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Abstract

In this dissertation, we study ADE surface singularities in terms of Dynkin diagram
obtained by deforming and resolving the singularity. Using classic invariant theory,
we describe how these surface emerge as quotient of C2/Γ, where Γ⊆ SL2(C), is
a finite subgroup of the group of 2×2 matrix of determinant 1 over C. We further
describe how these hypersurface embed in C3 as an affine varieties. We deform An
type singularity and show its relation to McKay-quivers.
Finally, we investigate the the exceptional locus of the resolution of the those isolated
singularities using sequence of blowup and from this we obtain the corresponding
Dynkin diagram of ADE type.
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Introduction

The problem of resolution of singularities for a given algebraic varietyX entails construction
of a proper birational morphism; π : Y → X such that Y is regular. The resolution
process has an impressive history. For curves the existence of resolution is known, see as
presented in [Kar00]. For the surface case, Zariski (1935) gave an algebraic proof and
existence of resolution in characteristic zero fields. Hironaka (1964) came up with famous
result of resolution for an arbitrary dimensional variety X over field of characteristic zero.
The geometric version of Hironaka theorem states that,for every real or complex algebraic
varieties, no matter how badly singularity is, can be dominated by smooth algebraic variety
isomorphic to it at each of its smooth points, see in [Kar00].

In this project we adopt Hironaka method and theorem on resolution of singularities which
comprise of an idea of sequence of blowup of singular locus along regular subvariety that
lies on singular locus of the proceeding variety. The output of the whole resolution process
consist of tree of charts, where the root nodes is isomorphic to Cn; The ambient space
of the given hypersurface. The sub branches, that is the children of each node are
obtained from the parent nodes by blowing up and finally the proper transform of the
given hypersurface in the leaf node are regular and the total transform is normal crossing
divisor, see in [Bier97].

Firstly, we classify simple surface singularities as the quotient of C2 by finite subgroup
Γ ⊆ SL2(C). The elements of SL2(C) acts on the ring C[u,v] such that for each
subgroup Γ⊂ SL2(C), there exist certain polynomial in C[u,v] that are invariant with
respect to this action and satisfying an algebraic relation as depicted from [Igor07]. In our
case we take f ∈ C[x,y,z] to be a polynomial describing this relation and consider f as
surface defined by the association of orbit of Γ resulting to a complex hypersurface in
C3. We find that f has an isolated singularity at the origin which turn to be isomorphic
to C2/Γ. These singularities have been competently called, the Kleinian Singularities
which appears throughout the classification of surface and other known areas of geometry.

Du val showed that, resolving the Kleinian singularities by blowing up yields an exceptional
divisor that can be converted to Dynkin diagram of type ADE , see in [Dav 97].

The outline of the thesis is as follows:

Chapter 1: We use this chapter to introduce the standard notation and concept of
singularities which form a basis for resolution of surface singularities. Morphism , sheaf of
regular function on algebraic varieties and classification of finite subgroup of SL2(C) are
also introduced owing to its usefulness in understanding the sequel in other sections.

Chapter 2: Here, an introduction to classification of simple surface singularities as quotient
of C2 by finite subgroup Γ of SL2(C) using classic invariant theory is presented. We delve
into finding invariant polynomials under this G action on C2 \

{
0
}
to achieve ADE- type

classification of surface singularities. We also present the space of universal deformation of
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cyclic quotient singularities. Furthermore, we give the correspondence between the McKay
quiver and deformation of An- type singularities.

Chapter 3: We present the concept of blowup as an important surgical tool in resolution
process. We discuss blowup of a point in an affine varieties, p ∈ An, blowup of a point in
a subvariety, p ∈X ⊆ An and blowup along subavriety, X ⊂ Y ⊆ An. We extend to
resolve the surface singularities of ADE-type and further explore the correspondence of
these ( minimal) resolutions with dual graphs called dynkin diagrams.
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1 Preliminaries

The content of this chapter consists of classical Algebraic geometry material whose details
can be found in [Harts77, Dav97, Wil06] and [Mac69]. This is intended to fix notation
used in the rest of this project.

1.1 Affine Spaces and Affine Varieties

We work over the field C of complex numbers.

Definition 1.1.1. An n-dimensional affine space is defined by An := Cn to be the set
of all n-tuples of elements of C.

Definition 1.1.2. For a positive integer n, let R= C[x1, . . . ,xn] be a polynomial ring.
An affine variety defined on S ⊂R= C[x1, . . . ,xn] is the vanishing set

V(S) :=
{
p ∈ Cn

∣∣∣ f(p) = 0, for f ∈ S
}
.

Definition 1.1.3. Let V ⊂ Cn be affine variety. The vanishing ideal of V

I(V ) =
{
f ∈ C[x0, . . . ,xn] : f(p) = 0, for all p ∈ V

}
is the ideal of all homogeneous polynomials vanishing on V. The coordinate ring C[V ]
of V is the quotient ring

C[V ] =
C[x0, . . . ,xn]

I(V )
.

Further, we call a subset V ⊂ Pn an algebraic set if there exists a homogeneous ideal
I for which V = V(I). We say V is reducible if V = V(I) = V(I1)∪V(I2) for
some proper ideals I1, I2 ∈ C[x0, . . . ,xn], otherwise it is irreducible.

Theorem 1.1.4 (Hilbert’s Nullstellensatz). Let I be an ideal of R. Then

(i) I (R if and only if V(I) 6= ∅

(ii) I(V (I)) =
√
I = {f ∈R=C[x0, . . . ,xn] : fm ∈ I for some m} In particular,

if I is radical, [ i.e.
√
I = I or equivalently R/I is a reduced ring (has no

nilpotent elements) e.g. I = (x)⊂ C[x] ] then I(V(I)) = I.

Corollary 1.1.5. There are order-reversing bijections
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{varieties }←→ {radical ideals }
{irreducible varieties}←→ {prime ideals}= Spec(R)

{points}←→ {maximal ideals}= Specm(R)
X←→ I(X)

V (I)←→ I.

Lemma 1.1.6. A collection of Algebraic sets has the following properties

i) Empty space and the whole projective space are algebraic sets.

ii) Arbitrary intersection of algebraic sets is an algebraic set.

iii) Finite union of algebraic sets is an algebraic set.

Definition 1.1.7 (Zariski topology). Zariski topology on Pn is the topology on algebraic
varieties where the open sets are complements of algebraic sets which satisfy Lemma
1.1.6.

1.2 Affine Hypersurfaces

For R := C[x1, . . . ,xn], let p = (a1, . . . ,an) ∈ Cn be a point and f ∈ R be an
irreducible polynomial. We define a hypersurface X ⊂ Cn to be a vanishing set

V(f) :=
{
p ∈ Cn

∣∣∣ f(p) = 0
}
.

Definition 1.2.1. An algebraic hypersurface in an affine n− space is an algebraic
variety defined by a single implicit equation of the form f(x1, . . . ,xn) = 0.

Example 1.2.2. An affine hyperplane defined by a linear polynomial of the form
X := V(x1 + . . .+xn) is an hypersurface.

Definition 1.2.3. Let X ⊂ Cn be an hypersurface defined by f ∈R

i. A point p ∈ Cn is a singular point (Sing) or critical (Crit) point of f if ;

∂f

∂xi
(p) = 0 for all i= 1, . . . ,n.

Otherwise, we say that the point p ∈X is regular point or smooth point.

A singular hypersurface X = V(f) is defined as;

Sing(X) :=
{
p ∈X

∣∣∣∣∣ f(p) =
∂f

∂x1
(p) = . . .=

∂f

∂xn
(p) = 0

}
.
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Example 1.2.4. We consider a variety X = V(x2 +zy2 +z)⊂ A3. The partial
derivatives are 

∂f
∂x

= 2x
∂f
∂y = 2yz
∂f
∂z

= y2 + 1

.

Thus the singular points are (0, i,0) and (0,−i,0).

ii. The tangent space to the hypersurface X at point p is defined as

TpX =
{
(x1, . . . ,xn) ∈ Cn

∣∣∣ n∑
i=1

∂f

∂xi
(p)(x−ai) = 0 for all i= 1, . . . ,n

}
.

iii. For a hypersurface X we define a dimension of X by

dim X := min
{

dim TpX
∣∣∣ p ∈X}

.

From definition (ii)and (iii), we have that dim TpX ≤ dim TpX for all p∈
X. If dim TpX = dim X, then we say that X is nonsingular at a point p.

iv. The tangent cone of X at p is defined as; Cp(V ) = V(fp,min | f ∈ I(V )), where

fp, min = fp, j := min
{
j ∈ Z

∣∣∣fp,j 6= 0
}
.

Example 1.2.5. Let V ⊆ Cn with IV = 〈f〉. Then Tp(V ) is defined by the single
equation dpf = 0. Thus, Tp(V ) = Cn ⇐⇒ ∂f

∂xi
= 0 for all i. On the other

hand, if some ∂f
∂xi
6= 0, then dim CTpV = n−1.

Definition 1.2.6. Let U ⊂Cn be an open subset, f :U→C be a holomorphic function
andX := V(f) = f−1(0) be an hypersurface define by f in U . A point x∈U ⊂Cn

is called isolated critical point of f if there exist a neighborhood V of x such that,

Sing(f)∩V \{x}= ∅.

Definition 1.2.7. The characterization of singularities by the vanishing of the partial
derivatives is called the Jacobian criterion for smoothness.

1.3 Morphisms and Regular Functions on Affine Varieties

Definition 1.3.1. Let Y ⊆ Cn be a variety. A function f : Y → C is regular at a
point P ∈ Y if there is an open neighborhood U with P ∈ U ⊆ Y, and homogenous
polynomials g,h ∈ R = C[x1, . . . ,xn], of the same degree, such that h is nowhere
zero on U, and f = g/h on U. f is regular on Y if it is regular at every point of Y.
The set of all regular function will be denoted by OX(U).
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Definition 1.3.2. For an affine variety X. Let f ∈ C[x1, . . . ,xn] on X. Then we
call

D(f) :=X \V(f) =
{
x ∈X : f(x) 6= 0

}
the distinguished open subset of f in X.

Example 1.3.3. We consider a 3-dimensional affine variety X = V(x1x4−x2x3)⊆
A4 and the open subset

U =X \V(x2,x4) =
{
(x1,x2,x3,x4) ∈X

∣∣∣ x2,x4 6= 0
}
⊂X.

Then

ϕ :U → C

(x1,x2,x3,x4) 7→


x1
x2

if x2 6= 0
x3
x4

if x4 6= 0

is a regular function on U.

Definition 1.3.4. Let V ⊆ Cn and W ⊆ Am be affine varieties. A map f : V →W

is a morphism of affine varieties if it is the restriction of a polynomial map on the
affine space Cm to affine space Cn. A morphism f : V →W is an isomorphism if
there exist a morphism g :W → V such that f ◦g = IdW and g ◦f = IdV .

Example 1.3.5. Consider the polyomial map

F : Cn→ Cm

F (x1, . . . ,xn) 7→
(
f1(x1, . . . ,xn),f2(x1, . . . ,xn), . . . ,fn(x1, . . . ,xm)

)
where fi ∈ C[x1, . . . ,xn] for all 1≤ i≤ n

More specifically if we consider an affine variety V(xy−z2)⊆ C3 and a restriction
map

F :C3→ C2

(x,y,z) 7→ (xy,xz)

Then the variety V(xy− z2) ⊆ C3 ∼= V(zY −yZ) ⊆ C2 through the mapping F ,
where Y = xy and Z = xz.

Example 1.3.6. Consider two affine varieties X,Y ⊂ C3 with X = V(x2 +y2 +z2)
and Y = V(x+y+z). The mapping

ϕ(x,y,z) = x2 +y2 +z2

is a morphism from Y to X. We also note that the affine variety X is isomorphic to
Y via the coordinate change ϕ(x,y,z) = (x,y, iz).
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Definition 1.3.7. A rational map ϕ :X→ Y is an equivalence class of pairs 〈U,ϕU〉
where U is a nonempty open subset of X, ϕU is a morphism of U to Y, and where
〈U,ϕU〉 and 〈V,ϕV 〉 are equivalent if ϕU and ϕV agree on U ∩V. The family of
rational map ϕ denoted by K(X) is called function.

Example 1.3.8. We consider X := V(xy−z2)⊆ C3, then x
z is a rational function.

Moreover, z
y
is the same rational function, that is x

z
∼ z

y
because xy = z2 on X.

1.4 Finite Groups action on Affine Varieties

In this section we present the concept of quotient singularity. Let X be an affine variety
and G be a finite group acting on X. Then we are interested on a singular point of the
quotient X/G.

Theorem 1.4.1 (Cartan). Any complex quotient singularity (X/G,x) is isomorphic
to (Cn/G,0), where G⊂GL(n,C) is a finite subgroup.

Definition 1.4.2. Let p ∈X be a point in a variety X. We define an algebraic group
as a variety X with regular maps satisfying the usual multiplication and inverse in a
group,

g :X×X→X

Id :X 7→X.

Definition 1.4.3. A morphism of algebraic groups is defined as a map ϕ :G→H,
that is both a regular map and a group homomorphism.

Example 1.4.4 (The General Linear Group GL(n,C). The set of invertible n×n
matrices, whose hypersurface is given by determinant, is just a distinguished open
subset of A2n, and thus it is an affine variety.

The regular map GL(n,C)×GL(n,C)→GL(n,C) exhibit, by definition, an inverse
map. The subgroup SL(n,C)⊂GL(n,C) is a subvariety.

Definition 1.4.5. An algebraic group G is said to act on algebraic variety X, if the
there exist a regular map: ϕ :G×X→X such that ϕ(g,ϕ(h,x)) = ϕ(gh,x) and
ϕ(e,x) = x, for all g,h ∈G and x ∈X.

1.5 Classification of finite subgroup of SL2(C)

A homomorphism on SU2(C)
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We consider subgroup of general linear group of a vector space V over a field C
given by GL(2,C) :=

{
f : V → V such that f is linear invertible

}
.

We have that SU =
{
A ∈GL(2,C) |AA∗ =A∗A= I, det A= 1

}
.

Suppose we let

U =

a b

c d

 .
with UU∗ = I, we have that the determinant |a|2 + |c|2 = 1, |b|2 + |d|2 = 1, then
we have that āb+ c̄d = 0 and thus we only consider the values of a,b,c,d in a
unit disk C.

We define the parametrization

a= expiα cos(x), b= expiβ sin(x), c=−expiγ sin(x) and d= expiη cos(x)

from which we get

expi(α+ζ) cos2(x) + expi(β+γ) sin2(x) = expi(α+ζ) = 1. (1)

From equation (1), we obtain

α=−ζ and β =−γ =⇒ a= d̄ and b=−c̄.

Therefore we get an element of the form U ∈ SU2(C),

U =

 x y

−ȳ x̄

 =

 a+ bi c+di

−c+di a− bi

 .
Lemma 1.5.1. There exist a natural surjective homomorphism between the subgroups
SU2(C) and real orthogonal subgroup, SO3(R) with kernel

{
I,−I

}
and in fact we

have that SO3(R)∼= SU2(C)/C2 defined by

ϕ : SU2(C)→ SO3(R)
 a+ bi c+di

−c+di a− bi

 7→

a2− b2− c2 +d2 2ab+ 2cd −2ac+ 2bd

−2ab+ 2cd a2− b2−d2 2ad+ 2bc

2ac+ 2bd −2ad+ 2bc a2− b2− c2−d2

 .

Lemma 1.5.2. Every finite subgroup of SLn(C) is conjugate to a subgroup of SUn(C).
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Theorem 1.5.3. There is an exact sequence of group homomorphism

1→ Z2→ SU2(C) π−→ SO3(R)→ 1.

More precisely

ker(π) =
{
±

1 0

0 1

}
Topologically π is the map S3→ RP3.

Remark 1.5.4. Every finite subgroup G⊂GL2(C) can be embedded into SL3(C) by
group homomorphism

GL2(C)→ SL3(C)

g 7→

g 0

0 1
det(g)

 .

From the above theorem, it follows that there is an isomorphism between subgroups
of SU2(C) and SO3(R). The classification of finite isometry groups of R3 is a
classical results in Felix Klein of the finite subgroups of SO3(R).

Theorem 1.5.5 (Classification of finite subgroup of SL2(C)). The classification of
the non-trivial finite subgroup of SL2(C) upto conjugation are precisely the binary
polyhedral groups given below. Here we let ζm = exp(2πi

m
).

(i) An: For n ≥ 1, the cyclic group, G ∼= Zm where m = n+ 1, of order m
generated by: ζm 0

0 ζ−1
m

 .
(ii) Dn: For n≥ 4, the binary dihedral groupDm, |Dn|= 4m,wherem=n−2.

To find the generators of this subgroup, we consider the mapping

π : SU2(C)→ SO3(C)

such that Dn = 〈A,B〉 with the relation


Am =B2

B4 = Id

BAB−1 =A−1.
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For m= n−2, order 4m, which is generated by A,B

A=

ζ2m 0

0 ζ−1
2m

 , B =

0 i

i 0

 .
(iii) E6: The binary tetrahedral group T, of order 24, and is generated by:

δ =

ζ4 0

0 ζ−1
4

 , τ =

0 i

i o

 , µ=
1

1− i

1 i

1 −i

 .

(iv) E7: The binary octahedral group O, of order, 48, and is generated by :

κ=

ζ8 0

0 ζ−1
8

 , τ =

0 i

i 0

 , µ=
1

1− i

1 i

1 −i

 .

(v) E8:The binary icosahedral group, denoted by I, of order 120, generated by:

γ =

ζ10 0

0 ζ−1
10

 , τ =

0 i

i 0

 , Ω =
1
√

5

ζ5− ζ4
5 ζ2

5− ζ3
5

ζ2
5− ζ5

3 −ζ5 + ζ4
5

 .

The above theorem is an example of ADE classification. In the next part, we show
that indeed the generators of above groups yield the same dual graph of resolution.

Example 1.5.6. Let G⊆ GL2(C) finite subgroup, acting on one dimensional space
P1 with projective coordinates [t0 : t1] dual to the standard basis (e1,e2) ∈ C, for

g =

a b

c d

 ∈G and x= [α : β] ∈ P1;

G×P1→ P1

g ·x= a 7→ [α+ bβ : cα+dβ].
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2 Surface Singularities and Deformation

Here we present simple surface singularities as the quotient of affine space C2 by
linear action of finite subgroup Γ of SL2(C).
For a subgroup Γ acting on an affine variety X by automorphism, we have that Γ
also act on the algebra C[X] of regular function on X such that for g ∈ Γ, f ∈
C[X]and x∈X we have that, g◦f(x) := f

(
g−1(x)

)
. The Γ− invariant elements

in C[X] form a finitely generated subalgebra denoted by C[X]Γ with the corre-
sponding algebraic variety, denoted by X/Γ.
The inclusion C[X]Γ ⊂ C[X] give rise to a finite morphism π :X→X/Γ of alge-
braic varities. This quotient turn out to be the spectrum of the ring of invariants
of the action

Cn/G := Spec(C[V ]G).

2.1 ADE-Surface Singularities

2.1.1 G-invariant subrings

Definition 2.1.1 (Relative invariant). A homogeneous polynomial F is a relative invariant
if and only if any g ∈G, then g∗(F ) = V(F ).

Definition 2.1.2 (Grundformen). A Grundformen is a relative invariant F with divisor
of zeroes equal to an exceptional orbit (i.e. an orbit with a non-trivial stabilizer).

Definition 2.1.3. Let Γ∈ SU2(C) be a finite subgroup and f ∈C[u,v]. The Reynolds
operator, RΓ of Γ acting on f ∈ C[u,v] is defined as;

RΓ(f) = 1
|Γ|

∑
g∈Γ

g ◦f.

Theorem 2.1.4 (Noether). The ring of invariant of Γ action on C[u,v] is generated
algebraically by;

〈RΓ(uαvβ) : α+β ≤ |Γ|〉.

We note that, whenever −I ∈ Γ, then we have for every g ∈ Γ =⇒ −g ∈ Γ.
Furthermore, if α+β= 2n+1 for n∈ Z+, then (−g) ·uαvβ =−(g ·uαvβ) =⇒
I ∈ Γ ,α+β is odd, RΓ(uαvβ) = 0. More precisely, if Γ is cyclic of order 2n,
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then −I ∈ Γ, and thus if α+β is odd, then RΓ(uαvβ) = 0.
Similarly, if α+β = 2n, ∀ n ∈ Z =⇒ (−g) ·uαvβ = g ·g ·uαvβ.
Thus, if Γ is cyclic of order 2n and α+β is even, then;

RΓ(uαvβ) =
1

2n

2n∑
k=i

gk ·uαvβ

=
1

2n

n∑
k=i

(gk ·uαvβ +gn+k ·uαvβ)

=
1

2n

n∑
k=i

(gk ·uαvβ + (−gk ·uαvβ)

=
1

2n

n∑
k=i

2(gk ·uαvβ)

=
1
n

n∑
k=i

gk ·uαvβ.

Thus, for a cyclic group of order 2n, the ring of invariant of Γ is generated alge-
braically by;

〈
(

1
n

n∑
k=2

gk ·uαvβ) : 2|(α+β)≤ 2n|〉= 〈(
n∑
k=2

gk ·uαvβ) : 2|(α+β
)
≤ 2n|〉.

In our case, the systematic application of Noether’s theorem to cyclic group G∼=
Zm, where m = n+ 1, of order m, the binary dihedral group Dm, where m =
n− 2 of order 4m, binary tetrahedral group, T of order 24, Binary octahedral
group O of order 48 and binary icosahedral group, I, of order 120 will give the
result as shown below.

Group Fundamental Invariants

Cyclic (Zm) uv,um,vm

Binary diheral (Dn) u2v2,

u2n+ (−1)nv2n,

uv(u2n+ (−1)n−1v2n)

Binary Tetrahedral (I) u8 + 14u4v4 +v8,

u10v2−2u6v6 +u2v10,

u17v−34u13v5 + 34u5v13−uv17

Table 1. Fundamental invariants
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2.1.2 Cyclic Quotient Singularities

Theorem 2.1.5. The ring of polynomial invariants of linear actions of a finite group
on an affine space is finitely generated.

Let C[u,v] be ring of polynomial and G be a fine subgroup of SL2(C) acting on
C[u,v], we intend to find set of polynomials invaraint under the action of G, that
is

C[u,v]G :=
{
f ∈ C[u,v] | gf = f ∀ g ∈G

}
.

Suppose we consider a finite subgroup Γ⊂ SU2(C), we seek invariant polynomial
f(u,v) ∈ C[u,v] under all the elements of Γ. For G∼= Z/m∼= Cm a cyclic group
of order m= n+ 1. We consider Cmu,v/G. Let G act on Cm \

{
0
}
by:

φ :G×Cm \
{
0
}
→ Cm

(u,v) 7→

ζm 0

0 ζ−1
m


u
v

 = ζmu,ζ
−1
m v

Under this action, um→um, vm→ vm, uv→uv. So that C[u,v]G =C[um,vm,uv]

We let f1 = um, f2 = vm,f3 = uv generates the algebra of invariant with the
relation

fm3 = f1f2 =⇒ C[u,v]G ∼= C[x,y,z]/(xy+zm).

Thus we have that cyclic quotient singularities,

An : V(xy−zn+1)∼= C[x,y,z]/〈xy−zn+1〉.

2.1.3 Binary Dihedral and Binary Tetrahedral Quotient Singularities

Theorem 2.1.6. Let G⊂ SL2(C) be a finite subgroup. Let F (x,y,z) = 0 be homo-
geneous polynomial and let f1,f2,f3 generates the ring of invariant with C[u,v]G =
C[f1,f2,f3], then C[u,v]G ∼= C[x,y,z]/〈F (x,y,z)〉.

Remark 2.1.7. A monomial uavb is invariant if and only if for the matrix of generators,
we have that, ζa−bn = 1, since uavb = (uv)avb−a for all a≤ b.

Proof. We consider the remark 2.1.7 to prove the following cases:
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(a) Case 1: G ∼= Dn is a binary dihedral group of order 4m. With respect to
generators defined above, the relative invariants (Grundformen) are given as

Φ1 = un+vn, Φ2 = un−vn, Φ2 = uv.

We have that

f1 = uv(u2m−2umvm+v2m), with (m= n−2).

When n is odd,then we have that,

f2 = u2m−v2m, f3 = u2v2, with relation
f̃2

1 = f3f2
2 , wheref̃1 = f1 + 2f

m+1
2

3 .

When n is even, we have that,

f2 = u2m−2umvm+v2m, f3 = uv(u2m−v2m), with the relation
f2

3 = f1f2
2 =⇒ (f3 + 2f

n+1
2

1 )2−4fn+1
2 −f1f2

2 = 0.

By substitution and scaling the generators, we get

C[u,v]G ∼= C[x,y,z]/(x2 +y2z+zn+1).

In case n is even, we use the relation

f1 = Φ2
3, f2 = Φ2

2, f3 = Φ1Φ2Φ3,

With the same relation, and we obtain the algebra of invariants isomorphic to the
same ring in the case of odd n.

(b) Case 2: G∼= T is a binary tetrahedral group of order 24, with the Grundformen
given as

Φ1 = uv(u4−v4), Φ2,Φ3 = u4±2
√
−3u2v2 +v4

with the relation that

f1 = Φ1, f2 = Φ2Φ3, f3 = Φ3
2 + Φ3

3.

We obtain that;

f2
2 = u2v2(u4 +v4)2−4u4v4 = (12

√
−3)−1(Φ3

2−Φ3
3).
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This show that Φ3
2 and Φ3

3 can be expressed in terms of f1,f2,f3. By substitution
we obtain that,

f2
3 = f4

1 + 4f3
2 .

And thus we have that,

C[u,v]G ∼= C[x,y,z]/(x2 +y3 +z4).

(c) Case 3: G∼= O is a binary octahedral group of order 48, with Grundformen given
as;

Φ1 = uv(u4−v4),
Φ2 = u8 + 14u4v4 +v8 = (u4 + 3

√
−3u2v2 +v4)(u4−2

√
−3u2v2 +v4),

Φ3 = (u4 +v4)((u4 +v4)2−36u4v4).

We have that, suppose we identify our invariant polynomials with Grundformen
such that:

f1 = Φ2
1, f2 = Φ2, f3 = Φ3Φ1.

We obtain the relation,

Φ3
2−Φ2

3 = 108Φ4
1.

Thus we can express the invariant Φ2
3 in terms of f1,f2,f3, by so doing this, we

obtain the relation,

f2
3 = Φ2

1Φ2
3 = f1(f3

2 −108f2
1 ).

By substitution, we obtain that

C[u,v]G ∼= C[x,y,z]/(x2 +z(y3 +z2)).

(d) Case 4: G ∼= I is a binary icosahedral group of order 120, with respect to
generators above, we have that, the Grundformen is given by;

Φ3 = uv(u10 + 11u5v5−v10).
Φ2 =−(u20 +v20) + 228(u15v15−u5v15)−494u10v10.

Φ3 = u30 +v30 + 522(u25v5−u5v25)−10005(u20v10 +u10v20).

In this case, the Grundformen are invariants, therefore any invariant is a polynomial
in Grundformen Φ1,Φ2,Φ3. We obtain the relation;

Φ2
1 + Φ3

2 = 1728Φ5
3.



16

Hence we have that:

C[u,v]G ∼= C[x,y,z]/(x2 +y3 +z5).

2.1.4 General results Obtained from Classification

Let Γ⊂ SU2(C)⊂ SL2(C) be a finite subgroup. Up to conjugacy class we obtain
five classes of such groups, as depicted in [Bries96].

Group Order Classification (∆) R(x,y,z)=0

Cyclic (Zn) n, n≥ 2 An xy−zn+1

Binary Dihedral (Dn) 4n, n≥ 2 Dn+2 x2 +zy2 +zn+1

Binary Tetrahedral (T24) 24 E6 x2 +y3 +z4

Binary Octahedral (O48) 48 E7 x2 +y3 +yz3

Binary Isocahedral (I120) 120 E8 x2 +y3 +z5

Table 2. Classification of ADE-Singularities

The Klenian attached to Γ is the quotient singularity S = C2/Γ, which we explain
by the invariant theory of Γ, as a hypersurface in C3.

Suppose R is a relation between three fundamental generator of the invariant ring
C[u,v]Γ of C2, then we describe this as

S = C2/Γ :=
{
(x,y,z) ∈ C3 |R(x,y,z) = 0

}

with isolated singularity at the origin (0,0,0).

2.2 Deformation of Singularities

Definition 2.2.1. Let (X,x) and (S,s) be complex space germs. A deformation
of (X,x) over (S,s) consist of a flat morphism (i.e. all fibers have the same di-
mension) φ :

(
φ−1(s),x

)
→ (S,s) of complex germs together with an isomorphism

π : (X,x)
∼=−→

(
φ−1(s),x

)
. Where

(
φ−1(s),x

)
is called the total space and (S,s)

the base space.
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Definition 2.2.2. Let φ :
(
φ−1(s),x

)
→ (S,s) be a deformation of (X,x) and let

f : (T,t)→ (S,s) be a holomorphic map. The induced deformation is the flat map
f∗(Φ) : (X×ST,t)→ (T,t).

Definition 2.2.3. A deformation φ :
(
φ−1(s),x

)
→ (S,s) of (X,x) is miniversal or

semi-universal if every deformation ρ :
(
ρ−1(t),x

)
→ (T,t) of (X,x) is isomorphic

to a deformation f∗(φ), for some map f : (T,t)→ (S,s), such that the differential
df of f is uniquely determined.

Theorem 2.2.4. Let X = V(f) ∈ Cn be a hypersurface with an isolated singularity at
the origin. Then a semi-universal deformation of X is given by

X =
{
(x,s) ∈ Cn×Cr

∣∣∣ f(x) =
r∑
i=o

sibi(x)
}

↓ φ

(Cr,0)
π : S ↪→X

x 7→ (x,0)

Where b1, b2, . . . , br are basis of space C[x1, . . . ,xn]/〈f, ∂f∂x1
, . . . , ∂f∂xn 〉.

Example 2.2.5. Consider X = V(x2 +y2 + zn+1) ⊆ C3 be the singularity of type
An. Then C[x,y,z]/〈x,y,zn〉 has the basis

{
1,z,z2, . . . ,zn−1

}
. Thus the semi-

universal deformation of X is given by

X =
{
(x,y,z,s1, s2, . . . , sn) ∈ C3+n

∣∣∣ zn+1 +
n∑
i=1

siz
n−i+x2 +y2 = 0

}
↓ φ

(Cn,0)

Definition 2.2.6. Let X = V(f)⊆ Cn be an affine variety defined by an hypersurface
f = 0. Then the space defined by;

T 1
f =

C[x1, . . . ,xn]
〈f, ∂fx1

, . . . , ∂f∂xn 〉

is called Zariski tangent space.

Theorem 2.2.7. LetX ⊂Cn be an affine variety with isolated singularity and g1, . . . ,gr
be regular function such that their image in T 1

f form a basis. Then the deformation
given by ft = f +∑

i
sigi where ti are coordinates on the germ (Cn,0) is a veresal

deformation.
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Definition 2.2.8 (Infinitesimal deformation). An infinitesimal deformation of an affine
variety X, is a flat morphism together with C-isomorphism XT ×Spec C ∼→ X

such that it induces a commutative diagram

X X̃

Spec C Spec R.

π

φ flat

Example 2.2.9. For n≥ 1, we consider deformation of An surface singularities defined
by the equation f = x2 +y2 +zn+1. The derivatives are (n+ 1)zn,2x,2y so that
we take gi = zi for i= 0, . . . ,n−1. The versal deformation space has dimension n
and is given by;

y2 +x2 +zn+1 + s0 + s1z+ s2z
2 + . . .+ sn−1z

n−1

Furthermore we extend this to infinitesimal deformation given by;

C
{
x,y,z

}
(x2+y2+zn+1)

C
{
x,y,z,s

}
(x2+y2+zn+1+s)

oo

C

OO

C
{
s
}
.oo

OO

Definition 2.2.10 (First order deformation). First order deformation is the deforma-
tions of an affine scheme X over A= C[s]/(s2) = C⊕C[s] with s2 = 0. Suppose
IA is an ideal of A[x1, . . . ,xn] then

IA =
(
(f1 +g1s), . . . ,(fn−d+gn−ds)

)
.

Where gi ∈ C[x1, . . . ,xn].

Example 2.2.11. We consider the nodal curve X = V(y2−x3−x2) ⊆ A2 so that
∂f
∂x

=−3x2−2x and ∂f
∂y

= 2y

Def(X)
x

y

V(t1 + t2x+−x2−x3 +y2)

−−−−−−−→ x

y

X = V(y2−x3−x2)
Figure 1. Deformation of nodal curve
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With T 1
f = C[x,y]

〈x,y〉 with gi = xi. Thus the versal deformation space of the nodal curve
has dimension two and is given by; ft = t1 + t2x+x2−x3 +y2

Example 2.2.12. We consider a hypersurface X = V(fi)⊆ Cn. Then,

SpecA= C[X]/
(
f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Specifically, if we consider a cone X = V(z2−xy)⊆ C3, then we have that,

SpecA= C[x,y,z]/(f,−y,−x,2z)

with f = z2−xy+ t. This is a deformation of A1 singularity.

Theorem 2.2.13 (Artin, Lipman,Wah). LetX be a rational singularity. ThenDef(X̃)
maps finitely to one to a component of Def(X), is called Artin component ;

(Def(X))art ∼=Def(X̃)/
∏
Wj

where Wj are the rational double point configuration supported by the exceptional set
X̃.

2.2.1 Root System from Deformation

Let V be a finite dimensional Euclidean vector space with standard Euclidean inner
product denoted by 〈·, ·〉:

1. A reflection S on V is an orthogonal transformation

S : V → V such that for every α ∈ V, S(α) =−α

and it fixes point wise the hyperplane

Hα =
{
β ∈ V

∣∣∣ 〈β,α〉= 0
}

of V. We describe this reflection by the formula Sα(β) = β−2 〈β,α〉〈α,α〉α.

2. A subset Φ of V of finite set of non zero vectors is called a root system if:

(a) The roots span V.
(b) For every α ∈ Φ the only multiple of V in Φ are ±α.
(c) Φ is crystallographic, that is, for every α,β ∈ Φ we have that ζβα =

2 〈β,α〉〈α,α〉 ∈ Z.
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(d) For every β ∈ Φ, there exist a unique reflection Sβ such that

Sβ(Φ) = Φ.

Definition 2.2.14. Finite group of isometries of V generated by reflection, Sα(β)
through hyperplane associated to the roots of Φ is called the Weyl group.

Definition 2.2.15. The rank of a root system Φ is the dimension of V.

Example 2.2.16. We note that, there is only one root system of rank 1 consisting of
non-zero vectors

{
α,−α

}
. This root is called A1.

In rank two there are four non zero vectors corresponding to the reflection

Sα(β) =
{
β+nα

∣∣∣ n= 0,1,2,3
}

(a) The simplest root system corresponds to θ = π
2 and is called A1×A1 which is a

direct sum of rank 1 root system A1.

(b) When the of reflection θ = π
3 , the root system comprise of 6 vectors that corre-

sponds to the vertices of a regular hexagon.

(c) If θ = π
4 the root system comprise of 8 vectors corresponding to the midpoint of

the edges of a regular square. This root system is called B2.

(d) If θ = π
6 the root system consist of 12 vectors corresponding to the vertices of two

regular hexagon of different sizes and rotated away from each other by an angle of
π
6 .

π
2

β

α

Root System A1×A1

21

2π
3

β

α

Root System A2

21

π
2

β α

Root System D2
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3π
4

21

β

α

Root System B2

3π
4

21

β

α

Root System C2

5π/6

21

α

β

Root System G2

Definition 2.2.17. A subset Φ+⊆Φ is called a positive root if the following conditions
hold:

(a) For each root α ∈ Φ only one of
{
α,−α

}
is contained in Φ+

(b) For any distinct α,β ∈ Φ+ with α+β a root,then α+β ∈ Φ.

Lemma 2.2.18. For every set of positive roots Φ+, the elements of the form −Φ are
called negative roots.

Definition 2.2.19. An element of Φ+ is called a simple root if it cannot be expressed
as a sum of two elements of Φ+.

Example 2.2.20. We consider the set of positives for the G2 root system with simple
roots α1 and α2.

α2

α2 +2α1

2α2 +3α1

α2 +3α1
α1

α2 +α1

Figure 2. Positive and Simple Root System

2.2.2 Classification of Root System

Definition 2.2.21. The coxeter graph of a root system Φ is a multigraph that has a
vertex for each simple root of a root system Φ and every pair α,β of distinct vertex is
connected by ζαβ · ζβα = 4cos2 θ ∈

{
0,1,2,3

}
edges.
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Definition 2.2.22. A Dynkin diagram of a root system is its coxeter graph with arrows
attached to the double and triple edges that point to the shortest root.

Theorem 2.2.23. The Dynkin diagram of an irreducible root system is one of the
diagram shown below.

An,n≥ 1: © ©·· · © © ©

Bn,n≥ 2: © ©·· · © ©⇒©

Cn,n≥ 3: © ©·· · © ©⇐©

Dn,n≥ 4: © ©·· ·© © ©

©

E6: © © © © ©

©

E7: © © © © © ©

©

E8: © © © © © © ©

©

F4, : © © ©⇒©

G2, : ©W©
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2.3 McKay quivers and Deformation of Cyclic quotient Singularities

As discussed in [RO98],An singularities are cyclic quotient singularities Cn/Z/(n+
1)Z with the action on C[u,v] by :

(u,v) 7→ (ζn+1u ζ
−1
n+1v) (2)

with ζn+1 is a primitive (n+ 1) of root of unity. We obtain the generating invari-
ants x0 = un+1, x1 = uv, x2 = vn+1, and the generating equation

xox2 = (uv)n+1 = xn+1
1 .

The MacKay- quiver is of the form,

M1 M2 Mn−1 Mn

M0

with n+ 1 vertices are one dimensional representations define by tensoring ;

Mj : u→ ζ
j
n+1u, u ∈ C, j = 0, . . . ,n

This representation [2] yields : Mj⊗C2 =Mj−1⊕Mj+1, j ∈ Zn+1,

We fix a basis for each Mj with a number uj and

U =



0 0 · · · · · ·0 0 un

uo 0 · · · · · ·0 0 0

0 u1 · · · · · ·0 0 0
... ... ... ... ...
0 0 · · · · · · un−1 0



Such that, we can identify Mj →Mj+1 as a linear homomorphism by describing
the endomorphism U ∈ End M , with expression M =Mo⊕ . . .⊕Mn
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Similarly, we have an endomorphism V ∈ End M with

V =



0 v1 0 · · · 0

0 0 v2 · · · 0
... ... ... ... ...
0 0 · · · 0 vn

v0 0 · · · 0 0


These endomorphism have diagonal: Un+1 = u0 · · ·unEn+1,

UV = diag(voun ·v1u0 · · ·vnun−1), V n+1 = v0 · · ·vnEn+1.

Taking the entries of this map; uo · · ·un,v0un,v1u0, . . . ,vnun−1,vo . . . ,un as gen-
erators of subalgebra of C[uo, . . . ,unv0 . . . ,vn], presented by

C[x0,x
(0)
1 , . . . ,x

(n)
1 ,x2]/〈x0x2 = x

(0)
1 . . .x

(n)
1 〉

with xo = uo . . .un, x2 = vo . . .vn, x
(j)
1 = vjuj−1, j ∈ Zn+1.We express the

corresponding deformation in the form :

[U,V ] = UV −V U = diag(λ, . . . ,λn),
n∑
j=0

λj = 0.

The following theorem [RO98] says that in order to understand the deformation
theory of cyclic quotient surface singularities we need to consider underlying quiver
seriously as MCKAY- quiver.

Theorem 2.3.1. For a given (n,q) take in C[u0, . . . ,un−1,v0, . . . ,vn−1] the subal-
gebra generated by those elements of diagonal matrices

U iρV jρ, ρ= 0, . . . r+ 1

belonging to a special representation. then this algebra is canonically isomorphic to
the algebra of the total space of the Artin components of the An,q singularity up to
smooth factor.
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3 Resolution of Singularities and Dual graph

In this section we resolve Kleinian singularity. These singularity have an excellent
characterization of absolute isolated double point. The resolution process involve
successive blowup where each blowup is at an isolated double point, therefore
whenever we blowup a singularity of this type, the result is either non-singular or
the singularities are also Du Val type.
Moreover, there is a correspondence between Du Val singularity and Dykin diagram
in a way that; Suppose we have a resolution π : X̃→X, then the preimage of the
origin will be a tree of projective lines and any two lines either intersect transversely
in a singular point or are disjoint. On the other hand, any point of intersection
contains only two lines. We therefore draw a graph whose nodes are the projective
lines and connect two nodes with an edge if the corresponding lines intersect. This
graph will be a Dykin diagram of type ADE.

3.1 Projective Spaces and Projective Varieties

Definition 3.1.1. An n-dimensional projective space is defined by Pn := Cn/C∗ where
C∗ acts by λ(xi) = (λxi). A point p= [x0 : . . . : xn] ∈ Pn is the equivalence class
of (xi), with xi the homogeneous coordinates of p. Further, we have that

Pn =∪ni=0Ui
∼=∪ni=0C

n〈
x0
xi
,...,

x̂i
xi
,...,xnxi

〉=CntPn−1 =Cn∪Cn−1∪ . . .∪C1∪{∞}

is covered by n+ 1 affine n−spaces.

Example 3.1.2. P2 = C2tP1 = C2∪C∪
{
∞
}
with the disjoint pieces C2 and P1

identified through the map

[x0 : x1 : x2] 7→

 (x1
x0
, x2
x0

) ∈ C2 for x0 6= 0
[x1 : x2] ∈ P1 for x0 = 0.

Let u1 = x1
x0
,u2 = x2

x0
;v1 = x0

x1
,v2 = x2

x1
and w1 = x0

x2
,w2 = x1

x2
be the affine coordi-

nates in respective three charts Ui = {xi 6= 0}.

The gluing data on U0∩U1 = {x0 6= 0,x1 6= 0},U0∩U2 = {x0 6= 0,x2 6= 0} and
U1∩U2 = {x1 6= 0,x2 6= 0} is given byu−2

1 0

0 u−1
1


u1

u2

=

v1

v2

 ,
 0 u−2

2

u−1
2 0


u1

u2

=

w1

w2

 and

v−1
2 0

0 v−2
2


v1

v2

=

w1

w2


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respectively.

Definition 3.1.3. A codimension m projective variety

X := V(fd1, . . . ,fdm) = ∪ni=0X ∩Ui ⊂ Pn

is the zero set of homogeneous polynomials fdj ∈ C[x0, . . . ,xn], that is fdj(λp) =
λdjfdj(p), with p ∈ Pn and the dimension dimX = n−m.

Further, X is covered by n+ 1 affine varieties

X ∩Ui = V(f̃d1, . . . , f̃dm)⊂ Ui = {xi 6= 0} ∼= Cn

with
f̃dj = fdj(x0, . . . ,xj = 1, . . . ,xn)

the dehomogenisation of fdj . The projective variety X is a degree d= d1 hypersurface
if m= 1.

Example 3.1.4. The conic V = V(x2
0 +x2

1−x2
2) ⊂ P2 = C2t P1 is covered by 3

affine varieties V ∩Ui ⊂ Ui = {xi 6= 0} ∼= C2. We then have, from Example 3.1.2
that;

V = (V ∩U0)∪ (V ∩U1)∪ (V ∩U2)
= V(1 +u2

1−u
2
2)∪V(v2

1 + 1−v2
2)∪V(w2

1 +w2
2−1).

Let (V,OV ) be a projective variety furnished by it sheaf of regular functions. The
following example is a demonstration of how to compute OV .

Example 3.1.5. In this example, we find the sheaf OP2
[xi]

(U) of regular functions on

U = P2 \V(x2
0 +x2

1−x2
2). From Example [3.1.4] , we know that the basic open sets

Df = {f 6= 0} of U are

U ∩U0 =
{
(u1,u2) ∈ C2 : 1 +u2

1−u
2
2 6= 0

}
= C2 \V(1 +u2

1−u
2
2),

U ∩U1 =
{
(v1,v2) ∈ C2 : v2

1 + 1−v2
2 6= 0

}
= C2 \V(v2

1 + 1−v2
2),
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and

U ∩U2 =
{
(w1,w2) ∈ C2 : w2

1 +w2
2−1 6= 0

}
= C2 \V(w2

1 +w2
2−1).

Now, denote X = P2
[xi] then;

OX(U) x0 6=0−→ OP2(U ∩U0) =OA2(D1+u2
1−u2

2
).

OX(U) x1 6=0−→ OP2(U ∩U1) =OA2(Dv2
1+1−v2

2
).

OX(U) x2 6=0−→ OP2(U ∩U2) =OA2(Dw2
1+w2

2−1).

3.2 Blow Up

Blowups are the basic device for fabricating resolution of singularities. They con-
stitute a certain type of transformation of regular schemes X to yield a relatively
new regular scheme X̃ aboveX, the blowup ofX, together with defined projection
π : X̃→X called the blowup map.
The blowup plays an important role in a way that, it untie the singularities of a
given vanishing set Y ⊆X by emphasizing on its inverse image E in Ỹ ⊆ X̃.
Blowing up a variety at a point means that we replace the point with projectivisa-
tion of the tangent space at that point.

Definition 3.2.1 (Resolution of singularities). Let Ỹ be regular and irreducible variety,
a resolution of a singularities of an irreducible varieties X is a proper birational
morphism

π : Ỹ →X,

that is, π restricts to an isomorphism π−1(Ỹ ) ∼→Xreg.

Theorem 3.2.2 (Hironaka). Let X be any variety over a field of characteristic zero.
Then there exists a variety Y and a regular map π : Ỹ → X that is a birational
equivalence.

3.2.1 The blowup of Cn at the origin

We define the blowup at a point in affine n−space Cn, as a closed subvariety of
Cn×Pn−1.

Bl0Cn =
{
(x,`) ∈ Cn×Pn−1|x ∈ `

}
⊆ Cn×Pn

=
{(

(x1, . . . ,xn); [y1 : . . . : yn] ∈ Cn×Pn−1 | xiyj = xjyi
)}
,
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with the line ` uniquely determined by (x1, . . . ,xn). We have that, the projective
space Pn is covered by affine charts, with at least yi 6= 0 with coordinates [y1 : . . . :
yn], then the coordinates in x1, . . . ,xn−1 are redundant, we obtain an affine space
with coordinate (y1, . . . ,yn−1,xn) and therefore our definition translates to,

Bl0Cn =
{(

(x1, . . . ,xn); (y1, . . . ,yn−1)
)
∈Cn×Pn−1|xj =xnyj, 1≤ j≤n−1

}
.

Remark 3.2.3. Suppose a point p is not the origin, we can still blow up at that point
by shifting origin to k by a transformation, φp : x 7→ x−k and define the blowup as;

BlpCn = V
(
(xi−ki)yj− (xj−kj)yi : 1≤ i, j ≤ n

)
⊆ Cn×Pn−1.

Since this map is not defined at the origin, we intend to eliminate this indeterminacy
of this map by constructing a graph Γ of π to be open subset of the quasi projective
variety Cn×Pn−1.

Example 3.2.4. We consider a variety V = V(x2 + zy2 + z) ⊆ C3. By Jacobian
criterion, we obtain two singularities at the point p= (0,±i,0) .

Suppose we need to blowup the singularity at the point p1 = (0,−i,0), we adopt the
coordinate change, x→X, y→ Y + i, z→ Z.

This implies that, x2 +zy2 +z = 0 translates to X2 +ZY 2 + 2iY Z = 0.

We now blowup the the final variety defined by V(X2 +ZY 2 +2iY Z)⊆ C3 to obtain
resolution π : Ṽ → V.

Definition 3.2.5. The blowup at a point p ∈ Cn is a birational morphism,

π : BlpCn→ Cn

and the fibres of π are:

π−1(x) =

(x, [x]) for x 6= 0{
0
}
×Pn−1 if x= 0.

So π is an isomorphism between BlpCn \π−1(0) and Cn \
{
0
}
, but the origin is

replaced with Pn−1.

Definition 3.2.6. The set E = π−1(0)⊆Bl0Cn is called the exceptional divisor. The
points on E are in bijection with lines through the origin, (0,0, . . . ,0) ∈ Cn.
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Proposition 3.2.7. The blowup Bl0Cn is a smooth irreducible variety of dimension n.

Proof. For a blowup Bl⊆ Cn×Pn−1. Let Ui ⊆ Cn−1 be a standard affine chart
of Cn−1. It suffices to check that each Bpl∩ (Cn×Ui) is smooth. For simplicity, we
let i= n. Then we have that;

Blp∩(Cn×Pn−1)∼= Cn.

This implies that:

Bl∩(Cn×Pn−1) ={(x1, . . .xn); [y1 : . . . : yn]
∣∣∣ xiyj−xjyi = 0}

={(x1, . . .xn); [
y1

yn
: . . . :

yn−1

yn
: 1]

∣∣∣ xj = xn(
yj

yn
),yn 6= 0}.

We obtain an isomorphism;
(
(x1, . . .xn); [ y1

yn
: . . . : yn−1

yn
] 7→ ( y1

yn
, . . . ,

yn−1
yn

,yn)
)
.

That is,

An→ Bl∩Un(
t1, . . . tn−1, tn

)
7→

(
(tnt1, . . . tntn−1, tn); [t1 : . . . : tn−1 : 1]

)
.

Example 3.2.8. We consider the blowup π :X→ C3 of a point p = (0,0,0) in an
affine three space C3. Let (x,y,z) be the coordinates of the afiine 3− space and
[u,v,w] be the coordinates of the projective space P2. Then by definition, the blowup
map is given by;

Bl(0,0,0)C3 ={(x,`) ∈ C3×P2 : x ∈ `} ⊆ C3×P2

= {
(
(x,y,z), [u : v : w]

)
∈ C3×P2 : xiuj−xjui = 0}.

For the projective space P2 is covered by its three standard charts,

P2 = A2
x∪A2

y∪A2
w.

The blowup is also covered by three charts. The intersection with each chart of the
preimage of the variety X ⊂ C3 is determined as:

C3 π← Bl(0,0,0) ⊂ C3×P2 ∼= (C3×A2
x)∪ (C3×A2

y)∪ (C3×A2
w).
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For the exceptional divisor E = π−1(p)∼= P2. We consider a closed point q ∈ π−1(p)
and define a regular parameter (u,v,w) satisfying the relations,

xv = yu,xw = zu,yw = zv.

For the chart u 6= 0, the above relation translates to; x = x,y = xv,z = xw. We
see that x= 0 is local equation of the exceptional divisor E.
Similarly, for the chart v 6= 0 we have the relation x= yu,y = y,z = yw. Thus we
obtain a local equation, y = 0 of the exceptional divisor E.
Lastly, for the chart w 6= 0 we have the blowup relation: x= zu,y = zv,z = z. We
obtain z = 0 as a local equation of the exceptional locus E. For the chart w 6= 0 we
obtain;

X =π−1
(
V(X)

)
∩ (C3×A2

z)

=
{
(x,y,z), [u : v : w]

∣∣∣ V(X)
}

=
{
(x,yzu,v) | xv = yu,xw = zu,yw = zv,V(f)

}
⊂ A5.

We repeat the same steps to blow up the along the charts v 6= 0 and u 6= 0. Projecting
A5 into 3-dimensional space C3 with coordinates (u,v,z) the preimage set of blowup
surface becomes

{
(u,v,z)

∣∣∣ V(f)
}
.

This is to say, if U = Spec(R) ∈ C3 is an affine neighborhood of p= (0,0,0), with
p having an ideal mp = (x,y,z) ∈R. Then

π−1(U) =Proj
(
⊕mn

p

)
= Spec

(
R[
y

x
,
z

x
]∪Spec

(
R[
x

y
,
z

y
]∪Spec

(
R[
x

z
,
y

z
]
)
.

3.2.2 The blowup of X ⊆ Cn at p ∈X

Definition 3.2.9. We define the strict transform of a variety X as

BlpX = π−1(X \{p})⊂ BlpCn

the closure of π−1(X \{p})⊂ BlpCn.

The blowup ofX at p is the projection map π|BlpX : BlpX→X. The exceptional
divisor is E = π−1(p)⊂ BlpX.

Example 3.2.10. We consider a variety V = V(xy−z3)⊂ C3. By Jacobian criterion
this variety has an isolated singularity at the origin, p = (0,0,0). We blowup this
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point by defining equation;

BlpC3 = {(x,`) ∈ C3×P2 : x ∈ `} ⊆ C3×P2

= {
(
(x,y,z), [u : v : w]

)
∈ C3×P2 : xv−yu= 0,yw−zv = 0,xw−zu= 0}.

Blowing up along the three charts, we obtain the exceptional divisors, x2 = y2 = z2 = 0
and corresponding smooth strict transforms respectively:

Ỹu6=0 : y−xz3 = 0,

Ỹv 6=0 : x−yz3 = 0,

Ỹw 6=0 : xy−z = 0.

Remark 3.2.11. We note that π : BlpX→X defines an isomorphism between BpX \
E and X \

{
p
}
, and therefore π is a birational morphism. The total preimage in

BlpCn, π−1(X) =E∪BlpX ⊂ BlpCn is called the the total transform of X. It
is the union of the exceptional divisor E = π−1(p) in BlpCn and the strict transform
BlpX.

3.2.3 Blowup along Subvariety

We consider the blowup of an Cn along Y ⊂X ⊆Cn, with ideal IY = 〈f1, . . . ,fm〉.
We define the blowup as the closure in Cn×Pn−1 of the image of the map,

π :X \Y →Cn×Pn−1

(x1, . . . ,xn) 7→(x1, . . . ,xn,f1(x1, . . . ,xn) . . . ,fm(x1, . . . ,xn)).

Definition 3.2.12. Let X and Y be quasi projective variety and π : X → Y be a
regular map. The graph is set defined as:

Γπ :X→ Y

{(x,y) | π(x) = y} ⊆X×Y.

We refers to the closure of the graph Γ as the blow up, BlI Y along an ideal I.

Example 3.2.13. Consider the blowup of C3 along the z−axis. Suppose we take the
projective coordinates ((x,y,z); [u : v : w]) ∈ C3×P2.

Blowing along the z-axis implies the change coordinates, xv−yu= 0 and we consider
the kernel of blowup map,

((x,y,z); [u : v]) 7→ [x,y,z;x : y].

Therefore we have that π : C3×P1→ C3.

Thus the image of the blowup is C3×P1 with π−1(x,y,z) is a point unless, x= y= 0
when it becomes a projective space, P1.
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Remark 3.2.14. In case we require successive blowup to resolve a given variety X,
each blowup is completely specified by its center which is defined to be regular closed
subscheme Z chosen in relation to zero sets of the variety X. Therefore at the center
of the blowup, the mapping fails to be isomorphic .

3.3 Resolution of ADE Singularities and Dynkin Diagrams

3.3.1 Resolving Singularities of An -types

Here we resolve the An singularities with generating polynomial

Y := V(x2 +y2 +zn+1)⊆ C3

and construct the corresponding dual graph. We resolve this type of singularity by
blowing up the only singular point p= (0,0,0).

This surface is covered by three open affine chart. If we consider the chart w 6= 0
we have that y = z v

w
, x= z u

w
, z = z. So our original equation becomes;

z2
(
(
u

w
)2 + (

v

w
)2 +zn−1

)
= 0.

This has two irreducible components, one where z2 = 0 corresponding to the
π−1(0,0,0) and the other ( uw)2 + ( vw)2 + zn−1) ∼= u2 + v2 + zn−1 = 0, defines
the strict transform (i.e. the closure of π−1(X \

{
0
}
) inside this open set).

The exceptional divisor with open set defined by z 6= 0 is the set of point,
(
(0,0,0), [a :±ia : 1]

)
with a ∈ C.

For the chart defined by u 6= 0, we obtain equation

x2(1 + (
v

u
)2) +xn−1(

w

u
)n+1 = 0∼= x2(1 +v2 +xn−1wn+1) = 0.

We consider the second irreducible part, 1+v2 +xn−1wn+1 = 0 and the intersec-
tion with π−1(0) is an affine line

(
(0,0,0), [1 :±i : b]

)
with b ∈ C. By symmetry,

we obtain the same on the chart v 6= 0.

Remark 3.3.1. We note that
(
(0,0,0); [a :±ia : 1]

)
=
(
(0,0,0); [1 :±i : b]

)
when

a,b ∈ C∗ and b= a−1. This can be seen by checking on the limits b→∞, on the
point

(
(0,0,0); [b−1 :±ib−1 : 1]

)
=⇒ b−1 = 0 so that we have the representation

of this limits point as
(
(0,0,0); [0 : 0 : 1]

)
which corresponds to the case a= 0.
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We conclude that the exceptional divisor E consist of two projective lines intersect-
ing at the point

(
(0,0,0); [0 : 0 : 1]

)
When n > 2, this point of intersection is singular point of the resulting blowup
surface Ỹi=w,v and the the singularity obtained here is of type An−2. (i.e. the the
variety defined by an equation u2 + v2 + zn−1 = 0, has the singularity of An−2-
type).
Again we can blowup and obtain the exceptional divisor which is either single P1 or
two copies Γo and Γ1 intersecting at a point, say Q. In the first case , the inverse
image of E and E′ intersect this copy in different points and in the second case we
will have E intersect Γo in a point distinct from Q and E′ intersect Γ1 in a point
distinct from Q.

By this successive blowup of singular point until we obtain a nonsingular variety.
Ultimately, we will get projective lines, say L1, . . . ,Ln above the origin such that
these projective lines Li intersect Li+1 at distinct points.
The figure below represent the exceptional divisor of An−1 type singularity and
resolution dual graph of An type singularity.

. . .

E1

P1

E2

P1

En−3

P1

En−2

P1P1

E3

P1

En−1

Figure 3. The exceptional divisor of An−1 type singularity.

An−2

Figure 4. Resolution Graph of An.

Example 3.3.2 (The ordinary double point). We start by an ordinary quadratic cone
in 3− space, with an hypersurface given by;

p= (0,0,0) ∈X : (xy = z2)⊂ C3

The ordinary double point occurs throughout the theory of algebraic surface and can be
used to illustrate the entire hierarchy of argument.
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Since this surface is a cone with vertex at p (the only singular point) and base the
plane conic X = xy−z2 ⊂ A3. This singularity has the standard "cylinder" resolu-
tion: π : Ỹ →X.

∼=

XBl0(X)S1×P1

Figure 5. Resolution of A1 surface singularity

The cone consist of union of generating lines `, through p, and Ỹ is the disjoint union
of these generating lines, `. ( That is to say, Ỹ is the correspondence between the
cone and its generating lines `):

Ỹ =
{
(x,`) : C3×P2 : x ∈ `

}
.

We obtain Ỹ by blowing up point the origin, p = (0,0,0). The exceptional curve
π−1(p) = Γ of the resolution is a −2− curve with Γ∼= P1.

x−axis y−axis
Ỹu Ỹv

w
u

w
v

Figure 6. The exceptional curves of the blowup of A1 singularities.

Since we have only one P1 our dual graph will just be represented by a single node.

Figure 7. Dual graph of A1-type singularity.

3.3.2 Resolving Singularities of Dn -types

We consider a variety defined by

Y := V(x2 +y2z+zn−1)⊆ C3 where n≥ 4.
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The exceptional divisor E of the blowup Ỹ is a projective line. For the chart
u 6= 0 does not intersect the exceptional divisor E, while the intersection of Ỹ
with blowup along the chart v 6= 0 is defined by equation,

(
u

v
)2 +y(

w

v
) +yn−3(

w

v
)n−1 ∼= u2 +yw+yn−3wn−1 = 0.

This singularity is analytically isomorphic to A1 type singularity, since the ideal
generated by this equation and its partial derivatives is the maximal ideal, 〈u,y,w〉.

Now we consider the intersection of Ỹ with chart w 6= 0 with defining equation

(
u

w
)2 +z(

v

w
)2 +zn−3 ∼= u2 +zv2 +zn−3 = 0.

If n = 4 it contains two singular points corresponding to the chart u = 0,v =
±i,z = 0 both of A1-type singularity. For the case of v = −i, we translate the
coordinates by v→ v+ i to obtain u2 +v2z+2izv and its partial derivatives are
2u,2z(v+ i),v(v+ 2i). Since we are working on the power series ring, we have
that, v+ i and v+ 2i are units, so the partial derivatives generates the maximal
ideal. Furthermore, for n > 4 it contain one singular point, u = 0,v = 0,z = 0,
of type Dn−2 at the origin.
Resolving this new singularity requires successive blowup until we obtain non-
singular variety. This singular point generates a tree of projective line which inter-
sect in the pattern of Dn−2.
The preimage of the exceptional divisor E, will intersect in a single point,and also
contains another projective line from A1 singularity from the previous chart.

A1 Γ0 A′1 Γ1

Dn−4

Figure 8. Dual graph of Dn type singularity.

Example 3.3.3. We consider D4 and its resolution
The singularity is at p = (0,0,0) ∈X with Y := V(x2 +y3 + z3) ⊆ C3. Let the
blowup at this singular point p be defined by π : Ỹ → Y. It is covered by three affine
pieces. Let [u : v : w] ∈ P2 be projective coordinates and (x,y,z) ∈ C3 be the affine
coordinates as before. The morphism

π :Bp=(0,0,0)`→ C3

is defined by x = uz,y = zv,z = z (i.e. the blowup along the chart w 6= 0). The
inverse image of morphism π is defined by;

f(uz,vz,z) = z2(u2 +v3z+z).



36

Here the factor z2 vanishes on the exceptional uv−plane,

A2 = π−1(p) | (z = 0)⊂Bp`,

and the other irreducible component Ỹ1 : (u2 +v3z+z = 0)⊂Bp` is the birational
transform of Y . It is clear that the inverse image of p under morphism π : Ỹ → Y

is the v−axis and the strict transform Ỹ1 : u2 + z(v3 + 1) = 0 has an ordinary
double point at the three points where u= z = o and v3 + 1 = 0.
The resolution is obtained by blowing up these three points.
It follows that π−1 consist of four -2-curves , Γo,Γ1,Γ2,Γ3 intersecting to yield the
configuration of the Dykin diagram D4.

∼=

Γ0
Figure 9. Dual graph of D4

3.3.3 Resolving Singularity of E6-type

In this case, we consider the singularity of E6-type and compute its minimal resolu-
tion as well as its dual graph. Let the projective coordinates be given by [u : v :w].
This E6 type singularities is defined by the vanishing of a variety X;

X := V(x2 +y3 +z4)⊆ C3

Suppose π : Ỹ →X is a minimal resolution, then the exceptional fiber E =∪Ei =
π−1(0). The blowup equations are given by;

Ỹ = V((xv−yu,yw−zv,xw−zu,x2 +y3 +z4)

We blowup the origin, the equation of total transform of X on the first coordinate
patch is given by;

x2 + (x
v

u
)3 + (x

w

u
)4 ∼= x2(1 +v3x+w3 +x2w4) = 0.

So the equation of the strict transform Ỹ is given by; Ỹ := V(1 + v3x+w3 +
x2w4). This is smooth and do not intersect E.
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The equation of the total transform of X on the second coordinate patch is given
by;

y2
(
(
u

v
)2 +y+y2(

w

v
)4
)∼= y2(u2 +y+y2w4) = 0.

So that the equation of the strict transform of X is given by; Ỹ := V(s2 + y+
u4 +y2). This is a smooth hypersurface and intersect E whenever u= 0.
The equation of the total transform on the third coordinate patch is given by

z2
(
(
u

w
)2 +z(

v

w
)3 +z2

)∼= z2(u2 +zw3 +z2) = 0.

Here the equation of the strict transform is given by ;

u2 +zw3 +z2 = u2 + (z+
w3

2
)2−

w6

4
= 0.

This equation represent an equation of A5-type singularity. The exceptional locus
C is the (double) line u= 0.
If we blowup one more time we get two more exceptional curves, copies of P1, and
the strict transform of C passes through the unique singular point, which an a
A3-singularity. Blowing up one more time, we get two copies of P1 and again the
strict transform of C passes through unique singular point of A1-type singularity.
Blowing up one more introduces one more copy of P1 and the strict transform of C
intersect the middle curve of the A5 chain. We obtain the dual graph of resolution
of E6 type singularity.

E′2 =X− iZ = 0 E3 E′′2 =X+ iZ = 0

E0

E′′1 = U+ iW = 0E′1 = U − iW = 0

Figure 10. Exceptional divisor of E6 after third blowups
.

We therefore obtain the resolution dual graph of E6
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2

1 3 4 5 6

Figure 11. Resolution dual graph of E6 type singularities.

3.4 Resolution Problems.

3.4.1 Choosing the Centers of Blowup

Our primary step in resolution of singular varieties consist of getting an overview
of a possible a path which could results to a solution of problem. Under this
consideration, the center of blowup constitutes to primary object of interest and
therefore by making a correct choice, we are bound to obtain a resolution π : W̃ →
W

Given a variety X embedded in a regular ambient scheme W with the defining
ideal J , of structure sheaf OW . Essentially, resolving J , will implies, resolving X.
According to the Philosophy of resolution of singularities, the worst point of a
variety X, is attacked first. Therefore, an appropriate center of blowup Z, should
lie inside the locus of point where the order of the ideal J is maximal.

Definition 3.4.1 (Top locus of J). A closed subscheme top(J) ⊂ W defined as:
top(J) =

{
a ∈W

∣∣∣ ordaJ is maximal} is the top locus of an ideal J ⊂X

Suppose top(J) consist of two transverse lines and one of them has to be chosen
as the center, in this case, our center is not unique and therefore, our variety X
has asymmetry obtained by interchanging two variables to yield a permutation of
two lines, that is, We obtain permutation group S2 acting on variety X.
In making a choice for the center Z, we intend to keep this symmetry and therefore
none of these lines will make a good center of blowup. Instead, we prefer to choose
the intersection of these two lines which appears to be S2− invaiant. However,
this center may be too small. This is the paradox for the resolution process.

Example 3.4.2. We consider X = V(x3−y2z2)⊂ C3. The top locus consist of one
point, the origin where ord(J) = 3. Thus Z =

{
0
}
as our center of blowup. By

blowing up the origin, we obtain the total transforms in each three charts as follows:

x− chart y− chart z− chart

x3(1−xy2z2) y3(x3−yz2) z3(x2−y2z)
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From the equation defining the strict transforms, we observe that there is a sym-
metry in y-chart and z-chart, thus J is invariant under interchange of y and
z

Remark 3.4.3. As a general rule, larger centers of blowups improves the singularities
faster than relatively small small centers. By this remark, We require Z to be a regular
closed subvariety of top(J) of possible maximum dimension, see [Hau98]

3.4.2 Equiconstant Point

Definition 3.4.4. Let J ⊂W, Z ⊂ top(J) and π : W̃ →W be a blowup with center
Z. For a point a ∈ Z, we set q = ordaJ = ordZJ . A point a′ in the exceptional
locus X̃, is called an equicnstant point if:

orda′J
γ = ordaJ, here Jγ denotes the weak transform.

Example 3.4.5. We consider blowing up the origin of Whitney’s umbrella define by,

X = V(x2−y2z)⊂ C3.

Blowing up along the z-patch produces the same singularity x2− y2z = 0 with
total transform generated by; z2(x−y2z) = 0. Hence, the origin of z− chart is an
equiconstant point.
We observe that the order of f(x,y,z) := x2 +y2z is 2 at every point of the z−axis
and 1 at any other point of X, thus the top(J) is the z−axis.
We blowup X along the z−axis to obtain the resolutions with regular strict transform
given by; (1−y2z) and (x2−z) along the u−patch and v−patch respectively.

Example 3.4.6. Consider X = V(x3− y3z3) ∈ C3 In this case, the top locus will
consist of two transverse lines y−axis and z−axis, and thus J is S2−invariant
obtained by interchanging y and z, this implies that, the symmetric choice of the
center of blowup Z =

{
(0,0,0)

}
.We obtain the total transform J∗= x3(1−x3y3z3)

regular along the x− chart, and y3(x3− y3z3) in the y− chart(symmetric to
z− chart). Along these two charts, the singularity remained the same,even though
our natural choice of center Z =

{
0
}
was the best!.

3.4.3 General resolution of X = V(xq +yrzs) ∈ C3 singularities

We finally consider varieties X := V(xq + yrzs) ∈ C3 such that r+ s ≥ q. We
determine the top locus, top(J) which depends on the values, q, r and s. Suppose
r, s ≥ q, then we have that, top(J) is the union of the y-axis and z-axis, thus we
can have the three choices for the center, Z =

{
0
}
or Z =

{
y−axis

}
, or Z =
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{
z−axis

}
. In all the three choices of the center Z, the tangent cone of the ideal

J consist of the monomial xq, except when r+ s = q. If this the case, then the
tangent cone of J is xq +yrzs.

In obtaining the equiconstant point, we consider V =
{
x= 0

}
, because x appears

in the tangent cone. We know that, the strict transform V ′ ⊂W ′ contains all
the equiconstant points of X̃. However, outside X̃, all other points will be an
equiconstant with no relevant information.

Suppose we choose Z =
{
(0,0,0)

}
∈ C3 the origin, with r,s < q. We have that

V ′∩X̃ lies entirely in the component of the x−chart, we omit this chart from our
consideration as explained above. We consider the two symmetric charts: y-chart
and z- chart and suppose we take the y− chart, we obtain the total transform;

J∗ = xqyq +yr+szs = yq(xq +yr+s−qzs).

We note that, the origin of this y− chart is an equiconstant point if and only if

r+ 2s−q ≥ q =⇒ r+ 2s≥ 2q.

Furthermore, we have that s < q, this implies that the y− exponent has de-
creased from r to

{
r− (q− s)

}
.

Suppose that s ≥ q we could have considered y−axis or z−axis respectively,
as the center of blowups because it gives a larger center which in turn improves
the singularities faster as compared to smaller center, Z =

{
0
}
.

We conclude that, for any ideal J ⊂W and any point p ∈W , there exist locally
at point p, a regular hypersurface V ⊂W , whose strict transform Ṽ contains all
equiconstant points p′ ∈ W̃ above p.



41

Bibliography

[Harts77] R. Hartshorne, Algebraic geometry Graduate Text in Mathematics.
Springer, New York, 1977.

[Cut04] STEVEN DALE CUTKOSKY, Resolution of Singularities, Graduate
Studies in Mathematics Vol. 63, 2004.

[Art86] ARTIN M. Lipman’s proof of resolution of singularities in Arithmetic
Geometry (eds.G. Cornell, J. H. Silverman) Springer, New York, 1986.

[Hau98] HAUSER H, Seventeen obstacles for resolution of singularities, The
Brieskorn Anniversary volume (ed.: V.I. Arnold et al.). Birkhauser,
1998.

[Wil06] Andrew Wilson, Birational Maps and Blowing Things Up. University
of Edinburgh, 2006.

[Bur83] D. Burns, On the Geometry of Elliptic Modular Surfaces and Repre-
sentations of Finite Groups. University of Michigan, Ann Arbor, 1983.

[Dav97] D. Cox J. Little and D. 0’ Shea, Ideal,Varieties and Algorithms,
second edition, Springer-Verlag, New York, 1997.

[Abra17] Dan Abramovich , Resolution of singularities of complex algebraic
varieties and their families , 2017.

[Hau03] Hauser H., The Hironaka Theorem on resolution of singularities, Bul-
letin American Mathematical Society, 40(2003),323−403.

[Igor07] Igor D., Mc kay Correspondence, http://www.math.lsa.umich.edu/ idolga/
Mc Kay book.pdf.

[Bier97 ] Bierstone E., Milman, P., Canonical desingularization in character-
istic zero by blowing up the maximum strata of a local invariant. Invent
Math.128,(1997)−302.

[Vill08] O. Villamayor, Jurgen H. and Holger B., Three Lectures on
Commutative Algebra, American Mathematical Society, Vol. 42, (2008).

[R098] Riemenshneider Oswal, Cyclic quotient Singularities: Constructing
The Artin Components via the Mc Kay-Quiver Singularity and complex
Analytic Geometry, 1998.


	Abstract
	Declaration and Approval
	Dedication
	Acknowledgments
	Introduction




	Preliminaries
	Affine Spaces and Affine Varieties
	Affine Hypersurfaces
	Morphisms and Regular Functions on Affine Varieties
	Finite Groups action on Affine Varieties
	Classification of finite subgroup of SL2(C)

	Surface Singularities and Deformation
	ADE-Surface Singularities
	G-invariant subrings
	Cyclic Quotient Singularities
	Binary Dihedral and Binary Tetrahedral Quotient Singularities
	General results Obtained from Classification

	Deformation of Singularities
	Root System from Deformation
	Classification of Root System

	McKay quivers and Deformation of Cyclic quotient Singularities

	Resolution of Singularities and Dual graph
	Projective Spaces and Projective Varieties
	Blow Up
	The blowup of Cn at the origin
	The blowup of X Cn at p X
	Blowup along Subvariety

	Resolution of ADE Singularities and Dynkin Diagrams
	Resolving Singularities of An -types
	Resolving Singularities of Dn -types
	Resolving Singularity of E6-type

	 Resolution Problems.
	Choosing the Centers of Blowup
	Equiconstant Point
	General resolution of X=V(xq+ yrzs) C3 singularities


	Bibliography

