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ABSTRACT 

Magnetic Resonance Imaging (MRI) has some attractive advantages over 

other medical imaging techniques. Its widespread application as a medical 

diagnostic tool is however hindered by its lengthy acquisition time as well as 

reconstruction-related artifacts. Magnetic Resonance (MR) images are usually 

sparse or compressible in the Discrete Wavelet Transform (DWT) or the Discrete 

Fourier Transform (DFT) domains. The two problems associated with MRI can 

therefore be solved using Compressive Sampling (CS) methods. In this thesis, 

seven proposed algorithms that utilize the CS theory to addresses the limitations 

of conventional MRI are presented. Each of the proposed method exploits the 

compressibility of the MR images to reconstruct them from only a few incoherent 

measurements. The Peak Signal to Noise Ratio (PSNR) as well as the Structural 

SIMilarity (SSIM) measures have been used to assess the performance of the 

proposed methods. Computer simulation results demonstrated that the proposed 

methods reduce the reconstruction artifacts and noise by between 1.2 dB and 1.75 

dB for a given percentage measurement. Among the proposed methods, the one 

that yields the best results is the one referred to in the thesis as selective 

acquisition and artifacts suppression. This method involves acquisition of an 

under-sampled k-space by employing a smaller number of phase encoding 

gradient steps than that dictated by the Nyquist sampling rate. The MR image 

reconstructed from the under-sampled k-space is then randomly sampled and 

reconstructed using the Orthogonal Matching Pursuit (OMP) greedy method in 

the DWT domain. To improve the robustness of the method, a proposed 

apodization function is then used to suppress the reconstruction artifacts. 

Simulation results based on MATLAB show that this proposed method reduces 

the concomitant artifacts by 1.75 dB for a given percentage measurement. This 

quality improvement has been shown to translate to approximately 20% reduction 

in scan-time compared to other reported CS-based MRI techniques for a given 

reconstructed image quality. 
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CHAPTER 1 

INTRODUCTION 

This chapter gives an introduction to the research investigation covered in 

this thesis. The chapter commences with a brief background of the Compressive 

Sampling (CS) theory and Magnetic resonance Imaging (MRI) principles. The 

limitations associated with conventional MRI are highlighted in the problem 

statement section. The main and specific objectives of the research investigation 

as well as the scope of work are also presented. Thereafter, the organization of 

this thesis report is given. The chapter ends with a summary of the publications 

that have been achieved in the course of the research work.  

1.1 Background 

The conventional approach to acquisition and digitization of signals such 

as images follows the Shannon-Nyquist sampling theorem. According to the 

theorem, the sampling rate of a band-limited continuous-time signal must be 

higher or at least equal to twice the maximum frequency present in the signal. 

This kind of sampling allows the signal to be reconstructed from the samples by 

interpolation. The rate of twice the maximum frequency present in the signal is 

referred to as the Nyquist rate [1-5]. Digital acquisition of most signals involve 

sampling at a rate equal to or higher than the Nyquist sampling rate followed by 

linear transformation into a sparsifying domain. Signal compression is then 

performed by retaining only the largest transform coefficients and discarding 

those that are below a pre-determined threshold level. To reconstruct the signal, 

the discarded coefficients are replaced by zeros prior to performing an inverse 

transformation on the coefficients. This process leads to wastage of resources 

such as time, power and storage capacity in obtaining the full information about 

the signals only to discard most of it at the compression stage. The sampling 

theorem is applied to nearly all signal acquisition in digital cameras, medical 

imaging equipment, digital radio systems and Analogue-to-Digital Converters 
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(ADC) [6-8]. Applying the sampling theorem to the acquisition of some high 

dimensional signals such as in Magnetic Resonance Imaging (MRI) leads to 

excessively long acquisition time. For signals that are sparse or approximately so, 

the long acquisition times can be reduced by taking highly incomplete random 

measurements from which the signal can be reconstructed using some 

reconstruction algorithms. This technique of signal measurement and 

reconstruction is referred to as Compressive Sampling (CS) [6, 9, 10].  

Compressive Sampling is a linear dimensionality reduction approach that 

allows simultaneous sensing and compression of finite-length sparse or 

compressible signals. In CS, the full length of the signal is not directly acquired 

but only a few measurements are taken. The acquisition is equivalent to 

multiplying the signal by a rank-deficient CS measurement matrix [11-14]. The 

measurement matrix is designed in such a way as to reduce the number of 

measurements as much as possible and also to allow unique reconstruction of a 

wide class of sparse signals from their measurements. Since the measurement 

matrix is rank-deficient, an infinite number of signals will yield the same 

measurement vector for a given measurement matrix. The measurement matrix 

should therefore be designed to allow for distinct sparse or compressible signals 

to be uniquely reconstructed from their measurements [15-19]. The sensing 

matrix must possess some unique properties to ensure preservation of the 

information in the measured signal and to allow uniqueness in reconstruction. 

These properties include the Null Space Property (NSP), the Restricted Isometry 

Property (RIP) and the incoherence property. Some deterministic matrices satisfy 

these requirements although they are poorly conditioned for high dimensional 

signals leading to unacceptably large number of measurements. The limitation 

associated with deterministic CS matrices is overcome by using random matrices 

whose entries are independent and identically distributed. These matrices have 

entries that are chosen to satisfy a sub-Gaussian distribution that satisfies the RIP. 

The CS signal reconstruction techniques include optimization, greedy and 
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Bayesian methods. The Optimization methods involve the minimization of an 

object function subject to one or more constraint functions. Greedy algorithms use 

iteration to determine the image coefficients while Bayesian methods assume that 

the sparse signal comes from a known probability distribution [14, 16, 20-26]. 

Magnetic Resonance Imaging (MRI) is a technique that utilizes the interaction 

between spinning nuclei placed in a strong static magnetic field and a Radio 

Frequency (RF) signal to produce highly detailed images of body tissues. The 

MRI technique is a non-invasive imaging method. Unlike Computed Tomography 

(CT) which uses ionizing X-rays, MRI uses non-ionizing RF radiation that is non-

carcinogenic [15]. The MRI modality uses gadolinium-based contrast agents 

which are less likely to produce allergic reactions in patients as opposed to the 

iodine-based contrast materials used in CT.  

The Magnetic Resonance (MR) images of soft-tissue organs such as the brain, 

heart, liver and spleen are more likely to expose diseases such as focal lesions and 

tumors more accurately than CT images. This is due to the presence of parameters 

such as relaxation time constants (   and   ) that can be exploited to adjust the 

MR image contrast as desired.  It does not require any surgical intervention to 

obtain the MR image of an internal body organ unlike in other medical imaging 

techniques such as intravascular ultrasound and catheter venography [27].  

In spite of all these advantages, the MRI modality suffers the drawbacks of long 

image acquisition time as well as imaging artifacts that compromise the image 

quality. In addition, due to the strong static magnetic field of the MRI equipment, 

personal accessories and some implanted medical devices containing 

ferromagnetic materials may malfunction or cause harm to the patient during the 

imaging process [12, 20, 28-33].  

1.2 Problem Statement 

Although conventional MRI has all the advantages described in the 

previous section over other medical imaging methods, it also exhibits some 

significant shortcomings that limit its widespread application.  One of the 
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drawbacks is the excessively long scan time ranging from a few minutes to 

several hours. The patient is required to remain motionless within the MRI 

equipment during the entire acquisition period. Infants and a large number of 

adults experience difficulty in complying with the long period immobility 

requirement. In addition to the long scan time requirement, the imaging technique 

is usually characterized by artifacts that compromise the image quality and 

diagnosis accuracy. The artifacts may emanate from the equipment and/or from 

the reflex and voluntary behaviour of the body of the patient [27]. 

The CS theory gives a suitable basis of reducing the scan time in MRI since 

the acquired images are compressible in the Fourier or wavelet transform 

domains. Also, the images are acquired in a coded form as a Discrete Fourier 

Transform (DFT) domain k-space data. For most of the images, the k-space data 

is already sparse and does not require further transformation for CS reconstruction 

techniques to be applied. The coefficients of MR images in the sparsifying 

domain are normally clustered about a few dominant coefficients. This 

characteristic makes it easy to design filters for suppressing the imaging artifacts 

[16, 17, 33-38]. 

1.3 Objectives 

  The main objective of this research investigation was to develop fast and 

robust Compressive Sampling-based Magnetic Resonance Imaging (CS-MRI) 

algorithms.  

The specific objectives were: 

i. To develop CS-MRI acquisition algorithms that have shorter scan times 

than conventional MRI methods. 

ii. To reduce the effects of measurement noise on the MR images. 

iii. To develop CS-MRI reconstruction algorithms which are robust to 

reconstruction concomitant artifacts.  

iv. To achieve lower reconstruction computational complexity than that of 

optimization-based CS-MRI algorithms. 
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1.4 Scope of the Research Work 

The discussions in this thesis deal only with approaches for reducing the 

acquisition time and reconstruction artifacts encountered in medical MRI. The 

methods discussed here focus mainly on the CS measurement, reconstruction as 

well as artifacts suppression by post-processing. Discussion touching on other 

clinical imaging methods such as computed tomography, ultrasound and catheter 

venography are only limited to their qualitative comparisons to MRI. 

1.5 Publications 

This section gives a summary of the papers that have been published or 

accepted for publication during this research investigation. Nine peer-reviewed 

publications have been achieved from the findings of this research work. Three of 

these are journal articles while the remaining six are papers published or accepted 

for publication in proceedings of international and regional conferences sponsored 

by the Institute of Electrical and Electronics Engineers (IEEE).  

The details of the published journal papers are as follows; 

(i) A paper entitled; An Agile and Robust Sparse Recovery Method for 

MR Images Based on Selective k-space Acquisition and Artifacts 

Suppression. This paper was published in the International Journal of 

Information Science (IJIST). It appears on pages 3-17 of the second 

issue of volume 2 of the 2018 publications. The paper proposes a CS 

based algorithm that reduces the acquisition time as well as the 

reconstruction artifacts associated with MRI. The method involves 

acquisition of an under-sampled k-space by employing a smaller 

number of phase encoding gradient steps than that dictated by the 

Nyquist sampling rate. The MR image reconstructed from the under-

sampled k-space is then randomly sampled prior to reconstruction 

using a greedy sparse recovery method in the wavelet domain. In order 

to improve the robustness of the method to both noise and artifacts, a 
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proposed high-pass filter is employed. Computer simulation results 

were used to demonstrate that the method reduced the reconstruction 

concomitant artifacts by 1.75 dB in terms of the Peak Signal to Noise 

Ratio (PSNR) metric. It was further shown that, the proposed method 

gives a scan time reduction of 20% compared to other CS-MRI 

techniques. 

(ii) An article entitled: An Improved Reconstruction Method for 

Compressively Sampled Magnetic Resonance Images Using Adaptive 

Gaussian Denoising. This publication is in the Springer journal of 

Lecture Notes in Electrical Engineering (LNEE). It publication 

appears on pages 192-200 of volume 416 of the year 2017. The paper 

reported a proposed CS-based method that suppresses reconstruction 

noisy artifacts in MR images. It employs a random under-sampling 

approach to compressively acquire the k-space data followed by 

reconstruction of the full k-space in a wavelet sparsifying domain. The 

high frequency noise in the reconstructed image is then suppressed 

using a proposed adaptive Gaussian low pass filter. Experimental 

results demonstrated a robustness of the proposed method to artifacts 

attributable to sub-Nyquist sampling.  

(iii) A journal paper by the title: A Novel Compressive Sampling MRI 

Method Using Variable-Density k-Space Under-sampling and 

Coefficients Substitution. This paper was published in the signal 

processing transactions journal of the World Scientific and 

Engineering Academy and Society (WSEAS). The paper appears on 

pages 114-120, art. 14, volume 15 of the 2019 publication. A fast CS-

MRI algorithm that is immune to noise and artifacts is proposed in this 

paper. It uses a variable density under-sampling scheme to acquire an 

MR image k-space. The full k-space is then reconstructed 

compressively in the wavelet domain. The k-space coefficients that are 
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acquired during the under-sampling stage are then used to replace their 

corresponding coefficients in the compressively reconstructed k-space. 

Computer simulation test results show an image quality improvement 

that corresponds to a 12% reduction in scan time. 

The six peer-reviewed conference proceedings papers are as follows; 

(i) A paper entitled: A Robust Compressive Sampling Method for MR 

Images Based on Partial Scanning and Apodization. The paper was 

published in the 18
th

 IEEE International Symposium on Signal 

Processing and Information Technology, ISSPIT 2018 proceedings 

held at Louisville city in Kentucky, USA from 6
th

 to 8
th

 December 

2018.  In this paper a proposed robust and fast MRI reconstruction 

algorithm is presented. It is based on CS, the k-space coefficients 

profile as well as sparsity of MR images. It commences with partial 

acquisition of the k-space of the image followed by random sampling 

prior to sparse reconstruction. The reconstruction artifacts are then 

suppressed using a proposed apodization function. Experimental 

results were used show that the proposed method yields an average 

PSNR improvement of 1.4 dB over the Orthogonal Matching Pursuit 

(OMP) as well as a 10% reduction in scan time.  

(ii) A paper by the title: A Rapid MRI Reconstruction Method Based on 

Compressive Sampling and Concomitant Artifacts Suppression was 

published in the proceedings of the 19
th

 IEEE Mediterranean 

Electrotechnical Conference, MELECON 2018. The conference was 

held in Marrakech, Morocco between 1
st
 and 4

th
 May 2018. The paper 

proposed a rapid MRI method that is based on the compressibility of 

MR images as well as suppression of the reconstruction artifacts. The 

proposed algorithm commences with acquisition of under-sampled k-

space data which is then converted into an MR image that exhibits 

some artifacts. This image is then randomly sampled using a sub-
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Gaussian matrix prior to sparse reconstruction. The loss in high 

frequency details in the reconstructed image is then corrected using a 

proposed filter function. Experimental results revealed a 20% 

reduction in scan-time compared to other CS-MRI methods. 

(iii) A paper by the title: A Hybrid MRI Method Based on Denoised 

Compressive Sampling and Detection of Dominant Coefficients was 

published in the proceedings of the 22
nd

 IEEE International 

Conference on Digital Signal Processing (DSP 2017). The conference 

was held at the Imperial College, London, UK from 23
rd

 to 25
th

 August 

2017. The method proposed in the paper employs the conventional 

MRI to acquire the dominant k-space coefficients. The smaller 

coefficients are then estimated using CS. The estimated coefficients 

are then combined with the dominant ones to yield the full k-space of 

the reconstructed MR image. Computer simulation results were used to 

show that the proposed procedure yielded better quality of images than 

other CS-MRI methods.  

(iv) A conference paper that won recognition as the third best in the 

category of Doctor of Philosophy (PhD) students. This paper is 

entitled: A Robust Magnetic Resonance Imaging Method Based on 

Compressive Sampling and Clustering of Sparsifying Coefficients. It 

was published in the proceedings of the 18
th

 IEEE MELECON 2016 

conference that was held in Limassol, Cyprus from 18
th

 to 20
th

 April 

2016. This novel CS based MRI method exploits the sparsity as well 

as clustering of the DFT coefficients of an MR image. The algorithm 

under-samples the k-space data of the image followed by 

reconstruction of the full k-space using an iterative algorithm. A 

proposed raised-cosine shaping function is employed to suppress the 

reconstruction artifacts and also to restore the clustering. Experimental 
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results were used to demonstrate that this procedure gives better 

quality MR images than other CS-MRI methods. 

(v) A paper entitled: A Fast Procedure for Acquisition and Reconstruction 

of Magnetic Resonance Images Using Compressive Sampling. This 

paper was published in the proceedings of the 12
th

 IEEE AFRICON 

conference held in Addis Ababa, Ethiopia from 14
th

 to 17
th

 September 

2015. It proposes a fast procedure for acquisition and reconstruction of 

magnetic resonance images based on the compressive sampling. The 

algorithm under-samples the k-space of an MR image using a random 

matrix followed by its reconstruction in the wavelet transform domain. 

A median filter is used to suppress artifacts in the reconstructed image. 

Experimental results showed that the proposed procedure reduced the 

MR image acquisition time without significantly affecting the quality.  

(vi) A conference paper entitled: An Efficacious MRI Sparse Recovery 

Method Based on Differential Under-Sampling and k-Space 

Interpolation. This paper was accepted for publication in the 

proceedings of the 20
th

 IEEE MELECON 2016 conference that was 

held virtually in Palermo, Italy from 16
th

 to 18
th

 June 2020. The CS-

MRI method proposed in this paper employs bicubic interpolation of 

under-sampled k-space data to improve the resilience to noise and 

reconstruction artifacts. Computer simulation results show robustness 

to noise by a 1.6 dB PSNR improvement and an imaging acceleration 

of at least 9% while maintaining image quality. 

1.6 Organization of the Thesis 

The rest of this thesis is organized as follows. Chapter two presents a 

review of the literature that forms the foundation of the CS-MRI algorithms 

proposed in this research investigation. Fundamental theory of convex-

optimization and the Shannon-Nyquist sampling theorem are also discussed here. 

The chapter ends with an overview of some of the research works that are related 
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to this thesis as well as a highlight on the existing knowledge gaps. In Chapter 

three, an outline of the principles of Magnetic Resonance Imaging (MRI) is 

presented. The generation of the Free Induction Decay (FID) signal as well as the 

formation of the MR image is covered. Chapter four is devoted to the theory of 

compressive sampling. The CS measurement principles are covered first followed 

by the design and characteristics of CS sensing matrices. Finally, CS 

reconstruction algorithms are covered.  The methodology of the thesis is 

presented in Chapter five. It covers the materials, proposed methods as well as the 

image quality measures employed in the research investigation. The whole of 

Chapter six is dedicated to MATLAB simulation experimental results of the 

proposed methods and their discussions. Comparisons of the proposed algorithm 

to other reported optimization as well as greedy CS methods are also covered 

here. A conclusion of the thesis and suggestions for further work are given in 

Chapter seven. A list of references and appendices are included at the end of the 

report. The appendices consist of the papers that were published during the 

research work, the MATLAB programs that were developed to simulate the 

proposed methods as well as the ground-truth images that were used to test the 

proposed methods. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, some of the fundamental concepts that are applied in this 

research investigation are covered. The topics covered include the fundamental 

theory of convex functions and optimization. The Shannon-Nyquist sampling 

theorem is also derived for a continuous-time band-limited signal. The theorem is 

then extended to both one-dimensional (1D) and two-dimensional (2D) spatial 

signals. Some of the research works that are related to this research investigation 

as well as the knowledge gaps that exist in them are also presented here. 

2.1 Fundamental Theory of Convex Functions and Optimization 

Many signal processing systems can be modeled as linear systems. It is 

therefore natural to model signals as vectors in appropriate vector spaces. The 

vector spaces allow the use of geometrical tools in R
3
 such as lengths, distances, 

and angles to describe and compare signals of interest.  

A vector space that is complete with respect to the norm defined by the inner 

product is referred to as a Hilbert Space. Any two vector elements in a Hilbert 

space have a sum that is also an element of the same vector space. The sum of the 

two elements is commutative and associative. The product of any vector in the 

Hilbert-Space and a complex quantity is also a vector in the Hilbert-Space. The 

product of vectors in a Hilbert-Space and constants is distributive. Therefore, 

every linear combination of vectors in a Hilbert space results in a vector in the 

same vector space. A subset 𝑈 of a vector space 𝑉 is a subspace if it qualifies to 

be a vector space relative to addition and scalar multiplication inherited from the 

vector space [21, 38]. 

A vector space 𝑉 ⊂ R
N
 is termed an affine space if any affine combination of two 

vectors in the space is an element in the vector space as follows; 

𝛼𝒖 +  𝛽𝒗 ∈  𝑉,   (2.1) 
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where  𝒖,𝒗 ∈  𝑉 and  𝛼 +  𝛽 =  1. A linear combination of a set of vectors   

 𝒖𝟏  ,𝒖𝟐,…  𝒖𝒏   is said to be linearly independent if it is equal to zero only when 

all its scalar coefficients  𝛼1 ,𝛼2,…𝛼𝑛  are equal to zero as follows; 

𝛼1𝒖𝟏 + 𝛼2𝒖𝟐 + ⋯+ 𝛼𝑛𝒖𝒏 = 0  for  𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛=0 (2.2) 

 If the linear combination of vectors is not linearly independent, then it is said to 

be linearly dependent.  If for any two vectors  𝒖,𝒗 ∈  𝑉 and a scalar 𝑐 the vectors 

𝒖 + 𝒗 and 𝑐𝒗 are elements in 𝑉, the vector space is said to be closed under the 

operations of vector addition and scalar multiplication [9]. The set of all the linear 

combinations of the 𝑛  vectors in a vector space is called the span of the vectors 

set which can be represented as follows;  

span 𝒖𝟏,𝒖𝟐,… ,𝒖𝒏 =  𝛼𝑖𝒖𝒊

𝑛

i=1

, (2.3) 

where 𝛼1,𝛼2,… ,𝛼𝑛 ∈ 𝑅. Any set of linearly independent vectors in a vector space 

is referred to as a basis of the vector space.  Any vector in a vector space can be 

uniquely expressed as a linear combination of the vectors that form its basis as 

follows; 

𝒖 = 𝛼1𝝋𝟏 + 𝛼2𝝋𝟐 +⋯+ 𝛼𝑛𝝋𝒏 =  𝛼𝑖𝝋𝒊
𝑛
𝑖=1 = 𝜱𝜶, (2.4) 

where  𝝋𝟏
 ,𝝋𝟐,… ,  𝝋𝒏   is the basis of the vector space and 𝛼2 ,𝛼2,…𝛼𝑛  are scalar 

coefficients, 𝜱 denotes an 𝑁 × 𝑁 basis matrix.  The columns of 𝜱 are the basis 

vectors 𝝋𝒊  and 𝜶 denotes a vector of length 𝑁 whose entries are 𝛼𝑖 . The columns 

of the matrix are said to be orthonormal if the following relationship holds; 

 𝝋𝒊,𝝋𝒋
 =  

1 for 𝑖 = 𝑗
0 for 𝑖 ≠ 𝑗

  (2.5) 

For any orthonormal basis, 𝜱𝜱𝑇 = 𝑰 where 𝜱𝑇  is the transpose of the 

orthonormal basis matrix 𝜱 and 𝑰 denotes the 𝑁 × 𝑁 identity matrix [42]. The 

scalar coefficients 𝛼𝑖  can be calculated using the inner products between the 

vectors and the columns of the basis matrix as follows; 

𝛼𝑖 =  𝒖,𝝋𝒊   or 𝜶 = 𝜱𝑇𝒖 (2.6) 
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For any two vectors 𝒖,𝒗 ∈ RN
, the Euclidean inner product of the vectors is 

defined by;  

 𝒖,𝒗 =  𝑣𝑖𝑢𝑖

𝑛

𝑖=1

= 𝒖𝑇𝒗 (2.7) 

Vector inner product spaces are vector spaces with an inner product defined upon 

them. Inner products are used to determine the length of a vector. The inner 

product of vectors is a scalar that possesses the properties of linearity in first slot, 

positivity, positive definiteness and conjugate symmetry. For any three vectors 

𝒖,𝒗,𝒘 ∈ 𝑉, the linearity in first slot implies that; 

  (𝒖 + 𝒗),𝒘 =  𝒖,𝒘 +  𝒗,𝒘    and   𝑎𝒗,𝒘 = 𝑎 𝒖,𝒘   (2.8) 

where  𝑎 ∈ R.  The positivity property requires that; 

 𝒖,𝒗 ≥ 0   for all  𝒖,𝒗 ∈ 𝑉  (2.9) 

The positive definiteness of the inner product space means that the inner product; 

  𝒖,𝒘 = 0 if and only if 𝒘 = 𝟎 (2.10) 

The conjugate symmetry property is satisfied if and only if; 

 𝒖,𝒗 =  𝒗,𝒖  ∗   for all 𝒖,𝒗 ∈ 𝑉   (2.11) 

 For real vector spaces, the conjugate symmetry of an inner product is an actual 

symmetry since a real number 𝑥 ∈ ℝ is always equal to its complex conjugate. 

Let 𝑉 = 𝔽𝑛  be a vector space and 𝒖 and  𝒗 be vectors in the vector space such 

that   u =  𝑢1,… ,𝑢𝑛 ∈  𝔽𝑛  and   𝒗 =  𝑣1,… , 𝑣𝑛 ∈  𝔽𝑛 . The inner product of the 

two vectors on the vector space is given by; 

 𝒖,𝒗 =  𝑢𝑖

𝑛

𝑖

𝑣𝑖
∗ (2.12) 

For a real vector space ( 𝔽𝑛 = ℝ𝑛
) and the expression for the inner product 

reduces to a dot product which is given by; 

 𝒖,𝒗 = 𝑢1𝑣1
∗ + ⋯+ 𝑢𝑘𝑣𝑘

∗ (2.13) 

Let 𝑉 = 𝔽(𝑧) be the vector space of polynomials with coefficients in 𝔽. Given 

𝑓,𝑔 ∈ 𝔽(𝑧), their inner product is defined as: 
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 𝑓,𝑔 =  𝑓 𝑧 𝑔 𝑧 ∗𝑑𝑧

1

0

, (2.14) 

where 𝑔 𝑧 ∗is the complex conjugate of the polynomial 𝑔 𝑧 . The inner product 

of polynomials is a real-valued function that has the properties of positivity 

symmetry, additivity and homogeneity. The square root of the inner product of a 

vector and itself is its Euclidean or l2-norm which is defined as; 

 𝒖 2  =   𝒖,𝒖   =   𝑢𝑖𝑢𝑖

𝑛

𝑖=1

=  𝒖𝑇𝒖 (2.15) 

The Cauchy-Schwarz inequality holds for any two vectors 𝒖,𝒗 ∈ ℝ𝑛
.The 

inequality can be expressed as follows: 

  𝒖,𝒗  ≤  𝒖  𝒗  (2.16) 

 The equality holds if and only if  𝒖 = 𝛽𝒗 where 𝛽 ∈ ℝ. The Euclidean norm of a 

vector has the property of positivity which can be expressed as follows; 

 𝒖 2  >  0   for  𝒖 ≠ 𝟎 (2.17) 

The norm also possesses the property of homogeneity as follows; 

||𝑟𝒗||  =  |𝑟|||𝒗||, (2.18) 

where 𝑟 ∈ ℝ. For any two real vectors 𝒖,𝒗 ∈ ℝ𝑛
, the inner product obeys the 

triangle inequality which can be stated as; 

||𝐮 +  𝐯||  <  ||𝒖||  +  ||𝒗|| (2.19) 

A vector function that satisfies the properties of positivity, homogeneity, and the 

triangle inequality is referred to as a vector norm. Signals can be treated as real-

valued functions having domains that are either continuous or discrete. These 

domains are also either finite or infinite. In a discrete and finite domain, signals 

can be treated as vectors in 𝑁-dimensional Euclidean spaces denoted by ℝ𝑁
. The 

lp-norm of vector  𝒙 in such a vector space is defined for 𝑝 ∈  [1,∞] as follows; 
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 𝒙 𝑝 =

 
 
 

 
 

   𝑥𝑖  𝑝
𝑛

𝑖=1

𝑝

 

   max 𝑥𝑖       for 𝑝 = ∞  

  for 𝑝 ∈   1,∞  (2.20) 

When this definition of the 𝑙𝑝-norm is extended to the case when 𝑝 < 1, the norm 

fails to satisfy the triangle  inequality and it is then referred to as a quasi-norm. 

The norms that are commonly utilized in sparse signal recovery are the l0-, l1- and 

l2- norms. For a vector 𝒙, the  l0-norm is defined as follows; 

𝑙0 =  𝒙 0 =
lim

𝑝 → 0
     𝑥𝑖 

𝑝

𝑁

𝑖=1

 

1
𝑝

=  supp(𝒙)  (2.21) 

where supp(𝒙) =  𝑖 : 𝑥𝑖 ≠ 0} is the support of vector 𝒙 and  supp 𝒙   is the 

cardinality of  supp(𝒙). This quantity is not even a quasi-norm since it does not 

meet the other two of the requirements of a norm. The 𝑙2-norm of a vector 𝒙 is 

equivalent to the square root of the inner product of a vector and itself.  It can be 

expressed as follows: 

 𝒙 2 =    𝑥𝑖 
2

𝑁

𝑖=1

 

1
2

 (2.22) 

Norms as usually used as measures of the signal strength as well as the amount of 

noise corrupting it [9, 20, 21, 38]. 

A Set of ℝ𝑛
 elements is said to be convex if any convex combination of 

any two points 𝑥1, 𝑥2 that are elements of the set is also an element in the same 

set as follows: 

𝜆𝑥1  +   1 −  𝜆 𝑥2  ∈  𝐷, (2.23) 

 where 𝜆 ∈   0, 1  and 𝑥1 ,𝑥2  ∈  𝐷. For a convex set, the line segment which 

connects the two points is fully contained in the set. A function f(x) is said to be 

convex in the non-empty convex set D ⊂ ℝ𝑛
 if  ∀ 𝑥1, 𝑥2  ∈  𝐷  and  ∀𝛼 ∈ (0, 1)   

the following equation holds; 
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f (α𝑥1 + ( 1 − α) 𝑥2) ≤ αf (𝑥1) + (1 − α) f (𝑥2) (2.24) 

The function is said to be a strictly convex function if the following expression is 

obeyed; 

f (α𝑥1 + ( 1 − α) 𝑥2) < αf (𝑥1) + (1 − α) f (𝑥2) (2.25) 

This definition of a convex function implies that the linear interpolation of two 

points on the convex function is always greater than the function values between 

the points. If 𝐷 is a non-empty open convex set and f (x) is a differentiable 

function in the set, then the function is convex if and only if the following 

inequality holds; 

𝑓 (𝑦)  ≥  𝑓 (𝑥)  + (𝑦 −  𝑥)𝑇  𝛻𝑓 (𝑥) ,   ∀𝑥,𝑦 ∈  𝐷 (2.26) 

Optimization is a mathematical approach that is used as a principle of 

analyzing a variety of complex decision and allocation problems experienced in 

various fields. It is a scientifically elegant approach that offers a significant 

degree of operational simplicity. The procedure of solving a decision problem 

using optimization involves selection of values for a number of interrelated 

variables. The relationship between the values is given in form of an objective 

function that is designed to quantify the performance and also measure the quality 

of the decision made. The objective function is either maximized or minimized 

depending on the particular decision requirements and subject to one or more 

constraint functions that limit the selection of values. A minimization type of an 

optimization problem can be expressed as follows; 

Minimize  𝒄𝑇𝒙 

Subject to  𝒂𝒊
𝑇𝑥 ≤ 𝑏𝑖,  for 𝑖 = 1,… , 𝑞, 

(2.27) 

where 𝑥 ∈ ℝ𝑁  is a vector of the unknowns that is termed the optimization 

variable, 𝒄𝑇𝒙 is the objective function 𝒂𝒊
𝑇𝑥 ≤ 𝑏𝑖 are the constraint functions and 𝑞 

is the number of the constraint functions. The vectors 𝒄,𝒂𝒊,…  ,𝒂𝒒 ∈ ℝ𝑁    and the 

scalars 𝑏𝑖,…  ,𝑏𝑝 ∈ ℝ are the parameters that specify the objective and constraint 

functions respectively. A vector 𝒙 is said to be optimal or a solution of the 



Chapter 2. Literature Review 

 

17 
 

optimization problem if it yields the smallest objective function value among all 

the optimization variable vectors that satisfy the constraint inequalities [38-40]. 

It is usually, not possible to fully express all the complex interactions between the 

variables and the appropriate optimization objectives as well as constraints in a 

single decision problem. For that reason, a particular optimization formulation is 

usually regarded as only an approximation of the actual decision problem. 

Therefore, the optimization problem formulation always involves a tradeoff 

between conflicting objectives so that the mathematical model obtained is 

sufficiently accurately non-complex to capture the problem description and 

building a model that is tractable [40].  

The optimization problems can be broadly divided into two categories 

namely linear programming and non-linear programming. The non-linear 

programming class can further be classified as either unconstrained problems or 

constrained problems. Linear programming optimization is the most natural type 

of formulation used in many of the decision problems. They involve the 

description of a problem using linear functions of the variables. This implies that 

the objective function is a linear function of the unknowns and also, the 

constraints functions are linear equalities or inequalities in the unknowns. The 

linear programming type is more commonly used in decision problem formulation 

than its non- linear counterpart because its theory is richer and also the 

computation of linear problems is simpler. However, there are some types of non-

linear programming problems that have well developed theories as well as 

effective algorithms for determining their solutions. The convenience of linear 

programming is primarily at its modeling stage and not the solution determination 

phase. A generalized minimization-based linear programming problem takes the 

form; 

Minimize  𝑓0(𝑥) 

Subject to  𝑓𝑖(𝑥) ≤ 𝑏𝑖,  for 𝑖 = 1,… , 𝑞, 
(2.28) 
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where 𝑓0(𝑥) is the linear objective function and 𝑓𝑖(𝑥) are the linear constraint 

functions. An optimization programming problem is linear if both the objective 

and the constraint functions satisfy the superposition as well as the scaling 

properties as follows; 

𝑓𝑖 𝛼𝑥+ 𝛽𝑦 = 𝛼𝑓𝑖 𝑥 + 𝛽𝑓𝑖 𝑦        for 𝑖 = 0,… , 𝑞, (2.29) 

where 𝑥,𝑦 ∈ ℝ𝑁  and all 𝛼, 𝛽 ∈ ℝ. If the optimization problem does not satisfy 

this property, it is referred to as a non-linear program. 

Optimization problems can also be categorized as either convex or non-convex 

problems. If both objective and constraint functions are convex, the optimization 

problem is termed convex otherwise, it is a non-convex problem. Tractable and 

efficient algorithms exist for solving convex optimization problems. For such 

problems, the following inequality must hold: 

𝑓𝑖 𝛼𝑥+ 𝛽𝑦 ≤ 𝛼𝑓𝑖 𝑥 + 𝛽𝑓𝑖 𝑦        for 𝑖 = 0,… , 𝑞, (2.30) 

for all 𝑥,𝑦 ∈ R
N
 and 𝛼,𝛽 ∈R with 𝛼 + 𝛽 = 1 and  𝛼 ≥ 0 𝛽 ≥ 0. 

The procedure of solving an optimization problem involves choosing the value of 

𝑥 that has the minimum cost (objective function value) among all the choices that 

meet the firm requirements specified in form of the constraint functions.  The 

effectiveness of an optimization algorithm depends on a number of factors. These 

factors are the form of the objective as well as the constraint functions and the 

number of variables and constraints. Another important factor is the structure or 

sparsity of the variables vector. In general, the optimization problem is difficult to 

solve thereby requiring some compromise between computational complexity and 

tractability in order to easily solve it. However, two sub-classes of convex 

optimization have effective algorithms that can solve problems with up to 

thousands of variables and constraints. These are the least squares and the linear 

programming problems [38-42]. Optimization problems find applications in fields 

such as electronic devices sizing, communication channel optimization and sparse 

signal recovery. The generalized least squares convex optimization problem has 
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an objective function that is a sum of squares. It has no constraint functions and 

can be expressed as; 

minimize  𝑓0 𝑥 =  𝑨𝒙 − 𝑏 2
2 =   𝒂𝒊

𝑇𝒙 − 𝑏𝑖 
2𝑀

𝑖=1  (2.31) 

where 𝑨 ∈ ℝ𝑀×𝑁 is a matrix, 𝒂𝒊
𝑇  are the rows of matrix A, 𝑏𝑖  are scalar constants 

and  𝒙 ∈ ℝ𝑁 is the optimization variable vector. This problem can be written as a 

set of linear equations as follows; 

 𝑨𝑇𝑨 x = 𝑨𝑇𝑏 (2.32) 

The solution of this set of equations can then be obtained as; 

𝒙 =  𝑨𝑇𝑨 −1𝑨𝑇𝑏 (2.33) 

The time required to solve the least squares convex optimization problem is of 

computational complexity order 𝑂(𝑁2𝑀). When the matrix 𝑨 is sparse, it will 

have fewer than 𝑁𝑀 non-zero entries. If this signal sparsity is exploited, the 

problem can be solved faster. Other applications of the least squares convex 

optimization are in the fields such as regression analysis, optimal control and 

parameter estimation. It is also used in the maximum likelihood estimation of a 

signal from linear measurements that have been corrupted by Gaussian noise. 

For an optimization problem to fit the least squares model, it must have a 

quadratic objective function in a form that is at least positive semi-definite. The 

general form of the least squares convex optimization problem can be modified in 

order to improve its robustness to noise and measurement errors. Two of the 

modified forms of the problem are the weighted least squares and the regularized 

least squares problems. The weighted least squares problem has an objective 

function given by: 

𝑓0
 x =  𝑤𝑖 𝒂𝒊

𝑇𝒙 − 𝑏𝑖 
𝟐

𝑀

𝑖=1

 (2.34) 

where 𝑤1,… ,𝑤𝑀 are the function weights that reflect the corruption of the 

optimization vector, 𝒙 by errors of unequal variances. A regularization least 

squares problem arises when the vector 𝒙 to be estimated has a known prior 

distribution. It has the objective function; 
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𝑓0 𝒙 =  𝑤𝑖 𝒂𝒊
𝑇𝒙 − 𝑏𝑖 

2

𝑀

𝑖=1

+ 𝜌 𝒙𝑖
2

𝑀

𝑖=1

, (2.35) 

where 𝜌 > 0 is the regularization parameter [9, 21]. 

2.2  The Sampling Theorem 

As opposed to analogue systems, their digital counterparts process 

discrete-time signals using very flexible and efficient algorithms. Since most 

signals of interest naturally exist as continuous-time functions, there is need to 

convert analogue signals in to digital form in order to take advantage of the good 

flexibility, repeatability and stability of Digital Signal Processing (DSP) systems. 

The Shannon-Nyquist sampling theorem prescribes the minimum rate at which a 

band-limited continuous-time signal should be sampled in order to digitize it 

without loss of information. The theorem plays a crucial role in most ADC and 

DSP systems [1, 2, 3, 6, 35].  

2.2.1 One-Dimensional Sampling 

The ideal sampling process of an analogue signal 𝑥(𝑡) is equivalent to 

multiplication of the signal by a periodic train of unit impulses 𝑝(𝑡) to yield a 

sampled signal 𝑥𝑝 𝑡 . The sampling signal can be expressed as follows; 

𝑥𝑝 𝑡 = 𝑥 𝑡 𝑝(𝑡)  = 𝑥(𝑡)  𝛿(𝑡 − 𝑛𝑇𝑠)

∞

𝑛=−∞

 

 

(2.36) 

where 𝑇𝑠 is the sampling period. The sampling signal can be expressed as a 

Fourier series in following form; 

𝑝(𝑡)  =  𝐶𝑛𝑒
𝑗2𝜋𝑛𝑡/𝑇𝑠

∞

𝑛=−∞

 

 

(2. 37) 

where 𝐶𝑛  represents the complex Fourier coefficients that can be determined as 

follows; 
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𝐶𝑛 =
1

𝑇𝑠
 𝑝(𝑡)

𝑇𝑠
2

−
𝑇𝑠
2

𝑒−𝑗2𝜋𝑛𝑡 /𝑇𝑠𝑑𝑡 =
1

𝑇𝑠
 (2. 38) 

Substituting the Fourier transform representation of 𝑝(𝑡) in equation (2.36) results 

in; 

𝑥𝑝 𝑡 =
𝑥(𝑡)

𝑇𝑠
 𝑒𝑗2𝜋𝑛𝑡/𝑇𝑠

∞

𝑛=−∞

 

 

(2.39) 

The Fourier transform of 𝑥𝑝 𝑡  is then obtained as; 

𝑋𝑝 𝑓 =  𝑥𝑝 𝑡 𝑒
−𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞

=
1

𝑇𝑠
   𝑥 𝑡 𝑒

𝑗
2𝜋𝑛𝑡
𝑇𝑠

∞

𝑛=−∞

 
∞

−∞

𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡, (2.40) 

 where 𝑋𝑝 𝑓  is the Fourier transform of 𝑥𝑝 𝑡 . By interchanging the order of 

integration and summation in equation followed by application of the frequency 

shift property of the Fourier transform, 𝑋𝑝 𝑓  becomes; 

𝑋𝑝 𝑓 =
1

𝑇𝑠
 𝑋(𝑓 −

𝑛

𝑇𝑠
)

∞

𝑛=−∞

 (2.41) 

where 𝑋(𝑓) is the Fourier transform of 𝑥 𝑡 . The spectrum of the sampled signal 

is therefore identical to that of the continuous-time signal but with an infinite 

number of replicas at frequencies that are integral multiples of the sampling rate. 

If 𝑥 𝑡  is band-limited to −𝐵 Hz ≤ 𝑓 ≤ 𝐵 Hz, it can be recovered from 𝑥𝑝 𝑡  by 

means of a low-pass filter so long as the replicas of 𝑋𝑝 𝑓  do not overlap 

resulting in an undesirable phenomenon referred to as aliasing. Therefore to avoid 

aliasing, the highest frequency in the original signal spectrum, 𝑋(𝑓) must be less 

or equal to the lowest frequency of the first replica 𝑋(𝑓 −
1

𝑇𝑠
).  Therefore, the 

following relationship must be satisfied; 

𝑓𝑠 ≥ 2𝐵 (2.42) 



Chapter 2. Literature Review 

 

22 
 

where 𝑓𝑠 =
1

𝑇𝑠
 is the sampling frequency. This result is termed the Shannon-

Nyquist sampling theorem while a sampling frequency of 2𝐵 Hz is referred to as 

the Nyquist rate [2, 43-45].  

The ideal sampling process of a one-dimensional spatial frequency signal 

𝐹(𝑘𝑥) is equivalent to multiplication of the signal by a periodic train of impulses 

as follows; 

𝐹 (𝑘𝑥) = 𝐹(𝑘𝑥)  𝛿(𝑘𝑥 − 𝑛𝛥𝑘)

∞

𝑛=−∞

 (2.43) 

where 𝐹 (𝑘𝑥) is the sampled signal and 𝛥𝑘  is the sampling period whose 1 𝛥𝑘  is 

the sampling rate. The parameter 𝑘𝑥  represents the spatial frequency. The periodic 

train of impulses can be expressed in Fourier series form as follows;  

 𝛿(kx − 𝑛𝛥𝑘)

∞

𝑛=−∞

=  𝐶𝑛𝑒
𝑗2𝜋𝑛𝑘𝑥 𝛥𝑘 

∞

𝑛=−∞

=
1

𝛥𝑘
 𝑒𝑗2𝜋𝑛𝑘𝑥 𝛥𝑘 

∞

𝑛=−∞

 (2.44) 

where 𝐶𝑛  is the  𝑛𝑡  complex Fourier series coefficient. The sampled spatial 

frequency domain signal can then be expressed in terms of the sampling signal 

and 𝐹(𝑘𝑥) as; 

𝐹 (𝑘𝑥) =
𝐹(𝑘𝑥)

𝛥𝑘
 𝑒𝑗2𝜋𝑛𝑘𝑥 𝛥𝑘 

∞

𝑛=−∞

 (2.45) 

The object domain representation of the sampled signal is obtained by 

determining the inverse DFT  as follows; 

𝑓  x =   
𝐹 (𝑘𝑥)

𝛥𝑘
 𝑒𝑗2𝜋𝑛𝑘𝑥 𝛥𝑘 

∞

𝑛=−∞

 
∞

−∞

𝑒𝑗2𝜋𝑘𝑥𝑥𝑑𝑘𝑥  (2.46) 

where 𝑓  x  is the object (spatial) domain representation of the sampled signal [43, 

46, 47]. Re-arranging the equation and also interchanging the order of integration 

and summation yields; 
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𝑓  x  =
1

𝛥𝑘
  𝐹 (𝑘𝑥)𝑒𝑗2𝜋𝑘𝑥 (𝑥+𝑛 𝛥𝑘 )𝑑𝑘𝑥

∞

−∞

∞

𝑛=−∞

 (2.47) 

 Applying the space-shift property of the Fourier transform simplifies the object 

domain signal to; 

𝑓  x =   
1

𝛥𝑘
 𝑓(x + 𝑛 𝛥𝑘  )

∞

𝑛=−∞

 (2.48) 

where 𝑓(x) is the spatial signal prior to sampling. The function 𝑓  x  consists of 

replicas of the analogue signal 𝑓 x  separated by the sampling rate. If 𝑓 x  is 

space limited to −𝑥𝑚𝑎𝑥 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥  , the condition for avoiding the aliasing 

distortion in the sampled signal is; 

1

𝛥𝑘
≥ 2𝑥𝑚𝑎𝑥  (2.49) 

Therefore, the minimum sampling rate that ensures that aliasing does not occur is 

equal to the total spatial extent of the image (2𝑥𝑚𝑎𝑥 ). This total extent of the 

space-limited spatial signal is referred to as its Field of View (FoV) while the 

sampling rate of 2𝑥𝑚𝑎𝑥  is its Nyquist rate sampling. In practice, frequency-

domain sampling is usually performed on a finite frequency space. This finite-

frequency space sampling is equivalent to multiplying an ideally sampled signal 

by a band-limiting window function  𝑊(𝑘𝑥) as follows; 

𝐹  𝑘𝑥 = 𝐹 𝑘𝑥 𝑊 𝑘𝑥  𝛿 𝑡 − 𝑛𝛥𝑘 

∞

−∞

, (2. 50) 

where the window function (𝑊(𝑘𝑥 )  is defined as follows; 

𝑊 𝑘𝑥 =  
1  𝑓𝑜𝑟 − 𝑘𝑥𝑚𝑎𝑥 ≤ 𝑥 ≤ 𝑘𝑥𝑚𝑎𝑥  

0                              elsewhere
   (2. 51) 

Once the windowed function is transformed into the object-domain, it results in 

the spatial signal 𝑓 (𝑥) given by;  
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𝑓 (𝑥) =   
2𝑘𝑥𝑚𝑎𝑥
𝛥𝑘

  𝑓(x + 𝑛 𝛥𝑘𝑥  )

∞

𝑛=−∞

 ∗ sinc(2𝑘𝑥𝑚𝑎𝑥 𝑥) (2. 52) 

Multiplication of the signal by the sinc term results in ringing artifacts that are 

referred to as Gibb’s phenomenon [32, 46]. 

2.4.2  Two-Dimensional Sampling 

An image 𝑓(𝑥,𝑦) is an example of a two-dimensional spatial signal. 

Sampling of a band-limited image in the object domain leads to replication in the 

spatial frequency domain.  

The ideal sampling process of a continuous-space image 𝑓(𝑥,𝑦) can be 

modeled as a multiplication of the signal by a two-dimensional sampling function 

𝑝(𝑥,𝑦) consisting of a periodic array of Dirac delta impulses as shown in Figure 

2.1. This sampling signal can be expressed as; 

𝑝(𝑥,𝑦)  =   𝛿(x −𝑚𝛥𝑥,𝑘𝑦 − 𝑛𝛥𝑦)

∞

𝑚=−∞

∞

𝑛=−∞

 (2. 53) 

where 𝛥𝑥 and 𝛥𝑦 are the spacings between the impulses in the 𝑥- and 𝑦-directions 

respectively. 

 
Figure 2.1. Two-dimensional Dirac delta sampling function [after 4] 
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The sampled image is then given by; 

𝑓𝑝 𝑥,𝑦 = 𝑓(𝑥,𝑦)𝑝(𝑥,𝑦)  

=   𝑓(𝑚𝛥𝑥,𝑛𝛥𝑦)𝛿(x −𝑚𝛥𝑥, y − 𝑛𝛥𝑦)

∞

𝑚=−∞

∞

𝑛=−∞

 

 

(2.54) 

The Fourier transform of the sampled image is given by; 

𝐹𝑝 𝑘𝑥 ,𝑘𝑦 =     𝑓𝑝 𝑥,𝑦 

∞

𝑚=−∞

∞

𝑛=−∞

e−j2π[𝑘𝑥𝑥   +𝑘𝑦𝑦]𝑑𝑥𝑑𝑦 =

∞

−∞

∞

−∞

 

     𝑓(𝑚𝛥𝑥,𝑛𝛥𝑦)𝛿(x −𝑚𝛥𝑥,𝑘𝑦 − 𝑛𝛥𝑦)e−j2π[𝑘𝑥𝑥+𝑘𝑦𝑦] 

∞

𝑚=−∞

∞

𝑛=−∞

𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 

(2.55) 

where 𝐹𝑝 𝑘𝑥 , 𝑘𝑦  is the 2D-DFT of 𝑓𝑝 𝑥,𝑦  that can be expressed as a two 

dimensional convolution of two Fourier transforms a follows; 

𝐹𝑝 𝑘𝑥 ,𝑘𝑦 = 𝐹 𝑘𝑥 ,𝑘𝑦 ∗∗ 𝑃 𝑘𝑥 ,𝑘𝑦 , (2.56) 

where the symbol ∗∗ denotes the 2D convolution while the functions  𝐹 𝑘𝑥 ,𝑘𝑦   

and 𝑃 𝑘𝑥 ,𝑘𝑦  represent the 2D-DFTs of  𝑓(𝑥,𝑦)  and 𝑝(𝑥,𝑦) respectively. The 

2D-DFTs are given by; 

𝐹 𝑘𝑥 , 𝑘𝑦 =   𝑓(𝑥,𝑦)e−j2π[𝑘𝑥𝑥   +𝑘𝑦𝑦]𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (2.57) 

and 

𝑃 𝑘𝑥 ,𝑘𝑦 =   𝑝(𝑥,𝑦) 𝑒−𝑗2𝜋[𝑘𝑥𝑥   +𝑘𝑦𝑦]𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 (2.58) 

The function 𝑃 𝑘𝑥 ,𝑘𝑦  is an infinite array of 2D Dirac delta impulses in the 

frequency domain given by; 
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𝑃 𝑘𝑥 ,𝑘𝑦 =
1

𝛥𝑥𝛥𝑦
   𝛿(𝑘𝑥 −

𝑚

𝛥𝑥
,𝑘𝑦 −

𝑛

𝛥𝑦
)

∞

𝑚=−∞

∞

𝑛=−∞

  (2.59) 

 

where 
1

𝛥𝑥
  and 

1

𝛥𝑦
 represent the spatial frequency domain sampling rates in the 𝑥- 

and 𝑦-directions respectively [4, 46]. 

The convolution of equation (2.56) yields; 

 

𝐹𝑝 𝑘𝑥 ,𝑘𝑦 =
1

𝛥𝑥𝛥𝑦
  𝐹 𝑘𝑥 − 𝛼,𝑘𝑦 − 𝛽 𝑑𝛼𝑑𝛽

∞

−∞

∞

−∞

   𝛿(𝛼 −
𝑚

𝛥𝑥
,𝛽 −

𝑛

𝛥𝑦
)

∞

𝑚=−∞

∞

𝑛=−∞

  

 

(2.60) 

Inter-changing the order of the integration and summation followed by invocation 

of the sifting property of the Dirac-delta function yields; 

𝐹𝑝 𝑘𝑥 ,𝑘𝑦 =
1

𝛥𝑥𝛥𝑦
   𝐹(𝑘𝑥 −

𝑚

𝛥𝑥
, 𝑘𝑦 −

𝑛

𝛥𝑦
)

∞

𝑚=−∞

∞

𝑛=−∞

  (2.61) 

Therefore the spectrum of the sampled image consists of the spectrum of 𝑓 𝑥,𝑦  

plus an infinite number of replicas that are separated by 
1

𝛥𝑥
  and 

1

𝛥𝑦
 in the 𝑥- and 𝑦- 

A continuous-space image that is band-limited to: −𝑘𝑥𝑚𝑎𝑥 ≤ 𝑘𝑥 ≤ 𝑘𝑥𝑚𝑎𝑥  and 

−𝑘𝑦𝑚𝑎𝑥 ≤ 𝑘𝑦 ≤ 𝑘𝑦𝑚𝑎𝑥 , can be perfectly reconstructed from its sampled version. 

directions respectively as shown in Figure 2.2. 

 

 

 

 

 

𝑘𝑦  
𝑘𝑦  

 
 

𝑘𝑥   

 𝑘𝑥  

(a)  (b)  

Figure 2.2. Sampled image spectrum (a) Original image (b) Sampled image 

[after 4] 
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This is achievable by spatial filtering if the sampling frequencies (
1

𝛥𝑥
  and 

1

𝛥𝑦
) are 

equal to or higher than the Nyquist rates (2𝑘𝑥𝑚𝑎𝑥  and 2𝑘𝑦𝑚𝑎𝑥 ). If the spectrum 

replicas of 𝐹𝑝 𝑘𝑥 , 𝑘𝑦  overlap due to under-sampling, artificial frequency 

components are introduced as in figure 2.3. The spectrum replicas are separated 

by 
1

𝛥𝑥
  and 

1

𝛥𝑦
 along the 𝑘𝑥   and 𝑘𝑦  axes respectively [4, 47]. The frequency 

domain aliasing due to object domain under-sampling manifests itself as the 

Moiré pattern artifacts. The artifacts appear as spurious low frequency 

components as can be seen inside the two central rings of Figure 2.4(b).   

 

 

 

 

 

𝑘𝑥  

 

    𝑘𝑦    

Figure 2.3. Spectrum of an under-sampled image [after 4] 
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(a) (b) 

Figure 2.4. Aliasing due to spatial  domain under-sampling (a) Original image 

spectrum    (b) Aliased image spectrum with Moiré patterns [after 4] 

 

 Magnetic resonance (MR) images are normally acquired in the Fourier 

transform domain and are therefore sampled in the spatial frequency domain. The 

spatial frequency domain sampling of a space-limited spatial signal results in 

object domain replication [3, 46].  

When a two-dimensional signal in the spatial frequency domain 𝑀(𝑘𝑥, 𝑘𝑦) 

is windowed and sampled at sampling periods  𝛥𝑘𝑥  and 𝛥𝑘𝑦 , it yields the signal  

𝑀 (𝑘𝑥, 𝑘𝑦)  given by; 

𝑀 (𝑘𝑥,𝑘𝑦) = 𝑀(𝑘𝑥 ,𝑘𝑦)𝑊(𝑘𝑥 ,𝑘𝑦)   𝛿(𝑘𝑥 − 𝑛𝛥𝑘𝑥 ,𝑘𝑦 − 𝑝𝛥𝑘𝑦 )

∞

𝑛=−∞

∞

𝑝=−∞

 (2. 62) 

where 𝛥𝑘𝑥  and 𝛥𝑘𝑦  are the sampling periods in the 𝑥 and 𝑦 directions 

respectively. Their reciprocals (1/𝛥𝑘𝑥  and 1/𝛥𝑘𝑦 ) represent the sampling rates in 

the respective directions. The function 𝛿(𝑘𝑥 − 𝑛𝛥𝑘𝑥 ,𝑘𝑦 − 𝑝𝛥𝑘𝑦 ) is a 2D periodic 

train of Dirac-delta functions. The spatial frequencies in the 𝑥 and 𝑦 directions are 

represented by 𝑘𝑥  and 𝑘𝑦  respectively while the windowing function 𝑊(𝑘𝑥 ,𝑘𝑦) is 

given by; 
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𝑊 𝑘𝑥 , 𝑘𝑦 =  
1  for − 𝑘𝑥𝑚𝑎𝑥 ≤ 𝑘𝑥 ≤ 𝑘𝑥𝑚𝑎𝑥
1 for − 𝑘𝑦𝑚𝑎𝑥 ≤ 𝑘𝑦 ≤ 𝑘𝑦𝑚𝑎𝑥  

0                              elsewhere

    (2. 63) 

where 𝑘𝑥𝑚𝑎𝑥  and 𝑘𝑦𝑚𝑎𝑥  are the maximum spatial frequencies of the function in 

the 𝑥 and 𝑦 directions respectively. The sampled signal in the spatial domain 

𝑚  x, y  is obtained by taking the two-dimensional Inverse Discrete Fourier 

Transform (2D-IDFT) of  𝑀 (𝑘𝑥,𝑘𝑦)  to yield; 

𝑚  𝑥,𝑦 = 𝐾   𝑚(𝑥 +
𝑛

𝛥𝑘𝑥
 ,𝑦 +

𝑝

𝛥𝑘𝑦
)

∞

𝑛=−∞

∞

𝑝=−∞

 ∗∗ 𝑅 𝑥,𝑦 , (2. 64) 

where 𝑚(𝑥,𝑦) is the 2D-IDFT of  𝑀 𝑘𝑥 , 𝑘𝑦  and K is a constant. The symbol ∗∗ 

denotes 2D convolution of the periodic replicas of 𝑚(𝑥,𝑦) with a 2D sinc 

function  𝑅 𝑥,𝑦  which is given by; 

𝑅 𝑥,𝑦 = sinc(2𝑘𝑥𝑚𝑎𝑥 𝑥)sinc(2𝑘𝑦𝑚𝑎𝑥 𝑦) (2. 65) 

The 2D convolution operation gives rise to two-dimensional Gibb’s ringing 

artifacts that are superimposed on the signal. The amplitude of the rings decreases 

as the distance from the centre of the 2D signal increases [4, 25, 46]. The value of 

the constant 𝐾 is given by; 

𝐾 =
4𝑘𝑥𝑚𝑎𝑥 𝑘𝑦𝑚𝑎𝑥

𝛥𝑘𝑥𝛥𝑘𝑦
 (2. 66) 

For a signal that is space-limited to: −𝑥𝑚𝑎𝑥 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥  and −𝑦𝑚𝑎𝑥 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥 , 

the aliasing (wrap-around) phenomenon is experienced if the replicas of 𝑚(𝑥,𝑦)  

in 𝑚  𝑥, 𝑦  overlap as shown in Figure 2.5.  
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(a) (b) 

Figure 2.5. Aliasing due to frequency domain under-sampling (a) Original image      

(b) Aliased image with wrap-around phenomenon [after 46] 

 

To ensure this non-overlapping replication, the following relationships must hold; 

𝑥𝑚𝑎𝑥 ≤    
1

𝛥𝑘𝑥
− 𝑥𝑚𝑎𝑥   

and 

𝑦𝑚𝑎𝑥 ≤    
1

𝛥𝑘𝑦
− 𝑦𝑚𝑎𝑥   

(2.67) 

Therefore, the condition for avoiding aliasing can be deduced from these 

inequalities to be; 

1

𝛥𝑘𝑥
≥ 2𝑥𝑚𝑎𝑥  

and 

1

𝛥𝑘𝑦
≥ 2𝑦𝑚𝑎𝑥  

(2.68) 

Therefore, the Nyquist sampling rates in the 𝑥 and 𝑦 directions are are equal to 

the total extents of the image (2𝑥𝑚𝑎𝑥  and 2𝑦𝑚𝑎𝑥 ). The dimension 2𝑥𝑚𝑎𝑥  is the 

Field of view of the signal in the 𝑥-direction (FoVx) while  2𝑦𝑚𝑎𝑥  is its field of 

view in the 𝑦-direction (FoVy) [32, 46, 47].  
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2.3 Related Works 

A method for MR images reconstruction and denoising using Singular 

Value Decomposition (SVD) based low rank approximation was proposed by 

Lyra-Leite, Lustosa and Azevedo in [48]. The method requires a small number of 

image components and therefore less memory leading to a reduction in the 

number of computational operations. A low-rank approximation approach based 

on SVD was used to reconstruct and denoise of MR images. The decomposition 

scheme employed enabled the selection of data components that are most 

important for describing the image. The removal of noisy components in the 

image reduced the amount of data requiring processing and storage. This led to 

low computational complexity. The reconstruction quality improved with the 

number of measurement components used. However, the reconstructed images are 

noisy when all the image components are used.  

An MRI acquisition and reconstruction method was also suggested by 

Sarseena and Yadhu in [5]. Using this proposed algorithm, a ground-truth MR 

image was first partitioned into 8 × 8 pixels sub-images that do not overlap. The 

two-Dimensional Fractional Fourier Transform (2D-FrFT) was then applied to 

each sub-image in order to sparsify the image. The transformed image was then 

randomly under-sampled using a Poisson, Gaussian or Bernoulli probability 

density function to obtain only a fewer incoherent measurements. Next, the 

measurements were encoded using the run-length method on a row-by-row basis. 

The image was reconstructed using the maximum likelihood estimation Bayesian 

method based on estimation theory. The estimation scheme finds the values of 

parameters that maximize a likelihood function. The algorithm reconstructed high 

quality images from only a few MRI measurements. However, the method is 

likely to be computationally intensive since it involves a large number of steps.  

A study and analysis of MRI using compressive sampling techniques was 

conducted by Baruah and Sharma and reported in [34]. The number of 

measurements required was found to be approximately four to five times the 
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sparsity of the signal. Results of this study showed that an image that is sparse in 

time domain can be under-sampled in frequency domain for CS reconstruction 

since the time and frequency domain forms of a signal have minimum coherence. 

However, performance of the algorithm is dependent on the settings of four 

different parameters that cannot be deterministically obtained. This attribute 

makes it difficult to precisely determine the optimum values of the parameters. 

Also, the algorithm is performed in seven distinct steps which are likely to make 

it computationally intensive. In addition to the two shortcomings, the results are 

not optimal and an improvement in the reconstruction step has been suggested by 

the authors.  

A clustered compressive sampling based method for processing medical 

images was proposed by Tesfamicael and Barzideh in [35]. This algorithm is 

based on a Bayesian framework and applied to medical MR images. It also 

incorporates the special clustering structure that is exhibited by sparse signals. A 

Bayesian model for sparse signals is employed in this method with the 

incorporation of an extra penalizing parameter to enforce the clustering of the 

image data. The method produces better results than the non-clustered CS 

methods.  However, the quality of the reconstructed images is generally low. For 

example, using 50% measurements, the average Peak Signal to Noise Ratio 

(PSNR) of the reconstructed MR images is only 12 dB.  

A compressive sampling based algorithm for compression of MR images 

was proposed by Sheik Islam, Huang and Liang in [49]. It employs a 

measurement matrix to obtain three levels of the wavelet transform coefficients of 

the input image. Three different measurement matrices were tested in this 

algorithm. The matrices were based on the Gaussian, Bernoulli and random 

orthogonal distributions. The method uses the orthogonal matching pursuit as well 

as the basis pursuit techniques to reconstruct an image in the wavelet transform 

domain. The wavelet transform coefficients of each level are reconstructed 

separately. Using experimental results, it is demonstrated that the proposed 
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method gives better quality of compressed image than existing methods in terms 

of some proposed quality assessment indices. This quality improvement was also 

shown using other objective measures such as the SSIM and the PSNR metrics. 

However, the method requires 85% measurements to produce images of 

acceptable quality. The methods proposed in this thesis report require 

approximately 40% measurements to reconstruct MR images of comparable 

quality.  

A magnetic resonance imaging simulation algorithm based on wavelet 

domain encoding and compressive sampling was proposed by Liu, Nutter and 

Mitra in [50]. This adaptive CS method exploits the tree structure of non-zero 

wavelet coefficients of an MR image.  The approach allows control over the 

sensing procedure and also improves the CS reconstruction quality performance. 

It uses the principles employed in the wavelet domain based image compression 

techniques to encode the MRI data.  Adaptive k-space trajectories that rely on 

spatially selective RF excitation pulses are used to generate the wavelet functions. 

The measurement vectors formed from samples of multi-level wavelet 

decomposed images are used to compressively reconstruct the MR images. The 

reconstruction step of the algorithm is based on minimization of a total-variation 

regularized signal. This method guarantees good reconstruction quality but 

requires major modifications of the existing MRI equipment to allow acquisition 

of wavelet encoded k-space data. 

A proposed improved compressive sampling-based MRI reconstruction 

method using the complex double-density dual-tree discrete wavelet transform is 

presented in [51] by Zangen et al. Since MR images have smooth regions that are 

separated by edges of different orientations, the dual-tree wavelet transform based 

on one scaling function may not correctly yield the sparse representation of MR 

images. The proposed method therefore employs the double-density dual-tree 

wavelet transform since it is a better multi-resolution tool for providing 

acceptable sparse representation of MR images with different features. Total 
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variation is also exploited by the proposed algorithm as a penalty in the 

reconstruction process in order to suppress noise. Simulation results were used to 

demonstrate that the method reconstructs the edges and also reduces the artifacts 

that emanate from the under-sampling process. The method is likely to have high 

computational complexity making it unsuitable for real time imaging. 

Akanksha [52] proposed a greedy compressive sampling method for the 

reconstruction of medical images. The algorithm uses multi-wavelet transform to 

generate the sparse representation of an image. The transformation is selected 

since it simultaneously satisfies characteristics such as orthogonality, symmetry 

and regularity that are requirements for accurate CS measurement and 

reconstruction. The low frequency coefficients of the transformed image are fully 

measured since this is where most of the energy is concentrated. This effectively 

reduces the loss of useful information in the image. A random CS measurement 

scheme is then applied to the high frequency wavelet coefficients. The orthogonal 

matching pursuit iterative algorithm is then employed to recover the image from 

its compressive measurement.  Experimental results showed good visual quality 

in the reconstructed images. The image acquisition process is however quite long 

and also requires major modifications in the design of MRI equipment.  

In [53], Tina and Jayashree proposed a CS-based method that utilizes sparsity and 

energy distribution of the MR images in spectral space. The method uses discrete 

wavelet transform to obtain the sparse representation of an MR image. The 

transformation was preferred over the DFT since it leads to better signal 

reconstruction and also required fewer coefficients for image reconstruction. In 

addition, both time and frequency components are produced by DWT and also 

there is a clear distinction between the different frequency regions which allows 

better frequency resolutions. The method yielded better performance than random 

sampling Fourier transform-based CS methods. However, when the samples were 

collected from the low frequency region alone, high frequency signal information 

was lost leading to the blurring of the MR image. Also, when a large number of 
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samples in the low frequency region were discarded, the reconstructed image 

exhibited corruption by speckle noise. The authors also observed that, even with 

small reductions in image scan-time, the reconstructed image had poor quality and 

therefore recommended the search for a more efficient sampling method. They 

further noted that the energy based under-sampling alone did not result in 

reconstructed images of acceptable quality.  

A k-space sampling scheme for compressive measurement and 

reconstruction of MR images was proposed in [54] by Vellagoundar and Reddy. 

The algorithm optimizes the selection of k-space sampling trajectories in order to 

take more samples from the high-energy centre of the k-space than the high-

frequency periphery. Using the prior knowledge of energy distribution of the k-

space, a proposed probability density function (pdf) was used to generate the 

sampling trajectories. This was done for various parameters of the pdf and the 

optimum sampling trajectory chosen based on the reconstruction performance.  

The selected sampling trajectories were then applied on the k-space data of an 

MR image.  Simulation results were used to show that the method required 38% 

of the k-space data for acceptable image quality reconstruction. In addition, more 

than 20% of the higher energy samples around the centre of the k-space required 

to be fully captured and the rest of the k-space only needed to be under-sampled 

as closely as possible. Generally, the method produced good results but when 

12.5% or less of the full k-space was sampled from the low-frequency region, the 

reconstructed images showed artifacts in the phase-encoding direction.  

Qin and Guo [55] proposed a compressive sensing MR image 

reconstruction scheme. The method incorporates Total Generalized Variation 

(TGV) and shearlet transform to produce high quality images from compressively 

sensed incomplete spectral Fourier MRI data. The TGV and shearlet transform are 

used since a combination of Total Variation (TV) and wavelet transformation has 

limited effectiveness in reconstructing MR images from compressively sampled 

data. The numerical results for different sampling rates and noise levels showed 
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that the method preserves image features such as geometry, texture and 

smoothness. However, the quality of the reconstructed image is relatively low. 

For example, at 20% sampling rate, the average PSNR of the reconstructed image 

is 20.67 dB. In addition, the quality performance for different images is not 

consistent. This is implied by the large variance of the PSNR of the reconstructed 

images at 20% sampling rate. This standard deviation is 11.38 dB when computed 

using the results in the paper [55] as reported by Qin and Guo.  

A CS method for fast recovery of images from limited samples was 

proposed by Chun-Shien and Hung-Wei in [56].  The method commences with a 

linear transformation of a Gaussian random matrix.  The transformed matrix is 

then modified by setting a pre-determined number of columns to zero. The 

modified matrix is then inverted to yield the proposed CS sensing matrix. The 

signal is then sparsified by taking either the Discrete Cosine Transform (DCT) or 

the Discrete Wavelet Transform (DWT). The transformed signal is then 

multiplied by the sensing matrix to generate the CS measurement vector. The 

method further proposed a new CS recovery algorithm that does not follow the 

conventional procedure of CS reconstruction. The method seeks to determine an 

approximate reconstruction rather than the theoretically perfect reconstruction 

which is the goal of conventional compressive sampling. The proposed 

reconstruction was based on the observation that natural images are not 

sufficiently sparse and therefore violates the fundamental requirement of 

conventional CS. The specially designed sensing technique employed resulted in 

high reconstruction speeds due to the possibility of obtaining the solution to the 

CS recovery problem in a closed form. The imaging acceleration is however 

achieved at the expense of the image quality. For example, the average Structural 

SIMilarity (SSIM) index achieved at 25% sampling ratio is 0.81 with a standard 

deviation of 0.0352. In addition, the paper clarifies that the random under-

sampling approach employed in conventional CS may be better than the proposed 

method for signals that are highly sparse. 
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2.4 Knowledge Gaps 

This research work was motivated by the identification of four areas that 

have not been fully explored in the related works. The existing knowledge gaps 

have been exploited in this research investigation to develop proposed CS-MRI 

algorithms that are fast and robust to noise and artifacts. The gaps are as follows: 

(i) The previous researchers have not exploited the characteristic profile and 

symmetry of the image coefficients in the DWT as well as the DFT 

sparsifying domains. For example, the magnitude of the vectorized DFT 

coefficients of a MR image exhibits a Gaussian-like profile. The vector has 

the largest magnitude at zero spectral frequency which decreases 

monotonically as the frequency increases. By enforcing this coefficients 

profile in the reconstructed image, this research investigation has proposed 

algorithms that have yielded improved image  quality and reduced scan time.  

(ii) The proposed methods in the related works have not made any efforts to post-

process the CS reconstructed images. In this research investigation, proposed 

apodization functions have been incorporated to denoise the reconstructed 

image coefficients. Experimental results have been used to demonstrate the 

quality improvement as well as acquisition time reduction effects.  

(iii) No attempt has been made to re-use the compressively acquired image 

coefficients in the CS reconstructed image coefficients. Here, replacement of 

some of the CS reconstructed coefficients by the measured ones has been 

used to improve the quality of MR images reconstruction.  

(iv) In addition, the frequency occupancy of the noise and artifacts in the 

reconstructed images has not been investigated by the related works. It has 

been demonstrated in this research investigation that the degradations affect 

the low-energy, high spatial frequency k-space coefficients more than the low 

frequency ones.  This spectral distribution of noise and artifacts has been 

utilized in the design of proposed filter functions that have considerably 

increased the MR image reconstruction quality. 
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CHAPTER 3 

MAGNETIC RESONANCE IMAGING 

In this chapter, the theory of Magnetic Resonance Imaging (MRI) is 

presented. The principles of generation of the Free Induction Decay (FID) signal 

and the image formation process are covered. Descriptions of the artifacts 

associated with MRI as well as fast imaging techniques are also given here.  

3.1  Magnetic Resonance Imaging Principles 

The MRI technique utilizes the interaction between spinning nuclei placed 

in a strong static magnetic field and a Radio Frequency (RF) signal to produce 

images of good contrast. A spinning atomic nucleus exhibits a magnetic dipole 

moment. If the nucleus has an odd number of protons and/or neutrons, a net 

magnetization 𝑴𝟎 is produced. Elements such as Hydrogen, Fluorine and Sodium 

have odd numbers of protons in their nuclei and can therefore be used in MRI. 

Hydrogen protons are mainly used for medical MRI due to their abundance in the 

body mainly in form of water and fat. When the hydrogen protons are subjected to 

a strong static external magnetic field 𝑩𝟎, their magnetic dipole moments align 

with the field and also spin about their axis at a specific frequency known as the 

Larmor frequency. Proper stimulation of the protons by a resonant RF signal at 

the Larmor frequency can force the net magnetization to either partially or 

completely flip in a spiral motion from the axis of 𝑩𝟎 (z-axis) into a plane 

perpendicular to the applied field. Once the applied RF-excitation field is 

withdrawn, the magnetization of the nuclei precessess in the static field as they re-

align with the axis of 𝑩𝟎. This re-alignment generates an RF signal at a resonant 

(Larmor) frequency which is detected by the MRI system and used to generate the 

MR image [27, 37]. The intensity of the detected signal depends on the number of 

spinning protons (spin density) in the tissue. Since the amounts of water in 

different body tissues differ, the image formed will show the different body 

tissues. The MRI equipment consists of a static magnet, gradient coils and RF 
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coils. The magnet generates the static magnetic field 𝑩𝟎 while the gradient coils 

are used to produce the gradient field 𝑮. This field has three orthogonal 

components denoted as 𝑮𝒙, 𝑮𝒚 and 𝑮𝒛. The RF coils generate an excitation field 

𝑩𝟏 and also act as a receiving antenna for the MRI signal. The relative orientation 

of the coils as shown in Figure 3.1.  

In addition, the equipment has shimming coils that reduce non-

uniformities in the static field. The static magnet produces a highly uniform 

strong external magnetic field 𝑩𝟎 of the order of 0.2𝑇 ≤ 𝑩𝟎 ≤ 3𝑇. Ultra-high 

magnetic fields (3𝑇 < 𝑩𝟎 ≤ 7𝑇) are mainly used in MRI research [25]. The three 

types of magnets that are used in generation of the static magnetic field are: 

permanent magnets, resistive magnets and super-conducting magnets. Permanent 

magnets are mainly used in open MRI scanners that do not completely surround 

the body of the patient. These magnets cannot be turned off but they have low 

initial and maintenance costs since they do not require cryogens for cooling. 

Resistive magnets use a current flowing through a coil to form an electromagnet. 

These magnets can be turned off but are inefficient due to resistive heating. 

 

Figure 3.1. The MRI equipment coils [after 31] 
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Permanent and resistive magnets are generally restricted to field strengths 

below 0.4T and cannot efficiently generate the higher field strengths. High field 

densities are necessary for high-resolution imaging. As a result, most high-

resolution MRI systems use super-conducting magnets. These are large 

electromagnets whose coils are immersed in liquid Helium or Nitrogen 

(Cryogens) to reduce their temperatures to a value close to the absolute zero in 

order to have negligible Ohmic heating [27].  

The gradient fields create intentional and controlled perturbations in the 

uniformity of the external magnetic. This modifications in 𝑩𝟎 allow the MRI 

equipment to decipher spatial information from the MRI signal. The 𝐺𝑧  gradient is 

called the slice-select gradient which is normally applied along the axis of 𝑩𝟎. 

The gradient is applied to the patient body to set the thickness of the imaging 

slice. The 𝐺𝑥  gradient coil is called is called the frequency encoding gradient. It is 

also referred to as the read-out gradient since it is normally applied during the 

duration of reading the Free Induction Decay (FID) signal. It provides the spatial 

information in the x-direction. The phase-encoding gradient 𝐺𝑦   helps the 

equipment to decipher the spatial information in the y-direction. Transmit/receive 

coils are used as antennas for transmitting the stimulating RF signal into the body 

of the patient. They are also used as receiving antennas for the FID signal. The 

shimming coils are used to generate magnetic fields that suppress the non-

uniformities in the external magnetic field 𝑩𝟎.The nonlinearities can cause 

artifacts in the MR image [37, 46, 47]. In order to reconstruct the MR image 

correctly, the gradients in the x-, y- and z-directions as well as the excitation RF 

pulses should be applied in the correct sequence, intervals and magnitudes. The 

process of applying gradients and RF-pulses in a certain sequence at the required 

intervals so as to obtain the desired sampling of the FID signal is referred to as a 

pulse sequence. Magnetic resonance images are prone to some undesired artifacts. 

The artifacts associated with MR images are classified according their causes. The 

different types of artifacts include aliasing, patient motion-related, RF signal-
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related, external static magnetic field-related, gradient field-related, susceptibility 

related and chemical shift-related artifacts [47, 57-60]. 

3.2  Magnetization Relaxation 

Formation of an MR image involves the measurement of the net 

magnetization of all the hydrogen protons within a chosen slice followed by 

signal processing. The net magnetization has two components namely the 

longitudinal component 𝑴𝒛, which is parallel to the external magnetic field  𝑩𝟎  

and the transverse component 𝑴𝒙𝒚  which is perpendicular to the direction of 𝑩𝟎. 

In the absence of the external longitudinal magnetic field 𝑩𝟎, individual hydrogen 

protons are randomly oriented and therefore their net magnetization is zero. When 

 𝑩𝟎 is applied, the protons align with it thus creating a net longitudinal 

magnetization in the direction of the static field as they precess about it.  

In order to measure the magnetization of the protons within a certain body 

slice, a transverse Radio Frequency (RF) pulse at the Larmor frequency is applied 

to the slice. The pulse excites the precessing protons so that their phases are 

aligned. The alignment is accompanied by nutation (flipping or tipping) of the 

precessions into the transverse plane. This nutation causes the longitudinal 

magnetization to decrease as a transverse magnetization component is established. 

Upon removal of the excitation field, the transverse magnetization component 

decays exponentially with a time constant 𝑇2 while the longitudinal component 

grows with a time constant 𝑇1 towards a maximum value of 𝑴𝟎. The parameters 

𝑇2 and 𝑇1 are called relaxation time constants since they characterize the return of 

the magnetization to its thermal equilibrium state. The excited protons emit RF 

energy as they relax to their lowest energy state. The spin-lattice relaxation 

process can be represented as; 

 𝑀𝑧 𝑡 = 𝑀0 1 − 𝑒−𝑡 𝑇1    (3.1) 

where M0  is the net magnetization of the protons. The spin-spin relaxation process 

can be represented by the equation; 
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𝑀𝑥𝑦  𝑡 = 𝑀0𝑒
−𝑡 𝑇2   (3.2) 

During the 𝑇2  relaxation time, an FID signal that is detectable by the MRI 

receiver coil is generated. The two relaxation processes are illustrated in 

graphically in Figure 3.2. Since the net magnetization is due to the combined 

contribution of the precessing protons, its magnitude is largest when all the 

protons are in phase. Removal of the RF pulse causes the protons to de-phase due 

to the spin-spin interaction. This de-phasing phenomenon results in the 

exponential decay in transverse magnetization described by the time constant 𝑇2. 

The values of the two relaxation time constants depend upon the tissue type. 

These two parameters allow the creation of MR images that are different for 

divergent types of body tissues. Other than the spin-spin phenomenon, de-phasing 

between the spinning protons is also caused by local inhomogeneities in the 

external longitudinal magnetic field. The combined de-phasing effects cause the 

transverse magnetization to decay faster during relaxation. When both de-phasing 

causes are present, the actual transverse magnetization relaxation time constant 

(𝑇2
∗) will be shorter than 𝑇2 .  

 

A plot of 𝑀𝑥𝑦  𝑡   versus time A plot of 𝑀𝑧 𝑡   versus time 

  
(a) (b) 

Figure 3.2. The relaxation processes (a) Transverse (b) Longitudinal [after 46] 
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The two decay relaxation time constants (𝑇2  and 𝑇2
∗) are related to the local 

inhomogeneities in the external longitudinal magnetic field through the following 

equation;  

1

𝑇2
∗ −

1

𝑇2 
=

𝛾

2𝜋
𝛥𝐵0 (3.3) 

where the constant 𝛾 is referred to as the gyromagnetic ratio of the hydrogen 

protons and 𝛥𝑩𝟎 represents the inhomogeneities in the external longitudinal 

magnetic field. Some MRI pulse sequences eliminate the effects of the external 

field in-homogeneities while others emphasize them [27].  

To generate the MR image, excitation of the imaged slice is repeated every TR 

(Repetition Time) seconds at a fixed setting of the slice-select gradient and 

different settings of both the frequency encoding and phase-encoding gradients. 

The FID signal is measured every TE (Echo Time) seconds after every excitation. 

During every measurement, the acquired free induction decay signal is 

approximately given by; 

𝑆𝑟 𝑡 = 𝑴𝒙𝒚  1 − 𝑒−
𝑇𝑅
𝑇1   𝑒−

𝑇𝐸
𝑇2  (3.4) 

where 𝑆𝑟 𝑡  is the free induction decay signal. When a long TR and short TE 

value are chosen, the measured FID signal will be approximately equal to the 

transverse magnetization Mxy. The signal will therefore be directly proportional to 

the number of spinning hydrogen nuclei (protons) in the tissue [27, 37, 61, 62].  

3.3  Magnetic Resonance Image Formation 

The angular momentum of a spinning nucleus is given by; 

𝑆 =


2𝜋
𝐼 

(3. 5) 

where 𝐼 is the spin operator of the nucleus, 𝑆 is the angular momentum and  is 

the Planck’s constant whose value is equal to 6.63 × 10−34𝐽𝑠. The magnetic 

dipole moment (𝜇) of the nucleus is related to the angular momentum by; 

𝜇 = 𝛾𝑆 (3.6) 
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where 𝛾 is the gyromagnetic ratio of the nucleus. When nuclear spins are 

subjected to the static magnetic field 𝑩𝟎, the interaction between the field and the 

individual magnetic dipole moments gives rise to a net magnetization moment 

whose magnitude is 𝑀0. The spins exhibit a precessional behaviour about the 

external magnetic field at an angular frequency given by the Larmor equation as; 

𝜔0 = 𝛾𝐵0 (3. 7) 

where 𝜔0 is the Larmor frequency. The potential energy of the magnetic dipole 

moment in the presence of a magnetic field is given by; 

𝐸 = −𝜇𝐵0 (3. 8) 

For a field aligned with the z-axis, the energy is given by; 

𝐸 = −𝜇𝑧𝐵0 = −𝛾


2𝜋
𝐼𝑧𝐵0 = −𝛾𝑆𝑧𝐵0 (3. 9) 

For the hydrogen proton, 𝐼𝑧 = ± 1 2  implying the presence of two energy levels 

separated by an energy gap 𝛥𝐸  that is given by; 

𝛥𝐸 =  𝐸2 − 𝐸1 = 𝛾


2𝜋
𝐵0 =



2𝜋
𝜔 (3. 10) 

Two populations of hydrogen protons will therefore exist denoted by (𝑛+) for the 

parallel one (𝑛−)for the anti-parallel one. The ratio of the two populations obeys 

the Boltzmann distribution equation as follows; 

𝑛−

𝑛+
= 𝑒𝛥𝐸 𝑘𝑇  (3. 11) 

where 𝑘 is the Boltzmann constant whose value is 1.38 × 10−23  JK−1 and 𝑇 is the 

absolute temperature in Kelvin. The populations ratio has a typical value of  

7 × 10−6. The torque experienced by a dipole moment in the presence of the 

static external magnetic field is given by the rate of change of the angular 

momentum as follows; 

𝝉 =
𝑑𝑺

𝑑𝑡
= 𝜇 × 𝑩𝟎 (3. 12) 

where 𝝉 is the torque[46, 69]. Multiplying both sides of this equation by the 

gyromagnetic ratio yields;  
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𝑑(γ𝑺)

𝑑𝑡
= 𝜇 × γ𝑩𝟎 

 

(3. 13) 

Since the summation of the magnetic dipole moments over a unit volume yields 

the net magnetization, the rate of change of the magnetization is given by the 

equation; 

𝑑𝑴

𝑑𝑡
= 𝑴 × γ𝑩𝟎 

 

(3. 14) 

where 𝑴 is the net magnetization. This rate of change of the net magnetization is 

perpendicular to both 𝑩𝟎 and 𝑴. When the system is in equilibrium the net 

magnetization points in the direction (𝒛) of the applied magnetic field with a 

magnitude 𝑀0 while the value of the transverse magnetization component will be 

zero. Since MRI is based on the detection of a non-zero transverse magnetization 

component, net magnetization needs to be flipped away from its equilibrium 

direction in order to create a transverse component 𝑴𝒙𝒚. The transverse 

component also needs to be an oscillating function of time for it to produce 

induction of a current in MRI equipment receiver coil. When an oscillating 

transverse magnetic field 𝑩𝟏 is applied, a torque is induced on the net 

magnetization causing it to rotate away from the longitudinal alignment. The 

angular frequency of rotation of the net magnetization is given by the Larmor 

equation as; 

𝜔1  = 𝛾𝐵1 (3.15) 

where 𝜔1 is the flipping angular frequency [27]. If the transverse field has a 

frequency that is equal to the Larmor frequency of the spins, it stimulates energy 

exchange between the two proton populations. This stimulation makes it possible 

for the detection of the magnetization following the Faraday’s law of induction. 

The magnetization causes a change in the magnetic flux linking the FID receiver 

coil which results in an induced electromotive force. The angle of rotation of the 

magnetization is given by; 

𝜃 = γ𝐵1𝑡𝐵1
 (3. 16) 
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where 𝜃  is the flip angle, and 𝑡𝐵1
 is the time duration during which the transverse 

RF field is applied. A commonly used rotation (flip) angle is 
𝜋

2
 radians. This angle 

makes the magnetization to be totally transverse to the orientation of 𝑩𝟎. After the 

application and turning off of the excitation RF pulse 𝑩𝟏, the longitudinal 

magnetization component 𝑀𝑧  relaxes from zero towards 𝑀0 according the 

following differential equation; 

𝑑𝑀𝑧

𝑑𝑡
= −

(𝑀𝑧 − 𝑀0)

𝑇1
 (3.17) 

where 𝑇1 is the spin-lattice time constant. After excitation the transverse 

component of the magnetization will decay away according to the differential 

equation; 

𝑑𝑀𝑥𝑦

𝑑𝑡
= −

𝑀𝑥𝑦

𝑇2
 (3. 18) 

where 𝑇2 is the spin-spin time constant. Combining equations (3.14), (3.18) and 

(3.18), the time and spatial variation of the transverse magnetization can be 

represented using the following dynamic differential equation;  

𝑑𝑴

𝑑𝑡
= 𝑴 × 𝛾𝑩  −

𝑀𝑥

𝑇2
𝒂𝒙 −

𝑀𝑦

𝑇2
𝒂𝒚 − 

(𝑀𝑧−𝑀0)

𝑇1
𝒂𝒛 (3. 19) 

where 𝒂𝒙, 𝒂𝒚  and 𝒂𝒛 are the unit vectors in the 𝑥, 𝑦  and 𝑧 directions respectively, 

𝑩 is the net magnetic field density. This relationship is called the Bloch equation 

[29, 37, 46]. The cross product term on the right-hand side of the Bloch equation 

describes the precessional behaviour of the net magnetization. On the other hand, 

the terms containing 𝑇2 and 𝑇1 describe the exponential decay and growth of the 

transverse and longitudinal components respectively. In MRI, the net magnetic 

field density 𝑩 consists of three components namely: the main or external static 

magnetic field 𝑩𝟎,  the excitation Radio Frequency (RF) field 𝑩𝟏 and the gradient 

field  𝑮  which allows spatial information localization [51]. With the relaxation 

terms in the Bloch equation suppressed, the rate of change of the net 

magnetization with time will be perpendicular to the plane defined by 𝑴 and 𝑩. 

The angle between 𝑴 and 𝑩 does not change and therefore the motion of 𝑴 about 
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the axis of  𝑩 corresponds to a precession at an angular frequency of  𝜔 = 𝛾 𝑩 .  

If  𝑩  is time-varying, 𝜔 will also be time-varying. Also, if  𝑩 changes direction, 

the precession axis also changes.   

The Bloch equation can be solved for a variety of conditions which can 

broadly be categorized into two. One of the conditions is when a homogeneous 

object is subjected to a uniform field. The second category involves an 

inhomogeneous object placed in a non-uniform field. For the homogeneous object 

in a uniform static field, the magnetic field is constant and independent of time. 

i.e. 𝑩 = 𝐵0𝒂𝒛. With the relaxation behaviour of 𝑴  ignored, the Bloch equation 

can simplifies to:  

𝑑𝑴

𝑑𝑡
= 𝑴 × 𝛾𝐵0𝒂𝒛 (3. 20) 

 This equation can be written in terms of scalar components as follows; 

𝑑𝑀𝑥

𝑑𝑡
𝒂𝒙 +

𝑑𝑀𝑦

𝑑𝑡
𝒂𝒚 +

𝑑𝑀𝑧

𝑑𝑡
𝒂𝒛 =  

𝒂𝒙 𝒂𝒚 𝒂𝒛

𝑀𝑥 𝑀𝑦 𝑀𝑧

𝛾𝐵𝑥 𝛾𝐵𝑦 𝛾𝐵𝑧

  (3. 21) 

 Since the static magnetic field has no components in the transverse directions, 

𝐵𝑥 = 𝐵𝑦 = 0.  Equation (3. 21) can be simplified to; 

𝑑𝑀𝑥

𝑑𝑡
𝒂𝒙 +

𝑑𝑀𝑦

𝑑𝑡
𝒂𝒚 +

𝑑𝑀𝑧

𝑑𝑡
𝒂𝒛 =  

𝒂𝒙 𝒂𝒚 𝒂𝒛

𝑀𝑥 𝑀𝑦 𝑀𝑧

0 0 𝛾𝐵𝑧

  (3.22) 

 This equation can be separated in to the following scalar equations; 

𝑑𝑀𝑥

𝑑𝑡
= 0𝑀𝑥 + γ𝐵𝑧𝑀𝑦 + 0𝑀𝑧 = γ𝐵𝑧𝑀𝑦  

𝑑𝑀𝑦

𝑑𝑡
= −γ𝐵𝑧𝑀𝑥 + 0𝑀𝑦 + 0𝑀𝑧 = −γ𝐵𝑧𝑀𝑥  

𝑑𝑀𝑧

𝑑𝑡
= 0𝑀𝑥 + 0𝑀𝑦 + 0𝑀𝑧 = 0 

(3.23) 

 The three equations can be written in matrix form as follows; 
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𝑑𝑀𝑥

𝑑𝑡
𝑑𝑀𝑦

𝑑𝑡
𝑑𝑀𝑧

𝑑𝑡  
 
 
 
 
 

=  
0 𝛾𝐵𝑧 0

−𝛾𝐵𝑧 0 0
0 0 0

  

𝑀𝑥

𝑀𝑦

𝑀𝑥

  (3.24) 

 The matrix equation (3.24) represents a system of coupled equations. In order to 

decouple the equations, the first two scalar equations can further differentiated 

with respect to time to yield the following second order differential equations; 

  
𝑑2𝑀𝑥

𝑑𝑡2
= 𝛾𝐵𝑧

𝑑𝑀𝑦

𝑑𝑡
  

𝑑2𝑀𝑦

𝑑𝑡2
= −𝛾𝐵𝑧

𝑑𝑀𝑥

𝑑𝑡
  

(3.25) 

Substituting for  
𝑑𝑀𝑥

𝑑𝑡
 and 

𝑑𝑀𝑦

𝑑𝑡
 from (3. 24) yields the following decoupled scalar 

second order differential equations; 

  
𝑑2𝑀𝑥

𝑑𝑡2
= 𝛾𝐵𝑧 −𝛾𝐵𝑧𝑀𝑥 = −𝜔0

2𝑀𝑥  

𝑑2𝑀𝑦

𝑑𝑡2
= −𝛾𝐵𝑧 𝛾𝐵𝑧𝑀𝑦 = −𝜔0

2𝑀𝑦  

(3.26) 

where 𝜔0 = 𝛾𝐵𝑧 . The solutions of these second-order equations can be written as; 

  𝑀𝑥 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝐵 sin 𝜔0𝑡  

𝑀𝑦 𝑡 = 𝐶 cos 𝜔0𝑡 + 𝐷 sin 𝜔0𝑡  
(3.27) 

where A, B, C and D are constants. The initial values of the transverse 

magnetization components (𝑀𝑥 𝑡  and 𝑀𝑦 𝑡 ) can be obtained from (3.27) as 

𝑀𝑥 0 = 𝐴  and 𝑀𝑦 0 = 𝐶  respectively.  

Differentiating  equation (3.27) with respect to time yields; 

  
𝑑𝑀𝑥

𝑑𝑡
= −𝐴 𝜔0sin 𝜔0𝑡 + 𝜔0𝐵cos(𝜔0𝑡) 

 
𝑑𝑀𝑦

𝑑𝑡
= −𝐶𝜔0 sin 𝜔0𝑡 + 𝐷𝜔0cos(𝜔0𝑡) 

(3.28) 
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Using equations (3.26), (3.27) and (3.28) lead to the relationships;   

−𝐴𝜔0sin 𝜔0𝑡 + 𝜔0𝐵 cos 𝜔0𝑡 = 𝜔0[𝐶 cos 𝜔0𝑡 + 𝐷sin(𝜔0𝑡)] 

 −𝐶𝜔0 sin 𝜔0𝑡 + 𝐷𝜔0 cos 𝜔0𝑡 = −𝜔0[𝐴 cos 𝜔0𝑡 + 𝐵sin(𝜔0𝑡)] 
(3.29) 

From (3.29) the value of constants B an D are; 𝐵 = 𝐶 = 𝑀𝑦 0  and  𝐷 = −𝐴 =

−𝑀𝑥 0 . Substituting for the values of the constants (A, B, C and D) yields; 

  𝑀𝑥 𝑡 = 𝑀𝑥 0 cos 𝜔0𝑡 + 𝑀𝑦 0 sin 𝜔0𝑡  

𝑀𝑦 𝑡 = 𝑀𝑦 0 cos 𝜔0𝑡 − 𝑀𝑥 0 sin(𝜔0𝑡) 
(3.30) 

Since 
𝑑𝑀𝑧

𝑑𝑡
= 0  the longitudinal component of the net magnetization has a constant 

value that can be expressed as; 𝑀𝑧 𝑡 = 𝑀𝑧 0 . Where 𝑀𝑧 0  is its value at 𝑡 =

0. The components of the net magnetization can be expressed in a single matrix 

equation as follows; 

𝑴 𝑡 =  

𝑀𝑥(𝑡)
𝑀𝑦(𝑡)

𝑀𝑧(𝑡)

 =  
cos(𝜔0𝑡) sin(𝜔0𝑡) 0
−sin(𝜔0𝑡) cos(𝜔0𝑡) 0

0 0 1

  

𝑀𝑥(0)
𝑀𝑦(0)

𝑀𝑧(0)

  

=𝑹𝒛(𝜔0𝑡)𝑴𝟎, 

(3.31) 

 where 𝑹𝒛(𝜔0𝑡) is a matrix representing rotation about the z-axis and 𝑴𝟎 =

 𝑀𝑥(0) 𝑀𝑦(0) 𝑀𝑧(0) 𝑇 represents the initial values of the net magnetization 

components in the 𝑥, 𝑦 and 𝑧 directions respectively. When relaxation 

components are considered, the Bloch equation becomes: 

 
 
 
 
 
 
𝑑𝑀𝑥

𝑑𝑡
𝑑𝑀𝑦

𝑑𝑡
𝑑𝑀𝑧

𝑑𝑡  
 
 
 
 
 

=  

−1 𝑇2 𝛾𝐵𝑧 0

−𝛾𝐵𝑧 −1 𝑇2 0

0 0 −1 𝑇1 
  

𝑀𝑥

𝑀𝑦

𝑀𝑥

 +  
0
0

𝑀0 𝑇1 
  (3.32) 

The solution is given by [46]; 

𝑴 𝑡 =  
𝑒−𝑡 𝑇2 0 0

0 𝑒−𝑡 𝑇2 0
0 0 𝑒−𝑡 𝑇1 

 𝑹𝒛(𝜔0𝑡)𝑴𝟎 +  
0
0

𝑀0(𝑒−𝑡 𝑇1 )
  (3.33) 
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This solution implies that the transverse magnetization components (𝑀𝑥  and 𝑀𝑦 ) 

are not only precessing about the 𝑧-axis at an angular frequency 𝜔0 but also 

decaying with a time constant 𝑇2 [47, 63, 64]. The longitudinal component (𝑀𝑧) is 

also growing towards 𝑀0 with a time constant 𝑇1. The transverse components are 

of interest in MRI since they determine the FID signal detected. From equation 

(3.33), the transverse components (𝑀𝑥  and 𝑀𝑦 ) can be expressed using the 

following coupled differential equations;  

𝑑𝑀𝑥

𝑑𝑡
= −

𝑀𝑥

𝑇2
+ 𝜔0𝑀𝑦  

𝑑𝑀𝑦

𝑑𝑡
= −

𝑀𝑦  

𝑇2
+ 𝜔0𝑀𝑥  

(3. 34) 

These transverse magnetization components can be expressed as a single complex 

quantity in the following form; 

𝑀𝑥𝑦 (𝑡) = 𝑀𝑥(𝑡) + 𝑗𝑀𝑦(𝑡) (3. 35) 

The time derivative of the complex transverse magnetization component can then 

be expressed as; 

𝑑𝑀𝑥𝑦

𝑑𝑡
=

𝑑𝑀𝑥

𝑑𝑡
+ 𝑗

𝑑𝑀𝑦

𝑑𝑡
 (3. 36) 

From equations (3. 34), (3. 35) and (3. 36), the Bloch equation for the transverse 

magnetization component can be written as; 

𝑑𝑀𝑥𝑦

𝑑𝑡
=  −

𝑀𝑥

𝑇2
+ 𝜔0𝑀𝑦 + 𝑗  −𝜔0𝑀𝑥 +

𝑀𝑦

𝑇2
 = −  

1

𝑇2
+ 𝑗𝜔0 𝑀𝑥𝑦  (3. 37) 

The solution to this differential equation represents a decaying complex 

exponential at a linear frequency 𝑓0 as follows; 

𝑀𝑥𝑦  𝑡 = 𝑀0𝑒
−𝑡 𝑇2 𝑒𝑗𝜔0𝑡 = 𝑀0𝑒

−𝑡 𝑇2 𝑒𝑗2𝜋𝑓0𝑡  (3. 38) 

where 𝑀0 represents the initial condition of the transverse magnetization 

component. It can be expressed as follows; 

𝑀0 = 𝑀𝑥𝑦 (0) = 𝑀𝑥(0) + 𝑗𝑀𝑦(0)  (3. 39) 
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When the imaged object is inhomogeneous, the transverse magnetization 

component can be expressed as a vector function of both time and spatial position 

𝒓 as follows; 

𝑴𝒙𝒚 = 𝑴𝒙𝒚 𝒓, 𝑡 = 𝑀0𝑒
−𝑡 𝑇2=𝑇2 𝒓  𝑒−𝒋𝜔0𝑡 = 𝑀0𝑒

−𝑡 𝑇2=𝑇2 𝒓  𝑒−𝒋2𝜋𝑓0𝑡  (3. 40) 

 where 𝒓 is the Cartesian position vector given by; 𝒓 = 𝑥𝒂𝒙 + 𝑦𝒂𝒚 + 𝑧𝒂𝒛. The 

spin-spin relaxation time is a function of the position and can be expressed as; 

𝑇2 𝒓 . 

 If the object is placed in a non-uniform magnetic field that is oriented in 

the 𝑧-direction, the field can be represented as a sum of a uniform term 𝐵0 and a 

field component that has a position as well as time dependence as; 

𝑩𝒛 𝒓, 𝑡 =     [𝐵0 + 𝛥𝐵 𝒓, 𝑡 ]𝒂𝒛   (3. 41) 

where 𝛥𝐵 𝒓, 𝑡  is a time and position dependent field component representing the 

non-uniformity. Under this condition, the Bloch equation for the transverse 

magnetization component becomes; 

𝑑𝑴𝒙𝒚

𝑑𝑡
= −( 

1

𝑇2(𝒓)
+ 𝑗[𝜔0 + 𝛥𝜔 𝒓, 𝑡 ])𝑴𝒙𝒚 (3. 42) 

where 𝛥𝜔 𝒓, 𝑡   represents the angular frequency drift from the Larmor frequency 

due to the field non-uniformity. The value can be deduced from the Larmor 

equation as  𝛥𝜔 𝒓, 𝑡 = γ𝛥𝐵 𝒓, 𝑡 . Equation (3. 42) yields the following general 

solution for the transverse magnetization; 

𝑴𝒙𝒚 𝒓, 𝑡 = 𝑴𝟎𝑒
−𝑡 𝑇2(𝒓) 𝑒−𝒋𝜔0𝑡𝑒−𝑗  𝛥𝜔 𝒓,𝜏 𝑑𝜏

𝒕
𝟎  (3. 43) 

With a static read-out gradient field   
𝑑𝐵𝑧

𝑑𝑥
= 𝐺𝑥  the time and position dependent 

component of the angular frequency is obtained as follows; 

𝛥𝜔 𝒓, 𝑡 = 𝛾𝐺𝑥𝑥 (3. 44) 

The Larmor angular frequency of the spins becomes; 

𝜔 𝑥 = 𝛾(𝐵0 + 𝐺𝑥𝑥) (3. 45) 

The solution to the Bloch equation will then be; 

𝑴𝒙𝒚 𝒓, 𝑡 = 𝑴𝟎(𝒓)𝑒−𝑡 𝑇2(𝒓) 𝑒−𝑗𝜔0𝑡  𝑒−𝑗𝛾 𝑮𝒙𝑥𝑡     (3. 46) 



Chapter 3. Magnetic Resonance Imaging 

52 
 

The implication of this solution is that, the Larmor frequency on any plane that is 

perpendicular to the longitudinal axis varies linearly with the position 𝑥. If the 

gradient field is static but arbitrarily oriented, it can be expressed as; 

𝑮 = 𝐺𝑥𝒂𝒙 + 𝐺𝑦𝒂𝒚 + 𝐺𝑧𝒂𝒛 (3. 47) 

Where 𝐺𝑥 , 𝐺𝑦   and  𝐺𝑧  are the magnitudes of the components of the arbitrarily 

oriented gradient fields in the 𝑥, 𝑦  and 𝑧 directions respectively. The gradient 

fields are superimposed on the static magnetic field to produce a total longitudinal 

magnetic field given by;  

𝑩(𝒓) = (𝐵0+𝐺𝑥𝑥 + 𝐺𝑦𝑦 + 𝐺𝑧𝑧)𝒂𝒛 = (𝐵0 + 𝑮. 𝒓)𝒂𝒛 (3. 48) 

where 𝑩(𝒓) is the total longitudinal magnetic field. The drift from the Larmor  

angular frequency as a result of this total field is given by; 

𝛥𝜔 𝒓 = 𝛾𝑮. 𝒓 (3. 49) 

where 𝛥𝜔 𝒓  is the angular frequency drift . Substituting for the drift in the 

equation for the transverse magnetization component (3. 46) yields;  

𝑴𝒙𝒚 𝒓, 𝑡 = 𝑴𝟎(𝒓)𝑒−𝑡 𝑇2(𝒓) 𝑒−𝑗𝜔0𝑡𝑒−𝑗𝛾 𝑮.𝒓𝑡  (3. 50) 

When the gradient is not only arbitrarily oriented but also time varying, the 

resultant magnetic field in the longitudinal direction can be expressed as 

𝑩 𝒓, 𝑡 = (𝐵0 + 𝐺𝑥(𝑡)𝒙 + 𝐺𝑦(𝑡)𝒚 + 𝐺𝑧(𝑡)𝑧)𝒂𝒛 = (𝐵0 + 𝑮(𝑡). 𝒓)𝒂𝒛 (3. 51) 

where 𝑮(𝑡) is the time-varying and arbitrarily oriented gradient. This kind of 

resultant longitudinal field yield a transverse magnetization component that takes 

the form;  

𝑴𝒙𝒚 𝒓, 𝑡 = 𝑴𝟎𝑒
−𝑡 𝑇2(𝒓) 𝑒−𝑗𝜔0𝑡𝑒−𝑗𝛾  𝑮(𝜏).𝒓𝑑𝜏

𝑡
0  (3. 52) 

 In MRI, the receiver coil is designed to detect the transverse magnetization 

components contributions from all the precessing nuclei in a given volume. The 

received FID signal 𝑆𝑟(𝑡) is therefore obtained by integrating the transverse 

magnetization over the entire volume of the selected slice. This signal can be 

therefore be expressed as follows; 

𝑆𝑟(𝑡) =  𝑴𝒙𝒚 𝒓, 𝑡 𝑑𝑣 =  𝑴𝒙𝒚 𝒓, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑧         (3. 53 ) 
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where 𝑑𝑣 is the elemental volume which is given by; 𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧.  Also,  

𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are elemental length increments  in the 𝑥, 𝑦 and 𝑧 respectively. 

Substituting for 𝑴𝒙𝒚 𝒓, 𝑡  from equation (3. 52) in equation (3. 53) yields; 

𝑆𝑟(𝑡) =  𝑴 𝑥, 𝑦, 𝑧 𝑒−𝑡 𝑇2(𝒓) 𝑒−𝑗𝜔0𝑡𝑒−𝑗𝛾  𝑮(𝜏).𝒓𝑑𝜏
𝑡

0 𝑑𝑥𝑑𝑦𝑑𝑧        (3. 54a) 

where 𝑴 𝑥, 𝑦, 𝑧, 𝑡 = 𝑴𝒙𝒚 𝒓, 𝑡 . Assuming that a plane of thickness 𝛥𝑧 centered 

at 𝑧 = 0 has been selectively excited, and also ignoring the effect of the relaxation 

times, only the signal contributions from the excited plane are received. The FID 

signal will then be given by; 

𝑆𝑟(𝑡) =  𝑴(𝑥, 𝑦)𝑒−𝒋𝜔0𝑡𝑒−𝑗𝛾  𝑮(𝜏).𝒓𝑑𝜏
𝑡

0 𝑑𝑥𝑑𝑦       (3. 54b) 

where 𝑴 𝑥, 𝑦 =  𝑴 𝑥, 𝑦, 𝑧 𝑑𝑧
𝛥𝑧 2 

−𝛥𝑧 2 
 

The FID signal 𝑆𝑟(𝑡) is usually demodulated prior to the reconstruction of the MR 

image. Therefore, the exponential phase factor 𝑒−𝑗𝜔0𝑡  in equation (3. 54b) can be 

dropped to yield the baseband version of the FID signal 𝑆 𝑡 . The demodulation 

process can be modeled as a product of the received FID signal  𝑆𝑟(𝑡) and a 

demodulating phase factor  𝑒𝒋𝜔0𝑡  as follows; 

𝑆 𝑡 =  𝑆𝑟(𝑡)𝑒𝑗𝜔0𝑡   =  𝑴(𝑥, 𝑦)𝑒−𝑗𝛾  𝑮(𝜏).𝒓𝑑𝜏
𝑡

0 𝑑𝑥𝑑𝑦     (3. 55) 

The transverse magnetization distribution 𝑴 𝑥, 𝑦  carries the information about 

the imaged object. This distribution can be approximately reconstructed from a set 

of measurements of the demodulated FID signals 𝑠 𝑡  that have been 

appropriately acquired at different values of the gradient magnetic fields 𝑮(𝑡). 𝒓. 

The transverse magnetization distribution is a function of the spin density 𝜌 𝑥, 𝑦  

and the relaxation time constants 𝑇1 and 𝑇2 [36, 37, 46, 47]. Since spatial 

information of a two-dimentional MR image is only required in the 𝑥 and 𝑦 

directions, only the gradients  in these two directions (𝐺𝑥    and 𝐺𝑦  ) need to be 

considered. Equation (3. 51) can then be simplified to; 

𝑮 𝑡 . 𝒓 = 𝐺𝑥 𝑡 𝑥  +𝐺𝑦 𝑡 𝑦       (3. 56) 

The equation for the demodulated FID signal then simplifies to; 
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𝑠 𝑡 =  𝑀(𝑥, 𝑦)𝑒−𝑗𝛾𝑥  𝐺𝑥 (𝜏)𝑑𝜏
𝑡

0 𝑒−𝑗𝛾𝑦  𝐺𝑦 (𝜏)𝑑𝜏
𝑡

0 𝑑𝑥𝑑𝑦 (3. 57) 

This equation can further be written as; 

𝑠 𝑡 =  𝑀(𝑥, 𝑦)𝑒−𝑗2𝜋[𝑘𝑥 (𝑡)𝑥   +𝑘𝑦 (𝑡)𝑦]𝑑𝑥𝑑𝑦 (3. 58) 

where  𝑘𝑥 𝑡  and  𝑘𝑦 𝑡  are the spatial frequencies in the  read-out and phase 

encoding directions respectively. They are defined as follow; 

 𝑘𝑥 𝑡 =
𝛾

2𝜋
  𝐺𝑥(𝜏)𝑑𝜏

𝑡

0
     and    𝑘𝑦 𝑡 =

𝛾

2𝜋
  𝐺𝑦 𝜏 𝑑𝜏

𝑡

0
 (3. 59) 

The letter 𝑘 is used in MRI to represent the spatial frequency in the Fourier 

transform domain. The Fourier domain representation of the magnetic resonance 

image is therefore referred to as the k-space in MRI. The k-space concept is used 

as a way of visualizing the trajectories of the spins under the influence of 

magnetic field gradients. The MR image is the reconstruction of the spin density 

in the excited body slice. The spin-density function is directly proportional to the 

transverse magnetization component [27, 37]. At any given time 𝑡, the signal 

given in equation (3.58) is the two-dimensional Fourier transform of the 

transverse magnetization 𝑴 𝑥, 𝑦  across the excited body slice and at the spatial 

frequency points ( 𝑘𝑥 𝑡 ,  𝑘𝑦 𝑡  ). This signal can further be expressed as; 

𝑆  𝑘𝑥 𝑡 ,  𝑘𝑦 𝑡   =  𝑀(𝑥, 𝑦)𝑒−𝑗2𝜋[𝑘𝑥 (𝑡)𝑥   +𝑘𝑦 (𝑡)𝑦]𝑑𝑥𝑑𝑦     (3. 60) 

 where  𝑆  𝑘𝑥 𝑡 ,  𝑘𝑦 𝑡   = 𝑠 𝑡 . Therefore the FID signal maps the transverse 

magnetization directly onto a trajectory through the Fourier space. Reconstruction 

of a good MR image is dependent on the appropriate coverage of the k-space. A 

number of FID signals acquired at different spatial frequencies are sampled using 

sampling periods 𝛥𝑘𝑥
 and 𝛥𝑘𝑦

 in the 𝑥 and 𝑦 respectively. The highest spatial 

frequencies in the two directions are denoted by 𝑘𝑥𝑚𝑎𝑥  and 𝑘𝑦𝑚𝑎𝑥  respectively. 

An asymmetrical situation exists in the FID signal acquisition since all the 

samples along a single 𝑘𝑦  line are acquired after a single RF excitation while all 
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the samples along any 𝑘𝑥  line are acquired within the same time duration of TR. 

The sampled k-space data is given by; 

𝑆   𝑘𝑥 ,  𝑘𝑦   = 

𝑆  𝑘𝑥 ,  𝑘𝑦    
1

𝛥𝑘𝑥
𝛥𝑘𝑦

    𝛿(𝑘𝑥 − 𝑚𝛥𝑘𝑥
, 𝑘𝑦

∞

𝑚=−∞

∞

𝑛=−∞

− 𝑛𝛥𝑘𝑦
) 𝛤  

𝑘𝑥

 𝑊 𝑘𝑥

,
𝑘𝑦

 𝑊 𝑘𝑦

  

 

(3.61) 

where the factor  
1

𝛥𝑘𝑥 𝛥𝑘𝑦

   normalizes the data and the function 𝛤  
𝑘𝑥

 𝑊 𝑘𝑥

,
𝑘𝑦

 𝑊 𝑘𝑦

  

defines the size of the k-space in terms of the dimensions  𝑊 𝑘𝑥
 and  𝑊 𝑘𝑦

. The k-

space widths in the  𝑘𝑥  and  𝑘𝑦  directions respectively are given by; 

 𝑊 𝑘𝑥
= 2( 𝑘𝑥𝑚𝑎𝑥 +

𝛥 𝑘𝑥

2
 )    

 𝑊 𝑘𝑦
= 2( 𝑘𝑦𝑚𝑎𝑥 +

𝛥 𝑘𝑦

2
 )            

(3. 62) 

 The two-Dimensional Inverse Discrete Fourier Transform (2D-IDFT) of equation 

(3. 61) yields an approximation of the image in the spatial domain as: 

𝑀  𝑥, 𝑦 =  

𝑀(𝑥, 𝑦) ∗∗    𝛿(𝑥 −
𝑚

𝛥𝑘𝑥

, 𝑦 −
𝑛

𝛥𝑘𝑦

)

∞

𝑚=−∞

∞

𝑛=−∞

 ∗∗ 𝑊 𝑘𝑥
𝑊 𝑘𝑦

𝑧 𝑥, 𝑦  
(3. 63) 

where ∗∗ denotes two-dimensional convolution and 𝑧(𝑥, 𝑦) is a two-dimensional 

spatial-domain sinc function which is given by; 

𝑧(𝑥, 𝑦) = sinc(𝑊 𝒌𝒙
𝑥)sinc(𝑊 𝒌𝒚

𝑦)        (3. 64) 

Since sampling of the FID signal is carried-out in the spatial frequency domain, it 

results in replication of the image in the object domain as implied by the double 

convolution in equation (3.63). The replication of 𝑀(𝑥, 𝑦) occurs at spatial 

intervals of  
1

𝛥 𝑘𝑥
 and 

1

𝛥 𝑘𝑦
 in the 𝑥 and 𝑦 directions respectively.  The replication 
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intervals determine the field of view as well as the Nyquist sampling rates in the 𝑥 

and 𝑦 directions respectively as follows; 

𝐹𝑜𝑣𝑥   =
1

𝛥 𝑘𝑥
 

𝐹𝑜𝑣𝑦   =
1

𝛥 𝑘𝑦
 

(3. 65) 

where 𝐹𝑜𝑣𝑥  and 𝐹𝑜𝑣𝑦  represent the field of views in the 𝑥 and 𝑦 directions 

respectively. The parameters   
1

𝛥 𝑘𝑥
 and 

1

𝛥 𝑘𝑦
  represent the sampling rates in the 𝑥 

and 𝑦 directions respectively. 

The spatial frequency domain sampling period in the read-out direction depends 

on the read-out gradient as well as the sampling interval of the receiver circuit. It 

can be expressed as follows; 

𝛥 𝑘𝑥 =
𝛾

2𝜋
  𝐺𝑥   (𝛥 𝑇𝑥) (3. 66) 

 where (𝛥 𝑇𝑠) is the sampling interval of the receiver circuit. On the other hand, 

the sampling period in the phase encoding direction is a function of the 

incremental gradient 𝛥 𝐺𝑦  and the fixed phase encoding duration ( 𝑇𝑦) as follows; 

𝛥 𝑘𝑦 =
𝛾

2𝜋
  𝛥 𝐺𝑦  𝑇𝑦  (3. 67) 

Using the two expressions of the sampling periods, the two fields of views can be 

written as functions of the gradient fields as follows; 

𝐹𝑜𝑣𝑥   =
1

𝛾
2𝜋   𝐺𝑥   𝛥 𝑇𝑥

 

𝐹𝑜𝑣𝑦   =
1

𝛾
2𝜋  𝛥 𝐺𝑦  𝑇𝑦

 

(3. 68) 

If the selected sampling rates are not sufficiently large, the replications of the 

image overlap with each other causing a distortion in the desired image. This 

phenomenon is termed wrap-around or aliasing. To avoid aliasing in the phase 

encoding direction, without increasing the scan time, the incremental phase 

encoding gradients must be reduced to increase the  𝐹𝑜𝑣𝑦  . This however reduces 
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the maximum spatial frequency sampled in that duration and consequently 

reduces the spatial resolution. In the read-out direction, aliasing is experienced 

when the width of the object exceeds the 𝐹𝑜𝑣𝑥 .  In order to avoid aliasing in this 

direction, one method is to use an anti-aliasing filter. Since images are not 

naturally band-limited as pointed out in [6], the anti-aliasing approach has the 

demerit of filtering out some of the desired parts. A second aliasing remedy is to 

sample the FID signal at a sampling rate that is higher than  
1

𝛥 𝑇𝑥
. The 2-D sinc 

term in MR image equation limits the ability to resolve fine details of the image 

𝑀 𝑥, 𝑦 . The spatial resolutions (𝛥𝑥  and 𝛥𝑦)  in the 𝑥 and 𝑦 directions are 

dependent on the field of views, the sampling rates  and the k-space dimensions as 

follows; 

𝛥𝑥 =
𝐹𝑜𝑣𝑥

𝑁𝑟
  =  

1

𝛥 𝑘𝑥𝑁𝑟
=  

1

𝑊 𝑘𝑥

 

𝛥𝑦 =
𝐹𝑜𝑣𝑦

𝑁𝑝
  =  

1

𝛥 𝑘𝑦𝑁𝑝
=  

1

𝑊 𝑘𝑦

 

(3. 69) 

where 𝑁𝑟  is the number of read-out samples per acquisition and 𝑁𝑝  is the number 

of phase-encoding gradient steps. The maximum spatial frequencies in the read-

out and phase encoding directions are proportional to the maximum gradient areas 

as follows;  

 𝑘𝑥𝑚𝑎𝑥 =
𝛾

2𝜋
𝐺𝑥

𝑇𝑥

2
   and    𝑘𝑦𝑚𝑎𝑥 =

𝛾

2𝜋
𝐺𝑦𝑇𝑦         (3. 70) 

where 𝑘𝑥𝑚𝑎𝑥  and  𝑘𝑦𝑚𝑎𝑥  are the maximum spatial frequencies in the read-out and 

phase encoding directions respectively [46]. Combining equations (3. 68), (3. 69) 

and (3. 70), yields the following expressions for the resolutions; 
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𝛥𝑥 =
1

𝑊 𝑘𝑥

=
1

𝛾
2𝜋 𝐺𝑥(𝑇𝑥 + 𝛥 𝑇𝑥)    

 

𝛥𝑦 =
1

𝑊 𝑘𝑦

=
1

𝛾
2𝜋 (2𝐺𝑦𝑝 +  𝛥𝐺𝑦)𝑇𝑦     

 

(3. 71) 

 When 𝑁𝑟  and 𝑁𝑝  are large, 𝑊 𝑘𝑥
≈ 2  𝑘𝑥𝑚𝑎𝑥  and 𝑊 𝑘𝑦

≈ 2  𝑘𝑦𝑚𝑎𝑥 .   Using these 

approximations, the equations for the resolutions simplify to; 

 

𝛥𝑥 =
1

𝛾
2𝜋 𝐺𝑥𝑇𝑥     

 

𝛥𝑦 =
1

𝛾
𝜋 𝐺𝑦𝑝  𝑇𝑦     

 

(3. 72) 

 The two resolution expressions can be re-organized to take the following forms; 

𝛾𝐺𝑥𝑇𝑥𝛥𝑥 = 2𝜋 

𝛾𝐺𝑦𝑝 𝑇𝑦𝛥𝑦 = 𝜋 
(3. 73) 

A small k-space sampling extent (𝑊 𝑘𝑥
< 2 𝑘𝑥𝑚𝑎𝑥  and 𝑊 𝑘𝑦

< 2  𝑘𝑦𝑚𝑎𝑥  ) creates 

truncation artifacts that manifest themselves in the image as the Gibbs ringing 

phenomenon. The ringing artifacts can be reduced by multiplying the raw k-space 

data by an apodization function. This approach however introduces some 

concomitant blurring on the edges of the image.  The Gibbs phenomenon can also 

be reduced by increasing the number of phase encodes which results in better 

spatial resolution.  The MR image is reconstructed from its k-space data using 

2D-IDFT. In order to use 2D-IDFT, the acquired FID signals are sampled in the 

spatial frequency domain at periods of 𝛥𝑘𝑥
 and 𝛥𝑘𝑦

 with the highest spatial 

frequencies in the x and y directions being 𝑘𝑥𝑚𝑎𝑥  and 𝑘𝑦𝑚𝑎𝑥  respectively to yield 

the k-pace matrix 𝓢(𝑢, 𝑣) ; 

𝓢(𝑢, 𝑣)  = 𝑺(u𝛥𝑘𝑥
, v𝛥𝑘𝑦

)   (3. 74) 
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where 𝑢 ∈ [ −(𝑁𝑟 2) + 1 , 𝑁𝑟 2 ],  𝑣 ∈ [ − (𝑁𝑝 2) + 1 , 𝑁𝑝 2 ] [20, 36, 37, 46, 

47]. The reconstructed image I(a,b)  is then given by the 2D-IDFT of 𝓢 𝑢, 𝑣  as 

follows; 

𝑰(𝑎, 𝑏) =      𝓢 𝑢, 𝑣 𝑒
𝑗2𝜋 

𝑎𝑢
𝑁𝑟

+
𝑏𝑣
𝑁𝑝

 

𝑣=𝑁𝑝 2 

v=−(𝑁𝑝 2) +1

   

𝑢=𝑁𝑟 2 

𝑢=−(𝑁𝑟 2) +1

 (3. 75) 

where 𝑎 ∈ [ −(𝑁𝑟 2) + 1 , 𝑁𝑟 2 ] and 𝑏 ∈ [ − (𝑁𝑝 2) + 1 , 𝑁𝑝 2 ] the image 

I(a, b) is a sampled version of the continuous-space image given in equation. If 

the k-space 𝑺 𝑢, 𝑣  is multiplied by an apodization function 𝑾(𝑢, 𝑣), the 

reconstructed image (𝑰𝒘(𝑎, 𝑏)) is then given by; 

𝑰𝒘 𝑎, 𝑏 =      𝓢 𝑢, 𝑣 𝑾 𝑢, 𝑣 𝑒
𝑗2𝜋 

𝑎𝑢
𝑁𝑟

+
𝑏𝑣
𝑁𝑝

 

𝑣=𝑁𝑝 2 

𝑣=−(𝑁𝑝 2) +1

 

𝑢=𝑁𝑟 2 

𝑢=−(𝑁𝑟 2) +1

 (3. 76) 

3.4  The MRI Excitation Mechanisms 

 In MRI, excitation involves the application of an RF magnetic field 𝑩𝟏(t) 

in the transverse 𝑥-direction. The field causes a rotation of the net magnetization 

away from the longitudinal (𝑧) axis to generate a detectable transverse 

magnetization component. When the RF field is applied with only the static 

magnetic field 𝑩𝟎 present, this type of excitation is referred to as non-selective. 

Alternatively, if the excitation is applied in presence of a slice-select gradient 

field 𝐺𝑧(𝑡), the excitation is termed selective. In selective excitation, the imaging 

process reduces into a two-dimensional task since it excites only the protons in 

the particular selected slice (plane). The applied excitation RF magnetic field can 

be either linearly or circularly polarized. When linear polarization is applied, the 

RF magnetic field can be expressed as; 

𝑩𝟏(t) =2𝐵1(t)cos 𝜔𝑡 𝒂𝒙  (3. 77) 
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where 𝐵1(t) is the amplitude modulation function and 𝜔 is the angular frequency 

of the RF pulse. The excitation RF field is applied perpendicularly to the static 

magnetic field axis as shown in Figure 3. 3. 

The excitation field can be decomposed into two circularly polarized field 

components as; 

𝑩𝟏 𝑡 = 

 𝐵1(t) cos 𝜔𝑡 𝒂𝒙 − sin 𝜔𝑡 𝒂𝒚 + 𝐵1(t) cos 𝜔𝑡 𝒂𝒙 + sin 𝜔𝑡 𝒂𝒚  

(3. 78) 

 The first term represents a left-handed circularly polarized field while the second 

component is a right-handed circularly polarized field. The left-handed field 

rotates in the same direction as the precessing spins and therefore can result in 

resonance. On the contrary, the right-handed field has negligible effect on the 

spins and only causes heating of the body tissues [27, 46]. With both 𝑩𝟎 and 

𝑩𝟏(t) turned on, the resultant field that has an effect on the spins is given by; 

𝑩 ={𝐵1(t) cos 𝜔𝑡 𝒂𝒙 − sin 𝜔𝑡 𝒂𝒚 + 𝐵0𝒂𝒛} (3. 79) 

 
Figure 3.3. Orientation of the static and excitation fields [after 46] 
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With the effects of the relaxation terms ignored and also assuming that the 

duration of application of the excitation field is much shorter than the relaxation 

time constants, the Bloch equation can be expressed as; 

𝒅𝑴

𝒅𝒕
= 𝑴 × 𝛾{𝐵1(t) cos 𝜔𝑡 𝒂𝒙 − sin 𝜔𝑡 𝒂𝒚 + 𝐵0𝒂𝒛} (3. 80) 

 This equation can be expressed in matrix form as;  

 
 
 
 
 
 
𝑑𝑀𝑥

𝑑𝑡
𝑑𝑀𝑦

𝑑𝑡
𝑑𝑀𝑧

𝑑𝑡  
 
 
 
 
 

=  

0 𝜔0 −𝜔1(𝑡) sin 𝜔𝑡 

−𝜔0 0 𝜔1(𝑡) cos 𝜔𝑡 

𝜔1(𝑡) sin 𝜔𝑡 −𝜔1(𝑡) cos 𝜔𝑡 0

  

𝑀𝑥

𝑀𝑦

𝑀𝑥

  (3. 81) 

In order to simplify the process of solving equation (3. 81), it is transformed to a 

reference frame that is rotating about the z-axis at the frequency of the excitation 

field 𝜔. The rotating net magnetization and resultant magnetic field can then be 

expressed in terms of their rotating Cartesian coordinate axes systems components 

as; 

𝑴𝒓𝒐𝒕 =  

𝑀𝑥 ′

𝑀𝑦 ′

𝑀𝑧 ′

   and 𝑩𝒓𝒐𝒕 =  

𝐵𝑥 ′

𝐵𝑦 ′

𝐵𝑧 ′

   (3. 82) 

 where 𝑥′ , 𝑦′  and 𝑧′  are the rotating axes. The lab-frame magnetic field (𝑩) and 

net magnetization (𝑴) are related to their corresponding rotating-frame quantities 

by; 

𝑴=𝑹𝒛(𝜔1𝑡)𝑴𝒓𝒐𝒕 and 𝑩=𝑹𝒛 𝜔1𝑡 𝑩𝒓𝒐𝒕 (3. 83) 

 The behaviour of the net magnetization in both the lab and rotating frames are as 

shown in Figure 3. 4. In the lab-frame, the magnetization precesses about the y-

axis whereas in the rotating-frame it flips from the y-axis towards the x-y plane.  
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(a) (b) 

Figure 3. 4. Behaviour of the net magnetization (a) Lab-frame (b) Rotating frame 

[after 46] 

The transverse component of the rotating-frame magnetization can be written 

using complex quantity notation as; 

𝑀𝑟(𝑡) = 𝑀𝑥(𝑡) + 𝑗𝑀𝑦(𝑡) (3. 84) 

 where 𝑀𝑥(𝑡) and  𝑀𝑦(𝑡) are the transverse magnetization components in the 𝑥 

and 𝑦 directions respectively. The lab-frame transverse magnetization component 

can be expressed in terms of the rotating-frame transverse magnetization 

component as follows; 

𝑀(𝑡) = 𝑀𝑟 𝑡 𝑒
−𝑗𝜔𝑡  (3. 85) 

 If 𝜔 is selected to be equal to the Larmor frequency of the spins, the expressions 

for 𝑀𝑥  and 𝑀𝑦  become constants for 𝑀𝑥 ′  and 𝑀𝑦 ′  respectively. The rotating-

frame unit vectors (𝒂𝒙′  and 𝒂𝒚′ ) can be expressed in terms of the lab-frame unit 

vectors (𝒂𝒙 and 𝒂𝒚) as follows; 

𝒂𝒙′  =cos 𝜔𝑡 𝒂𝒙 − sin 𝜔𝑡 𝒂𝒚 

𝒂𝒚′  =sin 𝜔𝑡 𝒂𝒙 + cos 𝜔𝑡 𝒂𝒚 
(3. 86) 

Applying the Bloch equation to the rotating frame leads to; 

𝑑𝑴𝒓𝒐𝒕

𝑑𝑡
= 𝑴𝒓𝒐𝒕 × 𝛾𝑩𝒆𝒇𝒇 (3. 87) 
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 where 𝑩𝒆𝒇𝒇 is the effective magnetic field which is given by; 

𝑩𝒆𝒇𝒇 = 𝑩𝒓𝒐𝒕 − 𝜔 𝛾  (3. 88) 

 where 𝜔 is the frequency of the excitation RF pulse. Equation (3. 87) implies that 

the net rotating-frame magnetization 𝑴𝒓𝒐𝒕 precesses about the direction of 𝑩𝒆𝒇𝒇 at 

a frequency of 𝛾𝑩𝒆𝒇𝒇  radians/second. Since 𝑩𝒓𝒐𝒕 = 𝐵1 𝑡 𝒂𝒙 + 𝐵0𝒂𝒛 when the 

system is excited, 𝑩𝒆𝒇𝒇 can then be expressed as; 

𝑩𝒆𝒇𝒇 = 𝐵1 𝑡 𝒂𝒙 +  𝐵0 − 𝜔 𝛾  𝒂𝒛  (3. 89) 

Assuming 𝜔𝑡 to be small, the following approximations can be made. 

cos 𝜔𝑡 ≈ 1  

sin 𝜔𝑡 ≈ 0  
(3. 90) 

Using the above equations, the Bloch equation becomes;  

𝑑𝑴𝒓𝒐𝒕

𝑑𝑡
=  

0 𝜔0 − 𝜔 0
−(𝜔0 − 𝜔) 0 𝜔1(𝑡)

0 −𝜔1(𝑡) 0
 𝑴𝒓𝒐𝒕 (3. 91) 

When the RF excitation pulse is at resonance with the Larmor frequency of the 

spins (𝜔0 = 𝜔), the effective magnetic field 𝐵𝑒𝑓𝑓  becomes equal to the RF field 

𝐵1 𝑡 . This situation simplifies the Bloch equation to; 

  

𝑑𝑴𝒓𝒐𝒕

𝑑𝑡
=  

0 0 0
0 0 𝜔1(𝑡)
0 −𝜔1(𝑡) 0

 𝑴𝒓𝒐𝒕 (3. 92) 

When  𝜔1 = 𝛾𝐵1 is constant frequency, the solution of this equation takes the 

form; 

𝑴𝒓𝒐𝒕(𝑡)=𝑹𝒙𝜔1(𝑡)𝑴𝒓𝒐𝒕(0)  (3. 93) 

where 𝑹𝒙(𝜔1𝑡) is a matrix representing rotation about the x-axis at an angular 

frequency 𝜔1. Taking the initial rotating frame magnetization at equilibrium to 

be: 𝑴𝒓𝒐𝒕 0 =  0 0 𝑀0 
𝑇 , the rotating frame net magnetization is then given 

by; 
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𝑴𝒓𝒐𝒕(𝑡)= 

0
𝑀0 sin 𝜔1𝑡 

𝑀0 cos 𝜔1𝑡 
   (3. 94) 

This equation represents a magnetization 𝑴𝒓𝒐𝒕(𝑡) that rotates about the 𝑥-axis at 

an angular frequency of 𝜔1 radians per second. Equation (3.93) can be 

generalized for a time-varying precession frequency 𝜔1 𝑡 , the rotating-frame net 

magnetization can be expressed as follows; 

𝑴𝒓𝒐𝒕(𝑡)=𝑹𝒙  𝜔1 𝑠 𝑑𝑠
𝜏

0
 𝑴𝒓𝒐𝒕 0   (3. 95) 

where  𝜔1 𝑠 𝑑𝑠
𝜏

0
 is the rotation (tip or flip) angle of the net magnetization when 

the excitation magnetic field is applied for a duration equal to 𝜏 seconds. With the  

RF pulse applied in presence of a static slice-select gradient 𝐺𝑧 , the rotating-frame 

net magnetization is obtained by solving the Bloch equation for an effective 

magnetic field that is given by; 

𝑩𝒆𝒇𝒇 = 𝐵1 𝑡 𝒂𝒙 +  𝐵0 + 𝐺𝑧𝑧 − 𝜔 𝛾  𝒂𝒛 (3. 96) 

Under this condition, the Bloch equation becomes; 

𝑑𝑴𝒓𝒐𝒕

𝑑𝑡
=  

0 𝜔0 + 𝛾𝐺𝑧𝑧 − 𝜔 0
−(𝜔0 + 𝛾𝐺𝑧𝑧 − 𝜔) 0 𝜔1(𝑡)

0 −𝜔1(𝑡) 0
 𝑴𝒓𝒐𝒕 

(3. 97) 

By tuning the excitation RF pulse frequency to the Larmor frequency of the 

spinning nuclei (𝜔0 = 𝜔), the Bloch equation simplifies to; 

𝑑𝑴𝒓𝒐𝒕

𝑑𝑡
=  

0 𝜔(𝑧) 0
−𝜔(𝑧) 0 𝜔1(𝑡)

0 −𝜔1(𝑡) 0
 𝑴𝒓𝒐𝒕 (3. 98) 

where 𝜔 𝑧  is the frequency by which the spins are off-resonance from the 

Larmor frequency 𝜔0. This off-resonance frequency is given by: 𝜔 𝑧 = 𝛾𝐺𝑧𝑧 

[37, 46, 47]. In order to obtain an approximate solution to the resulting Bloch 

equation problem (3. 98), the following assumptions are made. 

(i) The duration of application of the RF excitation pulse is so short that 

the relaxation effects of 𝑇1 and 𝑇2 can be ignored during the excitation. 
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(ii) The applied RF pulse is circularly polarized and also tuned to the 

Larmor frequency of the spins. 

(iii) At equilibrium, 𝑴𝒓𝒐𝒕 is entirely longitudinal and has zero transverse 

components such that 𝑴𝒓𝒐𝒕 0 =  0 0 𝑀0 
𝑇 . 

(iv) A weak RF pulse is employed therefore giving a small tip angle 𝜃 

(usually 𝜃 < 𝜋 18  ). 

These assumptions justify a simplification of the Bloch equation by 

considering the longitudinal magnetization component of 𝑴𝒓𝒐𝒕 to be constant 

before, during and after the application of the RF excitation pulse. This 

consideration implies that  𝑀𝑧 ≈ 𝑀0 and therefore 
𝑑𝑀𝑧

𝑑𝑡
≈ 0. Substituting this 

simplification in equation (3. 98), the Bloch equation can be written as a 

system of scalar equations as follows; 

 

 

 
 
 

𝑑𝑀𝑥 ′

𝑑𝑡
𝑑𝑀𝑦 ′

𝑑𝑡
𝑑𝑀𝑧 ′

𝑑𝑡  

 
 
 

=  
0 𝜔(𝑧) 0

−𝜔(𝑧) 0 𝜔1(𝑡)
0 0 0

  

𝑀𝑥 ′

𝑀𝑦 ′

𝑀0

  (3. 99) 

The transverse components of this equation can be expressed using complex 

notation as; 

𝑑𝑀𝑟

𝑑𝑡
= 0 + 𝜔 𝑧 𝑀𝑦 ′ + 𝑗 −𝜔 𝑧 𝑀𝑥 ′ +  𝜔1 𝑡 𝑀0  

=j 𝜔 𝑧 𝑀𝑟  +j𝜔1 𝑡 𝑀0. 

(3. 100) 

Re-arranging this equation and multiplying through by a function 𝑦(𝑡) yields 

𝑑

𝑑𝑡
 𝑦 𝑡 𝑀𝑟 =  

𝑑𝑀𝑟

𝑑𝑡
+ 𝑗𝜔 𝑧 𝑀𝑟 𝑦 𝑡  (3. 101) 

This equation can further be simplified to; 

1

𝑦(𝑡)

𝑑𝑦 𝑡 

𝑑𝑡
= 𝑗𝜔 𝑧  (3. 102) 

The solution to equation (3. 102) is given by; 
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𝑦 𝑡 = 𝑒−𝑗𝜔 𝑧 𝑡  (3. 103) 

 This solution implies that; 

𝑑

𝑑𝑡
 𝑦 𝑡 𝑀𝑟 = 𝑗𝑦 𝑡 𝜔1 𝑡 𝑀0      (3. 104) 

Substituting for 𝑦 𝑡  in equation (3.104) from (3.103) results in the following 

differential equation. 

𝑑

𝑑𝑡
 𝑒−𝑗𝜔 𝑧 𝑡𝑀𝑟 = 𝑗𝑒−𝑗𝜔 𝑧 𝑡𝜔1 𝑡 𝑀0     (3. 105) 

Integrating both sides of equation (3.105) with respect to time leads to the 

following equation. 

𝑒−𝑗𝜔 𝑧 𝑡𝑀𝑟(𝑡) =  𝑗𝜔1 𝑠 𝑀0𝑒
−𝑗𝜔 𝑧 𝑠𝑑𝑠

𝑡

0
+C ,     (3. 106) 

where the constant of integration, C represents the initial conditions.  The value of 

the constant is given by 𝐶 =  𝑀𝑟 0 . The rotating transverse magnetization is 

therefore a function of both 𝑡 and 𝑧 that is given by; 

𝑀𝑟(𝑡, 𝑧) = 𝑗𝑀0𝑒
−𝑗𝜔 𝑧 𝑡   𝜔1 𝑠 𝑒

−𝑗𝜔 𝑧 𝑠𝑑𝑠
𝒕

𝟎
         (3. 107) 

If the duration of application of the excitation pulse is 0 ≤ 𝑡 ≤ 𝜏 , the transverse 

magnetization becomes; 

𝑀𝑟(𝜏, 𝑧) = 𝑗𝑀0𝑒
−𝑗𝜔 𝑧 𝜏   𝜔1 𝑠 𝑒

−𝑗2𝜋𝑓 𝑧 𝑠𝑑𝑠,
𝑡

0
         (3. 108) 

where 𝑓 𝑧  is the linear frequency which is related to both the off-resonance 

frequency (𝜔 𝑧 ) and the slice-select gradient (𝐺𝑧) as follows; 

𝑓 𝑧 =  
𝜔 𝑧 

2𝜋
=

𝛾𝐺𝑧𝑧

2𝜋
 (3. 109) 

Since in practice the excitation RF magnetic field is normally applied 

symmetrically about half the excitation time 𝜏 2,  the equation for the transverse 

magnetization can be modified as follows; 

𝑀𝑟(𝜏, 𝑧) = 𝑗𝑀0𝑒
−𝑗𝜔 𝑧 𝜏/2  𝜔1 𝑠

′ + 𝜏/2 𝑒𝑗2𝜋𝑓𝑠′
𝑑𝑠′𝜏/2

−𝜏/2
,         (3. 110) 
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where 𝑠′ = 𝑠 − 𝜏/2, 𝑓 = − 𝑓 𝑧  and 𝑒−𝑗𝜔 𝑧 𝜏/2 is the de-phasing or dispersion 

factor. This solution shows that, the transverse magnetization immediately after 

excitation is a scaled and phase shifted version of the one-dimensional inverse 

Fourier transform of the excitation magnetic field 𝐵1 𝑡 . The transverse 

magnetization is purely imaginary implying that only the quadrature component 

𝑀𝑦 ′  is present. For small tip angles and at 𝑧 ≈ 0, the quadrature magnetization is 

given by; 

𝑀𝑟 𝜏, 𝑧 = 0 = 𝑗𝑀0  𝜔1 𝑠 𝑑𝑠
𝑡

0
 =j𝑀0𝛾𝐵1𝜏 ≈ 𝑗𝑀0 sin 𝜃   (3. 111) 

where 𝜃 = 𝛾𝐵1𝜏 and sin 𝜃 ≈ 𝜃 when 𝜃 ≤ 𝜋 18 . To achieve a sharply defined 

slice profile, a sinc-shaped of Gaussian-shaped excitation RF magnetic field 

should be selected [32, 46]. The de-phasing factor results in a relatively weak 

signal immediately after the application of the slice-select gradient. The factor can 

be cancelled out by applying a cancelling gradient for duration of 𝜏/2 seconds 

after the excitation which results in a phase factor of  𝑒𝑗𝜔 𝑧 𝜏/2  that cancels the 

de-phasing term. This cancelling gradient should have equal magnitude but 

opposite polarity. 

After the application of the negative gradient (at 𝑡 = 3𝜏/2), the transverse 

magnetization 𝑀𝑟 3𝜏/2, 𝑧  will be related to  𝑀𝑟 𝜏, 𝑧   by; 

𝑀𝑟 3𝜏/2, 𝑧 = 𝑀𝑟(𝜏, 𝑧)𝑒𝑗𝜔 𝑧 𝜏/2 

=𝑗𝑀0  𝜔1 𝑠
′ + 𝜏/2 𝑒𝑗2𝜋𝑓𝑠′

𝑑𝑠′𝜏/2

−𝜏/2
 

(3. 112) 

The transverse magnetization in equation (3. 112) can be expressed as a one- 

dimensional Inverse Fourier Transform (IFT) of the excitation field as follows; 

𝑀𝑟 3𝜏/2, 𝑧  =𝑗𝑀0𝐼𝐹𝑇{𝛾𝐵1  𝑡 +
𝜏

2
 }  (3. 113) 

For a time varying gradient, the transverse magnetization expressed in equation 

(3. 112) can be generalized as follows; 

𝑀𝑟(𝜏, 𝑟) = 𝑗𝑀0  𝜔1 𝑠 (𝑒−𝑗𝛾  𝐺 𝑡 ′  .𝑟𝑑𝑡 ′𝜏
𝑠 )𝑑𝑠

𝜏

0
  (3. 114) 
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=      𝑗𝑀0  𝜔1 𝑠 𝑒
−𝑗2𝜋𝑘 𝑠 .𝑟𝑑𝑠

𝜏

0
  

=     𝑗𝑀0 𝛾  𝐵1 𝑠 𝑒
−𝑗2𝜋𝑘 𝑠 .𝑟𝑑𝑠

𝜏

0
    

 where 𝑘 𝑠  is the spatial frequency given by; 

𝑘 𝑠 =
𝛾

2𝜋
 𝐺 𝑡′ 𝑑𝑡′𝜏

𝑠
      (3. 115) 

The applied gradient therefore maps a trajectory through the excitation k-space. 

The excitation field 𝐵1(𝑡) acts as a weighting function to the trajectory as shown 

in equations (3. 114). 

3.5  Pulse Sequences and Re-phasing 

The term pulse sequence refers to the process of applying the RF-pulses 

and the gradient fields in a certain format and intervals in order to obtain a proper 

k-space sampling. The sequence must ensure that the required sensitivity to 

differences in relaxation times is achieved. A pulse sequence that allows 

acquisition of a single point in the k-space is shown in Figure 3.5. 

   Sampling instant 

    

RF pulse    

𝐺𝑧     

𝐺𝑦     

𝐺𝑥     

    

Figure 3.5. A single k-space point pulse sequence 

In order to sample the entire k-space of an 𝑁𝑝 × 𝑁𝑟  pixels image, this type of 

pulse sequence would have to be repeated 𝑁𝑝 × 𝑁𝑟  times. This process would be 

quite time-consuming resulting in a very long image acquisition time. The 

acquisition time can be considerably reduced by sampling multiple k-space points 
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for each RF-pulse excitation. Practical pulse sequence approaches that allow 

multiple k-space sampling per excitation include the spin-echo, saturation 

recovery, inverse recovery and gradient–echo sequences.   

The de-phasing of the nuclei spins during magnetization relaxation is 

caused by both external magnetic field inhomogeneities as well as the inherent 

spin-spin interactions. The Spin-Echo (SE) pulse sequence shown in figure 3.6 

eliminates the de-phasing due to the field inhomogeneities. When the net 

magnetization is tipped into the transverse plane by the 90
o
 excitation RF pulse, 

all the spins shall be in phase and will be precessing at the Larmor frequency 𝜔0. 

Under these conditions, a maximum intensity FID signal is detected by the 

receiver coil of the MRI equipment. Once the 90
o
 excitation RF pulse is 

withdrawn, the spins start to de-phase as they relax towards their equilibrium 

state. This de-phasing is due to their differences in precessional frequency. After 

some time 𝜏, a 180
o
 RF pulse is applied to change the direction of precession of 

the spins as shown in Figure 3.6. This causes the spins to start re-phasing. After a 

further time 𝜏 after the application of the 180
o
 pulse, the spins shall again be in-

phase and an echo FID signal can then be detected. The intensity of the echo shall 

be lower than the maximum intensity FID signal due to the de-phasing effect of 

the spin-spin interactions. The time duration of 2𝜏 seconds after the application of 

the 90
o
 excitation RF pulse is termed the Time to Echo (TE). The 180

o
 RF pulse is 

referred to as the refocusing or re-phasing pulse. 

RF Pulses 
    90

o
      180

o
   

    

Time 

            

             0                           𝜏                             2𝜏 

 

             0                    TE  

Figure 3.6. The spin echo pulse sequence 
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The spin-echo phase accrual due to the field inhomogeneity can be expressed as; 

𝛷 𝑥, 𝑦, 𝑧, 𝑡 = 𝜔𝐸 𝑥, 𝑦, 𝑧 𝑡 (3. 116) 

where 𝛷 𝑥, 𝑦, 𝑧, 𝑡  is the accrued phase and 𝜔𝐸  is the precessional frequency of 

the spins. Immediately after the application of the 90
o
 RF pulse at t=0, all the 

spins are in phase and therefore,  𝛷 = 0. At a time τ after the withdrawal of the 

excitation pulse, the phase of the spins will have accumulated to; 

𝛷 𝑥, 𝑦, 𝑧, τ = 𝜔𝐸 𝑥, 𝑦, 𝑧 τ (3. 117) 

Applying the 180
o
 RF refocusing pulse at this time (𝑡 = τ), the spins will be 

rotated about the axis of application of the refocusing pulse. The accrued phase 

immediately after application of the re-phasing pulse (𝑡 = τ+) will therefore be; 

𝛷 𝑥, 𝑦, 𝑧, τ+ = 𝜋 − 𝜔𝐸 𝑥, 𝑦, 𝑧 τ. (3. 118) 

This phase will continue to change with time such that, at 𝑡 = 2τ, the accrued 

phase will be given by; 

𝛷 𝑥, 𝑦, 𝑧, 2τ = 𝛷 𝑥, 𝑦, 𝑧, τ+ +  𝜔𝐸 𝑥, 𝑦, 𝑧 dτ

2τ

τ

 

=  𝜋 − 𝜔𝐸 𝑥, 𝑦, 𝑧 τ + 𝜔𝐸 𝑥, 𝑦, 𝑧  2τ − τ = 𝜋. 

(3. 119) 

Therefore, the phase accrual at 𝑡 = 2τ has no spatial dependence. This implies 

that the spins shall be completely re-phased resulting in an FID echo [27,47, 65]. 

3.6  The k-Space Trajectories Acquisition 

 The two commonly used techniques for reconstructing an MR image from 

the acquired k-space are the reconstruction based on two-dimensional projection 

and the two-Dimensional Discrete Fourier transform (2D-DFT) methods.  

(i) The 2D projection reconstruction method is similar to the method used in X-

ray Computed Tomography (CT). It involves taking the FID signal measurements 

that correspond to one-dimensional (1D) projections of the spatial distribution of 

the spins 𝑴(𝑥, 𝑦) at different angles. A one-dimensional projection of a two-

dimensional (2D) function is obtained by integrating the 2D function along some 
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direction. For example, when a 2D function is projected along an arbitrary axis 𝑦′  

that is parameterized by angle θ, it yields a 1D projection function given by; 

𝑔𝜃 𝑥′ =  𝑓  𝑥′ cos 𝜃 − 𝑦′ sin 𝜃 , 𝑥′ sin 𝜃 + 𝑦′ cos 𝜃  𝑑𝑦′ , (3. 120) 

 where 𝑔𝜃 𝑥′  is the 1D projection of 𝑓 𝑥, 𝑦  along the 𝑦′ -axis as illustrated in 

Figure 3.7 

The 2D projection MRI reconstruction method involves first recording a number 

of k-space projections (lines) each at a different angle by changing the orientation 

angle of the gradient at each recording. The method uses the pulse sequence 

shown in Figure 3. 8. 

 

Figure 3. 7. One-dimensional  projection of a 2D function [after 46] 
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RF 

pulse 
 

𝐺𝑧  

 

𝐺𝑦  
 

𝐺𝑥  

 

Figure 3. 8. The 2D projection pulse sequence [after 46] 

In the absence of a phase-encoding gradient and with a static read-out gradient, 

the demodulated FID signal is given by: 

𝑠 𝑡 =  𝑴(𝑥, 𝑦)𝑒−𝒋𝛾𝐺𝑥𝑥𝑡𝑑𝑥𝑑𝑦. (3. 121) 

To express the signal as a 1D Fourier transform of a projection, this signal can 

also be written as; 

𝑠 𝑡 =    𝑴(𝑥, 𝑦)𝑑𝑦 𝑒−𝑗𝛾 𝐺𝑥𝑥𝑡𝑑𝑥 =   𝑔(𝑥) 𝑒−𝑗𝛾 𝐺𝑥𝑥𝑡𝑑𝑥, (3. 122) 

 where 𝑔 𝑥  is the projection of 𝑴(𝑥, 𝑦) along the y-axis. Equation (3. 122) 

represents the 1D Fourier transform of 𝒈(𝑥) which can also be expressed as;  

𝑠 𝑘𝑥 =   𝑔(𝑥) 𝑒−𝑗2π𝑘𝑥𝑥𝑑𝑥, (3. 123) 

where 𝑘𝑥  is the spatial frequency. In order to gather sufficient information for the 

reconstruction of the MR image using the projection approach, the 1D projection 

of 𝑴(𝑥, 𝑦) is repeated at different angles to the x-axis. The different projections 

are accomplished by applying different static read-out and phase encoding 

gradients that orient the resultant gradient in different directions. The orientation 

angle (θ) of the gradient is given by; 
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𝜃 = tan−1 𝐺𝑦 𝐺𝑥          (3. 124) 

 According to the central slice theorem, the 1D Fourier transform of a 1D 

projection of a 2D function at some angle (𝜃), is equal to the 2D Fourier 

transform of the 2D function along a radial line at angle 𝜃 [37]. Therefore, from 

equation (3. 123), since g(x) is the 1D projection of 𝑴(𝑥, 𝑦) along the y-axis, then 

g(x) can be expressed as the 1D Inverse Fourier transform of the demodulated 

FID signal as follows; 

𝑔 𝑥 =   𝑠 𝑘𝑥 𝑒𝑗2π𝑘𝑥𝑥𝑑𝑘𝑥  (3. 125) 

The image is then reconstructed by applying one of the CT reconstruction 

algorithms or 2D inverse Fourier transformation of the k-space projections after 

interpolating them to form a two dimensional continuous-space function. The 

convolution back-projection method is an example of a CT reconstruction 

algorithm that can be used to reconstruct the MR image from it projections [20, 

33, 37]. The timing diagram of the two-dimensional projection reconstruction of 

MR image is shown in Figure 3.9 (a). 

  

(a) (b) 

Figure 3.9. The 2D projection reconstruction. (a) Timing diagram. (b) The k-

space trajectory [after 46]. 



Chapter 3. Magnetic Resonance Imaging 

74 
 

At the beginning of the sequence, a 90
o
 RF excitation pulse is applied together 

with a re-phasing slice-select gradient 𝐺𝑧 . Constant read-out and phase-encoding 

gradients (𝐺𝑥  and 𝐺𝑦 ) are then applied simultaneously. The FID signal is 

measured during the time of application of 𝐺𝑥  and 𝐺𝑦 . As the read-out time 

increases, the FID signal traces a k-space trajectory as shown in Figure 3.9 (b). 

The trajectory starts at the origin of the k-space and extends out at an angle equal 

to tan−1(𝐺𝑦/𝐺𝑥) to the 𝑘𝑥  axis. During every other subsequent excitation, the 

magnitudes of the 𝐺𝑥  and 𝐺𝑦  gradients are changed so that the FID signal traces a 

different trajectory on the k-space. Ultimately, the acquired full k-space will 

consist of multiple trajectories emanating from the centre of the k-space. The MR 

image is then reconstructed from the multiple trajectories using one of the CT 

reconstruction algorithms. 

(ii) The 2D-DFT MRI reconstruction method involves first applying a slice select 

gradient (𝐺𝑧). A frequency-selective RF excitation pulse is then applied to excite 

the selected slice. The excitation pulse should have a frequency that is resonant to 

the Larmor frequencies of the spins in the selected slice. The phase-encoding 

gradient (𝐺𝑦) is then applied for a fixed duration of time (𝑇𝑦) . Once 𝐺𝑦  is turned 

off, the signal is read-out from the receiver coils in presence of a constant 

frequency-encoding (read-out) gradient (𝐺𝑥). This procedure is repeated several 

times (𝑁𝑝). For each repetition, the same RF excitation pulse, slice-select gradient 

as well as read-out gradient are applied. The phase-encoding gradient is however 

increment during each subsequent excitation but its duration of application is 

maintained at 𝑇𝑦  for all the excitations. The 𝑁𝑝  recorded signal measurements are 

then sampled to yield the k-space of the image. Finally, 2D-IDFT is applied on 

the k-space data to reconstruct the MR image. In 2D-DFT reconstruction 

sequence, a slice is selectively excited by applying an RF excitation pulse in order 

to tip the net magnetization in presence of a slice-select gradient as shown in 

Figure 3.10 (a). A constant phase-encode gradient 𝐺𝑦  is then applied for a time 

duration 𝑡𝑦   that corresponds to a fixed value of  𝑘𝑦 .  
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(a) (b) 

Figure 3.10. The 2D-DFT pulse sequence. (a) Timing diagram. (b) The k-space 

trajectory [after 46]. 

The FID signal is then read-out during a fixed time duration in the presence of the 

frequency-encoding gradient 𝐺𝑥 . During the read-out time (𝑇𝑟 ), the signal traces a 

horizontal trajectory on the k-space at the 𝑘𝑦  value defined by 𝐺𝑦  and 𝑡𝑦  as shown 

in Figure 3. 10 (b).  

         A number of other excitations determined by the Nyquist sampling rate 

requirement are performed. These acquisitions are carried-out at different but 

constant values of 𝐺𝑦  with the values of 𝑇𝑟 , 𝑡𝑦  and 𝐺𝑥  maintained constant. At the 

end of the scan, equi-spaced parallel horizontal trajectories shall be traced over 

the entire k-space. The FID signals are then sampled in the frequency encoding 

direction at the Nyquist sampling rate. Finally, the MR image is obtained from the 

sampled k-space using 2D-IDFT [46, 66, 67]. 

3.7  Contrasts in MR Images 

 The MRI modality offers the ability to produce better soft-tissue contrast 

than x-rays based computed tomography (CT). The physical parameters that 

determine the strength of the FID signal are the sample relaxation time constants 

(𝑇1 and 𝑇2) and the spin density (ρ). These parameters vary from tissue to tissue 

and can therefore be exploited to enhance the contrast of the MR image. Some 

imaging equipment-related parameters can also be manipulated in order to 
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accentuate the differences in the physical parameters of different tissues in a 

sample. These tunable imaging parameters include the gradient echo time (TE), 

the excitation flip angle  𝜃  and the sequence pulse repetition time (TR). When 

the imaging parameters are set so that the differences in 𝑇1 are emphasized, the 

type of contrast achieved is referred to be 𝑇1-weighted. Likewise, when the 

parameters are manipulated so that the 𝑇2 differences of the objects in the sample 

are highlighted, the resulting image is said to possess 𝑇2-weighted contrast. There 

are two pulse sequences that are used to establish either 𝑇1 or 𝑇2 −weighted 

contrasts. The sequences are referred to as the saturation recovery and the 

inversion recovery sequences. For both sequences, the pulse repetition time (TR) 

if set to be much larger than the spin-spin relaxation time (𝑇2). The Spin-Echo 

(SE) type of saturation recovery sequence consists of a string of 90
o
 (tip-angle) 

excitation RF pulses each separated from the next by the pulse repetition time as 

shown in Figure 3.11. A 180
o
 re-focusing pulse is inserted after every excitation 

RF pulse. Each excitation pulse is separated from its corresponding re-focusing 

pulse by a time duration that is equivalent to TE/2.  

 

Figure 3.11. The spin-echo saturation recovery pulse sequence [after 46]. 

 The image resulting from the SE saturation recovery pulse sequence can be 

expressed as; 

𝐼 𝑥, 𝑦 = 𝐾𝜌 𝑥, 𝑦  1 − 𝑒−𝑇𝑅/𝑇1(𝑥 ,𝑦) 𝑒−𝑇𝐸/𝑇2(𝑥 ,𝑦)        (3. 126) 

where 𝐾 is a constant that is referred to as the catch-all gain constant and 
𝑇𝐸

2
≪ 𝑇1. 
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To realize 𝑇1-weighted scans, the TE is set to be much smaller than 𝑇2 so that the 

value of the term 𝑒−𝑇𝐸/𝑇2(𝑥 ,𝑦) approaches unity. On the other hand, the value of 

TR is set to be in the order of  𝑇1 the resulting 𝑇1-weighted image is then 

approximately given by; 

𝐼 𝑥, 𝑦 ≈ 𝐾𝜌 𝑥, 𝑦  1 − 𝑒−𝑇𝑅/𝑇1(𝑥 ,𝑦)         (3. 127) 

 For 𝑇2-weighted images, the imaging parameters are set as: TR≫ 𝑇1 and TE≈ 𝑇2.  

These settings results in the following image. 

𝐼 𝑥, 𝑦 ≈ 𝐾𝜌 𝑥, 𝑦 𝑒−𝑇𝐸/𝑇2(𝑥 ,𝑦)        (3. 128) 

The inverse recovery saturation sequence employs sequences of 90
o
 RF pulses 

and 180
o
 inversion pulses. Each inversion pulse is applied at a fixed inversion 

time (𝑇𝑖) prior to application of every excitation pulse as in Figure 3.12 (a).  

(a) 

 

(b) 

 

Figure 3.12. Inverse recovery saturation pulse sequence [after 46]. 
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Each180
o
 pulse inverts the longitudinal magnetization from the initial orientation 

of  𝑀𝑧  to −𝑀𝑧  prior to application of the 90
o
 excitation pulse as shown in figure 

3.11(b) where 𝑇𝐼 = 𝑇𝑖  is the inversion time. The resulting MR image is given by;  

𝐼 𝑥, 𝑦 = 𝐾𝜌 𝑥, 𝑦  1 − 2𝑒−𝑇𝑖  /𝑇1(𝑥 ,𝑦)+𝑒−𝑇𝑅/𝑇1(𝑥 ,𝑦) 𝑒−𝑇𝐸/𝑇2(𝑥 ,𝑦)        (3. 129) 

It results in images that have better 𝑇1-weighted contrast than the saturation 

recovery sequence.  It can also be used to null the effects of a particular material 

such as fat in the sample based on its  𝑇1 value.  Nulling is achieved by setting the 

inversion time (𝑇𝑖) so that the FID signal emanating from the material is zero. 

This is accomplished by ensuring the following; 

1 − 2𝑒−𝑇𝑖  /𝑇1(𝑥 ,𝑦)+𝑒−𝑇𝑅/𝑇1(𝑥 ,𝑦) = 0        (3. 130) 

 The value of 𝑇𝑖  required to null the material is therefore given by; 

𝑇𝑖 = −𝑇1loge  
1+𝑒−𝑇𝑅  /𝑇1(𝑥 ,𝑦 )

2
          (3. 131) 

Material nulling is important in the generation of MR images in which some 

substances such as fat in the imaging sample need to be suppressed to ease the 

diagnosis. It enables important details such as small tumors concealed within the 

fat to be revealed [27, 37, 46]. 

3.8    Artifacts and Noise in MRI  

       Artifacts and noise may compromise the quality of an MR image thereby 

leading to a possible misdiagnosis of a medical condition. The artifacts associated 

with MRI can be classified in to the following groups: 

(i) Artifacts arising from image processing. These artifacts include; 

aliasing, truncation and partial volume artifacts. 

(ii) Artifacts related to the behaviour of the body of a patient. These 

artifacts can be further classified into motion-caused and the 55
o
 magic 

angle-related artifacts.  

(iii) Radio frequency related artifacts. These are artifacts caused by the RF 

signal factors such as cross-talk, zipper effect, and stray RF signals. 
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(iv) Off-resonance related artifacts. These artifacts result from non-

idealities in the applied static as well as gradient fields. Magnetic 

susceptibility differences between different materials in the body as 

well as the chemical shift phenomenon also contribute to the off-

resonance artifacts. 

The Aliasing or wrap-around artifacts are caused by exposure of body parts 

outside the Field of View (FoV) to the gradient magnetic field. These parts 

generate a free induction decay (FID) signal whose spatial frequencies are higher 

than the maximum spatial frequency of the field of view. The higher frequency 

signal manifests itself as a lower frequency (alias) within the FoV. The artifacts 

are also experienced in images whose FID signals are sampled at a rate that is 

lower than the Nyquist sampling rate. Aliasing is caused by excessive shortening 

of the FoV in the phase encoding direction. The artifacts manifest themselves as 

parts of the body outside the field of view being aliased inside the image area. The 

three methods that are commonly used to reduce the aliasing artifacts in MRI are: 

(i) Use of surface coils to ensure that the MRI equipment receiver coil 

does not receive any signal outside the FoV, 

(ii) Increasing the size of the FoV to cover the entire part of the body that 

is being imaged, 

(iii)  Oversampling of the FID signal in the read-out direction. 

Surface coils are transmit/receive coils that cover only the body area whose MR 

image is desired. They ensure that only signals from the FoV are received thereby 

reducing chances of the aliasing phenomenon. If the field of view is increased to 

cover the entire sample, aliasing is eliminated. Increasing the FoV is achieved by 

using weaker gradients. This gradient weakening ensures that the maximum and 

minimum spatial frequencies of the baseband FID signal correspond to an 

increased FoV. Oversampling is done by increasing the sampling rate in the 

frequency encoding direction. Truncation artifacts occur at boundaries of body 

materials that have high contrasts. These boundaries include the interface of bones 
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and liquid or semi-liquid materials including the brain cerebrospinal fluid and the 

synovial fluid. The artifacts appear as alternating dark and bright bands whose 

intensities decrease with increase with distance from the boundaries. The artifacts 

may cause misdiagnosis because they can be interpreted to mean lesions. These 

artifacts are also termed as the Gibb’s phenomenon. They can be remedied by 

either increasing the sampling time or by decreasing the pixels size. Across a 

selectively excited imaging sample, the Larmor frequency of the spins may 

exhibit some offset. This may be due to non-idealities in the applied static as well 

as gradient fields, magnetic susceptibility differences between different materials 

in the body as well as the chemical shift phenomenon. The resonance frequency 

differences may also be experienced in a sample that is subjected to perfectly 

uniform external static magnetic field. One of the causes of such a resonance 

frequency offset is the fact that different tissues of the body have different 

magnetic susceptibilities. The frequency off-resonance due to this factor increases 

with increase in susceptibility difference between of the two bordering materials 

such as body tissue and water.  

The body parts that are greatly affected by susceptibility artifacts include 

the abdomen, lungs and the head. The artifacts manifest themselves as mis-

mapping of objects in the image. Magnetic susceptibility related artifacts are 

caused by magnetic fields distortion due to differences in magnetic susceptibilities 

between the body tissues and other substances inside or external to the patient’s 

body. Ferromagnetic substances such as iron, cobalt and nickel cause substantial 

susceptibility artifacts due to their large susceptibilities. Most of the body tissues 

are diamagnetic and therefore cause little susceptibility artifacts. The 

susceptibility-related artifacts can be suppressed by using Fast Spin-Echo (FSE) 

scanning  which is least affected by susceptibility changes as a result of using 

multiple gradients that have 180
o
 re-focusing capability. The non-homogeneities 

in the fields are usually specified in terms of parts per million over a given 

imaging volume. These non-homogeneities cause image artifacts that appear as 
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zebra-like patterns in the images called Moiré’s fringes. To improve the main 

field uniformity, shimming coils are usually included in the design of the MRI 

equipment. The shim coils work by producing a magnetic field that cancels or 

suppresses the non-uniformity. Non-linearity in the gradient fields causes local 

magnetic field distortions. They cause image artifacts that are similar to the 

imperfections resulting from the main field non-uniformity. 

 Field non-homogeneities give rise to aberrations in both the amplitude and 

the phase of the FID signal. These offsets in amplitude and phase lead to the 

distortions and artifacts in the MR image. In the absence of gradient fields, an 

inhomogeneous main field 𝑩𝟎
′   can be expressed as; 

𝑩𝟎
′ = 𝑩𝟎 + 𝑬(𝑥, 𝑦) (3.132) 

 where 𝑩𝟎 is a homogeneous component while 𝑬(𝑥, 𝑦) is the non-uniformity field 

component that gives rise to a resonance frequency offset equal to 𝜔𝐸(𝑥, 𝑦) =

𝛾𝐸(𝑥, 𝑦). The resulting read-out baseband FID signal will then be; 

𝑠 𝑡 =  𝑀(𝑥, 𝑦)𝑒−𝑗𝜔 𝐸(𝑥 ,𝑦)𝑒−𝑡/𝑇2𝑑𝑥𝑑𝑦 (3. 133) 

The phase term 𝑒−𝑗𝜔𝐸𝑡  leads to loss of phase coherence of the spinning protons. 

This phase dispersion manifests itself as a prolonged amplitude decay that has a 

spin-spin time constant 𝑇2
∗ which is shorter than the intrinsic spin-spin time 

constant 𝑇2 of the sample. The phase aberration can be analyzed in terms of the 

Point Spread Function (PSF) of the MRI equipment. The PSF of an imaging 

system describes how a delta function is displayed in the digitized image. A 

perfect PSF will display a point object as a single pixel point without broadening. 

Assuming perfect selective excitation of a slice and neglecting the 𝑇2 relaxation, 

the resulting FID signal in presence of the phase incoherence is given by;  

𝑠 𝑡 =  𝑀(𝑥, 𝑦)𝑒−𝑗2𝜋[𝑘𝑥 (𝑡)𝑥   +𝑘𝑦 (𝑡)𝑦]𝑒−𝑗𝜔𝐸(𝑥 ,𝑦)𝑡𝑑𝑥𝑑𝑦        (3. 134) 

The PSF is obtained by letting the transverse magnetization 𝑀(𝑥, 𝑦) to be a two-

dimensional impulse function located at the reference point (𝑥0, 𝑦0). This impulse 
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transverse magnetization can be expressed as: 𝑀 𝑥, 𝑦 = 𝛿(x − 𝑥0, y − 𝑦0).  The 

PSF of the MRI equipment then becomes 

𝑃𝑆𝐹 𝑡 = 𝑒−𝑗2𝜋[𝑘𝑥 (𝑡)𝑥0   +𝑘𝑦 (𝑡)𝑦0]𝑒−𝑗𝜔𝐸(𝑥 ,𝑦0)𝑡  (3. 135) 

After applying the phase encoding gradient for a time duration 𝑡𝑦 , the PSF can 

then be written as follows; 

𝑃𝑆𝐹 𝑡 = 𝑒{−𝑗𝛾 𝐺𝑥 [𝑥0   +𝐸(𝑥0 ,𝑦0)/𝐺𝑥 ]𝑡𝑦 𝑒−𝑗𝛾 𝐺𝑦 𝑦0𝑡𝑦  𝑒−𝑗𝜉0        (3. 136) 

The phase angle 𝜉0 accounts for the additional phase accrued during the phase 

encoding duration. The PSF shows that the field inhomogeneities results in mis-

positioning of an object from its true position 𝑥0 to a new position 𝑥0
′  given by: 

𝑥0
′ = 𝑥0 +

𝐸(𝑥0, 𝑦0)

𝐺𝑥
 (3. 137) 

This mis-positioning can be reduced by increasing the strength of the read-out 

gradient field 𝐺𝑥 .  

 The term chemical shift refers to the change or drift in the resonance 

frequency of spinning nuclei as a result of the shielding from the effect of the 

applied magnetic field by the electrons orbiting around the nuclei [37, 46]. The 

effective magnetic field (𝐵𝑒𝑓𝑓 ) experienced by the shielded nuclei spins can be 

expressed as; 

𝐵𝑒𝑓𝑓 = 𝐵0(1 − ς)  (3. 138) 

where 𝜍 is called the shielding constant whose value depends on the chemical 

composition of the sample. The corresponding spin frequency (𝜔𝑐𝑠) of the 

shielded nuclei is given by; 

𝜔𝑐𝑠 = 𝛾𝐵0(1 − ς)  (3. 139) 

Chemical shift results in positional displacement of the affected object in the 

image from its true location 𝑥 to a position 𝑥′  given by; 

𝑥′ = 𝑥 +
𝜔𝑐𝑠

𝛾𝐺𝑥
  (3. 140) 

The artifacts can be reduced by proper setting of the Time to Echo (TE), 

increasing the field of view (FoV) or by means of using fat suppressors. Static 
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external magnetic fields can cause off-resonance related artifacts due to their 

effect on the homogeneity in the static magnetic field of the MRI equipment. 

They appear as distortions in the image and can be suppressed by use of proper 

shimming coils [47]. Gradient related artifacts are usually caused by the eddy 

currents that are induced in the tissue due to rapid switching of the gradients. The 

artifacts are also caused by nonlinearities in the gradients. The artifacts can be 

reduced by using highly linear gradients. 

 The patient motion-related artifacts are caused by either voluntary or 

involuntary random movements of the patient. They can be also be caused by 

periodic movements of the patient’s body. The flow of body fluids in their 

vessels, cerebrospinal fluid movements as well as the blood pumping of  the heart 

are some of the periodic body movements that results in MRI artifacts. These 

periodic movements produce ghost artifacts of the moving parts. The separations 

of the ghost become fainter as their distance from the actual object increases. The 

separation of two consecutive ghosts 𝑥𝑔  is given by; 

 𝑥𝑔 =
 𝑇𝑅  𝑁𝐸𝑋 (𝑁𝑝 )

𝑇𝑚
  (3. 141) 

where 𝑇𝑅 is the pulse repetition time, 𝑁𝐸𝑋 is the number of excitations 

performed during the scan, 𝑁𝑝  is the number of phase-encoding steps and 𝑇𝑚  is 

the periodic time of the body part motion. This artifact can be reduced by use of 

pre-saturation pulses that saturate the inflowing protons. The number of ghosts 

within the FoV of the image can also be reduced by increasing one or more of the 

parameters; 𝑇𝑅, 𝑁𝐸𝑋  or  𝑁𝑝 . By swapping the gradients 𝐺𝑦  and 𝐺𝑥 , the direction 

of the ghosts is changed allowing the ghosts and actual lesion to be differentiated.  

 The patient random movements are caused by either reflex or voluntary 

actions such as breathing, coughing, swallowing, sneezing, blinking, peristaltic 

motion of food in the alimentary canal as well as changing of positions of parts of 

the body or the whole body. These random movements cause blurring of the MR 

images of the moving body parts as well as parallel bands in the phase encoding 

directions. Unlike the case of truncation artifacts, the parallel bands do not fade 



Chapter 3. Magnetic Resonance Imaging 

84 
 

with distance. They can be reduced using: respiratory compensation, mechanical 

cramping or use of fast MRI techniques.  The most effective remedy to these 

artifacts is to instruct the patient not to move, cough, swallow, sneeze or blink 

while in the MRI equipment. Other methods of reducing the artifacts include; use 

of respiratory compensation to re-order the scanning time so that the FID signals 

are read out at specific instances of the breathing cycle. Use of glucagon in the 

abdomen reduces the artifacts due to peristalsis movements. Sedation of patients 

especially infants also reduces these movements. Patients who exhibit a lot of 

violent movements due to severe pain can be made to be less motional by 

administering painkillers. Fast MRI scanning techniques such as Fast Spin Echo 

(FSE), Gradient Recalled Echo (GRE) and Echo Planar Imaging (EPI) are less 

prone to the motioned related artifacts compared to conventional MRI techniques.   

 The tendons at the joints consist of a substance called collagen. This 

substance is anistropic making its T2 relaxation time constant to be dependent on 

the orientation angle relative to the applied magnetic field. When a tendon is 

placed at an angle of 55
o
 to the longitudinal axis, it appears brighter on T1-

weighted images than on T2-weighted ones. This angle that makes the tendon to 

appear artificially brighter than normal is called the magic angle [27]. The 

apparent increase in brightness can be misdiagnosed as a lesion. The remedy of 

this artifact is to avoid the magic angle.  

 Cross-talk artifacts arise due to the fact that the Fourier transform of the RF 

excitation pulse cannot be perfectly rectangular due to its limited duration. The 

pulse posses frequency domain side-lobes.  When two adjacent slices of the body 

are scanned, there will be an overlap of the side-lobes of their FID signals.  The 

overlap is also termed crosstalk and decreases the effective pulse Repetition Time 

(TR) per slice as well as the Signal to Noise Ratio (SNR) of the image. The 

artifacts can be reduced by introducing gaps between adjacent slices. Lengthening 

of the duration of the RF pulse makes the Fourier transform profile to be a better 

approximation to a rectangular shape. This reduces the side-lobes that are 
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responsible for crosstalk artifacts. Performing two separate imaging sequences 

each with adjacent slices separated by the slice thickness also eliminates the 

crosstalk artifacts. One of the two sequences captures only the slices in odd-

number positions while the other sequence scans the remaining slices. 

 Zipper artifacts are caused by the overlapping of the 180
o 

phase refocusing 

pulses with that of the FID signal. The artifacts appear on the image as central 

stripes of alternating bright and dark spots giving a visual impression of a zip. 

These artifacts can be reduced by increasing the Time to Echo (TE) so as to 

increase the separation between the refocusing pulse and the read-out time of the 

FID signal. A second remedy for the zipper problem is to increase the slice 

thickness. This allows the use RF pulses that have a shorter duration and therefore 

a wider bandwidth. This will effectively reduce the overlapping effect of the side 

lobes without having to alter the TE. 

Stray radio frequency (RF) noise from sources such as communication 

equipment and devices, fluorescence tubes as well as patient-monitoring medical 

equipment also result in MR image artifacts. The RF noise artifacts appear on the 

image as zipper artifacts that are not necessarily centralized. The position of these 

zipper stripes depends on the frequency of the noise. The artifact can be reduced 

by improving the RF shielding of the MRI equipment. Switching-off of the other 

nearby RF sources that are not required during the imaging duration also reduces 

the associated RF noise artifacts [27, 46, 68, 69]. 

 The main source of noise associated with MRI is the thermal fluctuations 

of the electrolytes in the human body. This noise is picked up by the FID receive 

coils and often dominates the noise from the receiver electronic circuits as well as 

the thermal noise emanating from the receiver coils. The noise has a flat Power 

Spectral Density (PSD) over all the frequency of interest in MRI. It has a power, 

P that increases proportionately with the RF bandwidth of the MRI equipment as 

follows:  

𝑃 = 𝑁(𝛥𝑓) = 4𝑘𝑇𝑅(𝛥𝑓) (3. 142) 
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where 𝑁 is the one-sided PSD of the noise, 𝛥𝑓 is the RF bandwidth of the MRI 

equipment, 𝑘 is the Boltzmann constant, 𝑇 is the absolute temperature and 𝑅 is 

the resistance of the imaging sample. The amount of signal power received per 

volume element (voxel) of the sample is directly proportional to the: voxel size 

(𝛥𝑥)(𝛥𝑦)(𝛥𝑧), square root of the total FID read-out time   𝑇𝑟  , the relaxation 

time constants (𝑇1 and 𝑇2 ) and the proton spin density (ρ) of the sample. The 

thermal noise power of a given sample at a particular temperature depends on the 

specific MRI equipment. The Signal to Noise Ratio (SNR) can be expressed as;  

𝑆𝑁𝑅 = 𝑘(𝛥𝑥)(𝛥𝑦)(𝛥𝑧)  𝑇𝑟  𝑔(𝜌) (3. 143) 

where 𝑔(𝜌, 𝑇1 , 𝑇2) is a function that is dependent on , 𝑇1 , 𝑇2 and 𝜌 [27, 37, 75]. 

3.9 Fast MRI Techniques 

Fast MRI methods exploit the capabilities of the equipment hardware in 

order to optimize the imaging process. The MR image scanning process involves 

acquisition of lines or curves that traverse the entire k-space of the image. The 

speed at which the k-space is acquired is limited by some physical and 

physiological constraints of the equipment and the patient’s body respectively. 

For example, conventional MRI systems have maximum achievable gradients 

magnitudes as well as slew rates. Gradients and slew rates that have higher values 

than the maximum allowable ones can produce nerve stimulation in patients and 

are avoided. This effect limits the gradient system performance based on a 

physiological constraint [20]. Several techniques that are used to reduce the 

imaging time of MRI equipments by providing more useful data per MR 

acquisition are currently in use [27]. These methods include the Fast Spin Echo 

(FSE), Gradient Recalled Echo (GRE), single shot Echo Planer Imaging (EPI) and 

half Number of EXcitations (1/2  NEX) MRI techniques.  

The 1/2  NEX  MRI method is also termed the half-Fourier in-phase 

technique. It involves the acquisition of data from the upper half of the k-space 

using half the number of phase-encoding steps dictated by the sampling theorem. 
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The lower half of the k-space is mathematically constructed from the upper half 

k-space. Although the MRI scan time is reduced by half, the trade-off is a 

reduction in the SNR by a factor of  2  due to presence of phase errors. The EPI 

technique requires very high performance gradients (typically 20mT/m) that can 

switch on and off very rapidly (typically 300 μsec). The method fills the whole k-

space during one T2* duration.  Although the scan time is greatly reduced, phase 

errors have a long time to build-up thereby increasing the susceptibility artifacts.  

The FSE technique utilizes multiple 180
o
 re-focusing pulses between two 

consecutive 90
o
 RF pulses. The use of multiple RF pulses allows the filling of 

multiple k-space lines within a single 90
o
 pulses repetition time (TR) compared to 

the Conventional Spin Echo (CSE) technique. The FSE technique reduces the 

acquisition time by a factor equal to the number of echoes per TR duration.  

The Gradient Recalled Echo (GRE) method reduces the MRI scan time by 

using smaller flip angles than those used in CSE imaging. It is characterized by 

short TR values which lead to a reduction in the scan-time and also allows 3D 

imaging. Due to the short TR in GRE imaging, the longitudinal magnetization 

does not recover substantially between two consecutive 90
o
 RF pulses leading to a 

decrease in the SNR of the MR image compared to the CSE method.   

Other fast MRI techniques are the GeneRalized Auto-calibrating Partially 

Parallel Acquisitions (GRAPPA) and the SENSitivity Encoding (SENSE) 

methods. The two are parallel acquisition methods that employ phased arrays of 

receiver coils each having a different view of the selected body slice.  By utilizing 

the spatial location and sensitivity of each coil, the aliasing phenomenon due to 

sub-Nyquist sampling can be done by post-processing. The two methods differ by 

the sensitivity determination approach as well as the post-processes applied on the 

FID signals. The SENSE technique has a superior SNR performance whereas the 

GRAPPA method is more robust in situations where it is difficult to accurately 

determine the sensitivities of the coils. [27, 46, 68-74].  
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CHAPTER 4 

COMPRESSIVE SAMPLING 

This chapter covers the background concepts of Compressive Sampling 

(CS). It commences with a discussion on the CS measurement of sparse or 

compressible signals. The design of CS sensing matrices is then covered. Finally, 

a description of various sparse reconstruction methods such as optimization-based 

and greedy techniques is given. 

4.1 Compressive Sensing Theory 

Compressive Sampling (CS) refers to the linear dimensionality reduction-

based data acquisition procedure that performs simultaneous sensing and 

compression of finite-length sparse or compressible signals. In CS, 𝑀 < 𝑁 linear 

measurements are needed to reconstruct a signal 𝒇 of length N. The measurements 

form a vector 𝒚 that is given by; 

𝒚 = 𝚽𝒇, (4.1) 

where  𝚽 is an M ×N  measurement matrix [1, 74-80]. Equation (4.1) is ill-posed 

since it is underdetermined and therefore has infinitely many solutions [13, 14]. 

The sparse signal can be expanded in an orthonormal basis domain as follows;  

𝒇 =  𝑥𝑖ψi
= 𝚿𝒙

𝑁

𝑖=1

, (4.2) 

where 𝚿 is an 𝑁 × 𝑁 representation matrix and 𝒙 is an N-length column vector 

that represents the coefficients sequence of the signal in the  representation 

domain. Substituting for 𝒇 from (4.2) in (4.1), the measurement vector 𝒚 can then 

be expressed as follows;  

𝒚 = 𝑨𝒙, (4.3) 

where 𝑨 = 𝚽𝚿 is an M ×N  sensing matrix[1, 81-84]. The sensing matrix is 

designed in such a way as to reduce the length of the measurement vector as much 

as possible. The matrix should also allow unique reconstruction of a wide class of 
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sparse signals from their measurement vectors. Since the matrix is rank-deficient, 

it therefore has a non-empty null-space. This property of 𝑨 implies that, an 

infinite number of sparse signals will yield the same measurement vector. 

The sparse signal is said to be K-sparse in the representation orthonormal basis if 

the vector of coefficients 𝒙 ∈ ℝ𝑁   has at most K < N nonzero entries. It therefore 

has a concise representation when expressed in a proper sparsifying basis 𝚿. The 

support of vector x is set of indices corresponding to its non-zero entries. While 

the set that contains all signals that are K-sparse is denoted as ΣK . Any K-sparse 

signal can be compressed without any loss of information by encoding only the 

magnitudes and positions of the non-zero coefficients of vector 𝒙. The coding of 

the locations as well as the values of the K non-zero coefficients requires 

O 𝐾loge 2𝑁   binary bits [12]. A signal is referred to as compressible if when 

the magnitudes of the sparsifying domain coefficients are sorted in descending 

order, they decay quickly. Such a signal can be approximated as a K-sparse signal 

by including only the K coefficients that have the largest magnitudes with all the 

other smaller magnitude coefficients replaced by zeros.  Most of the real-world 

signals are not truly sparse rather they are compressible in suitable representation 

domains. The compressibility can be quantified by calculating the error between 

the compressible signal and its K-sparse approximation as follows; 

𝝈𝒙 𝒙 𝑝 = min 𝒙 − 𝒙  𝑝, (4.4) 

where 𝝈𝒙 is the error vector, 𝒙  is the K-sparse approximation of the compressible 

signal x and   .  𝑝 denotes the 𝑙𝑝-norm.  If the signal is exactly sparse, then the K-

sparse approximation error is zero for any 𝑙𝑝-norm. A second way of expressing 

the compressibility of a signal is to use the rate of decay of their coefficients. Let 

a signal 𝒇 be compressible in a sparsifying domain 𝚿 such that 𝒇 = 𝚿𝒙 where x 

is its coefficients vector of length 𝑁. Also let the coefficients vector Sorted in 

descending order be:  𝑥1 ≥  𝑥2 ≥ ⋯ ≥  𝑥𝑁 . The sorted coefficients are said to 
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obey a decay power law if there exist two positive constants  𝐶1 and  𝑞 such that 

the following equation holds; 

 𝑥𝑖 ≤ 𝐶1𝑖
−𝑞

  for  1 ≤ 𝑖 ≤ 𝑁 (4.5) 

 Where   𝑥𝑖   represents the coefficient of 𝒙 that has of the  𝑖𝑡  largest magnitude. 

The compressibility of the signal increases as the value of q increases. If the 

magnitudes of the sorted coefficients of the compressible signal decay rapidly, the 

signal can be represented by 𝐾 < 𝑁 coefficients with a small amount of error. For 

such a compressible signal, there exist two positive constants 𝐶2 and 𝑟 that satisfy 

the following equation; 

𝜎𝑥 𝒙 2 ≤ 𝐶2𝐾
−𝑟

 (4.6) 

The values of  𝐶2 and 𝑟 only depend on the magnitudes of the constants 𝐶1 and  𝑝  

used in equation (4.5). When a compressible signal is approximated as a K-sparse 

signal, the compression level achieved depends on the number of the largest 

magnitude coefficients retained in the approximation [21, 85].  

4.2  Sensing Matrix Design 

The CS sensing matrix 𝑨 is said to represent a dimensionality reduction 

since it maps an N-length vector 𝒙 into an M-length vector 𝒚 where M < N. If the 

matrix entries are chosen such that they are independent of the previously 

acquired measurements, the CS acquisition is termed non-adaptive. The matrix 

can also be adaptively altered during the measurements resulting in performance 

improvements. A good sensing matrix is one that ensures preservation of the 

signal information in the measurement vector. It should also allow the correct 

reconstruction of the original signal from measurement vector. For unique 

acquisition of a sparse or compressible signal such as an MR image, the sensing 

matrix should possess some desirable properties. These include the Null Space 

Property (NSP), the Restricted Isometry Property (RIP), the measurement bound 

and the low coherence properties [11, 20]. 
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4.2.1 Null Space Property 

The null space of a matrix 𝑨 is the set of all vectors 𝒛 such that 𝑨𝒛 = 0. It 

can be expressed as; 

𝑁 𝑨 =  𝒛:𝑨𝒛 = 0 , (4.7) 

 

where 𝑁 𝑨  is null space of a matrix 𝑨.  

In order to recover all the K-sparse signals from their measurement vectors 

using the sensing matrix 𝑨, then any pair of distinct K-sparse signals 𝒙 and 𝒙′ 

must have distinct measurement vectors 𝑨𝒙 and 𝐀𝐱′ . Otherwise, if the 

measurement vectors are equal, then it will be impossible to distinguish the two 

signals based on their measurement vectors. The equality of the two measurement 

vectors implies that; 

𝑨𝒙=𝑨𝒙′ ⇒ 𝑨(𝒙 − 𝒙′  )=0 (4.8) 

The 2𝐾-sparse difference signal (𝐱 − 𝐱′)  will be in the null space of a matrix 𝑨. 

Therefore to avoid ambiguity in the measurements of the distinct 𝐾-sparse 

signals, the null space of the sensing matrix must not contain any 2𝐾-sparse 

signals. Therefore, the matrix 𝑨 will uniquely represent all 𝐾-sparse signals if and 

only if this null space property is satisfied.  

The NSP property can be characterized by the spark of the matrix. The 

spark of a matrix 𝑨 is the smallest number of its columns that are linearly 

dependent. Let there be at most one 𝐾-sparse signal for every measurement vector 

of length 𝒚 = 𝑨𝒙. If spark (𝑨)≤ 2𝐾 then, there will be a set of at most 2𝐾 

columns of 𝑨 that are linearly independent. This in turn implies that there exists a 

2K-sparse vector 𝒉 ∈  N 𝑨 .  The 2𝐾-sparse vector can be written in terms of 

two distinct 𝐾-sparse signals as 𝒉 = 𝒙 − 𝒙′ . Since vector 𝒉 is in the null space of  

𝑨, then the product of the matrix and vector 𝒉 is zero. This fact implies that: 

𝑨𝒙 = 𝑨𝒙′ . This result contradicts the assumption of existence of at most one 𝐾-

sparse signal that gives the measurement vector y = Ax. Therefore, a sensing 
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matrix whose spark is not greater than 2𝐾 does not meet the NSP. Conversely, 

assuming that spark (𝑨) > 2𝐾 and the same measurement vector for a pair of 𝐾-

sparse vectors (x and 𝒙′) such that 𝒚 = 𝑨𝒙 = 𝑨𝒙′ , the difference vector can be 

expressed as 𝒉 = 𝒙 − 𝒙′  which leads to 𝑨𝒉 = 0. Since the spark of the matrix 𝑨 

is assumed to be greater than 2K, all sets of up to 2K columns of the matrix are 

linearly independent. This result implies that the difference vector must be zero 

and the two signals are not distinct. Therefore for the NSP to hold, the spark of 

the sensing matrix must be greater than twice the sparsity of the signals of 

interest. [14, 21, 86].  

The spark of the 𝑀 × 𝑁 sensing matrix is in the range: spark (A) ∈ [2, (M 

+ 1)]. Therefore, the required minimum number of CS measurements that will 

ensure that the matrix satisfies the NSP is equal to twice the sparsity of the signal. 

If a signal is strictly sparse, the 2K spark property is a sufficient test for unique 

recovery possibility. However, for compressible signals the NSP of order 𝐾 must 

also ensure that the null space of the sensing matrix does not contain vectors of 

higher compressibility in addition to the 𝐾-sparse ones. A compressible sensing 

matrix 𝑨 satisfies the null space property of order 𝐾 if there exists a constant  

𝐶 > 0  such that the following expression holds for all vectors 𝒉 ∈ 𝑁(𝑨)  and for 

all 𝜆 such that | 𝜆 | ≤ K. 

 𝒉𝛌 2 ≤
𝐶 𝒉𝛌𝒄 1

 𝐾
 (4.9) 

The N-length vector 𝒉𝛌 is obtained by setting the entries of 𝒉 indexed by 𝜆𝑐 to 

zero [21]. 

4.2.2 The Restricted Isometry Property 

The NSP of a sensing matrix is a necessary and sufficient property that 

guarantees exact recovery of a noise-free sparse signal from its compressively 

sampled measurements. When the measurements are contaminated with noise or 

acquisition errors, the property does not imply robustness of the sensing matrix 

and therefore does not guarantee exact sparse signal recovery. Under noisy 
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conditions, the matrix should obey the Restricted Isometry Property (RIP) in order 

to guarantee exact recovery of all K-sparse signals from their measurements.  The 

matrix 𝑨 is said to satisfy the RIP of order 𝐾 if there exists a number 𝛿𝐾 ∈ (0, 1) 

such that for all for all 𝐾-sparse signals of interest (𝒙), the following inequality 

holds. 

 1− 𝛿𝐾  𝒙 2
2 ≤  𝑨𝒙 2

2 ≤  1 + 𝛿𝐾  𝒙 2
2, (4.10) 

The smallest number (𝛿𝐾 ≥ 0) for which this inequality holds is called the   

isometry constant of order 𝐾 of a matrix 𝑨. Therefore, the isometry constant 

should not be too close to unity for the matrix to obey the RIP. A sensing matrix 

that satisfies the RIP of order 2𝐾 approximately preserves the Euclidean distance 

between any pair of 𝐾-sparse signals. The Euclidean lengths of all 𝐾-sparse 

signals are therefore approximately preserved by such a sensing matrix. This will 

make it possible to formulate algorithms that result in unique solutions for the 𝐾-

sparse signals from their noisy measurements obtained using compressive 

sampling [13, 22].  

Several classes of matrices satisfy the RIP and can therefore be used in the 

exact recovery of compressively sensed 𝐾-sparse signals. One category consists 

of matrices formed by sampling column vectors uniformly at random on the unit 

sphere [21].  The other category is any matrix formed by sampling independent 

and identically distributed entries from a sub-Gaussian distribution. The RIP also 

holds for any sensing matrix 𝑨 = 𝜱𝜳 where 𝜳 is an arbitrary representation 

matrix and 𝜱 is a measurement matrix that obeys the RIP [18]. The RIP is a 

necessary condition for recovery all K-sparse signals from their distinct noisy 

measurement vectors. This is made possible because distinct measurement vectors 

will be acquired for each of the 𝐾-sparse signals just as the NSP implies in a 

noise-free measurement scenario. The recovery stability of a matrix A that obeys 

the RIP can be assessed by determining the C-stability of the matrix together with 

the recovery mechanism.  
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Let 𝑨: 𝑅𝑁 → 𝑅𝑀  represent a sensing matrix and Δ: 𝑅𝑀 → 𝑅𝑁 where 𝑀 < 𝑁 

denote a CS recovery method. The pair of matrices (𝑨, Δ) is said to be C-stable if 

for any K-sparse signal and any M-length error vector ϵ, the following inequality 

holds; 

 𝜟 𝑨𝒙+ 𝝐 − 𝒙 2 ≤ 𝐶 𝝐 2 (4.11) 

where C is a constant. The implication of the C-stability is that, when a small 

amount of noise 𝝐 is added to the measurement vector, the impact of the noise on 

the recovered signal will be bounded. Any stable CS recovery algorithm requires 

A to satisfy the C-stability inequality. If the pair (A, Δ) is C-stable, then for all 

2𝐾-sparse signals the following relationship holds. 

1

𝐶
 𝒙 2 ≤  𝑨𝒙 2 (4.12) 

If  this relationship is satisfied, then the RIP can be proved as follows; 

Let x and 𝒛 be any two K-sparse signals each measured with noise errors given 

by; 

є𝒙 =
𝑨(𝒛−𝒙)

2
      and       є𝒛 =

𝑨(𝒙−𝒛)

2
 (4.13) 

where є𝒙 is the error in the measurement of x while є𝒛 is the error in the 

measurement  of 𝒛. Let the two measurements be equal as follows; 

𝑨𝒙 + є𝒙 = 𝑨𝒛 + є𝒛 =
𝑨(𝒙+ 𝒛)

2
 (4.14) 

The signals recovered from the two noisy measurements are equal and given by: 

𝒙 = 𝚫(𝑨𝒙+ є𝒙) = 𝚫(𝑨𝒛+ є𝒛) (4.15) 

Applying the reconstructed signal to the triangle inequality and the C-stability 

equation yields; 

 𝒙 − 𝒛 2 =  𝒙− 𝒙 + 𝒙 − 𝒛 2  ≤ 𝐶 є𝒙 2 + 𝐶 є𝒛 2 ≤  𝑨𝒙− 𝑨𝒛 2 (4.16) 

As the value of C approaches unity, the sensing matrix A satisfies the lower 

bound of the RIP inequality with the isometry constant given by: 𝛿2𝐾 = 1 −

1/𝐶2 → 0. Therefore, in order to reduce the impact of the noise in the recovered 
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signal, matrix A must be designed so that it satisfies the lower bound of the RIP 

inequality with a small value of constant C [17, 21]. 

4.2.3 The Measurement Bound Property 

The measurement bound property stipulates how the lower bound number 

of measurements necessary to achieve the RIP can be established. This lower 

bound for a sensing matrix that obeys the RIP of order 2𝐾 and having an isometry 

constant 𝛿2𝐾 ∈ (0, 0.5)  is dependent on the signal length 𝑁 as well as its sparsity 

as follows; 

𝑀 ≥ 𝐾𝐶𝑀log𝑒  
𝑁

𝐾
  (4.17) 

where M is the minimum number of measurements required, 𝐶𝑀  is a positive 

constant, 𝐾 is the number of nonzero coefficients in the signal vector [14, 16]. 

4.2.4 Coherence 

The NSP and RIP provide a guarantee for the recovery of K-sparse signals 

from noise-free and noisy measurements respectively. Verification of these two 

properties for a particular CS sensing matrix A requires a combinational search 

over all its sub-matrices which is a computationally complex task. The coherence 

of the matrix is an alternative property that can be used in testing whether the 

matrix guarantees unique and exact recovery of sparse signals from their 

measurement vectors. The coherence of a matrix is easier to compute than both 

the NSP and the RIP. It is the largest absolute inner product between any two 

columns of the matrix which can be represented as; 

𝜇 𝑨 = max
|〈𝒂𝒊,𝒂𝒋 〉 |

 𝒂𝒊 2 𝒂𝒋 2

   for 1≤ j, j ≤ N, (4.18) 

where μ(A) is the coherence of the CS matrix and 〈. 〉 denotes the inner product. 

The vectors 𝒂𝒊  and  𝒂𝒋 represents the 𝑖𝑡 and 𝑗𝑡 columns of the matrix A [21]. The 

value of the coherence of an 𝑀 × 𝑁 matrix is always in the following range;  
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𝜇 𝑨 ∈   
 𝑁 −𝑀 

𝑀 𝑁 − 1 
,  1  (4.19) 

When the signal length is much larger than the number of measurements, the 

lower bound of the coherence of the sensing vector approaches 1/ 𝑀.  If 𝜇 𝑨  is 

the coherence of a sensing matrix that has unit-norm columns, then the matrix  

satisfies the RIP of order 𝐾 with an isometry constant given by: 𝛿𝐾 = (𝐾 −

1)𝜇 𝑨  for all 𝐾 < 1/𝜇 𝑨 . In terms of coherence, the number of measurements 

required to reconstruct the signal from its compressive measurements is given by; 

𝑀 ≥ 𝐶𝐾  𝜇2 𝑨 .𝐾. log𝑒𝑁 (4.20) 

where 𝑀 is the length of the measurement vector, 𝐶𝐾 is a positive constant and N 

is the signal length. Therefore, in order to reduce the number of measurements 

without violating the RIP requirement, the sensing matrix should have a 

coherence that is as low as possible. This requirement also implies that, the 

measurement and representation matrices should be as incoherent as possible [13, 

22, 87]. 

4.2.5 Sensing Matrix Construction 

Both deterministic and random matrices that satisfy the RIP can be 

constructed. Deterministically constructed sensing matrices of size M× N that 

satisfy the RIP of order K are either poorly conditioned or require M to be quite 

large leading to an unacceptably large number of measurements. For example, an  

𝑀 × 𝑁 Vandermonde matrix constructed from 𝑀 distinct scalars has a 

spark  𝑨 = 𝑀 + 1. However, these types of matrices are poorly conditioned for 

high-dimensional signals rendering the recovery problem to be numerically 

unstable. Likewise, other deterministic matrices achieve the coherence and RIP 

lower bounds. Although these matrices restrict the number of measurements 

needed to recover a K-sparse signal, they require an unacceptably large value of 

𝑀. The limitations of the deterministic sensing matrices are overcome by 
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randomizing the matrix construction. An 𝑀 × 𝑁 random matrix A has elements 

that are independent and identically distributed entries of a continuous 

distribution. It has a spark that is equal to 𝑀 + 1 and also satisfies the RIP with 

high probability if the entries are chosen according to any sub-Gaussian 

distribution such as the Gaussian or Bernoulli distributions.  These matrices 

achieve the optimum number of measurements if the continuous distribution used 

in their construction has a zero mean and a finite variance.  The coherence of a 

random CS sensing matrix converges to; 

𝜇 𝑨 =
2log𝑒(𝑁)

𝑀
 (4.21) 

Using a random CS sensing matrix that obeys the RIP, it is possible to recover a 

K-sparse signal from only a subset of the measurement vector that is sufficiently 

large. It results in recovery robustness to the loss or corruption of a few elements 

in the measurement vector. The second advantage of using random matrices is 

that they exhibit the universality property. According to this property, when the 

measurement matrix Φ is chosen to be a random matrix that satisfies the RIP, the 

sensing matrix obtained as the product of Φ and the sparsifying orthonormal basis 

matrix 𝜳 also satisfies the RIP with an overwhelming probability. In the case of a 

deterministic sensing matrix construction, if Φ is chosen to satisfy the RIP, then 

RIP is not guaranteed for the matrix 𝑨 = 𝜱𝜳.  A fully random matrix approach is 

sometimes impractical to implement in hardware, several hardware architectures 

that enable random measurements to be acquired have been proposed. These 

architectures include the random demodulator, random filtering, modulated 

wideband converter, random convolution and the compressive multiplexer. The 

architectures use a reduced amount of randomness and are modeled using 

matrices that satisfy the RIP and the low coherence requirements [16, 20, 21, 88].  
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4.3 Sparse Recovery Methods 

The objective of designing a sparse recovery algorithm is to correctly 

recover a sparse or compressible signal from a set of noisy compressive 

measurements of the signal. A number of sparse recovery algorithms have been 

formulated with efforts directed towards improvements in recovery speed, 

reconstruction accuracy as well as the reconstruction stability. Practical recovery 

algorithms exploit the nature of the sensing matrix in order to reduce the size of 

the measurement vector, ensure robustness to measurement and reconstruction 

noise as well as reduce the signal recovery time. The following are the 

considerations that inform the design of good sparse recovery algorithms: 

(i) Minimization of the number of compressive measurements. This 

number should be comparable to the number of non-zero entries of the 

length of the signal representation vector in the orthonormal spasifying 

domain. 

(ii) Robustness to measurement noise. The recovery algorithms must be 

stable even in the presence of noisy perturbations in the input signal as 

well as the noise arising from the measurements process. These two 

forms of noise are naturally encountered in virtually all practical 

systems. 

(iii) High signal reconstruction speed. The recovery algorithms should 

expend minimum computational resources since most of the CS 

applications involve high-dimensional signals. 

(iv) They should possess performance guarantees. A number of such 

guarantees hold for sparse signal recovery using l1-minimization.The 

guarantees that are considered while designing the recovery algorithms 

include probabilistic and exact recovery of K-sparse signals 

guarantees. Performance guarantees in either noise-free or noisy 

settings are also important in CS recovery. Many of the practical 
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sparse signal recovery algorithms satisfy some or all of these 

performance guarantees [14, 21]. 

Convex optimization problems can be solved using various algorithms. These 

techniques include: the gradient, sub-gradient, accelerated gradient and 

augmented Lagrangian-based algorithms.  

The Gradient descent (the steepest descent) method is a first-order 

optimization algorithm that uses the gradient descent direction iteratively at a 

fixed step to search for the local minimum of the object function. If the object 

function F(x) is differentiable in the neighbourhood of a point a, by the property 

of the gradient descent, the direction of its negative gradient (−∇F(a)) at the point 

is an indicator of the steepest descent direction from the point. Using a single 

descent step lands to a point 𝑏 which is given by: 

𝑏 =  𝑎 −  γ𝛻𝐹(𝑎)     (4.22) 

where γ  is a small positive parameter called the step size and 𝐹(𝑎)  ≥  𝐹(𝑏). The 

solution to the convex minimization problem can then be obtained iteratively 

starting from an initial value 𝑥0 as follows; 

𝑥𝑛+1= 𝑥𝑛 − γn∇F(𝑥𝑛),     n ≥ 0 (4.23) 

where F(𝑥0) ≥ F(𝑥1) ≥ F(𝑥2) ≥ . . . ,. The step size γ can also be chosen to 

guarantee that the sequence {𝑥𝑛} converges to the local minimum. For example a 

linear squares object function given by; 

𝐹 𝒙 =  𝑨𝒙− 𝒚 2
2 (4.24) 

The gradient function of 𝐹 𝒙  is given by; 

𝛻𝐹 𝒙 = 2𝑨𝑻 𝑨𝒙 − 𝒚  (4.25) 

     The different points (𝒙𝒏) are iteratively determined until convergence is 

achieved. For the gradient descent method to be applicable, the object function 

should be smooth. However, in case it is non-smooth, sub-gradient methods can 

be used to solve the optimization problem. An example of a non-smooth object 

function is the l1-norm regularization problem defined as follows; 
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minimize( 𝜆 𝒙 1  + 𝑨𝒙− 𝒚 2
2 ) (4.26) 

where 𝜆  is a regularization parameter. The sub-gradient method has the following 

properties: 

(i) It applies to a non-differentiable object function. 

(ii) The step lengths (sizes) are not chosen by the line search as in the 

ordinary gradient method. In most cases, the step lengths are fixed in 

advance. 

(iii) It is not a descent method since the function value can increase. Its 

performance depends on the conditioning of the problem.  

The sub-gradient method has the following advantages over other methods such 

as the Newton methods. 

(i) It can be applied to a wider range of problems than the other methods. 

(ii) The memory requirement can be much smaller than that required by 

the other methods and therefore can be used in large scale problems. 

(iii) It can be combined with primal or dual decomposition technique to 

develop a distributed algorithm. 

A vector g is called a sub-gradient of function F at point x if the following 

inequality is satisfied; 

F( y) ≥ F(x) + g
T
 ( y − x), ∀ y (4.27) 

If the function is convex, then it will have at least one sub-gradient at every point 

in the domain of its definition. Also, if the function is convex and differentiable, 

then the gradient of the function ∇ F (x) is also its sub-gradient at x. The set of all 

sub-gradients of a function at a point x is referred to as its sub-differential at the 

point. The sub-differential is denoted by ∂ 𝐹 (𝑥) and it possesses some properties 

which include the following: 

(i) It is a closed convex set. 

(ii) It is a non-empty set if the function is convex and finite near a point of 

consideration. 
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(iii) If the function is differentiable at a point, then its sub-differential at 

the point is related to the gradient by: ∂ F(x) = {∇ F(x)}. 

(iv) If ∂ F(x) = {g}, then F is differentiable at point x and g = ∇ F(x). 

The sub-gradients and sub-differentials can be used to solve the l1-norm-based 

optimization convex problems. The gradient and sub-gradient methods can be 

used to solve a convex optimization problem using two distinct steps. The first 

step involves use of the gradient descent method to determine an intermediate 

point. This is followed by the use of a shrinkage operator to get the solution. The 

two-step process is termed the Iterative Shrinkage-Thresholding Algorithm 

(ISTA) [89]. Using the sub-gradient method the unique solution of the problem 

can be obtained by first modeled the problem in the following form. 

minimize 
1

2
 𝑨𝒙− 𝒚 2

2 +  𝜆 𝒙 1, (4.28) 

where 𝜆 is the regularization parameter. For any measurement vector 𝒚 the 

equation yields; 

𝑥𝑖 = 𝑆𝜆 (𝑦
𝑖
), (4.29) 

 where 𝑆𝜆 is termed the shrinkage operator that is defined as: 

𝑆𝜆 𝒚 = sgn 𝑦 max  𝒚 − 𝜆, 0  (4.30) 

The ISTA algorithm that employs the gradient descent method is simple 

and also adequate for solving large scale optimization problems. However, its 

convergence rate is O(1 𝐾)  and therefore slow. A method that has a faster 

convergence rate of O(1 𝐾2)  has been proposed. This method is referred to as 

the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The FISTA 

method utilizes an Accelerated Gradient Descent (AGD) approach as opposed to 

the conventional gradient descent used in the ISTA.  The AGD step of the FISTA 

method involves determination of an intermediate parameters SK which is then 

used to update the solution estimate  𝑥𝑘  to 𝑥𝑘+1 as follows; 

𝑆𝑘  = 𝑥𝑘 + αk 𝑥𝑘 − 𝑥𝑘−1 , 

𝑥𝑘  = 𝑆𝑘+1 − 𝑡𝑘∇𝐹 𝑆𝑘  
(4.31) 
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 where αk   is a parameter that regulates the contribution of 𝑥𝑘 − 𝑥𝑘−1 in SK. 

        Another method for solving a constraint optimization problem is the 

augmented Lagrangian method. This method employs an approximate 

unconstraint optimization problem to replace the constraint problem. As opposed 

to the penalty methods, the augmented Lagrangian method adds an additional 

term to the common penalty method’s unconstraint object function as illustrated 

using the following optimization problem; 

Minimize  𝑓(𝑥)  subject to  𝑔𝑖 𝑥 = 0  for 𝑖 = 1,… ,𝑁 (4.32) 

Using the penalty method this constraint problem is approximated by the 

following unconstraint optimization problem.  

𝐿 𝑥, λ = 𝑓 𝑥 +  λi

𝑁

𝑖=1

𝑔𝑖(𝑥) (4.33) 

However, using the augmented Lagrangian method the original constraint 

problem is approximated by an unconstraint optimization problem as follows; 

𝐿 𝑥, λ = 𝑓 𝑥 +  λi

𝑁

𝑖=1

𝑔𝑖 𝑥 +
𝜌

2
  𝑔𝑖(𝑥)2

𝑁

𝑖=1

 (4.34) 

where ρ is a positive parameter. The difference between the augmented 

Lagrangian method and the penalty method is the addition of the 

term  
𝜌

2
  𝑔𝑖(𝑥)2𝑁

𝑖=1 . This term punishes the violations of the equality constraints 

𝑔𝑖 (x). When the parameter ρ is large enough, the solution of the augmented 

Lagrangian approximation can coincide with the constrained solution of the 

original problem. The entire augmented Lagrangian-based algorithm involves 

iterations that update the solution x and the parameter λ using the following steps. 

First, the value of x that minimizes the unconstraint object function is determined 

as follows; 

𝑥 𝑡+1  =  argmin {𝐿
𝑝
 𝑥,𝜆  } (4.35) 

The second step that updates the multiplier vector λ as follows; 
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𝜆𝑖
(𝑡+1)

= 𝜆𝑖
(𝑡)

 + 𝜌𝑔𝑖 𝑥
 𝑡     for 𝑖 = 1,… ,𝑁 (4.36) 

The iterations of the algorithm end when the gradient term 𝜌𝑔𝑖 𝑥 𝛥𝑔𝑖 𝑥  vanishes 

[12, 14, 20, 40]. 

4.4 Compressive Sampling Reconstruction Algorithms 

Practical CS recovery methods can be broadly classified under various 

groups. These categories are such as: convex optimization-based, iterative or 

greedy, hard thresholding and Bayesian methods [12, 90-93]. 

4.4.1 Convex Optimization Based Algorithms 

Recovery of the sparsest signal from a CS measurement can be viewed as 

an 𝑙0-minimization problem which can be mathematically modeled as follows; 

minimize 𝒙 0  subject to    𝒚 = 𝑨𝒙 (4.37) 

 Being non-convex makes this problem very difficult to solve in finite time. It is 

also Non-deterministic Polynomial (NP) hard even for a general sensing matrix 𝑨. 

The 𝑙0-minimization approach is therefore not useful for CS signal recovery. The 

sparse recovery problem can be approximated by the convex and tractable 𝑙1-

minimization problem as follows; 

minimize 𝒙 1  subject to    𝒚 = 𝑨𝒙. (4.38) 

The problem is also referred to as the Basis Pursuit (BP) method [94]. When there 

exists a measurement error, the vector 𝒚 will not be exactly equal to 𝑨𝒙. The error 

in the measurement vector 𝝐 can be estimated by its 𝑙2-norm as; 

 𝝐 2   ≤   𝜂 (4.39) 

where 𝜂 is a positive parameter that represents the maximum root mean square 

value of the error. By incorporating this measurement error, the basis pursuit 

problem transforms into the quadratically constrained basis pursuit problem as; 

minimize 𝒙 1  subject to  𝑨𝒙− 𝒚 2 (4.40) 

This algorithm is also referred to as noise-aware 𝑙1-minimization method.  
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Another optimization method that is closely related to the quadratically 

constrained problem is the basis pursuit denoising method [95]. This algorithm 

can be expressed as; 

minimize( 𝜆 𝒙 1  + 𝑨𝒙 − 𝒚 2
2 ) 

(4.41) 

where 𝜆 is a parameter such that 𝜆 ≥ 0. The quadratically constrained basis 

pursuit  method can also be modified to yield the Least Absolute Shrinkage and 

Selector Operator (LASSO). The LASSO problem takes the form; 

Minimize   𝑨𝒙− 𝒚 2  subject to   𝒙 1 ≤ 𝜏 (4.42) 

where 𝜏 is a parameter such that 𝜏 ≥ 0.  

The Dantzig selector is yet another variation of the quadratically 

constrained basis pursuit method [96]. It is a convex-optimization approach that is 

based on the fact that the measurement error should have a small correlation with 

all the columns of the matrix 𝑨. It can be formulated as; 

minimize 𝒙 1  subject to  𝑨∗(𝑨𝒙− 𝒚) 
∞

   ≤ 𝜏 (4.43) 

The sub-gradients and sub-differentials discussed in section 4.3 can be used to 

solve the convex l1-norm-based optimization problems. 

Using the augmented Lagrangian method, the solution to the BP problem 

can be obtained using the procedure summarized in Table 4.1. Starting from the 

initial values, the target signal vector estimate 𝒙𝑡  and the multiplier vector 𝝀𝑡  are 

iteratively updated until a pre-defined stopping criterion is attained. The last 

signal estimate obtained is then output as the solution to the problem. The 

stopping criterion is defined in terms of the absolute error between two successive 

signal estimates. 

The gradient and sub-gradient methods can be used to solve the LASSO 

problem following two distinct steps. The first step involves use of the gradient 

descent method to determine an intermediate point.  
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Table 4.1. The Augmented Lagrangian algorithm for BP problem 

Input: sensing matrix A, measurements y, and parameter ρ 

Initialization: Assign the multiplier vector λ a large value,  initial signal 

estimate x0=0 

while  (stop criterion)  

 Update the target vector x  

    𝒙𝑡+1=  argmin (  𝒙𝑡 + 〈  𝝀𝑡,𝑨𝒙𝑡 − 𝒚 〉 +
𝜌

2
  𝑨𝒙𝑡 −

𝒚  2
2)      

 Update the multiplier vector λ 

          𝝀𝑖
(𝑡+1)

= 𝝀𝑖
(𝑡)

 + 𝜌𝑔𝑖 𝒙𝑡    for 𝑖 = 1,… ,𝑁 

end while  

Output: Solution vector x 

 

This is followed by the use of a shrinkage operator to get the solution. These two 

steps constitute the Iterative Shrinkage-Thresholding Algorithm (ISTA). Using 

the sub-gradient method, the unique solution of the LASSO problem can be 

obtained as follows: First, the simplified LASSO problem can be re-modelled as: 

minimize 
1

2
 𝑨𝒙− 𝒚 2

2 +  𝜆 𝒙 1 (4.44) 

For any measurement vector 𝒚 the solution to equation (4.44 ) is; 

𝒙𝒊 = 𝑆𝜆 (𝒚
𝒊
) (4.45) 

 where 𝒙𝒊 is the solution vector and 𝑆𝜆 is called the shrinkage operator which is 

obtained as follows; 

𝑆𝜆 𝒚 = sgn 𝒚 max  𝒚 − 𝜆, 0  (4.46) 

All the elements of vector 𝒙 in a LASSO problem are related by the sensing 

matrix A. Therefore, to obtain its solution, the object function is replaced by the 

first-order Taylor series expansion of the function 𝑓 𝒙 =  𝑨𝒙 − 𝒚 2
2 at the 
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preceding point 𝒙𝒌−𝟏. This results in the following approximation of the LASSO 

problem; 

𝒙𝒌  = min{𝑓 𝒙𝒌−𝟏 + 〈𝒙𝒌 − 𝒙𝒌−𝟏,∇𝑓 𝒙𝒌−𝟏  〉+
1

2𝑡𝑘
 𝒙𝒌 − 𝒙𝒌−𝟏 2

2

+  𝜆 𝒙𝒌 1} 

(4.47) 

where 𝑡𝑘 is a non-zero parameter [12, 14, 21]. Ignoring the constant term, 

𝑓 𝒙𝒌−𝟏  in equation (4.47), the equation can be written as; 

𝒙𝒌  = min{
1

2𝑡𝑘
 𝒙𝒌 − (𝒙𝒌−𝟏 − 𝑡𝑘∇𝑓 𝒙𝒌−𝟏  2

2 +  𝜆 𝒙𝒌 1} (4.48) 

The solution to this equation can be deduced from equation (4.45) to be: 

𝒙𝒌  = min 𝑆𝜆𝑡𝑘(𝒙𝒌−𝟏 − 𝑡𝑘∇𝑓 𝒙𝒌−𝟏 ) (4.49) 

4.4.2 Greedy Algorithms 

Although the convex optimization techniques are powerful tools for 

solving sparse signal problems, greedy or iterative methods can also be used. 

These algorithms rely on iterative approximation of the signal coefficients and 

thir support. This is achieved either by iteratively identifying the support of the 

signal until a stopping convergence criterion is attained.  

A second greedy approach involves obtaining an improved estimate of the 

sparse signal at every subsequent iteration step. The signal estimate improvement 

is achieved through accounting for the mismatch to the measured data. Some 

iterative algorithms have been shown to have performance guarantees that are 

comparable to those obtained using convex optimization methods. These methods 

generally have lower computational complexity than their convex optimization 

counterparts. The greedy methods that are commonly used in sparse signal 

recovery include the Matching Pursuit (MP) and its improvements. The 

improvements are such as the Orthogonal Matching Pursuit (OMP), Stagewise 

Orthogonal Matching Pursuit (StOMP), Gradient pursuit (GP) and the 

Compressive Sampling Matching Pursuit (CoSaMP) algorithms [14, 21, 97, 98]. 
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The Matching Pursuit (MP) method is an iterative algorithm that 

decomposes a signal into a linear expansion of the elements that form a 

dictionary. In sparse signal recovery, the dictionary is the sensing matrix 𝑨 ∈

ℝ𝑀×𝑁
. At each successive iteration step of the MP algorithm, an element that best 

approximates the signal is chosen from the dictionary in a greedy manner. This is 

achieved by reducing the residue as follow:   

A dictionary of vectors 𝐷 =  𝒈𝜸 𝛾∈ᴦ in a closed linear Hilbert space span 𝐻 with 

 𝒈𝜸 = 1 is selected. Any vector 𝑓 ∈ 𝐻 can be decomposed as a linear expansion 

over the dictionary D by successive approximation as follows: 

𝒇 = 〈𝒇,𝒈〉𝒈+ 𝒓 𝒈  (4.50) 

where 𝒓 𝒈  is the residual after approximating the vector 𝒇 using the dictionary 

element 𝒈. Since the residual is orthogonal to vector 𝒇,  the following relationship 

holds; 

 𝒇 2 =  〈𝒇,𝒈〉 2 +  𝒓 𝒈  
2
 (4.51) 

The best approximation of 𝒇 by the dictionary can be obtained by minimizing the 

norm of the residual. This is equivalent to maximizing the square of the 

correlation between 𝒇 and 𝒈  which is given by  〈𝒇,𝒈〉 2. Since it is not always 

possible to maximize the square of the correlation, a dictionary element that is 

approximately the best is selected. The element should satisfy the following 

inequality; 

 〈𝒇,𝒈〉 2 ≥ α sup γ ∈ ᴦ  〈𝒇,𝒈〉  (4.52) 

where 𝛼 is is a coefficient such that: 0 < 𝛼 ≤ 1. At each iteration of the 

algorithm, the  best approximation of the residual is chosen from the dictionary. 

After k iterations, the  𝑘𝑡 order residual 𝒓𝑘 is related to the (k-1)
th

 chosen element 

of D  and the (k-1)
th

 residual by; 

𝒓𝑘 = 〈𝒓𝑘−1,𝒈𝑘−1〉𝒈𝑘−1 − 𝒓 𝑘−1  (4.53) 
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The original function f can therefore be decomposed using the chosen vector 

elements and the residual at each iteration step as follows; 

𝒇 =  〈𝒓𝑖 ,𝒈𝑖〉𝒈𝑖
𝑘

𝑖=1

+ 𝒓 𝑘+1  (4.54) 

Since the residuals at successive iterations are orthogonal to each other, the 

following energy conservation equality holds; 

 𝒇 2 =   𝒓𝑖,𝒈𝑖 
2

𝑘

𝑖=1

+  𝒓 𝑘+1  
2
 (4.55) 

The MP method completely recovers the components of the function that can be 

expressed using the dictionary elements [99]. A key quantity in MP is the residual 

vector that represents a portion of the measurements that has not been explained 

by the selected elements of the dictionary. At each iteration step, a vector from the 

dictionary that is maximally correlated with the residual r is selected by 

evaluating the coefficient 𝜆𝑘  as follows; 

𝜆𝑘 = max 
〈𝒓𝑘,𝒂𝝀〉𝒂𝜆
 𝒂𝜆 2       (4.56) 

Once this dictionary column is selected, a better representation of the signal is 

obtained since the new coefficient indexed by 𝜆𝑘  is added to the signal 

approximation. Both the residual and the signal approximation are updated as 

follows; 

𝒓𝑘 = 𝒓𝑘−1 −
〈𝒓𝑘−1,𝒂𝜆𝑘〉𝒂𝜆𝑘

 𝒂𝜆𝑘 
2

     

𝒙 𝜆𝑘 = 𝒙 𝜆𝑘−1
 + 〈𝒓𝑘−1,𝒂𝜆𝑘〉 

(4.57) 

The process is iteratively repeated until the norm of the residual reduces to 

some pre-defined value. The MP algorithm is described in pseudocode form in 

Table 4.2. Although the MP method is intuitive and can find an accurate 

approximation of the signal, it possesses two major drawbacks.  
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Table 4. 2. The Matching Pursuit (MP) algorithm 

Input: Sensing matrix A, measurements y, error є. 

Initialization: 
Initial signal estimate x0=0, initial residual r0 = y, count 

k = 0.  

While  

(stop criterion false),  

Update 𝑘; 

 𝑘 ← 𝑘 + 1. 

Form residual signal estimate; 

 𝒃 ← 𝑨𝑇𝒓𝒌. 

Update largest magnitude coefficient; 

𝒙 𝒌 = 𝒙 𝒌−𝟏 + 𝑇 1 .  

Update residual; 

 𝒓𝒌 ← 𝒚 − 𝑨𝒙 𝒌.   

End while Stopping condition  𝒓𝒌 2 < є. 

Output: Solution vector,   𝒙 ← 𝒙 𝒌. 

One of these shortfalls is that, it offers no guarantees in terms of recovery error 

and it does not exploit the special structure present in the dictionary. Secondly, 

the number of iterations required can be quite large since the complexity of the 

method is O (MNT), where T is the number of MP iterations [99, 100].Since the 

complexity of the MP algorithm grows linearly with the number of iterations, it is 

computationally infeasible for many problems. To overcome this drawback, a 

modification on the MP is employed to yield the Orthogonal Matching Pursuit 

(OMP) algorithm. The alteration involves upper bounding of the maximum 

number of iterations. The bounding is achieved by computing the projection of 

the residue onto an orthogonal subspace to the linear span of the currently 

selected dictionary elements. This is step replaces the residual updating operation 

of the MP algorithm. The bounding gives a better representation of the 

unexplained portion of the residual which is then subtracted from the current 
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residual to form a new one. This process is iterated until a stopping condition is 

attained. With 𝑨𝛺 being the sub-matrix formed by the columns of 𝑨 selected at 

iteration step corresponding to support 𝛺 and time t, the following three 

operations are performed: 

𝒙𝒌 = argmin 𝒚− 𝑨𝛺𝒙 2     

𝜶 𝑡 = 𝑨𝛺𝒙𝑡 

𝒓𝑡 = 𝒚 −    𝜶 𝑡 

(4.58) 

These steps are repeated until convergence is attained. The OMP can be used to 

recover a sparse signal with high probability from its compressive measurement 

vector y. Also, the algorithm converges in at most a number of iterations equal the 

target signal sparsity. However, the fast convergence is achieved at the cost of 

increased computational complexity due to the orthogonalization process at each 

iteration step. The complexity of OMP is directly dependent on the length of the 

measurement vector 𝑀, the length of the sparse signal 𝑁 as well as its sparsity 𝐾. 

This computational complexity is of the order O(𝑀𝑁𝐾). Despite being fast and 

also leading to exact sparse signal recovery, the guarantees associated with the 

OMP method are weaker than those of the convex optimization techniques. The 

reconstruction guarantees are also not uniform. For example, it cannot be shown 

that a single measurement matrix with 𝑀 = 𝐶𝐾log (𝑁) can be used to recover all 

the K-sparse signals using only 𝑀 measurements. However, uniform guarantees 

are possible when more than 𝑀 measurements are taken. Another drawback of the 

OMP is that, its robustness to noise in the measurements cannot be 

deterministically proved.  

         In spite of these drawbacks, the OMP algorithm is an efficient sparse signal 

recovery tool especially when the signal is very sparse (𝐾 ≪ 𝑁) [100, 101]. A 

pseudocode representation of the OMP algorithm is given in Table 4.3. When the 

target signal is not very sparse, the efficiency of the OMP algorithm is low. This 

is due to the fact that its computational complexity increases with increase in the 

number of nonzero terms in the signal vector.  
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Table 4. 3. The Orthogonal Matching Pursuit (OMP) algorithm 

Input: Sensing matrix A, measurements vector y and error 

threshold є.  

Output: A sparse coefficient vector  

1 Initialize: Index set 𝛀𝟎 = Ø , residual r0 = y and the counter k = 1.  

2 Identify:  Determine the column 𝑛𝑘  of 𝑨 that is most strongly 

correlated with the residual; 

  𝑛𝑘 ∈ argmax   〈𝒓𝒌−𝟏,𝑎𝑛 〉 .      

  Form the residual signal; 

   𝒃 ← 𝑨𝑇𝒓𝒌. 

   Update the signal support; 

   𝛀𝐤   ← 𝛀𝐤−𝟏   supp(𝑇(𝒃, 1) or 𝛀𝐤   ← 𝛀𝐤−𝟏   {𝑛𝑘}. 

3 Estimate: Find the best coefficients for approximating the signal 

with the columns chosen so far; 

   𝒙𝒌  argmin 𝒚 − 𝑨𝜴𝒌𝒙 2
, 

4 Iterate: Update the measurement residual; 

   𝒓𝒌  = 𝒚 − 𝑨𝜴𝒌𝒙𝒌 .  

  Increment the count;  

  𝑘 ← 𝑘 + 1. 

  Repeat (2)–(4) until stopping criterion holds.  

5 End while  𝒓𝒌 2 < є. 

6 Output: Return the solution vector, 𝒙 with entries 𝒙 𝒏 =

𝒙𝒌(𝒏)  for  n ∈ Ωk  and  𝒙 𝒏 = 0  otherwise.  
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For such signals, the Stagewise Orthogonal Matching Pursuit (StOMP) method is 

a better recovery algorithm. 

The StOMP approach is characterized by lower computational cost than 

both the 𝑙1-norm convex optimization and the OMP methods for high dimensional 

problems that have sparse solutions. The algorithm operates in 𝐾 iteration stages 

during which it builds up a sequence of signal approximations by removing 

detected structure from a sequence of residuals. The algorithm commences with 

an initial residual setting of 𝒓0 = 𝒚, initial solution vector setting x0 = 0, initial 

support set setting 𝛺0 = Ø and a counter setting at k =1. Using the residual, a 

matched filtering step is used to calculate the set of all projections given by; 

𝑐𝑘 = 𝑨𝑇𝒓𝑘−1  at the k
th

 stage just as in the OMP algorithm. This is performed by 

identification of all coordinates whose amplitudes exceed a chosen threshold 

followed by solving of a least-squares problem using the identified coordinates. 

The least-squares fit is then subtracted from the coordinates to produce a new 

residual. The number of iterations to be executed in the StOMP algorithm is pre-

determined. The computational complexity of the StOMP method is 

O(KN. loge(N)). This is a significant improvement over OMP algorithm. In 

addition, it has moderate memory requirements compared to OMP in which the 

orthogonalization step requires the maintenance of a Cholesky factorization of the 

dictionary elements [102].  

The algorithm takes the following procedure: 

The k
th

 iteration stage and matched filtering is applied to the current residual to 

yield a vector of residual correlations  𝒄𝑘 given by; 

𝒄𝑘 = 𝑨𝑇𝒓𝑘−1 (4.59) 

Next, hard thresholding is performed in order to find the significant nonzero terms 

of the vector. The thresholds are specially chosen based on the assumption of 

Gaussianity to get a small set 𝐽𝑘 of the largest coordinates: 

𝐽𝑘 = {𝑗:  𝒄𝑘(𝑗) > 𝑡𝑠𝜎𝑠 (4.60) 
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where 𝜎𝑠 is the root mean square noise level and 𝑡𝑠 is a threshold parameter. The 

subset of newly selected coordinates is then merged with the previously obtained 

support estimate thereby giving the following update, 

𝛺𝑘 = 𝛺𝑘−1    𝐽𝑘 (4.61) 

The vector y is then projected on the columns of matrix A. This results in a new 

approximation of the reconstructed signal 𝒙k that is supported in 𝛺𝑘  as follows; 

 𝒙𝑘 𝛺𝑘 = (𝑨𝛺𝑘
𝑇  𝑨𝛺𝑘)

−1
𝑨𝛺𝑘
𝑇 𝒚 (4.62) 

where 𝑨𝛺𝑘denotes the 𝑁 ×  𝛺𝑘   matrix whose columns are chosen using the index 

set 𝛺𝑘. The next step involves updating of the residual as follows; 

𝒓𝑘 = 𝒚 − 𝑨𝑥𝑘−1 (4.63) 

If the set number of iterations has not been attained, the above steps are repeated 

until the stopping condition is met. A pseudocode representation of the StOMP 

algorithm is shown in Table 4. 4. 

The MP and OMP greedy reconstruction algorithms are characterized by 

lower computational complexities compared to the optimization-based sparse 

recovery methods. However, these methods do not have strong guarantees for 

uniform signal recovery from a given number of measurements. Their robustness 

to noise is also not easy to prove. The Compressive Sampling Matching Pursuit 

(CoSaMP) algorithm not only reduces the computational complexity but also 

offer reconstruction guarantee and robustness to signal and measurement noise 

[97].  

The greedy methods also employ the restricted isometry property (RIP) 

that is commonly applied in analyzing 𝑙1-minimization based CS recovery 

algorithms. For example, if the CS matrix 𝑨 satisfies the RIP of order 𝐾, then 

every subset of 𝐾 columns of the matrix will be orthonormal. 
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Table 4. 4. Stagewise Orthogonal Matching Pursuit (StOMP) algorithm 

Input: CS sensing matrix A, measurements vector y, number 

of iterations 𝑠 , threshold  parameter  𝑡𝑠 and the  noise 

level 𝜎𝑠. 

Output: A sparse coefficient vector 𝒙. 

1 Initialize: Initial support index set 𝛺0 = Ø, initial solution vector 

𝒙𝟎 = 0, initial residual r0 = y and counter k = 1.  

2 Update: Update the residual, vector of residual correlations 

  𝒓𝑘 = 𝒚 − 𝑨𝒙𝑘−1 

  𝒄𝑘 = 𝑨𝑇𝒓𝑘−1   

  Thresholding 

   𝐽𝑘 = {𝑗:  𝒄𝑘(𝑗) > 𝑡𝑠𝜎𝑠 

   Update the signal support 

  𝛺𝑘 = 𝛺𝑘−1    𝐽𝑘 

3 Estimate: Determine solution vector estimate 

   𝒙𝑘  = 𝑨𝛺𝑘
𝑇  𝒚  

4 Iterate: Increment k.  

  𝑘 ← 𝑘 + 1 

  Repeat (2)–(4) until stopping criterion holds. 

5 end while  

6 Output: Return the solution vector,   𝒙 = 𝒙𝑘  .     

The key difference between the CoSaMP algorithm and other greedy approaches 

such as the MP, OMP and StOMP is that, new indices in the signal estimate can 

be added as well as be deleted from the current set as the procedure iterates. This 

property of the algorithm leads to an improvement in the accuracy of the 

recovered signal which translates to a tighter reconstruction guarantee than for the 

other greedy methods [21, 97]. For the other greedy pursuit-based algorithms, 
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once an index is chosen, it remains in the signal representation estimate until the 

end of the iteration.  

The CoSaMP algorithm can be summarized in the following steps:  

(i) Definition of the inputs and outputs of the algorithm. 

(ii) Setting of the initial values of: the solution vector, the residual and the 

counter. 

(iii) Finding of a pre-defined number of columns of the CS matrix that are 

most strongly correlated with the residual. This step yields the largest 

entries of the support yet to be determined. 

(iv) Merging of the coefficients obtained in step (iii) with the support to 

obtain an updated support. 

(v) Finding of an estimate for the signal by subspace projection. 

(vi) Pruning of the coefficients of the signal estimate thus retaining only 

the largest ones that number the targeted sparsity of the signal.   

(vii) Updating of the measurement residual using the measurement vector, 

CS matrix and the pruned signal estimate. 

(viii) Repeating steps (iii) through to (vii) until a predefined error condition 

is attained.  

(ix) The last pruned signal estimate and support are then returned as 

outputs of the algorithm. 

These steps are summarized in form of a pseudocode representation in Table 4. 5.  

The CoSaMP algorithm steps that mainly contribute to its computational 

complexity are the formation of the signal residual and the method used for 

subspace projection during the signal estimation stage. This complexity is 

independent of the sparsity of the original signal and has a computational cost of 

O(MN). This is a significant improvement over the other greedy algorithms as 

well as convex optimization-based methods. The main demerit of the CoSaMP 

algorithm is that it requires prior knowledge of the sparsity of the target signal.  
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Table 4. 5. The Compressive Sampling Matching Pursuit (CoSaMP) algorithm 

Input: CS sensing matrix A, measurements vector y, target 

sparsity K, tuning parameter 𝛼  and error threshold ∈  

Output: A K-sparse coefficient vector 𝒙 

1 Initialize: Set initial coefficient vector 𝒙𝟎 = 0, initial residual r0 

= y and the counter k = 1.  

2 Identify:  Find 𝛼𝐾 columns of A that are most strongly 

correlated with the residual, 

  

𝛺 ∈ argmin  𝑇 ≤𝛼𝐾    〈𝒓𝑘−1,𝒂𝑛〉      for 𝑛 ∈ 𝑇      

3 Merge: Put the old and new columns into one set:  

  

𝑇 = supp(𝒙𝑘−1)  𝛺 

4 Estimate: Find the best coefficients for approximating the 

residual with these columns:  

  𝒚𝑘 =  argmin
𝒚

   𝒓𝑘−1 −𝑨𝑇𝒚 2 

5  Prune:  Set the small coefficients of 𝒚𝑘 to zero and retain the 

K largest ones: 

  𝒙𝑘 =  𝒚 𝐾 

6 Iterate: Update measurement residual 

   𝒓𝑘  = 𝒚 − 𝑨𝒙𝑘   

  Increment k.  

  𝑘 ← 𝑘 + 1 

  Repeat (2)–(6) until stopping criterion holds. 

7 end while  

8 Output: Return the solution vector 𝒙 and its support where 

𝒙 = 𝒙𝑘 .  
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If incorrect signal sparsity is used, the CoSaMP algorithm can lead to a worse loss 

of robustness to errors than that experienced using the other greedy algorithms 

such as the MP and OMP. In CoSaMP, the signal reconstruction error due to an 

incorrect tuning parameter choice is always bounded. For signals whose sparsities 

are known, the CoSaMP algorithm is used as a state of the art CS recovery 

method due to its performance advantages [14, 21, 97]. 

4.5 Iterative Hard Thresholding  

The Iterative Hard Thresholding (IHT) is another approach that is 

applicable in CS signal recovery. It is mainly employed in determining solutions 

of nonlinear inverse problems. A simple IHT algorithm commences with an initial 

estimate of the target signal vector 𝒙 0. Next, iterative hard thresholding is applied 

to obtain a sequence of improved signal estimates as shown in equation (4.64) 

[103]. 

𝒙 𝑘+1 = 𝑇(𝒙 𝑘 + 𝑨𝑇 𝒚 − 𝑨𝒙 𝑘 ,𝐾) (4.64) 

where 𝒙 𝑘 is the 𝑘𝑡 signal estimate, A is the CS sensing matrix and 𝐾 is the signal 

sparsity level. The hard thresholding operator 𝑇 .   keeps the k largest absolute 

entries of the signal vector and sets the other entries to zero at each stage of the 𝐾 

estimations. The entire IHT algorithm is as described in table 4.6. The sequence 

of iterations in IHT always converges to a fixed solution vector. Also, if the CS 

matrix 𝑨 possesses the RIP, then the reconstructed sparse signal satisfies an 

instance-optimality guarantee [14, 103]. 
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Table 4.6. The Iterative Hard Thresholding algorithm 

Input: CS sensing matrix A, measurements vector y,  

sparsity level 𝐾 and pruning function T 

Output: The coefficients of vector x 

1 Initialize: Set initial coefficient vector 𝒙𝟎 = 0 and counter k = 

0.  

2 Threshold: Determine an update of the solution vector 

  𝒙 𝑘+1 = 𝑇(𝒙 𝑘 + 𝑨𝑇 𝒚 − 𝑨𝒙 𝑘 ,𝐾) 

3 Iterate: Increment k.  

  𝑘 ← 𝑘 + 1 

  Repeat (2) and (3) until stopping criterion holds 

4 end while  

5 Output: Return the solution vector, 𝒙 where 𝒙 = 𝒙𝑘 .  

 

4.6 Bayesian Methods 

The Bayesian CS reconstruction methods assume that the sparse signal of 

interest 𝒙 comes from a known probability distribution. A stochastic measurement 

vector 𝒚 is used to recover the probability distribution of each nonzero element of 

𝒙. The recovery is done based on an assumption of sparsity promoting priors. The 

Bayesian signal modeling approach does not have a well-defined reconstruction 

error. However, the method gives an insight into how sparse CS recovery 

algorithms can be developed for various signals of interest.  

There is a direct relationship between sparse recovery and error correcting 

codes. For example Bayesian recovery algorithms have been employed 

successfully in sparse codes such as the Low-Density Parity-Check (LDPC) codes 

[104]. Sparse coding matrices have the advantage of efficient encoding and lead 

to decoding algorithms of low computational complexity. These advantages are 

transferred to CS encoding and decoding using sparse CS dictionary matrices. In 

LDPC the signals of interest are modeled as being compressible with each signal 
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coefficient taking either a large or a small value state. A two-state Gaussian or 

Laplacian distributions is then used to model the signal. The distribution 

employed is selected based on the signal under consideration. Taking the elements 

of the signal to be Independent and Identically Distributed (I I D), the small 

coefficients will occur more frequently than the large coefficients. The goal of the 

model is to estimate or decode the 𝒙, from its code (measurement vector) 𝒚 and 

the sparse matrix 𝑨 relating the two states where 𝒚 = 𝑨𝒙. The decoding process is 

a Bayesian inference problem in which an approximation of the marginal 

distributions of the coefficients of vector 𝒙 conditioned on the observed 

measurement vector 𝒚 is determined. This is done using the Maximum Likelihood 

Estimate (MLE) or the Maximum A Posteriori (MAP) estimation of the signal 

coefficients from their distributions. The MAP approach is more reliable since it 

makes use of the present as well as past information about the signal. On the 

contrary, the MLE method uses only past information. One of the techniques that 

can be used to solve this problem is the belief propagation method. The method is 

applicable when most of the entries in the matrix 𝑨 are equal to zero [104].  

A second probabilistic method that can be used to estimate the signal 

coefficients is the Relevance Vector Machine (RVM). The RVM is a Bayesian 

learning method that linearly weights a small number of fixed basis functions to 

produces a sparse classification. The basis functions are selected from a large 

dictionary of potential candidates as discussed in [105]). The RVM approach uses 

a hierarchy of priors such that each of the N coefficients of the signal are assigned 

a Gaussian prior and the inverse variance 𝛼𝑖
2 of the i

th
 Gaussian prior is assigned a 

Gamma prior. Each inverse variance controls the strength of the prior weight of 

its corresponding signal coefficient. When the signal is sparse, its Gaussian prior-

based reconstruction is given by; 

𝑝(𝒙 𝛼 ) =  𝒩(𝑥𝑖
𝑁
𝑖=1  /0, 𝛼𝑖

−1) (4.65) 

where 𝒩(.) denotes the Gaussian distribution. The Gamma prior on 𝛼 is given by; 
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𝑝(𝒙 𝛼, 𝑏 ) =  𝛤(𝛼𝑖
𝑁
𝑖=1  /a, b) (4.66) 

where a and b are sparsity hyper parameters and 𝛤(.) represents the Gamma 

distribution. The overall prior on 𝒙 is evaluated as the student-t distribution 

designed to have its maximum value when 𝑥𝑖 = 0. The values of the hyper 

parameters a and b are chosen to enables the desired solution vector 𝒙 to be 

sparse. The posterior probability density of each solution vector coefficient is 

estimated iteratively using the measurement vector 𝒚.  The need to set the values 

of the hyper parameters can be eliminated by determining the marginal log 

likelihood of 𝛼 and maximizing it to obtain an estimate for 𝛼. Assuming that the 

measurement noise has a Gaussian distribution with zero mean and variance 𝜎2, 

the log likelihood ℒ 𝛼   is given by; 

ℒ 𝛼  = loge[𝑝(𝒚 𝛼,𝜎2) = loge  𝑝(𝒚 𝒙) 𝑝(𝒚 𝛼) 𝑑𝑥 (4.67) 

Determination of the log-likelihood in the RVM procedure involves determination 

of the inverse of an 𝑁 × 𝑁 matrix. The algorithm therefore has high cost of 

computation of order O(𝑁3). A faster algorithm than the RVM is one that 

monotonically maximizes the marginal likelihoods of the priors by a gradient 

ascent approach. Such an algorithm has a reduced computational complexity of 

O(𝑁𝑀2).  In the algorithm, the basis functions are sequentially added and deleted 

to build a model. The sparsity of the signal 𝒙 is then exploited to minimize the 

computational complexity of the model. This model is termed the Fast Marginal 

Likelihood Maximization (FMLM). This method is employed in the Bayesian 

Compressive Sensing (BCS) algorithm to efficiently evaluate the posterior 

densities of the signal coefficients. The main advantage of the BCS algorithm is 

its ability to evaluate the error on each estimated coefficient of the sparse signal. 

The evaluated errors give an insight of the accuracy of the BCS estimates and are 

used to adaptively select the rows of the sensing matrix 𝑨 in order to reduce the 

uncertainty in the signal [24, 25, 104, 105]. 
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CHAPTER 5 

MATERIALS, METHODS AND MEASURES 

In this chapter, the materials, methods and image quality metrics used in 

the research work are presented. The chapter is divided into three distinct 

sections. In section 5.1, a summary of the materials that were used in the research 

are given. Seven proposed CS based MRI methods are described in the section 

5.2. The measures that were used to assess the quality of the reconstructed images 

are discussed in section 5.3. 

5.1 Materials  

The following materials were used in the research. 

(i) Magnetic resonance images. These were obtained from the research 

databases given in [106-111]. The MR images were first converted to 

gray-scale type prior to being re-sized using bicubic interpolation and 

then cropped into sizes of 32 × 32 pixels, 64 × 32 pixels or 64 × 64 

pixels. The re-sizing was based on the aspect ratio as well as the size of 

the ground-truth image and served the purpose of reducing the CS 

acquisition and reconstruction times. 

(ii)  Math works MATLAB version 9.2, release R2017a of the year 2017 

[112]. This is a numeric computation, data analysis and visualization 

software that is used as a programming language for many engineering 

and scientific applications. The image processing toolbox of the software 

was used to code and test the algorithms that were developed.  

(iii) Laptop with a 2.4 GHz Intel core i5 2430M CPU and a 1TB hard disk.  

5.2 Methods 

 Seven proposed CS-MRI methods are presented in this section. All the 

methods are based on CS acquisition of MR images in the spatial frequency 

domain. The images or their k-spaces are then compressively reconstructed in the 
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DWT domain. In some of the proposed methods, the robustness to noise and 

artifacts is enhanced using apodization functions that suppress the noise and high 

spatial-frequency artifacts that are attributable to aliasing as well as k-space 

truncation.  In other proposed methods, some of the noisy k-space coefficients in 

the compressively reconstructed image are replaced by their corresponding  

directly measured coefficients in order to reduce measurement as well as 

reconstruction artifacts. The characteristic profile of the vectorized k-space data 

of a typical MR image has been extensively exploited in six of the methods. This 

profile has influenced the design of the various filter functions as well as under-

sampling masks used in the proposed methods. The seven methods are: 

(i) Greedy Reconstruction with Median Filtering 

(ii) Raised-Cosine Shaping Vector Method 

(iii) Adaptive Gaussian Denoising Method 

(iv) Dominant Coefficients Detection Method 

(v) Partial Scanning and Apodization Method 

(vi) Selective Acquisition and Artifacts Suppression Method 

(vii) Variable-Density k-Space Under-Sampling Method. 

5.2.1 Greedy Reconstruction with Median Filtering 

This method demonstrates that CS theory can be effectively employed in 

MRI reconstruction. The method utilizes a median filter to suppress the noise and 

artifacts in the reconstructed images. The procedure progresses as illustrated in 

the block diagram given in Figure 5.1. An input MR image was first converted 

into its k-space data matrix by obtaining its 2D-DFT. The k-space data matrix is 

reshaped into a column vector prior to being under-sampled by multiplying it by a 

random uniform spherical ensemble measurement matrix to yield the 

measurement vector. The measurement vector is sparsified by multiplying it by an 

inverse Haar transform matrix. The OMP method is applied on the sparsified data 

to generate an estimate of the coefficients of the image in the Haar transform 

domain. 
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Figure 5.1. Greedy recovery with median filtering algorithm 

The coefficients are multiplied by the inverse Haar transform matrix to 

yield the k-space data vector of the reconstructed image. The k-space data vector 

is converted into a matrix of the same size as the image. This matrix is subjected 

to inverse discrete Fourier transformation to recover the image in spatial domain. 

Finally, the image is filtered using a median filter to suppress salt and pepper 

noise as well as other artifacts in the reconstructed image.  

5.2.2 Raised-Cosine Shaping Vector Method 

In this sub-section, a novel method for sensing and reconstruction of MR 

images is proposed. The method is based on the priori knowledge of sparsity and 

clustering of the k-space data of the MR image in the wavelet domain. This 

proposed algorithm is illustrated in form of a block diagram in Figure 5.2. The 

first step of the algorithm is to convert the input MR image into its k-space data 

matrix by computing its two-dimensional Discrete Fourier transform (2D-DFT). 

The k-space data matrix is then vectorized. The vector is then undersampled by 

multiplying it by a random uniform spherical ensemble measurement matrix to 

yield the measurement vector. From the measurement vector, the coefficients of 

the MR image k-space data in the Haar wavelet transform domain are estimated 

using the OMP recovery method.  
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Figure 5.2. Raised-cosine shaping algorithm 

The reconstructed wavelet coefficients vector of the k-space data are then 

modulated by a raised-cosine shaping vector in order to improve the coefficients 

clustering. The reshaped coefficients are then multiplied by an inverse Haar 

transform matrix to yield the reconstructed k-space data vector which is then 

converted into a matrix of the same size as the image. The matrix is then 

subjected to inverse discrete Fourier transformation to recover the image in spatial 

domain. The Haar transform coefficients of the k-space data of an N-length MR 

image are clustered around a locally dominant  𝑝𝑡  element 𝑥 𝑝   where; 

𝑝 =
𝑁

2𝑛   for 𝑛 = {0, 1, 2, … , 𝑙𝑜𝑔2(𝑁)}  (5.1) 

The coefficients magnitudes then decrease monotonically to insignificant values 

at the  𝑞𝑡   elements 𝑥 𝑞   where; 

𝑞 =
3𝑁

2𝑛+1  for 𝑛 = {0, 1, 2, … , log2(𝑁)} (5.2) 

Reconstruction using conventional CS results in significant artifacts. For every 

interval  
𝑝

2
+ 1 to 𝑝, the proposed shaping vector is defined as a raised cosine 

function [9] as follows;  

𝑤 𝑙 = 0.5(1 + cos(2(2𝜋(𝑙 −
𝑝

2
)/p) 

for 1 ≤ 𝑙 ≤ 𝑁,   𝑝 =
𝑁

2𝑛  and 𝑛 = {0, 1, 2, … , 𝑙𝑜𝑔2(𝑁)} 

(5.3) 

The proposed shaping function is used to suppress the reconstruction artifact 

coefficients in the neighbourhood of the  𝑞𝑡  elements with negligible effects on 

the coefficients clustered about the 𝑝𝑡  elements. The corrected coefficients 
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vector 𝒗 is obtained by taking the element-by-element product of the 

reconstructed coefficients vector 𝒙 and the shaping function as follows; 

𝒗 = 𝑤𝒙 (5.4) 

5.2.3 Adaptive Gaussian Denoising Method 

The third proposed method is presented in this sub-section. The algorithm 

is given by the steps outlined in Figure 5.3. The input MR image is first converted 

into its k-space data by obtaining its 2D-DFT followed by rearrangement of the 

DFT coefficients by moving the zero-frequency component to the centre of the 

array. The zero-frequency centred DFT matrix is converted into a vector and then 

randomly undersampled. Next, the MR image coefficients are reconstructed in the 

wavelet transform domain using the OMP algorithm. The wavelet coefficients are 

then converted back into vectorized k-space data through inverse wavelet 

transformation before being denoised by an adaptive Gaussian low-pass filter. 

The denoised data is converted into a matrix which is ultimately converted into 

the output MR image through inverse DFT. The zero-frequency centred 

vectorized k-space data coefficients of an N-length ground-truth MR image has a 

Gaussian-like profile centred about the centre coefficient index. The CS recovery 

of the data using the OMP method results in high frequency noisy artifacts whose 

level decreases as the sampling ratio increases.  

 

 

 

 

 

 

 

Figure 5.3. Adaptive Gaussian denoising algorithm 
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The adaptive Gaussian filter 𝑤 𝑖  included in the proposed method has a 

bandwidth that adaptively increases with increase in the sampling ratio  𝑀 𝑁    as 

follows; 

𝑤 𝑖 = 𝑒−𝑘 𝑖−
𝑁

2
 

2

  for 0 ≤ 𝑖 ≤ 𝑁 (5.5) 

where 𝑁 is the number of pixels in the image, 𝑖 is the DWT coefficients index and 

𝑘 is a parameter whose value was experimentally approximated by; 

𝑘 𝑀 𝑁  = 𝑎 𝑀 𝑁 − 𝑏 3 (5.6) 

where 𝑎 = 1.5 × 10−5, 𝑏 = 1, and  𝑀 𝑁  is the sampling ratio. 

5.2.4 Dominant Coefficients Detection Method 

  The fourth proposed method presented here is based on three facts about 

MR images namely: the MR images are sparse in the DFT or DWT domains with 

only a few dominant coefficients carrying most of the information. The DFT k-

space has its dominant coefficients clustered about its centre. Finally, the 

magnitudes of the vectorized k-space coefficients have a Gaussian-like 

distribution with the coefficient index. The proposed method uses the 

conventional spin echo MRI with only a few phase encoding steps to capture the 

dominant centred coefficients of the DFT k-space. Since the small k-space 

coefficients contribute only a small fraction of the total energy of the image, they 

are estimated using CS with approximately 10% measurements as shown in 

Figure 5.4. The inverse DWT (IDWT) is then performed on the DWT to yield the 

small coefficients in the DFT domain. The coefficients are then denoised using a 

modified Gaussian filter. The filter completely eliminates the noisy reconstructed 

dominant coefficients while at the same time suppressing the high frequency 

noise in the small coefficients.  The denoised small coefficients are then added to 

the dominant coefficients to yield the full k-space vector of the reconstructed 

image. The vector is converted into a matrix from which the reconstructed image 

is obtained through inverse DFT (IDFT). 

 

 



Chapter 5. Materials, Methods and Measures 

127 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Dominant coefficients’ detection algorithm 

For the purpose of generating simulation results, the procedure outlined in 

Figure 5.5 was used. The input MR image is first converted into its k-space data 

by obtaining its centre-shifted two-dimensional DFT (2D-DFT) which is then 

reshaped into a vector. The centred cluster of the dominant coefficients is 

extracted by setting the values of all other coefficients outside the cluster to zero. 

The k-space vector is then reconstructed using compressive sampling in the Haar 

DWT domain through OMP using approximately 10% of the small k-space 

coefficients. The reconstructed DWT coefficients are transformed into DFT 

domain before being denoised using the modified Gaussian filter. This denoised 

coefficients vector is then added to the initially extracted dominant coefficient 

vector to form the full k-space vector of the reconstructed image. 
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Figure 5.5. Simulation of the coefficients detection algorithm 

The output image is obtained by shaping the k-space vector into a matrix followed 

by IDFT. The modified Gaussian filter  used in the proposed method is designed 

so as to completely filter out all the noisy reconstructed dominant coefficients 

while at the same time suppressing the high frequency noise in the reconstructed 

small coefficients. The filter function 𝑤 𝑖  used is given by: 

𝑤 𝑖 =  
0 for 𝑁1 ≤ 𝑖 ≤ 𝑁2

𝑒−𝑘 𝑖−
𝑁
2
 

2

 elsewhere

  (5.7) 

where 𝑖 is the DFT coefficients index,  𝑘 is a filter constant whose value was 

experimentally determined in order to yield the highest average PSNR in the 

reconstructed image. The optimum value of 𝑘 used in this research was 

empirically determined to be equal to   2 × 10−6. The range of the dominant 

coefficients of the image is given by 𝑁1 < 𝑖 < 𝑁2. The values of integers 𝑁1 and 

𝑁2 were fixed for each experiment so that the dominant coefficients constitute 
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between 10% and 50 % full k-space. These percentages were varied in steps of 

10% for different experiments. 

5.2.5 Partial Scanning and Apodization Method 

A proposed CS method based on partial scanning and apodization is 

presented in this sub-section. The algorithm reduces the image scan time for a 

particular image quality requirement. At the same time, it improves the image 

reconstruction quality for a given scan time by suppressing the reconstruction 

artifacts. The method commences with a partial acquisition of the k-space data of 

the MR image. This is achieved by acquiring only a fraction of the rows that are 

at the centre of the full k-space (𝓢 𝑢, 𝑣 ). These rows correspond to the low 

spatial frequencies of the image and also contribute most of the energy in the 

image. The remaining high frequency rows of the k-space are padded with zeros. 

When 𝑏 % of the phase encoding steps (𝑁𝑝 ) of the k-space is to be sampled, the 

number of rows of 𝓢 u, v   that are sampled (𝑛𝑝 ) is given by; 

𝑛𝑝 = ceiling[ 𝑏 (𝑁𝑝) 100 ] (5.8) 

The partial scanning process can be modeled as an element-by-element 

multiplication of the full k-space matrix 𝓢 𝑢, 𝑣  and a partial sampling mask as 

follows;  

  𝓢𝒑 𝑢, 𝑣 = 𝓢 𝑢, 𝑣 . 𝑴𝒑 𝑢, 𝑣 , (5.9) 

where 𝓢𝒑 𝑢, 𝑣  is the partially sampled k-space and 𝑴𝒑 𝑢, 𝑣  is the proposed 

sampling mask that given by; 

𝑴𝒑 𝑢, 𝑣 =  
1 for −𝑣1 ≤ 𝑣 ≤  𝑣2

0                  elsewhere
  , (5.10) 

where the values of the integers 𝑣1 and 𝑣2 are related to the value of 𝑛𝑝  as 

follows; 

𝑛𝑝 = 𝑣1 +𝑣2 + 1 (5.11) 



Chapter 5. Materials, Methods and Measures 

130 
 

If the value of 𝑛𝑝  obtained in (5.11) is odd, 𝑣1 and 𝑣2 are set at: 𝑣1 = 𝑣2. 

Otherwise if 𝑛𝑝  is even, then: 𝑣1 = (𝑣2 − 1). The partially sampled k-space is 

then transformed into an image using 2D-IDFT which is then reshaped into a 

vector 𝒉. The vector is fully and randomly sampled using a sub-Gaussian matrix 

𝚽𝐩 to yield a measurement vector 𝒚′ as follows; 

𝒚′ = 𝚽𝒑𝒉, (5.12) 

Using this measurement vector, the k-space of the image is reconstructed in the 

Haar discrete wavelet transform domain as a vector 𝒙𝑯 using the OMP method. 

The DWT vector is converted into a vectorized image 𝒇′as follows; 

𝒇′ =𝚿𝑾
−𝟏𝒙𝑯, (5.13) 

where 𝚿𝑾
−𝟏 is the inverse Haar transform matrix. The image vector is then 

converted into its k-space 𝑺′(u, v) by first reshaping it into a matrix followed by 

determination of its 2D-DFT. This step is followed by shaping of 𝑺′(u, v) in to a 

vector 𝒔′(n). This vector contains artifacts in the high-frequency (middle) region 

due the sub-Nyquist sampling employed as well as noise. The artifacts are 

suppressed by multiplying the vector by a proposed apodization function 𝒘 𝑛   as 

follows; 

𝒔′′(𝑛)  = 𝒔′(𝑛) 𝒘 𝑛 , (5.14) 

where 𝒔′′(𝑛) is the apodized version of 𝒔′(𝑛). The proposed apodization vector is 

a modified raised-cosine function given by; 

𝒘 𝑛 = 0.6 + 0.5cos(2𝜋(𝑛 − 𝑁)/N), (5.15) 

for 1 ≤ 𝑛 ≤ 𝑁,  where N is the total number of pixels in the image. The choice of 

𝒘 𝑛  was motivated by the general profile of the k-space coefficients of an MR 

image and the nature of the reconstruction artifacts as illustrated in Figure 5.6.  
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Figure 5.6. Partial scanning and apodization algorithm 

The vector 𝒔′′(𝑛) is then reshaped into an 𝑁𝑝 × 𝑁𝑟  matrix 𝓢𝒐 𝑢, 𝑣  from which 

the output image 𝒇𝒐 𝑎, 𝑏  is obtained as; 
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, (5.16) 

where 𝑎 ∈   1 − 𝑁𝑟/2 , 𝑁𝑟/2 , 𝑏 ∈   1 − 𝑁𝑝/2 , 𝑁𝑝/2 .  

In order to test the algorithm, a retrospective approach for the generation 

of the under-sampled k-space data was adopted. A ground-truth MR image was 

converted into its k-space data by first obtaining its 2D-DFT matrix. The matrix is 

then reorganized into k-space data by swapping its diagonally located quadrants. 
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The k-space data is then vectorized prior to being partially sampled using the 

proposed mask. This under-sampled k-space is used to reconstruct the image 

following the steps outlined in Figure 5.6.  

5.2.6 Selective Acquisition and Artifacts Suppression Method 

In this sub-section, a proposed agile sparse recovery method based on 

selective k-space acquisition and artifacts suppression is presented. The algorithm 

consists of three stages namely:  

(i) Selective k-space sub-Nyquist acquisition  

(ii) Greedy CS reconstruction  

(iii) Suppression of Concomitant artifacts  

The method takes a shorter acquisition time (𝑇𝑎 ) than conventional MRI since 

it uses only a fraction of the number of phase encoding gradient steps (𝑁𝑝 ) 

required to meet Nyquist sampling criterion. The entire proposed algorithm is 

illustrated in the block diagram given in Figure 5.7. The k-space under-sampling 

step uses a few phase-encoding gradient steps (𝑁𝑝 < 2 (𝐹𝑜𝑣𝑦)( 𝑘𝑦𝑚𝑎𝑥 )) to 

selectively under-sample the k-space. The phase encoding steps used are chosen 

such that approximately half of the measurements are constituted by fully 

sampled rows at the center of the k-space. These rows contain the k-space 

coefficients that have significantly larger magnitudes than the coefficients in the 

outer k-space rows. The centered rows also correspond to low spatial frequencies. 

The remaining measurements are obtained by uniformly under-sampling the outer 

(high-frequency) k-space rows. The selective under-sampling process can be 

viewed as an elementwise matrix product of the full k-space of the image and an 

under-sampling mask as follows; 

𝓢𝒖 𝑢, 𝑣 = 𝓢 𝑢, 𝑣 . 𝓜 𝑢, 𝑣 , (5.17) 

where 𝓢 𝑢, 𝑣  is the full k-space of the image, 𝓢𝒖 𝑢, 𝑣  is the undersampled k-

space and 𝓜 𝑢, 𝑣  is the proposed under-sampling mask.  
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Figure 5.7. Selective k-space acquisition algorithm 

The mask consist of all ones in the rows that  correspond to the rows of 𝓢 𝑢, 𝑣  

that are to be included in 𝓢𝒖(𝑢, 𝑣) and zeros in the remainder of its rows. For 

example, to selectively acquire 50% of the k-space of a 64 × 32 pixels image, the 

following procedure would be used: 

(i) A 64 × 32 matrix with all entries being zero is formed. 

(ii) The zeros in the 16 central rows (25 to 40) of the matrix are replaced 

with ones. 

(iii) For the remaining 48 outer rows (1 to 24 and 41 to 64), sixteen equally 

spaced rows are selected. Eight of these rows are chosen from either 

side of the 16 central rows. These rows will be: 1, 4, 7, 10, 13, 16, 19, 

22, 43, 46, 49, 52, 55, 58, 61 and 64. The zeros in these rows are again 

replaced with ones.  

The result of these manipulations will be a mask matrix 𝓜 𝑢, 𝑣  that has 16 

central rows plus another 16 equally spaced outer rows filled with ones. All the 
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other 32 outer rows will retain their zero entries. The mask is then multiplied by 

the k-space (2D-DFT) of the image in an element by element manner to obtain the 

under-sampled k-space.  

The element-by-element product of 𝓜 𝑢, 𝑣  and 𝓢 𝑢, 𝑣  is equivalent to 

acquisition of an under-sampled version of the k-space using only half the number 

of phase encoding steps dictated by the Nyquist sampling theorem. The acquired 

incomplete k-space is then transformed into an MR image by first centre-shifting 

it followed by determination of its inverse 2D-DFT (2D-IDFT). The centre-

shifting operation involves swapping of the first and fourth as well as second and 

third quadrants of the k-space matrix. This re-arrangement allows reconstruction 

of the image using MATLAB. The resulting image will be corrupted by coherent 

aliasing as well as Gibb’s ringing artifacts [47]. This noisy image is reshaped into 

a vector prior to fully sampling using a random sub-Gaussian matrix 𝜱 to yield a 

noisy measurement vector 𝒚′  given by; 

𝒚′ = 𝜱𝒇′, (5.18) 

where 𝒇′ is the vectorized image. Next, the image is reconstructed from  𝒚′ in 

form of vector 𝒙  in the Haar DWT domain using the OMP greedy method in 

order to enforce the image sparsity. This step is followed by determination of the 

Inverse Discrete Wavelet Transform (IDWT) of vector 𝒙 to yield a second 

vectorized image signal 𝒇,, as follows; 

𝒇,,  = 𝚿−𝟏  𝒙, (5.19) 

where 𝚿−𝟏 is the inverse of the Haar wavelet transform matrix. The CS 

reconstruction of the image converts the coherent artifacts that are related to k-

space under-sampling and truncation into incoherent concomitant artifacts that are 

easily filtered.  The vectorized image 𝒇,, is then converted into its k-space data, 

𝓢′(𝑢, 𝑣). This is achieved by first converting it into a matrix followed by 

determination of its centre-shifted 2D-DFT. In 𝓢′(𝑢, 𝑣), the k-space rows that 

were not captured during the acquisition of 𝓢𝒖(𝑢, 𝑣) will have been 
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compressively reconstructed together with some artifacts. The k-space 𝓢′(𝑢, 𝑣) is 

therefore a corrupted version of full k-space of the MR image. This corrupted k-

space is vectorized into order to simplify the design of a filter that suppresses the 

reconstruction artifacts. The vectorized k-space is multiplied by a proposed filter 

function as follows; 

𝒔′′ 𝑛 = 𝒔′ 𝑛 .𝒉 𝑛 , (5.20) 

where 𝒔′(𝑛) is the vectorized form of 𝓢′(𝑢, 𝑣), 𝒔′′(𝑛) is its filtered version while 

𝒉 𝑛  is the proposed filter function. The range of the index 𝑛 for a 𝑃 × 𝑄 pixels 

MR image is 1 ≤ 𝑛 ≤ 𝑃𝑄. Finally, 𝒔′′(𝑛) is converted to the output image by first 

converting it into a matrix followed by inverse 2D-DFT determination. In order to 

generate MATLAB simulation test results, an MR image is first converted into its 

k-space by obtaining its centre-shifted 2D-DFT. The k-space data is then 

processed according to the procedure illustrated in Figure 5.7. The proposed 

artifacts suppression filter accentuates the high frequency k-space coefficients by 

a scaling correction factor 𝜌 > 1 without affecting the low frequency coefficients. 

The filter characteristic was suggested after observing that the CS reconstruction 

resulted in a reduction in the magnitudes of high frequency k-space coefficient 

with negligible effects on the low frequency ones.  

The filter function h(n)  is given by;  

𝒉 𝑛 =  
1  𝑓𝑜𝑟 𝑁1 ≤ 𝑛 ≤ 𝑁2

𝜌             elsewhere
  , (5.21) 

where 𝜌 is the correction factor while 𝑁1 and 𝑁2 are the indexes of the vectorized 

k-space that define the range of the fully sampled low frequency k-space 

coefficients.   

5.2.7 Variable-Density k-Space Under-Sampling Method 

A proposed CS method based on variable-density under-sampling and 

coefficients substitution is presented here. The method uses a k-space under-

sampling scheme that has a variable density that considerably reduces the MRI 

scan time. The imaging time reduction is achieved by using only a fraction of 
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phase encoding gradient steps, 𝑁𝑝  to capture enough data for reconstructing the 

MR image. The robustness of the method is enhanced by replacing some of the 

CS reconstructed k-space rows with the coefficients that were directly captured 

during the under-sampling stage.  

The stages that constitute the proposed algorithm are illustrated in the 

block diagram shown in Figure 5.8. The variable density k-space under-sampling 

step fully captures the high-power, low-frequency centered k-space coefficients 

rows plus an equal number of evenly distributed rows in the high-frequency 

portion of the k-space. This step results in an under-sampled k-space matrix  

𝓢𝒖
′  𝑢, 𝑣 . The under-sampling can be modeled as a element-wise product of the 

full k-space of the image and a variable density under-sampling mask as follows; 

𝓢𝒖
′  𝑢, 𝑣 = 𝓢 𝑢, 𝑣 . 𝓜 𝑢, 𝑣   (5.22) 

where 𝓢 𝑢, 𝑣  is the full k-space, 𝓢𝒖
′  𝑢, 𝑣  is the under-sampled k-space and 

𝓜 𝑢, 𝑣  is a proposed variable density under-sampling mask given by; 

𝓜 𝑢, 𝑣 =  
1 for                               𝑣 ≤ 𝑣0

1 for 𝑣 > 𝑣0  and mod(𝑣, 𝑞)
0                                elsewhere

 = 0, (5.23) 

where 𝑣0 represents the largest value of the 𝑣 that is included in the fully sampled 

k-space center rows while 𝑞 ∈ (0, 𝑁𝑝 2 ) is an integer.  The under sampled k-

space is given by; 

𝓢𝒖
′  𝑢, 𝑣 =  

𝓢 𝑢, 𝑣                      for  𝑣 ≤ 𝑣0

𝓢 𝑢, 𝑣  for 𝑣 > 𝑣0, mod(𝑣, 𝑞)
0                                     elsewhere

 = 0 (5.24) 

For each measurement, the values of 𝑣0 and 𝑞 are selected so that half of the 

measurements will be from the fully-sampled center rows of the k-space. The 

other half will be obtained from the higher frequency rows. The under-sampling is 

therefore accomplished using only a fraction of the phase encoding steps which 

effectively reduces the scan time. The under-sampled k-space is then transformed 

into an MR image by first centre-shifting it followed by determination of its 2D-

IDFT. This image will possess coherent reconstruction artifacts which include 



Chapter 5. Materials, Methods and Measures 

137 
 

wrap-around and Gibb’s ringing phenomena. The image is then reshaped into a 

vector 𝒇′ prior to being fully sampled using a random sub-Gaussian matrix 𝜱 to 

yield a measurement vector 𝒚′ as follows; 

𝒚′ = 𝜱𝒇′ (5.25) 

Next, the MR image is reconstructed from 𝒚′ in form of a vector 𝒙′ in the Haar 

DWT domain using the OMP method in order to enforce image sparsity.  

 

 

 

 

  

 

 

                                                                            

                                                                               

                                      

 

                                           

 

 

 

 

Figure 5.8. Variable-density under-sampling algorithm 
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This step is followed by determination of the inverse DWT of vector 𝒙′ to yield 

the vectorized image 𝒇,, as; 

𝒇,, = 𝜳𝑯
−𝟏𝒙′, (5.26) 

where 𝚿𝐻  is the Haar wavelet transform matrix.  

The vectorized image 𝒇,,  is then converted into its k-space data, 𝓢′′(𝑢, 𝑣). This 

conversion is achieved by first converting the vector 𝒇,,  into a matrix followed by 

determination of the 2D-DFT of the resulting matrix. In 𝓢′′(𝑢, 𝑣), the k-space 

rows that were not captured during the acquisition of 𝒇′are compressively 

reconstructed. To reduce the artifacts in the reconstructed image, the k-space rows 

that were acquired during the acquisition of 𝒇′ are inserted in 𝓢′′(𝑢, 𝑣) to 

substitute their corresponding rows. This replacement of some of the 

compressively reconstructed k-space rows by the sampled rows  results in the k-

space, 𝓢𝒐(𝑢, 𝑣) of output image. The k-space rows substitution process can be 

represented as;  

𝓢𝒐 𝑢, 𝑣 =  𝓢𝒖
′  𝑢, 𝑣 +  𝓢′′ 𝑢, 𝑣 − 𝓢′′ 𝑢, 𝑣 . 𝓜𝒖 u, v   (5.27) 

where 𝓜𝒖 𝑢, 𝑣  is a mask that is complementary to 𝓜 𝑢, 𝑣 . The mask is 

multiplied by 𝓢′′ 𝑢, 𝑣  element by element . This results in filling with zeros the 

rows of 𝓢′′ 𝑢, 𝑣  that correspond to the rows of  𝓢𝒖
′  𝑢, 𝑣  acquired during the 

under-sampling step. The complementary mask is given by; 

𝓜𝐮 u, v = ones 𝑁𝑝  , 𝑁𝑟 − 𝓜 u, v  (5.28) 

Ultimately, the reconstructed image 𝒇0 is produced by evaluating the 2D-IDFT of 

the centre-shifted form of 𝓢𝒐(𝑢, 𝑣).   

 In order to demonstrate the performance of the proposed method using 

MATLAB simulation, an MR image is first converted into its full k-space by 

obtaining its centre-shifted 2D-DFT. The k-space data is then processed according 

to the procedure in Figure 5.8. 
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5.3 Image Quality Measures   

In this sub-section, objective metrics as well as one subjective test that are 

used to assess the quality of images are covered. The subjective test presented 

here is based on the International Telecommunication Union Radio sector (ITU-

R) recommendation  BT.500-13. The objective measures presented here are the 

Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR) and the 

Structural SIMilarity (SSIM) metrics.  

5.3.1 Objective Measures 

The MSE of a reconstructed image is the ratio of the sum of the square of 

the pixel intensity errors to the number of pixels in the image. The MSE of a 

reconstructed image  𝒈 whose size is 𝑃 × 𝑄   pixels is given by: 

𝑀𝑆𝐸 𝒇, 𝒈 =
   𝒇 − 𝐠 2𝑄

𝑦=1
𝑃
𝑥=1

𝑃𝑄
, (5. 29) 

where 𝒇 is the ground-truth image whose size is 𝑃 × 𝑄 pixels.  

The PSNR of a reconstructed image is the ratio of the peak power of the original 

image to the MSE. It can be expressed as follows; 

 𝑃𝑆𝑁𝑅 𝒇, 𝒈 = 10log10  
𝑃𝑄𝐿2

   𝒇−𝐠 2𝑄
𝑦=1

𝑃
𝑥=1

 , (5. 30) 

where 𝐿 is the maximum pixel intensity of the ground-truth image. Both the MSE 

and PSNR are simple and convenient to compute but they do not match well with 

the characteristics of the Human Visual System (HVS) [113, 114]. 

The Structural SIMilarity (SSIM) index is a quality quantitative metric 

that is based on comparison of the luminance, contrast and structural factors of a 

reconstructed image to those of the ground-truth image. Unlike the MSE and the 

PSNR metrics, the SSIM index is consistent with the quality judgment of the 

Human Visual System (HVS). The luminance and contrast of objects vary across 

the scene while the structural information of the objects in the scene is 

independent of the luminance and contrast. The luminance of a scene is 
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characterized by the amount of light that is incident on the objects (illumination) 

as well as the amount of light reflected by these objects (reflectance). The 

illumination and reflectance of a scene combine multiplicatively to form the 

luminance of the scene. The Structural SIMilarity (SSIM) index is based on 

combining the luminance  𝑙 𝒇, 𝒈 , contrast 𝑐 𝒇, 𝒈  and structure 𝑠 𝒇, 𝒈   

components of a reconstructed image 𝒈 compared to those of the ground-truth 

image 𝒇.  High values of the SSIM index indicate better similarity between the 

images. The three SSIM index components are obtained from the means (𝜇), 

standard deviations (𝜍) as well as the correlation (𝜍𝑓𝑔) between the images. The 

mean of a  𝑃 × 𝑄 pixels image is given by: 

𝜇𝑓 =
1

𝑃𝑄
  𝑓𝑖𝑗

𝑄

𝑗=1

𝑃

𝑖=1

, (5. 31) 

where   𝜇𝑓  is the mean of image 𝒇 and 𝑓𝑖𝑗  intensity level of the pixel at the 

Cartesian coordinate (𝑖, 𝑗). The standard deviation of the same image is given by: 

𝜍𝑓 =  
1

𝑁𝑀
   𝑓𝑖𝑗 − 𝜇𝑓 

2
𝑀

𝑗=1

𝑁

𝑖=1

 

1
2

 
(5. 32) 

The correlation between two  𝑃 × 𝑄 pixels images (𝒇 and 𝒈) is calculated as 

follows; 

𝜍𝑓𝑔 =  
1

𝑁𝑀
   𝑓𝑖𝑗 − 𝜇𝑓  𝑔𝑖𝑗 − 𝜇𝑔 

𝑀

𝑗=1

𝑁

𝑖=1

 

1
2

 
(5. 33) 

The luminance comparison component of the SIMM index between an image 𝒈 

and a ground-truth image 𝒇, 𝑙 𝒇, 𝒈  is a function of the means which is defined as 

follows: 
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𝑙 𝒇, 𝒈 =
 2µ

𝑓
µ
𝑔

+ 𝐶1 

 µ
𝑓
2 + µ

𝑔
2 + 𝐶1 

 (5. 34) 

where  𝐶1  is a constant  that is included in the formula to avoid a situation where  

 𝑙 𝒇, 𝒈   will be undefined as the sum of µ
𝑓
2  and µ

𝑔
2  approaches zero. The value of 

the constant is chosen to be  𝐶1 =  𝐾1𝐿 
2. Where 𝐾1 ≪ 1 is a small constant. 

The contrast component of the SIMM index between the images, c(𝒇, 𝒈) is a 

function  of their standard deviations given by: 

𝑐 𝒇, 𝒈 =
 2𝜍𝑓𝜍𝑔 + 𝐶2 

 𝜍𝑓
2 + 𝜍𝑔

2 + 𝐶2 
 (5. 35) 

where  𝐶2  is a constant  that included to avoid a situation where  𝑐 𝒇, 𝒈  becomes 

undefined as 𝜍𝑓
2 + 𝜍𝑔

2 approaches zero. The value is set at 𝐶2   =  𝐾2𝐿 
2 where 

𝐾2 ≪ 1. The structural component of SIMM s(𝒇, 𝒈) is obtained from the standard 

deviations of the images as well as their cross-correlation 𝜍𝑓𝑔  as follows; 

𝑠 𝒇, 𝒈 =
 𝜍𝑓𝑔 + 𝐶3 

 𝜍𝑓𝜍𝑔 + 𝐶3 
 (5. 36) 

where the constant  𝐶3 ensures that the value of  𝑠 𝒇, 𝒈  does not approach an 

infinitely large value as 𝜍𝑓𝜍𝑔  becomes vanishingly small [5, 27, 28]. The value of 

the constant is chosen to be 𝐶3 =  𝐾3𝐿 
2 with 𝐾3 ≪ 1. The SSIM index is 

obtained from the combination of the three components as follows; 

𝑆𝑆𝐼𝑀 𝒇, 𝒈 =   𝑙 𝒇, 𝒈  
𝛼

  𝑐 𝒇, 𝒈  
𝛽

  𝑠 𝒇, 𝒈  
𝛾

, (5. 37) 

where 𝛼, 𝛽 and 𝛾 are parameters whose values are greater than zero [113, 114, 

115]. The parameters can be adjusted to change the relative contributions of the 

three components in the SSIM index. Substituting for 𝑙 𝒇, 𝒈 , 𝑐 𝒇, 𝒈  and 𝑠 𝒇, 𝒈  

components in the equation for the 𝑆𝑆𝐼𝑀 𝒇, 𝒈  yields; 
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SSIM 𝒇, 𝒈 =  
 2µ

𝑓
µ
𝑔

+ 𝐶1 

 µ
𝑓
2 + µ

𝑔
2 + 𝐶1 

 

𝛼

 
 2𝜍𝑓𝜍𝑔 + 𝐶2 

 𝜍𝑓
2 + 𝜍𝑔

2 + 𝐶2 
 

𝛽

 
 𝜍𝑓𝑔 + 𝐶3 

 𝜍𝑓𝜍𝑔 + 𝐶3 
 

𝛾

 (5. 38) 

Taking the contributions of the three components to be equal (𝛼 = 𝛽 = 𝛾 = 1) 

and setting the value of the constant C3 to be equal to  0.5C2 in order to simplify 

for the SSIM index yields [113]; 

𝑆𝑆𝐼𝑀 𝒇, 𝒈 =
 2µ

𝑓
µ
𝑔

+ 𝐶1 

 µ
𝑓
2 + µ

𝑔
2 + 𝐶1 

.
 2𝜍𝑓𝜍𝑔 + 𝐶2 

 𝜍𝑓
2 + 𝜍𝑔

2 + 𝐶2 
.
 𝜍𝑓𝑔 + 0.5𝐶2 

 𝜍𝑓𝜍𝑔 + 0.5𝐶2 
 (5. 39) 

This equation (5. 39) can further be simplified to; 

𝑆𝑆𝐼𝑀 𝒇, 𝒈 =
 2µ

𝑓
µ
𝑔

+ 𝐶1  2𝜍𝑓𝑔 + 𝐶2 

 µ
𝑓
2 + µ

𝑔
2 + 𝐶1  𝜍𝑓

2 + 𝜍𝑔
2 + 𝐶2 

 (5. 40) 

The SSIM measure and the three components satisfy the symmetry, boundedness 

and the unique maximum properties. For the SSIM index, the symmetry property 

implies that 𝑆𝑆𝐼𝑀 𝒇, 𝒈  is always equal to 𝑆𝑆𝐼𝑀 𝒈,𝒇 . The boundedness 

property implies that 𝑆𝑆𝐼𝑀 𝑓, 𝑔  is always less or equal to unity. The unique 

maximum property implies that 𝑆𝑆𝐼𝑀 𝑓, 𝑔   metric will only have a maximum 

value of one when the two images are exactly alike [115-120]. 

5.3.2 Subjective Assessment 

The International Telecommunication Union Radio communication (ITU-

R) assembly recommendation BT.500-13 describes a general subjective method 

for the assessment of image quality. It outlines the grading scales, the viewing 

conditions as well as the number of assessors to be used in the test. At least 15 

observers should be used in each subjective quality judgement. They should be 

non-expert, in the sense that they are not directly concerned with medical imaging 

quality as part of their normal work, and should not be experienced assessors prior 

to an assessment session, the observers are screened for normal visual acuity and 

colour vision. Prior to an assessment session, the observers are briefed about the 

type of test and the grading scale to be used. The range and type of the 



Chapter 5. Materials, Methods and Measures 

143 
 

impairments to be assessed should be illustrated using pictures other than those to 

be used in the test. Observers should be told to base their judgement on the overall 

impression given by the image [121]. The quality judgement should be made 

based on a subjective scale of 1 to 5 as presented in Table 5.1. 

Table 5.1. The ITU-R recommendation BT.500-13 quality levels 

Level Damage to the image quality Quality 

5 Imperceptible Excellent 

4 Perceptible but not annoying Good 

3 Slightly annoying Fair 

2 Annoying Poor 

1 Very annoying Bad 
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CHAPTER 6 

SIMULATION RESULTS AND DISCUSSIONS  

The performances of the proposed algorithms are presented in this chapter 

using MATLAB simulation results of MR images obtained from the databases 

found in [106-111]. The images were acquired using CSE MRI scanners having 

the following parameters: 

(i) Static  magnetic field 𝐵0 = 1.5 T 

(ii) Peak gradient strength 𝐺 = 30 mT/m 

(iii) Flip angle 𝜃 = 90o  

(iv) Echo time  𝑇𝐸 = 100ms 

(v) Repetition time 𝑇𝑅 = 1000ms 

All the input images used in the experiments have been re-sized using bicubic 

interpolation prior to being cropped into sizes of 64 × 64, 64 × 32 or 32 × 32 

pixels. This pre-processing of the input image is performed in order to reduce the 

computational time. A ground-truth images that has an aspect ratio of close to 1:1 

is cropped into a size of 64 × 64 pixels if both its width and length are more than 

64 pixels after re-sizing. However, if the image has an aspect ratio close to 1:1 but 

one or both dimensions are less than 64 pixels after the bicubic interpolation, it is 

cropped into a size of 32 × 32 pixels. All other images were cropped into a size 

of 64 × 32 pixels.  

6.1 Greedy Reconstruction with Median Filtering Results 

A series of simulations were conducted on MR images using MATLAB 

simulation. The image reconstruction results are shown in the following figures 

and Table 6.1. The compressibility of MR images in the DFT and DWT domains 

is illustrated in Figures 6. 1 and 6. 2 respectively. Figure 6.1 (a) shows an MR 

image of a human head section whose 2D-DFT is given in part (b).  
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(a) (b) 

  
(c) (d) 

Figure 6. 1. Compressibility in DFT domain (a) Original 190 × 202 pixels 

MR image (b) The magnitude of 2D-DFT coefficients (c) Reconstruction 

using the largest 5% DFT coefficients (d) Difference image  

 

Part (c) of Figures 6. 1 shows the same image reconstructed using 5% of its 

largest DFT coefficients.  Part (d) shows the difference between the original and 

the reconstructed images. Figure 6. 2 (a) shows a 64 × 32 pixels spine MR image. 

The wavelet coefficients of its 2D-DFT are plotted in part (b).  Part (c) shows the 

image reconstructed using 10% of its largest wavelet coefficients. The difference 

between the original image and the reconstructed one is shown in part (d). In both 

figures, the perceived details in the difference images are insignificant. 
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(a) (b) 

  
(c) (d) 

Figure 6. 2. Compressibility in DWT domain (a) Original MR image (b) A plot of 

the DWT coefficients of its 2D-DFT (c) Reconstruction using the largest 10% 

DWT coefficients. (d) Difference image  

Figure 6.3 shows the reconstruction results obtained using the proposed 

procedure. The first column (a) of the figure shows the ground-truth MR images. 

The images from top to bottom are: a  64 × 32 pixels spine image, a  64 × 32 

pixels hand image, a 32 × 32 pixels brain image and a 64 × 32 pixels a torso 

image. Column (b) shows the output images reconstructed using a number of 

measurements that is approximately 10% of the input image size.  
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Figure 6. 3. Image reconstruction results. (a) Input MR image (b) Using 10% 

measurements (c) Using 20% measurements (d) Using 30% measurements         

(e) Using 40% measurements 
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Column (c) shows the output images reconstructed using a number of 

measurements that are approximately 20% of the input image size. Column (d) 

shows the output images reconstructed using a number of measurements that are 

approximately 30% of the input image size while Column (e) shows the images 

reconstructed using approximately 40% measurements of the k-space of the input. 

From Figure 6. 3, the original images are highly compressible in the wavelet 

domain as is evident from the small number of significant coefficients plotted in 

part (b). Also, the perceptual difference between the original and the 

reconstructed images decrease with increase in the number of measurements. 

The quality of the reconstructed images is expressed in terms of their 

correlations with the original images and their Mean Squared Errors (MSE) as 

shown in table 6.1. These quality measures plotted as functions of the percentage 

number of measurements are further illustrated graphically in Figure 6. 4 and 

Figure 6.5 respectively. The MSE decreases with increase in number of 

measurements to less than –18 dB at 40% measurements as shown in Figure 6. 4. 

This value is less than the approximately -15 dB obtained for the same percentage 

number of measurements in [35]. The results in Figure 6.5 and Table 6.1 show 

that the correlations between the reconstructed and original images increase to at 

least 0.85 at 40% measurements. The graph in Figure 6.6 shows the 

reconstruction results of the spine image of Figure 6.3 (a) with and without 

median filtering. These results show that median filtering reduces the MSE by an 

average of 1.5 dB for 10% or more measurements. Similar results were obtained 

for the heart, brain and torso images. 
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Table 6. 1. Characteristics of the reconstructed images 

Image      

 (size in pixels)  

Number of 

Measurements 

Percentage 

Measurements  

Correlation 

With Input 

Image 

MSE 

(dB) 

 205 10 0.73 -14.37 

Spine 410 20 0.84 -16.99 

(64 × 32) 615 30 0.89 -17.95  

 820 40 0.91 -18.82 

 1024 50 0.93 -20.21 

 410 10 0.64 -14.29  

Hand 820 20 0.82 -16.99 

(64 × 32) 1229 30 0.89 -18.90  

 1639 40 0.91 -19.79  

 2048 50 0.94 -21.13 

 103 10 0.40 -13.93  

Brain 205 20 0.73 -16.79 

(32 × 32) 308 30 0.80 -17.81  

 410 40 0.85 -18.93  

 512 50 0.89 -20.09 

 410 10 0.66 -13.82  

Torso 820 20 0.78 -15.62  

(64 × 32) 1229 30 0.85 -16.99  

 1639 40 0.88 -18.09   

 2048 50 0.91 -19.02 
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Figure 6. 4. Variation of the MSE with the number of measurements 

 

 

Figure 6. 5. Variation of the correlation with the CS measurements  
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Figure 6. 6. Reduction in MSE in the spine image due to median filtering 

6.2 Raised-Cosine Shaping Vector Method Results 

The performance of this proposed method is illustrated here using results 

obtained from MATLAB simulation on a number of MR images. All the input 

images used in the experiments have a size of 64 × 32 pixels except the brain 

slice image which has a size of 32 × 32 pixels. 

Figure 6.7 shows the artifacts suppression effect of the shaping vector. 

Part (a) of the figure shows an original brain slice MR image on the left, the same 

image reconstructed using the conventional OMP method with 40% 

measurements is shown in the middle. On the right side is the MR image 

reconstructed using the proposed method. 
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Figure 6.7. Effect of DWT coefficients shaping 
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Figure 6.7 (b) shows the clustering of the wavelet coefficients of the k-space data 

of the original image. Figure 6.7 (c) shows the wavelet coefficients of the k-space 

data of the image reconstructed using the OMP method. The coefficients have 

non-clustered artifacts. Part (d) of the figure shows a plot of the proposed raised-

cosine shaping vector. Part (e) of the figure shows the effect of the proposed 

raised-cosine shaping vector on the plot in part (c). The result in part (e) shows 

that the shaping vector improves the clustering of the coefficients and therefore 

improves the quality of the reconstructed image. This can be deduced by 

observing that the profile of the shaped DWT coefficients in part (e) have a better 

resemblance to that of the original image coefficients shown in part (b) than the 

OMP reconstructed coefficients in part (c). 

Table 6.2 shows the reconstruction results of various MR images using 

three different greedy methods and with different sizes of the measurement 

vector. The first column from top to bottom shows the input MR images of the 

small intestines, hand, kidney, and a brain slice respectively. The second column 

of the table presents the percentage measurements employed. The third, fourth 

and fifth columns show the PSNR values of the reconstructed images using the 

methods of OMP, StOMP and the proposed method respectively. The results 

show that the proposed method is more immune to reconstruction artifacts than 

the other two greedy methods since it gives higher PSNR values. 

Table 6.3 shows the reconstruction results of two MR images using three 

different greedy methods and one optimization method with different sizes of the 

measurement vector. The image at the top of the first column is a leg angiogram 

while the lower one is a spine MR image. The third, fourth, fifth and sixth 

columns show the PSNR values of the reconstructed images using the different 

CS methods. The results show that the proposed method yields better PSNR 

values than the greedy methods as well as the LASSO algorithm.  
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Table 6. 2.  Results of various MR images and methods 

 MR Image Percentage 

Measurements 

OMP StOMP Proposed 

Method 

PSNR(dB) PSNR(dB) PSNR(dB) 
S

m
al

l 
in

te
st

in
es

 

 

10 13.07 14.13 14.57 

20 14.66 15.78 16.40 

30 16.54 16.43 18.00 

40 18.16 17.41 19.50 

50 19.07 18.35 20.65 

60 20.85 19.68 22.14 

70 22.97 20.94 23.54 

H
an

d
 

 

10 14.72 16.64 16.36 

20 18.32 18.08 19.79 

30 21.40 20.31 22.62 

40 23.10 22.80 24.30 

50 23.92 24.03 25.21 

60 25.88 24.75 26.82 

70 28.00 25.60 28.76 

K
id

n
ey

 

 

10 15.31 16.58 16.19 

20 18.15 18.70 19.40 

30 18.63 19.55 20.10 

40 20.40 20.69 21.80 

50 21.63 21.12 23.09 

60 22.59 21.98 24.12 

70 24.43 23.07 25.53 

B
ra

in
 

 

10 12.41 11.20 13.63 

20 14.86 15.26 15.95 

30 16.89 15.83 18.38 

40 18.03 16.11 19.54 

50 19.54 18.60 20.76 

60 20.89 20.53 22.09 

70 22.24 20.55 23.07 
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Table 6.3.  Greedy and optimization methods 

 

MR Image 

% 

Measur- 

ements 

OMP StOMP LASSO 
Proposed 

Method 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

L
eg

 a
n
g
io

g
ra

m
 

 

 

10 14.91 15.59 14.82 16.27 

20 16.07 16.68 15.01 17.46 

30 17.44 18.09 15.57 18.95 

40 18.70 18.80 16.21 20.29 

50 20.61 19.59 15.98 22.11 

60 21.95 20.36 16.44 23.50 

70 23.52 22.07 16.74 25.01 

S
p
in

e 

 

10 13.32 14.59 10.00 14.85 

20 15.38 16.10 10.54 16.91 

30 16.57 16.57 11.68 17.97 

40 17.98 17.46 11.88 19.80 

50 19.48 19.41 12.27 20.83 

60 22.19 20.08 12.41 23.04 

70 23.87 21.35 13. 58 24.46 

Some of the images reconstructed using the different methods and 40% 

measurements are shown in Figure 6.8. The first column (a) shows the input 

images. Columns (b), (c) and (d) show the images reconstructed using the OMP, 

StOMP and the proposed method respectively. These results show that the images 

reconstructed using the proposed method are subjectively superior to the ones 

reconstructed using the other greedy methods. 

The reconstruction results for the spine MRI using the various methods are 

plotted in Figure 6.9 as a function of the measurement vector length. These results 

show a superior performance of the proposed method compared to the others. For 

the leg angiogram, the PSNR values of the reconstructed images using the various 

methods are plotted in Figure 6.10 as a function of the length of the measurement 

vector. The results still show a superior performance of the proposed method 

compared to the StOMP method by up to 3dB at a 60% measurement. 
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Figure 6.8. Image reconstruction results (a) Ground-truth MR image           

(b) Reconstruction Using OMP (c) Reconstruction Using StOMP              

(d) Reconstruction Using the Proposed method  
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Figure 6. 9. Variation of the PSNR with the CS measurements for the spine image 

 

Figure 6. 10. Variation of the PSNR with the CS measurements for the leg 

angiogram 
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The PSNR values for four images reconstructed using the proposed method are 

plotted as functions of the number of measurements as percentages of the lengths 

of the vectorized input images are presented in Figure 6. 11. The PSNR values 

increase to at least 19 dB at 40% measurements. The values are between 1.2 dB 

and 2 dB higher than those obtained using other CS methods for the same lengths 

of measurement vector due to the raised-cosine shaping as shown in Table 6.2. 

 

Figure 6. 11. Performance of the proposed method 
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Brain) 32 × 32 pixels images. Figure 6. 12 gives a comparison of the k-space 

data of a ground-truth spine MR image to that of the image reconstructed using 

the OMP method at a sampling ratio of 0.3. Part (a) shows the profile of the k-

space data of the ground-truth spine MR image. The artifacts resulting from the 

OMP recovery of the image are shown in part (b). Figure 6. 13 shows the effect of 

applying the adaptive Gaussian filter on the k-space data shown in Figure 6.12 

(b). The adaptive Gaussian filter function is shown part (a). The denoising effect 

of the Gaussian filter is shown in part (b).  

Figure 6. 14 shows the reconstruction results of the proposed method for 

three different images at different sampling ratios. These images are Hand, Brain 

and Knee. Column (a) presents the ground-truth images, column (b) shows 

reconstruction results at 𝑀 𝑁 = 0.2, column (c) shows reconstruction results at 

𝑀 𝑁 = 0.4 while the results at 𝑀 𝑁 = 0.6 are presented in column (d). The 

visual quality of the reconstructed image increases with increase in the sampling 

ratio. The performances of the proposed method, OMP and StOMP methods at 

𝑀 𝑁 = 0.4  are shown in Figure 6. 15 for three different images. The images are 

two 64 × 32 pixels (spine and knee) images and one 32 × 32 pixels heart image. 

Column (a) shows the ground-truth images, column (b) shows the reconstruction 

results of the OMP method, column (c) shows reconstruction results of the 

StOMP method while the results of the proposed method are presented in column 

(d). The proposed method yielded reconstructed MR images that have less noise 

than those of the other two methods due to the denoising effect of the proposed 

Gaussian function. 
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 Figure 6.12. The k-space data comparison (a) Ground-truth spine image (b) 

The OMP reconstructed image 
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(a) 

 

 

(d) 

 

 Figure 6.13. Effect of Adaptive Gaussian Filtering (a) The adaptive Gaussian 

filter function (b) The filtered k-Space data 
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Figure 6. 14. The proposed method performance (a) Ground-truth images (b) At 

20% CS measurements (c) At 40% CS measurements (d) At 60% CS measurements 

 

The PSNR and SSIM quality results of five different MR images reconstructed 

using the proposed method, the OMP and StOMP methods are presented in Table 

6.4. The proposed method yielded better reconstruction quality than the other two 

methods.  
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Figure 6. 15. Comparison of reconstruction methods (a) Ground-truth images (b) 

OMP (c) StOMP (d) Proposed method 

 

Figure 6. 16 summarizes the performance of the proposed method in terms of the 

PSNR measure. Part (a) shows the performance of the proposed method for four 

different MR images at different percentage measurements. The images are those 

of a spine, hand, knee and heart. Part (b) presents a comparison of the 

performance of the proposed method to both the OMP and StOMP methods at 

different percentage measurements for the hand image. 
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       Table 6.4. Reconstruction quality comparison  

 MR  

Image 

M/N 

(%) 

OMP StOMP Proposed 

Method 

 PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

SSIM 

S
p
in

e 

 

0.1 13.53 0.63 14.34 0.62 15.07 0.69 

0.3 16.28 0.83 16.73 0.80 17.96 0.87 

0.5 20.03 0.93 19.20 0.90 21.37 0.94 

0.7 23.36 0.97 20.06 0.95 24.25 0.97 

K
n
ee

 

 

0.1 15.44 0.56 15.05 0.54 17.20 0.65 

0.3 19.60 0.86 19.11 0.78 21.54 0.90 

0.5 22.81 0.93 21.26 0.90 24.20 0.95 

0.7 26.25 0.97 24.05 0.94 27.33 0.97 

B
ra

in
 

 

0.1 16.01 0.70 15.07 0.69 17.57 0.77 

0.3 19.85 0.89 20.06 0.88 20.88 0.91 

0.5 21.37 0.92 21.78 0.92 22.56 0.94  

0.7 23.71 0.96 23.31 0.95 24.22 0.96 

B
ra

in
 

 

0.1 10.62 0.29 11.53 0.21 12.13 0.35 

0.3 15.00 0.74 16.17 0.76 16.09 0.78 

0.5 17.42 0.85 17.47 0.81 17.97 0.86 

0.7 20.84 0.93 19.03 0.89 20.92 0.93 

H
an

d
 

 

0.1 15.49 0.81 15.50 0.73 17.43 0.87 

0.3 21.30 0.95 20.47 0.93 22.79 0.96 

0.5 24.58 0.98 23.81 0.97 25.64 0.98 

0.7 27.24 0.99 26.52 0.98 27.89 0.99 

 In Figure 6. 17, a summary of the performance of the proposed method in 

terms of the SSIM index is demonstrated. In part (a), the performance of the 

proposed method for the four different images analyzed in Figure 6. 16 at 

different percentage measurements is shown. In part (b), a comparison of the 

performance of the proposed method to two other methods at different percentage 

measurements is presented. The proposed method reconstructs images of superior 

quality than both the OMP and StOMP at all measurements. 
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 (a) 

 

(b) 

 

Figure 6.16. Performance in terms of the PSNR (a) Results for different 

images (b) Comparison of different methods for the hand image 

0 10 20 30 40 50 60 70
5

10

15

20

25

30
PLOTS OF THE PSNR VERSUS PERCENTAGE MEASUREMENTS

PERCENTAGE MEASUREMENTS

P
S

N
R

 O
F

 R
E

C
O

N
S

T
R

U
C

T
E

D
 M

R
 I

M
A

G
E

S
 (

d
B

)

 

 

Spine

Hand

Knee

Heart

0 10 20 30 40 50 60 70
5

10

15

20

25

30
PLOTS OF THE PSNR VERSUS PERCENTAGE MEASUREMENTS

 PERCENTAGE MEASUREMENTS 

P
S

N
R

 O
F

 R
E

C
O

N
S

T
R

U
C

T
E

D
 H

A
N

D
 M

R
 I

M
A

G
E

 

 

OMP

StOMP

 Proposed



Chapter 6. Simulation Results and Discussions 

166 
 

(a) 

 

(b) 

 

Figure 6.17. Performance in terms of the SSIM (a) Results for different 

images (b) Comparison of different methods 

 Figure 6. 18 illustrates the performance of the proposed method in 

terms of the MSE quality measure. Part (a) shows the performance of the 

proposed method for four different images at different percentage measurements. 

The comparison of the performance of the proposed method to the OMP and 

StOMP methods at different percentage measurements is presented in part (b) for 

the Spine image. All the three results described in the above Figures (6.16 to 6.18) 

show that the proposed method yields images of better quality level than both the 

OMP and StOMP methods. 
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(a) 

 

(b) 

 

Figure 6.18. Performance in terms of the MSE (a) Results for different images (b) 

Comparison of different methods 
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6.4 Dominant Coefficients Detection Results  

The performance of a proposed dominant coefficients detection method is 

demonstrated here using MATLAB simulation results. Thirty-two images were 

tested. The results of seven of the images as well as a statistical summary of all 

the thirty-two images are presented. The images were first resized using bicubic 

interpolation and then cropped into either 64 × 64 pixels or 64 × 32 pixels sizes. 

Figures 6.19 and 6.20 illustrate the reconstruction of a knee image using the 

proposed method.  

The image in Figure 6.19 part (a) (i) is the 64 × 32 pixels ground-truth knee 

MR image. The image in part (a) (ii) is the same knee image reconstructed using 

the conventional OMP while part (a) (iii)  shows the same image reconstructed 

using the proposed method. The images were reconstructed using a total of 20% 

measurements for both methods. Part (b) presents the magnitude profile of the 

2048 DFT coefficients of the image obtained by centre-shifting its 2D-DFT 

followed by vectorization. Part (c) shows the 192 (9.4%) dominant coefficients of 

the k-space data. 

 Figure 6. 20 part (a) presents the modified Gaussian denoising filter function 

presented that is a part of the proposed method.  Part (b) of the same figure shows 

the 1856 (90.6%) DFT coefficients which have been compressively reconstructed 

in the DWT domain using 218 (10.6%) measurements. The coefficients have 

already been transformed into the DFT domain and also denoised by multiplying 

them by the filter function in part (a). The full DFT coefficients of the 

reconstructed image shown in part (c) are then obtained by adding the dominant 

coefficients in Figure 6. 19 part (c) to the small coefficients in Figure 6. 20 part 

(b). The knee image reconstructed using the proposed method has a PSNR that is 

2.55 dB higher than that of the image reconstructed using the OMP method.  
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(a)    

(i) Original (ii) OMP (iii) Proposed 

method 

(b) 

 

(c) 

 

Figure 6.19. Dominant coefficients extraction (a) Input and  reconstructed  knee 

images (b) Input image DFT coefficients (c) Extracted dominant DFT 

coefficients 
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(a) 

 

(b) 

 

(c) 

 

Figure 6 20. The k-space reconstruction process (a) Denoising filter function       

(b) Reconstructed small DFT coefficients (c) Reconstructed image DFT 

coefficients 
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Reconstruction results of the proposed method for a brain slice and a 

spine MR images are presented in Figure 6.21. Column (a) presents the two 

ground-truth images while part (b) shows the images reconstructed using 20% 

measurements. Reconstruction results using 40% and 60% measurements are 

shown in columns (c) and (d) respectively. For both images, there is little visual 

perceptual difference between the original and the images reconstructed using at 

least 40% measurements. A comparison for a hand and a heart slice MR images 

reconstructed using the proposed method as well as two other CS greedy 

methods at 40% measurements is presented in Figure 6. 22. The first column (a) 

shows the ground-truth images. Columns (b), (c) and (d) show the images 

reconstructed using the OMP, StOMP and the proposed method respectively. 

The images reconstructed using the proposed method is perceptually less noisy 

than the ones reconstructed using the other two greedy methods. 
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Figure 6.21. Reconstruction using the proposed method (a) Ground-truth 

images (b) At 20% CS measurements (c) At 40% CS measurements (d) At 60% 

CS measurements  
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Figure 6. 22. Methods comparison (a) Ground-truth MR images (b) The OMP 

results. (c) The StOMP results (d) Proposed method results 

 

The quality results of two MR images reconstructed using the proposed method as 

well as the OMP and StOMP methods are presented in Table 6.5. The proposed 

method yields higher quality results than the other two methods in terms of both 

SSIM and PSNR measures. A statistical summary of the quality of all the thirty-

two MR images reconstructed using the proposed method as well the OMP and 

StOMP methods are presented in Table 6.6 and Table 6.7. Table 6.6 presents the 

mean PSNR and SSIM values for various percentage measurements. These results 

show that the proposed method yielded better quality measure values than the 

other two methods in terms of both PSNR and SSIM. 
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Table 6.5.  Results of two MR images (Heart and Ankle) 

Image 

M/N 

(%) 

OMP StOMP Proposed Method 

PSNR SSIM PSNR SSIM PSNR SSIM 

Heart 

 

10 16.01 0.70 15.06 0.69 17.17 0.84 

20 18.10 0.83 18.44 0.80 19.86 0.92 

30 19.83 0.89 20.08 0.86 21.99 0.95 

40 20.85 0.90 20.30 0.88 24.28 0.97 

50 21.38 0.92 21.78 0.92 26.22 0.98 

60 23.26 0.96 22.74 0.94 27.85 0.99 

Ankle 

 

10 15.14 0.71 14.38 0.56 17.63 0.87 

20 17.21 0.83 17.91 0.82 20.23 0.91 

30 18.00 0.85 18.90 0.86 21.65 0.93 

40 19.80 0.90 20.71 0.91 23.09 0.95 

50 22.16 0.94 21.39 0.93 24.27 0.96 

60 22.61 0.95 22.71 0.95 25.16 0.97 

 

Table 6.6.  Mean PSNR and mean SSIM results 

M/N 

(%) 

OMP StOMP Propsed Method 

PSNR SSIM PSNR SSIM PSNR SSIM 

10 14.45 0.68 14.08 0.62 16.67 0.82 

20 17.20 0.83 17.53 0.80 19.75 0.91 

30 18.75 0.87 18.98 0.85 22.00 0.94 

40 20.40 0.91 20.26 0.88 24.68 0.96 

50 22.15 0.93 21.42 0.92 26.73 0.98 

60 24.54 0.96 22.44 0.94 28.08 0.99 

 The variance of both the PSNR and SSIM for the thirty-two images is 

presented in Table 6.7. The proposed method gave lower variance values than the 
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other two. This implies that the proposed algorithm exhibits better reconstruction 

consistency.  

A portion of the results in Tables 6.6 and 6.7 are presented graphically in 

Figure 6.23. Parts (a) and part (b) shows the variation of the mean quality metric 

value with the percentage measurements for the PSNR and SSIM respectively. 

The consistency of the proposed method in comparison to the other two methods 

is illustrated in terms of the variance of the PSNR in part (c). The results show 

that for measurements of at least 42%, the proposed method yields reconstructed 

image of clinically acceptable quality with an average PSNR of more than 25 dB 

as well as a SSIM of greater than 0.97. The other two methods require more than 

60% measurements to yield similar quality results. 

Table 6.7. The variance of PSNR and SSIM 

M/N 

(%) 

OMP StOMP Proposed Method 

PSNR 

(dB) 

SSIM 

(× 10−3) 

PSNR 

(dB) 

SSIM 

(× 10−3) 

PSNR 

(dB) 

SSIM 

(× 10−3) 

10 4.20 12.1 2.76 16.90 2.92 2.1 

20 3.82 10.00 3.64 16.90 3.08 0.9 

30 5.60 6.60 4.28 12.10 3.28 0.9 

40 5.32 2.50 5.38 8.10 3.92 0.4 

50 6.96 2.50 5.42 3.60 3.72 0.1 

60 6.82 0.90 6.42 3.60 4.38 0.1 
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(a) 

 

(b) 

 

(c) 

 
 Figure 6.23. Statistical summary graphs (a) Mean PSNR        

(b) Mean SSIM (c)  The variance of PSNR 
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6.5 Partial Scanning and Apodization Results  

Some MATLAB simulation test results that demonstrate the performance 

of the proposed partial scanning and apodization method are presented here. 

Thirty MR images were used in the experiments. The results of some of the 

images as well as a statistical summary of the thirty images are presented here. 

The input images used in the experiments were first re-sized using bicubic 

interpolation and then cropped into sizes of 64 × 32 pixels or 64 × 64 pixels to 

reduce their recovery times. 

The graphs presented in Figure 6.24 illustrate the denoising effect of the 

apodization function. Part (a) shows the profile of the magnitude of the 

reorganized k-space coefficients of a 64 × 32 pixels ground-truth kidney MR 

image. The spatial frequency of the coefficients increases as the profile is 

traversed from both ends towards its centre. Part (b) shows the profile of the 

partially sampled k-space which is 50% of the full k-space. The values of the 

parameters used are: 𝑁𝑝 = 64, 𝑏 = 50, 𝑛𝑝 = 32,  𝑣1 = 15, and 𝑣2 = 16.  Part (c) 

shows the profile of the full k-space that has been compressively reconstructed 

using the partially sampled k-space. This k-space was reconstructed using the 

proposed method with the apodization step omitted. It can be observed that, the 

CS reconstruction has negligible effect on the magnitudes of the low frequency 

components of the k-space. However, there is a general increase in the magnitude 

of the high frequency components. These artifacts are severest at the highest 

frequency (pixel index 1024). Part (d) gives a plot of the apodized version of the 

reconstructed k-space. It is evident that the output (apodized) k-space resembles 

the ground-truth k-space better than the k-space given in part (c). In all the plots, 

the magnitudes of the coefficients have been clipped at a value of 50. This makes 

it easier to see the reconstruction artifacts. The apodization resulted in a PSNR 

improvement of 1.5 dB for the kidney MR image at 40% measurement. Similar 

quality improvements were noted for other types of MR images. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6.24. Apodization effect (a) Ground-truth k-space (b) Partially 

sampled k-space (c)  The OMP reconstructed k-space (d) Apodized k-space 
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The MR image CS reconstruction results of the OMP, the StOMP as well as the 

proposed method at 40% measurements  are shown in Figure 6.25. Column (a) 

presents the ground-truth images while column (b) shows the reconstruction 

results of the OMP method. The reconstruction results of the StOMP and the 

proposed method are presented in columns (c) and (d) respectively. The images 

reconstructed using the proposed method are visually less noisy than the images 

reconstructed using the other two methods.  

Figure 6. 26 shows the reconstruction results of the proposed method for 

three different 64 × 32 pixels images (spine, knee and lower leg) at different 

percentage measurements. Column (a) shows the ground-truth images while 

column (b) shows the images reconstructed using 20% measurements. The 

reconstruction results at 40% and 60% measurements are presented in columns (c) 

and (d) respectively. There is little visually perceptible degradation in the quality 

of the images reconstructed using at least 40% measurements.        

The PSNR of a hand MR image reconstructed using the proposed method 

at different percentage measurements are presented in Table 6.8. Also included in 

the table are the PSNR values of the same image reconstructed using the 

Orthogonal Matching Pursuit (OMP) as well as the Stagewise Orthogonal 

Matching Pursuit (StOMP) reconstruction methods. The results show that the 

proposed method consistently yielded better quality of reconstruction than the 

other two methods in terms of the PSNR quality measure. 
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Figure 6. 25.  Reconstruction results of different methods (a) Ground-truth images 

(b) OMP result (c) StOMP result (d) Proposed  method results 
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Figure 6.26.  The proposed method reconstruction results (a) Ground-truth 

images (b) At 20% CS measurements (c) At 40% CS measurements (d) At 60% 

CS measurements 
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A comparison of the SSIM of a brain slice image reconstructed using the 

proposed image to the SSIM of the same image reconstructed using both OMP 

and StOMP is given in Table 6.9. The proposed method results in better quality of 

reconstruction than the other two methods in terms of the SIMM quality measure. 

This is due to the suppression of the high frequency noise by the apodization 

function. 

Table 6. 8. The PSNR quality analysis results 

Hand image 

Percentage 

Measurements 

(%) 

OMP StOMP 
Proposed 

Method 

PSNR(dB) PSNR(dB) PSNR(dB) 

 

10 15.47 15.46 16.76 

20 18.61 18.63 19.12 

30 21.32 20.48 22.14 

40 22.62 22.92 24.41 

50 24.59 23.82 25.96 

60 26.63 25.05 27.18 

 

Table 6. 9. Results analysis using SSIM index  

Brain slice 

image 

Percentage 

Measurements (%) 

OMP StOMP 
Proposed 

Method 

SSIM SSIM SSIM 

 

10 0.48 0.38 0.62 

20 0.68 0.57 0.78 

30 0.74 0.66 0.80 

40 0.82 0.73 0.88 

50 0.85 0.81 0.91 

60 0.90 0.84 0.92 
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Graphical comparison of the performance of the proposed algorithm to both 

OMP and the StOMP methods are presented in Figure 6. 27. Part (a) shows the 

comparison in terms of the PSNR for a spine image.  Comparison in terms of the 

SSIM index for a hand image is presented in part (b). The graphs show that the 

proposed method reconstructs images of better quality than both the OMP and 

StOMP methods. For example, quality improvement in terms of PSNR is about 

1.8 dB with 30% measurements for the spine image. In terms of SSIM, the 

proposed method yields 0.02 quality improvement when 40% CS measurements 

are used for the hand image. The implication here is that, for a given image 

quality produced by either OMP or StOMP methods, the proposed method 

requires approximately 10% fewer measurements. This implies an image scanning 

time reduction (acceleration) by the proposed method for a given image quality.  

A statistical summary of the experimental results is presented graphically in 

Figure 6. 28.  Part (a) shows the variation of the mean PSNR quality metric value 

with the percentage measurements. In part (b), the variations of the mean SSIM 

index of the reconstructed images with the percentage measurements are 

presented. Both graphs show that the proposed method yields relatively better 

quality images than the other two methods. For example, at 40% measurements, 

the proposed method yielded an average PSNR improvement of 1.4 dB over the 

OMP method.  

The variances of the PSNR and SIMM indexes of the images reconstructed 

using the proposed method as well as the OMP and StOMP methods are presented 

in Figure 6.29. The results generally show that the variances of both measures for 

the proposed method are lower than for the other two methods. Therefore, the 

proposed method has better consistency in performance than the other two 

methods.  
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(a) 

 
  

(b) 

 
Figure 6.27. Comparison of the proposed method to OMP and StOMP 

methods (a) PSNR variation (b) SSIM variation 
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(a) 

 
  

(b) 

 

Figure 6.28  Statistical comparison (a) PSNR comparison (b) SSIM comparison 
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(a) 

 

(b) 

 
Figure 6. 29.  Performance consistency of the proposed method (a) The PSNR 

variance (b) The SSIM variance 
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6.6 Selective Acquisition and Artifacts Suppression Results  

For the purpose of demonstrating the effectiveness of this proposed 

algorithm, MATLAB simulation results of ten MR images were obtained. The 

MR images were first down-sized to 64 × 32 pixels using bicubic interpolation in 

order to reduce the processing time. The resizing also enabled the use of a 

denoising filter that does not require many parameters adjustments. Results of 

some specific images as well as statistical summaries of the reconstruction 

qualities for all the images are presented. In all the experiments, the value of the 

artifacts correction factor used was 𝜌 = 1.2. This value was empirically 

determined as explained at the end of this section.  

Figure 6.30 illustrates the selective k-space under-sampled acquisition and 

reconstruction of the denoised image stages of the proposed method. At the top of 

column (a) is the ground-truth image which is a sagittal cross-section of a head 

MR image. The full k-space is given below it in the same column. Part (b) 

presents an under-sampled image that is reconstructed from 50 % of the full k-

space rows as shown in the same column below the image. The under-sampled 

image is corrupted by coherent aliasing as well as truncation artifacts. Column (c) 

shows the image reconstructed using the proposed method plus its k-space. It is 

evident from column (c) that most of the coefficients missing in the k-space given 

in part (b) have been compressively recovered.  
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Ground-truth Under-sampled Proposed 

   
   

   
(a) (b) (c) 

Figure 6.30. Illustration of the proposed method (a) Ground-truth head MR 

image and its k-space (b) Selectively under-sampled image and its k-space     

(c) Denoised output image and its k-space 

 

These results demonstrate that it is possible to approximately reconstruct the MR 

image from its under-sampled k-space. 

The results presented in Figure 6.31 demonstrate the effect of the artifacts 

suppression filter on the magnitude of the k-space coefficients. In all the plots, the 

zero spatial frequency coefficient is located at the centre and has a magnitude of 

873. This coefficient has been scaled down by a factor of four to 218 in order to 

make it possible for the higher frequency coefficients located further from the 

centre to be seen more clearly. Part (a) presents a plot of the magnitudes of the k-
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space coefficients of a ground-truth head MR image versus the pixel index. The k-

space has been vectorized in order to simplify the design of the artifacts 

suppression filter. The under-sampled version of the k-space of the image using 

50% of the phase encoding steps is shown in part (b). In part (c), the vectorized k-

space that has been compressively reconstructed from the under-sampled version 

in part (b) is presented prior to denoising. It is evident that the coefficients 

missing in part (b) have been reconstructed in part (c). However, some of the 

reconstructed high-frequency coefficients have magnitudes that are much lower 

than their corresponding coefficients in part (a). Part (d) shows the reconstructed 

k-space of the image after denoising. The parameters of the denoising filter used:  

ρ = 1.2,  𝑁1 = 768, 𝑁2 = 1280. The parameters 𝑁1 and 𝑁2 define the boundaries 

of the fully sampled central rows of the vectorized k-space for a 50% 

measurement as explained in section 5.2.6. The values are obtained as: 𝑁1 = 32 ×

24 and 𝑁2 = 32 × 40. Comparing parts (d) and (c), the filter has the effect of 

increasing the magnitudes of the high frequency k-space coefficients to be 

comparable to those of the ground-truth image without affecting the low 

frequency coefficients. 

In Figure 6.32, the reconstruction results for three MR images (spine, 

lower leg, and small intestines) using three different methods at 40% 

measurements are shown. Column (a) presents the ground-truth images. The 

images reconstructed using the OMP and StOMP greedy algorithms are shown in 

columns (b) and (c) respectively. The images reconstructed using the proposed 

method are presented in column (d). These results show that, the proposed method 

gives higher quality of reconstruction compared to the other two methods.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 6.31. Denoising effect on vectorized k-space (a) Ground-truth k-space  

(b) Under-sampled k-space (c) The reconstructed k-space (d) Denoised k-space  
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The reconstruction quality assessment results for three MR images (knee, spine 

hand) reconstructed using different CS-MRI methods are presented in Table 6.10. 

The reconstructions were performed at different percentage measurements using 

the proposed method as well as the OMP and StOMP methods. The left-most 

column shows the three MR images while the next one lists the percentages of the 

k-space rows that were selectively acquired. The third, fourth and fifth columns 

show the SSIM values of the reconstructed images for the three different methods. 

The results show that the proposed method consistently reconstructs images of 

higher quality than both the OMP and StOMP methods.  
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 (a) (b) (c) (d) 

Figure 6.32. Selectively acquired image reconstruction results (a) Input ground-

truth MR images (b) Reconstruction using the OMP method (c) Reconstruction 

using the StOMP method (d) Reconstruction using the proposed method 
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In terms of PSNR, the reconstruction quality results of three MR images 

reconstructed using three different CS methods at different percentage 

measurements are given in Table 6.11. The left-most column presents the input 

images. The images are: a small intestines MR image, a leg angiogram and a 

kidney MR image. The third, fourth and fifth columns show the PSNR values of 

the images reconstructed using the three different methods. The results show that 

the proposed method yields images of higher PSNR values than the other two 

methods for all the percentage measurements used. For example, at 20% 

measurements, the proposed method gives a PSNR of 19.01dB while the OMP 

and StOMP methods yield 14.66 dB and 15.78 dB respectively. 

       Table 6.10. The SSIM values of reconstructed images 

 MR Image % Measure-

ments  

OMP StOMP Proposed 

K
n
ee

 

 

10 0.56 0.54 0.74 

20 0.77 0.75 0.85 

30 0.86 0.78 0.90 

40 0.90 0.82 0.94 

50 0.93 0.90 0.96 

60 0.95 0.93 0.98 

70 0.96 0.94 0.99 

S
p
in

e 

 

10 0.63 0.62 0.76 

20 0.77 0.76 0.86 

30 0.83 0.80 0.94 

40 0.89 0.88 0.95 

50 0.93 0.90 0.96 

60 0.95 0.93 0.97 

70 0.97 0.95 0.98 

H
an

d
 

 

10 0.81 0.73 0.88 

20 0.91 0.89 0.93 

30 0.95 0.93 0.95 

40 0.96 0.96 0.97 

50 0.98 0.97 0.98 

60 0.98 0.98 0.98 

70 0.98 0.98 1.00 
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Table 6.11.  The PSNR values of reconstructed images  

 MR Image % Measure-

ments  

OMP (dB) StOMP (dB) Proposed 

(dB) 

S
m

al
l 

in
te

st
in

es
 

 

10 13.07 14.13 17.24 

20 14.66 15.78 19.01 

30 16.54 16.43 21.43 

40 18.16 17.41 22.96 

50 19.07 18.35 24.48 

60 20.85 19.68 25.14 

70 22.97 20.94 27.05 

L
eg

 a
n
g
io

g
ra

m
 

 

10 14.91 15.59 19.56 

20 16.07 16.68 20.60 

30 17.44 18.09 22.75 

40 18.70 18.80 24.05 

50 20.61 19.59 26.13 

60 21.95 20.36 27.78 

70 23.52 22.07 29.01 

K
id

n
ey

 

 

10 15.31 16.58 18.38 

20 18.15 18.70 20.13  

30 18.63 19.55 22.37 

40 20.40 20.69 23.40 

50 21.63 21.12 24.88 

60 22.59 21.98 25.13 

70 24.43 23.07 26.45 

70 26.25 24.05 27.25 

A statistical mean of the quality for all the ten MR images reconstructed using the 

proposed method as well the OMP and StOMP methods is graphically presented 

in Figure 6.33. The mean PSNR values of the reconstructed images are plotted for 

different percentage measurements. The proposed method yielded higher quality 

images than the other two methods in terms of the PSNR measure. The quality 

improvement is at least 1.75 dB for 20% measurements or more. From the graphs, 

the OMP and StOMP methods would require at least 20% more measurements to 
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reconstruct images of the same quality as those of the proposed method. For 

example, to reconstruct an image whose PSNR is 21.4 dB, the OMP method 

requires 50% of the full k-space. The StOMP method required approximately 

57% measurements to yield a PSNR of 21.5 dB. On the other hand, the proposed 

method requires only 30% of the full k-space coefficients to reconstruct an image 

whose PSNR is 21.6 dB. This 20% reduction in the percentage measurements 

required by the proposed method for a given reconstruction quality is equivalent 

to a 20% reduction in the phase encoding gradient steps (𝑁𝑝) required. A 20% 

reduction in 𝑁𝑝  for a given image quality is equivalent to a 20% reduction in the 

MRI scan time [33].  

Almost similar results to the mean PSNR results presented in Figure 6.33 were 

obtained using the SSIM quality measure as shown in Figure 6.34. The figure 

presents a plot of the mean SSIM values of the reconstructed images at different 

percentage measurements for the OMP, StOMP and proposed methods.  

 
                 Figure 6.33. Statistical mean of the PSNR  
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 The mean SSIM values of the proposed method are consistently higher than for 

the other two methods. From the graphs, the OMP and StOMP methods would 

require about 20% more measurements to reconstruct images of the same quality 

as those of the proposed method. The images reconstructed using the StOMP 

method at 50% measurements have a mean SSIM index of 0.93. However, the 

proposed method requires only 30% measurements to reconstruct an image whose 

mean SSIM is 0.92 dB.   

Figure 6.35 presents the variation of the variance of the PSNR measures of the 

images reconstructed using three different methods at different percentage 

measurements. On average, the proposed method yields lower variance values 

than both the OMP and StOMP methods. 

 
               Figure 6.34 Statistical mean of the SSIM index  
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The smaller values of variance imply that the proposed method exhibits better 

reconstruction quality consistency than the other two methods. 

The variation in performance of the proposed method with the correction factor 

(𝜌) of the proposed filter function is graphically presented in Figure 6.36. The 

figure shows a plot of the mean PSNR against the correction factor at 60% 

measurements. These results show that a correction factor of approximately 1.2 

yields optimum quality results in terms of the PSNR. Using the SSIM index, 

similar results were obtained and approximately the same optimum value of the 

correction factor was obtained. The quality of the reconstructed images was found 

to decrease monotonically as the value of the correction factor used deviates from 

the optimum value of  𝜌 = 1.2. 

 
                  Figure 6.35. Variation of the standard deviation of the PSNR  
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                Figure 6.36.  Performance variation with the correction factor 

 

6.7 Variable-Density k-Space Under-Sampling Results  

To demonstrate the effectiveness of the proposed variable-density under-

sampling algorithm, MATLAB simulation results of eighteen MRI images were 

obtained. All the images were resized using bicubic interpolation prior to 

cropping them to a size of 64 × 32 pixels. This pre-processing step allows the 

application of a sampling mask of the same size to all the images. The results of 

seven of the eighteen images plus statistical summaries of the results of all the 

images are presented here. The results presented in Figure 6.37 show how the re-

insertion of the directly acquired k-space coefficients after CS reconstruction 

improves the quality of the output image. In part (a) (i) of the figure, a  64 × 32 

pixels portion of a sagittal cross section head MR image used as the input is 

presented. Once the input image is sampled using the variable density function 

and then re-constructed using OMP from 40% measurements, it results in the 
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image given in part (a) (ii). This image has a PSNR of 23.0 dB and a SIMM of 

0.956 compared to the input image. Re-insertion of the directly acquired k-space 

coefficients after CS-OMP reconstruction in the wavelet domain results in the 

image presented in part (a) (iii). Relative to the ground-truth image, this image 

has a PSNR of 24.8 dB and a SIMM of 0.971. For this image and with only 40% 

of the DFT coefficients captured, the proposed method results in a quality 

improvement of about 1.8 dB in terms of the PSNR metric and 0.016 in terms of 

the SIMM measure respectively. Part (b) shows the profile of the magnitude of 

the vectorized k-space coefficients of the ground-truth image. The under-sampled 

k-space coefficients are shown in part (c). The k-space coefficients matrices have 

been vectorized in order to reveal the variable density sampling approach used. 

The vectorized k-space data of the image reconstructed using the proposed 

algorithm is as given in part (d). The figure demonstrates that the coefficients 

missing in part (c) have been reconstructed approximately using the proposed 

method. In all the three graphs of the figure, the magnitudes of the coefficients 

have been clipped at a level of 50. This makes the compressively reconstructed k-

space coefficients to be easily visible. 

In Table 6.12, the reconstruction results of two MR images for the 

proposed and the LASSO methods are shown. Different percentage measurements 

were used. The leftmost column shows the ground-truth images of a thigh and a 

brain slice. The next column presents the size of the measurement vector as a 

percentage of the image size. 
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 (a) 

   
(i) (ii) (iii) 

(b) 

 

(c) 

 

(d) 

 
Figure 6.37. The k-space reconstruction (a) Ground-truth and reconstructed 

images (b) Ground-truth k-space (c) Sampled k-space (d) The reconstructed k-

space 
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        Table 6.12. The SSIM results of thigh and brain images  

 Input  

MR Image 

Percentage 

measurements 

(%) 

LASSO Proposed 

method 

 SSIM SSIM 
T

h
ig

h
 

 

10 0.72 0.88 

20 0.81 0.95 

30 0.85 0.97 

40 0.86 0.98 

50 0.87 0.99 

60 0.89 0.99 

70 0.92 1.00 

B
ra

in
 

 

10 0.61 0.82 

20 0.71 0.91 

30 0.77 0.95 

40 0.83 0.96 

50 0.84 0.97 

60 0.89 0.98 

70 0.90 0.99 

  

The third and fourth columns show the SSIM values of the reconstructed images 

using the LASSO and the proposed method respectively. The results show that the 

proposed method produced output images with higher SSIM index values than the 

optimization method for all the percentage measurements. 

Using the PSNR quality index, similar results to those presented in Table 

6.12 were obtained when the proposed method is compared to the OMP greedy 

method. These results are summarized in Table 6.13. In the first column from left, 

two input images are presented. They are images of parts of the pelvic bone and 

the shoulder. The second left column presents the some of the various percentage 

measurements used. The third and fourth columns show the PSNR values of the 

reconstructed images using the OMP and the proposed methods respectively. 

From the table it is evident that the proposed method performs better than the 

OMP when the PSNR measure is used as a quality assessment basis. 
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 Table 6.13.  The PSNR results of pelvis and shoulder images  

 MR Image Percentage 

Measurements 

(%) 

OMP PROPOSED 

 PSNR(dB) PSNR(dB) 
P

el
v
is

 

 

10 21.50 23.81 

20 25.88 26.47 

30 26.78 28.49 

40 27.50 29.28 

50 28.18 29.91 

60 28.81 30.41 

70 29.62 31.00 

S
h
o
u
ld

er
 

 

10 16.32 17.83 

20 19.58 20.12 

30 19.97 21.42 

40 20.38 22.64 

50 23.73 25.65 

60 26.49 28.74 

70 28.37 30.04 

Two MR images (blood vessels and torso) reconstructed using different CS 

methods at 40% measurements are shown in Figure 6.38. The first column (a) 

shows the ground-truth images. Columns (b), (c) and (d) show the reconstructed 

images using the OMP, LASSO and the proposed methods respectively. These 

results show that, the images reconstructed using the proposed method are 

subjectively better than the ones reconstructed using the other two methods.  

A PSNR-based statistical summary of all the eighteen images for three different 

CS methods is given in Figure 6.39. Part (a) shows the mean PSNR of the 

reconstructed images for the three methods at different sampling ratios. Part (b) 

shows the variation of the mean variance with the percentage measurements. 
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 Figure 6.38. Subjective comparison (a) Ground-truth MR image (b) The 

OMP Reconstruction (c) Reconstruction using LASSO (d) Proposed 

method Reconstruction  

These results demonstrate that the proposed method consistently produces images 

of higher quality compared to both the LASSO and the OMP methods. The 

average quality improvements of the proposed method are 1.56 dB and 7.07dB 

above the OMP and LASSO methods respectively. 

Using the SSIM quality metric, results similar to those given in Figure 

6.39 were obtained as presented in Figure 6.40. The mean SSIM improvements of 

the proposed method above the OMP and LASSO methods are 0.02 and 0.13 

respectively. 
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Figure 6.39. Statistical PSNR comparison (a) Mean (b) Variance 
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(a) 
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Figure 6.40. Statistical SSIM comparison (a) Mean (b) Variance 
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6. 8 Subjective Quality Assessment Results 

The ITU-R recommendation BT.500-13 for subjective image quality 

assessment method was used to compare the reconstruction quality of the 

proposed methods to that of the OMP and StOMP algorithms. Sixteen subjects 

constituting of two clinical officers, ten electrical engineering students and four 

electrical and electronics technicians were used in the quality judgement. None of 

them is an expert in medical or any other category of imaging. They were first 

briefed about the test and then asked to judge the quality of different images 

reconstructed using the three CS methods based on the recommendation as 

described in section 5.3.2. The quality judgement of each reconstructed image 

was made in comparison to its ground-truth version which was provided to the 

assessors. A summary of the subjective quality test results for the algorithms 

presented in section 5.2 is given in Table 6.14. The table shows the number of 

subjects that selected each quality level for each proposed measurement algorithm 

and three reconstruction methods. The average subjective quality level for each 

reconstruction technique is also given in the table. For each algorithm, a common 

proposed CS measurement method was used to under-sample an MR image. The 

image was then compressively recovered using the OMP, StOMP as well as a 

proposed reconstruction algorithm separately.  

These results show that the proposed reconstruction algorithms gave better 

quality results than both the OMP and StOMP algorithms. The proposed selective 

acquisition and artifacts suppression reconstruction method was rated by the 

subjects as the best with an average quality level of 4.44 out of a maximum of 5 

compared to 3.56 and 3.38 for the OMP and StOMP algorithms respectively. The 

other proposed methods yielded average quality levels of between 3.44 and 4.19. 

The OMP method yielded image qualities of between 2.75 and 3.56 while the 

StOMP gave quality indexes in the range of 2.44 to 3.38. These results were 

found to be consistent with the objective quality assessment results presented in 

the earlier sections of this chapter. 



Chapter 6. Simulation Results and Discussions 

205 
 

Table 6.14.  A summary of subjective quality assessment tests 

Proposed 

Algorithm 

Reconstruction 

Method 

Number of Subjects Per Quality Level Average 

Quality 

Level 

Level 

1 

Level 

2 

Level 

3 

Level 

4 

Level 

5 

5.2.1 OMP 1 5 7 3 0 2.75 

Proposed 0 1 5 10 0 3.44 

StOMP 2 7 5 2 0 2.44 

5.2.2 OMP 0 2 7 7 0 3.31 

Proposed 0 0 4 11 1 3.81 

StOMP 0 4 6 6 0 3.12 

5.2.3 OMP 0 4 9 3 0 2.94 

Proposed 0 2 5 6 3 3.63 

StOMP 0 4 5 6 1 3.25 

5.2.4 OMP 0 3 4 7 2 3.5 

Proposed 0 0 2 9 5 4.19 

StOMP 0 2 8 5 1 3.31 

5.2.5 OMP 1 3 6 5 1 3.13 

Proposed 0 0 4 8 4 4.00 

StOMP 2 2 8 4 0 3.13 

5.2.6 OMP 0 2 6 5 3 3.56 

Proposed 0 0 2 5 9 4.44 

StOMP 0 3 5 7 1 3.38 

5.2.7 OMP 0 4 8 2 2 3.13 

Proposed 0 1 3 7 5 4.00 

StOMP 0 5 8 2 1 2.94 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

This chapter summarizes the conclusion of the thesis as well as 

suggestions that are recommended for further work to improve the proposed CS-

MRI algorithms.  

7.1 Conclusion 

In this thesis, seven CS based algorithms that reduce the scan time 

associated with conventional MRI have been proposed. The methods also reduce 

the effects of measurement noise as well as reconstruction artifacts in the MR 

images. The proposed methods employ the simple Haar wavelet transform to 

ensure low computational complexity as opposed to other wavelets such as the 

Daubechies or the Coiflets.  Application of the fast OMP sparse recovery method 

further reduces the signal recovery time compared to other proposed optimization 

based CS-MRI algorithms such as the LASSO and the BP methods.  

The proposed selective acquisition and artifacts suppression method 

presented in section 5.2.6 produced the best MR image reconstruction results as 

shown in section 6.6. This algorithm is based on incomplete k-space data 

acquisition followed by DWT domain reconstruction. The characteristic profile of 

the magnitudes of the k-space coefficients is then exploited to design an 

apodization function for suppression of the measurement noise as well as 

reconstruction artifacts. The method reduced the noise and artifacts in the 

reconstructed images by 1.75 dB compared to other reported CS-MRI techniques. 

This quality improvement has been shown to translate to a 20% reduction in scan-

time. Subjective assessment performed on the images reconstructed using this 

method gave an average quality level of 4.44 out of a maximum of 5 compared to 

3.56 and 3.38 for the OMP and StOMP algorithms respectively. According to the 

ITU-R recommendation 500, this quality level implies that the damage on an MR 

image is perceptible but not annoying.  
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The dominant coefficients detection method presented in section 5.2.4 

produced reconstructed images of clinically acceptable quality using only 42% of 

the measurements as discussed in section 6.4. The OMP and StOMP algorithms 

required at least 60% of the k-space to give similar quality results. The partial 

scanning and apodization method discussed in section 5.2.5 resulted in a 1.4 dB 

average PSNR improvement over the OMP method as well as a 10% reduction in 

scan time as presented in section 6.5. On the other hand, the variable-density k-

space under-sampling method described in section 5.2.7 resulted in an image 

quality improvement as well as a 12% reduction in scan time as demonstrated in 

section 6.7. 

The Adaptive Gaussian denoising method presented in section 5.2.3 was used 

to demonstrate that the proposed filter used increased robustness to noise and 

artifacts emanating from sub-Nyquist sampling and CS reconstruction. Results of 

the raised-cosine shaping vector method described in section 5.2.2 demonstrated 

that restoration of the k-space clustering together with artifacts suppression 

improves the quality of a compressively reconstructed MR image. The greedy 

reconstruction with median filtering method presented in section 5.2.1 showed 

that the filtering improved the MSE of the reconstructed image by an average of 

1.5 dB for 10% or more measurements as demonstrated in section 6.1.  

7.2 Recommendation for further work 

In order to improve the results obtained in research investigation, CS-MRI 

researchers are recommended to focus on developing algorithms that can further 

reduce the scan-time and also improve the image quality by suppressing the 

measurement errors and reconstruction artifacts. Other than in the conventional 

MRI methods, the CS approach can also be tested on other modern techniques. 

The work can therefore be based on following; 

(i) The characteristic symmetrical nature of the magnitude of the k-space 

coefficients of a typical MR image can be exploited as in the half-Number 

of EXcitations (1 2  NEX) fast MRI method. Phase-shift compensation 
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can be employed in conjunction with the 1 2  NEX acquisition in order to 

reduce the number of the required phase-encoding gradient steps by 50%. 

(ii) Interpolations can be utilized to obtain an initial estimate of the k-space 

coefficients that are not captured during the CS acquisition stage and 

cannot be deduced from the coefficients symmetry. This can further 

reduce the required CS measurements. Employing the symmetry together 

with interpolation a better k-space estimate can be obtained. This 

approximation can then be used to compressively reconstruct the image in 

a sparsifying domain such as the wavelet, DFT, noislets, and shearlets 

domains.  

(iii) The characteristic profile of the vectorized k-space of the reconstructed 

image can be exploited to denoise the image. This may be achieved by 

developing better apodization functions for suppressing the CS 

reconstruction concomitant artifacts. 

(iv) In addition to the above recommendations, the algorithms can also be 

tested on fast MRI techniques such as GRAPPA and SENSE in order to 

take advantage of their acceleration property together with the fast sensing 

property of CS to further reduce the MR image scan time.  

(v) The proposed methods can also be tested on three-Dimensional MRI (3D-

MRI) to reduce the acquisition time. In a 2D MRI scanner, each RF pulse 

excites a narrow body slice unlike in 3D MRI systems where the RF pulse 

excites the entire imaging volume. This results in greater sensitivity since 

each acquisition represents an average of the whole imaging volume.  

However, 3D-MRI requires long image acquisition times. Therefore, in 

order to achieve clinical practicality, 3D-MRI requires faster acquisition 

techniques than 2D-MRI. This can be achieved by employing CS methods. 

(vi) The research can also be extended to functional Magnetic Resonance 

Imaging (fMRI) which measures the brain activity. This is achieved by 

detecting the associated changes in blood flow in form of a Blood 
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Oxygenation-Level Dependent (BOLD) signal. Unlike other forms of 

MRI, fMRI requires a very large number of successive scans to produce 

an image of acceptable quality. Although the EPI fast MRI technique is 

normally employed in fMRI the patient is still made to remain inside the 

scanner for a long time causing anxiety and claustrophobia. Applying CS 

can reduce this scan time as well as the computationally intensity in fMRI. 

It would also help in reducing the discomforts encountered by the patient. 

(vii) Application of the Bayesian modelling which has proved successful in 

error control coding systems that employ sparse codes can also be 

investigated with a view of reducing efficiency of the CS reconstruction 

algorithms. The Bayesian approach may also reduce the computational 

complexity of the MR algorithms in a similar manner that it reduces the 

decoding cost in digital systems employing LDPC codes.  

(viii) The research investigation could also be extended to incorporate wavelet 

tree-sparsity. This approach can significantly reduce the MR scan-time by 

lowering the required number of CS measurements.  
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Abstract—This paper proposes a fast and robust procedure 
for sensing and reconstruction of sparse or compressible 
magnetic resonance images based on the compressive sampling 
theory. The algorithm starts with incoherent undersampling of 
the k-space data of the image using a random matrix. The 
undersampled data is sparsified using Haar transformation. The 
Haar transform coefficients of the k-space data are then 
reconstructed using the orthogonal matching Pursuit algorithm. 
The reconstructed coefficients are inverse transformed into k-
space data and then into the image in spatial domain. Finally, a 
median filter is used to suppress the recovery noise artifacts. 
Experimental results show that the proposed procedure greatly 
reduces the image data acquisition time without significantly 
reducing the image quality. The results also show that the error 
in the reconstructed image is reduced by median filtering.  

Keywords—Magnetic resonance imaging; compressive 
sampling; sparsity; incoherence; restricted isometry property; 
orthogonal matching pursuit. 

I. INTRODUCTION 

Compressive Sampling (CS) is a data acquisition method 

that achieves both sampling and compression simultaneously 

without following the Shannon-Nyquist sampling theorem. 

The CS theory asserts that it is possible to achieve accurate 

reconstruction of images and other sparse or compressible 

signals from a number of measurement samples which are by far 

fewer than the signal length [1, 2].  

The Shannon-Nyquist sampling theorem requires the 

sampling rate of a bandlimited signal to be at least equal to 

twice the maximum frequency present in the signal [3, 4]. 

This rate is used in most of digital signal acquisition devices 

such as digital cameras, medical imaging devices and 

analogue-to-digital converters. Images are naturally not 

bandlimited and therefore their sampling rate is not dictated 

by the Shannon-Nyquist theorem but by the desired 

resolution [1].  

Success of CS relies on three factors. One of the factors is 

that the signal must be sparse or at least compressible when 

expressed in the proper representation orthonormal basis. The 

second one is that the measurement and representation bases 

should have a low coherence. Thirdly, the sensing matrix 

should obey the Restricted Isometry Property (RIP) [1, 5].  

Magnetic Resonance Imaging (MRI) is a noninvasive 

imaging technique that has significant advantages over other 

medical imaging modalities. However, the MRI devices are 

very slow and also produce motion related artifacts [6]. It 

would therefore be beneficial to patients if the number of 

measurements required to generate high quality MR images is 

reduced in order to reduce the imaging time. 

There are two reasons that make CS suitable for use in 

MRI. The first one is that Magnetic Resonance (MR) images 

are sparse in the Fourier or wavelet transform domains. The 

second one is that MR image data is acquired in a coded form 

[7, 8, 9].  

A method for MR images reconstruction and denoising 

using Singular Value Decomposition (SVD) based low rank 

approximation is proposed in [10]. The method requires a 

small number of components and therefore less memory and 

a reduction in the number of computational operations. The 

use of a larger number of components generally gives better 

results. However, when using all components, the 

reconstructed images are noisy. 

An MRI acquisition and reconstruction method is also 

suggested in [4]. The image is first transformed into a 

sparsifying domain using fractional Fourier transform. Under-

sampling is then performed using a random Bernoulli matrix. 

The Compressed image is then coded using the run length 

encoding algorithm. Finally, reconstruction based on 

estimation theory is carried out. The algorithm reconstructs 

high quality images from a few MRI measurements. 

However, the method involves a large number of steps 

thereby making it computationally intensive.  

A study and analysis on MRI using compressive sampling 

techniques is conducted in [9]. The number of measurements 

required is found to be approximately four to five times the 

sparsity of the signal. The results obtained are however not 

optimal and an improvement is suggested. Also, the 

performance of the algorithm is dependent on the settings of 

parameters that cannot be deterministically obtained. 

In this paper, an algorithm that undersamples the k-space 

data of MR images and reconstructs them using the CS 

techniques is proposed. The proposed method reduces the 

image data acquisition time by about 60 % and also 

suppresses the noisy artifacts in the reconstructed images as 

demonstrated by the experimental results presented in this 

paper. The rest of this paper is organised as follows: section 
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II outlines the requisite theory that is utilized in developing 

the proposed algorithm. The theory includes: magnetic 

resonance imaging, compressive sampling, sparsity, 

compressibility, the restricted isometry property and the CS 

reconstruction algorithms. Section III presents the proposed 

procedure that was used to obtain the test results presented in 

section IV. Section V gives a conclusion and suggestions on 

how the results can be improved in future work.  

II. THEORETICAL BACKGROUND 

A. Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a noninvasive 

imaging technique that uses nonionising Radio Frequency 

(RF) waves. The MRI technique results in better soft tissue 

contrast than other medical imaging modalities such as X-ray 

imaging [6]. The equipment used in MRI detects and 

processes the RF signals generated when hydrogen protons 

are placed in a strong magnetic field and excited by a 

resonant RF pulse. Hydrogen protons have an inherent 

magnetic moment as a result of their spin [11]. When placed 

in a strong magnetic field B0, the magnetic moments of the 

protons align with the field and precess about it at a resonant 

frequency     This resonant frequency is called the Larmor 

frequency and has a magnitude given by:  

      , (1) 

where   is the gyromagnetic ratio of the spinning protons. Its 

value for hydrogen protons is 42.57 MHz/T [11]. Proper 

stimulation of the precessing protons by an RF signal at the 

Larmor frequency makes the magnetic moments of the 

protons to partially or completely flip into a plane 

perpendicular to the applied field. When the applied RF-

excitation field is removed, the magnetic moments realign 

with the static field. This realignment generates an RF signal 

at the Lamor frequency. The longitudinal component of the 

magnetization (    experiences a growth relaxation with a 

time constant T1 while the transverse component of the 

magnetization       experiences a decay relaxation with a 

time constant T2  as follows: 

        (    
 
   )   (2) 

          
 

 
      (3) 

where M0  is the peak magnetization. The generated RF signal 

is detected by the MRI equipment and used to compile the 

spatial frequency domain (k-space) data of the image. The 

Magnetic Resonance (MR) image is then obtained as the 

inverse Fourier transform of the k-space data [10]. Three 

gradient coils are used to create linear variations in the 

longitudinal magnetic field strength in order to obtain spatial 

information about the image [10]. Most MR images are either 

smooth or piecewise smooth and therefore exhibit sparsity in 

the Fourier transform or wavelet domains. Other MR images 

such as angiograms are sparse in the spatial domain. Also, the 

MR image data is acquired in a coded form as k-space data. 

The CS theory can therefore be applied to reduce the MRI 

data acquisition time [7, 8, 9].  

B. Compressive Sampling  

Compressive Sampling (CS) theory offers a method for 

simultaneously sensing and compressing sparse and 

compressible signals including images. In traditional 

measurement systems, a signal of length N would require at 

least N measurements. However, in compressive sampling, 

    linear measurements of a signal f of length N are 

taken.  The measurements form a measurement vector y 

which is given by: 

      
 

(4) 

where    is an M ×N  measurement matrix [1, 12]. Equation 

(4) represents an underdetermined system of linear equations. 

Therefore, there are infinitely many candidate signals which 

are solutions to the equation [1]. The signal of length N can 

be expanded in a sparsifying orthonormal basis as follows:  

  ∑       

 

   

  

     

(5) 

where f  is a column vector representing the signal,   is an 

    orthonomal representation matrix and x is a column 

vector of length N representing the coefficients sequence of f  

in the  orthonomal basis domain [1]. 

 The number of CS measurements M required for exact 

recovery of a sparse signal vector of length N varies as 

follows: 

 

                    (6) 

 

where C is a positive constant, S is the number of nonzero 

coefficients in the column vector x and        is the 

coherence between the measurement  and the representation 

matrices [1].  The coherence between the matrices is defined 

as: 

       √       |〈 
 
  

 
〉|   for 1≤ j, k   N, 

      

(7) 

where          √   [1]. If         is equal to or 

close to unity, the number of measurements required to 

reconstruct the signal will be small in the order of S log N 

samples [1, 12]. Substituting for f  in (4) from (5) yields:  

       (8) 

where      is an M ×N  sensing matrix [1]. The matrix is 

selected so as to allow signals within a class of interest to be 

uniquely recovered from their measurement vectors. The 
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matrix should therefore obey the Restricted Isometry Property 

(RIP) discussed later in this section [12]. The reconstruction 

of the signal can be achieved through minimisation of the l0-

norm of the coefficients vector as follows: 

   ‖ ‖   subject to       (9) 

The lp-norm of a vector x of length N is defined as follows:  

‖ ‖  {∑|  |
 

 

   

}

 
 

  

 

(10) 

The l0-minimisation is a Non-deterministic Polynomial 

(NP) hard problem which is generally intractable and hence 

not practically useful as a sparse signal recovery method [12]. 

Other tractable reconstruction algorithms are discussed later 

in this section. 

C. Sparsity and Compressibility of Signals  

A signal f of length N can be expanded in a sparsifying 

orthonormal basis (othorbasis) as shown in (5). The signal is 

said to be S-sparse if its representation in a proper othorbasis 

domain has only      non-zero coefficients. If the signal 

can be approximated using the      largest coefficients 

without any significant loss of information, it is said to be 

compressible [1, 4]. Smooth signals and images are 

compressible in the Fourier basis while piecewise smooth 

signals and images are compressible in a wavelet basis [7, 8].  

D. Restricted Isometry Property 

The isometry constant of order s of a matrix A is defined as 
the smallest number       such that: 

      ‖ ‖ 
  ‖  ‖ 

        ‖ ‖ 
   (11) 

holds for all S-sparse vectors [13]. When the isometry 
constant is not too close to unity the matrix is said to obey the 
Restricted Isometry Property (RIP). When used as the CS 
sensing matrix, a matrix that obeys the RIP will 
approximately preserve the Euclidean length of all S-sparse 
signals. This implies that, it is possible to formulate 
algorithms that result in unique solutions for all S-sparse 
signals acquired using compressive sampling [1]. The 
following are two of the matrices that satisfy the RIP.  

 A matrix formed by sampling column vectors 

uniformly at random on the unit sphere.  

 A matrix formed by sampling independent and 

identically distributed (i.i.d.) entries from the 

Gaussian distribution.  
The RIP also holds for any matrix      where    is an 
arbitrary representation matrix and   is a measurement 
matrix that obeys the RIP [1]. 

 

E. Recovery Methods for Compressively Sampled Signals
 

Practical CS recovery techniques include the optimisation 

and greedy algorithms [12]. Optimisation methods involve 

the minimisation of an objective function subject to one or 

more constraint functions. One of the commonly used 

optimisation method is the l1-minimisation or basis pursuit 

method [8]. The basis pursuit method obtains an 

approximation for the S-sparse signal coefficients by solving 

the following convex relaxed problem.  

   ‖ ‖   subject to        (12) 

Greedy algorithms are iterative methods that approximate 

the coefficients of the signal either by improving the estimate 

of the sparse signal at each iteration or by iteratively 

determining the support of the signal until a convergence 

criterion is satisfied. One of the commonly used greedy 

algorithms is the Orthogonal Matching Pursuit (OMP) [14, 

15]. The OMP algorithm begins by finding the column of the 

sensing matrix that is mostly correlated with the measurement 

vector. The algorithm then iteratively repeats this step by 

correlating the columns with the signal residue. The residue is 

obtained by subtracting the contribution of a partial estimate 

of the signal from the original measurement vector. The 

iteration is continued until a stopping criterion is met. If the 

signal is highly sparse, the OMP is very fast because the 

number of iterations required will be small. The Basis pursuit 

methods can be faster than OMP for signals that are not 

highly sparse [12]. 

III. PROPOSED METHOD 

To show the effectiveness of CS, the following procedure 

was used. The input MR image was first converted into its k-

space data matrix by obtaining its two-dimensional Discrete 

Fourier transform (DFT). The k-space data matrix is then 

reshaped into a column vector. The k-space data vector is 

then undersampled by multiplying it by a random uniform 

spherical ensemble measurement matrix to yield the 

measurement vector. The measurement vector is then 

sparsified by multiplying it by an inverse Haar transform 

matrix. The OMP method is then applied on the sparsified 

data to generate an estimate of the coefficients of the image in 

the Haar transform domain. The coefficients are then 

multiplied by the inverse Haar transform matrix to yield the 

k-space data vector of the reconstructed image. The k-space 

data vector is then converted into a matrix of the same size as 

the image. The matrix is then subjected to inverse discrete 

Fourier transformation to recover the image in spatial 

domain. Finally, the image is filtered using a median filter to 

suppress salt and pepper noise as well as other artifacts in the 

reconstructed image [3]. This proposed procedure is 

illustrated in form of a block diagram in Fig. 3. 
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image
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Figure 3. Block diagram of the proposed procedure.  

IV. EXPERIMENTAL RESULTS 

A series of experiments were conducted on MR images 
using MATLAB simulation. Some of the results are shown in 
the following figures and Table 1. Compressibility of MR 
images in the Fourier and wavelet transform domains is 
illustrated in Fig. 1 and Fig. 2 respectively. Fig. 1(a) shows a 
        pixels MR image of a human head whose two-
dimensional DFT is given in part (b). Part (c) of the figure 
shows the same image reconstructed using 1919 (5%) of its 
largest DFT coefficients.  Part (d) shows the difference 
between the original and the reconstructed images. Fig. 2(a) 
shows a       pixels spine MR image. The wavelet 
coefficients of its two-dimensional DFT are plotted in part 
(b).  Part (c) shows the image reconstructed using 103 (10%) 
of its largest wavelet coefficients. The difference between the 
original image and the reconstructed one is shown in part (d). 
In both figures, the perceived details in the difference images 
are insignificant. 

             

(a)                   (b)                (c)               (d) 

Figure 1. Compressibility in DFT domain. (a) Original         pixels MR 
image. (b) Its 2D-DFT. (c) Reconstruction using the largest 5% DFT 
coefficients. (D) Difference image.  

        

(a)                    (b)                           (c)                (d) 

Figure 2. Compressibility in DWT domain. (a) Original MR image. (b) A 

plot of the DWT coefficients of its 2D-DFT. (c) Reconstruction using the 
largest 10% DWT coefficients. (D) Difference image.  

Fig. 4 shows the reconstruction results obtained using the 
proposed procedure. The first column (a) of the figure shows 
the original MR images. The images from top to bottom are: 
a        pixels spine image, a        pixels hand image, 
a       pixels brain image and a       pixels chest 
image. Column (b) shows plots of the magnitudes of the Haar 
transform coefficients of the two dimensional DFTs of the 
input images. Column (c) shows the output images 

reconstructed using a number of measurements that is 
approximately 10% of the input image size. Column (d) 
shows the output images reconstructed using a number of 
measurements that is approximately 20% of the input image 
size. Column (e) shows the output images reconstructed using 
a number of measurements that is approximately 30% of the 
input image size while Column (f) shows the images 
reconstructed using a number of measurements that is 
approximately 40% of the input image size. 

From Fig. 4, the original images are highly compressible in 
the wavelet domain as is evident from the small number of 
significant coefficients plotted in part (b). Also, the 
perceptual difference between the original and the 
reconstructed images decrease with increase in the number of 
measurements. The quality of the reconstructed images is 
expressed in terms of their correlations with the original 
images and their Mean Squared Errors (MSE) in Table 1. 
These quality measures plotted as functions of the percentage 
number of measurements are further illustrated graphically in 
Fig. 5 and Fig. 6 respectively. The MSE decreases with 
increase in number of measurements to less than –18 dB at 
40% measurements as shown in Table 1 and Fig. 5. This 
value is less than the approximately -15 dB obtained for the 
same percentage number of measurements in [10] and [14]. 
The results in Fig. 6 and Table 1 show that the correlations 
between the reconstructed and original images increase to 
more than 0.85 at 40% measurements. The graph in Fig.7 
shows the reconstruction results of the spine image of fig. 4 
(a) with and without median filtering. These results show that 
median filtering reduced the MSE by an average of 1.5 dB for 
10% or more measurements.  

To produce a reconstructed image of the same quality 
(MSE) as the proposed method produces using  40% 
measurements, the procedures suggested in [10] and [14] 
require about 70% measurements. This implies that the image 
data acquisition time of the proposed method is about 43% 
lower than those of the methods in [10] and [14]. 

 
 

    
      

      
      

      
      

      

(a) (b) (c) (d) (e) (f) 

Figure 4. Image reconstruction results. (a) Input MR image. (b) Its DWT 
coefficients. (c) Reconstruction using 10% measurements. (d) Reconstruction 
using 20% measurements. (e) Reconstruction using 30% measurements.     
(f) Reconstruction using 40% measurements. 
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TABLE 1.   CHARACTERISTICS OF THE RECONSTRUCTED IMAGES 

Image  Number of 

Measure-

Ments 

Percentage 

Measure-

ments (%) 

Correlation 

With Input 

Image 

MSE (dB) 

 205 10 0.7252 -14.37 

Spine 410 20 0.8364 -16.99 

 615 30 0.8860 -17.95  

 820 40 0.9051 -18.82 

 1024 50 0.9261 -20.21 

 410 10 0.6395 -14.29  

Hand 820 20 0.8212 -16.99 

 1229 30 0.8894 -18.90  

 1639 40 0.9122 -19.79  

 2048 50 0.9360 -21.13 

 103 10 0.3994 -13.93  

Brain 205 20 0.7332 -16.79 

 308 30 0.7991 -17.81  

 410 40 0.8516 -18.93  

 512 50 0.8902 -20.09 

 410 10 0.6577 -13.82  

Chest 820 20 0.7836 -15.62  

 1229 30 0.8487 -16.99  

 1639 40 0.8837 -18.09   

 2048 50 0.9074 -19.02 

 

 

Figure 5. Variation of the MSE with the number of measurements. 
  

 
Figure 6. Variation of the correlation with the number of measurements.  

 

Figure 7. Reduction in MSE due to median filtering. 

V. CONCLUSION 

In this paper, a procedure for acquisition and 

reconstruction of MR images using CS techniques has been 

proposed.  The reconstruction was based on the fast OMP 

algorithm. The effectiveness of the procedure was illustrated 

with some experimental results which prove that CS theory 

can be effectively applied to reconstruct sparse MR images. 

For example, the results show that images of good quality can 

be reconstructed with 40% measurements which implies a 

60% reduction in the imaging time. Future work shall focus 

on improving the efficiency of the algorithm. This shall be 

done through investigating other measurement and 

representation matrices as well as other recovery algorithms. 

Other image enhancement techniques shall also be tested on 

the reconstructed images to further reduce artifacts.  
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Abstract—This paper presents a novel and robust method for 

medical Magnetic Resonance Imaging (MRI). The proposed 

method utilizes the sparsity as well as clustering of the image 

coefficients in the wavelet transform sparsifying domain. The 

method shows better immunity to reconstruction noise than 

other Compressive Sampling (CS) based techniques. The 

algorithm starts with undersampling of the k-space data of the 

image using a random matrix followed by reconstruction of  the 

Haar transform coefficients of the k-space data using the 

Orthogonal Matching Pursuit (OMP) algorithm. The transform 

coefficients are then modulated by a raised-cosine shaping 

vector that suppresses noisy artifacts in the coefficients to 

restore the clustering. The shaped coefficients are then 

transformed into k-space data. The k-space data is finally 

transformed into the image in spatial domain. Experimental 

results show that the proposed procedure gives better results 

than other conventional methods in terms of terms of Peak 

Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). 

Keywords—Compressive Sampling; Magnetic Resonance 
Imaging; Sparsity; Clustering; Orthogonal Matching Pursuit. 

I. INTRODUCTION 

Compressive Sampling (CS) is an emerging paradigm for 

acquisition of sparse or compressible signals from 

measurements that are by far fewer than the length of the 

signal. The CS method achieves both sampling and 

compression simultaneously [1, 2, 3].  

Since images are naturally not bandlimited, their sampling 

rate is not dictated by the Shannon-Nyquist theorem but by 

the desired resolution. For the CS theory to be applied 

successfully, three factors must apply. The first factor is that 

the signal must be sparse or at least compressible when 

expressed in a proper representation orthonormal basis. 

Secondly, the measurement and representation bases should 

have a low coherence and finally, the sensing matrix should 

obey the Restricted Isometry Property (RIP) [1, 4, 5].  
Magnetic Resonance Imaging (MRI) is a noninvasive 

imaging technique that has significant advantages over other 
medical imaging modalities. In traditional MRI, the 
measurement time required to produce high resolution images 
ranges from a several minutes to several hours. This time is 
very long for some patients such as heart patients and 
children to remain still in the MRI system. As a result of long 
imaging time and discomfort on the patient, CS can be used 
in MRI [6, 7]. The CS theory is suitable for use in MRI 

because Magnetic Resonance (MR) images are sparse in the 
Fourier or wavelet transform domains and also, the MR 
images data are acquired in a coded form as k-space data [8, 
9, 10]. Sparse MR images sparsifying domain coefficients are 
also clustered about a few dominant coefficients [11]. 
A clustered compressive sampling based medical image 

processing method is proposed in [11].The method produces 

good results but the PSNR of the reconstructed images are 

between 1.2 dB and 2 dB lower than the values achieved 

using the proposed methods for the same length of 

measurement vector.  

The MR image compression method proposed in [12] 

produces better compressed images than other methods. 

However it uses measurements that are about 85% of the 

signal length to produce high quality images. The proposed 

method requires about 40% measurements to produce images 

of similar quality.  

A method for MR images reconstruction and denoising is 

proposed in [13]. The results of the method improve with 

increase in the number of measurement components but the 

reconstructed images are noisy when all components are 

used. The proposed method is robust to noisy artifacts due to 

coefficients shaping. 

In this paper, an algorithm that reconstructs MR images 

from its undersampled k-space data in the wavelet transform 

domain is proposed. The wavelet coefficients are then shaped 

by modulating them using a raised cosine vector. The 

coefficients shaping improves the clustering of the 

coefficients. The coefficients are then transformed into an 

MR image. This proposed method is then compared with 

existing techniques such as Orthogonal Matching Pursuit 

(OMP) and Least Absolute Shrinkage and Selection Operator 

(LASSO) to demonstrate its effectiveness. The rest of this 

paper is organized as follows: section II outlines the theory 

that is used in developing the proposed algorithm. Section III 

presents the proposed method while section IV presents the 

test results. Section V gives a conclusion and future work.  

II. THEORETICAL BACKGROUND 

A. Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a Radio Frequency 

(RF) signal-based imaging technique [1]. The RF signal 

unlike X-rays and γ-rays is nonionizing and therefore non-

carcinogenic [8]. The MRI modality uses a gadolinium-based 
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contrast agent which does not cause allergy in the patients 

unlike the iodine contrast agent used in X-rays imaging [6]. 

The technique is also noninvasive unlike visible light imaging 

[8]. The MRI technique results in better soft tissue contrast 

than other medical imaging modalities such as X-ray imaging 

[6]. The MRI system detects and processes the RF signals 

generated when hydrogen protons in the body are placed in a 

strong longitudinal magnetic field B0 and excited by a 

resonant RF pulse. The frequency (Lamor frequency) of the 

detected signal is given by: 

       (1) 

where γ is the gyromagnetic ratio of the hydrogen protons 

whose value is 42.57 MHz/T [1]. The detected signal is used 

to compile the discrete Fourier transform (k-space data) of the 

MR image [7].  

A three dimensional gradient field G   R3 
is applied to create 

a linear variation in the longitudinal magnetic field strength 

as a function of spatial position as follows: 

 ( )  |  |  〈   〉 (2) 

where z   R3
. The variation makes the signal frequency to be 

dependent on the spatial position as follows: 

 ( )   (|  |  〈   〉) (3) 

This dependence of  ( )  on position makes it possible for 

spatial information about the image to be obtained [3]. 

The transverse magnetization at position z   R3  
can be 

represented as: 

 ( )  | ( )|   ( ) (4) 
 
where | ( )| is the magnitude and  ( ) is the phase. 

With a time dependent gradient, the magnetization phase 

 (   )  is given by:  

 (   )     ∫〈 ( )  〉      ( )  

 

 

 (5) 

        ( )  γ∫ ( )  

 

 

 

The receiver coil integrates the transverse magnetization over 

the whole spatial volume to obtain the MRI signal as follows: 

 ( )  ∫| ( )|     〈 ( )  〉
 

 

    ( ( )) 

 

(6) 

where  ( ( ))  is the three-dimensional Fourier transform of 

the spatially dependent magnitude of the magnetization m(z). 

The signal measured by the MRI system is therefore a Fourier 

transform of the magnetization sampled on the spatial 

frequency curve k(t). This signal is termed as the k-space 

data. The Magnetic Resonance (MR) image is then obtained 

as the inverse Fourier transform of the k-space data [3].  

There are two reasons that make CS theory applicable in the 

reduction of MRI data acquisition time. First, most MR 

images are either smooth or piecewise smooth and therefore 

exhibit sparsity in the Fourier transform or wavelet domains. 

Secondly, MR images data are acquired in a coded form as k-

space data. [8, 9, 10]. 

B. Compressive Sampling Theory 

Compressive Sampling (CS) is a data acquisition 

procedure that accomplishes both sensing and compression of 

sparse signals in one step. In compressive sampling,     

linear measurements are needed to reconstruct a signal f of 

length N. The measurement vector y will then be given by: 

     (7) 

where    is an M ×N  measurement matrix [1, 12]. This 

equation is ill-posed since it represents an underdetermined 

system of linear equations which has infinitely many 

solutions [1, 3]. The signal f can be expanded in a sparsifying 

orthonormal basis as follows:  

  ∑       

 

   

  
     

(8) 

where   is an     orthonormal representation matrix and x 

is an N-length column vector that represents the coefficients 

sequence of the signal in the  sparsifying domain [1]. 

 The minimum number of CS measurements M required 

for exact recovery of the signal is given by: 

      (   )         (9) 

 

where C is a positive constant, S is the number of nonzero 

coefficients in the vector x and  (   ) is the coherence 

between    and    matrices [3].  From equations (7) and (8), 

the measurement vector   can be expressed as follows:  

      (10) 

where      is an M ×N  sensing matrix [1].   

Reconstruction of the signal can be achieved through 

minimization of the l0-norm of the coefficients vector as 

follows: 

   ‖ ‖   subject to       (11) 

The lp-norm of a vector x of length N is defined as follows:  

‖ ‖  {∑|  |
 

 

   

}

   

  

 

(12) 

The l0-norm minimization is a Non-deterministic Polynomial 

(NP) hard, intractable problem and it is therefore not useful 

for the sparse signal recovery [3].  

For accurate recovery of the undersampled signal, the signal 

must be either sparse or compressible. Also the sensing 

matrix a must obey the Restricted Isometry Property (RIP). 

A signal is said to be S-sparse if its representation in a proper 

othornormal basis domain   has only      non-zero 

coefficients. If the signal representation in the othornormal 

basis domain   has      significant coefficients, it is said 

to be compressible [1, 4]. Smooth signals and images are 

compressible in the Fourier basis while piecewise smooth 

signals and images are compressible in a wavelet basis [9, 

10].  
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The isometry constant of order s of a matrix A is defined as 
the smallest number       such that: 

(    )‖ ‖ 
  ‖  ‖ 

  (    )‖ ‖ 
   (13) 

holds for all S-sparse vectors [14]. A matrix A obeys the 
Restricted Isometry Property (RIP) when its isometry 
constant is not too close to unity. A CS sensing matrix that 
obeys the RIP approximately guarantees unique solutions for 
all S-sparse signals. The sensing matrix A will also obey the 
RIP if it can be written as follows: 

     (14) 

where    is an arbitrary representation matrix and   is a 
measurement matrix that obeys the RIP [4]. 

C. Compressive Sampling Reconstruction Methods 

Tractable CS recovery techniques include optimization and 

greedy methods [1,3]. Optimization methods involve the 

minimization of an objective function subject to one or more 

constraint functions. These methods include the l1-

minimization or Basis Pursuit (BP) and the Least Absolute 

Shrinkage and Selection Operator (LASSO) [3]. The BP 

method obtains an approximation for the S-sparse signal by 

solving the following convex relaxed problem.  

   ‖ ‖   subject to       (15) 

If the measurement vector is corrupted by stochastic noise 

 , the basis pursuit method is modified into the quadratically 

constrained basis pursuit method [13]. This is achieved by 

inserting a constraint function that minimizes the root mean 

square error as follows:  

   ‖ ‖   subject to ‖    ‖      (16) 

The LASSO method is used to estimate the coefficients of 

a noisy sparse signal.  This procedure involves solving a 

least-squares problem subject to an l1-norm constraint as 

follows: 

   ‖    ‖ 
              ‖ ‖     (17) 

where   is a regularisation parameter whose value depends on 

the variance of the noise. 

Greedy algorithms are iterative methods that approximate 

the coefficients of the signal either by improving an estimate 

of the sparse signal at each iteration or by iteratively 

determining the support of the signal until a convergence 

criterion is satisfied. A commonly used greedy algorithm is 

the Orthogonal Matching Pursuit (OMP) [11, 15]. The OMP 

algorithm begins by finding the column of the sensing matrix 

that is mostly correlated with the measurement vector. The 

algorithm then iteratively repeats this step by correlating the 

columns with the signal residue. The residue is obtained by 

subtracting the contribution of a partial estimate of the signal 

from the original measurement vector. The iteration is 

continued until a stopping criterion is met as shown in the 

following algorithm [3].  

 Input: CS matrix A , vector y and error threshold   

 Output: Sparse representation xk 

 Initialize: x0 = 0, r0 = y, S0 = supp x0 ;, k = 0 

Repeat 

 Set k = k + 1., Choose i0 such that minc ‖    
    ‖   minc‖     

   ‖     for all i.  

 Set               *  +. Compute xk = argminx 

‖    ‖   subject to supp x = Sk.  

 Compute rk = y − Axk.  

Until    ‖  ‖   . 
Return xk. 

The OMP method is faster for highly sparse signals while 

the BP method is faster for less sparse signals [12].  

III. PROPOSED ALGORITHM AND COEFFICIENTS 

SHAPING  

A. Proposed Algorithm 

In this section, a novel method for sensing and 

reconstruction of MR images is proposed. The method is 

based on the priori knowledge of sparsity and clustering of 

the k-space data of the MR image in the wavelet domain [11]. 

The first step of the algorithm is to convert the input MR 

image into its k-space data matrix by computing its two-

dimensional Discrete Fourier transform (DFT). The k-space 

data matrix is then vectorized. The vector is then 

undersampled by multiplying it by a random uniform 

spherical ensemble measurement matrix to yield the 

measurement vector. From the measurement vector, the 

coefficients of the MR image k-space data in the Haar 

wavelet transform domain are estimated using the OMP 

recovery method. The reconstructed wavelet coefficients 

vector of the k-space data are then modulated by a raised-

cosine shaping vector in order to improve the coefficients 

clustering. The reshaped coefficients are then multiplied by 

an inverse Haar transform matrix to yield the reconstructed k-

space data vector which is then converted into a matrix of the 

same size as the image. The matrix is then subjected to 

inverse discrete Fourier transformation to recover the image 

in spatial domain. This proposed algorithm is illustrated in 

form of a block diagram in Fig. 1. 

image
Input  

 

  

 

                                                                            

                                                                               

                                                                             
image
Output

 

 
Figure 1. Block diagram of the proposed procedure.  

B. Proposed Coefficients Shaping 

The Haar transform coefficients of the k-space data of an N-
length MR image are clustered around a locally dominant  

    element  ( )  where: 
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 (18) 

for   *            ( )+    . 

The coefficients magnitudes then decrease monotonically to 

insignificant values at the       elements  ( )  where: 

  
  

    
 (19) 

for   *            ( )+     

Reconstruction using conventional CS results in significant 
artifacts as shown in figure 2.  

 For every interval (
 

 
  )       the proposed shaping 

vector is defined as a raised cosine function as follows [16]:  

 ( )     (      (  (  (  
 

 
)/p) (20) 

for            
 

  
       *            ( )+     

The proposed shaping vector is used to suppress the 
reconstruction artifact coefficients in the neighborhood of the  

     elements with negligible effects on the coefficients 

clustered about the      elements. The corrected coefficients 
vector   is obtained by taking the dot product of the 
reconstructed coefficients and the shaping vector as follows: 

      (21) 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed method is illustrated in 
this section using results obtained from MATLAB simulation 
on a number of MR images. All the input images used in the 
experiments have a size of       pixels except the brain 
slice image which has a size of       pixels. 

Figure 2 shows the artifacts suppression effect of the 
shaping vector. Part (a) of the figure shows an original brain 
slice MR image on the left, the same image reconstructed 
using the conventional OMP method with 40% measurements 
is shown in the middle. On the right side is the reconstructed 
image using the proposed method. 

Fig. 2(b) shows the clustering of the wavelet coefficients 
of the k-space data of the original image. Fig. 2(c) shows the 
wavelet coefficients of the k-space data of the image 
reconstructed using the OMP method. The coefficients have 
non-clustered artifacts. Part (d) of the figure shows a plot of 
the proposed raised-cosine shaping vector. Part (e) of the 
figure shows the effect of the proposed raised-cosine shaping 
vector on the plot in part (c). The result in part (e) shows that 
the shaping vector improves the clustering of the coefficients 
and therefore improves the quality of the reconstructed 
image. 

 

 

(a) 

   

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 
Figure 2. Effect of coefficients shaping.  
 

Table 1 shows the reconstruction results of various MR 
images using three different greedy methods and with 
different sizes of the measurement vector. The first column 
from top to bottom shows the input MR images of intestines, 
hand, kidney angiogram, and a brain slice respectively. The 
second column of the table presents the size of the 
measurement vector as a percentage of the image size. The 
third, fourth and fifth columns show the PSNR values of the 
reconstructed images using the methods of OMP, Stagewise 
Orthogonal Matching Pursuit (StOMP) and the proposed 
method respectively. The results show that the proposed 
method is more immune to reconstruction artifacts than the 
other greedy methods since it gives higher PSNR values. 
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TABLE 1.  RESULTS OF VARIOUS MR IMAGES AND METHODS 

MR Image Percentage 

Measure-

ments (%) 

OMP StOMP PROPOS-

ED 

PSNR(dB) PSNR(dB) PSNR(dB) 

 

10 13.07 14.13 14.57 

20 14.66 15.78 16.40 

30 16.54 16.43 18.00 

40 18.16 17.41 19.50 

50 19.07 18.35 20.65 

60 20.85 19.68 22.14 

70 22.97 20.94 23.54 

 

10 14.72 16.64 16.36 

20 18.32 18.08 19.79 

30 21.40 20.31 22.62 

40 23.10 22.80 24.30 

50 23.92 24.03 25.21 

60 25.88 24.75 26.82 

70 28.00 25.60 28.76 

 

10 15.31 16.58 16.19 

20 18.15 18.70 19.40 

30 18.63 19.55 20.10 

40 20.40 20.69 21.80 

50 21.63 21.12 23.09 

60 22.59 21.98 24.12 

70 24.43 23.07 25.53 

 

10 12.41 11.20 13.63 

20 14.86 15.26 15.95 

30 16.89 15.83 18.38 

40 18.03 16.11 19.54 

50 19.54 18.60 20.76 

60 20.89 20.53 22.09 

70 22.24 20.55 23.07 

 
Table 2 shows the reconstruction results of two MR 

images using three different greedy methods and one 
optimization method with different sizes of the measurement 
vector. The image at the top of the first column is a leg 
angiogram while the lower one is a spine MR image. The 
third, fourth, fifth and sixth columns show the PSNR values 
of the reconstructed images using the different methods. The 
results show that the proposed method yields better PSNR 
values than the greedy methods as well as the LASSO one.  

 
TABLE 2 .  GREEDY AND OPTIMIZATION METHODS 

MR 
Image 

% 
Measu-

rements  

OMP StOMP LASSO PROPO-
SED 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

 

10 14.91 15.59 14.82 16.27 

20 16.07 16.68 15.01 17.46 

30 17.44 18.09 15.57 18.95 

40 18.70 18.80 16.21 20.29 

50 20.61 19.59 15.98 22.11 

60 21.95 20.36 16.44 23.50 

70 23.52 22.07 16.74 25.01 

 

10 13.32 14.59 10.00 14.85 

20 15.38 16.10 10.54 16.91 

30 16.57 16.57 11.68 17.97 

40 17.98 17.46 11.88 19.80 

50 19.48 19.41 12.27 20.83 

60 22.19 20.08 12.41 23.04 

70 23.87 21.35 13. 58 24.46 

Some of the images reconstructed using the different 
methods and 40% measurements are shown in Fig.3. The first 
column (a) shows the input images. Columns (b), (c) and (d) 
show the reconstructed images using the OMP, StOMP and 
the proposed method respectively. These results shows that 
the images reconstructed using the proposed method are 
subjectively superior to the ones reconstructed using the other 
greedy methods. 

 

    
    

    
    

    
    

    
    

    
    

    
(a)                       (b)                               (c)                            (d)                    

Figure 3. Image reconstruction results. (a) Input MR image. (b) 
Reconstruction Using OMP (c) Reconstruction Using StOMP. (d) 
Reconstruction Using StOMP.  

The reconstruction results for the spine MRI using the various 
methods are plotted in figure 4 as a function of the 
measurement vector length. These results show a superior 
performance of the proposed method compared with the 
others. 

5 



Appendix B 
 

233 
 

 
Figure 4. Variation of the PSNR with the number of measurements. 

For the leg angiogram, the MSE of the reconstructed images 
using the various methods are plotted in fig. 5 as a function of 
the length of the measurement vector. The results still show a 
superior performance of the proposed method compared with 
the others by up to 3dBs. 

  

Figure 5. Variation of the MSE with the number of measurements. 
 

These PSNR values for four images reconstructed using the 
proposed method plotted as functions of the number of 
measurements as percentages of the lengths of the input 
images are presented in Fig. 6. The PSNR values increase to 
at least 19 dB at 40% measurements. The values are between 
1.2dB and 2dB higher than those obtained using other CS 
methods and the same lengths of measurement vectors as 
shown in table 1 as well as in [11]. 
 

 

Figure 6. Performance of the Proposed Method. 
 

V. CONCLUSION 

A proposed algorithm for acquisition and reconstruction 

of MR images using the CS theory has been presented in this 

paper. The method utilizes the sparsity of the images as well 

as the clustering of their coefficients in the wavelet domain. 

The experimental results obtained and included in this paper 

show that the priori knowledge of clustering can be used 

together with that of sparsity to produce high quality MR 

images with just a few measurements. For example, the 

results show that with about 40% measurements, the 

proposed method produces an image of the same quality or 

better than the other methods using 50% measurements as 

shown in fig. 4. This improvement in image quality with only 

a few measurements implies a reduction in the imaging time. 

Future work shall be focused on improving the algorithm. 

This shall be done through investigations of other clustering 

correction approaches as well as other CS recovery methods. 

Image post-processing techniques shall also be tested on the 

reconstructed images to improve the robustness of the 

proposed method.  
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Abstract—In this paper, a hybrid method for acquisition and 

reconstruction of sparse magnetic resonance images is presented. 

The method uses conventional spin echo Magnetic Resonance 

Imaging (MRI) with only a few Phase-encoding steps to obtain the 

dominant k-space data coefficients. The rest of the k-space data 

coefficients are estimated using Compressive Sampling (CS). The 

compressive sampling part of the algorithm uses  a random matrix 

to sample the vectorized k-space data of the image at a sub-Nyquist 

rate followed by reconstruction of the Discrete Wavelet Transform 

(DWT) coefficients of the k-space data using  Orthogonal Matching 

Pursuit (OMP). The DWT coefficients are then transformed into the 

Discrete Fourier Transform (DFT) domain and denoised prior to 

combination with the dominant DFT coefficients obtained using 

conventional MRI to yield the whole k-space of the reconstructed 

image. The reconstructed k-space data is finally transformed into 

the reconstructed image using inverse DFT. Computer simulation 

results show that the proposed procedure yields better results than 

other conventional CS-MRI methods in terms of Peak Signal to 

Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index. 

Keywords—Compressive Sampling; Clustering; Sparsity; 
Dominant coefficients; MRI; OMP 

I. INTRODUCTION 

Compressive sampling (CS) is a signal acquisition and 

reconstruction method that is capable of accomplishing both 

sensing and compression in a single processing step. Unlike the 

conventional data acquisition methods, the CS theory is not 

based on the Shannon-Nyquist sampling theorem. The CS 

paradigm is motivated by the fact that using conventional data 

acquisition techniques, the full length signal is first sampled at 

the Nyquist rate and then compressed for storage or transmission 

using some orthogonal transformation such as Discrete Fourier 

Transform (DFT) or the Discrete Wavelet Transform (DWT). 

This process of first obtaining information necessary to compute 

all the transform coefficients only to discard most of them during 

compression is a waste of resources such as sensors, time and 

power [1, 2, 3]. The CS approach overcomes this problem by 

capturing the minimum measurement information necessary for 

the reconstruction of the signals. For Compressive Sampling 

(CS) to be applied effectively, the signal must be sparse or at 

least compressible in some sparsifying transform domain. The 

measurement and representation (sparsifying) orthonormal bases 

should also exhibit low coherence. Also, for all S-sparse signals 

to be uniquely reconstructed using CS techniques, the sensing 

matrix should be able to preserve the Euclidean distances 

between all the S-sparse signals. This requirement is met when 

the sensing matrix obeys the Restricted Isometry Property (RIP) 

[4, 5, 6].  
Medical Magnetic Resonance Imaging (MRI) method has 

currently gained a lot of popularity compared to other clinical 
imaging approaches due to its attractive characteristics. These 
characteristics include its non-invasive nature, use of non-
ionizing and hence non-carcinogenic Radio Frequency (RF) 
radiation as well as use of non-allergic gadolinium-based contrast 
agents. However, the technique is prone to noise and patient 
motion related artifacts.  Also, the MR imaging duration is 
usually lengthy making it difficult, uncomfortable and sometimes 
un-safe for some weak patients and children to remain motionless 
in the MRI machine during the imaging period. Magnetic 
Resonance (MR) images are usually sparse in either the DFT or 
DWT domains. Therefore, CS technicques which rely on sparsity 
to reduce the signal acquisition time can be exploited to reduce 
the problems associated with conventional MRI [7-10]. 

An optimal k-Space sampling scheme for compressive 
sampling MRI is proposed in [11]. The method produces good 
results but with 12.5% sampling of the low-frequency high-
energy region of the DFT k-space, the reconstructed images 
show artifacts in the y-direction. The method proposed in this 
paper is based on both conventional and CS-MRI to reduce 
imaging time. Further, a simple modified Gaussian filter is used 
to reduce under-sampling artifacts. An OMP-based CS image 
reconstruction method is proposed in [12]. The method uses 
multi-wavelet transformation to reconstruct visually good quality 
images. However, image sensing procedure used is very long and 
also requires major modifications in the design of the MRI 
equipment to incorporate acquisition in the wavelet domain. 

In this paper, an MRI algorithm that utilizes both 

conventional as well as CS-MRI to reduce the imaging time 

while maintaining the quality of the MR images is presented. The 

method exploits the profile of the magnitude of the k-space data 

to capture the higher-energy (dominant) k-space coefficients. 

Compressive sampling is then used to estimate the smaller 

coefficients. The proposed method is compared with other CS-

MRI methods to demonstrate its effectiveness. The rest of the 

paper is organized as follows: Section II outlines the theory of 

compressive sampling while the proposed method is outlined in 

Section III. Computer simulation test results are presented and 

discussed in Section IV and finally a conclusion and suggestion 

for future work are presented in Section V.  
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II. COMPRESSIVE SAMPLIING THEORY 

The CS approach for data acquisition accomplishes both 

sensing and compression of sparse signals in one step. A sparse 

signal f of length    requires    measurements, where    , to 

capture adequate information to eventually reconstruct the signal. 

The  measurement vector y given by: 

      (1) 

where     is an M ×N  measurement matrix [2].  

When the signal f, is S-sparse, it can be expressed in a suitable 

sparsifying orthonormal basis as follows:  

  ∑       

 

   

  (2) 

where    is an       representation matrix and x is an N-

length representation vector that has at most S non-zero terms.  

The required length of the measurements vector is given by: 

      (   )         (3) 

where K is a positive constant and  (   ) is the coherence 

between matrices    and    which is defined as follows: 

 (   )  √       |〈     〉|   for 1≤ j, k   N, 
(4)  

where |〈 
 
  
 
〉| is the correlation between the     element of   

and the     element of   [1]. 

From equations (1) and (2), the measurement vector   can be 

expressed in terms of vector x as follows:  

      (5) 

where      is an M ×N  sensing matrix [1].   

The sparsest solution of equation (5) is given by minimization of 

the l0-norm of the representation vector   as follows: 

   ‖ ‖   subject to       (6) 

This problem is Non-deterministic Polynomial (NP) hard, 

intractable and hence not a practically useful approach [2, 7].  

Practical methods for solving the ill-poised system of 

equations (5) that give the sparsest vector x include optimization 

as well as greedy methods [13, 14]. The optimization methods 

are such as the l1-minimization and the Least Absolute Shrinkage 

and Selection Operator (LASSO). The l1-minimization method 

involves solving of the following convex relaxed problem.  

   ‖ ‖   subject to       (7) 

Greedy or iterative methods that give an approximation of the 

vector x include the Orthogonal Matching Pursuit (OMP) and the 

Stagewise Orthogonal Matching Pursuit (OMP). The greedy 

methods are faster than their optimization counterparts if the 

signals are highly sparse [2, 14]. 

For unique recovery of all S-sparse signals, the sensing matrix A 

must obey the Restricted Isometry Property (RIP). The matrix 

will obey the property if the following holds 

(    )‖ ‖ 
  ‖  ‖ 

  (    )‖ ‖ 
   8 

where      is the  isometry constant of order s of the matrix 

A which is the smallest number that satisfies equation (8). Any 
matrix A obeys the RIP if the matrix   also obeys the RIP [7]. 

III. PROPOSED ALGORITHM  

In this section, the proposed MRI algorithm is presented. The 

method is based on three facts about MR images namely: the MR 

images are sparse in the DFT or DWT domains with only a few 

dominant coefficients carrying most of the information. [7, 15]. 

The DFT k-space has its dominant coefficients clustered about its 

centre [8, 10]. Finally, the magnitudes of the vectorized k-space 

coefficients have a Gaussian-like distribution with the coefficient 

index [8]. The proposed method uses the conventional spin echo 

MRI with only a few phase encoding steps to capture the 

dominant centred coefficients of the DFT k-space. The DWT of 

the remaining small DFT k-space coefficients is then estimated 

using CS with approximately 10% measurements as shown in 

figure 1. Inverse DWT (IDWT) is then performed on the DWT to 

yield the small coefficients in the DFT domain. The coefficients 

are then denoised using a modified Gaussian filter. The filter 

completely eliminates the noisy reconstructed dominant 

coefficients while at the same time suppressing the high 

frequency noise in the small coefficients [8].  The denoised small 

coefficients are then added to the dominant coefficients to yield 

the full k-space vector of the reconstructed image. The vector is 

converted into a matrix from which the reconstructed image is 

obtained through inverse DFT (IDFT). 

For the purpose of generating simulation results, the procedure 

outlined in figure 2 was used. The input MR image is first 

converted into its k-space data by obtaining its centre-shifted 

two-dimensional DFT (2D-DFT) which is then reshaped into a 

vector. The centered cluster of the dominant coefficients is 

extracted by setting the values of all other coefficients outside the 

cluster to zero. The k-space vector is then reconstructed using 

compressive sampling in the Haar DWT domain through OMP 

using approximately 10% measurements. The reconstructed 

DWT coefficients are transformed into DFT domain before being 

denoised using the modified Gaussian filter. This denoised 

coefficients vector is then added to the initially extracted 

dominant coefficient vector to form the full k-space vector of the 

reconstructed image. The output image is obtained by shaping 

the k-space vector into a matrix followed by IDFT.  

 

 

 

 

 

 

Fig. 1. Block diagram of the proposed algorithm. 

Acquisition of dominant 

coefficients 

CS acquisition of small 
coefficients and IDWT 

Coefficients 
combination 

Gaussian denoising of 

coefficients 

Matrix to vector 
conversion and IDFT 
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Fig. 2. Simulation of the proposed procedure. 

The modified Gaussian filter  used in the proposed method is 

designed so as to completely filter out all the noisy reconstructed 

dominant coefficients while at the same time suppressing the 

high frequency noise in the reconstructed small coefficients. The 

filter function  ( ) used is given by: 

 ( )  {
             

   (  
 
 
)
 

          
 

 

(9) 

where   is the DFT coefficients index,    is a filter constant 

whose value was experimentally determined in order to yield the 

highest average PSNR in the reconstructed image. The value of   

used in this paper is         : The range of the dominant 

coefficients of the image is given by        . The values of 

integers    and    were fixed for each experiment so that the 

dominant coefficients constitute between 10% and 50 % full k-

space. This percentages were varied in steps of 10% for different 

experiments. 

IV. RESULTS AND DISCUSSIONS 

In this section, the performance of the proposed method is 
illustrated using MATLAB simulation results. Thirty-two images 
from a database of more than two hundred MR images from 
various sources such as [16] were tested. The results of seven of 
the images as well as a statistical summary of all the thirty-two 
images are presented here. The images were first resized using 
bicubic interpolation and then cropped into either       pixels 
or       pixels sizes. Fig. 3 illustrates the reconstruction of a 
human knee image using the proposed method.  

 

     

 
(i) (ii) (iii) 

(b) (c) 
(a) 

 

   

 (d) (e) (f) 
Fig. 3. The image k-space reconstruction process. (a) Input and  reconstructed  knee images. (b) Input image DFT coefficients. (c) Extracted dominant DFT 

coefficients. (d) Denoising filter function. (e) The CS reconstructed small DFT coefficients. (f) Reconstructed image DFT Coefficients.  
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The image in part (a) (i) is the       pixels ground-truth 
knee MR image. The image in part (a) (ii) is the same knee 
image reconstructed using the conventional OMP while part (a) 
(iii)  shows the same image reconstructed using the proposed 
method. The images were reconstructed using a total of 20% 
measurements for both methods. Part (b) presents the magnitude 
profile of the 2048 DFT coefficients of the image obtained by 
centre-shifting its 2D-DFT followed by vectorization. Part (c) 
shows the 192 (9.4%) dominant coefficients of the k-space data. 
Part (d) presents the modified Gaussian denoising filter function 
presented in (9). Part (e) presents the 1856 (90.6%) DFT 
coefficients which have been compressively reconstructed in the 
DWT domain using 218 (10.6%) measurements. The coefficients 
have already been transformed into the DFT domain and also 
denoised by multiplying them by the filter function in part (d). 
The full DFT coefficients of the reconstructed image shown in 
part (f) are then obtained by adding the dominant coefficients in 
part (c) to the small coefficients in part (e). The knee image 
reconstructed using the proposed method has a PSNR that is 2.55 
dB higher than that of the image reconstructed using the OMP 
method.  

Reconstruction results of the proposed method for a brain 
slice and a spine MR images are presented in fig. 4. Column (a) 
presents the two ground-truth images while part (b) shows the 
images reconstructed using 20% measurements. Reconstruction 
results using 40% and 60% measurements are shown in columns 
(c) and (d) respectively. For both images, there is little visual 
perceptual difference between the original and the images 
reconstructed using at least 40% measurements. 

A comparison for a hand and a heart slice MR images 
reconstructed using the proposed method as well as two other CS 
greedy methods at 40% measurements is presented in fig. 5. The 
first column (a) shows the ground-truth images. Columns (b), (c) 
and (d) show the images reconstructed using the OMP, StOMP 
and the proposed method respectively. The images reconstructed 
using the proposed method are perceptually less noisy than the 
ones reconstructed using the other two greedy methods. 

    

    

(a) (b) (c) (d) 

Fig. 4. Images reconstruction using proposed method. 

    
 

    

(a) (b) (c) (d) 
Fig. 5. Methods comparison. (a) Input MR images. (b) The OMP results (c) 

The StOMP results. (d) Proposed method results. 

The quality results of two MR images reconstructed using the 
proposed method as well as the OMP and stOMP methods are 
presented in table I. The proposed method yields higher quality 
results than the other two methods in terms of both SSIM and 
PSNR measures [8]. A statistical summary of the quality of all 
the thirty-two MR images reconstructed using the proposed 
method as well the OMP and stOMP methods are presented in 
table II and table III. Table II presents the mean PSNR and SSIM 
values for various percentage measurements. These results show 
that the proposed method yielded better quality measure values 
than the other two methods in terms of both PSNR and SSIM. 
The standard deviation for both the PSNR and SSIM for the 
thirty-two images is presented in table III. The proposed method 
gave lower standard deviation values than the other two. This 
implies that the proposed algorithm exhibits better reconstruction 
consistency. 

TABLE I.  RESULTS OF TWO MR IMAGES AND VARIOUS METHODS 

Image 
M/N 

(%) 

OMP StOMP Proposed Method 

PSNR SSIM PSNR SSIM PSNR SSIM 

Heart 

 

10 16.01 0.70 15.06 0.69 17.17 0.84 

20 18.10 0.83 18.44 0.80 19.86 0.92 

30 19.83 0.89 20.08 0.86 21.99 0.95 

40 20.85 0.90 20.30 0.88 24.28 0.97 

50 21.38 0.92 21.78 0.92 26.22 0.98 

60 23.26 0.96 22.74 0.94 27.85 0.99 

Ankle 

 

10 15.14 0.71 14.38 0.56 17.63 0.87 

20 17.21 0.83 17.91 0.82 20.23 0.91 

30 18.00 0.85 18.90 0.86 21.65 0.93 

40 19.80 0.90 20.71 0.91 23.09 0.95 

50 22.16 0.94 21.39 0.93 24.27 0.96 

60 22.61 0.95 22.71 0.95 25.16 0.97 

TABLE II.  MEAN PSNR AND MEAN SSIM RESULTS 

M/N 

(%) 

OMP StOMP Propsed Method 

PSNR SSIM PSNR SSIM PSNR SSIM 

10 14.45 0.68 14.08 0.62 16.67 0.82 

20 17.20 0.83 17.53 0.80 19.75 0.91 

30 18.75 0.87 18.98 0.85 22.00 0.94 

40 20.40 0.91 20.26 0.88 24.68 0.96 

50 22.15 0.93 21.42 0.92 26.73 0.98 

60 24.54 0.96 22.44 0.94 28.08 0.99 
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 TABLE III.  STANDARD DEVIATION OF PSNR AND SSIM 

M/N 

(%) 

OMP StOMP Proposed Method 

PSNR SSIM PSNR SSIM PSNR SSIM 

10 2.10 0.11 1.38 0.13 1.46 0.07 

20 1.91 0.10 1.82 0.13 1.54 0.03 

30 2.80 0.08 2.14 0.11 1.64 0.03 

40 2.66 0.05 2.69 0.09 1.96 0.02 

50 3.48 0.05 2.71 0.06 1.86 0.01 

60 3.41 0.03 3.21 0.06 2.19 0.01 

A portion of the results in tables II and III are presented 
graphically in fig. 6. Parts (a) and part (b) shows the variation of 
the mean quality metric value with the percentage measurements 
for the PSNR and SSIM respectively. The consistency of the 
proposed method in comparison to the other two methods is 
illustrated in terms of the standard deviation of the PSNR in part 
(c). The results show that for measurements of at least 42%, the 
proposed method yields reconstructed image of clinically 
acceptable quality with an average PSNR of more than 25 dB as 
established in [17] as well as a SSIM of greater than 0.975 [18]. 
The other two methods require more than 60% measurements to 
yield similar quality results. 

(a) 

 

(b) 

 

(c) 

 
 Fig. 6. Statistical summary graphs.  

 

V. CONCLUSION 

A proposed CS-based hybrid algorithm for MRI has been 

presented in this paper. The method exploits the profile of the k-

space data of the image as well as the sparsity of the images to 

produce better reconstruction results than conventional CS-MRI 

methods. For example, to yield an image having a PSNR of more 

than 25dB, the proposed method requires approximately 40% 

measurements compared to more than 60% measurements 

required for the OMP method to produce similar results. Future 

work shall focus on optimization of the number of dominant 

coefficients as well as improving the denoising technique.  
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Abstract—In this paper, a proposed rapid Magnetic Resonance 

Imaging (MRI) method is presented. The method is based on the 

compressibility of the images in the wavelet domain and 

suppression of the artifacts.  The proposed method commences 

with undersampling of the Discrete Fourier Transform (DFT) k-

space data of the image using selected phase encoding gradients. 

The under-sampled DFT k-space is then converted into the image 

which exhibits both aliasing wrap-around as well as Gibb’s 

ringing artifacts. The corrupted image is then randomly sampled 

using a sub-Gaussian matrix followed by Compressive Sampling 

(CS) reconstruction. The loss in high frequency details in the CS 

reconstructed image is then corrected using a DFT domain filter 

function. The quality of the reconstructed image is then compared 

with the quality of the same image reconstructed using other 

reported CS methods using the Structural SIMilarity (SSIM)  and 

the Peak Signal to Noise Ratio (PSNR) measures. Experimental 

results reveal that images reconstructed using the proposed 

method for a given percentage measurement are of comparable 

quality  to the images reconstructed using other methods using 

measurements that are approximately 20 % higher than those 

employed in the proposed method. The results translate to a 

corresponding reduction in the scan time of the MR image when a 

specific image quality is desired. 
Keywords—Random Sampling; Compressive Sampling; 

Magnetic Resonance Imaging; Sparsity; Greedy Methods; Peak 
Signal to Noise Ratio. 

I. INTRODUCTION 
Magnetic Resonance Imaging (MRI) is an imaging 

technique based on the effect of a radio frequency (RF) signal 
on charged particles that are subjected to a magnetic field. In 
clinical applications, MRI has some outstanding advantages 
over other medical imaging techniques such as those that use 
x-rays and gamma rays as the sources of the imaging energy. 
The excitation RF signals used in MRI are in the high 
frequency (HF) or very high frequency (VHF) bands. Due to 
their lower frequencies relative to both x-rays and gamma rays, 
the MRI excitation signals do not cause ionization in the body 
cells. The patient is therefore not put at risk of developing 
cancer after long duration exposure to the radiation. Unlike 
other medical imaging methods such as Catheter venography 
and intravascular ultrasound, MRI allows imaging of the 
interior of a human body without surgical intervention. Use of 
MRI has the ability to measure flow and velocity of blood in 
the blood vessels.  The MRI technique has parameters such as 
the excitation tip-angle (𝜃), gradient echo time (TE), sequence 
repetition time (TR) and relaxation times (   and   ) that can 
be flexibly adjusted to yield better soft tissue contrast than x-
rays based Computed tomography (CT). The main demerits of 
the MRI technique include long scan time as well as artifacts 
emanating from the equipment non-idealities as well as patient-

related motions [1-4]. Sufficient information to reconstruct 
some high dimensional signals can be obtained from a number 
of measurements that is smaller than the signal length. This 
type of acquisition is only possible if the signal plus the 
measurement process meet some required properties. The 
requirement for the signal is that it must be sparse or at least 
compressible in some suitable representation domain. The 
signal acquisition procedure can be modeled as a multiplication 
of the signal by a rank-deficient measurement matrix while the 
sparse domain representation of the signal can be represented 
as a multiplication of the signal by a square representation 
matrix. For the signal to be reconstructed correctly from the 
few measurements, the maximum cross correlation between the 
rows of the measurement matrix and the columns of the 
representation matrix must be small. Consequently the 
coherence between the individual columns of the sensing 
matrix formed by multiplying the measurement matrix by the 
representation matrix should be small. The low coherence 
sensing matrix must also possess the Restricted Isometry 
Property (RIP). Possession of the RIP by the matrix ensures 
that all the signals of interest that have sparse representations 
can be uniquely reconstructed from the undersampled 
measurements. The image acquisition and reconstruction 
paradigm based on a few measurements and the requirements 
described above is termed Compressive Sampling (CS) [5-7].  

The CS approach combines the sensing and compression 

stages of conventional data acquisition techniques into a single 

step. The method uses much fewer measurements than the 

requirement given by the Nyquist sampling theorem thereby 

reducing the storage requirement as well as the acquisition 

time. Compressively measured signals can be reconstructed 

from their measurements using well established recovery 

algorithms. These recovery methods include optimization 

methods, greedy methods as well as soft and hard 

thresholdoing methods [7-9]. Most Magnetic Resonance (MR) 

images can be approximated by concise representations in 

either the Discrete Fourier Transform (DFT) or Discrete 

Wavelet Transform (DWT) domains. These images are 

therefore compressible and can be acquired using CS methods 

[10-13].   

A proposed CS-MRI method that utilizes the sparsity as well 

as clustering of the image coefficients in the wavelet transform 

sparsifying domain is reported in [13]. The method gives high 

quality image reconstruction results but it requires adjustments 

of several parameters in the raised cosine denoising function 

for images of different sizes. A proposed CS reconstruction 

algorithm for MR images is presented in [14]. The algorithm 

yields good results in terms of edges reconstruction and 
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reduced artifacts. However, the method is likely to be 

characterized by high computational complexity making it 

unsuitable for real time imaging 

The proposed MRI algorithm presented in this paper applies 

CS theory to reconstruct MR images from their 

deterministically undersampled k-space data. The 

reconstructed images are then sharpened by selectively 

accentuating the high frequency DFT coefficients to suppress 

the concomitant artifacts to yield images of high quality. The 

method is not computationally intensive and does not require 

multiple parameters adjustments for different image sizes. 

The rest of this paper is organized as follows: section II 

presents the theory on MRI, CS as well as image quality 

measures. The proposed method is described in Section III 

while in section IV, some MATLAB simulation test results are 

presented. Finally, a conclusion and a suggestion for the future 

work are given in section V. 

II. THEORETICAL BACKGROUND 

This section outlines the requisite theory that is applied in 

the paper. It covers Magnetic Resonance Imaging (MRI), 

Compressive Sampling (CS) and image quality measures. 

A. Magnetic Resonance Imaging 

The nuclei of atoms that have an odd number of protons 

and/or neutrons exhibit a phenomenon that is known as 

Nuclear Magnetic Resonance (NMR).The nuclei spin at a  

specific angular momentum   which gives rise to a magnetic 

dipole moment   given by; 

      (1) 

where   is the gyromagnetic ratio of the nucleus. 

Hydrogen protons are the most commonly used in medical 

MRI due to their abundance in the human body, high 

sensitivity as well as their large gyromagnetic ratio [1, 2, 4]. 

When nuclei spins are subjected to a magnetic field    the 

interaction between the field and the magnetic dipole moments 

gives rise to a net magnetization moment     The net 

magnetization and the magnetic field are related by the 

equation; 
  

  
       (2) 

An excitation RF magnetic field    applied to the system 

induces a torque on the net magnetization causing it to tip 

away from its equilibrium alignment in the longitudinal (z) axis 

while at the same time pressesing about it. The flipping results 

in a transverse magnetization component      

After removal of the excitation field, the transverse 

component      decays exponentially with a time constant     

termed the spin-spin relaxation time constant. At the same 

time, the longitudinal component of the net magnetization     

grows towards the thermal equilibrium magnetization     with 

a spin-lattice relaxation time constant      
Incorporating the relaxation phenomenon in equation (2) yields 

the following dynamic differential equation referred to as the 

Bloch equation. 

  

  
        

   

  
   

   

  
    

       

  
    (3) 

where   ,     and    are the unit vectors in the     and     

directions respectively [4]. 

When a homogeneous body is placed in a longitudinal static 

magnetic field, the magnetic field can be expressed as   
        
With the relaxation effects ignored, the solution to the Bloch 

equation becomes; 
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=        
 , 

(4) 

where       and       are the transverse components while 

      is the longitudinal component of the net magnetization. 

The matrix         represents precession about the z-axis at 

the Larmor frequency    given by [13]; 

        (5) 

The transverse components of the net magnetization are of 

interest since they determine the MRI signal detected. This 

signal is referred to as the Free Induction Decay (FID) signal. 

The components can be expressed as a complex quantity as; 

                    . (6) 

Appling the transverse magnetization components to the Bloch 

equation yields; 

   

  
  

   

  
  -( 

 

  
             (7) 

The solution to equation (7) is a decaying complex exponential 

given by; 

              ⁄         (8) 

where    represents the transeverse magnetization at time 

     A non-uniform magnetic field oriented in the z-direction 

can be represented as a sum of a uniform field term    and a 

field component that has a position as well as time dependence 

        as; 

                               (9) 

Under this condition, the general solution of the Bloch 

equation becomes; 

                   ⁄          ∫          
 
   (10) 

where                  is the shift in the precession 

frequency from the Larmor frequency. 

With the application of an arbitrarily oriented time varying 

gradient        the frequency shift is given by; 

            (11) 
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where               is the Cartesian position vector.  

Applying equation (11) to equation (10) yields; 

                   ⁄           ∫         
 
   (12) 

The magnetic resonance imaging equipment receiver coils 

are designed to detect the contributions to the transverse 

magnetization components from all the precessing nuclei in a 

volume element (voxel). The received FID signal       is 

therefore proportional to the closed volume integral of the 

transverse magnetization. When a transverse body slice of 

thickness    is selectively excited at    , the demodulated 

MRI signal is then given by; 

       ∬                                 , (13 ) 

where        ∫            
   ⁄

    ⁄
  

The parameters          and         are the spatial frequency 

components given by; 

       
 

  
 ∫        

 

 
 

and 

       
 

  
 ∫        

 

 
 . 

(14) 

where      and      are the gradient components in the x and y 

directions. 

The FID signal is therefore a two-dimensional Fourier 

transform of the transverse magnetization        at the 

spatial frequency points (                 This two dimensional 

Fourier transform of the transverse magnetization        is 

called the k-space of the MR image. The MR image can be 

reconstructed from a set of sampled measurements of the FID 

signal. This reconstruction is accomplished using either the 

two-dimensional projection method or the two-dimensional 

Inverse Discrete Fourier transform (2D-IDFT) method. The 

spatial resolution of the image is dependent on the field of 

views, sampling rates and the k-space dimensions [2, 4]. 

 

B. Compressive Sampling Theory 

 

 The term Compressive Sampling (CS) refers to a 

collection of procedures by which high dimensional signals are 

sensed and reconstructed from measurements that are much 

fewer than the dimensions of the signals. For CS to be 

successful, the signal as well as the measurement method used 

must meet some requirements. The signal must be sparse in 

some suitable representation domain or have a sparse 

approximation in the representation domain. The measurement 

as well as reconstruction procedures should allow unique 

reconstructions of all the signals of interest.  

1) Compressive Sampling Measurement 

In any acquisition system of an N-length signal, the     

measurement    is equivalent to the inner product of the signal 

   and a test function    as follows; 

    〈     〉  (15) 

In CS, the signal is constructed from     linear 

measurements which form a measurement vector   given by; 

      (16) 

where    is an     measurement matrix formed by the M 

test function vectors used [1, 5].  

Equation (16) represents an underdetermined system of linear 

equations that has infinitely many solutions [6, 7, 13]. The CS 

method endeavors to reconstruct the sparsest solution of this 

system in some suitable sparsifying transform domain. 

The sparse domain representation of the signal can be obtained 

by multiplying the signal by a square matrix as; 

       (17) 

where   is an     sparsifying matrix and x is an N-length 

column vector.  

Combining equations (16) and (17) gives; 

          (18) 

where       is an     sensing matrix [5-8].  

The minimum number of measurements required to recover the 

compressively sampled sparse signal accurately is given by: 

                    (19) 

where C is a positive constant, S is the number of nonzero 

entries of vector x and        is the coherence between the 

matrices     and    [5, 13]. 

To allow all the S-sparse signals of interest to be recovered 

from their measurement vectors, matrix A must approximately 

preserve the Euclidean lengths of the signals. This implies that 

the S-sparse vectors should not be in the null space of the 

matrix A and that all subsets of S columns taken from A should 

be nearly orthogonal. To meet this recoverability requirement, 

the sensing matrix A should possess the Restricted Isometry 

Property (RIP). The RIP is described by the following 

relationship; 

 

      ‖ ‖ 
  ‖  ‖ 

        ‖ ‖ 
   (20) 

where       is the isometric constant of order S of the matrix 

and ‖ ‖ 
  denotes square of the Euclidean length [5].  

The sensing matrix can be either deterministic or random so 

long as it satisfies the RIP. Deterministic sensing matrices 

require a larger number of measurements to reconstruct the 

signal than the random ones. Also, the random matrices can be 

designed to achieve an optimum number of measurements by 

selecting their entries from a distribution that has a zero mean 

and a finite variance. When a sensing matrix is constructed 

using a measurement matrix that obeys the RIP and any 

representation matrix, it will also obey the property [5-7]. 

2) The CS Reconstruction Techniques 

  The objective of a CS reconstruction method is to obtain the 

sparsest signal that satisfies equation (18) [6, 7, 9]. The 

sparsest signal is the one that possesses the lowest l0-norm of 

the coefficients vector as follows: 
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   ‖ ‖   subject to       (21) 

The l0-norm minimization CS recovery approach is not 

practical since it is a Non-deterministic Polynomial (NP) hard 

problem.  The solution can however be approximated by a 

tractable convex-relaxed l1-minimization problem as; 

   ‖ ‖   subject to       (22) 

 

Other optimization-based CS reconstruction methods include 

the quadratically constrained basis pursuit and the Least 

Absolute Shrinkage and Selection Operator (LASSO) methods. 

The sparsest signal can also be obtained from the measurement 

vector using greedy algorithms. The methods iteratively 

approximate the coefficients of vector   plus its support. Some 

of the commonly used greedy algorithms are the Orthogonal 

Matching Pursuit (OMP), Stagewise Orthogonal Matching 

Pursuit (StOMP) and COmpressive Sampling Matching Pursuit 

(CoSaMP) [1, 6, 7]. 

3)  Image Quality Assessments Measures 

Objective image quality measures are used to assess the 
quality of reconstructed images. Two of the most commonly 
used measures are the Peak Signal to Noise Ratio (PSNR) and 
the Structural SIMilarity (SSIM). The PSNR of a PQ pixels 
image   is given by: 

            (
    

∑ ∑        
   

 
   

)  
(23) 

Where   is the PQ pixels ground-truth image and   is the 
maximum pixel intensity value of the ground-truth image. The 
PSNR metric is simple to compute but it does not match well 
with the characteristics of the human visual system (HVS) [1]. 
The Structural SIMilarity (SSIM) index is a measure that 
consistently agrees with the HVS quality judgment. The SSIM 
index between a reconstructed image g and a ground-truth 
image f  is given by:  

           
(        )(       )

(  
    

    )(  
    

    )
, 

 

(24) 

where    and    are the means of the images while    and    

are their standard deviations. The correlation between f and g  
is     .  The constants      and     are included to ensure that 

the SSIM index is always finite [1, 15]. 

III. PROPOSED METHOD 

A proposed MRI method is presented in this section. The 

algorithm involves three main steps  namely: selective k-space 

acquisition, DWT domain image reconstruction and finally 

DFT domain artifacts suppression. The entire procedure is 

illustrated in the block diagram given in fig. 1. For each k-

space selective acquisition, approximately half of the 

measurement consists of the high-power centered k-space  

coefficients rows. These rows correspond to small phase 

encoding gradients as well as low spatial frequencies. The 

other approximately half of the measurement consist of only a 

portion of the high-frequency k-space coefficients rows that are 

captured using equally-spaced phase encode gradients. For 

example, to selectively acquire 50% of the k-space of a 

      pixels image, only 32 out of the 64 rows of the k-

space are captured. These 32 rows consist of 16 rows at the 

centre of the k-space plus another 16 evenly spaced rows 

selected from the remaining 48 outer (high frequency) rows. 

On either side of the central (low frequency) k-space rows 

selected, 8 high frequency rows will be included in the 

measurement. The sampled incomplete k-space is then 

transformed into an MR image by determining its 2D-IDFT. 

The resulting image will be heavily corrupted by coherent 

aliasing as well as Gibb’s ringing artifacts. The image is then 

vectorized and randomly sampled prior to being reconstructed 

in the Haar DWT domain using the fast OMP greedy method. 

The CS reconstruction converts the under-sampling artifacts 

into incoherent concomitant artifacts that are easily filtered 

[10]. The reconstructed image suffers loss of high spatial 

frequency details which manifests itself as a general blurring in 

the image. To correct the artifacts, a DFT domain filter 

function that accentuates the high frequency coefficients by a 

scaling correction factor      without affecting the low 

frequency coefficients is employed.   

 In order to generate MATLAB simulation test results, an 

MR image is first converted into its k-space by obtaining its 

centre-shifted 2D-DFT. The k-space data is then selectively 

sampled and processed according to the procedure illustrated in 

fig. 1. 

 

 

  

 

 

                                                                            

                                                                               

                                                                              

 
 

 

 

 

 

 

Figure 1. Block diagram of the proposed procedure. 
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IV. EXPERIMENTAL RESULTS 
In this section, MATLAB simulation test results that 

demonstrate the performance of the proposed rapid MRI 
method are presented. Ten MR images that were resized to 
      pixels were used in the experiments. The images were 
obtained from various sources such as the Siemens 
Healthineers [16] and the MNI BITE [17] databases . Results 
of five of the images (kidney, knee, leg, intestines and hand) as 
well as a statistical summary of all the ten images are 
presented. In all the experiments, the value of the artifacts 
correction factor used is      .  

In Fig. 2, an illustration of the selective acquisition and 
reconstruction stages of the proposed method are shown. Part 
(a) of the figure shows a ground-truth hand MR image while 
part (b) shows its k-space. In part (c), the selectively acquired 
k-space of the image is shown. Part (d) shows the full k-space 
reconstructed using the proposed method while part (e) shows 
the DWT domain CS reconstructed image.  From these results, 
it is evident that it is possible to approximately reconstruct the 
full k-space and ultimately the image using only a portion of 
the k-space. 

     
(a) (b) (c) (d) (e) 

Figure 2. The image reconstruction illustration. (a) Ground-truth image. 

(b) Input image k-space. (c) Selectively acquired k-space. (d) The 

reconstructed k-space. (e)  Reconstructed image. 
The reconstruction results of three MR images (leg, 

intestines and kidney) for three different methods at 40% 
measurements are shown in fig.3. Column (a) shows the 
ground-truth images. Columns (b), (c) and (d) show the images 
reconstructed using the OMP, StOMP and the proposed 
methods respectively. The proposed method gives a higher 
quality of reconstruction than the other two.  
    

    
    

    
    

    
(a) (b) (c) (d) 
Figure 3. Image reconstruction results. (a) Input MR image. (b) Reconstruction 

using OMP (c) Reconstruction using StOMP. (d) Reconstruction using the 
proposed method. 

       TABLE 1. THE SSIM VALUES OF RECONSTRUCTED IMAGES 

MR Image % 

Measur-
ements  

OMP StOMP PROPOSED 

SSIM SSIM SSIM 

 

10 0.81 0.73 0.88 

20 0.91 0.89 0.93 

30 0.95 0.93 0.95 

40 0.96 0.96 0.97 

50 0.98 0.97 0.98 

60 0.98 0.98 0.98 

70 0.98 0.98 1.00 

 

10 0.56 0.54 0.74 

20 0.77 0.75 0.85 

30 0.86 0.78 0.90 

40 0.90 0.82 0.94 

50 0.93 0.90 0.96 

60 0.95 0.93 0.98 

70 0.96 0.94 0.99 

 
Table 1 presents the quality results of two MR images (hand 

and knee) reconstructed using the proposed method as well as 

the OMP and StOMP methods at different percentage 

measurements. The first column on the left presents the two 

MR images while the second column presents the percentages 

of the k-space that are selectively acquired. The third, fourth 

and fifth columns show the SSIM values of the reconstructed 

images for the three methods. The results show that the 

proposed method consistently gives reconstructed images of 

higher quality than the other two methods. 
Table 2 shows the quality results of two MR images 
reconstructed using three different CS methods at different 
percentage measurements. The first column presents the input 
images of a leg angiogram and a kidney MR image. 

         TABLE 2.  THE PSNR VALUES OF RECONSTRUCTED IMAGES 

MR Image % 

Measu-
rements  

OMP StOMP PROPOSED 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

 

10 14.91 15.59 19.56 

20 16.07 16.68 20.60 

30 17.44 18.09 22.75 

40 18.70 18.80 24.05 

50 20.61 19.59 26.13 

60 21.95 20.36 27.78 

70 23.52 22.07 29.01 

 

10 15.31 16.58 18.38 

20 18.15 18.70 20.13  

30 18.63 19.55 22.37 

40 20.40 20.69 23.40 

50 21.63 21.12 24.88 

60 22.59 21.98 25.13 

70 24.43 23.07 27.45 

70 26.25 24.05 27.25 
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The third, fourth and fifth columns show the PSNR values of 
the images reconstructed using the three different methods. 
The results show that the proposed method yields better PSNR 
values than the other two methods.  

A statistical summary of the quality for all the ten MR 
images reconstructed using the proposed method as well the 
OMP and StOMP methods is graphically presented in fig. 4. 
Part (a) presents the mean PSNR values for different 
percentage measurements. The proposed method yielded 
higher quality images than the other two methods in terms of 
the PSNR measure. The quality improvement is at least 1.75 
dB. The graph in part (b) shows the variation of the standard 
deviation of the PSNR for the ten images. On average, the 
proposed method yields lower standard deviation values than 
the other two. Therefore the proposed algorithm exhibits better 
reconstruction quality consistency than the other two methods. 

 (a) 

 
  

(b) 

 

 Figure 4. Statistical summary. (a) Mean PSNR. (b) The standard 
deviation of PSNR. 

 

V. CONCLUSION 

A proposed rapid CS-MRI algorithm has been presented in 

this paper. The method exploits the sparsity of the MR images 

in the DWT domain as well as the characteristic profile of the 

magnitudes of the DFT k-space coefficients. Using MATLAB 

simulation experimental results, it has been demonstrated that 

the method results in a PSNR-based quality improvement of at 

least 1.75dB. This improvement translates to a scan-time 

reduction of at least 20% compared to other reported CS-MRI 

techniques. The future work on the proposed approach shall 

focus on improving both the selective acquisition and the 

artifacts suppression methods in order to optimize its 

performance.  
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Abstract—This paper proposes a robust, fast Magnetic 

Resonance Imaging (MRI) reconstruction algorithm. The 

method is based on Compressive Sampling (CS), profile of 

the k-space coefficients and sparsity in the wavelet transform 

domain. It commences with partial acquisition of the k-space 

of the image followed by random sampling prior to 

reconstruction in the wavelet transform domain using a 

greedy algorithm. The reconstructed wavelet coefficients 

vector is transformed into the full k-space vector of the image 

by determining its Inverse Discrete Wavelet Transform 

(IDWT) domain. The vectorized form of the k-space reveals 

the reconstruction artifacts which makes it easy to design a 

denoising filter. The artifacts are then suppressed using an 

apodization function. The denoised coefficients are then 

reshaped into a k-space matrix prior to being transformed 

into the reconstructed image using two-dimensional Inverse 

Discrete Fourier Transform (2D-IDFT). The Structural 

SIMilarity (SSIM) and the Peak Signal to Noise Ratio 

(PSNR) quality metrics are used for quality assessment of the 

output images. Experimental results show that the proposed 

method yields an average PSNR improvement of 1.4 dB over 

the Orthogonal Matching Pursuit (OMP) method at 40% 

measurements. The improvement implies reduction in scan 

time by approximately 10% for a given image quality. 

Keywords—compressive sampling, magnetic resonance 

imaging, apodization, greedy method 

I. INTRODUCTION 

According to the Shannon-Nyquist sampling theorem, 

a band-limited continuous-time signal that is uniformly 

sampled at a rate of at least twice its highest can be 

reconstructed from the samples without any loss of 

information. Applying this theorem to the acquisition of 

some high-dimensional signals such as in Magnetic 

Resonance Imaging (MRI) leads to an excessively long 

acquisition time. For signals that are sparse or 

approximately so, the long acquisition times can be 

reduced by taking highly incomplete measurements from 

which the signal can be reconstructed. This technique is 

referred to as Compressive Sampling (CS) [1-4]. The CS 

signal acquisition is equivalent to multiplying the signal 

by a sensing matrix [5-7]. The matrix is designed in such a 

way as to reduce the required number of measurements. It 

should also allow distinct sparse or compressible signals to 

be uniquely reconstructed from their measurements [8-11]. 

To allow unique reconstruction of a signal, the acquisition 

process must preserve the information in the measured 

signal. This requirement is guaranteed if the matrix 

satisfies the Restricted Isometry Property (RIP). Some 

deterministic matrices satisfy the RIP requirement 

although they lead to unacceptably large number of 

measurements. This limitation is overcome by using 

random matrices. The compressively sampled signal can 

be reconstructed using optimization techniques as well as 

greedy methods [12-14]. Magnetic Resonance Imaging 

(MRI) is a non-invasive technique that utilizes the 

interaction between spinning nuclei and a non-ionizing 

Radio Frequency (RF) signal [6]. Magnetic Resonance 

(MR) images have better soft-tissue contrast than CT 

images. However, MRI is characterized by long scan times 

that make it difficult for patients to remain motionless [15-

17]. The CS theory gives a suitable basis of reducing the 

scan time in MRI since the MR images are compressible 

in the Fourier and wavelet domains [18, 19]. A CS-MRI 

simulation that makes use of the wavelet domain k-space 

data is proposed in [20]. The algorithm gives recovered 

images of good quality. However, the method requires 

major modifications of the MRI equipment to enable 

acquisition of wavelet encoded k-space data. A k-space 

sampling method for CS-MRI is proposed in [21]. The 

method produces good results but with about 12.5% 

sampling of the low-frequency region of the k-space, the 

recovered MR images have artifacts in the phase-encoding 

direction. The artifacts may lead to mis-diagnosis of a 

medical condition. The CS-MRI reconstruction method 

presented in [22] results in high fidelity reconstruction. 

This is however obtained at the expense of high 

computational complexity and is therefore not suitable for 

real time imaging. A fast CS method that employs 

Orthogonal Matching Pursuit (OMP) and median filtering 

is presented in [23]. The method requires random k-space 

acquisition which is difficult to implement. 

 

35 

mailto:elijah.mwangi@uonbi.ac.ke


Appendix E 

246 

 

The fast and robust CS-based MRI algorithm 

proposed in this paper reconstructs images from their 

under-sampled k-space data in the Discrete Fourier 

Transform (DFT) domain. Therefore it does not require 

any equipment modifications as opposed to the method 

reported in [20]. It incorporates an apodization function to 

suppress the reconstruction artifacts that are experienced 

in the method presented in [21]. It is also less 

computationally intensive than the method in [22] since it 

uses a simple raised-cosine denoising function. The rest of 

this paper is organized as follows: section II gives a brief 

the theory on MRI, CS and image quality measures. The 

proposed algorithm is presented in section III. Section IV 

presents the test results while Section V gives a conclusion 

of the paper as well as suggestions for further works. 

Finally, a list of some of the reference materials used in 

this paper is given. 

II. THEORETICAL BACKGROUND 

A. Magnetic Resonance Imaging 

Any nucleus that has an odd number of protons and/or 

neutrons possesses a magnetic dipole moment and can be 

used in MRI. Hydrogen protons are mainly used due to 

their abundance in the body. When a hydrogen proton is 

subjected to a strong static external magnetic field B0 the 

magnetic dipole moment aligns with the field and 

precesses about the axis at a specific frequency referred to 

as the Larmor frequency    and is given by; 

       (1) 

where   is called the gyromagnetic ratio of the spinning 

nuclei. For the hydrogen proton,      ⁄ 42.58 MHz/T 

[15, 17]. The aggregate of the dipole moments of the 

precessing protons result in a net magnetization M0. 

Proper stimulation of the hydrogen protons by a resonant 

and transverse RF magnetic field B1 forces the net 

magnetization of the protons to flip in a spiral motion from 

the axis of  into a plane perpendicular to B0. A transverse 

component of the magnetization Mxy is produced as a 

result of the flipping. When the applied RF excitation field 

is removed, the protons precess in the static field as they 

realign with the axis of B0. This realignment generates an 

RF signal at the Larmor frequency known as the Free 

Induction Decay (FID) signal. The signal is detected by 

the MRI receiver coils and used to generate the MR image 

[16]. The FID signal can be expressed as; 

 (        )  ∭                    (2) 

where      is the proton spin density, r is the Cartesian 

position vector and k is the spatial frequency vector that is 

related to the gradient field      as follows; 

     
 

  
∫  

 

 

      [        ]
 
 (3) 

For a homogeneous body slice, Mxy is a measure of       

From (2), the FID signal is the three dimensional Fourier 

transform of     . The inverse Fourier transform of the 

FID signal yields the MR image. When the selected body 

slice thickness is small, the FID signal becomes the two-

dimensional Fourier transform of spin density function as; 

 (     )  ∫ ∫                    

    

     

    

     

  (4) 

where       . Sampling  (     ) at the Nyquist rate 

yields the k-space of the image         as follows; 

        (    
     

)  (5) 

where     
⁄  and     

⁄ are the Nyquist sampling rates in 

the    and   directions respectively. For an         

pixels image, the ranges of the discrete spatial frequency 

parameters   and   are:                  , 

(      )         . Both the values of the phase-

encoding gradient steps (  ) and the number of read-out 

samples per k-space row (  ) are dictated by the Shannon-

Nyquist sampling theorem [17]. The MR image of the 

body slice is obtained by evaluating the two-dimensional 

Inverse DFT (2D-IDFT) of         [16, 17]. 

B. Compressive Sampling Theory 

Compressive Sampling (CS) theory shows that, 

signals that have sparse representations can be recovered 

from randomly under-sampled data. In CS acquisition of a 

sparse signal f of length N, only    measurements are 

taken. The measurements form a vector   given by; 

      (6) 

where      and     is an     measurement matrix 

[1, 4, 6, 23]. The matrix   is designed in such a way as to 

reduce the length of the measurement vector as much as 

possible. The matrix should also allow the reconstruction 

of a wide class of sparse signals from their measurement 

vectors. Since the measurement matrix is rank-deficient, 

an infinite number of signals yield the same measurement 

vector. The N-length signal f can be expressed as; 

     (7) 

where       and    is an     representation matrix 

[23]. Substituting for f in (6) from (7) yields; 

          (8) 

where A is an M ×N  sensing matrix [5,6, 23]. 

The sensing matrix should preserve the information in the 

signal so as to allow its correct reconstruction from its 

measurement vector. To achieve this, the matrix should 

posses the Restricted Isometry Property (RIP) [12, 14]. 

The matrix A satisfies the RIP of order S if there exists a 

small number      (0,1) such that;  

      ‖ ‖ 
  ‖  ‖ 

        ‖ ‖ 
   (9) 

holds for all S-sparse vectors x [13]. The RIP holds for 

any sensing matrix if     is an arbitrary representation 

matrix and   is a measurement matrix that obeys the RIP 

[1]. The sparsest signal reconstruction can be achieved 
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through minimization of the l0-norm of   subject to the 

measurement vector constraint as follows: 

   ‖ ‖   subject to      (10) 

Although this approach could lead to the sparsest solution 

of the constraint function, it is a Non-deterministic 

Polynomial (NP) hard problem [12]. Tractable CS 

reconstruction algorithms include optimization and greedy 

methods. The optimization methods are such as the l1-

minimization and the Least Absolute Shrinkage and 

Selection Operator (LASSO). The l1-minimization method 

involves solving the convex relaxed problem;  

   ‖ ‖   subject to      (11) 

Greedy algorithms iteratively approximate the 

coefficients of the sparse signal by improving an estimate 

of the signal and its support until a convergence criterion 

is satisfied. Commonly used greedy algorithms include the 

OMP and the Stagewise Orthogonal Matching Pursuit 

(StOMP) [12, 14, 23].  

C. Image Quality Measures 
The Peak Signal to Noise Ratio (PSNR) is an image 

quality measure that is simple to compute. However, it 

does not match well with the characteristics of the human 

visual system (HVS) [24, 25]. Unlike the PSNR, the 

Structural SIMilarity (SSIM) index is consistent with the 

judgment of the HVS [1, 24-26]. The SSIM index between 

a ground-truth image   and the reconstructed image,   is 

obtained from their means (    and   ), standard 

deviations (    and   ) as well as the cross correlation 

       of the images as;  

          
(  

 
 

 
   ) (       )

( 
 
   

 
    ) (  

    
    )

  (12) 

where    and     are constants  that are included to avoid 

a situation where            becomes undefined as the 

denominator of (12) approaches zero [25].  

III. PROPOSED METHOD 

The proposed CS-MRI method is presented in this 

section. The algorithm reduces the image scan time for a 

particular image quality requirement. At the same time, it 

improves the image reconstruction quality for a given scan 

time by suppressing the reconstruction artifacts. The 

method commences with a partial acquisition of the k-

space data of the MR image. This is achieved by acquiring 

only a fraction of the rows that are at the centre of the full 

k-space (       ). These rows correspond to the low 

spatial frequencies of the image and also contribute most 

of the image’s energy. The remaining high frequency rows 

of the k-space are padded with zeros. When   % of the k-

space is to be sampled, the number of rows of         that 

are sampled (  ) is given by; 

                     ⁄   (13) 

The partial scanning process can be modeled as an 

element-by-element multiplication of the full k-space 

matrix        and a partial sampling mask as follows;  

                          (14) 

where         is the partially sampled k-space and 

        is the proposed sampling mask that given by; 

        {
               

                            
   (15) 

where the values of the integers    and    are related to 
the value of    as follows; 

      +     (16) 

If the value of    obtained in (13) is odd,    and    are set 

at:        Otherwise if    is even, then:          . 

The partially sampled k-space is then transformed into an 
image using 2D-IDFT which is then reshaped into a vector 
 . The vector is fully and randomly sampled using a sub-
Gaussian matrix    to yield a measurement vector    as 

follows; 

        (17) 

Using this measurement vector, the k-space of the image is 
reconstructed in the Haar discrete wavelet transform 
domain as a vector    using the OMP method. The DWT 
vector is converted into a vectorized image   as follows; 

   =  
      (18) 

where   
   is the inverse Haar transform matrix. The 

image vector is then converted into its k-space   (u, v) by 
first reshaping it into a matrix followed by determination 
of its 2D-DFT. This step is followed by shaping of   (u, v) 
in to a vector   (n). This vector contains artifacts in the 
high-frequency (middle) region due the sub-Nyquist 
sampling employed as well as noise. The artifacts are 
suppressed by multiplying the vector by a proposed 
apodization function       as follows; 

                       (19) 

where        is the apodized version of        The 

proposed apodization vector is a modified raised-cosine 

function given by; 

                       /N), (20) 

for          where N is the total number of pixels in 

the image. The choice of      was motivated by the 

general profile of the k-space coefficients of an MR image 

as well as the nature of the reconstruction artifacts as 

illustrated in fig. 2. The vector        is then reshaped into 

an       matrix         from which the output image 

   is obtained as; 

        ∑ ∑    
   (

  
  

 
  
  

)

     ⁄

        ⁄

     ⁄

        ⁄

  (21) 

where                      [(      )     ]  

and            [17]. In order to test the algorithm, a 

retrospective approach for the generation of the under-

sampled k-space data was adopted.  
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Fig.1. Block diagram of the proposed procedure. 

A ground-truth MR image was converted into its k-space 

data by first obtaining its 2D-DFT matrix. The matrix is 

then reorganized into k-space data by swapping its 

diagonally located quadrants. The k-space data is then 

vectorized prior to being partially sampled using the 

proposed mask. This under-sampled k-space is used to 

reconstruct the image following the steps shown in fig. 1.  

IV.  EXPERIMENTAL RESULTS 

In this section, MATLAB simulation test results that 

demonstrate the performance of the proposed method are 

presented. Thirty MR images were used in the 

experiments. They were obtained from several databases 

including the Siemens Healthineers [27] and the MNI 

BITE [28]. The results of some of the images as well as a 

statistical summary of the thirty images are presented here. 

The input images used in the experiments were first re-

sized using bicubic interpolation and then cropped into 

sizes of       pixels or       pixels to reduce their 

recovery times without adversely compromising their 

quality. 

A. Effect of Apodization and Reconstruction Quality 

The graphs presented in fig. 2 illustrate the denoising 

effect of the apodization function. Part (a) shows the 

profile of the magnitude of the reorganized k-space 

coefficients of a       pixels ground-truth kidney MR 

image. The spatial frequency of the coefficients increases 

as the profile is traversed from both ends towards its 

centre. Part (b) shows the profile of the partially sample k-

space which is 50% of the full k-space. The values of the 

parameters used are:                        

    and         Part (c) shows the profile of the full k-

space that has been compressively reconstructed using the 

partially sampled k-space. This k-space was reconstructed 

using the proposed method with the apodization step 

omitted. It can be observed that, the CS reconstruction has 

negligible effect on the magnitudes of the low frequency 

components of the k-space. However, there is a general 

increase in the magnitude of the high frequency 

components. These artifacts are severest at the highest 

frequency (pixel index 1024). Part (d) gives a plot of the 

apodized version of the reconstructed k-space. It is evident 

that the output (apodized) k-space resembles the ground-

truth k-space better than the k-space given in part (c). In 

all the plots, the magnitudes of the coefficients have been 

clipped at a value of 50. This makes it easier to see the 

reconstruction artifacts. The apodization resulted in a 

PSNR improvement of 1.5 dB for the kidney MR image at 

40% measurement.  

 (a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 2. Apodization effect. (a) Ground-truth k-space, (b) The OMP 

reconstructed k-space, (c) Apodization function, (d) Apodized k-
space. 
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The MR images CS reconstruction results of the 

OMP, the StOMP as well as the proposed method at 40% 

measurements  are shown in fig. 3. Column (a) presents 

the ground-truth images while column (b) shows the 

reconstruction results of the OMP method [14]. The 

reconstruction results of the StOMP and the proposed 

method are presented in columns (c) and (d) respectively. 

The images reconstructed using the proposed methods are 

visually less noisy than the images reconstructed using the 

other two methods. Figure 4 shows the reconstruction 

results of the proposed method for two different       

pixels images (spine and lower leg) at different percentage 

measurements. Column (a) shows the ground-truth images 

while column (b) shows the images reconstructed using 

20% measurements. The reconstruction results at 40% and 

60% measurements are presented in columns (c) and (d) 

respectively. There is little visually perceptible 

degradation in the quality of the images reconstructed 

using at least 40% measurements. The SSIM index values 

of a brain slice MR image reconstructed using the 

proposed method at different percentage measurements are 

presented in table 1. Also included in the table are the 

SSIM values for the same image reconstructed using the 

OMP as well as the StOMP methods [12, 23]. The results 

show that the proposed method consistently yielded better 

quality of reconstruction than the other two methods in 

terms of the SSIM measure.  

    

    
(a) (b) (c) (d) 

Fig. 3. Reconstruction results. (a) The ground-truth images, (b) The 
OMP results, (c) The StOMP results, (d) Proposed method results. 

    

    
(a) (b) (c) (d) 

Fig. 4. Results of the proposed method. (a)  Ground-truth image, (b) 

Reconstruction at 20%, (c) Reconstruction at 40%, (d) 
Reconstruction at 60% measurements. 

TABLE 1. The SSIM quality analysis results 

Image 
   /     

  100 

OMP 

 
StOMP 

Proposed 

Method 

 

10 0.48 0.38 0.62 

20 0.68 0.57 0.78 

30 0.74 0.66 0.80 

40 0.82 0.73 0.88 

50 0.85 0.81 0.91 

60 0.90 0.84 0.92 

B. Statistical Analysis Results 

A statistical summary of the results is presented 

graphically in fig. 5. Parts (a) and (b) show the variations 

of the mean PSNR and mean SSIM quality metrics 

respectively with the percentage measurements. Both 

graphs show that the proposed method yields better quality 

images than the other two methods. For example, at 40% 

measurements, the proposed method yields an average 

PSNR of 21.3 dB. The OMP method requires 50% 

measurements to reconstruct an image whose PSNR is 

21.2 dB. Therefore, the OMP method requires at least 10% 

more measurements to reconstruct an image of the same 

quality as that of the proposed method. A 10% reduction 

in measurements (  ) is equivalent to 10% fewer phase-

encoding gradient steps which in turn translates to a 10% 

shorter image scan-time [15]. At 40% measurements, the 

OMP method yields an average PSNR of 19.9 dB. 

Therefore, the proposed method yields images of better 

quality than the OMP method by about 1.4 dB for the 

same number of measurements. A similar interpretation 

can be arrived at using the SSIM plots.  

 

(a) 

 

(b) 

 
Fig. 5. Statistical comparison of the proposed method to other CS 

reconstruction methods. (a) PSNR comparison, (b) SSIM 
comparison. 
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Fig. 6.  The SSIM standard deviation variation. 

The standard deviation of the SIMM index of the 

images reconstructed using the proposed method as well 

as the OMP and StOMP methods are presented in fig. 6. 

The result shows that the standard deviation of the SSIM 

for the proposed method is lower than for the other two 

methods. Similar results were obtained using the PSNR 

measure implying that, the proposed method has better 

consistency in performance than the other two methods. 

V. CONCLUSION 

A proposed CS-based procedure for reconstruction of 

partially scanned MR images has been presented. The 

method incorporates an apodization function that increases 

its robustness to reconstruction noisy artifacts. Simulation 

results have been used to demonstrate that the method 

yields images with better quality than some conventional 

CS-MRI   methods. In comparison with other CS-MRI 

methods tested in this paper, the proposed method reduces 

the image acquisition time by 10% for a given 

reconstruction quality. This research will be further 

pursued with a view of improving the sensing mechanism 

as well as developing a more effective reconstruction and 

denoising techniques.  
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Abstract.  In this paper, an improved Compressively Sampled Magnetic 

Resonance Imaging (CS-MRI) method that suppresses reconstruction noisy 

artifacts is proposed. The algorithm involves random undersampling of the k-

space data of an MR image followed by reconstruction of the k-space data 

coefficients in a wavelet sparsifying domain. The high frequency noise in the 

reconstructed coefficients is suppressed in the Fourier transform domain by an 

adaptive Gaussian low pass filter. The reconstructed MR image is finally 

obtained by Inverse Discrete Fourier Transformation (IDFT) of the denoised k-

space data. Experimental results demonstrate the robustness of the proposed 

method to sub-Nyquist sampling associated artifacts in terms of terms of 

Structural SIMilarity (SSIM) index, Mean Squared Error (MSE) and Peak 

Signal to Noise Ratio (PSNR) assessments.  

Keywords: Gaussian Denoising, Compressive Sampling, MRI, SSIM, PSNR.  

1   Introduction 
Compressive Sampling (CS) is a signal acquisition and reconstruction paradigm that 

is used to undersample a signal and then reconstruct its full-length version in a 

suitable transform domain. The procedure relies on the signal sparsity as well as the 

incoherence between measurement and representation orthonormal bases [1, 2, 3].   

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging method that 

results in better medical images than other imaging modalities in terms of soft tissue 

contrast. The MRI technique is non-invasive and also uses non-ionizing radiation 

unlike Computed Tomography (CT). The MRI technique can also be used to image 

some conditions such as brain oxygen saturation changes due to neuronal activity, 

measurement of blood flow velocity and measurement of concentration of metabolites 

[2]. The data acquisition stage in conventional MRI takes a long time which makes it 

difficult for weak patients and children to remain still. The patient movements result 

in noisy artifacts in the acquired MR images [1, 4, 5]. Magnetic Resonance (MR) 

images are acquired in a coded form and also are sparse in some transform domains 

such as Fourier or wavelet transform domains. These characteristics make MRI a 

suitable candidate for CS techniques. [6, 7, 8].  

A CS-MRI simulation that makes use of wavelet domain k-space data is proposed by 

Liu et. al [9]. Their method guarantees good reconstruction quality but requires major 
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modifications of the existing MRI equipment to allow acquisition of wavelet encoded 

k-space data. Zangen et. al [5] have proposed a compressive sampling based MRI 

reconstruction method. Simulation results demonstrate that the method reconstructs 

the edges and also reduces undersampling-related artifacts. However, their algorithm 

requires long computational time and is therefore unsuitable for real time imaging. 

Akanksha [10] proposes an Orthogonal Matching Pursuit (OMP) based CS image 

reconstruction method that uses multi-wavelet transformation. Experimental results 

show good visual quality in the reconstructed image. The image acquisition process is 

however quite long and also requires major modifications in the design of MRI 

equipment. Tesfamicael et.al [11] have proposed an algorithm that involves clustered 

CS. The method produces better results than its non-clustered versions but the 

reconstructed images are noisy since it requires a sampling ratio of more than 0.7 to 

reconstruct an image that has a PSNR of about 20dB. In [12], a CS method that 

utilizes sparsity and energy distribution of the MR images in spectral space is 

proposed. The method yields better performance than random sampling Fourier 

transform-based CS methods but results in speckle noise when a large number of 

approximation coefficients are discarded.  

In this paper, a CS-based MRI method that exploits the sparsity as well as the 

profile of Fourier coefficients is proposed. The method is robust to reconstruction 

noise due to incorporation of Gaussian filtering. It is faster than other CS-MRI 

methods due to the low sampling ratios required for a given image quality. For 

example, results show that the method requires a sampling ratio of 0.3 to reconstruct 

an image with a PSNR of about 20dB compared to a sampling ratio of 0.7 required to 

produce the same PSNR using the method proposed in [11]. Also, the method does 

not require modifications in the design of the MRI equipment since image acquisition 

is performed in the Fourier transform domain as in conventional MRI.  

The rest of this paper is organized as follows: section 2 gives the requisite 

theoretical background. Section 3 presents the proposed MRI algorithm while section 

4 presents some of the results obtained using the proposed algorithm as well as other 

methods. Conclusion and future work are given in section 5.  

2   Background Theory 
The theory on CS, MRI, and image quality metrics is outlined in this section.  

2.1   Compressive Sampling   

Compressive Sampling (CS) is a technique that obtains a full-length sparse signal 

from a measurement vector whose length is much smaller than the signal length. To 

compressively sample an N-length signal f,   linear measurements are taken. The 

acquisition process can be modeled as: 

     (1) 

where   is a vector of length       and   is an M ×N measurement matrix [1, 12].  

In an orthonormal sparsifying domain, the N-length signal f can be written as: 

  ∑    
   

 

   

  (2) 
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 where   is an     representation matrix and x is an N-length vector of coefficients 

of the signal in the    domain [1]. The measurement process can be expressed as: 

       (3) 

where      is an M ×N  sensing matrix that obeys the Restricted Isometry 

Property (RIP)  [1]. The matrices Φ and    should be incoherent [13, 14]. 

Optimization and greedy methods are used to recover the reconstructed image 

tractably. The Optimization methods used are such as the Basis Pursuit (BP) and the 

Least Absolute Shrinkage and Selection Operator (LASSO). The greedy 

reconstruction methods estimate the coefficients of the image by either iteratively 

determining the support of the coefficients vector or by improving the approximation 

at each iteration until a convergence condition is attained. These methods include the 

Orthogonal Matching Pursuit (OMP) and the Stagewise OMP (StOMP). The greedy 

methods are faster than the optimization ones for signals that are highly sparse [1, 7].  

2.2   Magnetic Resonance Imaging  

Clinical Magnetic Resonance Imaging (MRI) uses a strong longitudinal magnetic 

field and Radio Frequency pulses to generate high quality images. Other than yielding 

better soft tissue contrast than Computed Tomography [CT], MRI is non-ionizing, 

non-invasive as well as non-allergic to the patient. The MRI equipment integrates the 

applied time-dependent gradient transverse magnetization over the spatial volume to 

yield the MRI signal      given by:  

     ∫|    |      〈   〉    (4) 

where            is the transverse magnetization,      is the Fourier transform of 

the spatially dependent magnetization m(z) that is sampled on the frequency curve k. 

This Discrete Fourier Transform (DFT) of the MRI image is its k-space data from 

which the MR image is obtained by inverse Fourier transformation [1, 2, 7].  

2.3 Image Quality Measures   

In this section, the PSNR, MSE and SSIM image quality metrics are discussed. The 

PSNR and MSE of an image of size mn pixels are respectively defined as follows: 

            (
    

∑ ∑ [   ]  
   

 
   

)  
(5) 

 

    
∑ ∑ [   ]  

   
 
   

  
   

 

(6) 

Where   is the ground-truth image,   is the reconstructed image and   is the 

maximum pixel intensity value of the ground-truth image. The MSE and PSNR are 

simple and convenient to compute but they do not match well with the characteristics 

of the human visual system (HVS) [15]. The Structural SIMilarity (SSIM) index 
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which is consistent with the HVS measures the visual quality of the reconstructed 

image by extracting the luminance, contrast, and the structural components of the 

original and the reconstructed images and then comparing the components. With each 

the three components assigned the same relative importance, the SSIM index of the 

reconstructed image g is defined as:  

 

           
(        )(       )

(  
    

    )(  
    

    )
, 

 

(7) 

where f  and g  are the ground-truth and the reconstructed images respectively. Their 

means are    and    while    and    are their standard deviations. The correlation 

between f  and g  is     .  The constants      and     are included to avoid instability 

when the values of the means and variances of the images are close to zero [15, 16]. 

3   Proposed Method 

In this section, a proposed CS-MRI method is presented. The algorithm constitutes of 

the stages shown if fig. 1. The input MR image is first converted into its k-space data 

by obtaining its two-dimensional Discrete Fourier transform (2D-DFT) followed by 

rearranging the 2D-DFT coefficients of the MR image by moving the zero-frequency 

component to the center of the array. The zero-frequency centered DFT matrix is 

converted into a vector and then randomly undersampled. Next, the MR image 

coefficients are reconstructed in the wavelet transform domain using the OMP 

algorithm. The wavelet coefficients are then converted back into vectorized k-space 

data through Inverse wavelet transformation before being denoised by an adaptive 

Gaussian low-pass filter. The denoised data is converted into a matrix which is 

ultimately converted into the output MR image through inverse DFT. 

image
Input  

 

  

 

                                                                            

                                                                               
                                                                                

 
Fig. 1. Block diagram of the proposed procedure. 

 

The zero-frequency centered vectorized k-space data coefficients of an N-length 

ground-truth MR image has a Gaussian-like profile centered about the centre 

coefficient index. The CS recovery of the data using the OMP method results in high 

frequency noisy artifacts whose level decreases as the sampling ratio increases. 

The adaptive Gaussian filter      included in the proposed method has a bandwidth 

that adaptively increases with increase in the sampling ratio    ⁄    as follows: 

 

Incoherent 
random Under-

Sampling 

 

Greedy CS 

Recovery 

 

Inverse 
Wavelet 

transform 
 

Gaussian 

Filtering 

 

k-space Data 

Matrix 
Generation 

 

 

Output Image 

Vectorised k-

space data 

generation 

 

Inverse 

2D-DFT 

 

195 



Appendix F 
 

255 

 

        (  
 
 
)
 

 
 

(8) 

where   is the DWT coefficients index and   is a parameter whose value was 

experimentally approximated by:  

    ⁄       ⁄      

 
(9) 

where for N= 2048,                  and    ⁄  is the sampling ratio. 

4   Simulation Results 

In this section, performance of the proposed method in comparison with both the 

OMP and StOMP is presented using MATLAB simulation results. Twenty MR test 

images were used in the experiments with the results of five of them included in this 

section. The five images include three (Spine, Knee and hand)        pixels images 

and two (heart and brain)       pixels images. Figure 2 shows the effect of the 

adaptive Gaussian low pass filtering on the k-space data of the reconstructed spine 

image at a sampling ratio of 0.3. Part (a) shows the profile of the k-space data of the 

ground-truth spine MR image. The artifacts resulting from OMP recovery of the 

image that has been compressively sampled at a sampling ratio of 0.3 are shown in 

part (b). The adaptive Gaussian filter function is shown part (c). The denoising effect 

of the Gaussian filter is shown in part (d) which resulted in quality improvements of 

1.7dB and 0.0356 in terms of PSNR and SSIM respectively.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Effect of Gaussian filtering denoising 

Figure 3 shows the reconstruction results of the proposed method for three different 

images at different sampling ratios. Column (a) presents the ground-truth images, 

column (b) shows reconstruction results at   ⁄     , column (c) shows 

reconstruction results at   ⁄      while the results at   ⁄      are presented in 

column (d). The visual quality of the reconstructed image increases with increase in 

the sampling ratio. 
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(a) (b) (c) (d) 

Fig. 3. Performance of the proposed method 

 
The performances of the proposed method, OMP and StOMP methods at   ⁄       
are shown in Figure 4 for three different images. 

Column (a) shows the ground-truth images, column (b) shows reconstruction results 

of the OMP method, column (c) shows reconstruction results of the StOMP method 

while the results of the proposed method are presented in column (d). The proposed 

method yielded less noisy reconstructed images than the other two methods. 

 

    
    

    
    

    
(a) (b) (c) (d) 

Fig. 4. Comparison  of the proposed method with OMP and StOMP methods 
 

The PSNR and SSIM quality results for five different MR images reconstructed using 

the proposed method, the OMP and StOMP methods are presented in Table.1. The 

proposed method yielded better reconstruction quality than the other two methods.  
Table1. Reconstruction Quality Comparison  
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MR  

Image 
M/N 

 
OMP StOMP Proposed Method 

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM 

 

0.1 13.53 0.6303 14.34 0.6223 15.07 0.6927 

0.3 16.28 0.8314 16.73 0.8024 17.96 0.8670 

0.5 20.03 0.9267 19.20 0.8982 21.37 0.9424 

0.7 23.36 0.9677 20.06 0.9461 24.25 0.9714 

 

0.1 15.44 0.5635 15.05 0.5407 17.20 0.6497 

0.3 19.60 0.8554 19.11 0.7842 21.54 0.8994 

0.5 22.81 0.9292 21.26 0.9012 24.20 0.9466 

0.7 26.25 0.9675 24.05 0.9416 27.33 0.9741 

 

0.1 16.01 0.7011 15.07 0.6877 17.57 0.7693 

0.3 19.85 0.8891 20.06 0.8811 20.88 0.9091 

0.5 21.37 0.9228 21.78 0.9211 22.56 0.9403  

0.7 23.71 0.9550 23.31 0.9510 24.22 0.9604 

 

0.1 10.62 0.2885 11.53 0.2116 12.13 0.3514 

0.3 15.00 0.7369 16.17 0.7550 16.09 0.7775 

0.5 17.42 0.8479 17.47 0.8149 17.97 0.8614 

0.7 20.84 0.9340 19.03 0.8924 20.92 0.9349 

 

0.1 15.49 0.8084 15.50 0.7294 17.43 0.8664 

0.3 21.30 0.9482 20.47 0.9316 22.79 0.9620 

0.5 24.58 0.9754 23.81 0.9698 25.64 0.9803 

0.7 27.24 0.9871 26.52 0.9804 27.89 0.9886 

 

Figure 5 summarizes the performance of the proposed method. Row (a) from left to 

right shows the improvement in the quality of the reconstructed images in terms of 

PSNR, SSIM and MSE. Row (b) from left to right shows that the proposed method 

yields images with better quality levels than both the OMP and StOMP methods. 

 

(a) 

   

(b) 

   

 

Fig. 5. Proposed method performance summary. 
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5   Conclusion 

An adaptive Gaussian denoising CS-MRI algorithm has been presented in this paper. 

The algorithm is faster than conventional CS-MRI methods and also robust to 

reconstruction noise.  The results included in this paper show an improvement in the 

quality of the reconstructed images in comparison to other CS-MRI algorithms. 

Future research work will involve an improvement of the denoising function as well 

investigation of the denoising in wavelet, shearlet, DCT and curvelet domains with an 

aim of employing super-resolution techniques to improve the reconstruction quality.  
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Abstract—Magnetic Resonance Imaging (MRI) 

has some attractive advantages over other 

medical imaging techniques. Its widespread 

application as a medical diagnostic tool is 

however hindered by its long acquisition time as 

well as reconstruction artifacts. A proposed 

Compressive Sampling (CS) based method that 

addresses the two limitations of conventional 

MRI is presented in this paper. The proposed 

method involves acquisition of an under-sampled 

k-space by employing a smaller number of phase 

encoding gradient steps than that dictated by the 

Nyquist sampling rate. The MR image 

reconstructed from the under-sampled k-space is 

then randomly sampled and reconstructed using 

a greedy sparse recovery method in the wavelet 

domain. To improve the robustness of the 

method, a proposed high-pass filter is used to 

suppress the reconstruction artifacts. The Peak 

Signal to Noise Ratio (PSNR) as well as the 

Structural SIMilarity (SSIM) measures are used 

to assess the performance of the proposed 

method. Computer simulation results 

demonstrate that the proposed method reduces 

the reconstruction concomitant artifacts by 1.75 

dB for a given CS percentage measurement. For 

a given output image quality, the proposed 

method gives a scan time reduction of 20%. 

 

Index Terms— Compressive sampling, 

concomitant artifacts, acquisition time, magnetic 

resonance imaging. 

I. INTRODUCTION 

For a band-limited continuous-time signal to be 

recoverable from its samples, it should be sampled 

at a rate that is at least twice its highest frequency 

component. This signal acquisition paradigm is in 

accordance to the Shannon-Nyquist sampling 

theorem.  Applying the theorem to the acquisition of 

some high dimensional signals such as in Magnetic 

Resonance Imaging (MRI) leads to an excessively 

long acquisition time. However, if the signal is 

sparse or compressible in some suitable 

representation domain, the long acquisition time can 

be reduced by taking measurements that are highly 

incomplete according to the Shannon-Nyquist 

sampling theorem. The signal can then be 

reconstructed from the measurements using sparse 

reconstruction methods. This signal acquisition and 

recovery approach is referred to as Compressive 

Sampling (CS). The signal acquisition stage of CS 

combines the sensing and compression stages of 

traditional signal acquisition approaches into a 

single step. Application of the CS theory in the 

acquisition and reconstruction of signals is only 

successful if the signal plus the measurement 

procedure used meet some requirements. In addition 

to the signal being sparse or compressible in a 

suitable representation domain, the signal 

measurement and representation methods must be 

highly incoherent. The signal acquisition process 

can be modeled as a multiplication of the signal by a 

rank-deficient measurement matrix to produce a 

measurement vector. On the other hand, the sparse 

domain representation of the signal is equivalent to a 

multiplication of the signal by a square 

representation matrix. The product of the two 

matrices yields the CS sensing matrix. For the 

incoherence condition to be met, the maximum 

cross-correlation between the rows of the 

measurement matrix and the columns of the 

representation matrix must be as small as possible. 

This in turn ensures low coherence between the 

individual columns of the sensing matrix. The 

3 
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number of measurements required to accurately 

reconstruct the sparse signal is directly proportional 

to the square of the coherence between the 

measurement and the representation matrices. The 

sensing matrix must also possess the Restricted 

Isometry Property (RIP). The RIP condition ensures 

that the Euclidean separations between signals of 

interest are preserved in the representation domain. 

This separations preservation ensures unique 

reconstruction of all the signals of interest from their 

CS measurement vectors [1][2][3][4]. Although 

some deterministic matrices satisfy the RIP 

requirement, they require a special design of the 

measurement matrix and also lead to a requirement 

of a measurement vector that is unacceptably large. 

These limitations of the deterministic sensing 

matrices are overcome by using random matrices 

whose entries are independent and identically 

distributed entries picked from a continuous sub-

Gaussian distribution. The methods used to 

reconstruct the sparse signal from its CS 

measurement vector include optimization, iterative 

and thresholding methods [4][5][6].  

Magnetic Resonance Imaging (MRI) is a medical 

diagnostic technique that has some outstanding 

merits compared to other clinical imaging 

modalities. The method is non-invasive since it does 

not require any surgical intervention in order to 

image the interior of a human body as opposed to 

methods such as intravascular ultrasound and 

catheter venography. The Radio Frequency (RF) 

excitation pulses employed in MRI are incapable of 

causing ionization in the body tissues as opposed to 

the x-rays utilized in Computed Tomography (CT). 

Therefore, MRI does not put the patient at the risk of 

developing cancer due to prolonged exposure. 

Magnetic Resonance (MR) images have better soft-

tissue contrast than CT images. In addition, MRI 

systems have parameters such as the gradient echo 

time (TE), the spin-lattice relaxation time constant 

(    and the spin-spin relaxation time constant 

(    that can be exploited to flexibly change the 

image contrast.Whereas CT imaging uses iodine-

based contrast agents, MRI uses gadolinium-based 

ones. The iodine-based contrast agents can trigger 

allergic reactions in some patients unlike the 

gadolinium-based ones. Despite the many 

advantages, MRI is characterized by long scan 

times. This is partially as a result of the large 

sequence repetition time (TR) required to allow the 

flipped spins to relax to their equilibrium state with  

relaxation time constant     Another factor 

contributing to the long scan time is the large 

number of phase encoding steps required to meet the 

Shannon-Nyquist sampling criterion. The long MR 

imaging time makes it difficult for many patients to 

remain motionless in the MRI equipment. In 

addition, MR images are usually degraded by 

equipment-related as well as patient-related artifacts. 

The artifacts are as a result of non-idealities in the 

MRI equipment and voluntary as well as involuntary 

motions of the patient’s body [7][8][9][10]. 

Magnetic resonance images are usually sparse or 

compressible in the Discrete Wavelet Transform 

(DWT) or the Discrete Fourier Transform (DFT) 

domains. The problem of long image acquisition 

time experienced in MRI can therefore be solved 

using CS methods [11][12][13]. Vellagoundar and 

Reddy have proposed a CS-based method for 

reconstructing MR images from their under-sampled 

k-space data [14]. The method generally produces 

images of good quality. However, when the 

measurement vector has a length of about one-eighth 

of the low-frequency region of the k-space, the 

reconstructed MR images reveal artifacts in the 

phase-encoding direction. These artifacts 

compromise the quality of the reconstructed images 

and can result in misleading diagnosis of a medical 

condition.The CS-MRI algorithm proposed in [15] 

exploits the image sparsity and the characteristic 

profile of the image coefficients in the wavelet 

transform domain. The images reconstructed using 

this method exhibit high quality. The method has 

one deficiency since it requires adjustments of 

several parameters in the raised cosine denoising 

function every time the image size changes. A fast 

recovery CS-MRI method that uses limited samples 

is proposed in [16]. The sensing approach used 

results in short reconstruction times since the 

solution to the CS recovery problem is obtained in a 

closed form. However, the reduction in acquisition 

time results in low image quality. For example, 

using 25% measurements, the average Structural 

Similarity (SSIM) quality index of the reconstructed 

images is 0.81. The CS-MRI reconstruction 

algorithm reported in [17] gives recovered images 

4 
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that have good edges and few artifacts. This method 

appears to have high computational complexity due 

to use of the complex double-density dual-tree 

DWT. The method is therefore not suitable for real 

time imaging. 

In this paper, an algorithm for acquisition and 

reconstruction of MR images using CS techniques is 

proposed. The procedure involves selective k-space 

acquisition, random sampling, greedy CS 

reconstruction in the DWT domain and finally DFT 

domain denoising to suppresses the concomitant 

artifacts. The method is characterized by low scan 

time, high quality images and low computational 

complexity since it uses a simple modified high pass 

filter and does not require adjustment of parameters 

for images of different sizes. 
The remainder of this paper is arranged as 

follows. Section II gives a brief background theory 
on CS, MRI and image quality metrics. The 
proposed algorithm is presented in section III while 
section IV presents the MATLAB simulation 
experimental results. In section V, a conclusion and 
suggestions for further work are given.  

II. THEORETICAL BACKGROUND 

This section outlines the requisite theory that is 

applied in the paper. The section covers compressive 

sampling, magnetic resonance imaging and image 

quality metrics theories. 

A. Compressive sampling theory 

Using Compressive Sampling (CS) theory, the 

acquisition of a high-dimensional signal is done by 

taking measurements that are much fewer than the 

length of the signal. The full-length signal is then 

reconstructed from the measurements in a suitable 

representation domain. For the application of the CS 

theory to be successful, the signal must be sparse or 

at least compressible in the representation domain. 

The measurement as well as reconstruction 

approaches used should allow reconstruction of the 

signal from as few measurements as possible while 

at the same time maintaining uniqueness in 

reconstruction of all the signals of interest [1][2][4].  

 

 

 

 

1) Compressive sampling measurement 
In CS acquisition of a sparse signal  f  of length N, 

only    measurements are taken. The measurements 
form a vector   given by; 

      (1) 
where      and     is an     measurement 
matrix [7]. The matrix   is designed in such a way 
as to reduce the length of the measurement vector as 
much as possible. The matrix should also allow the 
reconstruction of a wide class of sparse signals from 
their measurement vectors. Since the matrix is rank-
deficient, an infinite number of signals yield the 
same measurement vector. The matrix should 
therefore be designed to allow distinct signals within 
a class of interest to be uniquely reconstructed from 
their measurement vectors [2]. The signal  f  is said 
to be S-sparse in the orthonormal sparsifying basis 
Ψ if there exists a vector x that has at most S non-
zero entries such that the signal can be expressed as; 

  ∑        

 

   

 (2) 

where S   N,      and   is an     
representation matrix [3]. Substituting for f in (1) 
from (2) yields; 

           (3) 

where A is an M   N sensing matrix [5][6][7]. The 
sensing matrix represents a dimensionality reduction 
since it maps an N-length vector into a smaller M-
length vector. This matrix should be capable of 
preserving the information in the signal so as to 
allow correct reconstruction of the original signal 
from the measurement vector. To achieve this, the 
matrix should posses both the Null Space Property 
(NSP) and the Restricted Isometry Property (RIP). 
The matrix should also obey the incoherence 
property in order to reduce the size of the 
measurement vector. The sensing matrix always 
satisfies the NSP if the length of measurement 
vector is greater or equal to twice the sparsity of the 
signal to be recovered. When the measurements are 
not contaminated with noise or quantization errors, 
the NSP is a necessary and sufficient property to 
guarantee exact recovery of compressively sampled 
S-sparse signals. For the CS matrix to guarantee 
correct signal recovery from noisy measurements, 
the matrix must satisfy the Restricted Isometry 
Property (RIP) [3][4][7].  

5 
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A matrix A satisfies the Restricted Isometry 
Property (RIP) of order S if there exists a small 
number    (0, 1) such that;  

(     ‖ ‖ 
  ‖  ‖ 

  (     ‖ ‖ 
   (4) 

holds for all S-sparse vectors x where      is the 

isometric constant of order S of the matrix 

and ‖ ‖ 
  denotes square of the Euclidean length 

[3][15]. The RIP inequality holds for any matrix 

     where   is an arbitrary representation 

matrix and   is a matrix that obeys the RIP [7].  
The lower bound for the number of 

measurements required to reconstruct an S-sparse 
signal is related to its sparsity S, length N, as well as 
the coherence between the measurement and 
representation matrices by:  

      (             (5) 

where C is a positive constant and   (     is the 
coherence between the matrices   and   [2][7]. 
Both deterministic and random matrices that satisfy 
the RIP can be constructed. Deterministically 
constructed sensing matrices of size M N that 
satisfy the RIP of order S, require M to be quite 
large leading to unacceptably large measurement 
vectors. A random matrix that consists of 
independent and identically distributed entries from 
a continuous distribution satisfies the RIP with high 
probability. The matrix entries are chosen according 
to any sub-Gaussian distribution such as Gaussian or 
Bernoulli distributions. These matrices achieve the 
optimum number of measurements when the 
distribution used has a zero mean and a finite 
variance [4][7]. 

2) The CS reconstruction techniques 
The goal of a CS reconstruction method is to 

obtain an estimate of the sparsest signal that satisfies 

equation (3) from a noisy CS measurement vector. 

The recovery algorithms exploit the nature of the 

sensing matrix in order to reduce the size of the 

measurement vector, ensure robustness to noise and 

also reduce the signal recovery time. The CS 

recovery methods can be broadly classified into 

various types such as optimization-based techniques, 

greedy methods, thresholding methods and Bayesian 

methods [4][6]. 

The optimization-based techniques involve a 

constrained or non-constrained minimization of an 

object function. These methods include the   -

minimization, the   -minimization, the quadratically 

constrained basis pursuit, the basis pursuit 

denoising, the Least Absolute Shrinkage and 

Selector Operator (LASSO) and the Dantzig selector 

methods. 

The solution to the   -minimization problem 

represents the sparsest estimate of the signal 

vector  . Theproblem involves the minimization of 

the   -norm of the signal vector subject to the 

measurement vector as the constraint function. It is 

represented as follows; 

   ‖ ‖ subject to       (6) 

where ‖ ‖  represents the   -norm. This problem is 

non-convex making it very difficult to solve in finite 

time. It is also Non-deterministic Polynomial (NP) 

hard which makes it not useful for CS recovery. The 

tractable   -minimization problem is a convex 

approximation of the   -minimization problem. It is 

also referred to as the basis pursuit problem which 

can be expressed as follows; 

   ‖ ‖ subject to          (7) 

If a measurement error occurs, the measurement 

vector   will not be exactly equal to   . By taking 

into account the measurement error, the   -

minimization algorithm transforms into the 

quadratically constrained basis pursuit problem 

expressed as follows; 

   ‖ ‖ subject to ‖    ‖ . (8) 

The quadratically constrained basis pursuit method 

can also be modified to yield the Least Absolute 

Shrinkage and Selector Operator (LASSO) 

algorithm. The LASSO problem takes the form; 

min ‖    ‖   subject to  ‖ ‖     (9) 

where   is a parameter such that      The basis 

pursuit denoising algorithm involves minimization 

of a non-constrained object function expressed as; 

   (  ‖ ‖ +‖    ‖ 
 ), (10) 

Where   is a parameter such that      The Dantzig 

selector is another variation of the quadratically 

constrained basis pursuit method that can be 

expressed as; 

   ‖ ‖ subject ‖  (     ‖     (11) 

Although the optimization-based techniques are 

generally slower than the greedy methods, they offer 

tight performance guarantees [1][3][4][7]. 

6 
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The greedy CS recovery algorithms rely on 

iterative approximation of the signal coefficients and 

support. This is achieved either by iteratively 

identifying the support of the signal until a stopping 

convergence criterion is attained, or by obtaining an 

improved estimate of the sparse signal at every 

iteration. The sparse signal estimate improvement is 

achieved through accounting for the mismatch in the 

measured data. The methods have lower 

computational complexity than the optimization 

algorithms. The greedy methods that are commonly 

used in sparse signal recovery include the Matching 

Pursuit (MP) and its improvements. These 

improvements include the Orthogonal matching 

pursuit (OMP), Stagewise orthogonal matching 

pursuit (StOMP) and COmpressive Sampling 

Matching Pursuit (CoSaMP) algorithms [1][18]. The 

Matching Pursuit (MP) algorithm decomposes a 

signal into a linear expansion of elements that form 

a dictionary or sensing matrix       . At each 

successive iteration step of the algorithm, an 

element from the dictionary that best approximates 

the signal by reducing the residual is chosen. The 

algorithm can be described by the pseudo code 

given in table 1. The limitation of the MP algorithm 

is the lack of guarantees in terms of recovery error 

as well as the large number of iterations required. 

The computational complexity drawback is 

overcome by using the algorithm referred to as the 

Orthogonal Matching Pursuit (OMP) algorithm. The 

OMP method is a modification of the MP algorithm 

that bounds the maximum number of iterations 

performed. The bounding gives a better 

representation of the unexplained portion of the 

residual which is then subtracted from the current 

residual to form a new one. This process is iterated 

until a stopping condition is attained. Despite being 

fast as well as leading to exact sparse signal 

recovery, the guarantees associated with OMP are 

weaker than those achievable using optimization 

techniques. In spite of these drawbacks, the OMP 

algorithm is an efficient sparse signal recovery tool 

especially when the signal is highly sparse [19].The 

pseudo code of the OMP algorithm is as given in 

table 2. The reconstruction efficiency of the OMP 

algorithm is low when the signal is not highly 

sparse.  

 

TABLE 1.THE MATCHING PURSUIT ALGORITHM 

Input: 
Sensing matrix A, measurements 

y, error threshold   

Initialization: 
Initial: signal estimate x0 = 0, 

residual r0 = y, count k = 0.  

While 

‖  ‖   , 

Update  ; 

        

Form residual signal estimate; 

        

Update largest magnitude 

coefficient; 

 ̂   ̂     (    

Update residual; 

       ̂   

End while Stopping condition‖  ‖   . 

Output: Solution vector,    ̂   ̂   

 

The Stagewise Orthogonal Matching Pursuit 

(StOMP) method is an improvement of the OMP 

algorithm that is characterized by lower 

computational cost. The algorithm operates with a 

fixed number of stages during which it builds up a 

sequence of signal approximations by removing 

detected structures from a sequence of residuals 

[20]. The Compressive Sampling Matching Pursuit 

(CoSaMP) algorithm offers improvements to both 

the MP and OMP algorithms. The improvements 

are: reduction in computational complexity, stronger 

reconstruction guarantees as well as robustness to 

signal and measurement noise [4][18]. 

The IHT algorithm commences with an initial 

estimate of the target signal vector   ̂ . Next, 

iterative hard thresholding is applied to obtain a 

sequence of better signal estimates using the 

following iteration: 

 ̂     ( ̂    (    ̂      (12) 

Where   is a pruning function,   is the CS sensing 

matrix and   is the signal sparsity level. The 

sequence of iterations converges to a specific point 

vector  ̂. If the CS sensing matrix possesses the RIP, 

then the reconstructed sparse signal will satisfy an 

instance-optimality guarantee [3][21]. 

 

7 
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TABLE 2.THE ORTHOGONAL MATCHING PURSUIT 

ALGORITHM 

Input: 

Sensing matrix A, 

measurements vector y and 

error threshold  . 

Output: A sparse coefficient vector  

Initialize: 

Set the: index set      , 

residual r0 = y and the counter 

k = 1. 

Identify. 

Determine the column    

of   that is most strongly 

correlated with the residual; 

         |〈       〉|       

Form residual signal; 

        

Update the signal support; 

   

    ⋃    ( (    or   

    ⋃    . 

Estimate: 

Find the best coefficients for 

approximating the signal with 

the columns chosen so far; 

         ‖     
 ‖

 
  

Iterate: 

Update measurement residual; 

         
      

Increment the count;  

       

Repeat (2)–(4) until stopping 

criterion holds.  

End while Stopping condition ‖  ‖   . 

Output: 

Return the solution vector,   

with entries  (     (   for  

     and   (      

otherwise.  

 

The Bayesian CS reconstruction methods assume 

that the sparse signal comes from a known 

probability distribution. A stochastic measurements 

vector y is used to recover the probability 

distribution of each nonzero element of vector x. 

The recovery is done based on assumption of 

sparsity promoting priors. The method based on 

Bayesian signal modeling approach does not have a 

well-defined reconstruction errorguarantee [22].  

 

B. Magnetic resonance imaging 

Medical MRI is an imaging technique that utilizes 

the interaction between spinning hydrogen protons 

in the human body and an excitation RF signal. The 

interaction happens when the body is placed in a 

strong static magnetic field. The spinning protons 

precess about the longitudinal static magnetic field 

  at the Larmor frequency   given by; 

        (13) 

where γ is the gyromagnetic ratio of the hydrogen 

protons whose value is given by    ⁄   42.57 

MHz/T [8]. The interaction between    and the 

spins give rise to a net magnetization moment    
that is related to    by; 

  

  
        (14) 

This net magnetization points in the direction (z) of 

   and has a magnitude M0 when the value of its 

transverse component Mxy is zero. For an MR image 

to be formed, the net magnetization needs to be 

flipped away from its equilibrium (z-direction) 

orientation. The magnetization also needs to be an 

oscillating function of time in order to produce 

induction of a current in the MRI equipment 

receiver coil [23].  

Application of a transverse RF excitation signal 

pulse at the Larmor frequency induces a torque on 

the net magnetization causing it to flip away from its 

equilibrium axis. The tipping results in a non-zero 

transverse component    . The excitation RF pulse 

is applied together with a slice-select gradient field 

   in order to excite only the slice of the patient’s 
body whose MR image is required [1][8]. Once the 

excitation pulse is turned off,     decays 

exponentially with a spin-spin relaxation time 

constant   . At the same time, the longitudinal 

component of the net magnetization    grows 

towards the equilibrium net magnetization    with 

a spin-lattice relaxation time constant     The 

relaxation process is accompanied by the generation 

of a Free Induction Decay (FID) MRI signal that is 

8 
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detected by the receiver coils of the MRI equipment. 

In the x- and y-directions, aphase-encoding gradient 

field    and a frequency-encoding (read-out) 

gradient field    respectively are applied before 

reading of the FID signal. The gradient fields add 

spatial information to the FID signal. The FID signal 

is a measure of    which is given by the solution of 

following Bloch equation. 
  

  
      

  

  
   

  

  
  

 
(      

  
    

(15) 

where   ,    and    are the unit vectors in the     

and    directions respectively,   (  a and   (   

constitute the transverse magnetization component, 

  is the effective magnetic field while   (   is the 

longitudinal component. The solution of the Bloch 

equation is; 

 (      

  (       (  ⁄            [  (        (   ]  
(16) 

where               is the Cartesian 

position vector. The parameters   (   and   (   are 

the spatial frequency components given by; 

   (   
 

  
∫  (    

 

 

 

and 

   (   
 

  
∫   (    

 

 
 . 

(17) 

The receiver coil of the MRI equipment is designed 

to detect the transverse magnetization component 

contributions from all the precessing protons in the 

selected body slice. Therefore, the received FID 

signal   (   is proportional to the closed volume 

integral of the transverse magnetization as follows; 

  (   ∭ (           (18) 

Substituting for  (     from equation (16) in 

equation (18) and assuming that       the 

demodulated FID signal is given by; 

  (     )= 

∭  (          (        (            
(19 ) 

Where   (     )    (    When a thin zero-

centered body slice (  ) is selectively excited, the 

demodulated FID signal will then be given by; 

  (      

 ∬    
       (        (          

(20) 

where     ∫   (    
   ⁄

    ⁄
  The FID signal is 

therefore a two-dimensional Fourier transform of the 

transverse magnetization     at the spatial 

frequency points (          In MRI, several FID 

signals are measured at different values of spatial 

frequencies. Each of these signals is sampled at the 

Nyquist rate in the spatial frequency domain at 

sampling periods of    
 and    

 to yield the 

sampled signal  (     such that; 

 (        (    
     

   , (21) 

where    ( (    ⁄         ⁄ ],   

 ( (    ⁄   )     ⁄ ],     is the number of read-

out samples per acquisition and    is the number of 

phase encoding gradient steps.The sampled signals 

constitute the k-space of the MR image. The image 

is then reconstructed from the k-space using either 

the two-dimensional projection method or the two-

dimensional Inverse Discrete Fourier transform (2D-

IDFT) method.  

The scan-time (    of conventional spin-echo 

MRI is related to the number of phase encoding 

steps(  ) by; 

   (   (  )(     , (22 ) 

Where    is the pulse sequence repetition time  and 

    is the number of excitations used in the image 

acquisition [1]. Therefore, if the parameters    and 

    are fixed, then, the image acquisition time is 

directly proportional to the number of phase 

encoding steps. The number of phase encoding steps 

required to satisfy the Nyquist sampling criterion is 

given by; 

    (    )(      )  (23 ) 

where      is the field of view of the image in the 

y- (phase encoding) direction while        highest 

spatial frequency of the image in the y-direction. If 

the number of phase encoding steps used is lower 

than  (    )(        aliasing artifacts are 

9 
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experienced in the reconstructed image. If the high 

frequency rows of  (     are not fully captured 

during the image acquisition, truncation artifacts 

will be present in the reconstructed MR image. 

These artifacts manifest themselves in the image as 

the Gibb’s ringing phenomenon [1][8][23][24][25]. 

C). Objectiveimage quality measures 
Objective image metrics are used to compare the 

quality of a reconstructed image to that of its 

ground-truth version. The measures discussed in this 

section are the Mean Squared Error (MSE), the Peak 

Signal to Noise Ratio (PSNR) and the Structural 

SIMilarity (SSIM) index. 

The MSE of a reconstructed image   whose size 

is      pixels is given by: 

    
∑ ∑        

   
 
   

    
  

(24) 

where   is the     pixels ground-truth image and 

  is the maximum pixel intensity of the ground-truth 

image. The PSNR of the reconstructed image is 

given by; 

            (
    

∑ ∑        
   

 
   

)  (25) 

Both the MSE and PSNR are simple to compute but 

they do not match well with the characteristics of the 

Human Visual System (HVS) [26]. 

The Structural SIMilarity (SSIM) index is a 

quantitative image quality metric that is based on 

comparison of the luminance  (    , contrast 

 (     and structure  (     factors of a 

reconstructed image with those of the ground-truth 

image. Unlike the MSE and PSNR measures, the 

SSIM index is consistent with the quality judgment 

of the HVS. The three components of the SSIM 

index are obtained from the means ( ), standard 

deviations ( ) as well as the cross-correlation (     

between the images. The luminance comparison 

component is a function of the means of the images 

defined as: 

 (     
(  

 
 

 
    

( 
 
   

 
     

  
(26) 

where    and   are the means of the images   and 

  respectively. The constant    is assigned the value 

          where     .The contrast component 

is given by; 

 (     
(        )

(  
    

    )
  (27) 

where    and    are the standard deviations of the 

images   and   respectively. The constant    is 

assigned the value           where       The 

structural component is a function of the standard 

deviations as well as the correlation between the 

images. It is given by; 

 (     
(      )

(       )
  (28) 

Where     is the cross-correlation between the two  

images. The value of constant    is           

where    1. The SSIM index combines the three 

components as follows: 

    (       

( (    )
 
( (    )

 
( (    )

 
  

(29) 

where  ,   and   are parameters whose values are 

greater than zero and can be adjusted to alter the 

relative contributions of the three components. 

Substituting for the three components in equation 

(29) yields; 

    (     (
(  

 
 

 
    

( 
 
   

 
     

)

 

  

 

(
(        )

(  
    

    )
)

 

(
(      )

(       )
)

 

 

(30) 

Making the contributions of the three components to 

be equal (       ) and setting    to 

be       simplifies the SSIM index expression to; 

    (      

(  
 
 

 
   ) (       )

( 
 
   

 
    ) (  

    
    )

  
(31) 

The SSIM index and its components satisfy the 

symmetry, boundedness and unique maximum 

properties [1][7][26]. 
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III. PROPOSED METHOD AND DENOISING  

In this section, a proposed brisk and robust CS-

based MRI method is presented. The algorithm 

mainly consists of three stages namely: selective k-

space sub-Nyquist acquisition, greedy CS 

reconstruction and finally suppression of 

concomitant artifacts. The method takes a shorter 

acquisition time (  ) than conventional MRI since it 

uses only a fraction of the number of phase encoding 

gradient steps (  ) required to meet Nyquist 

sampling criterion.  

A. The Proposed Algorithm 
The entire proposed algorithm is illustrated in the 

block diagram given in fig. 1. The k-space under-

sampling step involves the use of a few phase 

encoding gradient steps (     (     (        to 

selectively under-sample the k-space. The phase 

encoding steps used are chosen such that 

approximately half of the measurements are 

constituted by fully sampled rows at the center of 

the k-space. These rows contain the k-space 

coefficients that have significantly larger 

magnitudes than the coefficients in the outer k-space 

rows. The centered rows also correspond to low 

spatial frequencies. The remaining measurements 

are obtained by uniformly under-sampling the outer 

(high-frequency) k-space rows. The selective under-

sampling process can be viewed as an elementwise 

matrix product of the full k-space of the image and 

an under-sampling mask as follows; 

  (      (      (      (32) 

where  (     is the full k-space of the image, 

  (     is the under-sampled k-space and  (     

is the proposed under-sampling mask. The mask 

consist of all ones in the rows that  correspond to the 

rows of  (     that are to be included in 

  (     and zeros in the remainder of its rows. For 

example, to selectively acquire 50% of the k-space 

of a       pixels image, only 32 out of the 64 

rows of the k-space are captured.  The central 16 

rows of  (     plus another 16 equally spaced 

rows selected from the remaining 48 outer (high 

frequency) rows will be filled with ones. Eight of 

the 16 high-frequency rows will be chosen from 

either side of the 16 central rows. The remaining 32 

rows of  (     are then filled with zeros. The 

element-by-element product of  (     and  (     

is equivalent to acquisition of an under-sampled 

version of the k-space using only half the number of 

phase encoding steps dictated by the Nyquist 

sampling theorem. The acquired incomplete k-space 

is then transformed into an MR image by first 

centre-shifting it followed by determination of its 

Inverse 2D-DFT (2D-IDFT). The centre-shifting 

operation involves swapping of the first and fourth 

as well as second and third quadrants of the k-space 

matrix. This re-arrangement allows reconstruction of 

the image using MATLAB. The resulting image will 

be corrupted by coherent aliasing as well as Gibb’s 

ringing artifacts [1][11]. This noisy image is 

reshaped into a vector prior to fully sampling using a 

random sub-Gaussian matrix   to yield a noisy 

measurement vector     given by; 

      , (33) 

where    is the vectorized image. Next, the image is 

reconstructed from     in form of vector    in the 

Haar DWT domain using the OMP greedy method 

in order to enforce the image sparsity. This step is 

followed by determination of the Inverse Discrete 

Wavelet Transform (IDWT) of vector   to yield a 

second vectorized image signal     as follows; 

          (34) 

where     is the inverse of the Haar wavelet 

transform matrix. The CS reconstruction of the 

image converts the coherent artifacts that are related 

k-space under-sampling and truncation into 

incoherent concomitant artifacts that are easily 

filtered [1].  The vectorized image     is then 

converted into its k-space data,   (    . This is 

achieved by first converting it into a matrix followed 

by determination of its centre-shifted 2D-DFT. In 

  (    , the k-space rows that were not captured 

during the acquisition of   (     will have been 

compressively reconstructed together with some 

artifacts. The k-space   (     is therefore a 

corrupted version of full k-space of the MR image. 

This corrupted k-space is vectorized in order to 

simplify the design of a filter that suppresses the 

reconstruction artifacts. The vectorized k-space is 

multiplied by a proposed filter function as follows; 

   (     (    (    (35) 
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Where   (   is the vectorized form of   (    , 

   (   is its filtered version while  (   is the filter 

function. The range of the index   for a     

pixels MR image is         Final ly,    (   is 

converted to the output image by first converting it 

into a matrix followed by inverse 2D-DFT 

determination. 

In order to generate MATLAB simulation test 

results, an MR image is first converted into its k-

space by obtaining its centre-shifted 2D-DFT. The 

k-space data is then processed according to the 

procedure illustrated in fig. 1. 

B. The proposed filter function 
The proposed artifacts suppression filter 

accentuates the high frequency k-space coefficients 
by a scaling correction factor     without 
affecting the low frequency coefficients. The filter 
characteristic was suggested after observing that the 
CS reconstruction resulted in a reduction in the 
magnitudes of high frequency k-space coefficient 
with negligible effects on the low frequency ones.  

The filter function h(n)  is given by; 

 (   {
              

                       
   (36) 

where   is the correction factor while    and    are 
the indexes of the vectorized k-space that define the 
range of the fully sampled low frequency k-space 
coefficients.   

 

 

 

 

 

 

 

 
 

 

 

Figure 1. The proposed algorithm block diagram. 

 

IV. EXPERIMENTAL RESULTS 

For the purpose of demonstrating the 
effectiveness of the proposed algorithm, MATLAB 
simulation results of ten MR images were obtained. 
The MR images were first down-sized to       
pixels using bicubic interpolation in order to reduce 
the processing time. The resizing also enabled the 
use of a denoising filter that does not require many 
parameters adjustments. The images were obtained 
from various sources that include the Siemens 
Healthineers [27] and the MNI BITE [28] databases. 
Results of some specific images as well as statistical 
summaries of the reconstruction qualities for all the 
images are presented. In all the experiments, the 
value of the artifacts correction factors used was in 
the range of          . An artifacts correction 
factor of        was found to consistently give 
reconstruction results of the highest quality. 

A. The proposed algorithm illustrations 
Figure 2 shows an illustration of the selective k-

space under-sampled acquisition and reconstruction 
of the denoised image stages of the proposed 
method.  At the top of column (a) is the ground-truth 
image which is a sagittal cross-section of a head MR 
image. Its full k-space is given below it in the same 
column. Part (b) presents an under-sampled image 
that is reconstructed from 50 % of the full k-space 
rows as shown in the same column below the image. 
The under-sampled image is corrupted by coherent 
aliasing as well as truncation artifacts. Column (c) 
shows the image reconstructed using the proposed 
methods plus its k-space. It is evident from column 
(c) that most of the coefficients missing in the k-
space given in part (b) have been compressively 
recovered. These results demonstrate that it is 
possible to approximately reconstruct the MR image 
from its under-sampled k-space. 

The results presented in fig. 3 demonstrate the 
effect of the artifacts suppression filter on the 
magnitude of the k-space coefficients. In all the 
plots, the zero spatial frequency coefficient is 
located at the centre and has a magnitude of 872.64. 
This coefficient has been scaled down by a factor of 
four to 218.16 in order to make it possible for the 
higher frequency coefficients located further from 
the centre to be seen more clearly. 

 
 

Centre-shifting and 
inverse 2D-DFT 

Under-sampled k-space 
acquisition 

Random sampling: 
       

2D-DFT determination 
and vectorization 

 

IDWT and vector to 
matrix conversion 

 

 Artifacts suppression: 
   (     (    (   

 

Vector to matrix, and 
2D-IDFT 

 

Greedy DWT domain 
reconstruction  

 

Output image 
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(a) (b) (c) 

Figure 2. Illustration of the proposed method. (a) Ground-

truth head MR image and its k-space. (b) Selectively under-

sampled image and its k-space. (c) Denoised output image 

and its k-space.  

Part (a) presents a plot of the magnitudes of the k-
space coefficients of a ground-truth head MR image 
versus the pixel index. The k-space has been 
vectorized in order to simplify the design of the 
artifacts suppression filter. The under-sampled 
version of the k-space of the image using 50% of the 
phase encoding steps is shown in part (b). In part 
(c), the vectorized k-space that has been 
compressively reconstructed from the under-
sampled version in part (b) is presented prior to 
denoising. It is evident that the coefficients missing 
in part (b) have been reconstructed in part (c). 
However, some of the reconstructed high-frequency 
coefficients have magnitudes that are much lower 
than their corresponding coefficients in part (a). Part 
(d) shows the reconstructed k-space of the image 
after denoising. The parameters of the denoising 
filter used:                and          
Comparing parts (d) and (c), the filter has the effect 
of increasing the magnitudes of the high frequency 
k-space coefficients to be comparable to those of the 
ground-truth image without affecting the low 
frequency coefficients. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 3. Denoising effect on vectorized k-space.(a) 

Ground-truth k-space. (b) Under-sampled k-space. (c) The 

reconstructed k-space. (d) Denoised k-space. 
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B. Reconstruction quality comparison 
In fig.4, the reconstruction results for three MR 

images (spine, leg, and intestines) using three 
different methods at 40% measurements are shown. 
Column (a) presents the ground-truth images. The 
images reconstructed using the OMP and StOMP 
greedy algorithms are shown in columns (b)and (c) 
respectively. The images reconstructed using the 
proposed method are presented in column (d). These 
results show that, the proposed method gives higher 
quality of reconstruction compared to the other two 
methods.  

The reconstruction quality assessment results for 

three MR images (knee, spine hand) reconstructed 

using different CS-MRI methods are presented in 

table 3. The reconstructions were performed at 

different percentage measurements using the 

proposed method as well as the OMP and StOMP 

methods. The left-most column shows the three MR 

images while the next one lists the percentages of 

the k-space rows that were selectively acquired.  

    

    
    

    
    

    
(a) (b) (c) (d) 

Figure 4.Image reconstruction results. (a) Input ground-truth 

MR images. (b) Reconstruction using the OMP method. (c) 

Reconstruction using the StOMP method. (d) Reconstruction 

using the proposed method. 
 

 

 

TABLE 3. THE SSIM VALUES OF RECONSTRUCTED 
IMAGES 

MR Image %Measur

-ements 

OMP StOMP Proposed 

SSIM SSIM SSIM 

 

10 0.56 0.54 0.74 

20 0.77 0.75 0.85 

30 0.86 0.78 0.90 

40 0.90 0.82 0.94 

50 0.93 0.90 0.96 

60 0.95 0.93 0.98 

70 0.96 0.94 0.99 

 

10 0.63 0.62 0.76 

20 0.77 0.76 0.86 

30 0.83 0.80 0.94 

40 0.89 0.88 0.95 

50 0.93 0.90 0.96 

60 0.95 0.93 0.97 

70 0.97 0.95 0.98 

 

10 0.81 0.73 0.88 

20 0.91 0.89 0.93 

30 0.95 0.93 0.95 

40 0.96 0.96 0.97 

50 0.98 0.97 0.98 

60 0.98 0.98 0.98 

70 0.98 0.98 1.00 

 
The third, fourth and fifth columns show the SSIM 
values of the reconstructed images for the three 
different methods. The results show that the 
proposed method consistently reconstructs images of 
higher quality than both the OMP and StOMP 
methods. In terms of PSNR, the reconstruction 
quality results of three MR images reconstructed 
using three different CS methods at different 
percentage measurements are shown in table 4. The 
left-most column presents the input images. The 
images are: an intestines MR image, a leg 
angiogram and a kidney MR image. The third, 
fourth and fifth columns show the PSNR values of 
the images reconstructed using the three different 
methods. The results show that the proposed method 
yields images of higher PSNR values than the other 
two methods for all the percentage measurements 
used. 
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TABLE 4.  THE PSNR VALUES OF RECONSTRUCTED 
IMAGES 

MR Image % 

Measure

ments  

OMP StOMP Proposed 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

 

10 13.07 14.13 17.24 

20 14.66 15.78 19.01 

30 16.54 16.43 21.43 

40 18.16 17.41 22.96 

50 19.07 18.35 24.48 

60 20.85 19.68 25.14 

70 22.97 20.94 27.05 

 

10 14.91 15.59 19.56 

20 16.07 16.68 20.60 

30 17.44 18.09 22.75 

40 18.70 18.80 24.05 

50 20.61 19.59 26.13 

60 21.95 20.36 27.78 

70 23.52 22.07 29.01 

 

10 15.31 16.58 18.38 

20 18.15 18.70 20.13  

30 18.63 19.55 22.37 

40 20.40 20.69 23.40 

50 21.63 21.12 24.88 

60 22.59 21.98 25.13 

70 24.43 23.07 26.45 

70 26.25 24.05 27.25 

C. Statistical summary 
A statistical mean of the quality for all the ten MR 

images reconstructed using the proposed method as 
well the OMP and StOMP methods is graphically 
presented in fig. 5. The mean PSNR values of the 
reconstructed images are plotted for different 
percentage measurements. The proposed method 
yielded higher quality images than the other two 
methods in terms of the PSNR measure. The quality 
improvement is at least 1.75 dB for 20% or more 
measurements. From the graphs, the OMP and 
StOMP methods would require at least 20% more 
measurements to reconstruct images of the same 
quality as those of the proposed method. For 
example, to reconstruct an image whose PSNR is 
21.4 dB, the OMP method requires 50% of the full 
k-space. On the other hand, the proposed method 
requires only 30% of the full k-space coefficients to 
reconstruct an image whose PSNR is 21.6 dB. This 
20% reduction in the percentage measurements 
required by the proposed method for a given 
reconstruction quality is equivalent to a 20% 
reduction in the phase encoding gradient steps (  ) 

required. From equation (22), a 20% reduction in    

for a given image quality is equivalent to a 20% 
reduction in the MRI scan time. 

Almost similar results to the mean PSNR results 
presented in fig. 5 were obtained using the SSIM 
quality measure as shown in fig. 6. The figure 
presents a plot of the mean SSIM values of the 
reconstructed images at different percentage 
measurements for the OMP, StOMP and proposed 
methods. The mean SSIM values of the proposed 
method are consistently higher than for the other 
two methods. From the graphs, the OMP and 
StOMP methods would require about 20% more 
measurements to reconstruct images of the same 
quality as those of the proposed method. The images 
reconstructed using the StOMP method at 50% 
measurements have a mean SSIM index of 0.93. 
However, the proposed method requires only 30% 
measurements to reconstruct images whose mean 
SSIM index is 0.92 dB.  

 
Figure 5. Statistical mean of PSNR for different 

reconstruction methods. 

 
Figure 6. Statistical mean of SSIM for OMP, StOMP and 

proposed methods. 
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Figure 7 presents the variation of the variance of 
the PSNR measures of the images reconstructed 
using three different methods at different percentage 
measurements. On average, the proposed method 
yields lower variance values than both the OMP and 
StOMP methods. The lower values of variance 
confirm that the proposed method exhibits better 
consistency in reconstruction quality than the other 
two methods. 

The variation in performance of the proposed 
method with the correction factor (   of the 
proposed filter function is presented in fig. 8. These 
results show that a correction factor of 
approximately 1.2 yields optimum quality results in 
terms of the PSNR for all the measurements tested. 
Using the SSIM index, similar results were obtained 
and approximately the same optimum value of the 
correction factor was obtained. The quality of the 
reconstructed images was found to decrease 
monotonically as the value of the correction factor 
used deviates from the optimum value of      . 

 
Figure 7. Variation of the variance of PSNR for different 

reconstruction methods. 

 

 
Figure 8.  Performance variation of the proposed method 

with the correction factor. 

V. CONCLUSION 

A fast and robust method for reconstruction of 

MR images has been proposed in this paper. The 

method utilizes sparse reconstruction of sub-Nyquist 

sampled k-space data of the image in the DWT 

domain. An apodizing filter function has also been 

used to enhance the rubustness of the method. 

Computer simulation reconstruction results of the 

proposed method have been used to demonstrate a 

quality improvement of at least 1.75 dB and up to 

2.1 dB over the OMP method when using at least 

20% of the full k-space data. For a given desired 

reconstruction quality and while using at least 30% 

measurements, the proposed method requires 20% 

fewer measurements than both the OMP and StOMP 

methods. This reduction in the phase encoding steps 

requirement implies a 20% reduction in the image 

acquisition time. This research will be pursued 

further with an aim of further reducing both the 

artifacts in the reconstructed images and the scan-

time. To achieve the improvements, variable density 

under-sampling approaches as well as different 

artifacts filter functions will be tested.  
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Abstract: - A fast Magnetic Resonance Imaging (MRI) algorithm that also reduces reconstruction artifacts is 

proposed in this paper. The method employs a variable-density k-space under-sampling scheme that reduces the 

image acquisition time. The under-sampled k-space is converted to an MR image that is corrupted by artifacts. 

The image is fully sampled using a sub-Gaussian random sampling matrix prior to being reconstructed in the 

Discrete Wavelet Transform (DWT) domain using a Compressive Sampling (CS) greedy method. The k-space 

coefficients that are acquired during the under-sampling step are used to replace their corresponding 

coefficients in the k-space of the compressively reconstructed image. Computer simulation test results are used 

to compare the performance of the proposed algorithm to other reported CS methods based on the Peak-Signal-

to-Noise Ratio (PSNR) and the Structured SIMilarity (SSIM) measures. The results show that the proposed 

method yields an average PSNR improvement of 1.76 dB compared to the Orthogonal Matching Pursuit 

method (OMP). This translates to a 13% reduction in scan time for a given quality of the reconstructed image. 

Key-Words: - Compressive sampling, variable-density, MRI, OMP, scan time, PSNR, k-space. 

 

1 Introduction 
A signal that has a concise representation in some 

suitable representation domain can be reconstructed 

from its measurement vector whose cardinality is 

less than the length of the signal. The paradigm used 

to under-sample and reconstruct such a signal is 

termed Compressive Sampling (CS) [1, 2, 3]. The 

CS methods reduce the acquisition time of a signal 

by sampling it at a sub-Nyquist rate prior to 

reconstruction using either optimization or iterative 

or Bayesian methods [3, 4]. Although Magnetic 

Resonance Imaging (MRI) has significant 

advantages over other medical imaging modalities, 

it suffers the drawbacks of long scan time as well as 

artifacts that compromise the quality of the image 

[5-7]. Magnetic Resonance (MR) images are usually 

sparse in the Discrete Fourier Transform (DFT) as 

well as the Discrete Wavelet Transform (DWT) 

domains and therefore, CS methods can be 

employed to reduce the scan time [5, 8]. 

A block-based CS technique is proposed in [9]. 

Although the method shows good results for parallel 

MRI, it is likely to have a high computational 

complexity when applied to conventional MRI 

because the sensed segments have to be re-

combined. Qin and Guo [10] have proposed a 

compressive sensing MR image reconstruction 

scheme. The method incorporates Total Generalized 

Variation and Shearlet transform to compressively 

reconstruct images of high quality. The test results 

in the paper show that the method preserves the 

image features such as geometry, texture and 

smoothness. However, the quality of the 

reconstructed images is relatively low. For example, 

at 20% sampling rate, the average PSNR of the 

recovered image is 20.70 dB. In addition, the 

recovered images portray high inconsistencies in 

quality. This is evident from the large standard 

deviation of the PSNR of the reconstructed images 

which is 5.69 dB at 20% measurements. 

A CS-MRI method that assumes smoothness and 

high correlation in MR images is proposed in [11]. 

For images of body organs such as the brain that 

possess localized lesions, the method is likely to fail 

since the images are neither smooth nor highly 

correlated. A CS method for fast recovery of images 

from limited samples is proposed in [12].  The 

specially designed sensing technique yielded high 

reconstruction speeds due to the possibility of 

obtaining the solution to the CS recovery problem in 

a closed form. The imaging acceleration is however 
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achieved at the expense of the image quality. For 

example, the average SSIM index achieved at 25% 

sampling ratio is 0.81 with a standard deviation of 

0.035. 

Unlike the methods reported in [9-12], the proposed 

algorithm presented in this paper employs a 

variable-density k-space sampling approach to 

reduce the scan time and a coefficients re-insertion 

step to improve the image quality. Use of the Haar 

wavelet transform and a greedy recovery algorithm 

reduces the computational cost of the method.  

The rest of this paper is organized as follows: 

Section 2 gives an outline of the CS and MRI theory 

while the proposed algorithm is presented in section 

3. Results and discussions are presented in Section 4 

while Section 5 gives a conclusion and suggestions 

for future work.  

 

2 Theoretical Background 

2.1 Compressive Sampling Theory 
The Compressive Sampling theory asserts that, an 

N-length signal that possesses a concise 

approximation in some suitable representation 

domain can be reconstructed from     

measurements. The signal is reconstructed as an N-

length, S-sparse vector   in the representation 

domain. The under-sampled measurement of the 

signal   can be viewed as a measurement vector   

given by; 

      (1) 

where    is an     measurement matrix. The 

sparse signal   can be expanded in an orthonormal 

basis domain as follows:  

  ∑    
   

 

   

  (2) 

where   is an     representation matrix. The 

sparse representation of the signal and the 

measurement vector   are therefore related by; 

      (3) 

where      is an      sensing matrix that is 

also referred to as the dictionary [2, 5, 8]. In order to 

reduce the number of measurements required to 

reconstruct the vector  , the sensing matrix must 

posses low coherence. For all the sparse signals in a 

desired class to be uniquely reconstructed from their 

noisy measurements using CS methods, the sensing 

matrix must obey the Restricted Isometry Property 

(RIP). The matrix is said to obey the RIP if there 

exists a constant      which makes the following 

inequality to hold.  

(    )‖ ‖ 
  ‖  ‖ 

  (    )‖ ‖ 
   (4) 

where    is termed the isometry constant of order s 

of the matrix and ‖ ‖ 
  denotes the square of the 

Euclidean norm. Equation (3) is under-determined 

and ill-posed. Therefore, a unique solution can only 

be obtained if the sparsity of vector   is invoked. 

The tractable methods used to obtain an 

approximate solution for vector   fall under the 

optimization, greedy or Bayesian categories.  

The optimization methods include the l1-

minimization and the Least Absolute Shrinkage and 

Selection Operator (LASSO) methods. The l1-

minimization method involves approximation of the 

S-sparse signal by solving the following convex-

relaxed problem.  

        ‖ ‖   subject to      (5) 

The LASSO method estimates the coefficients of a 

noisy sparse signal by solving the following least-

squares problem;  

        ‖    ‖ 
              ‖ ‖     (6) 

where   is a regularisation parameter that is 

dependent on the noise variance [1, 3, 5, 7].  

Although the convex optimization techniques are 

powerful tools for solving sparse signals problems, 

greedy or iterative methods can also be used to 

solve such problems. These algorithms rely on 

iterative approximation of the signal coefficients 

and the support. This is achieved either by 

iteratively identifying the support of the signal until 

a stopping convergence criterion is attained, or by 

obtaining an improved estimate of the sparse signal 

at every iteration. The methods generally have lower 

computational complexity than the convex 

optimization algorithms. The greedy methods that 

are commonly used in sparse signal recovery 

include the Matching Pursuit (MP) and its 

improvements. The improvements are such as the 

Orthogonal matching pursuit (OMP), Stagewise 

orthogonal matching pursuit (StOMP), Gradient 

pursuit (GP) and CoSaMP (COmpressive Sampling 

Matching Pursuit) algorithms [1, 4, 5].  

The Iterative Hard Thresholding (IHT) is another 

approach that is applicable to CS signal recovery. 

The method is generally employed as an algorithm 

for determining solutions of nonlinear inverse 

problems. The IHT algorithm commences with an 

initial estimate of the signal vector. Next, a 

predetermined number of iterative hard thresholding 

steps are carried to obtain a sequence of improved 

signal estimates [7]. 

 

2.2 Magnetic Resonance Imaging 
The Magnetic Resonance Imaging (MRI) is a non-

invasive technique that employs non-ionizing Radio 
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Frequency (RF) signals to generate good contrast 

medical images. When a body slice that is subjected 

to a static magnetic field is selectively excited, a 

transverse magnetization  (   ) is produced. The 

MRI equipment receiver coils detect a Free 

Induction Decay (FID) signal  (     ) that is 

related to  (   ) by; 

 (     )   

∫ ∫  (   )        ( )      ( )      

    

     

    

     

 
(7) 

where   ( ) and    ( ) are spatial frequency 

components in the read-out and phase-encoding 

directions respectively while    and    are the fields 

of view in the x and y directions respectively.  

The MR image is constructed from a set of sampled 

measurements of the FID signal using the two-

dimensional Inverse Discrete Fourier transform 

(2D-IDFT) [1, 13]. 

The FID signals are sampled in the spatial frequency 

domain at sampling periods of    
 and    

 with the 

highest spatial frequencies in the x and y directions 

being       and       respectively, to yield the 

signal, 

 (   )    (    
     

)   (8) 

where    (    ⁄   )    ⁄ ],   

 (    ⁄   )    ⁄ ],     is the number of read-

out samples per acquisition and    is the number of 

phase encoding gradient steps. The reconstructed 

image I(a, b)  is given by the inverse 2D-DFT of 

 (   ) as follows; 

 (   )

 ∑ ∑  (   ) 
   (

  
  

 
  
  

)

     ⁄

        ⁄

     ⁄

        ⁄

 (9) 

where    (    ⁄   )    ⁄ ] and   

 (    ⁄   )     ⁄ ] [1, 5, 13, 14]. 

One of the demerits associated with MRI include 

the presence of patient-related as well as equipment-

related artifacts in the MR images. The artifacts 

together with noise compromise the quality of an 

MR image and may lead to a mis-diagnosis of a 

medical condition. Another disadvantage is the 

excessively lengthy image acquisition time. For 

example, the conventional Spin Echo (CSE) MRI 

has a scan time that is given by; 

   (  )(  )(   ) (10) 

where    is the scan time, TR is  the pulse repetition 

time,    is the number of phase encoding gradient 

steps and NEX is the number of excitations per scan. 

By decreasing   , the image acquisition time is 

reduced proportionately [13, 14]. 

2.3 Image Quality Measures   
Two of the commonly used image objective quality 

metrics are the Peak Signal to Noise Ratio (PSNR) 

and the Structural SIMilarity (SSIM) index. The 

PSNR of a PQ pixels reconstructed image   is 

given by; 

            (
    

∑ ∑        
   

 
   

) (11) 

where   is the ground-truth image and   is the 

maximum pixel intensity value in  . Although the 

PSNR measure does not match well with the 

characteristics of the Human Visual System (HVS), 

it has the advantage of simplicity [1].  

The Structural SIMilarity (SSIM) index agrees 

well with the image quality judgment of the HVS. 

The SSIM of a reconstructed image   relative to a 

ground-truth image   is given by; 

    (    )

 
(        )(       )

(  
    

    )(  
    

    )
 

(12) 

where the parameters    and    denote the means of 

the reconstructed and ground-truth images 

respectively. The parameters     and    denote the 

standard deviations of the reconstructed and ground-

truth images respectively while     is the cross 

correlation between the two images. The constants 

   and    ensure that the value of      (   ) does 

not approach an infinite value as the denominator of 

(12) becomes vanishingly small [1, 15]. 

3 Proposed Algorithm   
A proposed fast CS-based method for MRI is 

presented in this section. The method uses a k-space 

under-sampling scheme that has a variable density 

that considerably reduces the MRI scan time. The 

imaging time reduction is achieved by using only a 

fraction of phase encoding gradient steps,    to 

capture enough data for reconstructing the MR 

image. The robustness of the method is enhanced by 

replacing some of the CS reconstructed k-space 

rows with the coefficients that were directly 

captured during the under-sampling stage.  

The stages that constitute the proposed algorithm 

are illustrated in the block diagram shown in fig. 1. 
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For each variable density under-sampled k-space 

acquisition, a fixed number of low-frequency rows 

at the centre of the k-space plus an equal number of 

evenly spaced high-frequency rows are captured. 

For example, to sample 50% (32 rows) of the k-

space of a       pixels image, 16 rows are 

obtained from the centre of the k-space (rows 25 to 

40). The other 16 rows (1, 4, 7, 10, 13, 16, 19, 22, 

43, 46, 49, 52, 55, 58, 61 and 64) are selected to be 

evenly selected from either side of the picked 

central rows.  This acquisition paradigm can be 

modelled as an element-wise product of the full k-

space  (   ) and a variable-density mask as; 

  
 (   )   (   )  (   ) (13) 

where   
 (   ) is the under-sampled k-space and 

 (   ) is a proposed mask given by; 

 (   )   

{
                                    

                       (   )   
                                                               

  
(14) 

where    (    )     (    ) and    is the 

number of read-out gradient steps [13]. For each 

measurement, the values of integers   ,    and   are 

selected to achieve the desired percentage 

measurement. For a 50% under-sampling,      , 

      and    . The Fourier domain under-

sampled k-space is then converted into an MR 

image by taking the 2D-IDFT. This transformation 

reveals the coherent aliasing and Gibb’s artifacts [1, 

6]. The image is then re-shaped into a vector    

prior to being fully sampled using a random 

Gaussian matrix   to yield a measurement vector    

as follows; 

       (15)  

This random sampling converts the coherent 

artifacts in    into incoherent noise which is easier 

to denoise [6]. It also enables unique CS recovery in 

the DWT domain [4].  

Next, the MR image is reconstructed from    in the 

DWT domain using the OMP method. This step 

compressively reconstructs the rows of  (   ) that 

were not captured in   
 (   ) during under-

sampling [1, 5, 6]. The image is then converted into 

its k-space    (   ) by determining the 2D-DFT. To 

reduce the artifacts and noise further, the non-zero 

k-space rows of   
 (   ) that were captured in the 

first step of the algorithm are now inserted in 

   (   ) to replace their corresponding CS 

reconstructed noisy rows to yield the output image 

k-space,   (   )  
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Block diagram of the proposed algorithm. 

The rows substitution is accomplished as follows;  

  (   )    
 (   ) 

     (   )     (   )   (   )  
(16) 

where   (   ) is a mask that is complementary to 

 (   ) and given by; 

  (   )      (      )   (   ) (17) 

where    (   )   (   ) is the element-wise 

multiplication of    (   ) by   (   ). Finally, the 

reconstructed image is generated by evaluating the 

2D-IDFT of   (   ).  

To test the proposed method using MATLAB 

simulation, ground-truth MR images were converted 

into full k-spaces by taking the 2D-DFTs which 

were then subjected to the proposed algorithm. 

 

4 Results and Discussions 
To demonstrate the effectiveness of the proposed 

algorithm, MATLAB simulation results of thirty 

two images obtained from the MR image databases 

  
 (   )   (   )  (   ) 

Variable density k-space under-sampling 

 

Full k-space 

 

Inverse 2D-DFT and matrix to vector 

conversion  

 

       

Random sampling of corrupted image  

 
OMP CS reconstruction in DWT domain 

 

IDWT, vector to matrix shaping and 2D-DFT 

 

Coefficients replacement:    (   )  

   
 (   )  [   (   )     (   )   (   )] 

Centre-shifting of   (   ) and inverse  

2D-DFT 

 
Output Image 
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in [16-18] are presented here. All the images were 

first re-sized using bicubic interpolation prior to 

cropping them to a size of       pixels in order to 

use a sampling mask of the same size for all the 

images. The PSNR and SSIM metrics are used to 

assess the image reconstructed quality [1, 15].  

In part (a) of fig. 2, a        pixels portion of a 

sagittal cross-section of a head ground-truth MR 

image is presented. An under-sampling mask that 

picks approximately 40% (26 rows) of the k-space is 

shown in part (b). The image reconstructed from the 

under-sampled k-space using the OMP method is 

presented in parts (c) and has a PSNR of 23.03 dB.  

The image shown in part (d) was reconstructed 

using the proposed method. This image has a PSNR 

of 24.80 dB and is therefore of a better quality than 

the OMP reconstructed one.   

Fig. 3 illustrates the stages of the proposed method 

using 50% measurements. Row (a) shows a       

pixels ground-truth image for a portion of the pelvis 

and its full k-space matrix. At the left of row (b), the 

image reconstructed from the under-sampled k-

space is presented. This image is corrupted by 

coherent artifacts and has a PSNR of 25.28 dB. The 

under-sampled k-space matrix is shown on the right 

of this image. The image reconstructed from the 

randomly sampled version of the image in part (b) 

using the OMP method is shown in part (c) together 

with its k-space. This image has a PSNR of 27.13 

dB and exhibits high-frequency artifacts as is 

evident from a comparison of the k-spaces in parts 

(a) and (c). After re-insertion of the directly 

measured coefficients into the k-space of the image 

in part (c), the proposed method produces an image 

whose PSNR is 28.65 dB. This image plus the k-

space matrix are presented in part (d). Inclusion of 

the coefficients re-insertion stage in the proposed 

method leads to an image quality which is better 

than that of conventional OMP.  

    
(a) (b) (c) (d) 

Fig. 2. Comparison of the OMP and the proposed CS 

methods. (a) Ground-truth image. (b) A 40% sampling 

mask. (c) The OMP reconstructed image. (d) Image 

reconstructed using the proposed method.  

 

 

 

 MR image k-space matrix 

(a) 

  

(b) 

  

(c) 

  

(d) 

  
Fig. 3.  Illustration of the proposed method. (a) Ground-

truth image and k-space. (b) Under-sampled image and k-

space. (c) OMP recovered image and k-space. (d) 

Proposed method recovered image and k-space.  

Two MR images reconstructed using different CS 

methods at 40% measurements are shown in Fig. 4. 

The first row (a) shows the ground-truth images of 

blood vessels as well as a torso. Rows (b), (c) and 

(d) show the images reconstructed using the OMP, 

LASSO and the proposed methods respectively. The 

images reconstructed using the proposed method 

reveal the details better than those recovered using 

the other two methods.  

In Table 1, the results of reconstruction of a thigh 

and a brain slice MR images using the proposed 

method and the LASSO method are shown. The k-

spaces of the images were under-sampled at various 

percentage measurements. 
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 Blood vessels Torso 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

Fig. 4. Comparison. (a) Ground-truth MR image. 

(b) The OMP reconstruction. (c) The LASSO 

reconstruction. (d) Proposed method recovery. 

The second-left column of the table presents the size 

of the measurement vector as a percentage of the 

image size. The third and fourth columns show the 

SSIM values of the reconstructed images using the 

LASSO and the proposed method respectively. The 

results show that the proposed method produced 

output images with higher SSIM index values than 

the LASSO optimization method for all the 

percentage measurements. Using the PSNR quality 

assessment index, similar results to those presented 

in table 1 were obtained. These results are as 

summarized in table 2. In the first column from the 

left, two ground-truth images are presented. They 

are images of parts of the pelvic bone and a 

shoulder. The second-left column presents the 

percentage measurements used. The third and fourth 

columns show the PSNR values of the images 

reconstructed using the OMP and the proposed 

methods respectively. From the table it is evident 

that the proposed method performs better than the 

OMP method. For example, at 30% measurements, 

the proposed method yields approximately 1.71 dB 

and 1.45 dB PSNR improvements over the OMP 

method for the pelvic bone and shoulder images 

respectively.  

Table 1. The SSIM results of a thigh and a brain slice MR 

images  

Input 

Image 

Percentage 

Measurements 

(%) 

LASSO Proposed  

SSIM SSIM 

 

10 0.72 0.88 

20 0.81 0.95 

30 0.85 0.97 

40 0.85 0.98 

50 0.87 0.99 

60 0.89 0.99 

70 0.92 1.00 

 

10 0.61 0.81 

20 0.71 0.91 

30 0.77 0.94 

40 0.84 0.96 

50 0.85 0.97 

60 0.89 0.98 

70 0.90 0.99 

Table 2. PSNR results for a pelvis and a shoulder images  

MR 

Image 

Percentage 

Measurements 

(%) 

OMP Proposed 

PSNR(dB) PSNR(dB) 

 

10 21.50 23.82 

20 25.88 26.47 

30 26.78 28.49 

40 27.50 29.28 

50 28.18 29.91 

60 28.81 30.41 

70 29.62 31.00 

 

10 16.32 17.83 

20 19.58 20.12 

30 19.97 21.42 

40 20.38 22.64 

50 23.73 25.65 

60 26.49 28.74 

70 28.37 30.04 

A summary of the mean PSNR of the images 

reconstructed using three CS methods is presented 

graphically in part (a) of fig. 5. The proposed 

method produces images of higher quality than both 

the LASSO and OMP methods for all 

measurements. The average quality improvement of 

the proposed method at 30% or more measurements 

is 1.76 dB above the OMP method. This 

improvement translates to a 13% reduction in the 

scan-time for a given quality compared to the OMP 

method. For example, to reconstruct an image with a 

PSNR of 24.34 dB, the proposed algorithm and the 

OMP method require 30% and 43% of the full k-

space respectively. In part (b) of fig. 5, the variance 

of the PSNR of the recovered images is presented. 

This summary shows that the proposed method has 

better reconstruction consistency than the other two. 

Similar results were obtained using the SSIM index. 
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(a) 

 

(b) 

 
Fig. 5. Statistical summary. (a) Mean of PSNR. (b) 

Variance of PSNR.  

5 Conclusion 
A proposed CS-MRI algorithm has been 

presented in this paper. The algorithm reduces the 

imaging scan time by applying a variable-density k-

space under-sampling technique. Substitution of 

some of the reconstructed k-space coefficients with 

the sampled ones was employed to improve the 

signal quality. Experimental results have been used 

to demonstrate that the proposed method reduces the 

MRI scan-time by 13 % compared to the OMP CS 

method. It also improves the image quality by an 

average PSNR of 1.76 dB for a given percentage 

measurement. Future work will focus on improving 

the under-sampling mask as well as the k-space 

substitution process. 
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Abstract—A proposed method that reduces the lengthy scan time 

characterizing Magnetic Resonance Imaging (MRI) is presented 

in this paper. The method also improves the robustness to noise 

and reconstruction artifacts associated with conventional MRI. It 

employs a differentially structured k-space under-sampling 

technique to reduce the imaging time. The under-sampled k-space 

is then interpolated using a bicubic method in order to obtain an 

estimate of the part of k-space that is not acquired in the under-

sampling step. The interpolation improves the resilience of the 

proposed procedure to noise and reconstruction artifacts. The 

method exploits the sparsity of MR images in the wavelet 

transform domain to reconstruct the images from the interpolated 

k-space using a greedy Compressive Sampling (CS) method.  The 

Peak Signal to Noise Ratio (PSNR) and the Structural SIMilarity 

(SSIM) objective quality metrics are used to evaluate the 

performance of the proposed method in comparison to other 

reported CS based MRI methods. Computer simulation 

experimental results reveal that the proposed method exhibits 

better robustness to noise by a 1.6 dB PSNR improvement and an 

imaging acceleration of at least 9% while maintaining image 

quality.  
Keywords—Under-sampling; Compressive Sampling; MRI; 
Sparsity; Interpolation; k-space. 

I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is medical diagnostic 

technique that exhibits exceptionally appealing attributes 

compared to other clinical imaging techniques such as X-rays 

based Computed Tomography (CT). Medical MRI commonly 

utilizes the interaction between hydrogen protons spinning in a 

strong static magnetic field and a Radio Frequency (RF) signal 

to produce high contrast and detailed images of body tissues 

and organs. The RF signal used in MRI is usually in the Very 

High Frequency (VHF) band which does not cause ionization 

of the body tissues and therefore the patient is not put at the 

risk of developing cancerous growths after undergoing an MRI 

procedure. On the contrary, CT scans make use of highly 

ionizing X-ray radiation which are more likely to be 

carcinogenic than RF signals.  The Magnetic Resonance (MR) 

images of soft-tissue organs such as the brain, heart, liver and 

spleen are therefore likely to expose focal lesions and tumors 

more accurately than CT scans. In addition, the MRI method 

has some imaging parameters that can be adaptively altered to 

vary the image contrast as desired. Unlike catheter venography, 

MRI technique is a non-invasive imaging method since it does 

not require any surgical procedure to be carried out in order for 

an internal organ of a patient to be imaged. The gadolinium-

based contrast agents used in MRI have a lower likelihood of 

triggering allergic symptoms in some patients unlike the iodine 

materials used in mask mode X-ray radiography [1-4].  

Despite all the advantages, MRI is characterized by long 

scan times as well as associated imaging artifacts. The lengthy 

acquisition time is due to the fact that the MRI Free Induction 

Decay (FID) signal needs to be sampled at the Nyquist rate for 

accurate image reconstruction. The artifacts emanate from the 

movements of the body of a patient as well as the MRI 

equipment imperfections. These drawbacks can inhibit the 

potentially widespread use of MRI as a diagnostic tool [2-4].  

Compressive Sampling (CS) is a signal acquisition 

technique that allows simultaneous sensing and compression of 

finite-length sparse or compressible signals. In CS, only a few 

measurements of the signals are acquired which is equivalent 

to multiplying the signal by a rank-deficient CS measurement 

matrix to yield a measurement [5-8]. The matrix should reduce 

the number of measurements as much as possible while 

allowing unique reconstruction of the signal. A good sensing 

matrix should possess some special properties in order to 

guarantee uniqueness of signal reconstruction. Three of these 

properties are the Restricted Isometry Property (RIP), the Null 

Space Property (NSP) and the low coherence property. 

Random matrices that have their entries which satisfy a 

Gaussian or Bernoulli distributions are usually preferred to 

deterministic matrices for use in CS measurement since they 

yield measurement vectors of relatively lower cardinality. The 

CS measured signal can be reconstructed using techniques such 

as convex optimization and greedy methods [5-7]. 

Magnetic Resonance images are normally highly 

compressible in the Discrete Wavelet Transform (DWT) 

domain. The CS acquisition and reconstruction methods can 

therefore be used as a basis for shortening the long scan times 

associated with conventional MRI [9-12].   
A compressive sampling MR image reconstruction method 

that employs Total Generalized Variation (TGV) and Shearlet 
transformation is proposed in [13]. The method reconstructs 
images whose features such as smoothness and texture are 
preserved. The quality of the reconstructed images is however 
low with an average PSNR of 20.7 dB when the recovery is 
carried out using 20% of the k-space.  In addition, the PSNR 
variance of the reconstructed images when calculated from the 
results provided in the paper is quite high at 11.38 dB. The 
implication of this high variance value is that the performance 
consistency of the method is poor.  

A CS-based MRI method that uses a few k-space samples 
to reconstruct MR images is proposed in [14]. The method 
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reconstructs high quality images when more than an eighth of 
the entire k-space is sampled. However, when the sampling 
process captures approximately 12.5% of the central region of 
the k-space, the recovered MR images revealed artifacts in the 
y-axis direction. The artifacts reduce the quality of the images 
which can lead to a wrong diagnosis of a medical problem. 

  Chun and Hung have proposed a compressive sampling-
based method for speedy reconstruction of images from low 
percentage measurements presented in [15]. The method 
achieves fast MR image reconstruction speeds since the 
solution to the reconstruction problem is obtained in a closed 
form. The good recovery speeds are however accompanied by 
poor image reconstruction quality. This is indicated by the low 
average SSIM index of 0.81 for images reconstructed from 
25% of the k-space. 

This paper proposes a CS-MRI technique that reduces the 
image scan time by employing a differential k-space sampling 
scheme. The method also incorporates a k-space interpolation 
step which leads to better image PSNR values than those 
reported in [13-15]. The proposed method employs a greedy 
recovery algorithm in the DWT domain in order to realize less 
computational complexity than that characterizing the 
optimization oriented CS methods.  

The rest of the paper is organized as follows. Section II 
gives a brief theoretical background on Magnetic Resonance 
Imaging, Compressive Sampling and objective image quality 
measures. The proposed CS-MRI method is presented in 
section III while section IV gives MATLAB-based computer 
simulation results of the proposed method. A conclusion and 
suggestions for further work are given section V.  

II. THEORETICAL BACKGROUND 

This section presents the principles of Magnetic Resonance 

Imaging (MRI) and Compressive Sampling (CS). The Peak 

Signal to Noise Ratio (PSNR) and the Structural SIMilarity 

(SSIM) index objective measures are also covered. 

 

A. Magnetic resonance imaging 

Spinning hydrogen protons in the body align with the axis of 

an externally impressed static magnetic field   . The protons 

also precess about the axis at a frequency    termed as the 

Larmor frequency and given by; 

       (1) 

where γ is the gyromagnetic ratio of the hydrogen protons 

whose value is given by    ⁄   42.57 MHz/T [2].  

The spinning protons constitute a net magnetization   that 

points in the direction of    (positive z) with no transverse 

component. Application of a transverse RF excitation signal 

pulse at the Larmor frequency causes the net magnetization to 

tip away from its equilibrium axis creating a transverse 

component    . The RF pulse is applied together with a slice-

select gradient field    in order to excite only the body slice 

selected for imaging [2, 3]. On removal of the excitation pulse, 

    decays exponentially with a relaxation time constant   . 

At the same time, the longitudinal component of the net 

magnetization    grows towards its equilibrium value    with 

a spin-lattice relaxation time constant     The relaxation 

process is accompanied by the generation of a Free Induction 

Decay (FID) which is a measure of      and given by the 

solution of following Bloch equation. 

  

  
      

  

  

   
  

  

   
       

  

   (2) 

where   ,    and    are the unit vectors in the     and   

directions respectively,       and       constitute the 

transverse magnetization component,   is the effective 

magnetic field while       is the longitudinal component. The 

solution to the Bloch equation yields the FID signal  (     ) 

given by; 

 (     )   

∫ ∫                           

      

       

      

       

 
(3) 

where       and        are the spatial frequency components 

while    and    represent the Fields of View (   ) of the 

image in the x and y directions respectively. A set of FID 

signals are acquired at different values of    and then sampled 

at the Nyquist rate to yield the sampled k-space data          

from which the MR image is constructed by taking the two-

dimensional inverse DFT (2D-IDFT) [3,4]. The acquisition 

time (  ) of the Spin Echo (SE) MRI is given by;  

       (  )      (4) 

where NEX is the number of excitations per scan,    is the 

number of phase encoding gradient steps and TR  is the pulse 

repetition time [2]. Imaging artifacts can emanate from the 

behaviour of the body of a patient as well as non-idealities 

attributable to the MRI equipment. This artifacts plus noise can 

compromise the quality of MR images leading to a possible 

misdiagnosis of a medical condition. [2, 4]. 

B. Compressive sampling theory 

      Acquisition of a signal using the Compressive Sampling 

(CS) approach is achieved by taking measurements that are 

fewer than the dimensionality of the signal. The CS 

measurement of a sparse or compressible signal  f  having N 

entries captures only     of the entries in form of a 

measurements vector   given by; 

     (5) 
where   is an     measurement matrix [5, 6]. The signal  f  
can be expressed in a sparsifying domain as a vector x whose 
support is less than N as; 

  ∑       

 

   

 (6) 

where      and   is the     representation matrix [1, 5]. 
Combining equations (5) and (6) yields; 

          (7) 
where A is an M   N sensing matrix [5, 6, 16, 17]. The matrix 
A should posses the Restricted Isometry Property (RIP) in 
order to guarantee accurate signal reconstruction from a noisy 
measurement vector. The CS methods that are used to recover 
signal   from vector   fall under various classes such as greedy 
methods and optimization methods [1, 5, 8] 

The optimization methods include the   -norm minimization 

and the Least Absolute Shrinkage and Selector Operator 
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(LASSO) methods. The   -norm minimization problem can be 

expressed as; 

        ‖ ‖  subject to         (8) 

where ‖ ‖  represents the   -norm. The LASSO problem takes 

the form; 

minimize ‖    ‖   subject to  ‖ ‖    (9) 

where   is a parameter such that      Optimization-based 

techniques offer tight performance guarantees but are generally 

slower than the greedy methods [5, 6]. 

The greedy methods achieve CS reconstruction through 

iterative approximation of the signal representation coefficients 

as well as its support. The greedy methods that are commonly 

used in sparse signal recovery include the Matching Pursuit 

(MP), the Orthogonal Matching Pursuit (OMP) and the 

Stagewise Orthogonal Matching Pursuit (StOMP) [5-7]. 

 

C). Objective Image Quality Metrics 

Two of the commonly used objective image quality metrics 

are the Peak Signal to Noise Ratio (PSNR) and the Structural 

SIMilarity (SSIM) index. The PSNR measure is simple to 

evaluate although it does not agree well with the subjective 

judgement of the Human Visual System (HVS) [7, 18]. The 

PSNR of a reconstructed image   whose size is      pixels 

is given by; 

            (
    

∑ ∑        
   

 
   

) (10) 

where   is the     pixels ground-truth image and   is the 

maximum pixel intensity of the ground-truth image.  

The SSIM index between the ground-truth image   and the 

reconstructed image   (         ) is obtained from the 

means of the images ( 
 
 and  

 
), their standard deviations (   

and   )  as well as their cross-correlation       as; 

           
(        )(       )

(  
    

    )(  
    

    )
 (11) 

where    and     are positive constants that are selected to 

ensure that the value of            is always finite. The index 

is consistent with the judgment of the HVS [18]. 

III. PROPOSED METHOD AND INTERPOLATION 

This section presents a proposed CS-based method for 

acquisition and reconstruction of MR images. The method is 

fast and resilient to noise and artifacts.  

A. Proposed Algorithm 

The stages of the proposed algorithm are illustrated in the 

block diagram given in figure 1. The differential k-space 

under-sampling step uses a few phase-encoding gradient steps 

to selectively under-sample the k-space of the MR image. The 

differential under-sampling process is equivalent to element-

by-element matrix product of the k-space of the MR image and 

an under-sampling matrix as follows; 

                     (12) 

where        is the full k-space of the image,         is the 

under-sampled k-space and        is the under-sampling 

matrix whose composition is described in [7]. The missing 

information in the acquired k-space is then estimated using 

bicubic interpolation to yield the interpolated k-space          
The interpolation step leads to an improvement in the quality 

of the reconstructed image. The interpolated k-space is 

transformed into an under-sampled MR image by 

determination of its 2D-IDFT. The image is re-shaped into a 

vector   , prior to multiplication by a Gaussian random matrix 

  to yield a measurement vector     as follows; 

       (13) 

The MR image is then reconstructed from the measurement 

vector in the Discrete Wavelet Transform (IDWT) domain as a 

vector     using the OMP method. The CS reconstruction step 

serves the purpose of enforcing the image sparsity.  

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of the proposed method. 

The vector form of the recovered image (  ) in the object 

domain is then obtained by determination of the Inverse DWT 

of vector     to yield a second vectorized image signal as; 

           (14) 

where     is the inverse Haar wavelet transform matrix. Use 

of the Haar wavelet transformation ensures a low 

computational complexity as opposed to other wavelets such as 

the Daubechies or the Coiflets.  Ultimately, the output image is 

reconstructed by re-shaping vector    into a matrix. 

For the purpose of generating computer simulation test 

results, an MR image is first converted into its k-space by 

using 2D-discrete Fourier transformation. The k-space data is 

then under-sampled and interpolated prior to CS recovery 

following the steps given in figure 1. 

B. Proposed k-space Interpolation 
The MRI equipment receiver coils detect a Free Induction 

Decay (FID) signal as given in (3). Incrementing the phase-

encoding spatial frequency by a small value    
 yields; 

 (         
)   

∫ ∫        
                     

    

      

       

      

       

 
(15) 

This equation can be re-arranged to take the following form;  

 

Differential k-space 
under-sampling  

Bicubic k-space 
interpolation 

2D-IDFT and 
vectorization  

 

Random sampling: 
       

 

CS reconstruction in 
DWT domain  

 

 

Vector to matrix 
conversion  

 

Reconstructed image 
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 (         
)   

∫ ∫  
        

                          

      

       

      

       

 
(16) 

Since    
is small,  (         

) can be approximated using 

Taylor‘s series expansion as; 

 (         
)   

∫ ∫          
                            

      

       

      

       

 
(17) 

This equation can be simplified as follows; 
 

 (         
)   (     )   

   ∫ ∫                                  

      

       

      

       

 

 

(18) 

Likewise, decrementing the spatial frequency in the phase-

encoding direction by    
,  (         

) can be estimated 

as follows; 

 (         
)   (     )   

   ∫ ∫                                  

      

       

      

       

 

 

(19) 

Combining equations (18) and (19) yields; 

 (     )  {
 (         

)   (         
)

 
} 

 

(20) 

Equation (20) shows that, a k-space row that is not captured 

during the image acquisition ( (     )) can be approximately 

generated by interpolation of its neighbouring k-space rows 

( (         
) and  (         

)   Bicubic interpolation 

is employed in this paper since it generally yields better results 
than linear interpolation. 

IV. EXPERIMENTAL RESULTS 

In this section, MATLAB simulation test results that 
demonstrate the effectiveness of the proposed algorithm are 
presented. The results were obtained using twenty-five MR 
images from various MRI research data bases including [19, 
20]. The results of some individual images plus statistical 
summaries for all the twenty-five images are presented here.  

A. The Proposed Algorithm Illustration 
In figure 2, the effects of the k-space differential under-
sampling and interpolation on the quality of the reconstructed 
MR image are illustrated. Column (a) presents the ground-truth 
MR image of a knee. The full k-space of the image is given in 
the same column below the image.  
 

 Ground-truth Under-sampled OMP Proposed  

Im
ag

e 

    

k
-s

p
ac

e 

    
 (a) (b) (c) (d) 

Figure 2. Illustration of the proposed method. (a) Ground-

truth knee MR image and its k-space. (b) Under-sampled 

image and k-space. (c) OMP reconstructed image and k-

space. (d) Proposed method reconstructed image and k-space. 

In column (b), an under-sampled image that was reconstructed 
from 50 % of the full k-space rows is shown. Below the image, 
the 50% differentially under-sampled k-space is presented. The 
under-sampled image is corrupted by artifacts as a result of 
aliasing and truncation. Column (c) shows the image 
reconstructed from the under-sampled k-space using the OMP 
method without interpolation of the k-space. The k-space of the  
image is also shown in the same column.  Part (d) presents the 
image reconstructed using the proposed method. The image 
was reconstructed from 50% under-sampled k-space by first 
estimating the missing k-space rows using bicubic 
interpolation followed by CS reconstruction using the OMP 
iterative method. The k-space of the reconstructed image is 
presented below the image. From the k-space results in parts 
(c) and (d), it is evident that the proposed method reconstructs 
the k-space as well as the image more accurately than the OMP 
method. The image reconstructed using the OMP method has a 
PSNR of 27.12 dB while that reconstructed using the proposed 
method has a PSNR of 28.77 dB.    

B. Quality of Reconstruction Comparison 
The quality assessment results for a kidney and a shin 
angiogram MR images reconstructed using three different CS-
MRI methods are presented in table 1. The left-most column of 
the table shows the ground-truth images while the second one 
gives the percentage measurements used in the experiments. 
The third, fourth and fifth columns present the PSNR values of 
the images reconstructed using the OMP, the StOMP and the 
proposed methods respectively. The results show that the 
quality of the MR images that are compressively recovered 
using the proposed algorithm have higher quality based on the 
PSNR measure than the other two greedy methods for all the 
measurements tested.    
      The reconstruction results of a spine and a hand MR 
images reconstructed using the OMP, the StOMP and the 
proposed from different k-space percentages are presented in 
table 2.  
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TABLE 1. THE PSNR VALUES OF RECOVERED IMAGES 

 MR Image % of  

k-space 

 

OMP StOMP Proposed 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

K
id

n
ey

 

 

10 18.15 18.70 19.24 

20 18.63 19.55 20.36 

30 20.40 20.69 21.68 

40 21.63 21.12 22.92 

50 22.59 21.98 24.03 

60 24.43 23.07 25.89 

70 26.25 24.05 28.74 

S
h

in
 

 

10 14.91 15.59 17.04 

20 16.07 16.68 19.53 

30 17.44 18.09 21.16 

40 18.70 18.80 22.90 

50 20.61 19.59 24.42 

60 21.95 20.36 25.85 

70 23.52 22.07 27.76 

TABLE 2. THE SSIM VALUES OF RECOVERED IMAGES 

 MR Image % of  

k-space 

OMP StOMP Proposed 

 SSIM SSIM SSIM 

S
p

in
e 

 

10 0.63 0.62 0.78 

20 0.77 0.76 0.86 

30 0.83 0.80 0.90 

40 0.89 0.87 0.95 

50 0.93 0.90 0.96 

60 0.95 0.93 0.97 

70 0.97 0.95 0.99 

H
an

d
 

 

10 0.81 0.73 0.77 

20 0.91 0.89 0.93 

30 0.95 0.93 0.95 

40 0.96 0.96 0.96 

50 0.98 0.97 0.98 

60 0.98 0.98 0.99 

70 0.98 0.98 0.99 

The first column on the left presents the ground-truth images 
while the second one gives the percentages of the image k-
space sampled. In the third, fourth and fifth columns, the SSIM 
index values of the images reconstructed using the three 
different greedy methods are presented. The results show that 
the proposed method yields images of better SSIM values than 
the other two methods. The implication of these results is 
similar to the findings obtained using the PSNR measure 
presented in table 1. 

A. Statistical summary 
A statistical summary of the variation of the quality of the 
images reconstructed by three different methods is presented in 
figure 3 for all the twenty-five MR images. The figure gives 
plots of the mean PSNR of the MR images reconstructed using 
the OMP and StOMP methods as well the proposed method at 
different percentage measurements. The summary shows that 
the proposed method produces MR images of higher quality 
than the other two methods. This is consistent with the results 
presented in tables 1 and 2. The improvement in reconstruction 

quality is at least 1.6 dB for measurements equal to or greater 
than 20%. The graphs also show that, both the OMP and 
StOMP methods require at least 9% more measurements than 
the proposed method to reconstruct images of the comparable 
quality. For example, to reconstruct an MR image with a PSNR 
of 22.8 dB, the OMP method requires 44% of k-space to be 
sampled while the StOMP requires 39% measurement. On the 
contrary, the proposed method would require 30% of the k-
space to reconstruct an MR image of a similar quality. This 
implies 14% and 9% reduction in the percentage measurements 
requirement for the proposed method compared to the OMP 
and StOMP methods respectively for a given reconstructed 
image quality. A 9% reduction in percentage measurements 
requirement is equivalent to a 9% reduction in the phase 
encoding gradient steps    ) employed and also an equivalent 

to reduction in the MR acquisition time [7]. Using 39% of the 
k-space, the proposed method produces images having 24.4 dB 
mean PSNR which indicates an improvement of 1.6 dB over 
the StOMP method for the same length of the measurement 
vector. 

Similar experimental results to those presented in figure 3 
were obtained using the SSIM measure as presented in figure 
4. The figure shows the variation of the mean SSIM indexes of 
the reconstructed images at different percentage measurements 
for the StOMP, OMP as well as the proposed method. From 
the graphs, the proposed method consistently yields mean 
SSIM values that are higher than those of both the OMP and 
StOMP methods. For example, the StOMP method requires 
about 40% measurements to reconstruct images of an average 
SSIM index equal to 0.9 while the proposed method needs only 
30% measurements for an equivalent quality of reconstruction. 
The scan time reduction of the proposed method in comparison 
to the StOMP method from the mean SSIM results is 
approximately 10% which agrees closely with the mean PSNR 
results.  

Figure 5 presents the variation of the variance of the PSNR 
measures of the images reconstructed using three different 
methods at different percentage measurements. On average, the 
proposed method yields lower variance values than both the 
OMP and StOMP methods. The lower values of variance 
confirm that the proposed method exhibits better consistency in 
reconstruction quality than the other two methods. 

 

 
Figure 3. Variation of the mean PSNR with percentage 

measurement for different reconstruction methods. 
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Figure 4. Variation of the mean SSIM with the percentage 

measurements.   

 

Figure 5. Variation of the PSNR variance with the percentage 

measurements. 

V. CONCLUSION 

A robust and fast proposed method for acquisition and 

reconstruction of MR images has been presented in this paper. 

The method sparsely reconstructs the images from an 

interpolated version of differentially under-sampled k-space of 

an MR image in the DWT domain. MATLAB based-Computer 

simulation results have been used to demonstrate that the k-

space interpolation improves the image PSNR by an average of 

1.6 dB over the StOMP method. In addition, the proposed 

method requires at least 9% fewer measurements than other 

greedy methods which implies a corresponding reduction in the 

image acquisition time. This research work will be pursued in 

order to further reduce image scan-time and also improve the 

quality of the reconstructed images.  
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APPENDIX J 

MATLAB PROGRAM CODES 

In this section of the appendix, some of the MATLAB codes that were written 

for the purpose of generating the simulated results of the various proposed 

methods are presented. The codes are; 

(i) The valden function implements The CS-MRI method that is based on 

variable-density k-space under-sampling, compressive sampling 

reconstruction and coefficients substitution. 

(ii) The psim function calculates both the PSNR and SSIM indexes of a 

reconstructed image relative to a ground- truth. 

(iii) The selsup code implements the agile and robust sparse recovery 

method for MR images based on selective k-space acquisition and 

artifacts suppression.  

(iv) The gauden MATLAB program was used to generate the results of the 

CS-MRI reconstruction method that uses adaptive Gaussian denoising. 

(v) The hybrid MRI method based on denoised compressive sampling and 

detection of dominant coefficients was tested using the domdet 

function.   

J.1  

function x9= valden(I, alpha, beta1, beta2, gamma1, gamma2) 

% function was written by Kiragu Henry Macharia an PhD student from the School Engineering 

% of the University of  Nairobi on 10th June 2018. Written to Compressively reconstruct MR      

% images  for a PhD research thesis which was supervised by Prof Elijah Mwangi and Dr George  

% Kamucha of the School Engineering of the University of Nairobi 

% Usage 

% valden converts an MR image to grey scale, crops it, under-samples it and  then reconstructs  it 

% in the DWT domain using a greedy CS algorithm 

% v = valden [I, alpha, beta1, beta2, gamma1, gamma2] compressively   reconstructs  an MR      

% image from  just a few measurements 

% I is the input MR image 

% alpha is the image resizing scaling factor. 

% beta1 is the cropping row 

% beta 2 is the cropping column 

% gamma1 lower sampling row 

% gamma2 upper sampling row 

if nargin<6            . 

alpha=0.5; % Determination of the input arguments plus image cropping 

end 
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I2=rgb2gray(I); % Conversion from colour to gray scale image 

f=im2double(I2); % Conversion to double data 

la = imresize(f, alpha, 'bicubic'); % Resizing using bicubic interpolation 

J = imcrop(la,[ beta1 beta2 31 63]); % Image cropping 

l=fft2(J); % Determination of 2D-DFT of the cropped image 

l1=fftshift(l); % Centre- shifting of the DFT to form k-space data 

d=ones (64,32); % The 64 by 32 matrix formation 

for m =1:1:64, % Move in steps of one from the first row to the last 

for n=1:1:32,%  Move in steps of one from the first column to the last 

if m< gamma1 

d1(m,n)=0; % Nulling of lower k-space rows 

elseif m> gamma2 

d1(m,n)=0; % Nulling of upper k-space rows 

else d1(m,n)=1; % Retained k-space rows 

end 

end 

end 

d2=d-d1; % Sampling mask formation 

for m =1:1:64, % Move in steps of one from the first row to the last 

for n=1:1:32,%  Move in steps of one from the first column to the last 

if rem(m,3)==0 

d3(m,n)= d2(m,n); % High frequency sampling mask formation 

else 

d3(m,n)=0; 

end 

end 

end 

d4=d3+d1; % Combining upper and lower sampling masks 

d5=d-d4; % Formation of the overall sampling mask 

l2=d4.*l1; % Sampled k-space generation 

l6=fftshift(l2); % Reorganization of the k-space into a 2D-DFT 

l7=abs(ifft2(l6)); % Image formation from under k-space 

l8 = reshape(l7.',1,[]); % Image vectorization 

l9=transpose(l8); % Image vector transposition 

phi=MatrixEnsemble(2048,2048); % Random sampling matrix formation 

H=haarmtx(2048); % Haar discrete wavelet transform matrix formation 

H1=transpose(H); % Haar inverse discrete wavelet transform matrix formation 

A=phi*H; % The compressive sampling matrix formation 

y=phi*l9; % Generation of the measurement vector 

[x, p]=SolveOMP(A, y, 2048); % Image reconstruction from y using OMP 

 x1=H*x;  % Inverse discrete wavelet transform determination 

x2=vec2mat(x1,32); % Vector to matrix conversion 

x3=abs(x2); % Determination of absolute values of coefficients 

x4=fft2(x3); % Determination of 2D-DFT of the reconstructed image 

x5=fftshift(x4); % Reorganization of the k-space into a 2D-DFT 

x6=x5.*d5; % Separation of purely reconstructed k-space coefficients 

x7=l2+x6; % Insertion of the directly acquired k-space coefficients 

x8=fftshift(x7); % Reorganization of the k-space into a 2D-DFT 

x9=abs(ifft2(x8)); % Formation of the reconstructed image. 

J.2  

function ps= psim(g, f, M, N, C1, C2) 

% psim calculates the PSNR and the SIMM of an MR image 𝑔 relative to ground  truth image 𝑓.      
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% ps[s2 ssim]= psim[g, f, M, N, C1, C2] Returns the relative PSNR and SSIM of  the given         

% images. 

% f is the ground-truth image, 

% g is the reconstructed image. 

% C1 is a constant that prevents the luminance component from being infinite. C2 is a constant   

% that prevents the contrast component from being infinite M is the number of rows in the input 

%  image 

% N is the number of columns in the input image 

% process of determining the input arguments g, f, M, N, C1 and C2. 

[M, N]=size(f); % determination of the input arguments M and N. 

if nargin<6   % setting of the other input argument C1 if they are not specified. 

C1=0.01; 

end 

if nargin<5   % setting of the other input argument C2 if they are not specified. 

C2=0.03; 

end 

s=0; % Initialization of the PSNR value 

muf =0; % Initialization of the mean value of image f 

mug =0; % Initialization of the mean value of image g 

for m =1:1:M, % Move in steps of one from the first row to the last 

for n=1:1:M,%  Move in steps of one from the first column to the last 

s=s+((f(m,n)-g(m,n))^2)/(M*N); % Updating the PSNR value 

s1=real(1/s); % Mean squared error determination 

s2=10*log10(s1); % Determination of PSNR in dBs 

s4=10*log10(s); % Determination of PSNR in dBs 

mug=mug+( g(m,n))/( M*N); % Updating the mean of g 

muf=muf+(f(m,n))/( M*N); % Updating the mean of f 

end 

end 

cor=0; % Initialization of the cross-correlation factor 

vaf=0; % Initialization of the variance of image f 

vag=0; % Initialization of the variance of image g 

for m =1:1:M, % move in steps of one from the first row to the last 

for n=1:1:N,%  move in steps of one from the first column to the last 

vag=vag+(( g(m,n)-mug)^2)/( M*N); % Updating the variance of image g 

vaf=vaf+((f(m,n)-muf)^2)/( M*N); % Updating the variance of image f 

cor=cor+((f(m,n)-muf)*( g(m,n)-mug))/( M*N); % Updating the cross correlation factor 

end 

end 

sdf=sqrt(vaf); % Calculation of the standard deviation of image f 

sdg=sqrt(vag); % Calculation of the standard deviation of image g 

ssim=((2*muf*mug+C1)*(2*cor+C2))/((muf^2+mug^2+C1)*(vag+vaf+C2)); % Calculation 

% of the SSIM index 

J.3  

function ss= selsup(I, alpha, beta1, beta2, M, N, M1, N1) 

% selsup compressively reconstructs an MR image based on selective k-space    acquisition and  

% artifacts suppression 

% ss= selsup [I, alpha, beta1, beta2, M, N, M1, N1] returns the reconstructed MR  image 

% I is the input degraded image 

% alpha is the image resizing scaling factor 

% beta1 is the cropping row 

% beta 2 is the cropping column 

% M is the number of rows of the input cropped image 
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% N is the number of columns of the input cropped image 

% M1 is the lower sampling row of the cropped image 

% M2 is the upper sampling row of the cropped image 

% determination of the input arguments  

if nargin<8  % setting of the other input argument alpha if not specified. 

alpha=0.5; 

end 

if nargin<7  % setting of the other input argument M if not specified. 

M=64; 

end 

if nargin<6  % setting of the other input argument N if not specified. 

N=32; 

end 

I2=rgb2gray(I); % Conversion from colour to gray scale image 

f=im2double(I2); % Conversion to double data 

l1 = imresize(f, alpha, 'bicubic'); % Resizing by bicubic interpolation 

J = imcrop(l1,[ beta1, beta2 (N-1) (M-1)]); % Image cropping 

l=fft2(J); % Determination of 2D-DFT of the cropped image 

l1=fftshift(l); % Centre- shifting of the DFT to form k-space data 

for m =1:1:M, % move in steps of one from the first row to the last 

for n=1:1:N,%  move in steps of one from the first column to the last 

if m<M1 

l2(m,n)=0; % Nulling of lower k-space rows 

elseif m>M2 

l2(m,n)=0; % Nulling of upper k-space rows 

else l2(m,n)= l1(m,n); Retained k-space rows 

end 

end 

end 

l3=l1-l2; % Sampling mask formation 

for m =1:1:M, % move in steps of one from the first row to the last 

for n=1:1:N,%  move in steps of one from the first column to the last 

if rem(m,3)==0 

l4(m,n)= l3(m,n); % High frequency sampling mask formation 

else 

l4(m,n)=0; 

end 

end 

end 

l5=l4+l2; Formation of the sampled k-space  

l6=fftshift(l5); % Re-organization of the k-space into a 2D-DFT 

l7=abs(ifft2(l6)); % Image formation from under-sampled k-space  

l8 = reshape(l7.',1,[]); % Image vectorization 

l9=transpose(l8); % Image vector transposition 

phi=MatrixEnsemble(M*N, M*N); % Random sampling matrix formation 

H=haarmtx(M*N); % Haar discrete wavelet transform matrix formation 

H1=transpose(H); % Haar inverse discrete wavelet transform matrix formation 

A=phi*H; % The compressive sampling matrix formation 

y=phi*l9; % Generation of the measurement vector 

[x, p]=SolveOMP(A, y, M*N);  % Image reconstruction from y using OMP 

x1=H*x; % Inverse discrete wavelet transform determination 

x2=vec2mat(x1,N); % Vector to matrix conversion 

x3=abs(x2); % Determination of absolute values of k-space coefficients 
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x4=fft2(x3); % Determination of 2D-DFT of the reconstructed image 

x5=fftshift(x4);  % Reorganization of the 2D-DFT into k-space data 

% Artifacts suppression function generation 

for m =1:1:M, % move in steps of one from the first row to the last 

for n=1:1:N,%  move in steps of one from the first column to the last 

if m<M1 

x6(m,n)=1.2*x5(m,n); % Accentuation of the coefficients below M1 

elseif m>M2 

x6(m,n)=1.2*x5(m,n); % Accentuation of the coefficients above M2 

else x6(m,n)= x5(m,n); % Subjecting low frequency coefficients to unity gain 

end 

end 

end 

x7=fftshift(x6); % Reorganization of the k-space data into a 2D-DFT 

ss=abs(ifft2(x7));% Inverse 2D-DFT to generate the reconstructed image 

J.4 

function gd= gauden(I, alpha, beta1, beta2, M, N, M1, N2, M3) 

% The gauden MALAB code compressively reconstructs an MR image using adaptive  Gaussian 

% gd= gauden [I, alpha, beta1, beta2, M, N, M1, N2, M3] returns the reconstructed MR image 

% I is the input MR image 

% alpha is the image resizing scaling factor 

% beta1 is the cropping row 

% beta 2 is the cropping column 

% M is the number of rows in the input cropped image 

% N is the number of columns in the input cropped image 

% M1 is the lower sampling row of the cropped image 

% M2 is the upper sampling row of the cropped image 

% M3 is the number of rows of the CS matrix 

% determination of the input arguments  

if nargin<9  % setting of the input argument alpha if not specified 

alpha=0.5; 

end 

if nargin<8  % setting of the input argument M if not specified 

M=64; 

end 

if nargin<7  % setting of the input argument N if not specified 

N=32; 

end 

I2=rgb2gray(I); % Conversion from colour to gray scale image 

f=im2double(I2); % Conversion to double data 

l1 = imresize(f, alpha, 'bicubic'); % Resizing by bicubic interpolation 

J = imcrop(l1,[ beta1, beta2 (N-1) (M-1)]); % Image cropping 

l=fft2(J); % Determination of 2D-DFT of the cropped image 

l1=fftshift(l); % Centre- shifting of the DFT to form k-space data 

e = reshape(l1.',1,[]); % Vectorization of the k-space data 

F1=transpose(e); % k-space vector transposition 

phi=MatrixEnsemble(M3,M*N); % Random sampling matrix formation 

H=haarmtx(M*N); % Haar discrete wavelet transform matrix formation 

H1=transpose(H); % Haar inverse discrete wavelet transform matrix formation 

A=phi*H; % The compressive sampling matrix formation 

y=phi*l9; % Generation of the measurement vector 

[x, p]=SolveOMP(A, y, M*N);  % Image reconstruction from y using OMP 

x1=H1*x; % Inverse discrete wavelet transform determination 
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x2=vec2mat(x1,N); % Vector to matrix conversion 

x5=fftshift(x2); % Reorganization of the k-space data into 2D-DFT 

x3=ifft2(x5); % Determination of the reconstructed image 

x4=real(x3); % Determination of the real reconstructed image 

for n=1:1: M*N 

w(n) =exp((-2*10^(-6))*(n-(M*N/2))^2); % Gaussian denoising function 

end 

v=transpose(w); % Gaussian denoising function transposition 

v1=x1.*v; % The Gaussian denoising operation 

v3=vec2mat(v1,32); % Vector to matrix conversion 

vx=fftshift(v3); % Reorganization of the k-space data into 2D-DFT 

v4=real(ifft2(vx)); % Determination of the real reconstructed image 

gd=abs(ifft2(vx)); % Determination of the denoised absolute reconstructed       % image 

J.5 

function dd= domdet(I, alpha, beta1, beta2, M, N, M1) 

% domdet compressively reconstructs a denoised MR image using CS and detection of dominant 

% coefficients 

% dd= domdet[I, alpha, beta1, beta2, M, N, M1] returns the denoised reconstructed MR image. 

% I is the input degraded image, 

% alpha is the image resizing scaling factor. 

% beta1 is the cropping row. 

% beta2 is the cropping column. 

% M is the number of rows of the input cropped image 

% N is the number of columns of the input cropped image 

% M1 is the number of  rows sampled 

% determination of the input arguments  

if nargin<7  % setting of the input argument alpha if not specified. 

alpha=0.5; 

end 

if nargin<6  % setting of the input argument M if not specified. 

M=64; 

end 

if nargin<=5  % setting of the input argument N if not specified. 

N=32; 

end 

if nargin<4  % setting of the input argument M1 if not specified. 

M1= M /2 

end 

I2=rgb2gray(I); % Conversion from colour to gray scale image 

f=im2double(I2); % Conversion to double data 

l1 = imresize(f, alpha, 'bicubic'); % Resizing by bicubic interpolation 

J = imcrop(l1,[ beta1, beta2 (N-1) (M-1)]); %  The image cropping 

l=fft2(J); % Determination of 2D-DFT of the cropped image 

l1=fftshift(l); % Centre- shifting of the DFT to form k-space data 

e = reshape(l1.',1,[]); % Vectorization of the k-space data 

for m=1:1:M*N 

if m<= M*N/2 

e1(m)=0; % Nulling of the coefficients on the left of the dominant one 

elseif m>= M*N/2 

e1(m)=0; % Nulling of the coefficients on the right of the dominant one 

else e1(m)=e(m); % Retention of the dominant coefficient 

end 

end 
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e2=e-e1; dominant coefficient extraction 

F1=transpose(e2); % k-space vector transposition 

phi=MatrixEnsemble(M1, M*N); % Random sampling matrix formation 

H=haarmtx(M*N); % Haar discrete wavelet transform matrix formation 

H1=transpose(H); % Haar inverse discrete wavelet transform matrix formation 

A=phi*H1; % The compressive sampling matrix formation 

y=phi*F1; % Generation of the measurement vector 

[x, p]=SolveOMP(A, y, M*N); % Image reconstruction from y using OMP 

x1=H1*x; % Inverse discrete wavelet transform determination 

for m=1:1: M*N 

if m< M*N/2 

x2(m)=x1(m); % Retention of the coefficients to the left of the dominant one 

elseif m> M*N/2 

x2(m)=x1(m); % Retention of the coefficients to the right of the dominant one 

else x2(m)=0; % Nulling of the dominant coefficient 

end 

end 

for n=1:1: M*N 

w(n) =exp((-10^(-6))*(n-2048)^2); % Denoising function generation 

end 

v=transpose(w);% Transposition of the denoising function 

v1=x2.*w;% The denoising step of the algorithm 

e3=v1+e1; % Re-insertion of the dominant coefficient 

x3=vec2mat(e3,64); % Conversion of the k-space vector into a matrix 

x5=fftshift(x3);% Conversion of the k-space matrix into a 2D-DFT 

x6=ifft2(x5); Determination of the inverse 2D-DFT 

dd=real(x6); % generation of the denoised output image 
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APPENDIX K 

GROUND-TRUTH MR IMAGES 

The ground-truth MR images that were used in obtaining the MATLAB 

simulation experimental results are presented here. The images were obtained 

from [101, 102, 106-109] 
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