer uses grid features to generate contour maps or 

surface plot. The advantage of grid based approach is that the tasks of drawing 

contour lines, volumetric calculations of map modifications are much faster. With 

most data-sets the default gridding method, Kriging with a linear variogram is quite 

effective, Daly, (2006).

3.2.2.1 Derivation of Kriging equation

The derivation of Kriging equations, used in spatial rainfall estimation in this 

study, has been discussed by Creutin and Obbled, (1982).

For a random function, Z(x), if the joint probability of Zi (i=1, n) has normal 

(Gausian) distribution, then its linear or conditional expectation is optimal for 

Kriging estimate, where 

Z(x) is rainfall at a spatial point.

We consider a location Xo with an unsampled rainfall z 0 and neighboring

rainfall observations Z i . so that its linear estimation can be expressed as

Zo, = E [ z o b i  W,(zT E\Z ,]) (2 )

Where yy is the Kriging weight and E [  Z () ] >s the rainfall expectation at Zo

and n is the gauge number. Under the hypothesis of local stationary of random

functions Z, ' , ,
\

■ £ [ z J = £ [ z , ] = m

m is the stationary mean.
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The weights yy> are determined by minimizing the unbiased Kriging variance

is a Lagrange multiplier in ordinary Kriging that is linked to the unbiased 

condition,

In equation (3), if //=0, we have simple Kriging, which is equivalent to the 

statistical interpolation method. The statistical interpolation method is not linked 

to the unbiased conditions but requires prior knowledge background field. In 

simple Kriging, the stationary mean, m, is regarded as background field. To 

estimate for the rainfall expectation, E[Z()] at, Zawe use the local mean of the 

observed gauges, m under stationary conditions. Where

In Kriging, because the covariance matrix is positive definite, equation (3) will 

always have a solution. The Kriging variance equation can then be derived as,

This is a measure of the quality of the fit to the Kriging equation. Kriging provides 

optimum estimation, relative to other methods, in the sense that it minimizes the 

least square error for a covariance model with the unbiased condition. The

£[ Z0-E '[ Z„/Z  ] ] !

This minimization results in a set of n linear equations,

, n (3)

Where, c(j^r X  ) is spatial covariance at different observational locations and 

c(x, ,XJ  is covariance between the observation and an estimated field point. //

n

<7k = c (°) + M - X  WpGt, ’ Xo) (5)
/=i

weights, yy , depend on the position of the observed and calculated points and
,  *

the number of observations.
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In this study, Kriging with a linear variogram method of gridding was used to 

interpolate rainfall data to a grid scale of 0.25° by 0.25° to match with the TRMM 

satellite rainfall estimates. It is effective in areas with poor distribution of data 

and produces reasonable presentation of the data, Sun and Ebert, (2003).The 

interpolated data was referred to as Kriged rain.

3.2.3 Principal component analysis

Mathematically, principal component analysis (PCA) can reduce a large number 

of correlated quantities in time and space into a small number of orthogonal 

functions that is linear combinations of the original observations and account for 

a large percentage of the total variance, Richman, (1986). The basic PCA model 

is:

Z=FAt............................... (6)

Where, z is the matrix of raw data (n xp matrix, n time points and p variables). F 

is the nxp PC score.

A- Is a p x p loading matrix whose columns a K are the p principal component 

patterns that can be scaled in various ways.

The aim of PCA is to find a K such that the variance of the first PCA series is 

maximized, the variance of the second series is maximized subject to 

orthogonality with the first series, the variance of the third series is maximized 

subject to orthogonality with the first two series and all subsequent modes were 

obtained in the same way. Using Equation (6), score matrix F is solved as 

follows:

ZA=FA' A ............................................(7a)

F=ZA(Ar A ) '............................... (7b)

Where

£  ^  - Is the diagonal matrix of the Eigen values. :
> «
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The sum of Eigen values ( £  Kk) equals to the total variance in the data, and
*=i

each Eigen value Kk gives the variance that the corresponding Eigen mode

accounts for. The sequence of the function of the Eigen modes represents the 

importance of the mode in explaining the fraction of the total variance in the data, 

if the Eigen values are arranged in descending order of magnitude. The 

important Eigen modes (principal components) are usually retained for further 

analysis. The choice of truncation level is aided by use of scree graphs. When 

using the scree graph qualitatively, the goal is to locate a point separating a 

steeply sloping portion to the left and a more shallowly sloping portion to the 

right. The principal component number at which the separation occurs is then 

taken as the truncation level, Wilks, (1995). In this paper this method was 

therefore adapted

In this study, PCA was purposely done to reduce the size of Kriged rainfall and 

TRMM satellite rainfall estimates to a pair of data sets containing fewer 

variables, but that nevertheless represent a large fraction of variability contained 

in the original data, Wilks, (1995). Beyond mere data compression, however 

PCA was done so that the results could be used as an important tool for 

exploring the data sets. Here the PCA has the potential for yielding substantial 

insights into both the spatial and temporal variations exhibited by two fields being 

analyzed. PCA was also done as a useful preliminary step in canonical 

correlation analysis. This step is also referred to as pre-orthogonalization, 

Mutemi, (2003) and is useful step in pre-filtering the two fields of raw data before 

subjecting them to canonical correlation analysis, Wilks, (1995).

Studies by Mutua et al, (1999) and Richman, (1996) showed that that rainfall 

patterns in Kenya and East Africa in general is not homogeneous. Hence there 

was also a need to perform PCA in S-mode in order to come up with climatic 

zones, Fig 4
/\ t '\ /
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Figure 4: East African Climatic zones for MAM season, (Mut^a et al 1999)

3.2.4 Scatter plots

A scatter plot is a graphical extension of correlation matrjx A scatter plot matri^ 

is an arrangement of individual scatter plots according to same logic aS 

one which governs the placement of individual corre|atj0n coefficients in  ̂

correlation matrix. A scatter plot of gridded rain gauge and satellite i'ain^|| 

estimates was drawn against time. This plot was to "shovy ^ow rainfall estif113̂  
compared with the observed rain gauge data.
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3.2.5 Correlation analysis

3.2.5.1 Simple Correlation analysis

Correlation analysis was done to find out whether there was a degree of 

relationships between satellite-derived rainfall estimates and the observed rain 

gauge data. A simple correlation coefficient r between satellite-derived rainfall

estimates ( J7 ) and the corresponding rain gauge data ( Q t ) was calculated as 

follows:-

^ ( e , - e \ o, - o )
l=l

The level of significance was tested using student t-test as given by equation (8b) 

at 95% significance levels for values of n, where n is number of observations.

3.2.5.2 Canonical correlation analysis (CCA)

Canonical correlation analysis, (CCA), is a statistical technique that identifies a 

sequence of pairs of patterns in two multivariate data sets, and constructs sets of 

transformed variables by projecting the original data on to these patterns. In CCA, 

the patterns are chosen such that the new variables defined by projection of the 

two data sets on to these patterns exhibit maximum correlation, but are 

uncorrelated with the projections of the data on to any of the other identified 

patterns, Wilks, (1995). In other words, CCA identifies new variables that 

maximize the interrelationships between two data sets, in contrast to the patterns
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describing the internal variability within a single data set identified in PCA, (section

3.2.3).

CCA can also be viewed as a linear multiple regressions applied to a multivariate 

(pattern) predictand. Thus, multi-component predictors are linearly related to 

multi-component predictand such that the sum of the squared errors is minimized, 

Barnson and He, (1996). A set of weights for the predictor components (elements) 

is related to an analogous set of weights for predictand components. These 

weighting sets, called loading patterns illustrate the associated predictor- 

predictand patterns and thus, can be used as guidance to underlying physical 

processes as well for descriptive purposes, Barnston and Ropelewski, (1992).

3.2.5.2.1 Computation of canonical correlation analysis

If we take variables x and y which in this study represent TRMM satellite rainfall 

estimates and Kriged rainfall respectively, then the information drawn upon by 

CCA is contained in the joint variance-covariance matrix of these variables. The 

two data vectors are concatenated into a single vector,

This vector contains l+J elements, the first I of which are the elements of x and 

the last J of which are the elements of y. The (l+Jxl+J) variance-covariance matrix 

of C, [Sr ] is then partitioned in to four blocks. Thus,

Each of the n rows of the (n x I + J) matrix [C ] contains one observation of the 

vector x and one observation of the vector y the primes indicate centering of the

The (I x \) matrix [S tt ] is the variance-covariance matrix of I variable in x.

[ S „ ]  [ S „ ]
(9)

data by subtraction of each of the respective $ample means.
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The (J x J) matrix [S J  is the variance-covariance matrix of J variables in y.

The matrices [ S J  and [S J  contain the covariance between each of the 

elements of x and each element of y and they are related according to .

[ S J = [ S J 7

The canonical correlations are given by the square roots of the non-zero 

Eigen values of the matrices

[ M J = [ S J ' [ S J [ S J  [ S J .................................................... (10a)

And

[ M .M S J J S  J [S  J  [ S J ...................................................(10b)

The matrix [M J is dimensioned (I x I) and the matrix [M v] is dimensioned (J x

J). The first M=min (I, J) Eigen values of these two matrices will be identical and 

if I 5* J, the remaining Eigen values of the larger matrix will all be zero. The 

canonical vectors a mand b,„are the respective Eigen vectors of these matrices,

satisfying

m = 1, 2 M (11a)

And

[M J b m= r 2Cm bm, m= 1, 2 M (11b)

Here r2 is the mth canonical correlation.t m

As is the case with the use of PCA with spatial data, it is often informative to plot 

maps of the canonical vectors by associating the magnitude of their elements and 

the geographic locations to which they pertain. In this context the canonical 

vectors are sometimes called canonical patterns since the resulting maps show 

spatial patterns of the way in which the original variables contribute to the
\  t *

canonical variables. Examining the pairs of maps formed by corresponding 

vectors a and b may be informative about the nature of the relationshipm tn *
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between variations in the data over the two domains encoded in x and y, 

respectively, Wilks, (1995).

In this study, prior to canonical correlation analysis the two fields of raw data were 

gridded and then separately orthogonalized using principal component analysis 

(empirical orthogonal function). That is, separate principal components were 

computed for each of the two fields. The correlation based empirical orthogonal 

function analysis reduces large number of original variables to much fewer 

presumably essential variables, filtering incoherent variability, Barnson and He, 

(1996). After PCA, the most important pairs of Eigen vectors were retained for 

CCA analysis.

In this study, CCA was carried out as a tool for exploratory and diagnostic 

analysis of Kriged rainfall and TRMM satellite rainfall estimates.

3.2.6 Error Analysis

Other statistic methods used in this study to validate and compare rain gauge 

analysis (Kriged rainfall) and satellite rainfall estimates followed the guidelines of 

International Precipitation Working Group (IPWG), Ebert et.al, (2007). The 

statistics used in this study were the mean absolute percentage error (MAPE), the 

BIAS (mean error), mean absolute error (MAE) and the root mean square error 

(RMSE). After analysis, two sets of results were obtained, one from spatial (S- 

mode) method and the other from temporal (T-mode) method. For spatial mode 

method, errors were determined for overall period and as well as for, a dry season 

(January to February) and for a wet season (March to May). The skill scores used 

in this study are discussed below.

/
\

33



tfiod (MAPE)

3.2.6.1 Mean absolute percentage error
, tn measure the accuracy 0r error 

The mean absolute percentage error was u The mean absolute percentage

of satellite rainfall estimates / gridded nship- 
error was calculated using the following re*a '

MAPE= - X
n S o ,

( 12)

x ioo % ••••"'

Where 0 ,  and £ ,  are Kriged rainfall 

respectively.

-1-pMM satellite rainfall estimates

..(13)

3 2.6.2 Bias or mean Error

The Bias or mean error of n observations 

Is given by:- ..........

B IAS=i ................... nee between the average satellite
v ,=l .jfferet

The mean error in this study is simply the i  therefore expresses the bias of

rainfall estimates and average gridded rt̂hat are on average too high will 

,he satellite estimates. Satellite rainfall e < *  that are on average too low will 

exhibit mean errors greater than zero a11 

exhibit mean errors less than zero.

3 2.6.3 Mean Absolute error (MAE)

Is given by:-

................... (14)

M A E = l [S l£ , - O j ) ................... . . .  ,

V e arithmetic average of the absolute 

in this study, Mean absolute error (M A 0  rainfall estimates and the gridded 

values of the difference between sate
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ra in fa ll. It is a typical magnitude for errors between these two data sets. The MAE 

jS zero if satellite rainfall estimates are equal to gridded rainfall and increases as 

the discrepancies between the two data sets become larger.

3.2.6.4 Root Mean Square Error (RMSE)

Is given by the following equation:-

ln this study RMSE is the root of the average squared difference between satellite 

rainfall estimates and the gridded rainfall. It is more sensitive to larger errors than 

MAE. Squaring the errors produces positive terms so that RMSE increases from 

zero through large positive values as the discrepancies between satellite rainfall 

estimates and gridded rainfall become increasingly large.

Target mean absolute percentage errors of 10% and threshold of 15% are 

adapted, Fisher (2004) and Nicholson et al, (2003). The corresponding target and 

threshold values for Bias MAE and RMSE are shown in table 2.

K r-----------
Skill s c o r e MAPE BIAS MAE RMSE

T a r g e t
L _ z _

10% ±0.025 0.025 0.027

^ T h r e s h o l d 15% ±0.038 0.038 0.041

liable 2: Target and threshold values for MAPE, BIAS, MAE and RMSE

(15)
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3.2.7 CCA models

Another reason for using CCA was to develop models for estimating rainfall using 

TRMM estimates in areas where there is no rain gauge station. In the 

development of model, CCA identifies critical sequences of predictor patterns that 

tend to evolve in to sequent patterns that can be used to form a forecast (an 

estimate), Barnston and Ropelewski, (1992).

When CCA is used as part of predicting (estimating) procedure, it is necessary 

operationally to reconstruct estimated data values predicting (estimating) the y 

field (Kriged rainfall) using some number of the canonical vectors ̂  . A synthesis

equation can be derived for CCA by manipulating the matrix analysis equation, 

equation (16).

[w  ]  = [ r  ] | >  ]  ................................................ (16)
(n x M*) (n x J)(J x M*)

Matrix [k ] is the full matrix of predictand values. Each of the n rows of this matrix

contains one data record y  . The matrix [#]has as its columns some number M*

of the canonical vectors b pertaining to y. [w] is the matrix of the corresponding 

M* canonical scores. Equation (16) can be solved by multiplying on the right by 

[z?]7 and then multiplying on the right again by ([/?{/?]') ':

[W][B] =[Y][B][B]7 ...................................  ..........................(17)

[Y][B][B]7 ([B][B]7) 1 = [W][B]7 ([B][B]7) 1 

[Y][l]= [W][B]7 ([B][B]7) 1
t i\ it» »

[Y]= [W][B]7 ([B][B]7) .........................................................  (18)
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The relationship between [v], [x] and [/t] is analogous.

in this study, zero lagged data was used because our aim was to estir>late ^  

rainfall using satellite rainfall estimates. Canonical correlation T iross_c|at 

correlation matrix was constructed and the matrix was made to be ^ y mmetrj 

resulting in CCA Eigen vectors and their associated Eigen values for precjjctors 

and predictands. A CCA truncation mode was determined depending Ohj the 

Eigen value curve. The retained modes were used to develop precjjction 

(estimation) models using equation 18.
Genstat Discovery Edition 3 application program was used in th i^ study 

compute Canonical correlations and Principal components, (CCA and

37



CHAPTER FOUR

4 RESULTS AND DISCUSSIONS

4.1 Quality control of the data

Monthly rainfall totals from twenty six synoptic and Agrometeorological stations 

were used. Both the satellite derived rainfall estimates and the rain gauge 

observations had no missing data. Data quality control was done by plotting mass 

curve and trend line for each of the twenty six stations. There was no break in 

slope of the resulting plots and we therefore conclude that there was no 

inconsistency of rainfall data for the stations used in this study. Mass curves for 

selected stations are presented below, (Figures 5a-c).

Months

-  - accu rainfall ------- Linear (accu rainfall)

Fig 5a: Mass curve for Dagoretti station



Fig 5b: Mass curve for Moyale station

Months

Fig 5c: Mass curve for Kisii station



4.2 Validation

4.2.1 Kriging

Algorithm calibration and validation require careful comparison between th$ 

algorithm estimates and gauge observations. One problem ariseS’ m'srria*(:h 
in spatial scale between the gauge data (observations) and the satellite estim ate 

This problem was addressed by using ordinary Kriging s£berne w'*b lin e r̂ 

variogram at a spatial resolution of 0.25 degrees in order for tPe ra'n 9au9e 

to give areal estimates corresponding to satellite pixels.

The scatter plot (Fig 6a) compared the long term monthly means Kr'ged rained 

and the monthly mean TRMM rainfall estimates at a resold*'011 ®'2® ^ 5

degrees. The two variables were compactly arranged arid corre'9 * l% 

coefficient for these fields was 0.871.

Scatter plots were also plotted for dry and wet seasons. For dfY season, January 

to February was considered. The correlation coefficients between ^ r'9ed rain^n 

and TRMM rainfall estimates were 0.9, (fig 6b).

For wet a season, March to May (MAM), the long rain season '/v/as ana'yzec*- 

correlation coefficients for MAM were 0.847, (fig 6c). The corre,a*'on coe**ic '^^s  

for dry season were higher than those of wet season. The tw ° seasons 

symmetrical distribution of about one to one line. In all three cases the *V) 
variables were compactly arranged displaying a strong joint pehaviour b e tw ^ n 

the two data sets.

Flowever, the utility of ordinary Kriging for rainfall estimation is limited by particM^,- 

assumptions. First, rainfall stations used in this study were insufficient for the 

purpose of high resolution. Ideally, the preferred station density ôr der^ity 

resolution (25Km) gridding would be at least one station per 25 PV 25 ^ m’ 

et al, (2008). As a result errors are likely to larger than the targetecl’ (*ab,e 2)■
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Secondly, Kriging involves solving a set of linear equations to minimize t,ie 

variance of the observations around the interpolating surface. This least sqU^re 

problem therefore assumes that station data being interpolated are homogene^uS 

in space. This is not the case when we have stations across the country fforTI 

several climatic zones. Regions with higher precipitation will therefore have hic^er 

interpolation errors.

TRMM's 3B43 algorithm also overestimates deep stratiform rain associated 

wet season with a widespread anvil around strong, deep convective rain in 

mature stage and the decay phase because of the effects of an anvil rain wi 

little or no surface rain, evaporation near the surface or tilting of the storm syst^

ys/itl’1
the

i*1
m

Fig 6a: scatter plot of long term monthly means kriged and satellite rainfall es tim ^
tes

/
\

t
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«

kncjed rain (mm)

Fig 6b: scatter plot for kriged rainfall against TRMM rainfall estimates for January to 
February

i
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Fig 6c: Scatter plot Kriged rainfall against Trmm rainfall estimates for March to May.
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4.2.2. Principal Component Analysis

In this study, PCA was also applied in both modes, (temporal and spatial) for both 

Kriged (gridded) rainfall and TRMM rainfall estimates to explore the pair of the 

data sets and to reduce the size of the data. These analysis results are discussed 

in sections 4.2.2.1-2.

4.2.2.1 PCA in S-mode method

4.2.2.1.1 PCA in S-mode method for the overall period

Table 3 gives the results of S-mode on Kriged rainfall and TRMM rainfall 

estimates. Twenty six and sixty latent roots (Eigen values) with their associated 

Eigen vectors were obtained for Kriged rainfall and TRMM rainfall estimates 

respectively.

The first ten principal components were retained for validation both for Kriged 

rainfall and TRMM rainfall estimates according to the Scree plots (Fig 7 and 8). 

Also threshold of the Eigen value was set at ten and the Principal component 

whose Eigen values are above this threshold was retained.
/

The Scree plots for both Kriged rainfall and TRMM rainfall estimates showed 

some similarities. The first Eigen value for Kriged rainfall was 739.89 while that of 

TRMM rainfall estimates was 694.28.

t

\ t
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/--
Eigen Kriged rain- TRMM rain- Percentage of Percentage of V^r
vector Eigen value Eigen value Var-Kriged rain TRMM rain

_/
1 739.89 694.28 54.69 51.31 y
2 176.84 152.18 13.07 11.25 y
3 123.53 108.65 9.13 8.03 /
4 116.56 91.39 8.61 6.75 y
5 51.69 39.23 3.82 2.90 y
6 30.04 26.95 2.22 1.99 y
7 25.13 23.96 1.86 1.77

y
8 20.11 17.12 1.49 1.27

y
9 15.01 15.26 1.11 1.13 y
10 10.34 13.80 0.76 1.02 /
11 9.54 9.90 0.70 0.73 y
12 6.52 9.47 0.48 0.70

y
13 5.02 8.01 0.37 0.59 y
14 4.13 7.16 0.30 0.53

y
15 3.49 6.68 0.26 0.49 y
16 3.05 6.67 0.23 0.49

y
17 2.61 6.51 0.19 0.48 y
18 2.51 6.21 0.19 0.46

y
19 1.90 5.48 0.14 0.41 y
20 1.40 4.97 0.10 0.37

y
21 1.00 4.67 0.07 0.35 _ y"
22 0.79 4.48 0.06 0.33 /
23 0.63 3.98 0.05 0.29 y
24 0.59 3.84 0.04 0.28 y
25 0.37 3.41 0.03 0.25 -

y
26 0.31 3.35 0.02 0.25 y
27 0 3.16 0.0 0.23

y
28 0 2.86 0.0 0.21 y
29 0 2.77 0.0 0.20

y
30 0 2.69 0.0 0.20 __/

Table 3: Eigen vectors. Eigen values and the percentage of the variance for K ^ eĉ  
rainfall when subjected to PCA S-mode method

/
f
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Fig 7: Scree plot for latent roots of the Kriged rainfall (PCA S-mode method)

Eigen vectors

Eigen value

Fig 8: Scree plot for latent roots of the TRMM rainfall (PCA S-mode method)
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Four regions were obtained from the plot of the first principal component for the 

Kriged rainfall for thirty years period (Fig. 9). The first Eigen vector for was plotted 

because it explained more than 50% of the total variance. These regions are the 

Western sector extending up to the Northwestern Kenya, a small region over the 

Southern part of the country near Kilimanjaro area, the Coastal strip and the 

Northern Kenya extending to Central and some parts of Southern Kenya. This plot 

compared well with that of the first principal component of TRMM rainfall 

estimates for most parts of the country.

Fig. 10 shows the three zones obtained from the corresponding plot for TRMM 

rainfall estimates. The first zone (zone 1) was Western sector of the country. The 

second zone, (zone 2) was the Kenyan Coast. The third zone, (zone 3) was 

composed of Northern, North Eastern, Central and Southern parts of Kenya.

i.oo V
34.00 35.00 36.00 37.00 38 00 39 00 40.00 41 00 42.00

- 0.016 

I  0 0 1 8

I  0 0 1 9

I  ,0  0 2 0  

I  0 0 2 1  

I  0 022

I  -0 0 2 3

m -° 024
I  - 0.025 

- 0.026
— ---0.027 
 0.028
—  -0.029 

- 0.030 
- 0.031 
-0.032 
-0.033

Fig 9: Pattern of the first Eigen vector (first principal component) of Kriged
rainfall for the overall period (y-axis is longitude and x-axis islatitude)
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Fig 10: Pattern of the first Eigen vector (principal component) of TRMM rainfall 
estimates for the overall period (y-axis is longitude and x-axis is latitude)

4.2.2.1.2 PCA in S-mode method for the dry season, (January to February)

From the Scree plot, only six Eigen vectors were retained for validation for both 

the Kriged rainfall and the TRMM estimates for January and February data. For 

TRMM, the first Eigen vector, (principal component) explained 75 per cent of the 

total variance while that of Kriged rainfall explained 54.99 per cent of the total 

variance, (Table 4). The first Eigen value for Kriged rainfall was 744 while that of 

TRMM rainfall estimates was 1017.

/
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Eigen
vector

Kriged rain- 
Eigen value

TRMM rain- 
Eigen value

Percentage of 
Var-Kriged rain

Percentage of Var- 
TRMM rain

1 744 1017.11 54.99 75.17

2 175.38 139.11 12.96 10.28

3 122.29 51.39 9.04 3.80

4 115.76 31.40 8.56 2.32

5 51.83 22.24 3.83 1.64

6 30.06 18.83 2.22 1.39

7 25.20 13.08 1.86 0.97

8 20.14 12.34 1.49 0.91

9 14.90 8.78 1.10 0.65

10 10.09 7.01 0.75 0.52

Table 4: Eigen vectors, Eigen values and the percentage of the variance for Kriged 
rain and TRMM rainfall for January to February when subjected to PCA S-mode 
method (y-axis is longitude and x-axis is latitude).

Fig. 11 shows four regions namely, Western Kenya, North Western, Central 

extending to Southern, Coastal and Northern Kenya and finally a region over 

North Eastern Kenya-, derived from the first PC for the TRMM estimates. The 

corresponding plot for the Kriged rainfall over thirty year period resulted to four 

regions namely Western and Northwestern Kenya, Northern Kenya extending to 

Central and Southern Kenya, the Coastal strip and Southern Kenya, (Fig 12). The 

results of Kriged rainfall over thirty year period and that of TRMM had similar 

pattern over Northwestern, Western, Central and some parts of the Northern 

sector of the country for the dry period.
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Fig 11: Pattern of the first Eigen vector of TRMM rainfall for January to February (y- 
axis is longitude and x-axis is latitude).
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Fig 12: Pattern of the first Eigen vector of Kriged rainfall for January to February (y-
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The first Eigen value for Kriged rainfall was 654.54 and the total variance 

explained by the associated Eigen vector was 48.67%, while that of TRMM was 

553.25, (40.89% of the total variance). With the aid of scree plot, the first ten 

Eigen vectors were retained for validation in each case, (Table 5).

4.2.2.1.3 PCA in S-mode method for a Wet season (March to May)

Eigen
vector

Kriged rain- 
Eigen value

TRMM rain- 
Eigen value

Percentage of 
Var-Kriged rain

Percentage of Var- 
TRMM rain

1 658.54 553.25 48.67 40.89
2 240.30 208.91 17.76 15.44

3 145.38 156.27 10.74 11.55
4 92.27 103.33 6.82 7.64

5 43.28 42.15 3.20 3.12
6 35.86 34.22 2.65 2.53
7 33.21 33.27 2.45 2.46

8 20.31 22.83 1.50 1.69

9 16.06 22.37 1.19 1.65

10 13.10 17.83 0.97 1.32

11 10.47 16.46 0.77 1.22

12 8.15 14.39 0.60 1.06

13 6.18 13.47 0.46 1.00 '

14 5.86 11.98 0.43 0.89

15 4.78 10.13 0.35 0.75

Table 5: Eigen vectors, Eigen values and the percentage of the variance for Kriged 
and TRMM rainfall for March to May when subjected to PCA S-mode method

Map plot for the first principal component of both Kriged rainfall and TRMM rainfall 

estimates showed similar pattern. In each case three regions were obtained, (fig 

13 and 14). These regions are the Coast, North Western Kenya and the rest of the

country. > .. .
/
\  ' : t
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Fig 13: Pattern o f the first Eigen vector of Kriged rainfall for March to May (y-axis is 
longitude and x-axis is latitude).
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Fig 14: Pattern of the first Eigen vector of TRMM rainfall estimates for March to May
(y-axis is longitude and x-axis is latitude). \ , :
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Table 6 gives the results of T-mode on Kriged rainfall and TRMM rainfall 

estimates. Twenty five and thirty two latent roots (Eigen values) with their 

associated Eigen vectors were obtained for Kriged rainfall and TRMM rainfall 

estimates respectively.

4.2.2.2 PCA in T-mode method

Eigen Kriged rain- TRMM rain- Percentage of Percentage of
vector Eigen value Eigen value Var-Kriged rain TRMM rain
1 58.64 45.63 44.42 34.57
2 28.23 24.68 21.39 18.70
3 12.80 12.22 9.69 9.26
4 12.00 10.57 9.09 8.01
5 5.18 3.95 3.92 2.99
6 3.47 3.65 2.63 2.76
7 2.47 3.51 1.87 2.66
8 1.96 1.95 IT49 1.48
9 1.19 1.74 0.90 1.32
10 0.99 1.37 0.75 1.04
11 0.89 1.19 0.67 0.90
12 0.71 1.00 0.53 0.75
13 0.58 0.95 0.44 0.72
14 0.54 0.87 0.41 0.66
15 0.48 0.76 0.36 0.57
16 0.41 0.74 0.31 0.56
17 0.37 0.71 0.28 0.54
18 0.26 0.67 0.20 0.51
19 0.24 0.61 0.18 0.46
20 0.15 0.57 0.11 0.43
21 0.12 0.53 0.09 0.40
22 0.10 0.48 0.08 0.36 _
23 0.09 0.46 0.07 0.35 _
24 0.08 0.45 0.06 0.34 ^
25 0.05 0.43 0.04 0.33 _
26 0.00 0.41 0.00 0.31
27 0.00 0.37 0.00 0.28 _
28 0.00 0.36 0.00 0.27
29 0.00 0.34 0.00 0.26
30 0.00 0.33 0.00 0.25

Table 6: Eigen vectors. Eigen values and the percentage of the variance f^r ^ r*8ett
and TRMM rainfall in PCA T-mode - • -/

\  1» i
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The first ten principal components were retained for validation both fof Kriged

rainfall and TRMM rainfall estimates according to the Scree plots (Fig 15 ^ nd
,es had

The two plots suggested that Kriged rainfall and TRMM rainfall estima* 

some common characteristics.

70

0)J3fO>
c<vOP

-Eigen value

Fig 15: plot for latent roots of the Kriged rainfall (PCA T-mode)
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4.2.3 Time series analysis

nd
Figures 17 and 18 give the results of time series analysis for the first and sec^

/hat
Eigen of the Kriged rainfall and TRMM rainfall estimates. Figure 17 indicates *

Kriged rainfall’s loadings are larger than those of TRMM rainfall estirr/

However, in both cases loadings are negative. Figure 18 indicates that extrer îeS

of TRMM rainfall estimates are either larger or smaller than those of Kri^e°
pne

rainfall. The two variables are either underestimating or overestimating 

another. However, from these results, it is possible to estimate areal rainfall u^ ^ 

satellite rainfall estimates.

TRMM iair 
r  KrQec tair

figed
Fig 17: Time series analysis for the first principal component of TRMM and K 
rainfall from January 1998 to December 2008

t
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Fig 18: Time series analysis for the second principal component of TRIV|m and Kriged 
rainfall from January 1998 to December 2008

4.2.4 Canonical correlation

4.2.4.1 Canonical correlation for the overall period of study

Tables 7 and 8 give the results of CCA for S-mode and T-mode respectively.

The first canonical correlation in S-mode method was 0.9767. For T-mode, 

correlation between Kriged rainfall and TRMM was 0.9859. These were the 

largest possible correlation between pairs of the linear combinations of these 

datasets. However, they represent only 14.56 and'12.60 per cent of the total 

correlations respectively. For S-mode method, seven out of ten Eigen vectors had 

canonical correlation coefficients of more than 0.5, which is 87.07% of the 

cumulative correlation coefficients. T-mode method had eight opt of ten Eigen 

vectors with canonical correlation coefficients of more than ,0.5.
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Eigen
vector

Canonical
correlations
coefficients

% of the 
total
Correlations

Cumulative % Correlations

1 0.9767 14.56 14.56
2 0.9197 13.71 28.27
3 0.9156 13.65 41.92
4 0.8430 12.57 54.49
5 0.8329 12.42 66.91
6 0.7537 11.24 78.14
7 0.5988 8.93 87.07
8 0.4516 6.73 93.80
9 0.2530 3.77 97.57
10 0.1627 2.43 100.00

Table 7: Canonical correlation for S-mode for the overall period of study

Eigen
vector

Canonical
correlation
coefficients

% of the 
total
Correlations

Cumulative % Correlations

1 0.9859 12.60 12.60
2 0.9770 12.49 25.08
3 0.9677 12.37 37.45

/

4 0.9334 11.93 49.38
5 0.9214 11.77 61.15
6 0.8730 11.16 72.31
7 0.8094 10.34 82.65
8 0.7937 10.14 92.79

9 0.4356 5.57 98.36

10 0.1283 1.64 100.00

Table 8: Canonical correlation for T-mode for the overall period of study
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4.2.4.2 Canonical correlation for seasons

Tables 9 and 10 give CCA results for Kriged rainfall and TRMM satellite for a dry 

season (January to February) and a wet season (March to May) respectively.

For dry season the highest correlation coefficient was 0.926, however this was 

only 24.9 percent of the total correlations, (table 9). In this season four out of six 

Eigen vectors had correlation coefficients greater than 0.5 which was 79.73% of 

the total correlation.

For March to May season seven out of ten Eigen vectors had canonical 

correlation coefficients greater than 0.5. This was 87.72% of the total correlations. 

The highest correlation coefficient obtained in this season was 0.967, (table 10).

Eigen
vector

Canonical
correlation
coefficients

% of the total 
Correlations

Cumulative % 
Correlations

1 0.926 24.90 24.90

2 0.807 21.69 46.58

3 0.666 17.91 64.49

4 0.567 15.24 79.73

5 0.415 11.16 90.90

6 0.339 9.10 100

Table 9: CCA results for a dry season (January to February)

/
\
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Eigen
vector

Canonical
correlation
coefficients

% of the total 
Correlations

-----------------------------/
Cumulative
%Correlation£

1 0.967 14.66 14.66

2 0.951 14.42 29.08

3 0.944 14.32 43.40

4 0.865 13.11 56.51

5 0.796 12.07 68.58

6 0.720 10.91 79.49

7 0.543 8.23 87.72

8 0.479 7.26 94.98

9 0.261 3.95 98.94

10 0.070 1.06 100

Table 10: CCA results for a wet season (March to May)

The results of the canonical correlations for the overall period of studV and the t^  

seasons indicated that the TRMM satellite rainfall estimates ^ nd the Kriged rain^ 

were highly correlated. It was concluded that TRMM sa t^ '*e ra'n^all estim^ 

could be used to estimate areal rainfall. The results of canonical correlate 

analysis were therefore used to develop models for estimating areal rainfall.

4.2.5 Error Analysis

The error analysis results are presented below.

4.2.5.1 Mean absolute percentage error method (MAPE)r

The mean absolute percentage error analysis was perforfTied t0 assess tP 

accuracy of TRMM satellite rainfall estimates. The (MA^E) error 9ives  ̂

indication of the accuracy of the satellite based estimates v/'th respect to group
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based observations. The percentage error was determined using spatial and 
temporal methods.

4.2.5.1.1 Mean absolute Percentage error (MAPE) in temporal mode

Figure 19 represents the mean absolute percentage error analysis in temporal 

mode. These errors ranged from 0.27% to 212.1%. The average percentage 

absolute error in this mode was 44.4%. The target and the threshold values were 

10% and 15% respectively. This indicated that the difference between the 

satellite-derived rainfall estimates and the interpolated rainfall was quite large in 

this mode.

250

Months

%errors

Fig 19: The temporal representation of the mean absolute percentage error (MAPE)

4.2.5.1.2 Mean absolute Percentage error (MAPE) in spatial mode

Mean absolute percentage error analysis in spatial mode method was performed 

to determine areas where satellite rainfall estimates agree with the Kriged rainfall. 

This analysis was performed for the overall period of study and also for a dry and 

a wet season.

/
\ t
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(a) Mean absolute percentage error for the overall period of study

Figure 20 represents the spatial representation of the mean absolute percentage 

error for the overall period of study. These errors ranged from 0.1% to 99%. 

However, the average percentage error was found to be 28% against a target of 

10% and threshold of 15%. Central and Northwestern Kenya recorded the largest 

errors. Over these areas the TRMM satellite rainfall estimates and the Kriged 

rainfall are not in good agreement. The Western and Eastern sectors of the 

country recorded smallest percentage errors. In these areas the differences 

between the satellite-derived rainfall estimates and the Kriged rainfall are 

relatively small.
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Fig 20: The overall spatial representation of the mean absolute percentage error 
(MAPE) (y-axis is longitude and x-axis is latitude).

(b) Mean absolute percentage error for a dry season (January to February)

Figure 21 shows the spatial representation of mean absolute,percentage error for 

a dry season (January to February). The range of absolute percentage errors was 

between 0% and 86.4% with an average of 14.9%, which is less than the
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threshold value of 15%. Generally the plot show that apart from the Western, the 

Coast and some few parts of Northwestern Kenya, most parts of the country have 

mean absolute percentage errors less than 20%. This indicates that the 

differences between the satellite-derived rainfall estimates and the interpolated 

rainfall are relatively small, hence this verifies that satellite estimations may be 

used to estimate areal rainfall where ground based observations are non 

existence.
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Fig 21: The spatial representation of the mean absolute percentage error (MAPE) for 
a dry season (January to February) (y-axis is longitude and x-axis is latitude).

(c) Mean absolute percentage error for a wet season (March to May)

Figure 22 gives the mean absolute percentage errors for March to May. In this 

season the mean absolute percentage error ranged from 0% to 99.9% with an 

average of 27.9%. Generally most parts of the country recorded errors which were 

less than 20%. These were within the acceptable limij. However, Coastal strip 

reported errors larger than 20%.
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Fig 22: The spatial representation of the mean absolute percentage error (MAPE) for 
a wet season (MAM) (y-axis is longitude and x-axis is latitude).

4.2.5.2 BIAS (Mean error)

The mean errors (BIAS) were determined using two methods, the spatial (S- 

mode) and the temporal (T-mode). In spatial method, BIASES were determined 

for the overall period of study, a dry season (January to February) as well as for a 

wet season (March to May).

4.2.5.2.1 BIAS (mean error) in temporal mode

Figure 23 gives the overall BIAS results in temporal mode. These mean errors 

ranged from -0.093 to +0.09. The lowest bias value was recorded in January 1998 

while the highest bias was recorded in April 2007 respectively. These maximum

and minimum BIASES were treated as outliers and it was found that in most
' '  •# ' -

cases the BIASES were within the acceptable limit of ±0.038.
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Fig 23: The temporal representation of the mean error (BIAS)

4.2.5.2.2 BIAS (mean error) in spatial mode
/

(a) Bias for the overall period of study

Figure 24 gives results of the Bias in S-mode method for the overall period of 

study. These errors ranged from -0.026 to +0.03, which was within the 

acceptable limit of ±0.038. When these Bias values were plot on a map, results 

showed that the Northern, Central and the Kenyan coast had the highest values 

of the BIAS. These positive bias values indicate that in these areas satellite 

rainfall estimates exceed the observed values on average. Western and Eastern 

Kenya had negative BIAS. In these areas satellite underestimate rainfall.
\ i '\
\  f* >
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Fig 24: The overall spatial representation of the Mean error (BIAS) (y-axis is 
longitude and x-axis is latitude).

Fig 25: The spatial representation of the Mean error (BIAS) for a dry season 
(January to February), (y-axis is longitude and x-axis is latitude).
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(b) Bias for a dry season (January to February)

Figure 25 gives the BIAS results of Kriged rainfall and TRMM rainfall estimates 

for a dry season (January to February). The range of the BIAS were from -0.038 

to +0.034. Negative BIAS values were located over Western and Eastern Kenya. 

In these areas TRMM algorithm was underestimating rainfall. Positive BIAS 

values were concentrated over the Northern, Central and southern sectors of the 

country. In these areas positive bias indicates that the satellites estimates 

exceed observed values, all over the country the BIASES were within the 

acceptable limit (±0.038).
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Fig 26: The spatial representation of the Mean error (BIAS) for a wet season, 
(March to May), (y-axis is longitude and x-axis is latitude).

(c) BIAS (Mean error) for a wet season (March to May)

Figure 26 represents the spatial mean error (BAIS) for a wet season (March to

May). The BAIS values for.this period ranged from -0.024 to +0.03. These values
/

were within the threshold value of ±0.038, although the (argeted values were
* f *

±0.025. Northern and some parts of Central Kenya reported positive BIAS values
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with the highest values being concentrated around Marsabit. Western, 

Northwestern, Southern and the Coastal strip had negative BAIS values.

4.2.5.3 Mean absolute error (MAE)

The mean absolute errors were determined using both temporal and spatial 

method. The results are presented below.

4.2.5.3.1 Men absolute error (MAE) in temporal mode

Figure 27 gives the results of mean absolute errors in temporal mode. The errors 

ranged from 0.033 to 0.1727, which is considered as an outlier. Compared to the 

results in spatial mode method, this method generated larger errors. The targeted 

MAE was 0.025 and the threshold was 0.038. The lowest value was recorded in 

August 1999 while the highest was recorded in January 2008. However, most of 

the values lie between 0.04 and 0.12.

<£> <§> <£> <£> <$> <$> <£<$>

months

Fig 27: The temporal representation of the mean absolute error (MAE)
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4.2.5.3.2 Men absolute error (MAE) in spatial mode

(a) Overall Mean absolute error (MAE)

Figure 28 gives the results for the overall mean absolute error. The MAE ranged 

from 0.011 to 0.046, however more than half of the country had errors below the 

threshold value, (0.038). Western, Central, Southern Kenya and the Coast 

reported highest mean absolute errors. Northern Kenya reported lowest MAE 

values. The errors obtained in this mode are smaller than those in temporal mode 

method.

-5 00
34.00 35.00 36 00 37.00 38.00 39.00 40 00 41.00 42.00

0 046 
0 044 
0.042 
0.040 
0.038 
0.036 
0.034 
0.032 
0.030 
0.028 
0.026 
0.024 
0.022 
0.020 
0.018 
0.016 
0.014 
0.012 0 010

Fig 28: The overall spatial representation of the Mean absolute error (MAE), (y-axis is 
longitude and x-axis is latitude).

(b) Mean absolute error for a dry season (January to February),

Figure 29 gives the results MAE for January to February (dry season). This 

season had mean absolute errors ranging from 0.009 to 0.048. The largest mean

absolute errors values were reported over Western and Northern Kenya, however
/

more than half of the country had errors below the threshold value, (0.038). In 

both cases TRMM algorithm seemed to overestimate rainfall over the Western 

and Northern parts of the country.
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Fig 29: The spatial representation of the Mean absolute error (MAE) for a dry season 
(January to February), (y-axis is longitude and x-axis is latitude).
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Fig 30: The spatial representation of the Mean absolute error (MAE) for a wet season
(March to May), (y-axis is longitude and x-axis is latitude).
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Figure 30 is the spatial representation of MAE for long rain season, (March to 

May).In this season the mean absolute errors ranged from 0.01 to 0.043. The 

smallest errors were located over the Coast, Central and some parts over 

northern Kenya, which were within the acceptable limit of 0.025 and the threshold 

value of 0.038.

4.2.5.4 The Root mean square error (RMSE)

The root mean square errors were determined using both temporal and spatial 

method. The results are presented below.

4.2.5.4.1 The root mean square error (RMSE) in temporal mode method

Figure 31 is the temporal representation of root mean square error. The RMSE 

ranged from 0.039 to 0.22. These errors were above the targeted and the 

threshold values, (0.027 and 0.041 ).The lowest RMSE value was recorded on 

August 1999 while the highest value was recorded on January 2008.

(c) Mean absolute error for a wet season (March to May)

months

Fig 31: The temporal representation of root mean square error (RMSE)
/
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4 2.5.4.2 Root Mean squared error in spatial mode method

(a) Overall Root mean squared error, (RMSE).

Figure 32 gives the results of the overall RMSE in spatial mode. These errors 

ranged from 0.018 to 0.06. More than half of the country reported RMSE values 

less than the threshold value, (0.041). This range was smaller than that obtained 

from temporal method. Western, Central and the Northern Coast recorded the 

largest root mean squared errors. The northern and Southern Kenya recorded 

small errors.
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Fig 32: Overall spatial representation of the Root Mean Square Error (RMSE), (y-axis 
is longitude and x-axis is latitude).

(b) Root mean square error for a dry season (January to February)

Figure 33 is the spatial representation of RMSE for the dry season (January to 

February). These errors range from 0.012 to 0.06. Apart from Western and 

Northwestern Kenya, most parts of the country recorded smaller root mean
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squared error than the threshold value. The Northern part of the country reported 

RMSE values which were less than the target, (0.027).
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Fig 33: The spatial representation of the Root Mean Square Error (RMSE) for a dry 
season (January and February), (y-axis is longitude and x-axis is latitude).

(c) Root mean square error for a wet season (March to May)

Figure 34 gives the results of RMSE for March to May in spatial mode. Over this

period, the RMSE ranged from 0.012 to 0.060. Western, Northwestern and

Southern sectors of the country recorded the larger than the target errors while

Coast recorded smaller than the targeted root mean squared errors, (0.027). In

both seasons Northwestern and the western sectors of the country seemed to
/ l# „ 

have larger errors than the rest of the country;-
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Fig 34: The spatial representation of the Root Mean Square Error (RMSE) for a wet 
season (March to May], (y-axis is longitude and x-axis is latitude].

4.3 Canonical correlation analysis (CCA) models

A set of weights for predictor components (elements) is related to an analogous 

set of weights for the predictand (estimated) components. These weighting sets 

called loading patterns illustrate the associated predictor-predictand patterns and 

thus can be used as guidance to the underlying physical processes as well for 

descriptive purposes. The magnitudes of the loadings represent the relative 

importance of predictor and the predictand to prediction (estimation) skill provided 

by CCA models in this study, Barnston and He, (1996). In this study, these 

loadings are presented in two forms, the spatial and the temporal modes. Hence 

we have spatial and temporal CCA models.
/
\ ‘ !
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4.3.1 Canonical correlation analysis (CCA) spatial models

To examine the nature of the contributions of the predictor field to the skill of 

predictions (estimation) of rainfall of a given location, the spatial distribution of 

canonical loading patterns are examined. We forecast first on the overall period, 

then a dry season (January to February) and finally a wet season (March to May).

4.3.1.1 Canonical correlation analysis (CCA) spatial models for the overall 
period

Figures 35, 36 and 37 show the canonical correlation patterns for the predictor (fig 

a) and predictand (fig b) for the first, second and third modes respectively. The 

CCA canonical correlation coefficients (R) for these modes are also shown.

From figures 35a and 35b, we found that positive loadings are found over the 

Southern part of the country extending to the Coast, Central Kenya and the Lake 

Victoria region. Negative loadings are found over the Western, the Northern and 

Northeastern Kenya. The canonical correlation coefficient between TRMM rainfall 

and the areal rainfall was 0.9767. This pattern accounted for 14.56% of the total 

variance of TRMM rainfall or Kriged rainfall in the data set analyzed.

It should be noted there that prediction (estimation) was constructed using the 

pattern vector shown in fig 35 (a) to predict (estimate) the pattern in 35 (b).

From fig 36 (a) and 36 (b), the positive loadings were found over the Western 

sector while the negative loadings were recorded over the Eastern sector of the 

country. The canonical correlation coefficient between the two fields in this mode 

was 0.9197. This pattern accounted for 13.71% of the total variance of TRMM 

rainfall or Kriged rainfall in the data set analyzed.

Figures 37 (a) and 37 (b) showed that the positive canonical loadings were 

dominant over the Western, Northwestern, Kenya and the Coastal strip. The 

negative canonical loadings were found over Northeastern and Northern Kenya 

extending all the way to Central, Southern and Southeastern Kenya. The
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canonical correlation between areal rainfall and TRMM rainfall was 0.9156. This 

pattern accounted for 13.71% of the total variance of TRMM rainfall or Kriged 

rainfall in the data set analyzed.

Positive loadings indicated their strong predictive value while weak ones indicated 

their lesser predictive value. Mode 1 (fig 35) would be therefore suitable for 

estimating areal rainfall over the Southern sector (half) of the country. Areal 

rainfall over the Western sector would be estimated by mode 2 (fig 36) while 

Coastal rainfall would be estimated using the third model (fig 37).

(a ) Predictor (TRMM rainfall) (b ) Predictand (areal rainfall)

Fig 35 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA loadings for 
the overall period for mode 1, (y-axis is longitude and x-axis is latitude), R=0.9767

\ t
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Fig 36 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA loadings the 
overall period for mode 2, (y-axis is longitude and x-axis is latitude), R=0.9197

Fig 37 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA loadings the 
overall period for mode 3, (y-axis is longitude and x-axis is latitude), R=0.9156
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4.3.1.2 Canonical correlation analysis (CCA) spatial models for dry season 

(January to February)

Figures 38 and 39 show the geographical distribution of the canonical loadings 

and canonical coefficients of January to February (dry season) for modes one and 

two respectively. Mode one’s coefficient was 0.926 while that of mode 2 was 

0.807. These two canonical modes explained 24.9 and 21.69 per cent of the 

original predictor/ predictand variance respectively.

The principal predictor and predictand loadings for mode one (fig 38) indicated 

positive values over Northwestern, Western and Southern Kenya. Negative 

loading values were recorded over Northeastern parts of the country while the rest 

of the country recorded near zero values. This mode would be suitable for 

estimation of rainfall over the Northwestern and Western sector of the country.

Predictand (areal rain)Predictor (TRIMM) rainfall

Fig 38 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA loadings for 
mode 1 for January to February, (y-axis is longitude and x-axis is latitude), R=0.926
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Predictor (TRM M ) rainfall Predictand (areal rain)

loadings for
Fig 39 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA r =o.807 
mode 2 for January to February, (y-axis is longitude and x-axis is latitude}'
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Fig 40 TRMM rainfall predictor (a) and Areal rainfall predictand (b] CCA loading^ ôr 
mode 1 for March, April and May, (y-axis is longitude and x-axis is latitude], R=0.9^^
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Fig 41 TRMM rainfall predictor (a] and Areal rainfall predictand (b] CCA loading^ ôr 
mode 2 for March, April and May, (y-axis is longitude and x-axis is latitude], R=0.9^* 1
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Fig 42 TRMM rainfall predictor (a) and Areal rainfall predictand (b) CCA loadings for 
mode 3 for March, April and May, (y-axis is longitude and x-axis is latitude), R=0.944

4.3.1.3 Canonical correlation analysis (CCA) spatial models for wet season 

(March to May)

The first and important three modes were examined. The first mode (fig 40) had 

canonical correlation coefficient of 0.967. The Southern part of the country 

including the Coast had positive canonical loadings while the rest of the country 

had negative canonical loadings indicating lesser predictive value. This mode 

would be therefore suitable for areal rainfall estimation over the Southern part of 

the country.

Figures 41(a) and 41(b) indicated that the Coast had negative canonical loadings 

while Northeastern Kenya had near zero values. The rest of the country had 

positive loadings. The canonical correlation coefficient in this model was 0.951. 

The mode could be used to estimate areal rainfall all over the country apart from 

the Coast. > •
f\ i <

Mode 3, figures 42(a) and 42(b) had negative canonical loadings over 

Northwestern, Western Kenya and the Coastal strip. The rest of the country
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recorded positive loadings. The canonical correlation coefficient (R) for this r110̂ 61 

was 0.944. The mode is suitable for estimation of areal rainfall over the r^st of 

Kenya apart from the Coastal strip, Western and Northwestern Kenya.

4.3.2 Canonical correlation analysis (CCA) temporal models

Figures (43, 44 and 45) show the canonical correlation results of pred<ctand 

versus the observed. In this case TRMM rainfall estimates were tak^n as 

observed while Kriged rainfall field was being predicted. The canonical corr^at'on 

coefficients (R) for the first, second and third modes were 0.9859, 0.977^ and 

0.9677 respectively. These modes however represented 37.45 per cent the 

total variance. It is evident from these graphs TRMM rainfall estimates provide 

reliable estimation information over the entire period (1998-2008), with sKi,,s of 

more than 0.96. The forecasted rainfall captured most significant fluctu^tions’ 

including those associated with major extremes such as floods and droughts-

Fig 43: Canonical component predictor (TRMM rain) and predictand (Kriged for 
mode 1, R=0.9859
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CHAPTER FIVE

5.0 Summary, Conclusions and Recommendations

In this chapter, an attempt was made to summarize the work done and r>̂ )or 

findings of the study. Conclusions drawn from this study and suggestion t0 

improve it were also included.

5.1 Summary

This study was divided into four broad sections based on specific objectives. i he 

first section dealt with the development of gridded rainfall field based on the ^ in 

gauge data over Kenya using Kriging method. This approach allowed a ry/re 

effective use of rain gauge-based observations to compare and validate sat^|||te' 

based rainfall estimates.

In the second section the two data sets were analyzed using Principal CompQr1̂ nt
• f jo i

Analysis to highlight their similarities and the differences. PCA was done in s y  

mode for the two data sets for the overall period of study, wet season (Mar^ t0 

May) and also for dry season (January to February). Spatial maps of the loaqj|19s 

of the first Principal Component were drawn in order to compare the two variableS‘ 

These maps had similar patterns. PCA was also done in temporal mode and t ime 

series of the first and the second Principal components of the two data sets ^ ere 

plotted and the resulting graphs had similar trend. Significant Eigen vector/  in 

both modes were retained for further analysis.

In the third part the validity of the satellite derived rainfall estimates f as 

determined using gridded rainfall field as the reference data. This was achieved
c  jo

by use of scatter plots, simple and canonical correlations and also error anay 

Results from scatter plots showed that the two variables were compactly a r ra ^ ed 

with few outliers. Results from simple and canonical correlations showed |^ r̂ e 

correlation coefficients. The-statistical scores used in error analysis were r ^ an 

absolute percentage error (MAPE), the BIAS (mean error), mean absolute ^ rror
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(MAE) and the root mean square error (RMSE). The results obtained from these 

statistical scores indicated that the temporal mode method generated larger errors 

than the spatial mode method, while wet regions had larger errors than dry 

regions. Also dry season had smaller errors than the wet season.

Finally spatial and temporal Canonical Correlation (CCA) models were developed 

using the significant Principal components (PCA) to estimate rainfall in areas with 

sparse rain gauge network over Kenya. The study found no spatial mode was 

similar to the other. July was found to have largest CCA loadings while January 

had the smallest.

5.2 Conclusions

Gridding rain gauge data over Kenya using Kriging technique was found to be a 

good tool of solving the problem of mismatch between the satellites derived 

rainfall estimates and the rain gauge data (observations). Kriging method however 

assumes that the data being interpolated are homogeneous in space, which is not 

the case in Kenya. This probably resulted to generation of larger errors than 

expected especially over wet regions and wet season.

Conclusions drawn from Principal Component analysis was that this analysis 

provided large-scale information about the joint behaviour between TRMM’s 

satellite derived rainfall estimates and the gridded rainfall. Of particular interest 

were the spatial distribution and the time series of the loadings of the Principal 

components (Eigen vectors). Spatial maps generated by the loadings of the first 

principal components of TRMM’s satellite derived rainfall estimates and the 

gridded (Kriged) rainfall for the overall period of study, wet and dry seasons had 

identical patterns. The time series of the first and the second Principal 

components of the two variables had the same trend. These results show how the 

two data sets are closely related to each other and it is concluded that satellite

derived rainfall estimates may be used to represent areal rainfall in regions with
\ 1 '

sparse gauge network.
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The compactly arrangements of the two variables in scatter plots and large 

correlation coefficients from simple and canonical correlation analysis for the 

overall period of study, dry and wet seasons are indicators of a strong relationship 

between TRMM satellite derived rainfall estimates and the gridded rainfall data 

over Kenya. Based on these on these results, it may be suggested that the 

satellite derived rainfall estimates may be used to estimate rainfall in areas without 

rain gauge observatories.

Error analysis results from the temporal mode method showed that this method 

generated larger errors than the spatial method. The loadings of principal 

components (Eigen vectors) of the two data sets were used to determine errors. In 

principal component analysis, the temporal mode method disregards geographical 

locations while the spatial mode method data of each grid point is time averaged. 

This explains different error analysis results between the two methods.

Both the spatial mode and temporal mode methods generated larger errors than 

expected. There are three possible explanations for these findings, first the 

passive microwave sensors are carried on board polar orbiting TRMM satellite, 

with sensors providing only two to three overpasses at any given point each day. 

These observations from satellites are very few and may have lead to temporal 

sampling errors.
/

Another possible source of errors is inadequate validation rain gauge data. This 

data was generated through interpolation techniques which introduced errors.

The dry season had smaller errors than the wet season and also the dry parts of 

Kenya had smaller errors than the wet areas. These results suggest that TRMM 

algorithm tends to overestimates rainfall in wet season or in wet areas. This 

overestimation may have been caused by the presence of many different types of 

clouds, in wet season and regions. These clouds tend to decrease the brightness 

temperature observed in micro-wave channels.
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From CCA temporal-mode models, July has high predictability while January has 
the smallest.

5.3 Recommendations

It is recommended that gridded rainfall field based on rain gauge data should be 

improved in Kenya through testing and application of various interpolation 

techniques. This will minimize errors generated by interpolation techniques.

Principal Component Analysis reduces large number of correlated data sets in 

time and space into small number of orthogonal functions that are linear 

combinations of the original observations and account for a large percentage of 

the total variance. In doing so some important information may have be discarded 

when truncating the PCA. It is therefore recommended that validation for satellite 

derived estimates over Kenya be done separately for each homogeneous zone. 

This will reduce the size of the two data sets.

In this study the satellite derived rainfall estimate used were obtained from 

combination of sensors (infra-red, passive microwave and precipitation radar). It is 

recommended that validation of rainfall estimates derived from each sensor be

validated separately over Kenya. It is further recommended that rainfall estimates
/

derived from different algorithms and satellites should also be validated over 

Kenya.

It is recommended that further studies should be carried out in order to find out 

why July has high predictability while January has the smallest. It is further 

recommended that models for estimating areal rainfall over Kenya using satellite 

derived rainfall estimates using other techniques apart from CCA should also be 

developed and tested.

/
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