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Analysis of shotgun metagenomic data generated from next generation sequencing platforms can be done through a variety of
bioinformatic pipelines. These pipelines employ different sets of sophisticated bioinformatics algorithms which may affect the
results of this analysis. In this study, we compared two commonly used pipelines for shotgun metagenomic analysis: MG-RAST
and Kraken 2, in terms of taxonomic classification, diversity analysis, and usability using their primarily default parameters.
Overall, the two pipelines detected similar abundance distributions in the three most abundant taxa Proteobacteria, Firmicutes,
and Bacteroidetes. Within bacterial domain, 497 genera were identified by both pipelines, while an additional 694 and 98 genera
were solely identified by Kraken 2 and MG-RAST, respectively. 933 species were detected by the two algorithms. Kraken 2 solely
detected 3550 species, while MG-RAST identified 557 species uniquely. For archaea, Kraken 2 generated 105 and 236 genera
and species, respectively, while MG-RAST detected 60 genera and 88 species. 54 genera and 72 species were commonly detected
by the two methods. Kraken 2 had a quicker analysis time (~4 hours) while MG-RAST took approximately 2 days per sample.
This study revealed that Kraken 2 and MG-RAST generate comparable results and that a reliable high-level overview of sample
is generated irrespective of the pipeline selected. However, Kraken 2 generated a more accurate taxonomic identification given
the higher number of “Unclassified” reads in MG-RAST. The observed variations at the genus level show that a main restriction
is using different databases for classification of the metagenomic data. The results of this research indicate that a more inclusive
and representative classification of microbiomes may be achieved through creation of the combined pipelines.

1. Introduction

Metagenomics is a high-throughput sequencing (HTS) tech-
nique commonly used to investigate complex microbial com-
munities in terms of composition, structure, diversity, and
function. This culture-independent application has gained
importance in microbiological studies over the past decade
[1] especially in studies of environmental communities
[2, 3], in industrial quality control processes [4], and in
understanding the influence of gastrointestinal microbes
on the health of human beings and their well-being [5].

The phrase metagenomics can be defined by two distinct
approaches: targeted and shotgun metagenomics. Targeted
metagenomics is also called amplicon-based metagenomics
or metagenetics [6]. This technique focusses exclusively on
a genomic marker, which is amplified before sequencing
thus greatly reducing the amount of data to be sequenced
and analyzed. Shotgun metagenomics on the other hand
uses extraction and sequencing of the complete DNA to
study the genomic content of a sample. Consequently, this
integrated strategy provides a rich image of the microbiota
and offers the chance to study the taxonomic classification
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and functional characteristics of microbial communities
simultaneously [7]. However, assessment of shotgun data
is a difficult job not only because of its data size but also
due to its complicated data structure [8]. This is a major
impediment to common algorithms.

After the raw reads from metagenomic sequences are
generated, the subsequent stage is to evaluate them in order
to assess the microbial composition and structure [9]. To
achieve this, there are growing numbers of pipelines for
bioinformatic assessment [8]. These tools include CLAssi-
fier based on Reduced K-mers (CLARK) [10], Genomic
Origins Through Taxonomic CHAllenge (GOTTCHA) [11],
Metagenomics-Rapid Annotation using Subsystems Tech-
nology (MG-RAST) [12], Kraken 2 [13], Quantitative Insights
Into Microbial Ecology (QIIME) [14], Metagenomic Phyloge-
netic Analysis (MetaPhlAn) [15], MOTHUR [16], and
metagenomic operational taxonomic units (mOTU) [17].
These pipelines incorporate several algorithms in order to give
the greatest possible analysis options. As a result, they entail
extensive bioinformatic knowledge and computational infra-
structure which may not be available to users of these analyt-
ical procedures. Additionally, individual pipelines propose
their own protocols, suggested analytical steps, and reference
databases. Thus, without an evaluation protocol, selecting a
pipeline thru a specified criterion for a particular function
can easily become a daunting job.

Bioinformatics pipelines can be categorized into various
groups based on several criteria, for example, (1) based on
their usage and (2) based on the bioinformatic techniques
they use. Based on their usage, these tools can be grouped
into (i) self-contained analysis pipelines, ie., those that
integrate various procedures for quality control, sequence
clustering, taxonomy assignment, computing diversity mea-
sures, and visualizing results and (ii) those that can only be
used for a particular step/s in the analysis pipeline [18].
Considering the bioinformatic techniques used, the tools
can be grouped into (i) clustering-first approach algo-
rithms, e.g., QIIME, MOTHUR, and MetaPhlAn mOTU,
and (ii) assignment-first approach programs, e.g., CLARK,
GOTTCHA, Kraken 2, and MG-RAST. Clustering-first
methods, also known as alignment-based methods, begin with
an OTU-clustering phase in which sequence reads are col-
lected into OTUs founded on their similarity. A representative
sequence is obtained from each cluster and then matched,
using a homology search tool, to each sequence of the refer-
ence database. Lastly, by checking best alignments, the repre-
sentative sequence and OTU of which it belongs are allocated
to a taxonomic group. The assignment-first approaches, how-
ever, first compared all reads to a database, then assign the
lowest possible taxonomy to any reads or a lower common
ancestor (LCA) for a group of sequences of the same taxon-
omy within the reference database. Then, based on their
annotations, the reads are categorized into distinct taxonomic
units [9, 11]. Of importance is the fact that clustering-first
approaches require a high amount of computing resources.
As such, they are almost exclusively the most applied in tar-
geted metagenomics since the data from this approach is
greatly reduced. On the other hand, given the complexity
of the whole genome shotgun sequence data, assignment-
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first approaches are recommended since they are not
resource intensive as the clustering-first approaches.

Many previous studies using the available tools for shot-
gun metagenomics have focused on showing how a single ana-
Iytical step (e.g., sequence pre-processing, OTU clustering or
taxonomic assignment) impacted on the microbial classifica-
tion in real or simulated datasets [9]. In addition, limited liter-
ature evaluates the usability and functions of these tools,
which often makes the choice of which technique to use
unclear [18]. A study to benchmark the most widely used tools
for metagenomic analysis showed that the tools most fre-
quently used were not inherently the most precise and that
the most effective tool were not automatically the most time-
consuming and there was a high level of variation between
the available pipelines [8]. Similarly, a study by [19]
compared the taxonomic and diversity profiles created by
MG-RAST and QIIME using human gut microbiome sam-
ples. No statistically significant differences in assignments or
alpha diversity measures were found in the study; however,
there was a significant difference in beta diversity measures
between the two pipelines. The researchers also noted that
the more accurate assignments were produced by QIIME, pri-
marily due to the high number of reads that MG-RAST could
not classify. In contrast, few studies have been undertaken to
assess the methodologies available to comprehensively clas-
sify the microbiome within the gastrointestinal tract (GIT)
of cattle. This may be attributed to the complexity of the
microbial communities that consist of archaea, bacteria,
fungi, and protozoa [20]. For example, a previous research
by [21] compared taxonomic compositions of rumen micro-
bial communities using Kraken 2 and an in-house pipeline
developed based on MOTHUR to compare the rumen fluid
RNA collected from cattle with different feed conversion
ratios (FCR). The study found out that a similar distribution
of the most abundant taxa was found in both pipelines at the
phylum level; however, unlike raken 2, MOTHUR was unable
to assign sequences to the species level while Kraken 2’s ability
to identify microbes was restricted due to an absence of some
rumen microbiome reference genomes.

In this study, we used fecal microbial sequence data
obtained from thirty-six Tanzanian small holder dairy cattle
to put forward a comparative analysis of the outcomes of two
commonly used assignment-first pipelines, MG-RAST [12]
and Kraken 2 [13], with emphasis on the phylum, genus,
and species taxonomic assignments. Functionality and usabil-
ity of the two pipelines were compared and reviewed. Despite
their distinct workflows, these two pipelines have been chosen
for evaluation because they are the most frequently used and
cited pipelines for analyzing metagenomic data. Additionally,
no studies have been carried out to compare these pipelines
using shotgun data. This research can be of particular use
and relevance to scientists who are new to the field or who
have limited bioinformatic knowledge to decide which tech-
niques to use in their metagenomics research.

2. Materials and Methods

2.1. Fecal Sample Collection, DNA Extraction, Library
Construction, and Sequencing. Fecal samples were collected
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purposefully from thirty-six (36), adult cross-breed dairy cat-
tle from Lushoto and Rungwe districts in Tanzania. Lushoto
district lies between latitudes 4° and 6°S and longitudes 38" to
39°E in Tanga Region [22], while the Rungwe district is
located in Mbeya Region and lies between latitudes 9° 00
and 9”30 E and longitudes 33°E and 34°S [23]. A clean palpa-
tion sleeve and sterile lubricant was used to collect about
250 g of individual fecal samples from the rectum of each cat-
tle and a subsample transferred into a sterile 50 ml falcon
tube. Samples were then shipped on ice to the Biosciences
east and central Africa (BecA-ILRI) Hub, at the International
Livestock Research Institute laboratory, where they were
stored at -20°C until further processing.

Fecal DNA was extracted with the QIAamp DNA Stool
Mini Kit (Qiagen, USA) according to the manufacturer’s
instructions using approximately 0.25 g of each fecal sample.
Additionally, 2 ul of RNAse A was added during the extrac-
tion procedure. The yield and integrity of DNA were deter-
mined using a NanoDrop® ND-2000 UV spectrophotometer
(Nano-Drop Technologies, Wilmington, DE) and a Qubit
2.0 fluorimeter (Invitrogen, Carlsbad, CA, United States).
Sequencing libraries were prepared using the Nextera XT
Index Kit (Illumina), following the manufacturer’s guidelines.
The quality of libraries was assessed using the Agilent 2200
TapeStation (Agilent Technologies, Santa Clara, CA, United
States) and a Qubit 2.0 fluorimeter (Invitrogen, Carlsbad,
CA, United States). Finally, the libraries were paired-end
(2 x 200 bp) sequenced using an Illumina MiSeq v3 (Illumina)
System at the BecA-ILRI Hub.

2.2. Bioinformatics and Statistical Analysis

2.2.1. Kraken 2. Prior to sequence analysis, filters were used
to extract low-quality reads from all samples. Evaluation of
sequence quality was done using FastQC software version
0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads with an average quality score < 20 were then
truncated using FASTX-trimmer, a module within the
FASTX-toolkit version 0.0.14 (http://hannonlab.cshl.edu/
fastx_toolkit/). Following quality control steps, detection of
taxa by the k-mer approach was done using Kraken 2 [13].
In this pipeline, we used a custom database that had been
built in the ILRI Research Computing cluster (http://hpc.ilri
.cgiar.org/), for Kraken 2 using RefSeq (version 88) complete
bacteria (15,947 genomes), and Archaea (311) genome
sequences. To build this joint database, the script kraken2-
build was used, with default parameters, to set the lowest
common ancestors (LCAs). Microbial classification of each
pair of sequences was then done on the basis of their
annotations at the lowest taxonomic level by Kraken 2 in
the customized standard database. In this operation, Kraken
2’s k-mer paths allocated each node a specific weight while
improving the sensitivity of the classification of species
[13]. The -use-names and -report options provided full tax-
onomic names associated with each classified sequence and
standard ranks for each taxon (Figure 1). The complete
Kraken 2 database took 4h 2m 9.769s to build on a server
with 15 CPUs (2.7 GHz) and 116 GB of RAM, while each
sequencing dataset used 35 GB RAM for classification.

2.2.2. MG-RAST. Raw reads were uploaded to MG-RAST for
sequence analysis. The analysis options used in the study
were (i) removal of artificially replicated sequences produced
by sequencing artifacts [24], (ii) using B. taurus, UMD v3.0
database to get rid of any host specific species sequences by
means of DNA level matching with Bowtie 2 [25], and (iii)
removal of low-quality sequences using a modified Dynamic-
Trim [26]. During trimming, the lowest phred score that was
counted as a high-quality base was 15 and sequences were
trimmed to contain at most 5 bases below the abovespecified
quality. Sequences were then given a taxonomic classification
using BLAT [27] and the M5NR database [28]. The taxo-
nomic analysis was done with the MG-RAST default setting:
60% sequence similarity of 15 amino acids and a maximum e
value cut-off of 1x10—5. Reads that did not attain the
threshold at the chosen taxonomic level were categorized as
“Unclassified”, while sequences not assigned to any taxo-
nomic unit fell in the category called “No Hits”. After taxo-
nomic assignment, MG-RAST created a web page to view,
analyze, and download results so that they can be used for
comparison with other tools [29] (Figure 1).

2.2.3. Statistical Analysis. To assess the taxonomic assign-
ment power of the two algorithms, we extracted the out-
comes acquired at the phylum, genus, and species levels.
Paleontological STatistics software package for education
and data analysis tool (PAST v3.13, 30) was used to calculate
diversity measures. Alpha diversity indices calculation
included Chaol minimal richness index [30], inverse Simp-
son diversity index [31, 32], and Shannon diversity index
[33] . We used a t-test to assess for statistically significant dif-
ferences between each index and relative abundance of the
various taxa assigned by the two tools.

3. Results

Two bioinformatic methods, Kraken 2 and MG-RAST, were
used in this research to acquire taxonomic classifications
(bacteria and archaea) of Tanzanian dairy cattle’s feces. For
most analytical steps, the two tools had a related basic algo-
rithm (Figure 1). However, significant differences in taxo-
nomic assessment, metagenomic function assignment, and
visualization were noted. Table 1 provides an overview of
the characteristics and functionality of the two tools.

3.1. MG-RAST and Kraken 2’s Taxonomic Distribution of
Microbial Profiles. Taking into account the complete amount
of microbial species in the specimens, Kraken 2 recognized,
in all taxonomic ranks, a greater amount of bacterial and
archaeal phylotypes than MG-RAST (Table 2). At the phy-
lum level, bacterial profile findings disclosed a comparable
taxon distribution among the four most common species cat-
egorized by both pipelines (Tables 2 and 3), with Proteobac-
teria, Firmicutes, Bacteroidetes, and Actinobacteria being
most abundant and responsible for about 80% of the total
microbial population. However, Bacteroidetes was detected
in lower abundance by Kraken 2 (9.7%), than by MG-RAST
(12.7%), while Actinobacteria had higher abundance (2.9%)
in Kraken 2 than MG-RAST (1.25%). Nevertheless, these
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Build a joint, bacteria and archaea database for Kraken
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(kraken2-build --download-library bacteria, archaea --db $DBNAME)
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FIGURE 1: Overview of the workflow used (Kraken 2 and MG-RAST) presenting software parameters used to analyze the data. MG-RAST has

two additional steps for data transformation and reduction.

variations were not regarded as statistically significant. In
total, both pipelines detected 40 bacterial phyla. Of these
phyla, 26 were identified by both pipelines, 12 were solely
identified by Kraken 2 while MG-RAST exclusively identified
two (Table 2). The sequences assigned to the Bacteria root,
but with no taxonomical assignment at the phylum level,
were reported as “Unclassified”; those sequences were on
average 0.04% for MG-RAST and 0% for Kraken; this differ-
ence was statistically significant between the two tools
(Supplementary Table (available here)).

Across the two pipelines, a total of 1289 different genera
were detected. Although the two pipelines had some resem-
blance (497 genera commonly detected), Kraken 2 exclu-
sively identified an extra 694 genera while MG-RAST solely
identified 98 genera (Table 2). The two pipelines identified
Pseudomonas as the most abundant genus: Kraken 2
32.64% and MG-RAST 32.42%. There were significant varia-
tions among the most abundant taxa on the genus level
(relative abundance > 1%) in the two pipelines. Two genera
Comamonas (P <0.001) and Acinetobacter (P =0.01) were
identified in higher abundance by Kraken 2 while Bacteroides
(P=0.03), Acidovorax (P<0.001), and Clostridium
(P <0.001) had higher abundances in MG-RAST. Table 3
presents an overview of the top genera detected by both pipe-
lines. Kraken 2 and MG-RAST detected 4465 and 1481 spe-

cies, respectively (Table 2). Notable differences in the six
most abundant species identified by the two algorithms were
the higher abundance of Prevotella ruminicola and Escheri-
chia coli in Kraken 2 whereas Pseudomonas fluorescens,
Comamonas testosterone, Pseudomonas putida, and Pseudo-
monas stutzeri were more abundant in MG-RAST. A full list
of phylotypes (in all taxonomic ranks) recognized across the
two pipelines is provided in Supplementary Table.

In terms of archaeon identification, both methods identi-
fied five phyla, with four being identified by both methods. In
addition, significant differences were observed in the two
methods at the genus and species levels. Kraken 2 generated
105 and 236 genera and species, respectively, while MG-
RAST detected 60 genera and 88 species. 54 genera and 72
species were commonly detected by the two methods
(Table 1). Individual algorithm differences in archaea identi-
fication can be found in Table 4 and Supplementary Table.

3.2. Taxon-Related Abundance Differences between Lushoto
and Rungwe Samples. To assess how the two approaches
affected biological interpretation of bacteria and archaeon
composition and community structure, comparisons of fecal
microbiota were made between Lushoto and Rungwe sam-
ples. Microbial abundance differences at phylum and genus
levels between Lushoto and Rungwe datasets were observed
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TasLE 1: Comparison of the functionality and features of MG-RAST and Kraken 2.

Kraken 2 MG-RAST
License Open-source Open-source
Implemented in C++ and Perl Perl
Current version (at 23.05.19) v2.0.8-beta 4.0.3
Website http://ccb.jhu.edu/software/kraken/ https://www.mg-rast.org/ (Meyer et al.
(Wood & Salzberg 2014) 2008)
Web-based interface No Yes (at website above)

Primary usage

Sequencing technology compatibility

Command line

Mumina, 454, Sanger, Ion Torrent, PacBio

Quality control No
Taxonomic analysis/assignment k-mers
Taxonomy Yes
Function No
Fastq Yes
Zipped Yes
Paired Yes
Diversity analysis NO
Phylogenetic tree NO
Visualization NO

GUI (at website above)
Mumina, 454, Sanger, Ion Torrent, PacBio
Yes
BLAT
Yes (E)

Yes
Yes
Yes
Yes (R)

Alpha
YES

PCA plots, heat maps, pie charts, bar
plots, krona and Circos for visualisation

»

“(E)” indicates if the tool infers Eukaryotic taxa and/or functional analysis. GUI means graphical user interface, and “(R)” means the server recognizes
paired-end data but seems to treat reads separately. Part of this figure was adapted from the pipeline published by [18].

TaBLE 2: Evaluation of taxonomic phylotypes by each technique.

Phylotypes Lushoto (no.)Kraken 2Rungwe (no.) Lushoto (no.l;/IG RAS?{ungwe (no.) Commonly detected phylotypes
Bacteria

Phyla 38 38 28 28 26

Genera 1191 1191 595 596 497

Species 4462 4465 1479 1481 933
Archaea

Phyla 5 5 5 5 4

Genera 105 105 60 60 54

Species 235 236 88 88 72

to be minimal (<1% of all microbial population), irrespective
of the pipeline (Table 2 and Supplementary Table). In this
regard, within bacteria, one genus Planococcus and two gen-
era Hafnia and Spiroplasma were detected in Lushoto and
Rungwe datasets, respectively, with MG-RAST classification.
This was contrary to Kraken 2 that identified these genera in
the two regions. At the species level, 22 and 18 species were
identified only in Lushoto and Rungwe samples, respectively,
based on Kraken 2 while MG-RAST detected 12 samples
exclusively in Lushoto and 9 samples only in Rungwe. Within
archaea, only one difference, Methanosarcina sp. WH1I, was
observed between the two regions when samples were classi-
fied using Kraken 2. This species was only detected in
Rungwe samples. Assessment of the differences in microbial
abundance between Lushoto and Rungwe datasets using an
independent t-test revealed no significant difference in all

microbial taxa detected in both regions. In addition, alpha
diversity indexes (Shannon, Simpson, and Chao 1), of bacte-
ria and archaea, at the species level, indicated no significant
difference when they were compared between Lushoto and
Rungwe groups within the two pipelines (Figure 2).

3.3. Usability and Overall Performance. Each pipeline pro-
vides avenue for analysis of shotgun metagenomic sequenc-
ing data. There are, however, major variations in the
development of each pipeline. MG-RAST offers an interac-
tive service where the researcher uploads information to a
web application and chooses a number of parameters for
quality control. The data then passes through several analyt-
ical steps automatically, and then, the user is left to produce
abundance profiles, functional features, and visualizations.
Moreover, MG-RAST analysis is conducted using a web-
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TABLE 3: Most abundant bacteria according to the two classification approaches.
Taxa Kraken 2 MG-RAST P value
Mean + SE (%) Mean =+ SE (%)
Phyla
Proteobacteria 75.92+4.1 75.12 £ 3.06 0.88
Firmicutes 9.69+2.2 9.29+1.63 0.88
Bacteroidetes 9.22+1.41 12.7+1.54 0.1
Actinobacteria 2.9+041 1.25+0.13 <0.001
Tenericutes 0.72+0.11 0.19+0.05 <0.001
Genus
Pseudomonas 32.64+4.1 32.42+3.29 0.97
Comamonas 8.38+1.34 3.57+0.54 <0.001
Acinetobacter 6.72+1.82 1.87 +£0.56 0.01
Janthinobacterium 2.2+1.36 1.08 £0.22 0.42
Bacteroides 1.83+0.4 3.72+£0.75 0.03
Acidovorax 1.61+0.23 6.18+0.83 <0.001
Stenotrophomonas 1.85+0.35 1.75+0.3 0.83
Clostridium 1.19+0.26 2.97+0.54 <0.001
Species
Pseudomonas fluorescens 6.77 £ 1.69 21.67 +2.81 <0.001
Comamonas testosterone 1.03£0.35 3.57+0.54 <0.001
Pseudomonas putida 1.34+0.38 2.34+0.18 0.02
Pseudomonas stutzeri 1.46 +0.49 1.66 +0.37 0.74
Escherichia coli 1.22+£0.21 0.45+0.13 <0.001
Prevotella ruminicola 0.83+0.13 0.21 +£0.05 <0.001
TaBLE 4: Most abundant archaea according to the two classification approaches.
Taxa Kraken 2 MG-RAST P value
Mean + SE (%) Mean + SE (%)
Phyla
Euryarchaeota 90.96 +0.41 94.44 +0.44 <0.001
Crenarchaeota 6.59 £0.27 4.45+0.39 <0.001
Thaumarchaeota 2.3+0.25 0.54+0.06 <0.001
Korarchaeota 0.07 £0.03 0.49 +0.08 <0.001
Genus
Methanocaldococcus 8.17 +1.47 2.4+0.16 <0.001
Methanosarcina 7.62+0.51 12.83+0.82 <0.001
Thermococcus 6.79 £ 0.51 2.51+0.19 <0.001
Methanocorpusculum 3.53+0.59 6.39+0.98 0.01
Species
Methanobrevibacter ruminantium 3.62+0.7 9.51+1.28 <0.001
Methanococcus maripaludis 2.82+0.27 3.42+0.23 0.1
Methanobrevibacter smithii 1.84+0.27 15.87 +1.85 <0.001
Methanocorpusculum labreanum 1.97 £0.54 6.39+£0.98 <0.001
Methanosarcina barkeri 1.6 +£0.19 3.96 £0.23 <0.001
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FIGURE 2: Alpha diversity matrices of bacteria (a) and archaea (b), between Lushoto and Rungwe samples.



based graphical user interface (GUI) making it readily avail-
able to all researchers with an internet connection. In addi-
tion, to process multiple samples, it does not need to be
installed or does it require a powerful computer. Further-
more, MG-RAST acts as a public database for metagenomic
shotgun datasets and as such, investigators can compare
and investigate other publicly available datasets. Navigation
around the website is easy, and the options for analyzing data
are clear and well-explained. In contrary, analysis with
MG-RAST is very time-consuming as the outputs require
a lot of cleaning because of the multiple read annotations.
Although it is not hard to do, data cleaning is time-
consuming and would be hard to finish in a timely way
for big datasets. Besides, while in Kraken 2 the analysis
can start immediately, the samples must go through a
quality control in MG-RAST before they can be analyzed.
MG-RAST gives a precedence to data submitted for anal-
ysis based on when the dataset will be publicly released,
and the wait for private data to endure quality control
can take up to several weeks.

Kraken 2 on the other hand is a command-based algo-
rithm where the user uses a set of sequential scripts to achieve
classification in a custom or default database. The main chal-
lenge in Kraken 2 is that this algorithm may be tasking espe-
cially if the user has to build their own custom database using
genomes found in the RefSeq. Because of its quick analysis
time, Kraken 2 is more likely to be used to analyze a large
dataset. Moreover, researchers with command line compe-
tence and looking to carry out complex analysis may prefer
Kraken 2 due to its increased user freedom. The Kraken 2
pipeline was adapted to include all reference genomes in
RefSeq, which has led to more bacterial species and phylo-
types being identified. However, the findings of the classifica-
tion of archaea and some of the bacterial species recognized
by Kraken 2 should be assessed judiciously as many phylo-
types detected have not yet been defined in the rumen. Not-
withstanding our strategy, the only way to improve is to
strengthen databases continuously through the inclusion of
extra data on whole-genome sequences of rumen isolates
and single-cell sequencing of noncultured rumen microbes
since rumen microorganisms are still limited in their capabil-
ity for culture.

In addition to ease of usage, runtime and memory
requirements for shotgun metagenomic algorithms are
important factors to consider and should not be underesti-
mated. The run time varied between the two tools with
Kraken 2 using 4 hours while MG-RAST took 2 days on aver-
age. The runtime of a user with MG-RAST can strongly rely
on a number of variables, including present load, software
upgrades, and work priorities. At the peak memory usage,
Kraken 2 used 35 GB RAM per sample. We were unable to
carry out this assessment on MG-RAST as it was only acces-
sible through a website.

4. Discussion

In this research, the taxonomic results of two metagenomic
assessment pipelines, Kraken 2 and MG-RAST, are com-
pared using fecal metagenome data of dairy cattle reared by
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smallholder farmers in Tanzania. The emergence of high-
throughput sequencing has significantly improved our
understanding about the ecology and functional ability of dif-
ferent ecosystems including the gastrointestinal tract (GIT)
of cattle. However, the functional results and the biological
interpretation of this information rely heavily on the compu-
tational methods used [1, 9]. We observed that while there is
little variation between the two pipelines in terms of taxo-
nomic classifications and diversity measures, there were sub-
stantial usability differences, particularly in time taken for
analysis of samples and the ease of use.

4.1. Comparisons of Microbial Composition and Abundance.
In this research, both analysis tools showed that the feces of
cattle were dominated by Proteobacteria followed by Bacter-
oidetes and Firmicutes. The dominance of Proteobacteria in
these samples, without any health or production effect, is of
particular interest given that earlier researchers have found
a mechanistic interplay between Proteobacteria, intestinal
immune response, and inflammation [34]. A recent publica-
tion of nursing calves from 5 beef farms with greater concen-
trations of Proteobacteria comparable to this research by [35]
proposed that greater concentrations of Proteobacteria could
have been a farm-associated effect, possibly from manage-
ment practices. Specifically, the foregoing authors noted that
Proteobacteria-enriched microbiota was observed in farms
that had the highest antimicrobial treatment rates leading
to their speculation that practices of antimicrobial use could
have a wider or cumulative impact on farms in which their
recurrent uses result in development, regardless of individual
antimicrobial exposures, of a specific microbiota in farm ani-
mals. In this study, we were unable to confirm this assertion
since the sampled farms had no proper recording systems on
the use of antimicrobials. However, some studies, although in
humans, have corroborated this theory [33, 34].

Although Bacteroidetes abundance was higher in MG-
RAST than Kraken 2, this difference was not significantly dif-
ferent. This phylum contains a wide range of individuals who
can be found in several ecosystems including the mammalian
and insect guts, soil, and both fresh and salt water ecosystems
[35-37]. A typical characteristic of ecological Bacteroidetes is
their capacity to break down complex glycans, for example,
agarose, alginate, cellulose, chitin, and hemicellulose [38]. It
has also been observed that Bacteroidetes are involved in
the spread of antimicrobial resistance genes through hori-
zontal gene transfer [39]. Firmicutes were the second most
abundant taxonomic group. This phylum is believed to play
a crucial part in the harvest of energy [40]. Moreover, mem-
bers within this phylum can have both positive and negative
influences on the host animal. Some species within this
phylum, for instance, engage in the degradation of complex
organic materials such as cellulose, chitin, xylan lignocellu-
lose, and xylose and even act as useful probiotics and
nitrogen fixing agents [41]. Conversely, several species are
potentially hazardous species that cause several diseases in
animals and humans [42].

Interestingly, both methods had an underrepresentation of
potentially important Cyanobacteria phyla (Supplementary
Table), supporting findings from prior research of low
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abundance of these phototrophic oxygenic bacteria in dairy
and beef cattle rumen [40, 41]. Cyanobacteria can be both
heterocystous and nonheterocystous [43]. Although the
ruminal environment is commonly deemed anaerobic, sig-
nificant levels of oxygen in the rumen fluid can be identified
[44], suggesting that the occurrence of cyanobacteria in the
rumen may be associated with the scavenging of oxygen
and the fermentation of sugar under restricted aerobic envi-
ronments [21]. Whereas Cyanobacteria has been extensively
detected in aqueous and soil environments [45, 46], it is
important to point out that the identification of this phylum
in the gut of humans raises grave questions regarding their
role in aphotic and anaerobic habitats like the rumen [47].
Recent investigations have shown gut Cyanobacteria to be
very conserved, but their 16S rRNA phylogenetic tree was
different from the photosynthetic ones; this has led to the
designation of a new putative class called Melainabacteria
[47], whose members were able to ferment a variety of sugars
in the gut [48]. Similar to other previous studies [21, 39] nei-
ther Kraken 2 nor MG-RAST identified Melainabacteria in
the samples, showing the need for further research to distin-
guish their role in the gut of cattle.

The three most dominant genera in both pipelines were
Pseudomonas, Comamonas, and Acinetobacter. These genera
are not only important in the rumen ecosystem but have also
been linked with other environmental roles. For instance,
there are many reports indicating that Pseudomonas spp.
produced antifungal compounds, siderophores, and indole
acetic acid (IAA). However, they are considered powerful
human pathogens that may cause respiratory, urinary, and
gastrointestinal tract infections [49]. Although low in abun-
dance, Acinetobacter and species within it are common in
nature and some strains are known to be engaged in bio-
degradation of a variety of pollutants. They are also
involved in the manufacture of products such as lipases,
proteases, cyanophine, bioemulsifiers, and various types of
biopolymers [42]. Furthermore, Acinetobacter has been
reported to have a role in phosphate solubilization and
nitrogen fixation [50].

In order to fully comprehend the role of the rumen
microbiota, it is vital to define organisms at the level of the
species since distinct species can have distinct tasks and
niches within the same genus. Unlike MG-RAST that used
an already preformed database, the Kraken 2-based approach
used a custom reference database assembled based on all
identified microbial genomes, at that time. As a result, higher
microbiota resolution was generated by Kraken 2, enabling
the program to uniquely identify 3550 species compared to
MG-RAST that identified 557 species. However, Kraken 2
is also limited by the lack of all reference genomes for rumen
microorganisms. For instance, identification of Xenorhabdus
doucetiae, a soil bacterium, had not been earlier recoded in
the rumen contents’ metagenome [51]. Identification of this
bacterial species may show that Kraken 2 did not correctly
identify the microbe, since the reference genome data was
based mostly on all microbial genomes annotated in the
NCBI database. These organisms may have been identified
in the rumen, however, since cattle can eat soil, which makes
it possible to detect them temporarily [21].

The Archaea domain was dominated by the phylum
Euryarchaeota in both pipelines. However, at the genus level,
Hyperthermus and Methanobrevibacter were identified as the
most predominant genus by Kraken 2 and MG-RAST,
respectively (Supplementary Table). Previous studies have
reported that Methanobrevibacter was the most abundant
archaeal population in the rumen based on DNA datasets
[48, 49]. However, further studies are needed to determine
whether the differences in archaeal abundance between these
two pipelines have a methodological influence or are con-
trolled by diet, host animal, or management strategies. The
differences in the two algorithms were further shown by con-
trasting results in species identified. For example, Kraken 2
was able to detect Candidatus Methanoplasma termitum
and Candidatus Methanomethylophilus alvus, which were
not identified by MG-RAST pipeline. A similar finding was
found in a previous study by [21]. These two species encode
pathways required for hydrogen-dependent methylotrophic
methanogenesis by reduction of methyl substrates, without
the ability to oxidize methyl substrates to carbon dioxide
[52]. Thus, it is possible that these microbes reside in the
rumen. Further, Kraken 2 uniquely identified Methanogenic
archaeon 1SO4-H5, a member of the order Methanomassilii-
coccales, that had been previously shown to exhibit a genome
size of 1.9 Mb and GC content of 54%, similar to Candidatus
Methanoplasma termitum and Candidatus Methanomethylo-
philus alvus [53]. Given the low relative abundance and the
species not being identified by both pipelines, future analysis
with databases enriched with sequences from Methanogenic
archaeon ISO4-H5 as well as its isolation, culture, and charac-
terization may provide further evidence of this possibility.

4.2. Functionality and Usability Comparisons. MG-RAST
analysis is influenced by the server times and its data upload-
ing limits. The user submits raw data specifying if the data
will be private or public. The choice of when the data will
be made public then assigns what priority MG-RAST pro-
vides to this data. Data that is meant to remain private is usu-
ally assigned the lowest priority option. Therefore, the time
needed to finish the analysis by the MG-RAST server is based
on the selected priority level and the number of jobs submit-
ted in the analysis queue by all MG-RAST users. Conversely,
Kraken 2 is entirely installable and users can begin their
assessment as immediately after installation is finished.
Nevertheless, installation needs some basic bioinformatic
expertise, particularly when building a custom database.
The time needed to complete the analysis in Kraken 2
depends on a number of factors, in particular the amount
of data and the bioinformatics skills of the user. Kraken 2 is
by far the quicker pipeline due to the fact that the database
is not preloaded into memory by default. Such preloading
with a RAM Disk is possible and reduces the execution time
of Kraken 2 but requires RAM space at least equal to the
database size. When using the full RefSeq database, this tra-
deoff should be regarded, which could significantly increase
runtime. MG-RAST and other webservers do not require
high computing resources, but even so require a decent and
steady internet bandwidth, and the users rely on external
computer resources that they have no command over.
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Similar to previous studies, [18, 19], MG-RAST provided
a lower level of accuracy as a higher number of reads were
assigned to the “Unclassified” category. This is not surprising
given the optimization of MG-RAST to evaluate short-read,
low-error data. However, MG-RAST has some outstanding
utilities. For example, following the search in the reference
database, MG-RAST produces a multi-FASTA file, for each
sample, which contains all reads that were assigned an iden-
tity. This file is easily accessible and extremely useful for res-
olution of multiple annotations generated by MG-RAST,
examining unclassified reads, and also picking specific reads
to perform downstream analyses such as multiple sequence
alignments.

There are limitations to this study. We recognize that
there are some differences between the analytical methods
used by the two pipelines that can affect comparability. For
instance, the quality control parameters for MG-RAST dif-
fers from those used in Kraken 2, and we were unable to
determine the SILVA database version used for MG-RAST
taxonomy assignment. This study illustrates how bioinfor-
matics pipeline selection can affect metagenomic sequencing
data analysis. The strength of this study is that it used a larger
dataset. However, given that the data used in this study are all
the same type of sample and came from one project, it should
be emphasized that the taxonomic composition variations in
the samples could be from the differences in the pipelines.

5. Conclusions

There are often many algorithms, software packages, or pipe-
lines in the field of bioinformatics that can be used to conduct
a single job. Even for skilled bioinformaticians, it is not sim-
ple to choose a single “best tool”. In this study, we were able
to carry out a comparative metagenomic assessment of cattle
tecal microbial composition using both Kraken 2 and MG-
RAST algorithms. Our results indicated that Kraken 2 and
MG-RAST had comparable results in terms of the phylum
detected and that regardless of which pipeline selected, you
are likely to generate a reliable overview of sample composi-
tion. However, we observed that Kraken 2 generated a more
accurate taxonomic identification given the higher number
of “Unclassified” reads in MG-RAST. Nevertheless, less expe-
rienced users may find MG-RAST simpler than Kraken 2.
Therefore, we propose that MG-RAST could be useful for
first-time users to acquaint themselves with the analysis
and output of metagenomic analysis.
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