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Abstract

Option trading is one of the activities that take place in the financial market. Pricing
these option is key for investor to ensure that the position they take offers good returns.
The Black & Scholes model is widely used in pricing option although its underlying
assumptions are inconsistent with the market dynamics. Some studies have been done
aimed at improving the Black & Scholes model and in general the pricing of option.

In this paper, we take the same motive but now use the truncated normal distribution
instead of the normal distribution that as been used in previous studies. Under the truncated
normal distribution, denoted by TND in this paper, the underlying asset’s log-return of
is assumed to be bounded below and above. The boundary values are determined by the
investor’s perceived realistic price ranges of the underlying asset. The basic statistics of
the proposed model are derive. The martingale restriction and closed formulas for option
pricing as well as the pricing error are presented. The put - call parity and duality and some
of the Greeks are also formulated. From the numerical result of the study, the proposed
model performs better than the classical Black & Scholes at different price ranges for
European options.
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1.1

Chapter 1: Introduction

Background of the Study

The derivative market is a lucrative market where investor hedge their investments against
unforeseeable risk. Financial instruments such as options, warrants, swaps and futures
are widely used in financial market. Of these instruments, options are considered as the
mostly used and traded tools. These financial instruments (options) which derive their
prices from an underlying asset(s) have attracted the attention of investor and researcher
on the optimal way of pricing them. Options have their origins since the 1600s - where
they was used by the Dutch for the harvesting of olives, Romans and Phoenicians for the
transportation of cargo [Str03]]. They have been known to be the most preferred tools
used in the market by investor to hedge against unforeseeable risks. Before the advent
of the world economic crash in 1987, two famous American Scholars developed an well
known and celebrated option pricing model - commonly referred to as Black - Scholes
Model.

1.1.1 Black - Scholes - Merton Option Pricing Model

The Black - Scholes (B-S) model [BS73] has been used as the basis of pricing these options.
This model was coined by Fisher Black and Myron Scholes in 1973 and later improved
by Robert C. Merton [Mer76l] when he assumed that the stock returns of the underlying
are discontinuous. This model provides a closed formula for evaluating the call and put
option prices of European options. With the following key assumptions, the closed form
formula for the Black - Scholes model for a non-dividend paying European call and put
option is given by;

Ct = Stq)(dl) —Ke_rTCI)(dz)
P, =Ke ""®(—dy) — S;®(—d,) where,

e (1) (-+9):

dy = d,
1 Gﬁ an
ddel—G\/‘_L'

T=T—1t

where

C; is the value of a European Call option

P is the value of a European Put option

S is the price of the underlying stock/asset at time ¢



K is the option’s strike price

r is the risk - free interest rate

o is the volatility of the underlying stock/asset

T is the time to maturity of the option

®(x) is the standard normal cumulative density function (CDF) defined by;

1 u
D(u) = E/ e 1% dx

The key assumptions of the Black & Scholes model are:

1. The model assumes that the market is "Frictionless" which implies that there are
no transaction cost, taxes nor brokerage fee in the market. There are no arbitrage
opportunities in the market implying that there are equal returns for all portfolios in
the market and no restriction for short-selling in the market and that the stock can be
subdidived into smaller units

2. The underlying asset or stock is assumed to be following a Geometric Brownian motion.
The underlying asset/stock returns are log-normally distribution with mean p and
constant volatility o > 0

3. The option is only excised on maturity date, i.e the model is assumed to price European
options as opposed to American options which can be exercised before the maturity
date

4. The underlying stock/asset does not pay dividends or any other distribution for the
entire option contract period

5. The risk - free interest rate (borrowing and lending rate) is assumed to be constant
and known during the option contract period

6. The market is assumed to be operating continuously

The above assumptions have been found to be unrealistic and thus more and more scholars
have been attracted to the modification of the B-S model to "improve" the prices obtained
by the Black & Scholes model. For instance, various parameters used in the Black &
Scholes have been improved by adding some terms into the model such as jump as
proposed by and Merton [[Mer76] who introduced the discontinuity of the underlying
stock returns. Ingersoll [1J76] considered the transactions costs which are incurred during
the buying and selling of the options while Whaley [Wha82|] considered the dividend
paying stock, i.e American options, in the B-S model. More studies have been proposed to
improve the Black & Scholes model are presented in the literature review section such
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as the assumptions of constant volatility has been found to be at odds with so called
volatility smile as proposed by Dumas [DFW98], the observed returns have been found
to be skewed and fat-tailed as indicated by Piero and Rachev [Pei99, RMF05]], Mwaniki
[Mwa19] found that the log-returns of the underlying asset are heavy-tailed and follows
Generalized hyperbolic Distribution as opposed to the Geometric Brownian motion.

Few approaches has been proposed to correct and modify the B-S model so as to obtain
more "improved" option prices that are in-line with the market dynamics. "Improved”
option prices is therefore been an interesting area by various financial analysts and hence
development and modification of existing model to improve on the pricing process of
options is necessary. In this study, the focus is the assumption that the underlying
stock/asset prices are normally distribution.

Statement of the Problem

Some studies that have been done in option pricing indicate that the returns of the
underlying assets are fat-tailed and skewed. The changes in the stock prices of the
underlying assets from the start date of the option significantly affects the returns which
investors get from their investment. Whenever the stock price is above the strike price,
the option call holder makes a profit and thus exercise the call at the expiration date. On
the other hand, if the stock price is below the strike price, the call option holder suffers a
loss and thus fails to exercise the call option.

There are two key modifications that has been done as far as option pricing is concerned,
i.e. structural and non-structural models. Structural models provide the definition of the
dynamics of the underlying asset prices at every moment of time between now and the
maturity period. Examples of structural models are the celebrated Black-Scholes, the
Variance Gamma, Jump diffusion, Carr, German, Madan and Yor (CGMY) and Stochastic
volatility models that were proposed to capture the various features that are shown by the
real market data. On the other hand, non-structural models only defines the probability
density function (p.d.f) of the underlying asset price at the time of maturity conditioned
on the current time, i.e EQ[¢7""S,|.%] without necessarily defining the stochastic nature
of the process at every moment in time for the entire duration of the option contract
[ZH18]]. The truncated normal distribution (TND) is an example of the non-structural
model. With the more flexible distributions, different characteristics of the underlying
asset returns and the volatility term structure can be captured in modeling.

To protect themselves from the extreme losses, investors have adopted the usage of market
order and trading orders. Trade orders are orders which are placed by investors to either
buy or sell a stock when a specified price is reached or a stock takes a specific direction as
specified by the investor. For instance, stop limit orders are exercised when a specified
price is reached by the stock while market orders are exercised whenever they are placed at
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current market price. Investors may specify a percentage for which if the price fluctuates
beyond, their orders are exercised. The choice of the prices for which the orders are set
and which type of order to choose posses a dilemma to investors are indicated by Bae
[BJP03]. The use of trade orders has resulted in the truncation of the stock prices thereby
providing the bounded prices. A proper method is therefore necessary to ensure that the
interests and profits of the investors are protected while setting the prices for which the
orders are to be exercised.

Unfortunately, all the pricing models that have so far been proposed in the existing
literature assume that the underlying prices and returns are unbounded, i.e. the price
ranges from zero to infinity, [0,00). In this study, we adopt the assumption that the
log-returns of the underlying asset follows the truncated normal distribution.

Research Objectives
1.3.1 General Objectives

To price European Options when underlying asset prices and log-returns are assumed to
be following the truncated normal distribution.

1.3.2 Specific Objectives

1. To derive the basic statistics of the proposed truncated distribution model
2. To determine the value European option using the truncated normal distribution

3. To compare the option prices from the truncated model with those obtained under
the Black & Scholes formula

4. To formulate the put-call parity for the truncated normal distribution
5. To formulate the put-call duality for the truncated normal distribution

6. To formulate the some Greeks of the proposed truncated normal distribution model

The rest of the dissertation is outlined as follows: Chapter 2 present the existing litera-
ture in option pricing and use of truncated normal distribution. Chapter 3 presents the
methodologies including the properties of the truncated normal distribution such as MGF,
Mean, Variance, Skewness and Kurtosis. The closed formulas for pricing European options
are also presented in this section together with the parity relations and option Greeks.
Chapter 4 presents data description, analysis and empirical results. Lastly, Chapter 5
presents the conclusions of the study and future research.



Chapter 2: Literature Review

This sections presents the existing literature for the pricing of options. Option pricing has
undergone through a lot of revolution and transformation since its inception in 1973 by
famous American scholars Fisher Black & Myron Scholes. The model for pricing option
was first proposed by Black and Scholes [BS73]] which is a well celebrated and applied
in the derivative market. The assumption behind the model has frequently attracted
critics on their validity in the pricing of option. For instance Merton [Mer73] extended
the Black and Scholes model to include the pricing of underlying assets when they are not
continuous. The assumption of constant volatility is among the areas which has received
many criticism by academic researchers. The volatility smile investigated by Dumas
[DFW98] to check how volatility relate with time. Also, [Sco87] applied the varying
volatility in the pricing of option. Brechmann [BCA12] introduced the truncated Lévy
process in the pricing of option.

The distribution of the underlying process which is assumed by Black and Scholes as
normally distributed and following Geometric Brownian motion has been investigated by
various academic researchers. While investigating the underlying asset’s return, Piero and
Rachev [Pei99,[RMF05]] found out that the returns were actually skewed and fat-tailed
respectively. Similar results were obtained by Mwaniki [Mwa19] that the log-returns of
the underlying asset are heavy-tailed which is not in line with the normality assumption
proposed by Black & Scholes. The constant volatility assumption and normal distribution
of the underlying asset among other parameter assumptions have been investigated by
academic researchers. In many of these studies, the return of the underlying asset is
assumed to be normally distributed with no bounds. However, Zhu [ZH18] proposed a
bounded normal distribution (truncated normal distribution) for modeling the log-return
of the underlying asset. A closed formula is proposed for the pricing of European options
which takes into account the investor’s expectation on the range of the returns of the
underlying asset. This is the center of this paper as it tries to investigate the application
and comparability of the truncated normal distribution model to the existing Black &
Scholes model.

The truncated normal distribution has been applied across various disciplines. For in-
stance, Norgaard and Killer [NK80] applied the truncated normal distribution to analyze
investment. In this study, Norgaad found out that the truncated normal distribution
serves as good alternative in when investors are not contended that the probability at
the tail end of normal distribution is not in line with their investment decisions. Also,
Hasan [HKMB12] and Dey [DC12] used the truncated normal distribution in measuring



the efficiency of the stock market and modeling of the single period inventory model
respectively. Hasan found out that the truncated normal distribution was in a better posi-
tion for measuring the technical inefficiency in Bangladesh Stock Market as opposed to
half-normal distributions. Similarly, Dey reported that the truncated normal distribution
provided higher profits than the non-truncated case. Other studies where the truncated
normal distribution has been applied is the queuing process of the impatient customer
and in the investigation of portfolio insurance by Pender [Pen15] and Hocquard [HPR15]]
respectively. Pender concluded that the truncated normal distributions approximate the
mean, variance and kurtosis of the queue process better than the normal distribution
although the skewness was overestimated. On the hand, Hocquard reported that the left
truncated normal distribution included into the Payoff Distribution Model reduces the
downside risk for the investor significantly with no requirement of the fund manager.
The left-truncated model model minimizes the downward risk inherent in the investment
portfolio when the normal distribution is used.

Similarly, Gatti [GGGP03] introduced the truncated normal distribution in analyzing the
pattern of entry and exit of firms in industrial market based on the financial bankruptcy
- more specifically the firm’s accumulation of capital. Gatti found that the entry and
exit of firms follows the truncated normal distribution and that firms that remain in
the market posses a higher equity ratio and low volatility (right-truncation) while firms
that exit the market experiences weak equity ratio or have higher fragility in bankruptcy
(left-truncation). Del [dCD09] used the mixture of left-right truncated normal distribution
in the pricing of the bid and ask price of the exchange rates between the Euros and dollars.
From the findings of the study, Del found that the truncated normal distribution (left and
right) performed better than other distribution such as Laplace, inverse Gaussian, normal
and the mixture of normal distribution is measuring the exchange rates between the US
dollar and European euros. Additionally, Cox [Cox09] incorporated the truncated normal
distribution in the development of the statistical process control - commonly referred
to as control charts and their application in finance. In his/her findings, Cox reported
that truncated financial data provides reliable charts that show better fit with predicable
behaviors that are quite reliable. Zhu & He [ZH18]] proposed the TND model in option
pricing when they modified the B-S model in the pricing of S&P 500 index and found that
the model performs better than the B-S model. Having evaluated the existing literature
on how the truncated normal distribution has been applied in various fields, it is therefore
profound to evaluate its applicability and performance in options market.



3.1

Chapter 3: Methodology

In this section, the probability distribution of the truncated normal, its properties including,
MGF, Mean, Variance, Skewness and Kurtosis are presented. The closed formulas for the
European call and put options as well as the put-call parity and the put-call duality are
presented. Later in the chapter, the option Greeks, i.e. Delta, Gamma and Rho as well as
the sensitivity of the stock price with respect to the strike prices are presented.

Truncated Normal Distribution (TND) and its Properties

A random variable X is assumed to follow a truncated normal distribution with mean, u,
and variance, 62, (6 > 0), and x € [a, b] if its probability density function (p.d.f) is given
by

x—u
¢( c ) a<x< b

o
—~
7
=
~—

f(x;o,u,a,b) =

0, otherwise

where ¢ (x) is the standard normal density function and ®(x) is the standard normal

distribution function.
3.1.1 Moment Generating Function (MGF)

For a random variable z, its MGF is given by;

Mz(t) =E (%)

= /etzfz (z)dz

Therefore, the MGF of the truncated normal distribution is given as;

b
:/ e fx (x)dx
b | —
:/ o o9(5)
o o) e ()




Let M =& <b77“) —d (‘F“) and since

¢(X—H): L4y

(o)

Then we have that;

b
_ i 1 e—ﬁ(xz—qu—i-uz—ZGztx)dx
M | ov2n

b
_ 1 L —shie-ax(urol )
M | ov2n

Let k = (u + o) and m = u? then;

X =2x(p+o)+ut=x*—2xk+m
=x? =2k + k> — k> +m, add zero to complete the square
=(x—k)?—K+m

= (= (u+0%)) = (u+0%)? +p?

b
M) = / L sl (b o) (o402

—
M oV2T
1 2.2 2 b
— 552 |- (Mo ) +u7)
_¢ w2 ) 1 e—ﬁ(x—(wczt))zdx
M oV2®

1 2 2 2 4.2
P G e | B L TIPS ‘ 2
= e 20° dx, where u” =u+o-t
a

M
I 2 4.2 b
e s [~ (uotot?)] / U b

- M



By the definition of normal distribution:

1
¢(x)=me—%x2; x~N(0,1)
Ry L)
( p )_\/Ee : ; x~N(u,o)
Consequently;
o) - L () Nw.0)
. —\/ﬁe ; X ur,

Thus;

1 2 4.2 b
— ez [—(2uc?t+01?)| 1 .
Mx(6) = © —9(* - ax

M (o]
(ﬂt+162t2) /b 1 *
A x— U
SRR Y P R
M A (0} (o)
Let u = X_G“*, then;
d d —u* 1
d—u:d—(xcu):g :dx:()'du
x x

The lower and upper limits are (a;”*) and (b%‘“*) respectively. Thus, the MGF becomes;

o(Ht+3071%) = 1
Mx(t) = ——— y E(I)(M)Gdu

By definition;



10

Thus;
(ut+1c%?) o ok
_ el b—u a—u"\|.  _ 2
Mx(t) = i d)( - ) CD( 5 )} but u* =u-+ot
(ut+1c%?) _ 2 _ 2
_ et q)(b (u+o t)) q><a (,u—i—at))}
M I c c
1 _
:e(lit-i-j(ﬂtz) o lﬂ_gt @ ;‘u_ct M—® lﬂ @ a—Uu
M o ’ c o
bt o) - (HE o1
Mx(l) e(ut+162t2) ( > ( ° )

Therefore, the moment generating function of the truncated normal distribution is given
by;

b _ >_ (u_ )
i) ety [ 2L o) @ (53 o

o (7)o ()

3.1.2 Hermite Polynomials

In finding the mean, variance, skewness and kurtosis of the truncated normal distribution,
the first four moments of the MGF are involved. The Hermite polynomial are considered
useful and hence they are reviewed in this section. The Hermite polynomials is defined as,

1 d\*
Pi(z) = el (_d_z) ¢(z)

where Pi(z) is called the Hermite Polynomial [Nua06]. For instance, the first four polyno-
mials are;

P = g () 0=
ne = g () 00
= @ (—%) 9(2)
— S0
= P(z) =z
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. (-3) @)
:ﬁ(_) 220(2) + (22 = 1)(~2)9(2)]
= @(—) 220(2) —20(2) +20(2)]
= @ [ —32] 9(2)

These Hermite polynomials are used while finding the mean, variance, skewness and
kurtosis of the distribution in this paper. By defining

dk
d_zkcp(z) = ¢(2)P(2)
Then
dO
702 =8RG =)
1
j_zlcp(z) — 0(2)Pi(2) = 0(2)z
2
j—zch(z) = 9(2)P2(2) = 9(2)(£* - 1)
d3
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3.1.3 Mean

Using equation (1), the mean of the truncated normal distribution is determined as follows;
E[X] = My (t)]i=o where
o[t -a)-o( o)
10 £ —ot £ —ot
* (%) - (")

Lety = <I% — Gt) 2= (aiﬂ — Gt) and M as define before, then;

Mx(t) =e

Mx (1) = olt+30°r%) {%CD(Z)}

Then, applying the chain rule and Hermite polynomial and given that;

®(5) e ()] o) e (%
My (0) = ‘I’EbT @Eacﬂ) + <I>E%“§<I><(“G”)) o
a—p _ 4 (b=n
RUCEICOID

Therefore, the mean, E[X], of the truncated normal distribution is given as;

o (454) -0 (%)
o) o(7)

E[X] =My (0) =+ c
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3.1.4 Variance

The variance is given by
V(X) = M5 (0) - [Mx (0))”
Hence;

My (1) = (u + 021)elHi+30°") [M] L i) [W] -

2
M) = T3 (Mx(0) = & (M4 ()

= (ot 1o [0 st 000001 )

— glellty0°r) {d)(y)]‘;d)(z)} X (‘u_f_GZt)ze(utJr%O'zzz) lq)(y)ﬁzq)(z)}

(4 G2 )elbitio%) [¢(Z)Po(Z)A—/I¢(y)Po(y)] o+ (1 + o2)ell+107r) [¢(Z)A—4¢(y)] -
+e(ut+%62t2) {‘Z)(Z)Pl (2) A_/[‘p()’)Pl ()’)} o2

pr+1622) {q)()’)j;lq)(z)} b (i 4 o) et i) {q’(y)];[q)(z)}

+(‘u+o.2t)e(ut+%62t2) {‘P(Z)A;‘P(y)} G+<u+62l)€(”t+%62t2) {‘P(Z)A_/[(p(y)} G

_{_e(ut—ﬁ—%oztz) [‘P(Z)Z_‘P(y)y} o2

— o2l

M

Substituting back the value of y, z and M,we have;

M5 (1)
b_iﬂ — _ a—u _ b_iu B - a_” B
:GZe(IJH-%GZﬂ) |:(I)( c Gf) (I)( c GI)] +(/,L+o‘2t)ze(”t+%5212) |:CI)< = Gt) q)( = Gl‘)
@) o) @ (5h) — @ ()
a—p _ b—u
+(+ o2r)elhrt207) 05 bm) ‘P( c G’) o
JEOERICD
a—p _ }7*7.“ _
gt [0 ()]
(D(T) _(p( G#
M a




|7
= 3 1
_Tu I -
< S 3
~ | — ;G
< | B L
| ¢\u.|/
\u.l/\u.l/ « — ;G
o] 2 S
o] 11e ~_
3 < —_—
~——  —_ ~—| B
< | B J _
L 1 Ifb
s 3 =
T =TI
=) 3 N RN .
— _Tu Lo o | B
J o — —
| 1o Tv
I} I} < | B io
~— N — | S
o) o) —|
_ 3 =) I
_a_o %G IS\
e N o
Tolle o _©
~— | N— u_u.Tu
LIRS N
~ 3. =
== (T
n < | B
| _
3 = |7 Tlb b
|| || =1 =1 N 1%
S S bLG ,L_o — [ N—
[ | < | B
—— _ M.
3 3 /| ~
e | e = 3
NN _TV ;o +
N N
| B
L 0 S| B
« (I
o 3
Il +
~—~
(=]
S~—
N
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Therefore, the variance of the truncated normal distribution is given by;

V(X) = 0 1+(%>¢<%>(%>¢<%)("’(%)"’(Z’T>
°(*3) - (") @ ("5) -~ (5)

3.1.5 Skewness

Skewness is given by

122)

+20 (1 + 021)eHi 207

+ g2elHrt30) [<% _ Gt) 2% - t; - (b% _O—t> ¢ (a;” - Gl‘>]

The third moment is given by

M) = ()
:j; ( (ur+1o%?) [‘P(Y)—q’ )])

Rl R
+ (i + 62r)elitor) [¢( A_/I (Y)} G 4 olbr+10r) [¢(Z)Z;/I¢(y)q 52

MY(1) = 07 (1 + %) e 50°) [‘I’(Y - }LG St ho?) [(P(Z)Po(Z)A—/IMy)Po(y)] -
15 [ B0y s [ 8006
(i o) 2elbrthoi) [ ¢(2)Po(z ) 9Py )] 6 4 202 (Hi+10) [¢(Z)P0(Z);/I¢(y)f’0(y)] 5
o e [#01 <>A—4 OO . s 1 gt [HAAD IR0

+(u+02t)e(‘”+%<’2ﬂ) [¢(Z)Z;4¢(J’)Y} o2 4 oli+a?) [(P(Z)Pz(z) ;/Id)(y)(Pz(y)] o
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My (1) = 0 (n+ %) plui+50%?) [CI>(y)A—4CI>(z)] + g2elkit30%) [¢)(z)]‘—/[¢(y)] c

+202( + 02t)elHH207) [Q(Y)Aj[q)(z)] + (u+ 02t)elH20') :‘b(y)];[q)(z)]
_'_(‘u_+_62t)2e(ut+%62 2) {(p(z)M‘P(Y)] G+2Gze(uz+%6212) [‘P(Z)M‘P(Y)] p
(H+O- t) (ut+5o%?) [ ¢(z )A; (v )] G+2([,L+62t)e(m+%62t2) _¢(Z)Z;4¢(Y)Y] G2

—i—(,lL—}-GZt)e(“H%Gztz) [¢(Z)Z—¢()’)Y] 62+e(“‘+%02f2) [(P(Z)(zz_ 1)

M
b=p _ _
=0’ (u+0%) o(Hr+30%r%) [Cb ( Gt% ®
(o))

a_p _o (b=t
—|—G e(#t+262 2) ¢( o2 Gt) ( (2 Gl)

+ (1 + 0% W30 —q)[b%_m}_ [%m)]

+(u+ Gzt)ze(ut+%0212)

R S TR
1 202eHi+30°) 0 (%5 —o) ¢(G o c
@G 1) - ()
u— b—
‘P T“ —@(5F)
b

0 (3" >«xm>¢(;‘aocxmq

+2(u + 62t)elhrt 2o {

azp _ Al o) — o (=R b—w _
+(u+62t)e(#t+%o2t2) |:¢( A S Gt)< ° Gt)] G2

¢ey_mway_mﬁ4y.c;_mmcy_my_@ 3

+ olurt $0%2)
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0, we

Substituting back the values of y,z and M in the last equality and evaluating at ¢

have

| —
— ﬂu
= 3
;_0 ,ac —
= /\)M.)
2 S
& [0 Tlo| L
RN
— 7~ s o
3 3
;_o ;o _ |
N Y P N
o REIRE
& I°|l
e
= < | B
& o
+ S
© +
| ——
—| G
= 3
_7_0 WG)M)
= — =
N— | o ,aG
:0! v@ = SN—
_ \H/mv o
3 3 _ |
o b —~ | N
S] < 3] 3
~— |— ,G..%G
<- @ a{\/l\
| I |
o S |
© 2
+ 3
— +
— —
3. 3
,_.lVG ,aG\l/m.l/
~— ~— ﬂ.ic ;.O
I L INU
| I e | B
3. 3 _ !
_70 [ |
< < 3 =
/l\/l\,_o..w.o
=T = M L N
o | B
o
3.
+

E

30%u +u’ +30°




Therefore;

M3 (0) — 3M (0)My (0) =
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2[My (0)]2.[Mx (0)]

(0))°

M

1
X

—
| —
—
|
(o)}
/N
=1
o
<
N—
—_
—
5 | Tle
;6 S
= ~—
N
< .@
_
1 _ /N
REENEE
Teltlo 112
((2 va
3|
T
— |
=1 3
e > o
s ) 3
(/I\._,JG
< NG
<
. |
o) I
N e}
Il +
o
—
=]
~—
/I(.MX
I
+
—
=]
S~—
>
—
(=]
N~—
£
o
_
—
=]
S—
Bde

20°V3+ 03w —36%vZ
o2V 4+ W —3VZ]

% (0) — 3M5 (0)My (0) +2[My (0)]
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V(X)=o0?+0> (

=0’ +06%Z—c%V?

=0’ (14+2-V?)
S(x) = M (0) ~ 3ME(OIMy (0) + 2[My (O]
[V(x))2

_oRVI+Ww —-3VZ]
[0 (1+Z-V2)
V4w —3vZ
C (14z-v2)?

3.1.6 Kurtosis

The Kurtosis of the truncated normal distribution using the MGF technique is determined

as

M (0) —4my) ()M (0)] + 6[M" (0)2M (0) + 3y (0)]*
V(X)

The fourth moment is determined as follows

4
M0 = (1)

d* (e(ut+%62t2) [—q)(y) _CD(Z)D

T ar M

MO (1) = 307 (u + o) elbr+1o%) {q’(y)ﬂf’(z)] 362l ho) {¢(Z)Po(2)]‘—4¢(y)Po(y)] 5
© (1 + 62 eturrio) rb(y)ﬁ—;b(Z)} 3+ o)) V(Z)Po(Z);lq)(y)Po(y)] -
3+ o)elurtio) [¢(Z)P1 (Z)z\_4¢(y)Pl (y)} o2 4 olurthot?) {(P(Z)Pz(z) ;4 ¢(y)(Pz(y)] 53

Thus, we have
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_ 3gtellrtioir?) [q)()’)];[‘b(z)} 1362 (u+62t)ze(ut+%czt2) [q)()’);[q)(z)]
¢(Z)P0(Z);4¢(y)Po(y)} o +302 (1 + a2 )elHr+ o) [(b(Z)Po(Z);/IMy)Po(y)] -

PP (y) ]

+30% (u+0°1) elHi+30°r%) [

+30 e(ut—i-lcrztz) P (2)Pi(2) —
M

i olur+d 6t)|:cb()))_q)(z):| (

Jelurtsots) [‘D(Y)l;q)(z)]

O (y)Po(y) ]

o’ +30%(u+0o’t
) (ut+1c%?) [‘P(Z)PO(Z) -

(e

+(u+o’t 1+o’

M

o

+602( + 02t)elHi 207 [(b y)] 6 +3(u + o%)3elHit27) [¢(Z)P0(Z);/I¢(y)Po()’)}
P(z

{( \(2) - ¢<> <>] s 1ot [¢<z>P1<z>—¢<y>P1<y>] .

+3(u+ 0%1)2eWH20r) m c

(o) {(P( 2)Pi(z) — ¢(y)P1(y)] 2+ 3( + o2 )e(H+1) [d’(Z)Pz(z) —¢(y)Pz(y)] 53

o> +30%

3 21)?
+3(u+o°1)e i

+ (4 Pyl [d’(Z)Pz D-40) (Pz(y)] o34 1ot [¢<z>P3<z> —00)(Py <y>} o

4 1.2 <I>(y)—<l>(z) 2 2.\2 1622 CID(y)—CID(z)
:36 e(“l+20- ! ) |:M +36 (“+G t) e(“H_ZG t) T

+302 (N+62f) 0% [‘P(Z)A_/I¢(Y):| G+362(,u+62t)e(m+%62t2) [‘P(Z)

(et o) [W] 6%+ 303 + 0 ek o) P(wﬂfm]

(ur+3022) [‘b()’) —qD(Z)] +(u—|—62t)3e(“l+%"212) [‘P(Z)A—/I(P(Y)]

||

+302%e

Q

+(u+0%t)te

M
+602 (1 + 02)elHi 20 [(P A_/I ]6+3 [+ o)l t20°r) [‘P(Z)A_/I‘P(y)}o
¢(z)z—9(y ]

02 4 302eHi+3077) [(P(z)z—d)(y)y] o?
Jelh 50 [¢<z> (2-1)=90) (*-1)

(N"‘O- t) (ut+%o%?) {

)y
M
43 (%) 2+ {(P(Z)Z—W

M

0(2) (2—1)—0() (*— 1)] o
M

62 +3(1 + o2 )eHi 20" [

G3+e

M
3
2 (o) | 2(2) (& —32) -
+(u+ot)e i 2 [

Substituting back the values of y,z and M, we have
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My ()
P (Lt —or) —P(HE by _ a-u
— 3g2e(+30%) | 52 ( ° ) (%5 Gt)] o2t cI)( o Gt) —@(F —o1)
{ [ o) et | T e ee ]}
+30? (N+62t)e(#t+ o2r2){ (550 -9 <le1 m)] o4+ [‘b(wm)q’(bvum)} c}
@ (%) -2 ()

+ (607 + (u+0°1)°

+3(u+ o) el 207 _¢(%—m)—¢(i’%ﬂ_m) .
(%) e
+3(u+ 0%r) el 30 [0 (G —or) (“FE—or) =0 (Yt —or) (5t —ot)] |
JEORICD °
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Simplifying further, we have

+30" a +307pu* +ut+ou’ ¢ %“)—(/)(b%“)
(")~ () @ (P) o ()
voo|? ;‘W(c“)]%wg ¢ ;w(bx)]
o (%) -2 () @ (%) - ()
s | 107 (“:J‘)—¢(;“
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4My (0)M3 (0)

126%u> +4p* + 126 [

< | B

1262 +4p* + 24063 [
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_126* ¢(a<’u)¢<b6>] _ 12022 ¢ ‘Jl)q)(b"ﬁl)]

(%) - () @ (%) - ()
o JTeC ) e (P (P ] [ e () -0 (%)

AL o) e o) er
el e () [ ¢<6>¢G$)]

o (2]~ () o (2) -~ ()

Also
6(M}(0))2M3(0)
620?46 3 ¢(%)_¢(b%ﬂ) 2,2 (%)d)(;)_(b%l)(p(b%)
=60 U +6u"+120u d)(%)—(b(%) +60°U { q)(b%)_q)(%”)

@ (") o) )=o)
+664!¢<“o“>¢<%“)] +662H2{¢<$>¢(%) “{ () o (2 ]
°(5) -0 ) @ (t) o) o () o (=)
>¢’(”o“)] {¢("J‘)¢
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Correct like-terms we have
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Correcting like terms, we have
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{“o’” () o (3 (hx)l
o0 etal - lele) ol o) ()
4 ¢ (“55) (5F) —¢ b%” (b%>_ {‘P(cr”)(I’(bG“)T
+60
{ ®(25) - @ () | Lo (5E) - (2)
e (43— 1] -0 (%) _(17;)2—1} ¢(a6,1)¢(b6#>]
o) o) @ (*) -2 ()

Define S = o [[“G“]—3[“U“ ] ¢[b” Hb%ﬁ] _3[17%“]} and V,W,Z as before, we have
o( 75 )—e("3")

My (0) —4My (0) M5 (0) +6(M (0))°M (0) + 3(M (0))*

=30*v* - 66"V’ +60*Z+606*V?Z—46*VW + oS +30*
+2463uV3 4+3602u>v2 4+ 24013V + 6t

= 0" 3V —6V>+6Z+6VZ—4VW +5+3]

+ 2463/,LV3 + 3662u2V2 + 24cm3V + 6u4

Therefore, kurtosis is given as

_ My (0) — 4[My (0)M5 (0)] + 6[My (0)]*M (0) +3[My (0)]*
V(X)
o* [3V* —6V2+6Z+6V?Z —4VW +S+3] +2406°uV3 +3606°u*V? + 2403V + 6u*
o2 (1+Z—-V?)

K(X)
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3.2

Martingale Restriction

Option pricing models require an imposition of a restriction known as the martingale
restriction to ensure that there are no arbitrage opportunities in the market. As stated by
Black and Scholes, Cox and Ross and Merton, [BS73,ICR76,IMer73]], the implied market
price of the underlying asset must be equal to its current market value, otherwise, there
could exist an arbitrage opportunity in the market. The martingale restriction of the
structural model - which defines the dynamics of the underlying process at every moment
of the contract period, define t € [0,7], then, to avoid arbitrage opportunities in the
market, the following martingale restriction should hold.

EQ |:e—r(T—l)ST

%] =S;, wherere€[0,T]

Therefore, this condition should also hold for the case of non-structural models - which
defines the dynamics of the underlying asset at the beginning of the contract period and
at maturity denoted as 0 and ¢ as proposed by Longstaff [Lon95], i.e.

EQ [e”S,

c%} =S

The violation of this condition results in the existence of arbitrage opportunities as noted
by Harrisson et al. [HK79]]. The proof of this condition is presented in the next subsection.

3.2.1 Non-Structural Pricing Models - Black & Scholes Model

Under the assumption of Black & Scholes, the underlying stock price, S;, follows a Geo-
metric Brownian Motion (GBM) given by;

dSt = rS,dt + GStd‘/Vt

where r and o are the expected return and volatility respectively, and W; is a standard
Brownian Motion under the risk - neutral probability measure Q. The continuously
compounded risk - free rate r is also assumed to be constant. To find the distribution of
St, we apply the 1t6 Lemma. The solution of the GBM is determined as follows;

Let
f(S;,t) =log,Si,.= f/(t) =0, fl(t) = Sl, and f/(r) = _SL,Z' Therefore, applying the Itd

lemma, we have;
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df(S;,t) = fl(t)dt + fi(t)dS; + %fs”(t)(dSt)z

1 1 ’
—— | (dS
= 0dt + StdS, > ( S,2> (dS;)
1 1 1
EI (rSedt + 0S;dW;) + 5 ( S_,z) (rSedt + O'S;dW,)
1 1 1
E (I’Stdt + GStdW/t) + E ( ?> [(I”Stdl + GStdW/t) (I"Stdt + O'S;dW,)]
t t
1 1 1
= 5 (rSidi + 05,dW) + 5 (—§> [((rS,dt)? + rS,dt.cS,dW; + 6S,dW,.S,dt + (55,dW;)?) ]
t t
Using 1t6’s multiplication table, i.e
(dt)>*=0
dt(dW;) =0
(dW;)? = dt

Therefore;

1 1/ 1
df(Sit) = & (rSdt + oS, dW;) + 5 (—ﬁ) (628%)dt
t t

1
= rdt + 6dW, — Ecszdr
1
— (r— 502) dt + cdW,

1
= d(logeSt) = (r— 50-2> dl“i‘Gd"Vt

t ! 1 t
/ d (log, Sy) :/ (r——az) ds+6/ dW;
0 0 2 0

1
log, S; —log, So = (r— 562> t+o(W,— W)

S 1
log, (S_(t)) =(r— 562> t+o(W,—Wp)

e{(r ;GZ)H-GWt Wo)}
So

St — Soe{(r*%O—z)l“FG(VVz*Wo)}
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Therefore,
) ool
=¢ "EC {soe{(r—édz)tw(wf—wo)} ' %}
— ¢ "S)EQ [e{(r—écz)ﬁo(wt—wo)} ' %]

— ¢ "1SyEQ [eo_écz)teG(W’WO)

|

— efrtSOe(r—%Gz)t]EQ |:eO'(‘/V;W0)

%)

The MGF of the standard normal distribution, where X ~ N(0, 1) is given by;

Mx<l‘> =E [e’X]

1.2
:e?t

Therefore, using the concept of MGF where (W; — W) ~ N(0,7) under the probability
measure (Q, we have then that;

My, —wy)(0) =E¥ [eG(W’_WO)]

Therefore;

EQ [e—”st

%1 _ e r1§pelr 10 gD {ec(w,_w(,)

|

. _1g2) L2
—e rzSOe(r 3071 507

_ e—rtsoe(r—%62+%0'2)t

— e—rtSOel‘l
= EQ [e_”S, ‘gf():| =30 ()

3.2.2 Structural Pricing Models - Truncated Normal Distribution (TND) Model

The underlying log-price is now assumed to follow truncated normal distribution under
the martingale measure Q which is defined as;

S
X =tog, (3 ) = s oviap)
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where Sy is the current underlying asset price. Define
S,
Y, = (_’>
So

log, (¥;) = X;

Then
=Y, =X

The probability density function of the log-returns of the underlying process is determine
as follows;

Fy(y) = Pr[Y <]
= Pr [eX < y}

1 dx 1
= fx [log,(y)) 3 where x =1log,(y),= — = —

dy 'y
fr(v) = f((log,(y): ut,0v'1,a,b)

When x = a,y = ¢* and when x = b,y = ¢’

Hence, the p.d.f of the of the returns of the underlying asset is given by;

0 <loge(y)fm>
1 oVt , <y<
fr(v) = oVro(i)-a(=) 3)
0, otherwise

where @ (x) and ®(x) are as defined before.

Since the truncated normal distribution is among the non-structural models, then the
martingale restriction condition is necessary when determining the expectation of the
underlying process. Hence, applying the martingale restriction from equation (2) and
expectation to equation (3), we have;
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Let:
loge(y)_l-” du 1
A = —=——,=dy=0Vtyd
oVt dy oy y \/_y u
log,(y) = ut + cV/tu =y= plurtoViu)
When
Y= e u log,(¢*) —pur  _a—p
7 oVt oVt

Similarly, when

Hence;
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o/t - — —
_ 1 ez WOV gy where M = @ <b ;;t) -@ (a Gw)
_ o

Considering the exponent and completing the square, we have;

1 1
——= u2—26\/fu = —— u2—26\/fu—|—(72t—62t
2 2

Thus;
p+io?)r bom
E {Yz JO} ) 5 e 2oV gy
M a—Ut
ot
(u+z0) b— ut —ut
¢ d “—G\/E—CIDa“—Gt
M o/t Vit
b—ut )_ —ut )
R il il o
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3.3

Therefore, incorporating this condition, we have;

Therefore, the expected value of the option given the current information is given as;

o 0) 2o
JEARIED

4)

Thus, if the values of a,b,t, 6 and r are provided, then the value of it can be determined
using the root finding process such as uniroot or uniroot.all in R - software which is an
open source. However, any other iteration method such as the Newton Raphson Method
can be used in finding the root. In this paper, we adopt the uniroot code in R software.

Closed Formulas for Pricing Options
3.3.1 Call Option

The value of a European Call Option (V,) is determine as;

Ve = max (5, K.0)| 7

Consider two functions f and g and let a be any constant. The using the properties of
expectation, we have that;

X X X X
el la) e fa))] el 2] o]
a a a a
According to the Fayman-Kac stochastic representation as noted by Bjork [Bjo09], which
is the solution of the Black & Scholes equation, consider the SDE

dS; = rS,dt + 6S,dW2

where 7 is option’s time to maturity.
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Then applying the above property of expectation, the value of a European Call option is
given as;

V,=e "EQ {max (S: —K,0) ‘5201

K
= Spe "EQ {max <§—; — S—O,O) 'ﬁo}

In determining the closed form of the European call option, three situation are considered,
i.e when SEO <eé4, é(—o > e? and when ¢? < S% < e” with respect to the underlying price and
the strike price.

Casel, SKO < et

The returns of the underlying asset is assumed to be higher than ¢ but lower than ¢’, i.e

et < &< eb.
0

Therefore, since g—(’) > e% and SKO < e%, then g—(’) — % > 0, hence the option has value. Thus,
the option price is determined as follows;

K
V, = Soe_”IEQ {max (y — S—,O) ‘ﬂo]
0

b

e
_ K
= Spe rt/ max (y—S—O,()) fr(y)dy
ea

b

e
_ K b—ut a— ut
= Spe ”/ ( ——>fy(y)dy, LetM:dD( )—QD( ),then
a So o't o

b

CSee [T/ K\ 1 (log,(y)—
~ M / (- 5) ave? (B )

b b

CSee [T 1 flog () —pr)  Ke " [T 1 (log,(y) —ut
Rz / wt (et ) o5 / it ()@
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Let

Consider A, i.e

Define

e " ’ 1 loge (y) il
M /e G\/fy¢( o\t )dy

.= log () — @Zi(loge(y)—w> _ 1
ovi ' dy dy N oty
y:eb,z: IOge(eb)—W _ b_.ut
o\t o\t
log,(e*) —ut a—ut
y_e 7Z G\/; G\/;
Therefore,
b—ut
Ke ™ [ oV 1
Ay = — oVtyd
2 i [W G\/;y¢(z) Vitydz
oVt
b—ut
Ke—rl o/t
o
S (o) 2 ()]
M o/t o\t
b—pt) g (o
o) e()
b—ut a—ut
(%) -2 (54)

,=dy = o\/tydz
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Similarly, considering Ajy,i.e.

And defining

ovi ' dy dy
1 by — —
y:eb’V: Oge(e ) ut _ b ut
o\t o/t
log,(e*) —ut a—ut
log,(y) = pt + 0/tv, = y = eWioviv)

o logey)—pur _dv_ d <loge(y)—w> _ 1
B G oy

Then

M a—pur /2T

Completing the square in the exponent, we have;

1 1
=50 =20Vv) = =2 (v =20 Viv+ 0% — 0™1)

1 1
= —E(V— G\/E)Z—FEGzl

,=dy = o\/tydv
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Cru-lo?y [ot
A= N I 3=V g,
M a2
S (=307 _ _
_ D0¢ ’ @(b “t—o\/i)—qn(a “t)—o 7
M o/t o/t

Combining the martingale restriction from (4), we have

e—(r—u—%dz)t _
e(r_”_%cz)t
b—ut a—ut
_ o(5h) -2 (5%)
o b—put a—ut
@ (5h —ovi) e —ovi)
Hence;
b—pr a—pt b—pr _ a—pr
o elEh) o) [e(S-ovi)-e (T -ovi)
1 =00
b—ut . a—put b—ut\ a—ut
(G —ovi) e (Gl —ovi) o (55) -2 (55)
:>A1 = S()
Therefore
Vc :Al _AZ
=8y)—Ke "
Case II, SK > eP
0
Given that;
S
—t<eb, and — > ¢’
So 0
Then
S; K
——— <0
So  So
S, K
=V, = Spe "EC {max(—t ——,0) ‘fo}
So  So
=0

hence, the option is worthless, i.e has no value.



CaseIIl, ¢% < S—Iz <eb

The value of the European Call Option is given as

K
V, = Spe "EQ {max (y — S—,O) ‘ﬂo]
0

b

e
_ K
= Spe ”/K max (y—S—,0> fr(y)dy
Aq 0
eb
_ K b—ut a— ut
_ Spe " ~ = dy, LetM =2 ~®
o€ [S,;( S())fY()’)Y e (G\/;) ( p. )

b
Soe™" K\ 1 log, () — W)
= — — d
M [S’g (y S()> G\/l:yd) ( o/t Y

e e
SOeiﬂ 1 loge (y) _ :LU) Ke " 1 (loge (y) _ ‘Lll)
= dy— d
M /eéf) G\/l_‘¢ ( o\t Y M e% G\/qu) o\t Y

Define
eb
Soe™ " 1 log,(y) —,ut)
B = e d
b
. K “ ¢(loge(y)—w)d
T M e% oty o\t Y
Consider
b
ke [© 1 log,(y) — ut
By = G d
T M [53 G\/fyq)( oVt )y
And define
log,(y) —ut __dv _ d (log,(y)— put 1
— 7: - = — 7: d =0 t d
’ o1 dy dy o1 oviy Viydy
)by lore) it byt
’ o/t o\t

K K
& log, e — ut log, (S_()) —Hr
= e ,V: =
Y O'\/Z_‘ G\/Z
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Hence

b—ut

Ke 't [ oV
BZ = M og,( SO —ut G\/_ (V)G\/Zydv

oVt

b—ut

Ke " oI
- 7 ﬁge(g{))w (p(v)dv

oVt
b— log, (&) —
(o) (o)
@(b#l>_cp(10ge(jj[) uz)
o(%h) -2 (%)

Ke 't
M

= By =Ke "

Similarly,

SOefrt /eh 1 (log (y) — I’Lt)
By = . )
1 M e% G\/Z¢ G\/Z y

Letting

_ log,(y) —pr éﬂ_i(loge(y)_‘ut)_ |

) — ,:}d = ovVtvd
y:eb 7= loge(eb)_“t _ b—ut
3 G\/Z 6\/2
= K
= eSI; 7= lOgeeSO — ut . loge (S_()) — ut
yoeho = B 0

log,(y) = ut + oViz,=y= p(HI+0Viz)
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Therefore

b—ut
Soefrt oW/t
M ﬁe<§>“’¢(z)ydz
b
_ S [ L F o
M °g€(50>7‘” V2w
bt
o\t
Soe” () . L 1@220vi)
M oge<%> NG
NG

Complete the square to the exponent;

1
_E(Z —20V/1z7) = (z —20v/1z+ 0%t — 6°t)
1 2, 1 5
=—=(z— 0OVt —O0°t
2(z V) +5
Thus
12 b
—(r-u—te?  [Tovi
Bleoe e K L e 2(=0VIP 4,
M 0ge<%)*ﬂt 2T

oVt
bt log, (§;) —
o (G o) - (a—ﬁ“’”)]

Combining the martingale restriction from (4), we have

o Slof]-ofs]) [ofa-o]-e[=ar o]
o5 -ov]-ol o] | ofH]-o[]

Therefore
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V.=B1—B»
& [b—_\%t _ G\/l_‘] P |:loge(slf))tlif . l:| P [b—_\%t] @ |:loge(SIE)/)tp,t}
c c ° p
Vc == SO it B - p—— _Ke—rl — - "
@[ —ovi|—o |5 —ovi] ddidlcd

3.3.2 Put Option

Considering the case when e < SK < e, the value of a European Put Option is given by;
0

V,=e¢ "EY [max(K— St,0) ’ﬁo]

K S
= Spe "EQ [max (S_o — S—;70> ‘90}

K
= Spe "EQ [max (S_ -y, 0) ‘?o}
0

Hence;

50
K
Vp:Soe‘”/ max (S——y,O) fr(v)dy
e 0
e”0 K b
- — ut a— ut
— Spe " L dy, LetM=a( 2 o
Soe / (5 -2) ponn Lem—o (5 0 (22H)
e>0
Soe™"" K 1 log,(y) — ,ut>
— —— < d
ML (So y)c\/;y(])( oVt '

Ke " [C 1 log, () — ;u) Soe™ "t /e” 1 (log (y) — ut>
— 4 dy — . d
M l c;\/iyq) < o't YTTM L% G\/Z(P oVt Y

Let
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Let us consider

K

N

e~0
Ke " 1 log,(y) —,ut)
n="¢" ¢ d
! M l G\/;y(l) ( o/t Y

Define
ovi T dy oW/t oty
log,e* —ut a—ut
:ea, = 4 =
Y . o/t o/t
K
B e% . logee(so) —ur loge(S—If)) —ht
y= (At G\/; - G\/l_‘
Thus

Considering
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Define
o log(y) —pr o dv (loge(y)—w> _ 1
ovi ' dy oVt oty

log,(e”) —ut a—ut

y=e,v G\/lt G\/E

K K
b, loget —pr 1o% (8)
Y= » v T G\/l_‘ - G\/Z

log,(y) = ft + 6\, = y = eHHoVI)

Then

S()e_rt ovi 1
L = ——0(v)oVitydv
2= - \/¢( oty
O/t
loge<%>fw
S()e rt o\t
frd Z dv
. ¢(2)y

Completing the square to the exponent;

1 1
—E(V2 —20v/1v) = —E(v2 —20V1v+ 6% —6?t)

1 1
= —E(V— G\/;)Z—FEGZI

,=dy=o+/tydv
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Thus

—(r—p—1te? —Y—
L= SpelrH 2N v —1 e~ 3—ovi? g,
M a—ut V2w

K
soe-tr-n-3oin [ (log, (§) —pu (a il )
= | —22  _ovi|-a — o/
M o/t oVt o\t oVt

Combining the martingale restriction from (4), we have

P R e

L =350 b—ut o ao—\/ft_ b—ut
@ (5 —ovi)—e(1F ~ovi) o () - ()
o (o) -o(s2-ov)
=1L =23

@ (i —ovt) —o (W —ovi)

The value of the European Put is thus given by

Vo=9L—-h
o(=EH) o le)| Jo(EH o) (o ow)

_ —rt

T e e || e (B o) e (5 -ovi)

3.4 Parity Relations
3.4.1 Put - Call Parity
The Put-Call Parity relation for the B -S model is defined as

Ct S0+P[ Ke_”
:>Cl— l:SO—Ke "



This relation should also hold for the proposed truncated normal distribution model.

Hence, from equations (5) and @, we have that;

48

oVt
b—ut —ut _SO b—ut —ut
o (%) - (eh (% —ovi) e (G —ovi)
Thus
q) b_‘u[ \/— @ loge(%)_:ut \/— q) lOge(%)_.u ¢ a_”[
ovi  © ’]— ovi oI 1= [c\/i“’ t}
Y Y (ST B peTR; B (=R, [P CETRY
o/t o/t o/t NG
K K
b—ut\ log, ( 5~ | —ut log (S— —ut _ (fl*w>
q)(ﬁxﬁ) cb( G?ﬁ @ Gfﬁ @ Y
rt
ke P (M) (M * P (LHr) _p (aH
o/t oVt o/t Vi
K K
b—pt ge(s—>—ut log (5 )—W a—ut
[G -—0 t] d c?ﬁ —ot|+® LU — oW/t —CD[GW—G t]
= So

=80— Ke "

Ve—V,=Sy—Ke ™" ™)

Therefore, the put-call parity holds for the truncated normal distribution as it does with
the B-S model.
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3.4.2 Put - Call Duality

The Classical Black & Scholes Model (B-S)
Theorem 3.4.1. The put - call duality holds for the Black & Scholes model

Proof: The European Call under the B-S model assumption is given by;
C(t,8;) = 8;®(d)) — Ke "®(d>) where,
log, <%> + <r~|— %2>t
dy = and,
(oRVAS
d=d|— ot
Define §; = —S,,K = —K and & = —0, the put - call duality for the B-S model is given by;
~ ~2 o ~2
5 log (S—J) + <r+ %) t } log (S—~’> + (r—l— %)t
c(t,8) =8 | — KL Re @ | — KL NG
6\t 2V
Define
_ log, (%) + (r—i— %2> t .
= and,
1 oVt
log, (;’) + (r—l— %z)t 5 i
= —O0
2 W/
=d\—6Vi
Then, the call value is given by
C(l,gl) = S[q)(J]) —|—I€e_rt¢'(d~2)
Since S; = —S;,K = —K and & = —o0, replacing them in the equation we have
log, <;§<’> + <r~|— —(_g)2>t
— "

dy =
log, (%) + (r-l— %2>t
- _ o = —d,

JQ = —d1 — (—G)\/;

=—d; + G\/;
— (&~ oVi) = —ds
= C(l‘, —St) = —Stq)(—dl) —|—Ke_rtq>(—d2)
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Therefore, the put - call duality under the B - S model is given as;

Clt,—S,) = Ke " ®(—dy) — S, (—dy)

= Ke "1~ ®(dy)] — 5 [1 — B(dy)
= $;®P(d1) — Ke "®(dp) + [Ke " — ]
= P(t,S;)

Hence, the duality relation holds for the classical Black & Scholes model.

Truncated Normal Distribution

The European Call Option price under the truncated normal distribution is given by;

K

q)<b ut G\/> (logei:?[ _G\[)

Ym0 (Ll —ovi) - ( Vi)

@ (%) - @(“Jf)

Using the same approach as was with the B - S model above and by substituting So,K,b,a
and o by —So, —K,—b,—a and —o0 respectively, the put - call duality under the TND
model is given by;



ol -com]-o 2R -cami]]  fof2as)-o[E
Ve=-5 —(=K)e™
e con) e com) || e e (=)
ofstro] o[22 o] To(p)-o(=00)
= -5 Keit
el e[ o] || e(E) e ()
o[- o)) o (- [ o]
e (T o) e (T o)
o[ (-
+Ke "
o(-[%#]) e (- [=])
Considering that ®(—x) = 1 — ®(x) and;
_/°°¢
—/ o (v)dv— / (v)dv
=1-—®(u since
/:o(p(v)dv:l
[ owav=aw)
/uoo¢)(v)dv:/:¢(v)dv:cb(—u) and
¢(v) =9(—v)
Then
b . } 1+q)[ 2 (s, —G } |- @ _cz:/?z}_l_}_q) loge(;lz)[),m]
V. =-S5 +Ke " - e m—
e ]w[ ] e[ e[
=5 < "SL W_G\[> o _6\[) tKe " ¢<loge(‘§/)’m>_¢(_§_¢?t>
(e sapoi) | o) ()
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3.5

Assuming that —a = b, implying that —b = a, we have then that;

<— B —Gw) @ (i —ovi) q’(— S

(=)
|
S
N——
|
o
= 7~ N
N}
Q0
RE
N—

o (o) o (5 o)

Thus, the duality relation for the truncated normal distribution is;

(1og <5£> —G\/_> (a it G\/_)
b—ut a—ut

o (54) -2 (%) (Gl —ovi) - (Gl ~ovi)

Therefore, the put-call duality relation hold for the truncated normal distribution as it
does with the B-S model with the assumption that —a =b and —b = a.

Truncated Normal Distribution Model Greeks

Greeks can be defined as the statistical measures that presents the sensitivity of the
option price to either a change in value of a state variable or parameter. They are used
to showcase the various dimensions of the risk of an option. In this subsection, we will
derive three Greeks with respect to our model (TND). They include:

« Delta, A

« Gamma, I’

« Rho,p

The Sensitivity of the option’s strike price K with respect to the underlying asset prices is

also determined.
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3.5.1 Delta, A

Delta, A is the sensitivity of the option price to changes in the stock price of the underlying
asset. It is determined as 3—;/;, Hence, given that

o CD[ . } {loge(s’éf ut_G\[} - @[?\%‘] _q){logio)t m}
e e e
Letu= (% — G\/_> =>u= (—bgeg%_m — G\/f) Considering that %Cb(u) =

¢ (u), we have

WD (E)= k(o oy
Sy 9So\So)  SF 9V oV o/t Vot
0 0 Ju AV

850 8u 8V 850

1 K
~00o7 (-5)
:_¢<loge(&)) p oﬁ)if

o/t Ko/ 55
1 loge Ky— t
_ 0 (So) u Py
Soo\/t o/t
Thus,the Delta is determine as
b__’ut N N lOge(%)*ﬂl _ loge(% _
V. q)[cﬁ G\/ﬂ q’{ o OV So O| =i ©
aSy b—put a—ut b—ut a—ut
0 CID[O_\’};—G t}—d)[c—“t—a t] Soo /1t (I)[O_—\%—G t] CID[G\%—G t]

0 {loge(s’f))—ut}
Ke™ v
EdcEEE
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Therefore, the Delta of under the Truncated normal distribution is;

N @[5h - ovi] - {logecf&m—cd L ¢[l°g“<°f—a }
9S8y cp{b(;\%t_c t}_q){ad;utz_c t} o\t q)[bo;\%z p [} q)[a ut_o ]
e |0
Soovi | o[t o 2]

3.5.2 Gamma,TI

The Gamma is a measure of sensitivity of the delta to the changes of the underlying stock

price. Considering that %([)(u) = —u¢(u), the Gamma, I, is given as '?;T‘g, i.e;
log, ()~ i log, () —pt log.(£)
NERIC et BRI (C SRSy
F:
S t b—ut a—pt S t t b—ut a—pt
o o] s o]| S0 | ol o o[
log, (55 )—ut [ [ log,(55)—mut loge () —ht
Ke ™" ¢ Coovi Ke™" oVt 0 oVt
+ —
26/t b—ut a—ut S2 )2 b—ut a—ut
ooVt cp[cﬁ}—cb[m] 5(oV1) @[M]—@[M}
lOge(%)fﬁu IOgE(SO) 2 \[ lOge(%)fﬁu \/
. | 0 Vi~ T OVI | ovi T OV! () S oVt
- S b—ut ut b—ut ut
\leavi3 db[ﬁ—c t}—cp[“ —c } G\ﬁ d)[ G\f} [“\/E—G t}
IOge(%)fu't lOg((%)f[.Lt IOge(%)fu't
ke | | Tow | o )?| T ovr
264/t b—ut fa—pt] t b—ut a—put
O = R b= IR b= B =
log, () —pt [ log, () —pt
B ¢ |: aot _G\/l::| 1 . 1 <0’(\)ﬁ —G\/i>
o S t b—ut a—ut t b—ut a—ut
001 @{ﬁ—c t}—@{cﬁ—c\/i} c d){o—ﬁfo t]fCID[Gﬁfc t]
lOge(Sﬁ)fnu“t —r IOge(SL)flJ’t
el L (s
+ —
S204/1 b—ut a—ut ¢ b—ur a—ut
vVt o] - |vh] oVie|th]-e[vx]
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Thus, the Gamma is given by

d){loge(j)/);m—ﬁx/f] oVt (loge S’E)/ s t)
T [ovilel o e o)

o[ pon [ g (2w ]

TS el ol

1)

3.53 Rho,p

The Rho which is the sensitivity of the option price with respect to risk-free interest rate
is given as

Ve L ., oVt NG
A e
o] o[
=1Ke™" b—put a—ut
daided

With Respect K

Consider the sensitivity of the option price with respect to the strike price K. Con-
e e t

sider @ { * (Gsi’/) . G\/_] and let v = (Og(s—"” — G\/—) S—[g implying that v =

<loge G\/—> then

L) — g 4V (108:0) it _ du(KY_1
a2 =90 du( oVi G\[) G\/_u dK (S())_SO
d d dv du
dK  dvdudK
_ (log,(5;) — So 1
_(P( o\t _G\/;> oK So

| log, () — ut
- G\/ZK(P < o\t B Gﬁ)
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[ () | (o) o[
ok 0 <I>(b ut_G\[) (a ut_G\f> (I)([;\%)_cb(aaf)
\I[K‘P (10&( \[) z)
6
+ Ke™" (b ,ut> ( >
g\lﬁKq) <10g€<;f/),_w —Gﬁ) o (b(;\%t) @ (1oge(;0)t ut
- -t
BN R0l N IR e
1 log, (55)—
—rt G\/K < oVi )
+ Ke (b #t) (
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4.1

Chapter 4: Data Description and Analysis

Data Description

The data used in the analysis is for three different companies, i.e. Russell 2000 index,
Facebook and Apple Corporations with maturity periods of (+ <30 days and ¢ > 30 days for
each company. The historical data for the underlying assets consists of 2,516 observations
retrieved on February 14, 2020 from yahoo finance (Russell 2000 Historical Data) for the
Russell 2000 index. The data is for the past 10-year period ranging from February 16,
2010 to February 12, 2020. The adjusted closing prices were used as the prices of the
underlying asset in obtaining the stock’s log-returns. The options data for Russell 2000
Index Option (RUT) with 30 days and 83 days to expiry was obtained from Market-Watch
(Russell 2000 Options Data) on the same date as the historical data for the underlying
asset (i.e. on February 14, 2020). The days to expiry for options were determined using
Options Expiration Calender. The expiry dates for the options is March 31, 2020 and June
19, 2020 and consists of 158 and 41 option prices respectively. The risk free interest rate
used in the analysis is the one-month and three-month Treasury Bill Rate obtained from
the U.S. Dept. of the Treasury (Daily Treasury Yield Curve Rates) on February 14, 2020
respectively. The 1-month and 3-month T-Bills rates are 1.60% and 1.53% - which are used
as the risk-free rate in the analysis for the 30-days and 83-days to maturity respectively
because it coincides with the expiry date for the options as proposed by Shu [SZ04].

The historical data for Facebook Inc. consists of 1,948 observations for obtained from
yahoo finance for 7-year period (May 18, 2012 to February 14,2020). Option data for
data for 14 days and 64 days to maturity were obtained from Market-Watch with 36 and
41 observations respectively. The two-month risk-free rate for the 63-day to maturity
contract is 1.60%. Apple historical data and option price data were similarly obtained
from the yahoo finance and Market-Watch respectively. The 10-year historical data (from
October 19, 2009 to October 17, 2020). The option data for Apple Corporation consists
of 30-days and 95-days to maturity with 42 observations for all of them. The data was
obtained on October 17, 2019 from yahoo finance for historical data and Market-Watch for
options data. The risk-free rate is 1.74% and 1.66% for the 30-days and 95-days to maturity
options respectively. In both cases,the adjusted closing prices were used while the market
call and put were obtained by average the bid and ask prices accordingly. Options data
for Russell 2000 Index and Facebook Corporation were retrieved during the COVID-19

Pandemic while that for Apple Inclusion were retrieved before the COVID-19 pandemic.
Therefore, it worth interesting to study how the models work for the two scenarios (i.e.

before the pandemic and during the pandemic).


https://finance.yahoo.com/quote/%5ERUT/history?period1=1266278400&period2=1581465600&interval=1d&filter=history&frequency=1d
https://www.marketwatch.com/investing/index/rut/options
http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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4.2

Data Analysis

4.2.1

Estimation of Parameters

The parameters that require to be estimated before the pricing is done are a,b and

. The upper and lower bounds are determined by the investor’s perceived realistic

price range of the underlying asset. The value of U is estimated using the root-finding

method (particularly uniroot function) in R-program once the value of a and b have been

determined. The volatility (o) used in the model is the same as that used in Black &
Scholes model which is derived from the historical data. The risk-free rate (r) is the

3-month T-Bill rate while ¢ is the option’s number of days to maturity. Assuming that the
investor estimates the price range of the underlying asset as 10%, 14%, 15% and 20% for
the 83-days options and 8%, 10%, 14% and 15% for the 30-day options for Russell 2000
index, then the estimated parameters are as given in Table[1]below.

Table 1. Estimated Parameters: Russell 2000 Index Options

Range a b t R Lower | Upper c u
10% | -0.1053605 | 0.09531018 | 83 | 0.0001903614 | 1520.442 | 1858.318 | 0.01020331 | 0.0006647598
14% | -0.1508229 | 0.1310283 | 83| 0.0001903614 | 1452.867 | 1925.893 | 0.01020331 | 0.0003933144
15% | -0.1625189 | 0.1397619 | 83| 0.0001903614 | 1435.973 | 1942.787 | 0.01020331 | 0.0003547773
20% | -0.2231436 | 0.1823216 |83 |0.0001903614 | 1351.504 | 2027.256 | 0.01020331 | 0.0002341286
8% |-0.08338161 | 0.07696104 | 30 | 0.0005333333 | 1554.23 | 1824.53 | 0.01020331 | 0.001122183
10% | -0.1053605 | 0.09531018 | 30 | 0.0005333333 | 1520.442 | 1858.318 | 0.01020331 | 0.0008201757
14% | -0.1508229 | 0.1310283 | 30| 0.0005333333 | 1452.867 | 1925.893 | 0.01020331 | 0.0005750999
15% | -0.1625189 | 0.1397619 | 30| 0.0005333333 | 1435.973 | 1942.787 | 0.01020331 | 0.0005474799
The parameters for Facebook Corporation and Apple Corporation Options are as presented
in Table 2 and 3 below.
Table 2. Estimated Parameters: Facebook Corporation Options
Range a b t R Lower | Upper c U
10% | -0.1053605 | 0.09531018 | 14 | 0.001142857 | 192.762 | 235.598 | 0.02249525 | 0.003341362
15% | -0.1625189 | 0.1397619 |14 | 0.001142857 | 182.053 | 246.307 | 0.02249525 | 0.001815905
20% |-0.2231436 | 0.1823216 |14 | 0.001142857 | 171.344 | 257.016 | 0.02249525 | 0.001247113
15% |-0.1625189 | 0.1397619 |63 | 0.0002539683 | 182.053 | 246.307 | 0.02249525 | 0.001612246
20% |-0.2231436 | 0.1823216 | 63| 0.0002539683 | 171.344 | 257.016 | 0.02249525 | 0.001058277
25% |-0.2876821 | 0.2231436 | 63 | 0.0002539683 | 160.635 | 267.725 | 0.02249525 | 0.0007538312
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Table 3. Estimated Parameters: Apple Corporation Options

Range a b t R Lower | Upper o U
10% |-0.1053605 | 0.09531018 | 30 | 0.0005866667 | 211.752 | 258.808 | 0.01636316 | 0.001887374
15% |-0.1625189 | 0.1397619 |30 | 0.0005866667 | 199.988 | 270.572 | 0.01636316 | 0.00101256
20% |-0.2231436 | 0.1823216 |30 | 0.0005866667 | 188.224 | 282.336 | 0.01636316 | 0.0006829072
30% |-0.3566749 | 0.2623643 | 95|0.0001747368 | 164.696 | 305.864 | 0.01636316 | 0.0002851128
35% |-0.4307829 | 0.3001046 |95 |0.0001747368 | 152.932 | 317.628 | 0.01636316 | 0.0002018363
40% |-0.5108256 | 0.3364722 | 95|0.0001747368 | 141.168 | 329.392 | 0.01636316 | 0.0001425555

4.2.2 Pricing and Model Comparison

After estimating the parameters that are relevant to the model, the next step is price

the put and call options and comparing them to the classical Black & Scholes model to

check the performance of the model. The three price deviation scenarios are evaluated

separately to access the impact of the different deviations on the model. First, we compute

and compare the prices and later estimate the Mean Squared Errors (MSE's) of each model

and compare them. When the price range is estimated to be 10% the option price payoffs

are as given in Figure[l| below. Clearly, it is evident that the model underestimate the

market prices call a little lower whereas the B-S model overestimates the market prices

far much higher. On the other hand, the put for the model is far much lower while the

put for B-S model is slightly lower than the market observed put values for options with

83-days to maturity.

Payoffs

Model Comparison: Price Range = 10%
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Figure 1. Russell 2000: a = -0.1053605, b = 0.09531018, t = 83 days
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Similarly, Figure 2 presents the option prices when the investor’s perceived price range is
15%.

Model Comparison: Price Range = 15%

e o i i
@ i ! — BSM Call
= \\. ! --- Market Call
D & K=S0-1689.38 — TND Call
- s ! --- BSM Put
] Y ! Market Put
g 1 h\“&. ! ’ THD Put
£ 8 : “
g % — \\\ : HI,
S o \. : /‘_/
- 1 | |
S - \‘Eo i il
- .‘ 1 -.»
R sF"
[ D ,j-::‘\"".
“ RIT R Treg ey
S SE ==
__"___,-. : “:-ta.. . —
o FFR-c--m==--R== i - ‘:—_T‘_._—_:.z
| T T T T T 1
1400 1500 1600 1700 1800 1900 2000
Strike Price

Figure 2. Russell 2000: a = -0.1625189, b = 0.1397619, t = 83 days

As Figure [2 above depicts, the call payoff for the model lies between the B-S model and
the observed market values but very close to the observed market call values. The put
payoff for the model moves nearer to the B-S put payoff at the extreme ends all of which
lies below the observed market put values but lies closer to the model at the point where
So = K = $1689.38 where the B-S model payoff is above the market observed value.

Also, from Figure [3| below, the model call payoffs lies between the B-S model payoffs
and the observed market values but this time closer to the B-S model payoffs than the
observed market values. At the point where Sy = K = $1689.38, the model tends to the
observed market call values than at the lower strike values.
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Model Comparison: Price Range = 20%
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Figure 3. Russell 2000: a = -0.2231436, b = 0.1823216, t = 83 days

Options that have time to maturity of 30 days for Russell 2000 contracts behave in the
same manner as those for with different price range than those used for the 83-days to
expiry. Using 8% price as the minimum price movement, the TND model offers a better
estimate than the B-S model as shown in Figure [4 below.

Model Comparison: Price Range = 8%
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Figure 4. Russell 2000: a = -0.08338161, b = 0.07696104, t = 30 days



Increasing the range to 10%, the TND models slightly deviates upwards from market
calls. However, the put prices improves as the models converges to the B-S which also
underestimates the put as shown in Figure[5

Model Comparison: Price Range =10%
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Figure 5. Russell 2000: a = -0.1053605, b = 0.09531018, t = 30 days

When the price range the 30-days to maturity option is set to be 15%, the truncated
model estimates shifts towards the Black - Scholes estimates as shown in Figure[6] This
phenomenon is similar to the observations for the options with maturity time of 83 days.
Therefore, enlarging the price range of the option prices from the current prices results to
the TND model mapping the B-S model and decreasing the price range, the truncated
model estimates tends towards the observed call values and may lead to underestimations
for both the calls and puts.
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Figure 6. Russell 2000: a = -0.1625189, b = 0.1397619, t = 30 days

The following figure, Figure 7] [8|and [9] shows the price movement for the Facebook option
prices with maturity period of 63 days under the three price range scenarios, i.e 15%, 20%
and 25%. A price range below 10% undervalues the market, hence the need to use 15% as
the minimum price range. At the price range of 15%, the TND model is better than B-S
model. As the range rises to 25%, the model converges to the B-S model.
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Fayoffs
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Figure 7. Facebook: a = -0.1625189, b = 0.1397619, t = 63 days

Model Comparison: Price Range = 20%
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Figure 8. Facebook:a = -0.2231436, b = 0.1823216, t = 63 days
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Model Comparison: Price Range = 25%
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Figure 9. Facebook: a = -0.2876821, b = 0.2231436, t = 63 days

Using the option data that have a maturity period of 14 days, the price of 20% and above
is the similar to the B-S model as shown by Figure[12] However, the TND model performs
better than the B-S at 15% and 10% below which it underestimates the market as presented

in Figures[11]and[10| respectively.

Model Comparison: Price Range = 10%
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Figure 10. Facebook: a = -0.1053605, b = 0.09531018, t = 14 days
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Figure 11. Facebook:a =-0.1625189, b = .1397619, t = 14 days
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Figure 12. Facebook: a = -0.2231436, b = 0.1823216, t = 14 days

Similarly, the estimated prices for Apple Corporation option data depicts the same trend
as it was for Russell 2000 index and Facebook Company. The estimated prices for options



with a maturity period of 30 days when the price range is assumed to be 10%, 15% and
20% are shown in Figures[13][14] and[15] respectively.
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Figure 13. Apple Inc.: a =-0.1053605, b = 0.09531018, t = 30 days
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Figure 14. Apple Inc.:a = -0.1625189, b = .1397619, t = 30 days
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Model Comparison: Price Range = 20%
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Figure 15. Apple Inc.: a =-0.2231436, b = 0.1823216, t = 30 days

From the above figures, it is evident the the TND model estimates the market call prices
better than the B-S models at 10% and 15% but at 20% price range, the models appears to
be similar which is the same scenarios for the other companies.

Let us now consider options with a maturity period of 95 days with 30%, 35% and 40%
price ranges. The behavior of the estimated option prices is as shown in Figures[16] [17]

and[18|respectively.
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Figure 16. Apple Inc.: a =-0.3566749, b = 0.2623643, t = 95 days
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Model Comparison: Price Range = 35%
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Figure 17. Apple Inc.: a = -0.4307829, b = 0.3001046, t = 95 days
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Figure 18. Apple Inc.: a =-0.5108256, b = 0.3364722, t = 95 days

The TND model show same trend in all the three companies involved in this study. It is
worth noting that as the value of a and b tends to negative and positive infinity respectively,
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4.3

the TND model converges towards the B-S model. Also, when the time to maturity is 30
days and below, small values of a and b offers a best estimates than the B-S for calls while
when the time to maturity of the options is more than 30 days, small values of a and b
tends to underestimate the market call values. Market puts are underestimated both by
the TND and B-S models for Russell 2000 index and Apple Corporation while TND model
does better for Facebook options than B-S model.

Comparison on the model Greeks

The price sensitivity measures (Greeks) that are discussed in this paper are the call Delta,

Gamma and Rho. These Greeks are compared to the those calculated using the B-S model.

4.3.1 Call Delta

The Call Delta is a sensitivity measure of the option price with respect to the changes of
the stock (underlying asset) price, So [Cha94]. When the price range is considered to be
10%, the Call Delta for the B-S model is 0.5560 while for the TND is 0.6111 at the current
underlying asset price $1,700 (used as the close proximity to the current underlying asset
price $1,689.38). This comparison is shown in Figure [19 below
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Figure 19. Russell 2000: Range = 10%, a = -0.1053605,b = 0.09531018
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With a price range of 15%, the TND Call Delta becomes 0.5893 while that of the B-S
remains the same (i.e. 0.5560). Figure[20]shows the graph of the Call Delta for both models
against the strike price.
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Figure 20. Russell 2000: Range = 15%, a = -0.1625189,b = 0.1397619

When the price range is 20% and the underlying asset price is $1,700, the option delta
is 0.5560 under the B-S model while it is 0.5786 under the TND model. Figure[21] below
shows the comparison of the Call Deltas for both models and there relation to the option’s
strike price. It is evident that the Call Delta for the TND model converges to the B-S model
as the range of the underlying asset’s increases. The upper limit depicts a significant
deviation from the B-S model which diminishes as the price range changes from 10% to
20%.
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With the maturity period of 30 days, the call delta for Russell 2000 options are as shown

Delta

1.0

08

06

04

0.2

0.0

Call Delta, SO0 = 1689.38,t =83

— Truncated Call Delta

1000

‘o i --- B-5 Call Delta
\'\ i
\' i
K330
A
e
A
: L ]
! %
! .\
1 s
R
! ® s 20 00000
I T | 1
1500 2000 2500
Strike Price

Figure 21. Russell 2000: Range = 20%, a = -0.2231436,b = 0.1823216

in Figures 22} [23]and [24] with the price range of 8%, 10% and 15% respectively.
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Figure 22. Russell 2000: Range = 8%, a = -0.08338161,b = 0.07696104
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Call Delta, S0 = 1689.38,t= 30
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Figure 23. Russell 2000: Range = 10%, a = -0.1053605, b = 0.09531018
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Figure 24. Russell 2000: Range = 15%, a = -0.1625189, b = 0.1397619

The same trend was observed for Facebook Options with time to maturity of 63 days and
14 days as indicated in Figures[25and [25| respectively.
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Figure 25. Facebook Options Call Deltas: SO = 214.18, t = 63 days
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Figure 26. Facebook Options Call Deltas: SO = 214.18, t = 14 days
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Similarly, as Figure 4 and 6 below shows, the Call Deltas for Apple Inc. Options behaves

in a similar manners as Russell 2000 index and Facebook Options.
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Figure 28. Apple Inc. Options Call Delta: SO = 235.28, t = 30 days
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4.3.2 Call Gamma

The Call Gamma measures the rate at which the Call Delta changes with respect to the

changes of the underlying asset price, So. Figure[29below shows the Option’s Call Gamma

plot when the price range is 10%. Clearly, the sensitiveness of the underlying price is

profound for the TND at 10% price range when compared to the B-S model.
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Figure 29. Russell 2000: Range = 10%, a = -0.1053605,b = 0.09531018

When the price range of the underlying asset increases to 15%, the Gamma plot for the

European Call option is as shown in Figure[30|below. When the option is out-of-the-money,

the TND and B-S depicts a significant difference that when the option is in-the-money.
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Figure 30. Call Gamma, Range = 15%, a = -0.1625189,b = 0.1397619
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Similarly, with a price range of 20%, the European Call Option Gamma against the strike
price is as shown below in Figure[31] There is less difference between the B-S and TND

when the price is below the current price of the underlying asset than at the above.

Nevertheless, the TND model converges to the B-S as the price range rises from 10% to
20% as expected.
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Figure 31. Russell 2000: Range = 20%, a = -0.2231436,b = 0.1823216

Considering the Russell 2000 index options with maturity period of 30 days, the Call
Gamma are more sensitive with a price range of 8% than 15% compared to B-S model Call
Gamma. Nevertheless, as the sensitivity decreases as the price range increases as shown

in Figures and [34] below.
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Figure 32. Russell 200: Range = 8%, a = -0.08338161, b = 0.07696104
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Figure 33. Russell 2000: Range = 10%, a = -0.1053605, b = 0.09531018
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Figure 34. Russell 2000: Range = 15%, a = -0.1625189, b = 0.1397619

The options of Facebook Corporation’s sensitivity of Deltas with respect to the underlying
stock prices shows similar results as with Russell 2000 index options as can be observed
in the Figures[35 and[36] below for 63 and 14 days to maturity options respectively. The
Call Gamma for Apple Inc. Options similarly shows the same results as Figures [37/and
indicates for 95 and 30 days to maturity respectively.
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Figure 38. Apple Inc. Options Call Gamma: S0 = 235.28, t = 30 days
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4.3.3 Call Rho

The option Greek Rho is a measure of how sensitive of the price of the option with changes
in the risk-free rate, r. The call option’s rho should be positive (p > 0) because when the
interest rate is higher, the present value of the strike price, K, is reduced and thereby
increasing the option’s call value. At the 10% price range the call option rho is as shown in
Figure [39]below which appears to be very sensitive for TND than B-S as the price moves
away from the current price (i.e, call rho increases in sensitivity in-and-out-of the money)
when an investor restricts to price range to 10%.
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Figure 39. Russell 2000: Range = 10%, a = -0.1053605,b = 0.09531018

With a price range of 15%, the robust deviation of the call rho for TND decreases towards
B-S when the range of the option price is increased to 15% as shown in Figures [40| below
both in-the-money and out-of-the money options.
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Figure 40. Russell 2000: Range = 15%, a = -0.1625189,b = 0.1397619

Similarly, as Figure[41]depicts, the European call option’s rho for TND when the price range

is 20% from the current price almost perfectly fits the B-S in-the-money than out-of-the

money options. Nevertheless, the sensitive is not as robust as it appears with 15% price

range.
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Figure 41. Russell 2000: Range = 20%, a = -0.2231436,b = 0.1823216
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When options with 30 days to maturity are used and the price ranges of 8%, 10% and 15%,

the Call Rho for Russell 2000 index are as shown in Figures[42] [43]and
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Figure 42. Russell 2000: Range = 8%, a = -0.08338161, b = 0.07696104
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Figure 43. Russell 2000: Range = 10%, a = -0.1053605, b = 0.09531018
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Figure 44. Russell 2000: Range = 15%, a = -0.1625189, b = 0.1397619

Clearly, the call rho for TND model converges to the B-S models as the price range
increases from 8% to 15% with deviations from each model decreasing significantly.

The same results are experienced for Facebook and Apple Inc. Options with the different

maturity periods and price ranges as Figures [45] [46] [47]and [48]indicates.
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Figure 45. Facebook Options Call Rho: SO = 214.18, t = 63 days
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Figure 47. Apple Inc. Options Call Rho: S0 = 235.28, t = 95 days
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Figure 48. Apple Inc. Options Call Rho: SO = 235.28, t = 30 days

The call rho appears to be more sensitive with a smaller price range than larger price range
with respect to the B-S model calls. As expected, the call rho for TND model converges to

the B-S model rho as the value a and b tends to negative infinity and positive infinity (i.e.

by enlarging the price range from the current stock price).

Statistical Properties

The statistical properties such as mean, standard deviation, skewness and kurtosis for the
truncated normal distribution as compared to those used in the B-S model are as given in
Table [4] below. As it can be noted from Table [4] the volatility is the same for the B-S and
the Truncated normal distribution (TND) Models. Similarly, the mean for the TND is the
same as the mean obtained in Table[l|for u. The skewness and kurtosis of the model are
near zero. However, the TND model has higher expected mean return than the B-S for
shorter price ranges with longer time to maturity (83 days) which decreases as price range
increases. The mean returns is higher than B-S for options with shorter maturity periods
(30 days) for prices ranges between 10% and 15% whereby the mean return is highest at
8%. A dash (-) in table indicates that the statistical parameters were not determine at the
corresponding price range or model.
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Table 4. Statistical Properties: Russell 2000 Index

Statistic t 8% 10% 15% 20% B-S
Mean 83 - 0.0006647598 0.0003547773 0.0002341286 | 0.0003429912
30 | 0.001122183 0.0008201757 | 0.0005474799 - 0.0003429912
Volatility | 83 - 0.01020331 0.01020331 0.01020331 0.01020331
30 0.01020331 0.01020331 0.01020331 - 0.01020331
Skewness | 83 - - 6.900774e-18 | - 2.125947e-39 | - 8.720507e-68 -
30 | -2.178018e-11 | - 8.060204e-18 | - 2.781708e-39 - -
Kurtosis | 83 - 0.0003123326 | 0.0003123234 | 0.0003123228 -
30 | 0.000312414 0.0003123487 | 0.0003123278 - -
Table 5] and [6] below shows the statistical properties for Facebook and Apple Options
respectively.
Table 5. Statistical Properties: Facebook Corporation Options
Statistic t 10% 15% 20% 25% B-S
Mean 63 - 0.001612246 0.001058277 | 0.0007538312 | 0.000885052
14 | 0.003339332 0.001815905 0.001247113 - 0.000885052
Volatility | 63 - 0.02249525 0.02249525 0.02249525 0.02249525
14 | 0.02249076 0.02249525 0.02249525 - 0.02249525
Skewness | 63 - -9.456047e-08 | -2.029918e-13 | 2.310593e-20 -
14 | -0.001396318 | -9.966692e-08 | -2.167305e-13 - -
Kurtosis | 63 - 0.001518189 0.001518124 0.001518113 -
14 | 0.001516151 0.001518238 0.001518138 - -
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Table 6. Statistical Properties: Apple Corporation Options

Statistic | t 10% 15% 20% 30% 35% B-S
Mean |95 - - 0.0005717515| .0002851128 |0.0002018363 |0.0009127773
30| 0.001887374 | 0.00101256 |0.0006829072|0.0004753061 - 0.0009127773
Volatility |95 - - 0.01636316 | 0.01636316 | 0.01636316 | 0.01636316
30| 0.01636316 | 0.01636316 | 0.01636316 | 0.01636316 - 0.01636316
Skewness |95 - - -7.92324e-26 |-2.016344e-54|-1.525261e-71 -
30| -1.04484e-06 |-6.897906€e-15|-8.533466e-26|-2.425223e-54 - -
Kurtosis (95 - - 0.0008032619 | 0.0008032596 | 0.0008032595 -
30/0.0008035421| 0.000803283 |0.0008032643|0.0008032606 - -

4.5

Pricing Errors

To test the performance of the Truncated Normal Distribution model in comparison to

the Black & Scholes Model, the following three key indicators are used as noted by both
Badescu et al. and Christofferson et al. [BK08,/[CDJW10], i.e

1. The Dollar Root Mean Squared Error (RMSE($))

2. Average Absolute Error (APE(%)) and

3. Average Relative Pricing Error (ARPE(%))

The formulas for calculating these indicators are given as below;

N market model
(vmarket _ysmodel 2
RMSE($ ;
J 5w
N |Vmarket Vmodel |
ARPE (%) = N Z e x 100,
1 N Vmarket Vmodel
APE%:—Z' |><100,
N = Vmarket

Where N is the total number of observations and V™@ket js the average value of the market

option prices. Tables[7] [9]and [11]below presents the pricing errors for Calls while Tables[8]
[10]and[12] presents the pricing errors for Puts for European Options for the Russell 2000
index, Facebook and Apple Options respectively. The last column indicates the errors




for the classical Black & Scholes model for the entire data while the rows indicates the

pricing errors for Truncated distribution model and Black & Scholes model within the

indicated price ranges at the top row.

Table 7. Pricing Errors: Russell 2000 Index Calls

Indicator | Model | t 8% 10% 14% 15% 20% B-S
RMSE ($) | TND | 83 | 13.94013 | 7.662783 | 2.6350834 | 3.36482 7.70738 10.68518
BS 83 | 14.53229 | 13.70699 | 12.02255 12.47751 | 11.10818 || 10.68518
TND | 30 | 7.581714 | 9.931964 12.2096 12.41819 | 12.74649 || 12.29002
BS 30 | 14.19545 | 13.59167 | 13.12258 12.99859 | 12.81082 || 12.29002
APE (%) TND | 83 | 21.83558 | 10.38505 | 1.961139 2.88922 | 6.266521 || 2.472057
BS 83 | 22.61075 | 19.12351 13.1601 12.566552 | 9.50008 || 2.472057
TND | 30 | 12.97236 | 15.35278 | 15.57118 14.25076 | 11.82957 || 2.877815
BS 30 | 28.40206 | 22.92887 | 17.26819 15.27383 | 11.93539 || 2.877815
ARPE (%) | TND | 83 | 39.02956 | 31.56237 | 12.95375 10.90533 | 50.53603 || 115.3791
BS 83 | 46.26234 | 72.06162 | 162.5999 102.1757 | 226.9627 || 115.3791
TND | 30 | 22.83928 | 47.55402 124.218 138.0701 | 193.6492 || 103.4894
BS 30 | 147.3372 | 214.2946 | 268.6344 | 264.0103 | 219.826 || 103.4894
Table 8. Pricing Errors: Russell 2000 Index Puts
Indicator | Model | t 8% 10% 14% 15% 20% B-S
RMSE ($) | TND | 83 | 34.87868 | 28.41343 | 20.19615 | 18.46177 | 15.36447 | 14.45224
BS 83 | 7.442571 | 8331137 | 10.38711 | 9.36576 | 12.16299 || 14.45224
TND | 30 | 17.10751 | 15.15378 | 13.90963 | 14.23379 | 14.82768 || 12.29002
BS 30 | 9.146001 | 10.76677 | 12.69713 | 13.42754 | 14.71313 || 12.29002
APE (%) TND | 83 | 51.38183 | 38.05795 | 21.72625 | 24.18124 | 12.84401 || 5.878943
BS 83 | 10.25534 | 10.54901 | 10.56265 | 11.18124 | 9.721858 || 5.878943
TND | 30 | 35.79208 | 26.0826 | 17.88761 | 16.23098 | 13.25609 || 8.753727
BS 30 | 18.72418 | 17.88285 | 16.08498 | 15.23098 | 13.13801 || 8.753727
ARPE (%) | TND | 83 | 62.15531 | 54.79584 | 45.93129 | 47.12577 | 39.37461 || 54.63921
BS 83 | 15.05448 | 19.13364 | 27.24688 | 29.2792 | 33.38869 || 54.63921
TND | 30 | 55.23094 | 48.97446 | 43.57534 | 44.00637 | 44.78718 || 66.40577
BS 30 | 31.46501 | 35.71957 | 40.36786 | 41.99834 | 44.59605 || 66.40577
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Table 9. Pricing Errors: Facebook Corporation Call Options

Indicator | Option | t 10% 15% 20% 22% B-S
RMSE ($) TND 63 1.542654 0.83606 1.869731 2.266653 4.389487
BS 63 | 7.649193 | 7.051997 | 6.325461 6.201712 4.389487
TND 14 | 2427216 | 3.013156 | 3.198696 | 3.171051 3.258968
BS 14 | 4.230824 | 3.765212 | 3.451933 | 3.325339 3.258968
APE (%) TND 63 14.0689 6.798324 11.12156 14.0007 14.58617
BS 63 | 7850975 | 61.72287 | 40.75917 | 41.93123 14.58617
TND 14 | 31.28327 | 32.19757 | 30.20187 | 27.80384 26.52495
BS 14 | 59.98022 | 42.51555 | 33.56838 | 29.78812 26.52495
ARPE (%) TND 63 34.44174 | 20.59825 28.92845 40.11283 491.1579
BS 63 147.9184 | 200.6228 | 254.9602 | 309.9449 491.1579
TND 14 | 81.01143 190.1262 | 294.7563 | 316.7216 428.7623
BS 14 | 425.9404 | 475.9404 | 473.6976 | 444.0691 428.7623
Table 10. Pricing Errors: Facebook Corporation Put Options
Indicator | Option t 10% 15% 20% 22% B-S
RMSE ($) TND 63 | 4.232306 | 2.687948 1.848225 1.856292 3.162934
BS 63 | 4.861191 4.29261 3.695804 | 3.600639 3.162934
TND 14 | 1.843663 1.893007 | 2.132766 | 2.245237 2.210517
BS 14 | 1.466081 1.692321 2.011619 | 2.157727 2.210517
APE (%) TND 63 | 41.51365 | 21.41189 | 9.861883 | 8.802932 8.451392
BS 63 48.51365 35.77338 25.60792 21.5711 8.451392
TND 14 | 19.13184 15.4864 13.83743 12.93457 12.26512
BS 14 | 20.91577 15.99764 | 13.57598 12.69922 12.26512
ARPE (%) TND 63 | 57.20631 38.2455 24.17814 | 19.25856 61.99839
BS 63 78.67937 86.52122 96.55473 91.55123 61.99839
TND 14 | 27.25601 | 44.37338 | 66.92025 | 70.36194 76.95254
BS 14 | 112.4185 | 97.57811 82.56682 | 78.40648 76.95254
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Table 11. Pricing Errors: Apple Corporation Call Options

Indicator | Option | t 10% 15% 20% 25% B-S
RMSE ($) TND 95 0.6270006 0.6542114 | 0.6623861 0.6572748 1.096466
BS 95 7.801481 5.186203 3.380691 2.03054 1.096466
TND 30 1.010708 1.776693 2.245984 2.449755 2.621543
BS 30 2.801821 2.699299 2.605883 2.570601 2.621543
APE (%) TND 95 3.237152 3.025258 2.925913 2.747874 2.03043
BS 95 44.56207 26.72137 15.94271 8.558026 2.03043
TND 30 8.484477 11.93961 14.6746 14.24831 10.35188
BS 30 27.7231 20.10689 17.68761 15.156383 10.35188
ARPE (%) TND 95 4.581283 6.575091 8.373743 10.24012 10.36712
BS 95 54.98859 45.02938 36.02404 28.14518 10.36712
TND 30 18.53643 22.83029 39.66943 53.70966 61.40541
BS 30 58.15171 68.91884 75.75342 74.34065 61.40541
Table 12. Pricing Errors: Apple Corporation Put Options
Indicator | Option t 10% 15% 20% 25% B-S
RMSE ($) TND 95 11.10845 | 8.462173 | 6.649547 | 5.321244 2.506095
BS 95 | 2.761073 | 2.747789 | 2.736375 2.77163 2.506095
TND 30 4.1658 3.025908 | 2.800111 2.621586 2.517993
BS 30 1.457339 1.907905 | 2.387088 | 2.465113 2.517993
APE (%) TND 95 | 66.97649 | 46.45825 | 33.87507 24.9431 11.98028
BS 95 16.76648 15.32363 14.18461 13.19975 11.98028
TND 30 45.9062 27.59942 18.20355 15.45815 13.28366
BS 30 15.98662 16.17398 14.75583 14.29324 13.28366
ARPE (%) TND 95 | 74.13637 61.6553 52.70013 | 46.00327 50.74115
BS 95 19.6582 22.84793 25.4667 28.30286 50.74115
TND 30 | 61.95972 | 49.99816 | 39.59798 | 37.78803 43.55854
BS 30 | 22.65149 | 30.29713 | 32.46275 | 35.66489 43.55854

The truncated model is well applicable when the B-S model over-estimates the market

option prices. The model shows significant improvement in the pricing of European call
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options as compared to the B-S model. The pricing errors are extremely reduced when
TND is used in the pricing of call options. The choice of the value of a and b is critical
when using the TND model. The errors are minimized when an appropriate price range is
selected for the different call options with different maturity periods.

The puts options are under-priced when the TND is used thereby resulting in larger
pricing errors in some measures when compared to the B-S model. For the data used,
observed market puts are highly priced for Russell 2000 index and Apple Corporation
options. Facebook Corporation market puts are under-priced by the B-S resulting to a

better performance of the truncated model in pricing them for the price ranges chosen.

The B-S model under-prices the market put, hence, the truncated model under-prices
them further since the prices of the truncated model are always below the B-S model.
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5.1

5.2

Chapter Five: Conclusion and Future Research

Conclusion

The Truncated Normal Distribution (TND) Model offers a more flexible closed form formula
for pricing options. The martingale restriction for the TND that was obtained ensured that
arbitrage opportunities does not exit in the market. The uniroot function for R-Software
was used to solve for i that is incorporated in the development of the closed formulas for
the call and put options. The Moment Generating Function, Mean, Variance, Skewness
and Kurtosis were obtained for the truncated model. The introduction of the lower and
upper bounds to the distribution of the underlying asset prices and assuming that the
log-returns of the process are truncated, the model offers an alternative method of pricing
European Options. A key observation from the TND model is that the prices of the model
converges to the B-S model when the upper and lower bounds increases and decreases
respectively. The prices of the model is always below the Black - Scholes formula.

The option Greeks obtained shows that they approach the B-S Greeks when the lower and
upper bounds are decreased and increased respectively as it was the case with the option
prices. The statistical properties obtained indicates that the historical mean returns of the
underlying process is the same as the solution of t from the martingale restriction. The
standard deviation (volatility) is the same for the truncated normal distribution model
and that obtained from the historical data of the underlying asset. The model performs
well in the pricing of Facebook Options - where market puts where observed to be lower
than that obtained using the B-S model than other options data used in the analysis. The
pricing of calls were significantly better for all the data used in this study. Based on the
numerical results of the data used in the analysis, the Truncated Normal Distribution
model outperforms the Black & Scholes model at least for the case of European Call
Options for the data used in the analysis. Therefore, the truncated model can be used as
an alternative options pricing model.

Future Research

The following are the recommendations for this study;

1. The investigation of the other Greeks, i.e Theta (8) and Vega (V)

2. The investigation of the volatility smile for the proposed truncated normal distribution
model
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. Application of other distributions such as the truncated normal inverse Gaussian
instead of the truncated normal distribution

. Application of the model on American Options

. Further Empirical Studies are recommended to check the consistency of the results
and determine when does the model over-prices or under-prices the market data
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Appendix A: Root Finding Problem R-Codes

### Root finding to determine the value of mu at 20% price range

BSM.MUT<-function(mu) {
#Onsoti Alex Nyong’a class of 2020
# University of Nairobi
da<-diff (log(stock_data[,6]))
sigmat<-sd(da)
R<-r*0.01/tau
a<-1log(0.80)
b<-log(1.20)
A<-(a-mu*tau)/(sigmat*sqrt(tau))
B<-(b-mu*tau)/(sigmat*sqrt(tau))
num<-pnorm(B-sigmat*sqrt(tau))-pnorm(A-sigmat*sqrt(tau))
den<-pnorm(B)-pnorm(A)
expl<-exp((R-0.5*sigmatA2-mu) *tau)
fn.mu<- (num/den)-expl
return(fn.mu)

¥
library(rootSolve)

Mu<-uniroot.all(BSM.MUT, c(-0.4,0.4),tol = l1le-25,maxiter = 1000)
### Alternative code

Mul<-uniroot (BSM.MUT, c(-0.04,0.04),tol = 1le-25,maxiter = 1000)
Mu<-Mul$root ;Mu
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Appendix B: Black & Scholes Option Prices R-codes

BSM73<-function(stock_data,r,so,option_data, tau)
{#0nsoti Alex Nyong’a class of 2020
# University of Nairobi

}

BSM73_Payoffs<-BSM73(stock_data,r,so,option_data, tau)

da<-diff (log(stock_data[,6]))
sigmab<-sd(da)

k<-option_datal, 4]

R<-r*0.01/tau
d3<-(log(so/k)+(R+.5*sigmab22) *tau)
dl<-(1/(sigmab*sqrt(tau)))*d3
d2<-d1-sigmab*sqrt(tau)
Ecal<-so*pnorm(dl)-exp(-R*tau) *k*pnorm(d2)
Eput<--so*pnorm(-dl)+exp(-R*tau) *k*pnorm(-d2)
Edelta<-pnorm(dl)
Egamma<-dnorm(dl)/(so*sigmab*sqrt(tau))
Evega<-so*sqrt(tau) *dnorm(dl)

Etheta<--so*sigmab/(2*sqrt(tau))*dnorm(dl)-R*k*exp(-R*tau) *pnorm(d2)

Erho<-tau*k*exp(-R*tau) *pnorm(d2)

price<-cbind(tau,r,so,k,Ecal,Eput,Edelta,Egamma,Evega,Etheta,Erho)

return(price)
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Appendix C: Truncated Normal Disbribution Option

Prices R-Codes

#H##### Price of a Truncated Normal Distribution

option<-function(a,b,tau,Mu,R){
#Onsoti Alex Nyong’a class of 2020

# University of Nairobi

da<-diff (log(stock_data[,6]))

sigmat<-sd(da)

R<-
k<-
D1<-(b-Mu*tau)/(sigmat*sqrt(tau))-(sigmat*sqrt(tau))
Nl<-(a-Mu*tau)/(sigmat*sqrt(tau))-(sigmat*sqrt(tau))

r*0.01/tau
option_t_datal,4]

Pl<-((log(k/so)-Mu*tau)/(sigmat*sqrt(tau)))-(sigmat*sqrt(tau))

D2<-(b-Mu*tau)/(sigmat*sqrt(tau))
N2<-(a-Mu*tau)/(sigmat*sqrt(tau))
P2<-(log(k/so)-(Mu*tau))/(sigmat*sqrt(tau))
.Call<-pnorm(D1)-pnorm(P1)
.Call<-pnorm(D1)-pnorm(N1)
.Call<-pnorm(D2)-pnorm(P2)
.Call<-pnorm(D2)-pnorm(N2)
.Put<-pnorm(P2)-pnorm(N2)
.Put<-pnorm(D2)-pnorm(N2)
.Put<-pnorm(P1)-pnorm(N1)
.Put<-pnorm(D1)-pnorm(N1)
vc<-so*(N1.Call/D1.Call)-k*exp(-R*tau)*(N2.Call/D2.Call)
vp<-k*exp(-R*tau) * (N1.Put/D1.Put)-so* (N2.Put/D2.Put)
price<-cbind(vec,vp,k,a,b,so,tau,sigmat,R)

N1
D1
N2
D2
N1
D1
N2
D2

return(price)

}

TND_Payoffs<-option(a,b,tau,Mu,R) ; TND_Payoffs
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Appendix D: Pricing Errors R-Codes

D.1

D.2

Call Errors

HHHHA ARG HHH AR HHHH AR A S HHHHH AR HHHHH S
BCALL<-BSM73_Payoffs[,5];MCALL<-option_datal[, 3]
TCALL<-TND_Payoffs[,1];TMCALL<-option_t_datal[, 3]

###### Dollar Root Mean Squared Absolute Error
RMSE . BCALL<-sqrt (sum( (MCALL-BCALL)/2)/length (MCALL))
RMSE.TCALL<-sqrt (sum( (TMCALL-TCALL)A2)/length(TMCALL))

HH#####4# Average Absolute Error
APE.BCALL<-1/length(MCALL) *sum(abs (MCALL-BCALL) /mean (MCALL) ) *100
APE.TCALL<-1/length(TMCALL) *sum(abs (TMCALL-TCALL) /mean (TMCALL) ) *100

H###H## Average Relative Pricing Error
ARPE.BCALL<-1/length(MCALL) *sum(abs (MCALL-BCALL) /MCALL) *100
ARPE.TCALL<-1/length(TMCALL) * sum(abs (TMCALL-TCALL) /TMCALL) *100

Put Errors

HHHHH S HHHHHHHH S A HHH 4
BPUT<-BSM73_Payoffs[,6];MPUT<-option_datal[,7]
TPUT<-TND_Payoffs[,2];TMPUT<-option_t_datal[,7]

###### Dollar Root Mean Squared Absolute Error
RMSE . BPUT<-sqrt (sum( (MPUT-BPUT)/2) /length (MPUT))
RMSE.TPUT<-sqrt (sum( (TMPUT-TPUT)A2) /length (TMPUT) )

HH###### Average Absolute Error
APE.BPUT<-1/length(MPUT) *sum(abs (MPUT-BPUT) /mean (MPUT) ) *100
APE.TPUT<-1/length (TMPUT) * sum(abs (TMPUT-TPUT) /mean (TMPUT) ) * 100

###### Average Relative Pricing Error
ARPE .BPUT<-1/length(MPUT) *sum(abs (MPUT-BPUT) /MPUT) * 100
ARPE.TPUT<-1/length (TMPUT) * sum(abs (IMPUT-TPUT) /TMPUT) * 100
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