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Abstract

This thesis mainly focuses on the Mathematical and Numerical aspects of the Fredholm
integral equations of the Second Kind. Due to its wide range of physical applications,
we are going to deal with three types of equations namely: differential equations,
integral equations and integro-differential equations.

Some of the applications of integral equations are heat conducting radiation, elastic-
ity, potential theory and electrostatics.

Generally, we define an integral equation where an unknown function occurs under
an integral sign. Also integral equations can be classified according to three different
dichotomies:

1. Nature of the limits of integration
2. Placement of the unknown function
3. Nature of the known function

After the classification of these integral equations we will have to investigate some
analytical and numerical methods for solving the Fredholm integral equations of
the Second Kind. Analytical methods include: degenerate kernel methods, Ado-
main decomposition methods and Successive approximation methods and Numer-
ical Methods include: Degenerate kernel methods, Projection methods, Nystrom
methods and Spectral methods.
The main objective of the thesis is to study Fredholm integral equations of the Sec-
ond Kind. In chapter 4 we have given the approximate methods (Spectral Methods)
to solve these equations Using The Classical Orthogonal polynomials which is the
main idea of this thesis where we apply the Spectral Approximation Methods for
approximating the Fredholm integral equations of the Second Kind.
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1 Introduction

Integral equations occur naturally in many fields of science and engineering. A computa-
tional approach to solve integral equations is an essential work scientific research.

Integral equations were first encountered in the theory of Fourier Integral. In 1826, another
integral equation was discovered by Abel. Actual development of the theory of integral
equations began with the works of the Italian Mathematician V. Volterra (1896) and
Swedish Mathematician I. Fredholm (1900).

Integral equations are encountered in a variety of applications in many fields including;
queuing theory, mathematical problems of radiative equilibrium, medicine, the particle
transport problem of astrophysics and reactor theory, acoustics, fluid mechanics, steady
state heat conduction, fructure mechanics and radiative heat transfer problems. Fredholm
is one of the most important integral equations.

Most initial value problems (IV Ps) and boundary value problems (BV Ps) which are also
associated with ordinary differential equations (ODEs) and partial differential equations
(PDEs) can be evaluated more easily by the use of integral equation methods. Generally,
integral equations is one of the useful tools in many branches of pure analysis famously
known as the theories of functional analysis.

Integral equations can be viewed as equations which are results of transformation of points
in a given vector spaces of integrable functions by the use of certain specific integral oper-
ators to points in the same space. If, in particular, one is concerned with function spaces
spanned by polynomials for which the kernel of the corresponding transforming integral
operator is separable being comprised of polynomial functions only,then several approxi-
mate methods of solution of integral equations can be developed.
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1.1 HISTORICAL BACKGROUND OF THE INTEGRAL
EQUATIONS

An integral equation is an equation in which an unknown function under one or more
integral signs. There is a close connection between differential equations and integral
equations and some problems may be formulated either way. Its basic form is given by

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, x ∈ [a,b], λ 6= 0 (1)

K is known as the kernel of the integral equation. Since the kernel K is integrable then
it satisfies all the conditions of Fredholm theorems. For g(x) 6= 0, we have λ which
is a nonzero real or complex parameter and g given, and we seek f , this is the non
homogeneous problem. For y = 0, equation (1) becomes an eigenvalue problem, and
we seek both the eigenvalue λ and the eigen function f . The integral Equation (1) is
therefore given by;

(I−λK)f = y (2)

with K being the integral operator on a Banach space X

Toward the end of 19th century, interest on integral equations increased, majorly because
of their connection with some of the differential equations (be it Ordinary or Partial)
of mathematical physics.

In this section we present the works of Ivar Fredholm [1903], David Hilbert [1904]
and Erhard Schmidt [1907] on the theory of Fredholm Integral equations of the Sec-
ond Kind. Although the original copies of Fredholm′s and Hilbert′s papers had been
anticipated in special cases-especially by Carl Neumann and Henry Poincare′. They
were actually the first to treat the problem in full generality, that is; independent of special
applications. But Schmidt derives and extends the results of Fredholm and Hilbert,
which is entirely a different of view.

We have seen that a Fredholm integral equation of the Second Kind has the general
form as:

y(x) = f(x)−λ
∫ b

a
K(x,t)y(t)dt, x ∈ [a,b] (3)

Where y(x) is the unknown function, f(x) and K(x,t) are known. K(x,t) is called the
kernel of the integral equation, and λ is a parameter.
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Our authors assume that y(x) and K(x,t) satisfy certain regularity conditions on the
interval. The authors were also quick to point out their results apply to more general
regions of integration in higher dimensional spaces.

Both Fredholm and Hilbert start from the corresponding linear system below:

y = (I−λK)f (4)

Where K is a square matrix and y and f are vectors. But Fredholm, implicitly takes
λ=−1 and is also concerned with how to solve (4) in such away that the process can be
generalized to (3). He does not justify his generalization but simply writes down formulas
and then shows that they actually work. In the process, he treats the right hand side of (3)
as an operator on functions, thus ensuring his place among the founders of Functional
Analysis. The crowning glory of his (Fredholm′s) paper is an elegant theory of what
happens when (3) is ’singular’ i.e when −1 is an eigenvalue of an arbitrary multiplicity of
K(x,t)

On the other hand, Hilbert takes K to be symmetric and is concerned with generalizing
the finite dimensional concept of eigenvalue and eigenvector in such away that functions
can be expanded in terms of eigenfunctions of the kernel K(x,t). (It was Hilbert
who introduced the terms Eigenwert and Eigenfunktion). Unlike Fredholm who first
develops a complete theory for linear systems and eigensystems and then by a limiting
process generalizes the theory to (3). He is then forced to assume that his eigenvalues are
not multiple(although he relaxes this assumption toward the end of his paper). There,s
no significant use of operators.

Schmidt covers the territory mapped by Fredholm and Hilbert (and then some), but
with an important difference. Instead of starting with the finite dimensional problem, he
works directly with the integral equations. In addition, he goes ahead and introduces what
we would now call the Singular Value Decomposition for unsymmetric kernels and proves
an important approximation theorem associated with the decomposition. He achieved this
by introducing a finite collection of functions ϕ1,ϕ2... that are orthonormal in the sense
that ∫ b

a
ϕi(s)ϕj(s)ds=

1, i= j

0, i 6= j
(5)

There are many analytical methods which are developed for solving Fredholm Integral
Equations. Such methods as the degenerate kernel methods, converting Fredholm in-
tegral equations to ordinary differential equations, the Adomain decomposition
, altered decomposition method, series solutions. Numerical methods for solving
Fredholm integral equations can be subdivided into the following categories, Degener-
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ate kernel approximation methods, projection methods, Nyström methods and
Spectral methods.

All of these methods have iterative invariants. There are other numerical methods,but
the above methods have their invariants the most popular. For more interesting history,
see [15].
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1.2 Problem Statement

This involves the study of the Fredholm integral equations of the Second Kind including
their properties, analytical solutions and numerical solutions.

1.3 Objectives

• To study and understand the Historical Background of Fredholm integral equation of
the Second Kind.

• To study and understand various analytical and numerical methods for solving Fred-
holm integral equation of the Second Kind.

• To study and understand the application of spectral methods in Fredholm integral
equation of the Second Kind.
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1.4 Literature Review

We have already defined an integral equation as an equation in which an unknown func-
tion to be determined appears in the integral sign.

Over the years, we have seen an increasing interest in integral equations mainly because
of their connection with some of the differential equations of mathematical physics. This
also explains why in engineering and scientific applications of a natural phenomenon we
usually find ourselves in front of one equation of three, differential equation, integral
equation or integro-differential equation. In fact, the conversation of a scientific
phenomenon to integral equations is the easy way to obtain numerical solutions, enable
to prove the fundamental results on the existence and uniqueness of the solution.

At a time in the early 1960’s, researchers were interested majorly in one-dimensional case.
It was for a kernel function K that was at least continuous: and the it was assumed
that K(x,t) was seventh times continuously differentiable. This was the type of equa-
tion studied by Ivar Fredholm, and in his honor such equation is called Fredholm Integral
Equation of the Second Kind. Today, the work involves multi-dimensional in which the
equations are completely continuous and the region of integration is commonly a surface
of R3 and the kernel function K is often singular. The Fredholm theory is still valid for
such equations and the theory is critical as well for the convergence and stability analysis
of associated numerical methods.

In the recent past, many methods of solving Fredholm integral equations of the sec-
ond kind have been developed by researchers, such as quadrature method, collocation
method and Galerkin method, expansion method, product-integration method, deferred
correction method, graded mesh method and Petrov-Galerkin method. Furthermore, the
iterated kernel method is a traditional method for solving the integral equation. However,
it also requires a huge size of data of calculations.

Some of the recent researchers include: Iman Malmir [30] who in his research he used
the numerical solution method based on Chebyshev and Legendre polynomials to solve
the Fredholm integral equation of the Second Kind. Also, Also in their research Salih Y.
and T. Akkaya [16] used a matrix method for approximately solving linear Fredholm
integral equations of the Second Kind. The solution involves the truncated Legendre series
approximation.
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Their method is based on first taking the truncated Legendre series expansions of the
functions in equation and then substituting their matrix forms into the equation reducing
it to a matrix equation corresponding to a linear system of algebraic equations with un-
known Legendre coefficients among many other researchers [13].

He used their expansions because of their convergence and recurrence properties. First,
he tries to expand the unknown function in the integral equation based on the related
formulas, then develop kernel of integral equation by determining a function which can be
represented as the solution of linear differential equation then substitute into the integral
equation to find the coefficients of the function.

In this thesis, we are going to use the Legendre Polynomials and Chebyshev Polynomials
methods to approximate the solution of the equation (3). Usually, the main advantage
of spectral methods lies to their rapid convergence and their relatively simpler numerical
implementation than other methods especially the Legendre Series approximation method.
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1.5 Outline

In this study we discuss the following points:

The first chapter is about introduction and definition of integral equations, historical
background and theory of integral equations. In the second chapter we expose the math-
ematical preliminary of the integral equations which aims to familiarize the reader with
the concept of integral equation including their applications and relations with ordinary
differential equations and partial differential equations. The third chapter is devoted pri-
marily to presenting various methods of analytical and numerical resolution of Fredholm
integral equations of the Second Kind, especially to exhibit approximation methods, such
as the methods of Adomain decomposition, variational iteration, projection, collocation,
Galerkin, Nystrom, successive aproximation· · · and to illustrate the validation of these
methods by instructive examples. The fourth chapter contains the introduction to spec-
tral methods together with classical orthogonal polynomials and applications of some of
these polynomials to approximate the solution of Fredholm integral equation of the Sec-
ond Kind. These methods seek the solution as a linear combination of polynomials of
degree N . Indeed, it is known that the orthogonal polynomials have interesting properties
for approximating the Fredholm integral equations of the Second Kind. These orthogonal
polynomials include: D’Olinde Rodrigues’, Laguerre, Hermitian, Legendre, Chebyshev and
Jacobi. In this work, we are only going to study into details the Chebyshev and Legendre
polynomials.
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(a) David Hilbert (b) Erhard Schmidt

(c) Ivar Fredholm

Figure 1. Early Scientists Who Contributed to the Development of Integral Equations
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2 Mathematical Preliminaries

Definition An integral equation is an equation in which the unknown function y(x) to
be determined appears under the integral sign. A general form of an integral equation in
y(x) is of the form:

u(x) = v(x) +
∫ µ(x)

ω(x)
K(x,s)u(s)ds (6)

K(x,s) is the kernel of the integral equation. ω(x) and µ(x) are the limits of integration.
The limits of integration ω(x) and µ(x) are either constants, variables or mixed and they
can also be in uni-dimension or multi-dimension.

For example; for a≤ x≤ b; a≤ s≤ b the equations

y(x) =
∫ b

a
K(x,s)y(s)ds (7a)

y(x) = u(x) +
∫ b

a
K(x,s)y(s)ds (7b)

y(x) =
∫ b

a
K(x,s)[y(s)]2ds (7c)

In equation (1), the unknown function y(x) is easily observed to appear both inside and
outside the integral sign as we stated earlier in the definition. It is important to note that
the kernel K(x,t) and the function f(x) are always given in advance. Therefore, the main
idea is to determine y(x) such that it it agrees with equation (1).

Integral equations arise naturally in Physics, Chemistry and Biology and Engineering appli-
cations modeled by initial value problems for a finite interval [a,b]. They also arise as rep-
resentation formulas for the solutions of differential equations. Therefore, a differential
equation can be replaced by an integral equation that incorporates its boundary condi-
tions. An integral equation can also be replaced by differential equations that incor-
porates the limits of integration. For that reason, each solution of an integral equation
automatically satisfies the boundary conditions. Integral equations also form one of the
most important tool in many branches of pure analysis, such as functional analysis and
stochastic processes.

2.1 Classificaion of Integral Equations

2.1.1 Class of Integral Equations
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There are two major types of integral equations and other related types. The following is
the list of the class of integral equations:

1. Fredholm types

2. V olterra types

3. Integro-diferential Equations

4. Singular integral Equations

5. V olterra−Fredholm type

6. V olterra−Fredholm Integro−differential Equations

2.1.2 Fredholm Integral Equations

The standard form of the Fredholm Integral Equations take the form;

ϕ(x)u(x) = v(x) +λ
∫ b

a
K(x,s)y(s)ds,a≤ x,s≤ b (8)

The kernel function of the integral equation is K(x,s) and the non-homogeneous function
is v(x) which are normally given in advance and the parameter λ. The value ϕ(x) will
give the following kind of Fredholm Integral equations;

1. When the value ϕ(x) = 0, the equation (8) becomes;

0 = v(x) +λ
∫ b

a
K(x,s)y(s)ds (9)

and the Fredholm Integral Equation is called Fredholm Integral Equation of the First
Kind.

2. When the value ϕ(x) = 1, the equation (8) can be written as;

u(x) = v(x) +λ
∫ b

a
F (x,s)y(s)ds (10)
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and the integral equaton is then called the Fredholm Integral Equation of The Second
Kind

Without loss of generality, we can always obtain equation (9) from (8) through dividing
(8) by ϕ(x) on condition that ϕ(x) 6= 0.

2.1.3 Volterra Integral Equations

Its general form is given by

ϕ(x)u(x) = v(x) +λ
∫ x

a
K(x,s)u(s)ds (11)

with its interval of integration being the function of x

We realize that equation (10) is a special case of the Fredholm integral equation when the
kernel K(x,s) vanishes for s > x, x is in the range of integration [a,b]. As in Fredholm
integral equations, Volterra integral equations fall under two kinds.

1. For ϕ(x) = 0, then (10) is

0 = v(x) +λ
∫ x

a
K(x,s)y(s)ds (12)

and in this case the integral equation is called the Volterra integral equation of the
First Kind.

2. For ϕ(x) = 1, then (10) is

y(x) = v(x) +λ
∫ x

a
K(x,s)y(s)ds (13)

and the integral equation is then called the Volterra integral equation of the Second
Kind.

In a bit of a summary, the Volterra intgral equation is of the First Kind if the unknown
function y(x) appears only under the integral sign. However, the Volterra integral equation
is of the 2nd type if y(x) apears inside and outside the integral sign.
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Linearity and Homogeinity Property of Fredholm and Volterra Integral Equations

2.1.4 Classification of Linear Integral equations

There are two main classes of integral equations.

1. Class of Fredholm

2. Class of V olterra

Fredholm Linear Integral Equations

The standard form of Fredholm Linear Integral equation is given by;

y(x) = v(x) +λ
∫ b

a
K(x,s)y(s)ds,a≤ x,b≤ s (14)

a and b are constants limits of integration, F (x,s) the kernel of the integral equation and
λ is a parameter

The equation (13) is called Linear because the unknown function y(x) under the integral
sign occurs linearly, i.e the power of y(x) is one.

2.1.5 Volterra Linear Integral equations

The standard form of a Linear Volterra Integral Equation is given by;

y(x) = v(x) +λ
∫ s

a
K(x,s)y(s)ds (15)

where the limits of integration are a constant a and a variable x and the unknown function
y(x) occurs linearly under the integral sign. The kernel of the integral equation is given
by K(x,s).
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Remark 2.1.1. The Structure of Fredholm and Volterra Integral Equations.The
unknown function y(x) appears linearly under the integral sign in Linear Fredholm
and Volterra Integral Equations of the First Kind. Nevertheless, the unknown function
y(x) appear linearly inside as well as outside the integral sign of the Second Kind of
both the Fredholm and Volterra Integral Equations

The limits of Integration. In Fredholm Integral Equations, the integral is taken over a
finite interval with fixed limits of integration. However, jn Volterra integral equations,
at least one limit of integration is a variable, and is usually the upper limit.

2.1.6 Linearity Property

As we have seen earlier, the function y(x) in Linear Fredholm and Volterra Integral Equa-
tions (9) and (12) must occurs in the first powers of 1 whenever it exists.

However, non-linear ones come about when the unknown function y(x) is substituted by
a non-linear function K(y(x)) such as y2(x), sin(y(x)), ey(x) and so on. The following
are examples of non-linear integral equations;

y(x) = v(x) +λ
∫ x

a
K(x,s)y2(s)ds (16a)

y(x) = v(x) +λ
∫ x

a
K(x,s)ey(s)ds (16b)

y(x) = v(x) +λ
∫ x

a
K(x,s)sin(y(s))ds (16c)

2.1.7 Homogeinity Property of Integral Equations

When v(x) = 0 in Fredholm and Volterra Integral equations of the Second Kind given
by (9) and (12), the resulting integral equation is called homogeneous integral equation,
otherwise it is non-homogeneous integral equation.
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2.1.8 Integro-Differential Equations

In this type of integral equations, the unknown function v(x) occurs on one side as an
ordinary derivative and appears on the other side under the integral sign.

Examples of Integro-differential Integral Equations

1.
y′′(x) = 2x+

∫ s

0
xsy(s)ds, y(0) = 0,y′ = 1 (17)

2.
y′′(x) = sinx+

∫ sx

0
y(s)ds, y(0) = 1 (18)

Equations (17) and (18) are Volterra-Integro differential equations while equation (??) is
Fredholm Inegro-differential equation.

2.1.9 Infinite-Integral Equations

These types of integral equations arise when one or all the limits of integration become
infinite. Also when the kernel K(x,s) becomes infinite. Some of the examples are:

1.
y(x) = v(x) +λ

∫ ∞
−∞

e|s
2−t2|y(t)dt (19)

2.
y(x) =

∫ x

0
[ 1
(x− s)α ]y(s)ds, 0< α < 1 (20)

Where the singular behaviour in the equation 20 results from the kernel being infinite.

K(x,s)x→s =∞

Remark 2.1.2. The Abel′s type of integral equation is normally given by the equation
(20).
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Remark 2.1.3.
y(x) = 1

3 −
√
x−

∫ x

0

1√
(x− s)

y(s)ds (21)

Is an example of a weak− singular integral equation. Where the singular behaviour
in this type arise from the kernel again becoming infinite as x→ s.

2.1.10 Volterra-Fredholm Integral Equations

The Volterra-Fredholm Integral Equation, which is a combination of disjoint Volterra
and Fredholm Integral Equations.These equations arise from boundary value problems
especially, when converting a boundary value problem to integral equation whose basic
form is:

y(x) = f(x) +
∫ x

0
K1(x,s)y(s)ds+

∫ b

a
K2(x,s)y(s)ds (22)

Where K1(x,t) and K2(x,s) are the kernels of the integral equation.

Numerical examples are given below,

y(x) = x2−
∫ x

0
(x+ s)y(s)ds+

∫ π
3

0
x3y(s)ds (23)

y(x) = tanx− cotx−
∫ x

0
y(s)ds+

∫ π
4

0
y(s)ds (24)

Remark 2.1.4. The unknown function y(x) appears inside the Volterra and Fred-
holmintegrals and outside those integrals.

2.1.11 Volterra-FredholmIntegro-Differential Equations

This is a combination of disjoint Volterra and Fredholm integrals and a Differential Op-
erator. This type of integral equation arise from many physical and chemical applications
similar to Volterra-Fredholm integral equations. The standard form is given by;

yn(x) = f(x) +
∫ x

0
K1(x,s)y(s)ds+

∫ b

a
K2(x,s)y(s) (25)

Where K1(x,s) and K2(x,s) are the kernels of the integral equation and n is the order of
the ordinary derivative of y(x). Because this kind of equation contains ordinary derivatives,
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we need the to prescribe the initial and boundary conditions depending on the order of
the derivative involved. Other examples include:

y′(x) = 2x+
∫ x

0
(x2− t2)y(s)ds+

∫ 2

0
x2s2y(s)ds,y(0) = 2 (26)

and

y′′(x) =−2x− 1
24x

4 +
∫ x

0
y(s)ds+

∫ π
2

−π
2
xsy(s)ds, y(0) = 1, y′(0) = 2 (27)

2.2 Relations Between Ordinary Differential Equations and Integral
Equations

In order to convert differential equations to I.E we will first have to state and prove the
Cauchy′s Integral Formula

Cauchy’s Integral Formula

Theorem 2.2.1. For f a continuous real valued function, the nth repeated integrals of
f based at a is assumed to be.

∫ x

a

∫ x1

a
...
∫ xn−1

a
f(xn)dxn...dx2dx1 = 1

(n−1)!

∫ x

a
(x− t)(n−1)f(t)dt

a single integral.

Proof. Applying Mathematical Induction. Since f is continuous, it follows from the
Fundamental Theorem of Calculus: Let

In(x) =
∫ x

a

∫ x1

a
...
∫ xn−1

a
f(xn)dxn...dx2dx1

Therefore,

d

dx
[I1(x)] = d

dx

∫ x

a
f(t)dt= f(x)

Where

I1(a) =
∫ a

a
f(t)dt= 0
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If the result above is true for n then we can also prove for n+ 1 by applying the
induction hypothesis as well as changing the order of integration.

In+1(x) =
∫ x

a

∫ x1

a
...
∫ xn−1

a
f(xn+1)dxn+1...dx2dx1 = 1

(n−1)!

∫ x

a

∫ x1

t
(x1− t)n−1f(t)dx1dt

On changing the order of integration, we obtain

In+1(x) = 1
n!

∫ x

a
(x− t)nf(t)dt

Example 2.2.2. Let us have a look at the following general conversion of an IVP to
integral equation

Consider the Initial Value Problem:

yn(x) +a1(x)yn−1(x) + ...+an(x)y(x) = F (x)

With the initial conditions;

y(x0) = C0, y′(x0) = C1, yn−1(x0) = Cn−1

Where the functions ai(x) (i= 1,2, ...,n) and F (x) are real valued functions and con-
tinuous on the interval a≤ x≤ b Let

yn(x) = u(x)

Integrating the above equation with respect to x over x0 to x, we obtain;

yn−1(x)−yn−1(x0) =
∫ x

x0
u(x)dx

OR

yn−1(x)−Cn−1 =
∫ x

x0
u(x)dx

Where

yn−1(x0) = Cn−1
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OR

yn−1(x) =
∫ x

x0
u(x)dx= Cn−1

Since t is a dummy variable, we can instead use x Thus, when we integrate again,
we obtain;

yn−2(x)−yn−2(x0) =
∫ x

x0
u(x)dx2 +Cn−1

∫ x

x0
dx

OR

yn−2(x)−Cn−2 =
∫ x

x0
u(x)dx2 +Cn−1(x−x0)

Where

Cn−2 = yn−2(x0)

OR

yn−2(x) =
∫ x

x0
u(x)dx2 +Cn−1(x−x0) +Cn−2

But ∫ x

x0
u(x)dx2 =

∫ x

x0

∫ x

x0
u(x)dxdx

=
∫ x

x0
(x−x0)u(x)dx

I.e by Cauchy’s Integral Formulae, we obtain the above integral
Integrating again with respect to x over x0 tox, we obtain;

yn−3(x) =
∫ x

x0
u(x)dx3 +Cn−1

(x−x0)2

2! +Cn−2(x−x0) +Cn−3

Where

Cn−3 = yn−3(x0)

And after n times integration, we have:

y(x) =
∫ x

x0
u(x)dxn+Cn−1

(x−x0)n−1

(n−1)! +Cn−2
(x−x0)n−2

(n−2)! +Cn−3
(x−x0)n−3

(n−3)!
+ · · ·+C1(x−x0) +C0
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And by Cauchy’s integral formulae, we get;

y(x) =
∫ x

x0

(x− t)n−1

(n−1)! u(t)dt+Cn−1
(x−x0)n−1

(n−1)! +Cn−2
(x−x0)n−2

(n−2)! +Cn−3
(x−x0)n−3

(n−3)!
+ · · ·+C1(x−x0) +C0

Now, putting these values of y and its derivatives in the given initial value problem
in the differential equation, then we shall have:

u(x) = an expression for nth derivative of y with respect to x.

u(x) +a1(x)(
∫ x

x0
u(t)dt+Cn−1) +a2(x)(

∫ x

x0
(x− t)u(t)dt+Cn−1(x−x0) +Cn−2)

+a3(x)(
∫ x

x0

(x− t)2

2! u(t)dt+ (x−x0)2

2! Cn−1 + (x−x0)Cn−2 +Cn−3) + · · ·

+an(x)(
∫ x

xo

(x− t)n−1

(n−1)! u(t)dt+ (x−x0)n−1

(n−1)! Cn−1 + (x−x0)n−2

(n−2)! Cn−2 + · · ·

+C1(x−x0) +C0) = F (x)

By letting

F (x) = u(x) +φ(x)−
∫ x

x0
K(x,t)u(t)dt

Where

φ(x) =Cn−1a1(x)+[Cn−2 +(x−x0)Cn−1]a2(x)+[C0 +(x−x0)C1 + ...+Cn−1
(x−x0)n−1

(n−1)! ]an(x)

and

K(x,t) =−[a1(x) + (x− t)a2(x) + ...+ (x− t)n−1

(n−1)! an(x)]

Hence we have;

u(x) = f(x) +
∫ x

x0
K(x,t)u(t)dt

Which is a Volterra integral equation of the Second Kind.

Usually we convert the IVPs and BVPs to equivalent Volterra and Fredholm
integral equations respectively.
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Example 2.2.3. Convert the following IVP to V. I. E.

u′′(s)−u′(s)coss+y(s)sins= es (28)

and the initial conditions are;

y(0) = 1,y′(o) =−1 (29)

We begin by letting u= y and s= x Let us put y′′(x) = u(x)
Integrating between 0 and x, gives∫ x

0
y′′(x)dx=

∫ x

0
u(t)dt (30)

t being a dummy variable.
Using the limits of integration and the initial conditions we have:

y′(x)−y(0) =
∫ x

0
u(t)dt (31)

But y′(0) =−1 thus, we have;

y′(x) =
∫ x

0
u(t)dt−1 (32)

Integrating again between 0 and x, we get

y′(x)dx=
∫ x

0

∫ x

0
u(t)dt2−

∫ x

0
dx (33)

Again using the limits of integration and applying the initial conditions, we get

y(x)−y(0) =
∫ x

0

∫ x

0
u(t)dtdt−x (34)

By Cauchy,s Integral Formulae, we have

y(x) =
∫ x

0
(x− t)u(t)dt−x+ 1 y(0) = 1 (35)

y(x) =
∫ x

0
(x− t)u(t)dt−x+ 1 (36)

Substituting the values of y′′(x), y′(x) and y(x) in the given differential equation, we
will obtain:

u(x)− (
∫ x

0
u(t)dt−1)cosx+ sinx(

∫ x

0
(x− t)u(t)dt−x+ 1) = ex
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Rearranging the terms;

u(x)−
∫ x

0
cosxu(t)dt+ cosx+

∫ x

0
sinx(x− t)u(t)dt−xsinx+ sinx= ex (37)

Rearranging the terms again, we obtain;

u(x) = ex− cosx+ sinx(x−1) +
∫ x

0
[cosx− sinx(x− t)]u(t)dt (38)

Equation (36) can also be written as:

u(x) = f(x) +
∫ x

0
K(x,t)u(t)dt (39)

With

f(x) = ex− cosx+ sinx(x−1) and K(x,t) = cosx− sinx(x− t) (40)

Is a Volterra Integral Equation of the Second Kind given by

u(x) = ex− cosx+ sin(x−1) =
∫ x

0
(cosx− sin(x− t))u(t)dt (41)

2.2.1 Transformation of (BVPs) Into Integral Equations

When an ordinary differential equation is to be solved under conditions involving depen-
dent variable or derivatives at two different values of the independent variables, then the
problem under consideration is called a boundary value problem (BVP).

Example 2.2.4. Let us consider the following boundary value problem

y′′(x) +λy(x) = ex,y(0) = 0,y(1) = 1 (42)

We construct a Fredholm integral equation associated with the boundary value problem
above: We integrate both sides of (42) with respect to x over 0 to x in the following
manner ∫ x

0
y′′(x)dx+λ

∫ x

0
y(x)dx=

∫ x

0
exdx[y′(x)]x0 = [ex]x0−λ

∫ x

0
y(x)dx

y′(x)−y′(0) = ex−1−λ
∫ x

0
y(x)dx (43)

Let y′(0) = C, then we can rewrite equation (43) as

y′(x) = ex−1−λ
∫ x

0
y(x)dx+C
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Again integrating with respect to x over 0 to x and using the Cauchy’s Integral For-
mula, we obtain:∫ x

0
y′(x)dx=

∫ x

0
exdx−

∫ x

0
dx−λ

∫ x

0
y(x)dxdx+

∫ x

0
C(x)dx

Using the formula below;
∫ x

0
...
∫ x

0
y(x)dxdx...= 1

(n−1)!

∫ x

0
(x− t)n−1y(t)dt

We get
y(x)−y(0) = ex−1−x−λ

∫ x

0
(x− t)y(t)dt+Cx (44)

But y(0) = 0, then (44) becomes

y(x) = Cx−x+ ex−1−λ
∫ x

0
(x− t)y(t)dt (45)

C is unknown We therefore, make C the subject of the formula in equation (44). Since
y(1) = 1 then C can be expressed as

1 = C−1 + e−1−λ
∫ 1

0
(1− t)y(t)dt

=⇒ C = 3− e+λ
∫ 1

0
(1− t)y(t)dt

We substitute the value of C in the equation to get

y(x) = x[3− e+λ
∫ 1

0
(1− t)y(t)dt]−x+ ex−1−λ

∫ x

0
(x− t)y(t)dt

Rearranging to get

y(x) = 2x−1−xe+ ex+λ
∫ 1

0
x(1− t)y(t)dt−λ

∫ x

0
(x− t)y(t)dt

y(x) = 2x−1−xe+ ex−λ
∫ x

0
(x− t)y(t)dt+λ

∫ 1

0
x(1− t)y(t)dt

We now break the interval from 0 to x from 0 to x and the from x to 1 thus we have;

y(x) = 2x−1−xe+ ex+λ
∫ x

0
(x− t)y(t)dt+λ[

∫ x

0
x(1− t)y(t) +

∫ 1

x
x(1− t)y(t)dt]

We combine the two integrals where the limit of integration at 0 to x so we write it
as;

y(x) = 2x−1−xe+ ex+λ[
∫ x

0
(x(1− t)− (x− t))y(t)dt+

∫ 1

x
x(1− t)y(tdt)]
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y(x) = 2x−xe−1 + ex+λ[
∫ x

0
t(1−x)y(t)dt+

∫ 1

x
x(1− t)y(t)dt] (46)

OR
y(x) = f(x) +λ

∫ 1

0
K(x,t)y(t)dt (47)

Which is a Fredholm Integral equation of the Second Kind. Where

f(x) = 2x−xe−1 + ex

K(x,t) =
t(1−x), 0≤ t≤ x
x(1− t), x≤ t≤ 1

Example 2.2.5. Transform the BVP into its equivalent integral equaotion

y′′(x) = sinx−xy(x)
y(0) = y(1) = 0

Integrating the differential equation given with respect x over the interval 0 to x as
shown below ∫ x

o
y′′(x)dx=

∫ x

0
sinxdx−

∫ x

0
xy(x)dx

[y′(x)]x0 = [−cosx]x0−
∫ x

0
xy(x)dx

y′(x)−y′(0) =−cosx+ 1−
∫ x

0
xy(x)dx

Let y′(0) =B, then we have from above as

y′(x) =−cosx+ b+ 1−
∫ x

o
xy(x)dx (48)

Integrating again the equation (48), we obtain

∫ x

0
y′(x)dx=−

∫ x

0
cosxdx+

∫ x

0
B(x)dx+

∫ x

o
dx−

∫ x

0

∫ x

0
xy(x)dxdx

Taking into consideration the Cauchy’s Integral Formula; we then have

[y(x)]x0 =−[sinx]x0 + [b(x)]x0 +x−
∫ x

0
(x− t)ty(t)dt
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From above, we apply the limits of integration and we obtain

y(x)−y(0) =−sinx+Bx+x−
∫ x

0
(x− t)ty(t)dt

Taking y(0) = 0, we get

y(x) =−sinx+Bx+ 1−
∫ x

0
(x− t)ty(t)dt (49)

Since B is unknown and given the condition that y(1) = 0 we then have from equation
(49) as

y(1) =−sin1 +B+ 1−
∫ 1

0
(1− t)ty(t)dt

0 =−0.01745 +B+ 1−
∫ 1

0
(1− t)ty(t)dt

=⇒ B =−0.98255 +
∫ 1

0
(1− t)ty(t)dt

Substituting back the value of B in equation (49) above, we get

y(x) =−sinx+x(−0.98255 +
∫ 1

0
(1− t)ty(t)dt)−

∫ x

0
(x− t)ty(t)dt

Rearranging to get

y(x) =−sinx+ 0.01745x+x
∫ 1

0
(1− t)ty(t)dt−

∫ x

0
(x− t)ty(t)dt

y(x) =−sinx+ 0.01745x−
∫ x

0
(x− t)ty(t)dt+x

∫ 1

0
(1− t)ty(t)dt

We now break the interval of integration from 0 to 1 from 0 to x then x to 1 as shown
below

y(x) =−sinx+ 0.01745x−
∫ x

0
(x− t)ty(t)dt+x[

∫ x

0
(1− t)ty(t)dt+

∫ 1

x
(1− t)ty(t)dt]

(50)
We combine the two integrals with the limits of integration running from 0 to x which
suffices to write (50) as

y(x) =−sinx+ 0.01745x− (
∫ x

0
x[(1−x)t− (x− t)t])y(t)dt+

∫ 1

x
x(1− t)ty(t)dt

y(x) =−sinx+ 0.01745x−
∫ x

0
x(1−x)ty(t)dt+

∫ 1

x
x(1− t)ty(t)dt

We then have

y(x) =−sinx+ 0.01745x−
∫ x

0
t2(1−x)y(t)dt+

∫ 1

x
xt(1− t)y(t)dt (51)
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Which can be written in the form

y(x) = f(x) +λ
∫ 1

0
K(x,t)y(t)dt

Where

f(x) = 0.01745x+ sinx

K(x,t) =
t

2(1−x), 0≤ t < x

xt(1− t), x≤ t≤ 1

2.2.2 Relations Between Integral Equations and Partial Differential Equations
(Green’s Functions)

As we have seen above, here also we consider two cases which are initial value problem
and boundary value problem. We want to see how we can come up with an Integral
Equation given a differential operator L

Let L be defined by:

Lu(x) = [A(x)d
2y

dx2 +B(x)dy
dx
C(x)]u(x), a < x < b (52)

Where A(x) is continuously differentiable positive function. Let its adjoint operator M be
defined by:

Mv(x) = d2

dx2 [A(x)v(x)]− d

dx
[B(x)v(x)] +C(x)v(x), a < x < b (53)

We integrate (53) by integration by parts to obtain:

∫ b

a
(v(x)Lu(x)−u(x)Mv(x))dx= [A(X)(v(x)u′(x)−u(x)v′(x))+u(x)v(x)(B(x)−A′(x))]ba

(54)

The above equation is known as the Green′s Formula for the Operator L

And we use the relation below to prove the theorem

A(X)y′′(x) +B(x)y′(x) +C(x)y(x) = F (x) (55)
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Which proves our theorem can still be written in the form:

d

dx
[p(x)dy(x)

dx
] + q(x)y(x) = F (x) (56)

Which is clearly self-adjoint.

The function p(x) is again continuously differentiable and positive and q(x) and F (x) are
continuous in a given interval (a,b).
The equation(54) takes the simple form:

∫ b

a
(v(x)Lu(x)−u(x)Lv(x))dx= [p(x)v(x)u′(x)−u(x)v′(x)] (57)

Let us consider the following homogeneous second order equation:

d

dx
(p(x)dy

dx
) + q(x)y(x) (58)

Also let u1(x) and u2(x) be two linearly independent solutions of the homogeneous equa-
tion (58) which are also twice continuously differentiable in the interval a < x < b.

Any solution of this equation is only a linear combination of u1(x) and u2(x). I.e;

y(x) = C1u1(x) +C2u2(x)

Where C1 and C2 are constants.

Case one: Initial Value Problem

Consider the IVP below:

d

dx
(p(x)dy

dx
) + q(x)y(x) = F (x) (59)

y(a) = 0,y′(a) = 0 (60)
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To form an integral equation from the problem above, we consider a function:

w(x) = u1(x)
∫ x

a
u2(t)F (t)dt−u2(x)

∫ x

a
u1(t)F (t)dt, (61)

Where u1(x) and u2(x) are solutions of the homogeneous equation (58).
Differentiating the equation (61), we obtain:

w′(x) = u′1(x)
∫ x

a
u2(t)F (t)dt−u2(x)

∫ x

a
u1(t)F (t)dt+u1(x)u2(x)F (x)−u1(x)u2(x)F (x)

= u′1(x)
∫ x

a
u2(t)F (t)dt−u′2(x)

∫ x

a
u1(t)F (t)dt

Hence w(a) = w′(a) = 0 and

d

dx
[p(x)dw

dx
] = d

dx
[p(x)du1

dx
]
∫ x

a
u2(t)F (t)dt− d

dx
[p(x)du2

dx
]×
∫ x

a
u1(t)F (t)dt+p(x)[u1′(x)−u′2(x)(x)u1(x)]F (x)

(62)

And the u1(x) and u2(x) satisfy the homogeneous equation (58)

Intead of x, let’s now use p, u1 and u2 to obtain:

d

dx
[p(u′1u2−u′2u1] = d

dx
(pu′1)u2−

d

dx
(pu′2)u1 +pu′1u2−pu′2u1 = 0

And since because u1 and u2 satisfy (58), we have:

p(x)[u′1(x)u′2−u′2(x)u′1(x)] = A (63)

Where A is a constant. The negative of the expressions in the brackets in the above
relation is called the Wronskian W W (u1,u2;x) of the solution u1 and u2. I.e

W (u1,u2;x) = u1(x)u′2(x)−u2(x)u′1(x) (64)
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From (62) and (64), it follows that the function (61) satisfies the system:

d

dx
(pdW
dx

) + qW = AF (x) (65)

W (a) = 0, W ′ = 0 (66)

Dividing equation (65) by the constant A then comparing it with (56), we derive the
required relation for y(x) given by:

y(x) =
∫ x

a
R(x,t)F (t)dt

Where
R(x,t) = 1

A
(u1(x)u2(t)−u2(x)u1(t)) (67)

Also R(x,t) =−R(t,x)

We can use the delta diac function property to verify that, for a fixed value of t, the
function R(x,t) is completely the solution of the initial value problem:

LR = d

dx
[p(x)dR

dx
] + q(x)R = δ(x− t)

R|x=t = 0, dR
dx
|x=t = 1

p(t) (68)

The equation (68) describes the effects on the value of y at x due to a concentrated
disturbance at t. Also known as the InfluenceEquation.

The function G(x; t) given by:

G(x; t) =
0, if x < t

R(x; t), if x > t

Which is called the Causal Green′s Function.
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Case 2: Boundary Value Problem

Consider the BVP:

d

dx
(p(x)dy

dx
) + q(x)y(x) = F (x), a≤ x≤ b (69)

and the boundary conditions:
y(a) = 0, y(b) = 0 (70)

The general solution of (69) is of the form:

y(x) =
∫ x

a
R(x; t)F (t)dt+C!u1(x) +C2u2(x) (71)

Where u1(x) and u2(x) are two linearly independent solutions of the homogeneous equa-
tion (58). When we substitute the boundary conditions (70) in the boundary value problem
(69), we obtain

C1u1(a) +C2u2(a) = 0 (72)

C1u1(b) +C2u2(b) =−
∫ x

a
R(b, t)F (t)dt

Which will determine a unique pair of constants C1 and C2 provided the following holds
for the determinant D given by;

D = u1(a)u2(b)−u2(a)u1(b) 6= 0 (73)

Assuming that (73) holds; then

C1 = [u2(a)
D

]
∫ x

a
R(b, t)F (t)dt+ [u2(a)

D
]
∫ b

a
R(b, t)F (t)dt (74)

And C2 is given by

C2 =−[u1(a)
D

]
∫ x

a
R(b, t)F (t)dt− [u1(a)

D
]
∫ b

a
R(b, t)F (t)dt (75)

Putting the values of C1 and C2 in (76), then we have the solution of y(x) as:

y(x) =
∫ x

a
(R(x,t)+[u2(a)u1(x)−u1(a)u2(x)

D
]R(b, t))F (t)dt+

∫ b

a
[u2(a)u1(x)−u1(a)u2(x)

D
]R(b, t)F (t)dt

(76)
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Now, using (63) and (67) and carrying out some forms of algebraic manipulations, we
get:

R(x,t)+[u2(a)u1(x)−u1(a)u2(x)
D

]R(b, t) = [u1(a)u2(t)−u2(a)u1(t)][u1(x)u2(b)−u2(x)u1(b)]
AD

(77)
Which we finally have as

G(x; t) =


[u1(x)u2(a)−u2(x)u1(a)][u1(t)u2(b)−u2(t)u1(b)]
AD , if x < t

[u1(t)u2(a)−u2(t)u1(a)][u1(x)u2(b)−u2(x)u1(b)]
AD , if x > t

Then the solution of y(x) by the value of C1 takes the form:

y(x) =−
∫ x

a
G(x; t)F (t)dt (78)

Which is called the Green′s Function. It is clearly symmetric:

G(x; t) =G(t;x) (79)

Which satisfies the auxiliary problem for all values of t

LG= d

dx
[p(x)dG

dx
] + q(x)G= δ(x− t) (80)

G|x=a =G|x=b = 0 (81)

G|x=t+−G|x=t− = 0 (82)

dG

dx
|t+−

dG

dx
|t− =− 1

p(t) (83)

The condition (82) means that the Green′s function is continuous at x = t. Also, the
condition (83) states that dG

dx has a jumpdiscontinuity of magnitude − 1
p(t) at x = t

Generally, the condition (83) is as a result of (79) and (81), and indeed the value of the
jump in G(x; t) can be obtained by integrating (81) over a small interval say (t− ε,x).
But the indefinite integral of δ(x− t) is the Heavisidefunction H(x− t), thus we have;

p(t)dG(x; t)
dx

+
∫ x

t−ε
q(x)G(x; t)dx= p(t− ε)dG(t− ε; t)

dx
−H(x− t)

When x traverses the source point t, then on the R.H.S the Heavyside function has
a unit jump discontinuity. But since other terms are continuous functions of x, then it
follows that dG

dx has at t a jump discontinuity.

Example 2.2.6. Determine the Green′s function for the boundary value problem
(E):x2y”(x)+xy′(x)+(λ2x2−n2)y(x) = f(x), 0≤ x≤ a and n is any natural number
The boundary conditions y(0) is finite and y(a) = 0
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We observe that the associated homogeneous equation is the Bessel′s Equation written
as

x2y′′(x) +xy′(x) + (λ2x2−n2)y(x) = 0

written in the parametric form. This means that the ordinary differential equation can
be written as a Sturm−Liouville equation if we divide both sides by x i.e

xy′′(x) +y′(x) + (λ2x− n
2

x
)y(x)− f(x)

x

Or

d

dx
(xy′(x)) + (λ2x− n

2

x
)y(x) = f(x)

x

The Green′s function Gn(x,ζ) for the given problem must satisfy the equation:

d

dx
(xdGn(x,ζ)

dx
) + (λ2x− n

2

x
)Gn(x,ζ) = δ(x− ζ)

But the Bessel′s equations in parametric form has solutions Jn(λx) and Nn(λx) which
are linearly independent. Note that Jn(x) is the Bessel function of order n and Nn(x)
is the Neumann function of order n given by:

Nn(x) = Jn(x)cosnπ−J−n(x)
sinnπ

A Bessel′s equation whose solution is:

y(x) = AJn(λx) +BNn(λx) (84)

We now want to construct the Green′s function. Since the Neumann function Nn(λx)
is singular at the origin, so, the only solution that satisfy the boundary condition at
the origin is Jn(λx) and so we set

y1(x) = Jn(λx)

Now, to determine the function y2(x), the solution of the Bessel equation which
satisfies the boundary condition at x= a. We first observe that

y(a) = AJn(λa) +BNn(λa) = 0 =⇒ thatB =− Jn(λa)
Nn(λa)A

So, if we put A+ 1, we have a solution

y2(x) = Jn(λx)− Jn(λa)
Nn(λa)Nn(λx)
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which satisfies the second boundary condition y2(a) = 0 Thus we write

y2(x) = Jn(λx)Nn(λa)−Jn(λa)Nn(λx)
Nn(λa)

We now use the method of variation of parameters to solve the Boundary Value Prob-
lem. We let y1(x) and y2(x) be two linearly independent solutions of the Boundary
Value Problem. Then we write

y(x) = C1(x)y1(x) +C2(x)y2(x)

=⇒ y′(x) = C ′1(x)y1(x) +C ′2(x)y2(x) +C1(x)y′1(x) +C2(x)y′2(x)

And we now assume that

C ′1(x)y1(x) +C ′2(x)y2(x) = 0 (85)

so we remain with

y′(x) = C1(x)y′1(x) +C2(x)y′2(x)

y′′(x) = C ′1(x)y′1(x) +C ′2(x)y′2(x) +C1(x)y′′1(x) +C2(x)y′′2(x)

Using the values of y′(x) and y′′(x) in the equation

xy′′(x) +y′(x) + (λ2x− n
2

x
)y(x) = f(x)

x

We observe that

x[C1(x)y′′1(x) +C2(x)y′′2(x) +C ′1(x)y′1(x) +C ′2(x)y′2(x)] + [C1(x)y′1(x) +C2(x)y′2(x)] + (λ2− n
2

x
)(C1(x)y1(x) +C2(x)y2(x))

(86)

Which is equivalent to

= C1(x)[xy′′1(x) +y′1(x) + (λ2)x− n
2

x
y1(x)] +C2(x)[xy′′2(x) +y′2(x) + (λ2x− n

2

x
)y2(x)]x[C ′1(x)y′1(x) +C ′2(x)y′2(x)] = f(x)

x
(87)

Since y1(x) and y2(x) are solutions of the associated homogeneous equation it implies
that

C ′1(x)y′1(x) +C ′2(x)y′2(x) = f(x)
x

(88)



34

The equations (85) and (88) permits to solve the system for C ′1(x) and C ′2(x) if the
determinant W (x)

W (x) =W [y1(x),y2(x)]

=

∣∣∣∣∣∣∣
y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣∣
If we let

∆1 =

∣∣∣∣∣∣∣
0 y2(x)
f(x)
x2 y′2(x)

∣∣∣∣∣∣∣

= −y2(x)f(x)
x2

and

∆2 =

∣∣∣∣∣∣∣
y1(x) 0

y′1(x) f(x)
x2

∣∣∣∣∣∣∣

= y1(x)f(x)
x2

The Cramer′s Formula gives

C ′1(x) = ∆1
∆ =

−y(x)f(x)
x2W (x)

C ′2(x) = ∆2
∆ = y1(x)f(x)

x2W (x)

Now, to determine the values of C1(x) and C2(x), we use the Lagrange′sIdentity If
u and v are solutions of the self-adjoint equation

L[u] = d

dx
(p(x)du

dx
) + q(x)u(x) = 0
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then

0 = vL[u]−uL∗[v] = d

dx
[p(x)(u′v−uv′)]

Therefore,

p(x)(u′v−uv′) = C

i.e

W [u,v] = C

p(x)

But

p(x) = x

and

W [y1(x),y2(x)] = C

x

Let

C ′1(x) =
−y2(x)f(x)

x

C

C ′2(x) =
y1(x)f(x)

x

C

We now determine the value of the constant C so that C1(x) and C2(x) are completely
determined. For this, we calculate the Wronskian W [y1(x),y2(x)]. Here, we use the
values of

y1(x) = Jn(λx)

and

y2(x) = Jn(λx)Nn(λa)−Jn(λa)Nn(λx)
Nn(λa)

We now show that lim
x→0

Jn(x) = xn

2nn!

lim
x→0

Nn(x) = −(n−1)!
π

(2
ζ

)n,n 6= 0
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Here,

Jn(λx) = 1
n! (

λx

2 )n

Nn(λx) =−(n−1)!
π

( 2
λx

)n

as x→ 0 Now,

W [y1,y2] =W [Jn(λx),Jn(λx)− Jn(λa)
Nn(λa)Nn(λx)]

− Jn(λa)
Nn(λa)W [Jn(λx),Nn(λx)]

By using the properties of the determinants hence we have

lim
x→0

W [Jn(x),Nn(x)] = 2
πx

Where Jn(x) and Nn(x) are replaced by their values as x→ 0 Similarly,

lim
x→0

W [Jn(λx),Nn(λx)] = 2
πx

i.e

W [y1,y2] = ( Jn(λa)
Nn(λa)) 2

πx

=⇒ C = xW [y1,y2] =− 2
π

Jn(λa)
Nn(λa)

This implies that:

C1(x) =
∫ a

x

y2(t)f(t)
t

C
dt

C2(x) =
∫ x

0

y1(t)f(t)
t

C
dt

And

y(x) = C1(x)y1(x) +C2(x)y2(x)

We then have from above:

G(x,ζ) =


π
2 [Jn(λζ)Nn(λa)−Nn(λζ)Jn(λa)

Jn(λa) ]Jn(λx) if 0≤ x≤ ζ
π
2 [Jn(λζ)Nn(λa)−Nn(λx)Jn(λa)

Jn(λa) ]Jn(λζ) if ζ < x≤ a

Which is an integral equation
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2.3 Application of Integral Equations

Due to the advancement of science has led to formulation of many physical problems,
which are governed by integral equations. The following are some of the areas where
integral equations have been applied:

2.3.1 Ocean Waves

Ocean waves are actually energy passing through the water, causing it to move in a circu-
lar manner. From this point of view, the waves interact which causes the energy transfer
among different wave components. In order to determine the approximate solution of the
resultant nonlinear transfer action function, we consider a set of four progressive waves
traveling with different numbers and frequencies. This interaction results in energy ex-
change.

This can be determined by numerical integration method using a fourth order Runge−
kutta scheme in computing the non-linear transfer action function.

2.3.2 Seismic Response of Dams

The dynamic behavior of a dam with a full reservoir is known to be different from that of
a dam with an empty reservoir.

The developed hydrodynamic pressures affect the motion of the dam, while the dam re-
sponse influences in turn the dynamic response of the reservoir. This phenomenon is
termed Dynamic Dam-Reservoir Interaction (DRI) and it could be catastrophic in
cases of resonance, that is when the two domains (dam and reservoir) are vibrating in two
phases.

In order to analyze the safety and stability of an earth dam during an earthquake, we need
to know the response of the dam to earthquake ground motion so that the inertia forces
that will be generated in the dam by the earthquake can be derived.

Once the inertia forces are known, the safety and stability of the structure can be deter-
mined.
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Some approximations are made to create a mathematical model in the form of integral
equations, that is;

y =
∫ t

0
ä(τ)g[(t− τ), z]dτ

Where z is the level, y is the displacement, ä is the base acceleration and τ is the shear
stress.

2.3.3 Flow of Heat in a Metal Bar

Here, we consider a classical problem of heat flow in a metal bar to demonstrate the
aplication of integral equations. The unsteady flow of heat in one-dimensional medium
should be well defined. The ruling partial differential equation with its boundary are given
as follows:

∂T

∂t
= α

∂2T

∂x2 − qT

The boundary conditions are;

T (0, t) = T (l, t), ∂T

∂T
(0, t) = ∂T

∂c
(l, t)

and the initial condition is;

T (x,0) = g(x)

Where T (x,t) is the temperature at any time and at any position on the bar, α is the
thermal diffusivity, q is the heat loss through the bar, x = 0 is the left-hand side of the
bar and x= l is the right-hand side of the bar, and l is the length of the bar and t is the
time.

2.3.4 Calculation of the Flow Characteristics around a Submerged Sphere in
Regular Wave.

Here, we consider a combination of two classical problems in order to find the hydrody-
namic characteristic of motion of a body in time harmonic waves.
These are radiation and diffraction problem. In radiation problem, the body under-
goes prescribed oscillatory motions in calm fluid while diffraction problem, the body is
held fixed in the incident wave field and determines the influence of it over the incident
wave. These boundary value problems can be formulated as two different types of integral
equations called direct boundary integral formulation function as a superposition of
a single layer and double-layer potentials and indirect boundary integral formulation
representing the unknown function with the aid of a source distribution of Green’s function
with fictitious singularities of adjustable strength.
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2.4 Types of Kernels

The main special types of Kernels of an Integral Equation are:

1. Symmetric Kernels

2. Separable / Degenerate Kernels

3. Resolvent Kernels

4. Iterated Kernels

So, we discuss the various types of Kernels in Integral Equations since Kernels play a big
role when in finding the solution of the given system of integral equations.

2.4.1 Symmetric Kernel

A Kernel K(x,t) is symmetric (or complex symmetric or Hermitian) if:

K(x,t) =K∗(t,x) (89)

Where ∗ denotes the complex conjugate. If the Kernel is real, then we have;

K(x,t) =K(t,x) (90)

For example,the following are some examples of symmetric Kernels

1. K(x,t) = cos(x+ t)

2. K(x,t) = logxt

3. K(x,t) = x2t2 +xt

But again,K(x,t) = sin(2x+3t) andK(x,t) =xt2 +2 are not symmetric. Also,K(x,t) =
i(x− t) is symmetric Kernel since in this case; If

K(x,t) = i(x− t)

then

K(t,x) = i(t−x)
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and so,

K̄(t,x) =−i(t−x) = i(x− t) =K(x,t)

But, K(x,t) = i(x+ t) is NOT a symmetric kernel, since in this case if K(x,t) = i(x+ t)
then

K̄(t,x) = ¯i(t+x) =−i(x+ t) =−K(x,t) 6= K̄(x,t)

Usually, Integral Equations with Symmetric kernels are of frequent occurrence in the
formulation of physically motivated problems

2.4.2 Separable Kernels

A kernel K(x,t) is said to be separable or degenerate if if it can be expressed as the sum
of a finite number of terms, each of which is the product of a function of x and t only i.e

K(x,t) =
n∑
i=1

ai(x)bi(t) (91)

Where ai(x) and bi(t) are assumed to be linearly independent, otherwise the number of
terms in relation (91) can be reduced by linear independence if c1a1 +c2a2 + ...+cnan = 0,
where ci are arbitrary constants i.e c1 = c2 = ...= cn = 0

2.4.3 Resolvent Kernel

Let the solutions of the integral equations below be given

u(x) = φ(x) +λ
∫ b

a
G(x,t)u(t)dt (92)

and
v(x) = φ(x) +λ

∫ x

a
G(x,t)v(t) (93)

respectively by
u(x) = φ(x) +λ

∫ b

a
R(x,t;λ)u(t)dt (94)

and
v(x) = φ(x) +λ

∫ x

a
Γ(x,t;λ)v(t)dt (95)

Then R(x,t;λ) and Γ(x,t;λ) are called the Resolvent or Reciprocal kernels of the given
integral equations.
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2.4.4 Iterated Kernels

Here we consider the general form of Fredholm integral equation of the Second Kind.

φ(x) = ϕ(x) +λ
∫ b

a
G(x,t)φ(t)dt (96)

Then the iterated kernels Gn(x,t) for n= 1,2, ... are defined as shown below:

G1(x,t) =G(x,t)

Gn(x,t) =
∫ b

a
G(x,z)Gn−1(x,t)dt,n= 2,3, ... (97)

Where G(x,t) is the Kernel of the integral equation

2.4.5 Eigenvalues and Eigenfunctions

Consider the homogeneous Fredholm Integral Equation:

y(x) = λ
∫ b

a
G(x,t)y(t)dt (98)

Usually, the equation (98) has two types of solutions y(x) = 0 and y(x) 6= 0 For y(x) = 0
is called the trivial solution of the integral equation For y(x) 6= 0 is called the nontrivial
solution of the integral equation (98) and the parameter λ is the eigenvalue of (98) while
every nonzero solution of (98) is called the eigenfunction corresponding to eigenvalue
λ.

Some Fundamental Properties of Eigenvalues and Eigenfunctions

Theorem 2.4.1. If a kernel is symmetric, then all its iterated kernels are also sym-
metric

Proof. Let G(x,t) represent a symmetric kernel, then

G(x,t) = Ḡ(t,x) (99)

By definition, the iterated kernels are defined as follows:

G1(x,t) =G(x,t) (100)

Gn(x,t) =
∫ b

a
G(x,y)Gn−1(y, t)dy,n= 2,3, ...,n (101)



42

Let Gn(x,t) be symmetric for n=m, then by definition we have;

Gm(x,t) = Ḡm(t,x) (102)

Now we prove that Gm+1 is also symmetric i.e

Gm+1(x,t) = Ḡm+1(t,x)

using (101) We have;

Gm+1(x,t) =
∫ b

a
Ḡ(x,y)Gm(y, t)dy

using (99)and (102)

=
∫ b

a
Ḡ(y,x)Ḡm(t,y)dy,

=
∫ b

a
Ḡm(t,y)Ḡ(y,x)dy = Ḡm+1(t,x)

Thus by Mathematical induction, Gn(x,t) is symmetric for n= 1,2,3, ...

Theorem 2.4.2. (HILBERT THEOREM) Every symmetric kernel with a non
zero norm has at least one eigenvalue.

Theorem 2.4.3. The eigenfunctions corresponding to distinct eigenvalues are orthog-
onal to each other.

Proof. Let ϕ1(s) and ϕ2(s) be the eigenfunctions to the two distinct eigenvalues λ1
and λ2 of the homogeneous Fredholm Integral Equation:

ϕ(s) = λ
∫ b

a
G(s, t)ϕ(t) (103)

and suppose that the Kernel G(s, t) is symmetric, then λ= 0 is not an eigenvalue of
(103) since it will result to a trivial solution i.e ϕ(s) = 0. The functions ϕ1 and ϕ2
satisfies the equation (103) in the sense that;

ϕ1(s) = λ1

∫ b

a
G(s, t)ϕ1(t)dt (104)

and
ϕ2(s) = λ2

∫ b

a
G(s, t)f2(t)dt (105)
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We multiply (104) by ϕ2(s) then integrate it with respect to s over (a,b) to obtain;
∫ b

a
ϕ1(s)ϕ2(s)ds= λ1

∫ b

a
ϕ2(s)[

∫ b

a
G(s, t)ϕ1(t)dt]ds

Changing the order of integration we get:∫ b

a
ϕ1(s)ϕ2(s)ds= λ1

∫ b

a
ϕ1)(t)[

∫ b

a
G(s, t)ϕ2(s)ds]dt

Applying symmetry of the kernel G(s, t), we obtain;
∫ b

a
ϕ1(s)ϕ2(s)ds= λ1

∫ b

a
ϕ1(t)[

∫ b

a
G(t,s)ϕ2(s)ds]dt

Using (105),we obtain;
∫ b

a
ϕ1(s)ϕ2(s)ds= λ

∫ b

a
ϕ1(t)ϕ2(t)

λ2
dt= λ1

λ2

∫ b

a
ϕ1(t)ϕ2(t)dt

which gives
(λ1−λ2)

∫ b

a
ϕ1(s)ϕ2(s)ds= 0 (106)

since λ1 6= λ2 we then conclude that:∫ b

a
ϕ1(s)ϕ2(s)ds= 0

Hence eigenfunctions corresponding to distinct eigenvalues are orthogonal to each
other.

Theorem 2.4.4. The eigenvalues of a Fredholm integral equation with a real symmetric
kernel are real.

Proof. let λ1 be an imaginary eigenvalue corresponding to a complex eigenfunction
f1(x). Then the complex conjugate λ̄1 will be an eigenvalue corresponding to the
eigenfunction ¯f1(x), which is the complex conjugate of f1(x) Hence using (106),we
obtain:

(λ1− λ̄2)
∫ b

a
f1(x)f̄2(x)dx= 0 (107)

if λ1 = α1 + iβ1 and f1(x) = a1(x) + ib1(x) then (106) gives:

2iβ1

∫ b

a
(a2

1 + b21)dx= 0

Since f1(x) 6= 0, the integral cannot be zero unless the imaginary part of λ1 i.e β1
must vanish. Hence we conclude that the eigenvalues of a Fredholm integral equation
with a real symmetric kernel are real.
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3 Methods of Solutions of Fredholm Integral Equations
of the Second Type

In this chapter, we will present some analytical and numerical methods to solve Fredholm
integral equation of the second kind, but we begin by stating some theorems on existence,
uniqueness of solutions.

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (108)

a and b are given constants and the kernel function is K(x,t). Also, in Fredholm integral
equations of the Second Kind, the unknown function y(x) appears both inside and outside
the integral sign.
In equation (108),K(x,t) and the function f(x) are real valued functions and λ is a pa-
rameter. When f(x) = 0 then the Fredholm integral equation is said to be homogeneous

3.0.1 Existence and Uniqueness of Solutions of Fredholm integral equations of
the Second Kind

In this section, we give some conditions which ensure the existence of the unique solution
of Fredholm integral equations.

Existence and Uniqueness

Theorem 3.0.1. Let the following equation

y(x)−λ
∫ b

a
K(x,t)y(t)dt= f(x) (109)

If the kernel K(x,t) is continuous over [a,b]× [a,b], f ∈ L2([a,b]) and |λ|B < 1,
where

B =
√∫ b

a

∫ b

a
|K(x,t)|2dxdt

Then the equation (109) admits a unique solution for y ∈ L2([a,b])
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Proof. We consider the equation

T (y)(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (110)

Since

f ∈ L2([a,b]), T y ∈ L2([a,b]) and
∫ b

a
K(x,t)y(t)dt ∈ L2([a,b])

Using the equality of Shwartz, so

|
∫ b

a
K(x,t)y(t)dt| ≤

∫ b

a
|K(x,t)y(t)|dt≤

(∫ b
a |K(x,t)|2dt

) 1
2
(∫ b

a |y(t)|2dt
) 1

2

so ∣∣∣∣∫ baK(x,t)y(t)dt
∣∣∣∣2 ≤ (∫ ba ∣∣∣∣K(x,t)

∣∣∣∣2 dt
)(∫ b

a

∣∣∣∣y(t)
∣∣∣∣2 dt

)

Also ∫ b

a

∣∣∣∣∫ baK(x,t)y(t)dt
∣∣∣∣2 dx≤ ∫ b

a

(∫ b
a

∣∣∣∣K(x,t)
∣∣∣∣2 dt

)(∫ b
a

∣∣∣∣y(t)dt
∣∣∣∣2
)
dx

Which is

≤
∫ b

a

∫ b

a

∣∣∣∣K(x,t)
∣∣∣∣2 dtdx∫ b

a

∣∣∣∣y(t)
∣∣∣∣2 dt

Since ∫ b

a

∫ b

a

∣∣∣∣K(x,t)
∣∣∣∣2 dtdx <∞

and then ∫ b

a

∣∣∣∣y(t)
∣∣∣∣2 dt <∞

Then equation (110) is satisfactory and T of L2([a,b]) in itself.
We notice that the demonstration below is also that the operator defined by

(Ay)(x) =
∫ b

a
K(x,t)y(t)dt

is bounded and therefore by theorem above the equation

Ty = y

admits a unique solution for |λ|B < 1.
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Lemma 3.0.2. Let U and V be two compact spaces. The set of continuous functions
from U to V with the uniform norm is complete.

Theorem 3.0.3. Let K : [a,b]× [a,b]→R and f : [a,b]→R be two continuous functions.
So, if λ is small enough, then the equation

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt

admits a unique solution that needs to be extended further to [a,b]

Proof. We consider the set F of continuous functions on [a,b]→ [a,b], endowed with
the uniform norm, so by the lemma above, it implies that F is complete. We then
consider the application

Φ : F → F

given by

Φ(y)(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt

We show that Φp is a contraction application for a certain p. ∀x ∈ [a,b], we have;∣∣∣∣∣∣∣∣Φ(y)−Φ(y′)
∣∣∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣∣∣Φ(y)(x)−Φ(y′)(x)

∣∣∣∣∣∣∣∣
=
∣∣∣∣λ∣∣∣∣ ∣∣∣∣∣∣∣∣∫ baK(x,t)(y(t)−y′(t))dt

∣∣∣∣∣∣∣∣≤ ∣∣∣∣λ∣∣∣∣ ∣∣∣∣∣∣∣∣K∣∣∣∣ ∣∣∣∣∞ ∣∣∣∣b−a∣∣∣∣ ∣∣∣∣y−y′∣∣∣∣∣∣∣∣∣∣∣∣
∞

If it is small enough and if p is large enough, then the application Φp is a contraction,
so it has a unique fixed point. This point is the solution of the Fredholm integral
equation of the Second Kind.

Here, we will majorly use the method of degenerate kernels.

And such a kernel can be expressed as:

K(x,t) =
n∑
i=1

gi(x)hi(t) (111)

some of the examples of degenerate kernels are

K(x,t) = x− t
K(x,t) = (x− t)2

In what follows we state without proof the Fredholm Alternative Theorem.
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Theorem 3.0.4 (Fredholm Alternative Theorem). If the homogeneous Fredholm In-
tegral Equation

y(x) = λ
∫ b

a
K(x,t)y(t)dt (112)

has only the trivial or zero solution y(x) = 0, then the corresponding non-homogeneous
Fredholm integral equation:

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (113)

has always a unique solution.
We consider this theorem for a Kernel which is separable.

Theorem 3.0.5 (Uniqueness Solution). If the Kernel K(x,t) in the Fredholm integral
equation (108) is continuous, real valued function, bounded in the square a≤ x≤ b and
a≤ t≤ b and if f(x) is a continuous real valued function, then a necessary condition
for existence of a unique solution for Fredholm integral equation (108) is given by

|λ|M(b−a)< 1 (114)

where;
|K(x,t)| ≤M ∈R (115)

However, if the necessary condition does not hold, then a continuous solution may
exist for Fredholm integral equation.

A number of analytical and numerical methods have been developed to solve these equa-
tions. The analytical methods are also known as traditional methods.
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3.1 Analytical Methods for Solving Fredholm Integral Equations of
the Second Kind

Some integral equations have solutions and others have no solutions or have innumerable
solutions.

Remark 3.1.1. It is important to say that we will discuss analytical methods in space(
C([a,b]), ||.||∞

)

Some of the analytical methods include:

1. The degenerate kernel method

2. The Adomain Decomposition Method

3. The Modified Decomposition Method

4. The Noise Terms Phenomenon

5. The Variational Iteration method

6. The Direct Computation Method

7. Successive Approximations (Neumann Series and Picard′s method)

8. Convertion of Integral equations to BVPs

3.1.1 The Degenerate or Separable kernel Method

We defined a degenerate or separable kernel as:

K(x,t) =
n∑
i=1

gi(x)hi(t) (116)

The mappings g1(x),g2(x),...,gn(x) and h1(t),h2(t),...hn(t) are linearly independent. Given
the integral equation below

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (117)

Since

K(x,t) =
n∑
i=1

gi(x)hi(t)
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Then (117) becomes:

y(x) = f(x) +λ
n∑
i=1

gi(x)
∫ b

a
hi(t)y(t)dt (118)

The technique of solving the equation (118) is essentially dependent on the choice of the
complex parameter λ and therefore we define:

βi =
∫ b

a
hi(t)y(t)dt (119)

Where the quantities βi are constants. Using (119) in (118) we obtain:

y(x) = f(x) +λ
n∑
i=1

βigi(x) (120)

And we now can find the values of βi Using (120)in (118) we have;
n∑
i=1

gi(x)[βi−
∫ b

a
hi(t)[f(t) +λ

n∑
k=1

βkgk(t)]dt] = 0 (121)

From linear independence of gi(x), it then suffices to have

βi−
∫ b

a
hi(t)[f(t) +λ

n∑
k=1

βkgk(t)]dt= 0 (122)

Now, using the simplified notation; ∫ b

a
hi(t)f(t) = fi (123)

And ∫ b

a
hi(t)gk(t)dt=Gik (124)

Then (122) becomes;

βi−λ
n∑
k=1

βkGik = fi, i= 1,2, ...,n (125)

Which is a system of Algebraic equations for the unknown βi The system (125) has the
determinant:

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−λG11 −λG12 · · · −λG1n

−λG21 1−λG22 · · · −λG2n

· · · · · ·

· · · · · ·

· · · · · ·

−λGn1 −λGn2 · · · 1−λGnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(126)

Which is a polynomial in λ of degree n.
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1. ∀λ for which D(λ) 6= 0, the Algebraic system (126) and thereby the integral equation
(117) has a unique solution.

2. On the other hand, ∀λ for which D(λ) = 0, the Algebraic system (125), and with it
the integral equation (117) , either is insoluble or has an infinite number of solutions.

Example 3.1.2. We want to show that the equation

u(x) = v(x) + 1
π

∫ 2π

0
sin(x+ t)u(t)dt (127)

have no solution if the non-homogeneous part v(x) = x and has a solution for v(x) = 1.
We rewrite G(x,t) = sin(x+ t) as

K(x,t) = sinxcos t+ cosxsin t (128)

=

h1(x)g1(t) +h2(x)g2(t)

and
Gik =

∫ 2π

0
hi(t)gk(t)dt, i,k = 1,2 (129)

Here

G11 =
∫ 2π

0
h1(t)g1(t)dt=

∫ 2π

0
cos tsin tdt= 0

G12 =
∫ 2π

0
h1(t)g2(t)dt=

∫ 2π

0
cos tcos tdt= π

G21 =
∫ 2π

0
h2(t)g1(t)dt=

∫ 2π

0
sin tsin tdt= π

G22 =
∫ 2π

0
h2(t)g2(t)dt=

∫ 2π

0
sin tcos tdt= 0

Therefore,

D(λ) =

∣∣∣∣∣∣∣
1−λG11 −λG12

−λG21 1−λG22

∣∣∣∣∣∣∣ (130)

D(λ) =

∣∣∣∣∣∣∣
1 −λπ

−λπ 1

∣∣∣∣∣∣∣ (131)
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= 1−λ2π2 (132)

If D(λ) 6= 0 then we have a unique solution.
Here the eigenvalues are given by equating (132) to 0:

1−λ2π2 = 0

where we obtain:

λ1 = 1
π

and λ2 =− 1
π

(133)

The algebraic system corresponding to (127) therefore given by:1−λG11 −λG12

−λG21 1−λG22


A
B

=

0

0

 (134)

Now, using (131) we obtain:

A−λπB = 0
−λπA+B = 0

K(x,t) = sin(x+ t) being symmetric: When λ = 1
π , yields A = B. Then the corre-

sponding eigenfunction u1(x) is therefore given by:

u1(x) = λ
n∑
i=1

ABgi(x) = 1
π

(Ag1(x) +Bg2(x))

u1(x) = 1
π

(Asinx+Acosx) = A

π
(sinx+ cosx)

When λ=− 1
π , we obtain:A=−B, then the corresponding eigenfunction is given by:

u2(x) = 1
π

(Aµ−Aω) = A

π
(µ−ω), µ= sinx, ω = cosx

When v(x) = x, we have:∫ 2π

0
v(x)u1(x)dx= A

π

∫ 2π

0
x(µ+ω)dx 6= 0∫ 2π

0
v(x)u2(x)dx= A

π

∫ 2π

0
x(µ−ω)dx 6= 0

which gives that v(x) is not orthogonal to u1(x) and u2(x) and so (127) will have no
solution.
When v(x) = 1, we obtain the following:∫ 2π

0
v(x)u1(x)dx= A

π
(mu+ω)dx= 0∫ 2π

0
v(x)u2(x)dx= A

π

∫ 2π

0
(µ−ω)dx= 0
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Then (127) will have infinitely many solutions of the type:

u(x) = v(x) + A

π
u1(x) + A

π
u2(x)

u(x) = 1 +C
A

π
(µ+ω) +D

A

π
(µ−ω)

u(x) = 1 +Ecosx+Fsinx

Where E and F are arbitrary constants.
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3.1.2 The Adomain Decomposition Method

It was introduced byGeorge Adomain, and it involves of decomposition of of the unknown
function y(x).

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (135)

into a sum of infinite number of components defined by the decomposition series:

y(x) =
∞∑
n=0

yn(x) (136)

or equivalently

y(x) = y0(x) +y1(x) +y2(x) + ...+yn(x) (137)

Where the components yn(x), n ≥ 0 will be determined recurrently. This is achieved by
substituting (136) into (135) to obtain.

∞∑
n=0

yn(x) = f(x) +λ
∫ b

a
K(x,t)(

∞∑
n=0

yn(t))dt (138)

or equivalently,

y0(x) +y1(x) +y2(x) + ...= f(x) +λ
∫ b

a
K(x,t)[y0(t) +y1(t) +y2(t) + ...]dt (139)

The component y0(x) is known as the zeroth which is identified by all the terms outside
the integral sign.

y0(x) = f(x) (140)

and
yn+1(x) = λ

∫ b

a
K(x,t)yn(t)dt, n≥ 0 (141)

Therefore y(x) can be easily obtained in the form of a series solution with the help of the
assumption we made in (136) and (137)

Remark 3.1.3. The components of y0(x),y1(x) · · · are completely determined. As a
result, the solution y(x) is easily obtained as a series using the series assumption in
(136).The decomposition method converts the integral equation into an elegant deter-
mination of the computable components, if an exact solution exists for the problem,
then the series obtained converges very quickly to this exact solution. However, for
concrete problems, when a closed form solution is not obtained, a truncated number
of terms is usually used at numeric ends. The more components we use the more
precision we get.
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Example 3.1.4. Let us solve the integral of the second type below

y(x) = 2x+ x

2

∫ 1

−1
ty(t)dt (142)

We know that from (142) we have
∞∑
n=0

yn(x) = 2x+ x

2

∫ 1

−1
t
∞∑
n=0

yn(t)dt (143)

Or equivalently as

y0(x) +y1(x) +y2(x) + · · ·= 2x+ x

2

∫ 1

−1
t(y0(t) +y1(t) +y2(t) + · · ·)dt (144)

We therefore identify the zeroth component by all terms that are not identified under
the integral sign. Therefore, we obtain the following recurrence relation

y0(x) = 2x (145)

yn+1(x) = x

2

∫ 1

−1
tyn(t)dt (146)

It follows from (145) that

y1(x) = x

2

∫ 1

−1
ty0(t)dt= x

2

∫ 1

−1
2t2dt= 2x

3

y2(x) = x

2

∫ 1

−1
ty1(t)dt= x

2

∫ 1

−1

2t2
3 dt= 2x

9

y3(x) = x

2

∫ 1

−1
ty2(t)dt= x

2

∫ 1

−1

2t2
9 dt= 2x

27

Hence

y(x) = 2x+x
(

2
3 + 2

9 + 2
27 + 2

81 + · · ·
)

(147)

We notice that the equation (147) represents an infinite geometric series at the right
hand side and has

a= 2
3 r = 1

3
but we know that

S = a

1− r =
2
3

1− 1
3

= 2
3 ×

3
2 = 1

Therefore, the exact solution is given by

y(x) = 2x+x (148)

y(x) = 3x (149)
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3.1.3 The Modified Decomposition Method

The method introduces a slight variation to the recurrence relation

u0(s) = v(s) (150)

uk+1(s) = λ
∫ b

a
K(s, t)u(t)dt k ≥ 0 (151)

whose infinite sum is given by

u(s) =
∞∑
n=0

un(x) (152)

that lead to finding the components of u(s) in the manner that is easier and faster. In
many events the function v(s) can be picked up as the sum of two partial functions that
is to say v1(s) and v2(s) or as

v(s) = v1(s) +v2(s) (153)

In view of (153), we introduce a change in the structure of the occurrence relation (150).
In order to minimize the magnitude of calculation we identify the zeroth component u0(s)
by one part of v(s) that is v2(s) and v2(s). While the other part can be added to the
component u1(s) as well as other terms.
To put it in another way, the method introduces modified occurrence relation

u0(s) = v1(s) (154)

u1(s) = v2(s) +λ
∫ b

a
K(s, t)u0(t)dt (155)

uk+1(s) = λ
∫ b

a
K(s, t)uk(t)dt k ≥ 1 (156)

Which displays the disparity between the standard occurrence relation (150) and the
altered relation (154) rests only on the categorization of the first two components u0(s)
and u1(s) while the rest of the components ui(s) i ≥ 2 remainunchanged in the two
occurrence relations. Even though this variation in the formation of u0(s) and u1(s) is
small, nonetheless it takes part in the accelerating the convergence of the solution and in
minimizing the magnitude of computational work.Furthermore, decreasing the number of
terms in v1(s) influences the components of u1(x) and other components as well.

Remark 3.1.5. Proper selection of v1(s) and v2(s), the exact solution u(s) can be ac-
quired by using very few iterations and sometimes by computing only two components.
The outcome of this alteration depends only on the correct choice of v1(s) and v2(s),
and this can be achieved through tests only. Upto to now there is no rule guiding on
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the correct selection of v1(s) and v2(s).

If v(s) contains one term only, the standard decomposition can be used in this case.

Example 3.1.6. Consider;

y(x) = sinx−x+x
∫ π

2

0
ty(t)dt (157)

First, we separate f(x) = sinx+x into two parts namely,

g(x) = sinx

h(x) =−x

Now, using the Modified Recurrence formula (154) we obtain;

y0(x) = g(x) = sinx (158)

y1(x) = h(x) +x
∫ π

2

0
ty0(t)dt=−x+x

∫ π
2

0
tsintdt= 0 (159)

Consequently,

yi+1(x) =
∫ π

2

0
K(x,t)yi(t)dt= 0 i≥ 1 (160)

Also, using (160), the the structure of yi, i≥ 1 is equivalent to zero. Hence

y(x) = sinx
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3.1.4 The Noise Term Phenomenon

The noise terms refers to the undistinguishable termswith mutually exclusive sign that
spring up in the structure of y0(s) and y1(s) as well as other terms in the answer to the
problem of Fredholm integral equation of the second type. These terms came into
sight only for unique type of non-homogeneous integral equation.

Remark 3.1.7. If the noise terms exist in the y0(s) and y1(s) components then without
loss of generality a closed structure of slution can be obtained after two consecutive
iterations.
If we cancel the noise terms between y0(s) and y1(s) while y1(s) having more terms,
the terms which have not been canceled in y0(s) sometimes yield the correct answer
to the problem. So, it is inevitable to verify the non-canceled terms of y0(s) fulfill the
integral equation. However, we will be required to carry out many iterations of y(s)
in order to obtain the answer in a series form.
In many scenarios, not all nonhomogeneous equations have noise terms phenomenon.

Example 3.1.8. Find the exact answer to the problem below using noise terms phe-
nomenon method:

y(s) = s(π−2 + sins+ coss)−
∫ π

0
sy(t)dt (161)

Following the Standard Adomain Decomposition Method, we use the recurrence for-
mula:

y0(s) = s(π−2 + sins+ coss)

yi+1(s) =
∫ π

0
sy0(t)dt

The above gives:
y0(s) = s(π−2 + sins+ coss) (162)

y1(s) =
∫ π

0
sy0(t)dt (163)

y1(s) = s
∫ π

0
t(π−2 + sins+ coss)dt (164)

On using Integration by Parts, we obtain:

y1(s) = s
∫ π

0
(πt−2t+ tsin t+ tcos t)dt= s(π

3

2 −π
2 +π−2) (165)

It follows from (162) and (165) that the noise terms ±2s and ±π appears in y0(s)
and y1(s) so, canceling these terms from the zeroth component y0(s) yields the exact
solution;

y(s) = x(sins+ coss)
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3.1.5 The Variational Iterative Method

In this section, we will apply the variational iterative method to handle Fredholm integral
equations. This technique only works best for a degenerate kernel such that

G(x,t) = u(x)v(t), u= g and v = h. (166)

From (166) it implies that we differentiate both sides of the Fredholm integral equation
to convert to its identical fredholm− Integro differential equation which needs a
defined initial condition. For this reason, we confine ourselves with the study of u(x) =
xn, n≥ 1.

The standard Fredholm integral equation is of the form:

y(x) = f(x) +
∫ b

a
G(x,t)y(t)dt (167)

Or equivalently from (166)

y(x) = f(x) +u(x)
∫ b

a
v(t)y(t)dt (168)

Since the value under the integral sign i.e the integrand is constant. So, differentiating
the equation (168) with respect to x yields;

y′(x) = f ′(x) +g′(x)
∫ b

a
h(t)y(t)dt (169)

Which is called the Integro-differential equation and its correction functional is given by/

yn+1(x) = yn(x) +
∫ x

0
λ(ζ)(y′n(x)−f ′(ζ)−u′(ζ)

∫ b

a
v(s)ȳn(s)ds)dζ (170)

The variational iteration method entails two essential steps:

1. We use integration by parts to optimally obtain the Lafrange′s multipliers.

2. We substitute the value λ obtained into (170) where the restriction was excluded
which yields:

yn+1(x) = yn−
∫ x

0
[y′n(ζ)−f ′(ζ)−g′(ζ)

∫ b

a
h(r)yn(s)ds]dζ (171)

and it is used for the computation of consecutive (successive) approximations yn+1(x) n≥
0 of the solution y(x) From (171), the zeroth approximate y0(x) can be any selective func-
tion, and making use of the first value y0 is used for the selective zeroth term approximation
and eventually we obtain;

y(x) = lim
n→∞yn(x) (172)
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Example 3.1.9. Using the method of Variational Iteration Method solve the following
Fredholm integral equation:

y(x) = sinx−x+x
∫ π

0
y(t)dt (173)

The solution of the above Fredholm integral equation by Variational Iteration Method
requires us to first differentiate the given integral equation (173) with respect to x

keeping t fixed and we obtain:

y′(x) = cosx−1 +
∫ π

0
y(t)dt (174)

From (174) the corresponding correction functional is therefore given by: That is after
using the formula for Integro-differential equation (171)

yn+1(x) = yn(x)−
∫ x

0
[y′n(ζ)− cosζ+ 1−

∫ π

0
yn(s)ds]dζ (175)

We realize that λ is taken to be −1 for the first order integro-differential equation and
the initial condition y(0) = 0 is reached after substituting x = 0 in equation (173).
Subsequently, we will be using this initial condition to select y0(x) = y(0) = 0 and
finally applying the same selection into the correction functional gives the following
successive approximations.

y0(x) = 0 (176)

y1(x) = y0(x)−
∫ x

0
[y′0(ζ)− cosζ+ 1−

∫ π

0
y0(s)ds]dζ (177)

but y′0(ζ) is given by;

y′0(ζ) = cosζ−1 +
∫ π

0
y0(s)ds= 0

applying the above in the equation (177) we have

y1(x) =−
∫ x

0
[cosζ+ 1−]dζ = sinx−x

thus we obtain
y1(x) = sinx−x (178)

yx(x)−y1(x)−
∫ x

0
[y′1(ζ)− cosζ+ 1−

∫ π

0
y1(s)ds]dζ (179)
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Here

y′1(ζ) = cosζ−1 = 0 atζ = 0

And using the value of y′1(ζ) = 0 in (179) we have;

y2(x) = sinx−x−
∫ x

0
[−cosζ+ 1−

∫ π

0
(sins− s)ds]dζ

= sinx−x−
∫ x

0
[−cosζ−1 + π2

2 ]dζ

= sinx−x− [sinx−x+ π2

2 x]

±sinx is one of the noise terms and we therefore cancel it to obtain:

y2(x) = (sinx−x) + (x− π
2

2 ) (180)

Using (180), we have

y3(x)−y2(x)−
∫ x

0
[y′2(ζ)− cosζ+ 1−

∫ π

0
y2(s)ds]dζ (181)

Using the same method as in the case of y0(x), y1(x) and y2(x) in y3(x) we
obtain,

y3(x) = (sinx−x) + (x− π
2

2 x) + (x− π
4

4 x) (182)

=⇒ y4(x) = (sinx−x) + (x− π
2

2 x) + (x− π
4

4 x) + (x− π
16

16 x)

and the general solution therefore becomes:

yn(x) = (sinx−x)+(x− π
2

2 x)+(x− π
4

4 x)+(x− π
16

16 x)+(x− π
256

256 x)+ ...+(x− π
n

n
x)

(183)
Hence, from (183) the noise terms are ±x and ±π

n

n which we now cancel out to obtain
the answer to the problem as

y(x) = sinx (184)
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3.1.6 The Direct Computation Method

The Direct Computation Method normally approaches the Fredholm integral equations of
the Second Kind in a more direct manner and the resultant solution is usually given in an
exact manner but not in series form as we have seen in other methods of solution.

Also, a point to note is that this method is only applicable to degenerate or separable
kernels of the form:

K(x,t) =
n∑
i=1

ui(x)vi(t) (185)

which is a kernel of the Fredholm integral equation of the Second Kind;

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt (186)

Procedures to be followed when dealing with the Direct Method

1. Substitute (185) into (186)

2. On substitution, we obtain:

y(x) = f(x)+u1(x)
∫ b

a
v1(t)y(t)dt+u2(x)

∫ b

a
v2(t)y(t)dt+ ...+un(x)

∫ b

a
vn(t)y(t)dt

(187)
Here we assumed λ= 1

3. Each and every integral in the right hand side depends only on a variable t and the
limits of integration for t being constant which also implies that each integral is equal
to a constant. Based on the explanations above, the equation (187) becomes:

y(x) = f(x) +λβ1u1(x) +λβ2u2(x) +λβ3u3(x) + ...+λβnun(x) (188)

Where
βi =

∫ b

a
vi(t)y(t)dt, 1≤ i≤ n (189)

4. If we substitute (189) into (188), we obtain a system of n algebraic equations that can
be solved to find the value of the constants βi 1≤ i≤ n. Thus using the obtained
numerical values of βi into (188), the solution of the Fredholm integral equation (186)
is readily obtained.
The direct method will be best demonstrated by the following example.
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Example 3.1.10. Solve the homogeneous Fredholm integral equation using the direct
computation method

y(x) = λ
∫ π

0
sin(x+ t)y(t)dt (190)

We notice that the Kernel K(x,t) = sin(x+ t) = sinxcos t+ cosxsin t is separable.
Then equation (190) can be written as

y(x) = ωλsinx+γλcosx (191)

Where

ω =
∫ π

0
cos ty(t)dt, γ =

∫ π

0
sin ty(t)dt (192)

Substituting (191) into (192) yields

ω =
∫ π

0
cos t(ωλsin t+γλcos t)dt (193)

γ =
∫ π

0
sin t(ωλsin t+γλcos t)dt (194)

Solve the algebraic system above gives

ω = 1
2γλπ γ = 1

2ωλπ (195)

For ω 6= 0, γ 6= 0, we find that the eigenvalue λ is given by

λ=± 2
π
, ω = γ (196)

Which inturn gives an eigenfunction y(x) by

y(x) =±C
π

(sinx+ cosx), C = 2ω (197)
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3.1.7 Successive Approximations Method

This technique gives a systematic plan that can be used to find a solution to IVPs an inte-
gral equations. Normally, we begin by first assuming f0(x) which will be used to find other
approximations. f0(x) is also known as the zeroth recurrence function approximations.
Taking into account the Fredholm of the 2nd type

f(x) = g(x) +λ
∫ 1

−1
K(x,t)f(t)dt (198)

Where y(x) is the unknown function to be determined, K(x,t) the kernel and λ a pa-
rameter. This method takes the form:

f0(x) = zeroth term (199)

fn+1(x) = g(x) +λ
∫ 1

−1
K(x,t)fn(t)dt (200)

Just like the Adomain Decomposition method,in Successive Approximations method, we
also have that;

f0(x) = any selective real−valued function not inside the integral sign

(201)

f1(x) = λ
∫ 1

−1
K(x,t)f0(t)dt (202)

f2(x) = λ
∫ 1

−1
K(x,t)f1(t)dt (203)

fn+1(x) = fn(x) +λ
∫ 1

−1
K(x,t)fn(t)dt (204)

One of the methods associated with Successive Approximations Method depending on the
choice of f0(x) is the Neumann Series approximation method.

Neumann Series Method

The Neumann series is obtained when f0(x) = g(x) in other terms which are not inside
the integral sign of (198). Given:

f0(x) = g(x) (205)

f1(x) = g(x) +λ
∫ 1

−1
K(x,t)f0(t)dt= g(x) +λ

∫ 1

−1
K(x,t)g(t)dt (206)

= f1(x) = g(x) +λΦ1(x) (207)
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Where

Φ1(x) =
∫ 1

−1
K(x,t)g(t)dt (208)

The second approximation is therefore given by:

f2(x) = g(x) +λ
∫ b

−1
K(x,t)f1(t)dt (209)

= g(x) +λ
∫ 1

−1
K(x,t)[g(t) +λΦ1(t)]dt (210)

= g(x) +λΦ1(x) +λ2Φ2(x) (211)

Where
Φ2(x) =

∫ b

−1
K(x,t)Φ1(t)dt (212)

From (212), the third approximation can be obtained as:

f3(x) = g(x) +λΦ1(x) +λ2Φ2(x) +λ3Φ3(x) (213)

And the nth approximation as:

fn+1(x) = g(x) +λΦ1(x) +λ2Φ2(x) +λ3Φ3(x) + ...+λnΦn(x) +λn+1Φn+1(x) (214)

= g(x) +
∞∑
n=1

λnΦn+1(x), for n≥ 0 (215)

Where
Φn+1(x) =

∫ 1

−1
K(x,t)Φn(t)dt (216)

The series (216) is known as under the name of the Neumann series. this series is
absolutely and uniformly convergent. Thus, the solution is given by

f(x) = g(x) + lim
n→∞

n∑
i=1

λiΦi(x) (217)

Example 3.1.11. Determine the solution of Fredholm integral equation of the Second
Kind using Successive Approximations Method;

y(x) = ex+
∫ 1

−1
xty(t)dt (218)
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For the zeroth approximation approximation y0(x), we let;

y0(x) = ex (219)

The method of successive approximations admits the use of the iteration formula:

yn+1(x) = ex+
∫ 1

−1
xtyn(t)dt n≥ 0 (220)

Using (219) and (220) we obtain:

y1(x) = ex+x
∫ 1

−1
ty0(t)dt= ex+x

∫ 1

−1
tetdt= ex+x

2
e

y2(x) = ex+x
∫ 1

−1
ty1(t)dt= ex+x

∫ 1

−1
(tet+ 2

e
t2)dt= ex+x

2
e

+x
2
e
× 2

3

y3(x) = ex+x
∫ 1

−1
ty2(t)dt= ex+x

∫ 1

−1
(tet+ 2

e
t2 + 2

e
× 2

3t
2)dt= ex+x2

e
+x2

e
+x2

e
× 2

3 +x2
e
×(2

3)2

Therefore,
y4(x) = ex+x

2
e

+x
2
e
× 2

3 +x
2
e
× (2

3)2 +x
2
e
× (2

3)3 (221)

From (221), we obtain:

yn+1(x) = ex+x
2
e

(1 + 2
3 + (2

3)2 + (2
3)3 + (2

3)n) (222)

We notice that the infinite geometric series on the right hand side has a= 1 and the
common ratio as r = 2

3 .
Therefore, the sum of the infinite geometric series in (222) is given by:

S = a

a− r
= 1

1− 2
3

= 3 (223)

Using (223), the series solution in (222) therefore becomes

y(x) = ex+ 6xe−1

Example 3.1.12. Let the integral equation of the Second Kind be

u(x) = 1 +
∫ 1

0
xu(t)dt
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Solve using the successive approximation (method of Neumann)
For the solution, consider the zeroth approximation as u0(x) = 1, and then the first
approximation can be calculated as

u1(x) = 1 +
∫ 1

0
xu0(t)dt

= 1 +
∫ 1

0
xdt= 1 +x

In this way, we find

u2(x) = 1 +
∫ 1

0
xu1(t)dt

u2(x) = 1 +
∫ 1

0
x(1 + t)dt

u2(x) = 1 + 1
2x

So we get

un(x) = 1 +x
[
1 + 1

2 + 1
22 + 1

23 + · · ·+ 1
2n−1

]

And so

u(x) = lim
n→∞un(x)

u(x) = lim
n→∞x

n∑
i=0

1
2i

u(x) = 1 + lim
n→∞x.2(1− 1

2i )

u(x) = 1 + 2x

which is the solution.

3.1.8 Picard’s Method

The Picard’s method is obtained when we let y0(x) = 0, 1, x, or any other real-valued
function.Given the Fredholm integral equation of the Second Kind:

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt a≤ x≤ b (224)

From (224), we have:

y0(x) = Any real−valued function (225)
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Therefore, the first approximation y1(x) is defined by:

y1(x) = f(x) +λ
∫ b

a
K(x,t)y0(t)dt= f (226)

The second approximation is given by:

y2(x) = f(x) +λ
∫ b

a
K(x,t)y1(t)dt (227)

Continuing in the same way, we obtain the nth approximation by:

yn+1(x) = f(x) +λ
∫ b

a
K(x,t)yn(t)dt (228)

Hence, the final solution is then given by;

lim
n→∞yn+1(x) = y(x) (229)

Example 3.1.13. Determine the solution of the Fredholm integral equation below by
using Picard’s Method

y(x) = sinx+ cosx+
∫ π

2

0
sinxty(t)dt (230)

Here, we let the zeroth approximation y0(x) to be

y0(x) = 0 (231)

The first approximation is then given by:

y1(x) = sinx+ cosx+ sinx
∫ π

2

0
ty0(t)dt= sinx+ cosx (232)

The second approximation is also given by:

y2(x) = sinx+ cosx+ sinx
∫ π

2

0
ty2(t)dt= (233)

y2(x) = sinx+ cosx= sinx
∫ π

2

0
(tsin t+ tcos t)dt= sinx+ cosx+ π

2 sinx

The third approximation is given by:

y3(x) = sinx+ cosx+ sinx
∫ π

2

0
ty2(t)dt= sinx+ cosx+π sinx (234)
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Using the same approach we have the fourth approximation as:

y4(x) = sinx+ cosx+ sinx
∫ π

2

0
ty3(t)dt= sinx+ cosx+ 3π

2 sinx (235)

and
y5(x) = sinx+ cosx+ sinx

∫ π
2

0
ty4(t)dt= sinx+ cosx+ 2π sinx (236)

From (236), we cancel the noise terms in ±π such that the exact solution is

y(x) = sinx+ cosx

Convergence of Successive Approximation Method

Theorem 3.1.14. Let A :X→X an operator continuous on a Banach space X whose
spectral radius verifies r(A) < 1. Then the successive approximation method defined
by ∀n ∈X, un+1 = Au0 +f converges for all u0 ∈X and f ∈X to a unique solution
of u−Au= f.

Remark 3.1.15. This result is very natural in the finite dimensional space where the
spectral radius can be interpreted as the greatest value of N(A) for the set of algebraic
norms N .

3.1.9 Conversion of Fredholm Integral Equations to ODE

This method involves converting F. I. Es to their equivalent BVPs. This is obtained by
integrating both sides of the given Fredholm integral equation w.r.t s in order to do away
with the integral sign on the right hand side which then yields the ODE.

Leibnitz′s Theorem

Theorem 3.1.16. [7] To convert the differential equations to integral equations, we
use the Leibnitz′sRule of Differentiating Under the Integral Sign, i.e

If G(s, t) and ∂G(s,t)
∂s are continuous functions of s and t in the domain a ≤ s ≤ b,

t0 ≤ t≤ t1, a= g(s), b= h(s), then

d

ds

∫ h(s)

g(s)
G(s, t)dt=

∫ h(s)

g(s)

∂G(s, t)
∂s

dt+ dh(s)
ds

G(s,h(s))− dg(s)
ds

G(s,g(s)) (237)
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provided g(s) and h(s) defined functions with continuous derivatives in the intervals
defined above. We may also use this rule to convert integral equations to equivalent
ordinary differential equations. For example, we have
(a). For Volterra integral equation:

d

ds
[
∫ s

a
G(s, t)u(t)dt] =

∫ s

a

∂G

∂s
dt+G(s, t)u(s) (238)

(b). For Fredholm Integral Equation:

d

ds
[
∫ b

a
G(s, t)v(t)dt] =

∫ b

a

∂G

∂s
v(t)dt (239)

Where u(t) and v(t) are independent of x and hence taking partial derivatives with
respect to x, u(t) and v(t) are treated as constants.
The boundary conditions can be obtained by substituting s = a, and s = b into y(s)
and the resultant boundary value problem can be solved easily by using the Ordinary
Differential Equations methods e.g Taylor series, Runge-Kutta and multi-step meth-
ods.

There are two types of problems associated with this method of solutions. From the
general point of view
Given the Fredholm Integral Equation of the Second Kind:

y(s) = f(s) +λ
∫ b

a
G(s, t)y(t)dt, a≤ s, t≤ b (240)

Where f(s) is given and the kernel G(s, t) can be of two types:

1.

G(s, t) =
t(1− s)h(s), for a≤ t≤ s
s(1− t)h(s), for s≤ t≤ b

2.

G(s, t) =
th(s), for a≤ t≤ s
sh(s), for s≤ t≤ b

So, in a simpler way, h(s) ≡ λ, a constant. From the first expression, the Fredholm
Integral equation 240 takes the form:

y(s) = f(s) +λ
∫ s

a
t(1− s)y(t)dt+λ

∫ b

s
s(1− t)y(t)dt (241)
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and from the second expression, we have:

y(s) = f(s) +λ
∫ s

a
ty(t)dt+λs

∫ b

s
y(t)dt (242)

The R.H.S of equations (241) and (3.1.9) are a representation of a product of two functions
of s, so when we differentiate them with respect to s both sides of(241) and (3.1.9) using
Leibnitz rule to obtain for equation (241) we have:

y′(s) = f ′(s) +λs(1− s)y(s)−λ
∫ s

a
ty(t)dt−λs(1− s)y(s) +λ

∫ b

s
(1− t)y(t)dt

y′(s) = f ′(s)−λ
∫ s

a
ty(t)dt+λ

∫ b

s
(1− t)y(t)dt (243)

we differentiate both sides again with respect to s in order to do away with the integral
sign in (243),

y′′(s) = f ′′(s)−λsy(s)−λ(1− s)y(s) (244)

wich then give rise to the ODE:

y′′(s) +λsy(s) = f ′′(s) (245)

With boundary conditions as:

y(a) = f(a), yb= f(b) (246)

And for equation (3.1.9) given by:

y(s) = f(s) +λ
∫ s

a
ty(t)dt+λs

∫ b

s
y(t)dt

We differentiate both sides of (3.1.9) with respect to x using product rule of differentiation
and using Leibnitz rule, we obtain:

y′(s) = f ′(s) +λ
∫ b

s
y(t)dt (247)

We again differentiate (247) with respect to x so that we remove the integral sign to get

y′′(s) = f ′′(s)−λy(s) (248)

Therefore, the resulting ordinary differential equation is given by:

y′′(s) +λy(s) = f ′′(s) (249)
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Here, the boundary conditions are:

y(a) = f(a), y′(b= f ′(b)) (250)

Combining (249) and (250) yields the boundary value problem equivalent to the Fredholm
integral equation (240).

However, if h(s) is not a constant, we can then proceed in similar manner to the above
discussion above to obtain the boundary value problem for the two different types of
kernel. The method is best demonstrated in the following examples:

Example 3.1.17. Convert the following equation to its equivalent boundary value prob-
lem:

y(x) = sinx+
∫ π

2

0
K(x,t)y(t)dt (251)

Where

K(x,t) =
t(

π
2 −x), for 0≤ t≤ x

x(π2 − t), for x≤ t≤ π
2

and therefore, l equation (251) becomes;

y(x) = sinx+ (π2 −x)
∫ x

0
ty(t)dt+x

∫ π
2

x
(π2 − t)y(t)dt (252)

Differentiating (252) twice with respect to x using the product rule of differentiation
and using Leibnitz Rule of differentiation, we obtain:

y′(x) = cosx−
∫ x

o
ty(t)dt+

∫ π
2

x
(π2 − t)y(t)dt (253)

y′′(x) =−sinx− [ty(t)]x0 + [(π2 − t)y(t)]
π
2
x

y′′(x) =−sinx−xy(x)− π2 y(x) +xy(x)

y′′(x) =−sinx− π2 y(x) (254)

From (254), the resulting ordinary differential equation is then given by:

y′′(x) + π

2 =−sinx (255)

With the BCs as:
y(0) = f(0) = 0, y(π2 ) = f(π2 ) = 1 (256)
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3.2 Numerical Methods For Solving Fredholm Integral Equations of
the Second Kind

There are many numerical methods for solving Fredholm integral equations of the Second
Kind. These include:

1. The Degenerate Kernel Method

2. The Collocation Method

3. The Galerkin Method

4. The Nystrom (Quadrature) Method

3.2.1 The Degenerate Kernel Method

We discussed about the Degenerate Kernel Method as one of the Analytical Methods for
solving Fredholm Integral equations of the Second Kind. However, we can also use it to
numerically solve the Fredholm integral equation below.

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, a≤ x≤ b (257)

A kernel K(x,t) is degenerate if it can be expressed as the sum of a finite number of
terms, each of which is a product of functions of x and t only such that:

K(x,t) =
n∑
i=1

gi(x)hi(t) (258)

which we now seek to approximate them by degenerate kernels. From equation (257),
K(x,t) is the function to be approximated by a sequence of degenerate kernel functions;

Kn(x,t) =
n∑
i=1

gi,n(x)hi,n(t), n≥ 1 (259)

Where Kn is an integral operator associated with the integral equation (257) which can
be rewritten as:

Kny(x) = λ
∫ b

a
Kn(x,t)y(t)dt, a≤ x≤ b, n≥ 1 (260)

Thus, the integral equation (257) can be simplified as:

(I−λK)y = f (261)
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Using (260), (261) can be written as;

(I−λKn)yn = f (262)

Where yn is the solution of the approximating equation.
Using the formula (259) for Kn(x,t), the integral equation (262) becomes

yn(x) = f(x) +λ
n∑
i=1

gi,n(x)
∫ b

a
hi,n(t)yn(t)dt

As we have already seen in section 3.1.1, we then have:

yn(x) = f(x) +λ
n∑
i=1

βigi(x) (263)

Where
βi−λ

n∑
k=1

Gikβk = qi i= 1,2, ...,n (264)

represents a system of n algebraic equations with βi the unknowns such that

qi =
∫ b

a
hi(t)gi(t)dt (265)

and
Gik =

∫ b

a
hi(t)gk(t)dt (266)

From (264), (265) and (266) we have:

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−λG11 −λG12 · · · −λG1n

−λG21 1−λG22 · · · −λG2n

·

·

·

−λGn1 −λGn2 · · · 1−λGnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(267)

which is a polynomial in λ of degree n.

Analysis of the solution y(x) = f(x) +λ
∫ b
aK(x,t)y(t)dt by the degenerate kernel

When one of the qi or all of them are nonzero, then we have the following:
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1. If D(λ) 6= 0, then a unique nonzero solution of the system (264) exists, which implies
that (257) has a unique solution given by (263).

2. If D(λ) = 0, then the system (264) has either no solution or possesses infinitely many
solutions. Thus, (257) has either no solution or infinite solution.

When f(x) = 0, then from (265) it implies that qi = 0, i= 1,2, ...,n which suffices the
algebraic system (264) to a system of homogeneous linear equation hence the following
are possible depending on the value of D(λ)

1. If D(λ) 6= 0, then (264) has a unique zero solution for βi = 0 which also implies that
(257) has a unique zero solution i.e yn(x) = 0.

2. IfD(λ) = 0, then (264) has infinite nonzero solutions so that (257) has infinite nonzero
solutions as well where the values of λ for which D(λ) = 0 are the eigenvalues and
any corresponding nonzero solutions of y(x) = λ

∫ b
aK(x,t)y(t)dt are called the eigen-

functions of the integral equation.

When f(x) = 0, but ∫ b

a
f(t)hi(t)dt= 0, i= 1,2, ...,n (268)

which simply means that the function f(x) is orthogonal to the functions hi(t) thus the
qi reduce to zeros for i= 1,2, ...,n. From (268), the system (265) reduces to a system of
homogeneous linear equations and the possible case are:

1. If D(λ) 6= 0, then (257) has a unique zero solution for βi = 0, i = 1,2, ...,n. i.e
yn(x) = 0

2. If D(λ) = 0, then the system (264) possesses infinite nonzero solutions which implies
that (257) has infinite nonzero solutions.

For a kernel which is not degenerate, we use the Taylor Series Approximation Method.

Taylor Series Approximation

Consider the Fredholm Integral Equation of the Second Kind;

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt a≤ x≤ b (269)
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Where oftenly, K(x,t) can be written as a power series in t,

K(x,t) =
∞∑
i=0

Pi(x)(t−a)i (270)

Or in x,
K(x,t) =

∞∑
i=0

Pi(t)(x−a)i (271)

Now, suppose that Kn is the partial sum of the first n terms on the right hand side of
(270) which can be rewritten as:

Kn(x,t) =
n−1∑
i=1

Pi(x)(t−a)i (272)

And using the notation;

Kn(x,t) =
n∑
i=1

gi,n(x)hi,n(t), n≥ 1

Where Kn is a degenerate kernel with

gi(x) = Pi−1(x), hi(t) = (t−a)i−1, i= 1, ...,n (273)

And the linear system (264) can now be written as:

Gi−λ
n∑
j=1

Gj

∫ b

a
(t−a)i−1Pj−1(t)dt=

∫ b

a
f(t)(t−a)i−1dt i= 1, ...,n (274)

and the approximate solution is therefore given by:

yn(x) = f(x) +λ
n−1∑
i=0

Gi+1Pi(x) (275)

Where the integrals in equations (274) are evaluated numerically.

Example 3.2.1. Solve the Fredholm integral equation

y(x) = ex+
∫ 1

0
sinxty(t)dt, 0≤ x,t≤ 1. (276)

Let us first approximate the Kernel K(x,t) by the sum of the first three terms in its
Taylor Series:

K(x,t) = sinxt (277)
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Expanding (277) using the Taylor expansion, we have

∞∑
k=0

fk(0)
k! (x−0)k u f(0) + f ′(o)

1! (xt) + f ′′(0)
2! (xt)2 + f ′′′(0)

3! (xt)3 + f ′′′′(0)
4! (xt)4 + · · ·

(278)

From (278) we obtain

K(x,t) = xt− (xt)3

3! + (xt)5

5!

which is a separable kernel.
Then the given Fredholm integral equation takes the form:

y(x) = ex+
∫ 1

0
(xt− (xt)3

3! + (xt)5

5! )y(t)dt (279)

y(x) = ex+x
∫ 1

0
ty(t)dt− x

3

3!

∫ 1

0
t3y(t)dt+ x5

5!

∫ 1

0
t5y(t)dt (280)

Let

A1 =
∫ 1

0
ty(t)dt (281)

A2 =−1
6

∫ 1

0
t3y(t)dt (282)

A3 = 1
120

∫ 1

0
t5y(t)dt (283)

Then (279) yields

y(x) = ex+A1x−A2x
3 +A3x

5 (284)

y(t) = et+A1t−A2t
3 +A3t

5 (285)

Substituting the value of y(t) given by (285) in (281), we obtain

A1 =
∫ 1

0
t(et+A1t−A2t

3 +A3t
5)dt

A1 =
[
tet− et

]1

0
+ A1

3 −
A2
5 + A3

7
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Therefore,

2
3A1 + A2

5 −
A3
7 = 1 (286)

Substituting the value of y(t) given by (285) in (282), we get

A2 =−1
6

∫ 1

0
t3(et+A1t−A2t

3 +A3t
5)dt

A2 =−1
6

[
t3et−3t2et+ 6tet−6et

]1

0
− A1

30 + A2
42A2−

A3
54

A1
5 + 41

7 A2 + A3
9 = 2e−6 (287)

Also, substituting the value of y(t) given by (285) in (283), we obtain

A3 = 1
120

∫ 1

0
t5(et+A1t−A2t

3 +A3t
5)dt

A3 = 1
120

[
t5et−5t4et+ 20t3et−60t2et+ 120tet−120et

]1

0
+ A1

840 −
A2

1080 + A3
1320

A3 = A1
840 −

A2
1080 + A3

1320 + 1− 11
30e

− A1
840 + A2

1080 + 1319
1320A3 = 1− 11

30e

−A1
7 + A2

9 + 1319
11 A3 = 120−44e (288)

Solving the algebraic systems (286), (287) and (288) gives

A1 = 1.5459
A2 =−0.1491
A3 = 0.005279

So, using these values in (284) gives the solution of (279) as below

y(x) = ex+ 1.5459x−0.1491x3 + 0.005279x5 (289)

Which is the required approximate solution.
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Example 3.2.2.

y(x) = 3x
6 + 1

2

∫ 1

0
(ext−1)y(t)dt

We approximate the kernel by the sum of the first three terms in its Taylor series.

K(x,t)≈
[
1 + xt

1! + (xt)2

2! + (xt)3

3! −1
]

which is a degenerate kernel.
Then the given integral equation can be written in the form

y(x) = 3x
6 + 1

2

∫ 1

0

(
xt+ x2t2

2 + x3t3

6

)
y(t)dt (290)

y(x) = 3x
6 + 1

2x
∫ 1

0
ty(t)dt+ 1

4x
2
∫ 1

0
t2y(t)dt+ 1

12x
3
∫ 1

0
t3y(t)dt (291)

We let

A1 = 1
2

∫ 1

0
ty(t)dt (292)

A2 = 1
4

∫ 1

0
t2y(t)dt (293)

A3 = 1
12

∫ 1

0
t3y(t)dt (294)

Then (290)gives

y(x) = 3x
6 +A1x+A2x

2 +A3x
3 (295)

y(t) = 3t
6 +A1t+A2t

2 +A3t
3 (296)

Applying the same procedure as in the above example, we obtain the algebraic system
below

5
3A1−

A2
4 −

A3
5 = 1

6 (297)

−A1
4 + 19

5 A2−
A3
6 = 1

8 (298)

−A1
5 −

A2
6 + 83

7 A3 = 1
12 (299)
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Solving the system, we obtain

A1 = 0.1072
A2 = 0.04036
A3 = 0.009403

Hence, from equation (295) the required approximate solution is given by

y(x) = x

2 + 0.1072x+ 0.04036x2 + 0.009403x3

3.2.2 Collocation Method

Collocation method is one of the numerical methods for solving ordinary differential equa-
tions, partial differential equations and integral equations.

The main idea in collocation method is to select a finite-dimensional space of polynomials
up to a certain degree say degree n. The method also involves the selection of a number
of points in the domain as well a solution which satisfies the given equation at the col-
location points. Therefore, the fundamental principle of collocation method is to choose
parameters and basis functions such that the residual is zero at the collocation points.
Now, given the Fredholm integral equation of the Second Kind:

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, a≤ x,t≤ b (300)

The equation (300) can be written in the form:

ε[y(x)]≡ f(x)−λ
∫ b

a
K(x,t)y(t)−F (x) (301)

We seek an approximate solution of equation (301) in the form such that:

Yn(x) = Φ(x,A1, ...,An) (302)

Where the parameters A1, ...,An are known as the indeterminate coefficients.
When we substitute (302) into (301), we obtain:

ε[Yn(x)] = Yn(x)−λ
∫ b

a
K(x,t)Yn(t)dt−F (x) (303)

If f(x) is an exact solution, then clearly the residual ε[f(x)] = 0, which allows us to choose
the parameters A1, ...,An such that the error ε[Fn(x)] is small.
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Again, we have that Yn(x) are linearly dependent on the parameters A1, ...,An, hence
from (302), if

lim
n→∞Yn(x) = y(x),

then we can find te solution f(x) arbitrarily by taking sufficiently large number of the
parameters A1, ...,An.

Determination of an Approximate Solution Fn(x)

Let’s set
Yn(x) = Φ0(x) +

n∑
i=1

AiΦi(x) (304)

Assuming the functions Φi(x) i= 1, ...,n are linearly independent.
If we take Φ0(x) = Y (x) or Φ0(x) = 0 and then substitute into (304), it gives;

ε[Yn(x)] = Φ0(x) +
n∑
i=1

AiΦi(x)−y(x)−λ
∫ b

a
K(x,t)[Φ0(t) +

n∑
i=1

AiΦi(t)]dt

or simply as:

ε[Yn(x)] = h0(x,λ) +
n∑
i=1

Aihi(x,λ) (305)

Where

h0(x,λ) = Φ0(x)−Y (x)−λ
∫ b

a
K(x,t)Φ0(t)dt

hi(x,λ) = Φi(x)−λ
∫ b

a
K(x,t)Φi(t)dt

We require that ε[Yn(x)] = 0 of the given system at the collocation points x1, ...,xn on
the interval [a,b] i.e;

ε[Yn(xj)] = 0 j = 1,2, ...,n a≤ x1 < x2 < ... < xn ≤ b

Usually, x1 = a and xn = b =⇒ the algebraic system (305) becomes:

n∑
i=1

Aihi(xj ,λ) =−h0(xj ,λ) j = 1, ...,n (306)
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Suppose that the determinant of the algebraic system (306) is nonzero i,e

det[hi(xj ,λ)] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1(x1,λ) h1(x2,λ) · · · h1(xn,λ)

h2(x1,λ) h2(x2,λ) · · · h2(xn,λ)

·

·

·

hn(x1,λ) hn(x2,λ) · · · hn(xn,λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0 (307)

then (306) uniquely determines the numbers A1, ...,An which makes it possible to find
the approximate solution Yn(x) using the formula (304)

Example 3.2.3. Solve the following Fredholm integral equation of the Second Kind
using Collocation Method;

y(x) = 2x+ 1
2

∫ 1

−1
xty(t)dt (308)

Set n= 3 such that the linearly independent functions are given by;

Φ1(x) = 1, Φ2(x) = x and Φ3(x) = x2 (309)

Therefore, the approximate solution of (308) is;

Yn(x) =
3∑
i=1

AiΦi(x) = A1 +A2x+A3x
2 (310)

Substituting (310) into (308) we obtain:

Y3(x) = 2x+ 1
2

∫ 1

−1
xt(A1 +A2t+A3t

2)dt+ ε(x,A1,A2,A3)

Where

ε(x,A1,A2,A3)

is the error term or the residual term.

Y3(x) = 2x+ 1
2x
∫ 1

−1
(A1t+A2t

2 +A3t
3)dt+ ε(x,A1,A2,A3)

Integrating with respect to t over −1≤ t≤ 1 we obtain:

Y3(x) = 2x+ x

2 (2
3A2) + ε(x,A1,A2,A3) (311)
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Now, from (311) we need to form three algebraic equations that will enable us find the
values A1, A2 and A3.

Asserting that the error term is zero at the collocation points, arbitrarily chosen to be
x1 =−1, x2 = 0 and x3 = 1. Then we have:

for x=−1

A1−A2 +A3 =−2− 1
3A2

A1−
2
3A2 +A3 =−2

which yields;
−A1 + 2

3A2−A3 = 2 (312)

x= 0, A1 = 0 (313)

x= 1

A1 +A2 +A3 = 2 + 1
3A2

resulting:
2
3A2 +A3 = 2 (314)

Using (313) we have;

2
3A2−A3 = 2
2
3A2 +A3 = 2

Adding the two equations and solving for A2 andA3 we obtain:

A2 = 3 and A3 = 0

Therefore, the approximate solution of (308) is given by;

y(x) = 3x

Which is the same as an exact solution (148) obtained by the use of Adomain decompo-
sition method.
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3.2.3 Galerkin Approximation Method

The solution of the fredholm integral equation of the Second Kind

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, a≤ x,t≤ b (315)

y(x) can be approximated by the partial sum:

Yn(x) =
n∑
i=1

AiΦi(x) (316)

of n linearly independent functions Φ1(x),Φ2(x), ...,Φn(x) on the interval (a,b). Here
the associated error ε(x,A1,A2, ...,An) depends on x and the choice of the coefficients
A1,A2, ...,An. Thus, when we substitute the approximate solution for y(x), the equation
(315) becomes;

Yn(x) = f(x) +λ
∫ b

a
K(x,t)Yn(t)dt+ ε(x,A1,A2, ...,An) (317)

Where the n conditions must be found to give the n equations that will determine the
coefficients A1,A2, ...,An.
For Galerkin Method, we assume that the error term ε(x,A1,A2, ...,An) is orthogonal to
n linearly independent functions Φ1(x),Φ2(x), ...,Φn(x) on the interval [a,b] where the n
conditions are given by;

∫ b

a
Φk(x)(ε,x,A1,A2, ..,An)dx k = 1, ...,n

∫ b

a
Φk(x)[Yn(x)−f(x)−

∫ b

a
K(x,t)Yn(t)dt]dx= 0, k = 1, ...,n

Where A1, ...,An are intermediate coefficients and asserting that λ= 0.
Which implies that the approximate solution can be written in the form:

∫ b

a
Φk(x)[Yn(x)−

∫ b

a
K(x,t)Yn(t)dt]dx=

∫ b

a
Φ(x)f(x)dx k = 1, ...,n (318)

OR∫ b

a
Φk(x)(

n∑
k=1

AkΦk(x)−
∫ b

a
K(x,t)[

n∑
k=1

AkΦk(t)]dt)dx=
∫ b

a
Φk(x)f(x), k = 1, ...,n

(319)
which is the general formula after substituting for the partial sum (316).
"Without loss of generality, the first set of linearly independent functions Φk(x) are dif-
ferent from the second set Φk(x), but some functions may be used for convenience."
The scheme is best demonstrated in the example below,
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Example 3.2.4. Approximate the solution of the following,

y(x) = 2x+ 0.5
∫ 1

−1
xty(t)dt, −1≤ x,t≤ 1 (320)

Choosing Φ1(x) = 1, Φ2(x) = x and Φ3(x) = x2 as the linearly independent func-
tions to give the approximate solution:

Y3(x) = A1 +A2x+A3x
2 (321)

Substituting (320) in (317), we obtain;

ε(x,A1,A2,A3) = A1 +A2x+A3x−2x− 1
2

∫ 1

−1
xt(A1 +A2t+A3t

2)dt (322)

Where the error/residual term ε(x,A1,A2,A3) must be orthogonal to the three linearly
independent functions which we chose to be;

Φ1(x) = 1
Φ2(x) = x

Φ3(x) = x2

For Φ1(x) = 1, we have,

1
2

∫ 1

−1
1[A1 +A2x+A3x

2− 1
2

∫ 1

−1
xt(A1 +A2t+A3t

2)dt]dx=
∫ 1

−1
xdx

Integrating the second integral on the left hand side with respect to t and the integral
on the right hand side with respect to x over −1≤ x,t≤ 1, we obtain:

1
2

∫ 1

−1
(A1 + 2

3A2x+A3x
2)dx= 0

which gives;
A1 + 1

3A3 = 0 (323)

For Φ2(x) = x, we have,

1
2

∫ 1

−1
x[A1 +A2x+A3x

2− 1
2

∫ 1

−1
xt(A1 +A2t+A3t

2)dt]dx= 1
2

∫ 1

−1
x2dx

Canceling 1
2 throughout and integrating the second integral on the left hand side with

respect to t and the integral on the right hand side with respect to x, we obtain:
∫ 1

−1
(A1x+ 1

3A2x
2 +A3x

3)dx= 2
3
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which gives
A2 = 3 (324)

For Φ3(x) = x2, we have;

1
2

∫ 1

−1
x2[A1 +A2x+A3x

2− 1
2

∫ 1

−1
xt(A1 +A2t+A3t

2)dt]dx= 1
2

∫ 1

−1
x3dx

Canceling out 1
2 as in the above and integrating the second integral on the left hand

side with respect to t and the integral on the right hand side with respect to x over
−1≤ x,t≤ 1. We obtain:

∫ 1

−1
(A1x

2 + 1
3A2x

3 +A3x
4)dx= 0

Giving rise to’
2
3A1 + 2

5A3 = 0 (325)

Using (323), (324) and (325) gives A1 = A3 = 0 and A2 = 0 which gives the approxi-
mate solution as

y3(x) = 3x

which is also the same to the exact solution given by (148). and we realize that the
same result is obtained if we use the Collocation method.

3.2.4 Quadrature Method (Nystrom Method) of Approximation

The Nystrom method of approximation of Fredholm integral equations of the Second Kind
is based on numerical integration of the integral operator in the equation:

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, a≤ x,t≤ b (326)

Where the interval [a,b] is subdivided into n equal sub-intervals known as node points of
width ∆t= b−a

n .

Normally the quadrature formula takes the general form:
∫ b

a
φ(x)dx=

n∑
i=1

Aiφ(xi) + ε[φ] (327)

Where the xi are the node points of the integral equation, Ai (i = 0,1,2, ...,n) are
numerical coefficients of the function φ(x) and ε[φ] is the error term.
There are quite a number of quadrature methods, these include;
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1. Rectangle Rule

2. Simpson Rule

3. Trapezoidal Rule

In this section we are going to discuss the Trapezoidal rule due to its wide range of
applications and accuracy to approximate the numerical solution of the Fredholm integral
equations of the Second Kind.

Trapezoidal Rule

Here, the numerical solution to the general Fredholm integral equation of the Second Kind
is given by a finite sum and solving the simultaneous equations which is the end result.
The general form of the integral equation is given by;

y(x) = f(x) +λ
∫ b

a
K(x,t)y(t)dt, a≤ x,t≤ b (328)

of which the interval [a,b] can be subdivided into n equal sub-intervals known as node
points with h= b−a

n .

If

t0 = a, tj = a+ jh= t0 + ih, j = 0,1, ...,n

But since t and x are dummy variables, we have;

x0 = t0 = a

xn = tn = b

xi = xo+ ih (i.e xi = ti)

Let h= ∆t Therefore, from equation (328) we can rewrite;

y(x) = y(xi)
f(x) = f(xi)

K(x,t) =K(xi, ti)
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which further yields,

y(xi) = yi

f(xi) = fi

K(xi, tj) =Kij

Now applying the Trapezoidal rule on equation (328) then we obtain,

y(x) = f(x)+λ
∫ b

a
K(x,t)y(t)dtu f(x)+λ∆t[12K(x,t0)y(t0)+K(x,t1)y(t1)+ ...+ 1

2K(x,tn)y(tn)]

Which can be simplified as:

y(x) u f(x) +λ∆t[12K(x,t0)y0 +K(x,t1)y1 + ...+ 1
2K(x,tn)yn] (329)

Since there are n+ 1 values of yi for (i = 0,1,2, ...,n) then equation (329) becomes a
system of n+ 1 equations in yi for instance,

yi = fi+λ∆t[12Ki0y0 +Ki1y1 +Ki(n−1)yn−1 + 1
2Kinyn], i= 0,1,2, ...,n. (330)

The equation (330) gives the approximate solution of (327) at x = xi, where the terms
in y are shifted to the left of the equations resulting into n+1 equations in y0, y1, y2, ...,yn

Since h= ∆t therefore from (330) the system of simultaneous equations is given by,

i= 0, (1−λh2K00)y0−λhK01y1−λhK02y2− ...−λ
h

2K0nyn = f0

i= 1, −λh2K10y0− (1−λhK11)y1−λhK12− ...−λ
h

2K1nyn = f1

i= n, −λh2Kn0y0−λhKn1y1− ...+ (1−λh2Knn)yn = fn

and its general form is written as,
λKY = F

where K is a matrix of coefficients which is given by:

K =



1−λh2K00 −λhK01 · · · −λh2K0n

−λh2Ki0 1−λhK11 · · · −λh2K1n

·

·

·

−λh2Kn0 −λhKn1 · · · 1−λh2Knn


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Y is the matrix of solution given by;

Y =



y0

y1

·

·

·

yn


and F is the matrix of the non-homogeneous part and is given by;

F =



f0

f1

·

·

·

fn


Which will give a unique solution of a system of linear equations where |K| 6= o and either
infinite or zero solutions when |K|= 0.

Example 3.2.5. Use the trapezoidal to approximate the solution of the following Fred-
holm integral equation of the Second Kind;

y(x) = sinx=
∫ 1

0
(1−xcosxt)y(t)dt

at x= 0, 1
2 and 1. Taking n= 2 and ∆t= 1−0

2 = 1
2 , so that ti = i∆t= i

2 = xi. Using

yi = gi+
1
2(1

2Ki0y0 +Ki1y1 + 1
2Ki2y2), i= 0,1,2

which can also be given in the matrix form;


1− 1
4K00 −1

2K01 −1
4K02

−1
4K10 1− 1

2K11 −1
4K12

−1
4K21 −1

2K21 1− 1
4K22




y0

y1

y2

=


sin0

sin 1
2

sin1


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substituting for gi = g(xi) = sin i
2 and Kij = K(xi, ti) = 1− i

2 cos ij4 into the matrix,
we obtain;


1− 1

4(1−0) −1
2(1−0) −1

4(1−0)

−1
4(1− 1

2) 1− 1
2(1− 1

2 cos 1
4) −1

4(1− 1
2 cos 1

2)

−1
4(1−1) −1

2(1− cos 1
2) 1− 1

4(1− cos1)




y0

y1

y2

=


sin0

sin 1
2

sin1


Which yields the system below


0.75 −0.5 −0.25

−0.125 0.7422 −0.1403

0 −0.0612 0.8851




y0

y1

y2

=


0

0.4794

0.8415


Using Gaussian Elimination method we obtain; y0 u 1.0132, y1 u 1.0095 and y2 u
1.0205 Since the exact solution is given by y(x) = 1 which compares exactly as the
approximate values.
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4 Spectral Approximation Methods

In this chapter we focus on how to use the spectral methods for solving the Fredholm
integral equation of the Second Kind. This technique is based on the approximation of
the unknown in the form of a series.

4.1 Orthogonal Polynomials

Here we consider a range I of R, bounded or not and a weight function w(x)> 0.

Any polynomial is therefore integrable for the measurement of weight function w(x) with
respect to the Lebesgue measure on I. We then apply the Gram−Schmidt orthogo-
nalization process to construct the natural base 1,X, ...,Xn of Pn an orthogonal family
of polynomials Pn which can be assumed to be unitary. If we want an orthonormal basis,
it suffices to divide the Pn by their norm. We then obtain a family P̄n = Pn

||Pn|| where ||ȧ||
is the norm associated with the dot product.

From these families of polynomials we can check ||Pn|| the recurrence relations which can
be written;

Pn(x) = (X−λn)Pn−1(X)−µnPn−2(X), (n≥ 1)

Where

λn = <XPn−1,Pn−1 >

||Pn−1||

and

µn = ||Pn−1||2

||Pn−2||2

In particular, µn > 0 for all n≥ 2 in the case of unitary polynomials Pn(x) = xn+ ... by
setting P−1 = 0.

In general, we show that any orthonormal family Pn of orthogonal polynomials of degree
n verifies a recurrence relation of the same type:

xPn−1 = αnPn+βnPn−1 +γnPn−2
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The expression above is important because we are sometimes required to use other or-
thogonal families other than those normalized by their norm or their higher degree. This
is in particular for the case of Chebyshev polynomials Tn, occurring naturally in the form;

Tn(x) = cos(narccos(x))

Here, Pn are normalized by their higher degree of coefficients if αn = 0 for all n provided
they have taken P0 = 1 and by their Euclidean norm if γn = αn−1 for all n.

Moreover, the roots of the Pn polynomials are for al n≥ 1, real, within the interval I and
distinct.

Definition and Properties

Usually, we denote the interval I by I = [a,b], −∞≤ a≤ b≤∞ an interval of R and by
w(x) the real and positive measure such that;

∫ b

a
xnw(x)dx <+∞, n ∈N

Given that w(x) is the weight function and C[a,b] the span of continuous function on the
interval I.

Remark 4.1.1. We can also work with a complex value function instead of a real valued
function by the introduction of Hermitian scalar product

Example 4.1.2. Let f, g ∈ C(I) then the dot product is defined by;

< f,g >=
∫ b

a
f(x) ¯g(x)w(x)dx

Definition 4.1.3. The family (Pi)i≥ 0 of polynomials is said to be a family of orthog-
onal polynomials if Pi, Pj of C(I) on a

< f,g >=
∫ b

a
Pi(x)P̄j(x)w(x)dx= 0

In general, the family (Pi)i≥ 0 is referred to as a family of orthogonal polynomials on the
interval I at the weight function w(x) if the degree of Pi is i for all integers i and

< Pi,Pj >= 0, i 6= j
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4.1.1 Gram−Schmidt Orthogonalization Procedure

Let X be a Hilbert space, we consider a sequence of free vectors V1,V2, ...,Vn of X then
an orthogonal basis V ′1 ,V ′2 , ...,V ′n of vectors of X defined by;

∀i= 1, ...,n; V ′i ∈ V1,V2, ...,Vn

on V ′1 = V1 which is being constructed: we look for V ′2 such that;

V2 +α1,2V
′

1 and < V ′1 ,V
′

2 >= 0

is realized if and only if,

α1,2 =−< V ′1 ,V
′

1 >

||V ′1||2

Also from the vectors V ′1 ,V ′2 , ...,V ′n being constructed, we look for V ′k in the form:

Vk +α1,kV
′

1 + ...+αk−1,kVk−1 and < V ′i ,Vk >= 0, i= 1,2, ...,k−1

and can only be achieved only if:

α1,k = < V ′i ,Vk >

||V ′i ||2

4.2 Classical Orthogonal Polynomials

The classical orthogonal polynomials are the most widely used since they constitute most
important class of orthogonal polynomials and are defined according to the values of the
interval of integration I and according to the expression of the measure of the weight
function w(x).These orthogonal polynomials include:

1. D’Olinde Rodrigues’ formula

2. Laguerre polynomials

3. Hermitian polynomials

4. Legendre polynomial

5. Chebyshev’s polynomials

6. Jacobi polynomials
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These polynomials have many important applications in areas such as mathematical
physics (in particular, the theory of random matrices), approximation theory, numeri-
cal analysis and many more.

To come up with the above class of orthogonal polynomials, we use the orthogonalization
process of Gram−Schmidt which leads to respective class of orthogonal polynomials.

4.2.1 D’Olinde Rodrigues’ polynomial

It is a simple formula which allows us to calculate a series of orthogonal polynomials.
Let (Pn(x))n∈N be a sequence of orthogonal polynomials and satisfies the orthogonality
condition

∫ b

a
Pm(x)Pn(x)w(x)dx=Km,nδm,n

where w(x) is the weight function, Km,n are constants and δm,n is the Kronecker delta.
It can also be shown that Pn(x) satisfies the recurrence relation of the form:

Pn(x) = 1
w(x)

dn

dxn
(Qn(x)w(x))

Where Qn(x) is a polynomial with degree at most n.

Generative function and Classical Orthogonal Polynomials

We call the generating function of the system of functions φ(x), a function K(x,t) whose
development in series according to the powers of t in a certain domain D is as follows:

K(x,t) =
+∞∑
n=0

φn(x)tn

The assumption is that the functions φn(x) are polynomials Pn(x) of degree n.

Theorem 4.2.1. A necessary and sufficient condition for the Pn(x) polynomials to be
defined by the development K(x,t) = ∑+∞

n=0Pn(x)tn are orthogonal over the interval
[a,b] relative to the weight function at w(x) is that

I =
∫ b

a
K(x,t)K(x,t′)w(x)dx

depends only on the product tt′
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Proof. In effect to

I =
∫ b

a

+∞∑
n,m=0

Pn(x)Pm(x)tnT
′mw(x)dx=

+∞∑
n,m=0

tnt
′m < Pn,Pm >

so if n=m then < Pn,Pm >= 0 and we have that

I =
+∞∑
n=0

tnt
′m < Pn,Pm >

4.2.2 Laguerre Polynomials

The family of Laguerre polynomials is normally characterized by the following presenta-
tions:
1.The sequence of Laguerre generalized polynomial Lαn(x) is given by the generating
function;

Kα(x,t) = 1
(x− t)α+1 exp(−xt1− t)

with

Lαn(x) =
n∑
j=0

(−1)j(α+n)!
j!(n− j)!(α+ j)!x

j

if α = 0 we have Lon(x) = Ln(x) with

Ln(x) =
n∑
j=0

(−1)j
j! CjnX

j

which gives an orthonormal basis in L2([0,+∞]) which permits to have:

< Ln,Lm >= 0, ||ln||L2([0,+∞])=1

2. The polynomial Lαn(x) can also be defined by the formula of d′Olinde Rodrigues

Lαn(x) = x−αex

n!
dn

dn(x)(xn+αe−x)

3. Also the sequence of generalized Laguerre polynomials verifies the recurrence relation;

Lαn+1(x)− (2n+α+ 1−x)Lαn(x) +n(n+α)Lαn−1(x) = 0
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4.2.3 The Hermitian Polynomials

They are characterized by of the following three presentations:
1. The Hermitian polynomials Hn(x) are given by the generating function;

K(x,t) = e−2tx−t2−
+∞∑
n=0

Hn(x)tn

2. Hn(x) polynomials are defined by the formula of d′Olinde Rodrigues’ i.e

Hn(x) = (1−)nex
2 dn

dn(x)(e−x
2
)

3. The series of the Hermitian polynomials (Hn)n≥1 satisfies the recurrence relation:

Hn+1(x) = 2xHn(x)−2nHn−1(x)

which is orthogonal in L2(R,e−x2
dx)

4. The family

H̄n(x) = Hn(x)
2nn!
√
π

which is an orthonormal base in L2(R,e−x2
dx)

4.2.4 Legendre Polynomials

The family of Legendre polynomials is characterized by the following presentations:
1. By the generating function the Legendre′s polynomials Ln(x) is given by;

K(x,t) = 1√
1−2xt+ t2

=
+∞∑
n=0

Ln(x)tn

2. From the d′Olinde Rodrigues’ formula the Legendre′s polynomials Ln(x) take the
form:

Ln(x) = 1
2nn!

dn

dxn
((x2−1)n)

3. The of Legendre′s polynomials (Ln(x))n≥0 satisfies the recurrence relation;

Ln+1(x) = 2n+ 1
n+ 1 xLn(x)− n

n+ 1Ln−1(x)

where (Ln(x)≥ 0) is a family of orthogonal polynomials in L2([−1,1])
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4.2.5 Chebyshev′s Polynomials

They are characterized by one of the following three presentations;
1. The Chebyshev′s polynomials Tn(x) are defined by the generating function:

K(x,t) = 1−xt
1−2xt+ t2

=
+∞∑
n=0

Tn(x)tn

2. Tn(x) polynomials are defined by the formula of d′Olinde Rodrigues’:

Tn(x) = (−1)n22n−1(n−1)!
(2n)!

√
1−x2 dn

dn(x)((1−x2)n−
1
2 )

3. The sequence (Tn(x)n≥0) satisfies the recurrence relation:

Tn+1(x) = 2xTn(x)−Tn−1(x)

which is also an orthonormal basis in L2([−1,1],(1−x2)− 1
2dx), and satisfies the relation;

Tn(x) = cos(narccos(x))

4.2.6 Jacobi Polynomials

From the fundamental interval [−1,1] and measure

dµ(x) = (1−x)α(1 +x)βdx, α,β >−1

with Standard Normalization (if α = 0)

P (α,β)
n = Γ(n+ 1 +α)

n!Γ(1 +α)

square of the standard of the normalized polynomial

π2(α+β+1)Γ(n+ 1 +α)Γ(n+ 1 +β)
n!(2n+α+β+ 1)Γ(n+α+β+ 1)

4.3 Spectral Approximation Methods

Introduction

Spectral methods were introduced by D. Gottlieb and S. Orszag [18] and they have
been widely used for the approximation of solutions of equations with partial derivatives.
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Initially they were introduced by the use of truncated Fourier series which were mainly
used for the approximation of the problems with periodic boundary conditions. Also by
the use of high-degree polynomials that form tensorized bases of approximation spaces
which is a fundamental property of the construction of spectral methods.

Generally, the spectral approximation methods use polynomials from the family of Jacobi
polynomials.

P (α,β)
n = 1

2n
k∑
j=0

k+α

l


k+β

k− l

(x−1)l(x+ 1)k−1, ∀x ∈ [−1,1]

compared to the weight function

w(x) = (1−x)α(1 +x)β

Normally the nature and choice of the approximation depends on the domain on which
we are looking for the solution.

For example, for the Legendre′s polynomials we take (α=0 and β=0) and for the
Tchebyshev′s polynomials of the first kind (α=-1

2 and β=-1
2) a multiplicative factor close

and basically depends on the degree k if we place ourselves on the interval I = [−1,1].

Numerically, spectral method call for the use of Tchebyshev′s polynomials which are
sometimes difficult to implement and analyze numerically, specifically, when dealing with
spectral methods.

We notice that the definition and numerical analysis of spectral methods are fully based
on the properties of orthogonal polynomials.

Consider the Fredholm integral equation of the Second Kind;

y(x) = f(x) +
∫ b

a
K(x,t)y(t)dt C([a,b]) = [−1,1] (331)

such that f(x) is continuous for x≥ 0 and the Kernel K(x,t) a function defined on

I = ((x,t)≥−1, t≤ 1)

is a function to be determined.
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4.4 Numerical Resolution of the Integral Border Points

Proposition 4.4.1. Consider the following function system;

l0(x), l1(x), ..., ln(x)

where l0(X) = 1, l1(x) = x and

ln(x) = 1
2n

[n2 ]∑
j=0

(−1)j
k
j


2k−2j

k

xk−2j

this system forms an orthonormal basis in L2([−1,1])

Proof. We check that

< lm(x), ln(x)>=
∫ 1

−1
lm(x)ln(x)dx= 0, m 6= n

with the properties:

lk(±1) = (±1)k

||lk(x)′|| ≤ 1
2k(k+ 1), −1≤ x≤ 1∫ 1

−1
l2k(x)dx= (k+ 1

2)

where [k2 ] denotes the integral part of k and the Legendre′s polynomials take the
recurrence relation:

ln+1(x) = 2n+ 1
n+ 1 xln(x)− n

n+ 1 ln−1

Now, in order to solve the integral equation (4.3) we use the projection by the approxi-
mation of yn(x) which is a linear combination of orthogonal polynomials ln(x) as well as
the solution of the integral equation (4.3)

Given
yn(x) = f(x) +

∫ 1

−1
K(x,t)yn(t)dt (332)

and by taking the linear combination of the legendre′s polynomials;

yn(x) =
n∑
j=0

Cjlj(x) (333)
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when we replace (333) in (332) we obtain:

n∑
j=0

Cjlj(x) = f(x) +
∫ 1

−1
K(x,t)

n∑
j=0

Cjlj(t)dt (334)

Taking

bj(x) =
∫ 1

−1
K(x,t)lj(t)dt

We write
n∑
j=o

Cj(lj(x)− bj(x)) = f(x) (335)

Also taking the inner product of (335) by li(x), we obtain:

n∑
j=0

Cj < lj(x)− bj(x), li(x)>=< f(x), li(x)> (336)

If we use the orthogonality condition in (336), we obtain a system;

Ci−
n∑
j=0

Cj < bj(x), li(x)>=< f(x), li(x), i= 0,1,2, ...,n (337)

whose determinant is given by:

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−λ < b0, l−0>−λ < b1, l0 > · · ·−λ < bn, l0 >

−λ < b0, l1 > 1−λ < b1, l1 > · · ·−λ < bn, l1 >

·

·

·

−λ < b0, ln >−λ < b1, ln > · · ·1−λ < bn, ln >

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If D(λ) 6= 0, then the sustem (337) has a unique solution.

4.4.1 Numerical Techniques

[17][19] Here, the main idea is to approximate the Fredholm integral equation equation
of the Second Kind using:

• Legendre Series Solution Method

• Chebyshev Polynomials Solution Method
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4.4.2 Mapped Chebyshev Spectral Method

For the last three decades researchers like Grosch and Orszag [18] showed that we can
easily solve the differential equations on a semi-infinite interval through mapping it into
[−1,1] using the algebraic function for the same map.Their technique was later devel-
oped by BOYD [20] by generalizing this technique which is provided in [19] an incredible
extensive review of general properties and practical implementation for many of these
approaches.

The maps which have used more frequently are logarithmic, algebraic and exponential
given as below:

• Algebraic map given by;

y = sx√
1−x2 , x= y√

y2− s2

• Exponential map given by;

y = sinhsx= s−1(lnx+
√
x2 + 1)

• Logarithmic map given;

y = stanh−1x= s

2 ln 1 +x

1−x, x= tanh−1(s−1y)

Where y ∈ (−∞,∞). Here, we can choose the maps by how y quickly increases with
x→±1

Theoretically, we have already seen that the Chebyshev polynomials of the first kind of
degree n are defined by:

Tn(x) = cos(narccosx), n= 0,1,2, ... (338)

(338) is defined by a recurrence relation;

Tn+1(x) = 2xTn(x)−Tn−1(x), n≥ 1 (339)

(339) is an orthornormal basis on L2([−1,1],(1− x2)− 1
2dx) where (1− x2)− 1

2 is the
weight function which implies that Chebyshev polynomials are a system of of orthogonal
polynomials given by: ∫ 1

−1

Tn(x)Tm(x)√
(1−x2)

= αnπ

2 δm,n (340)
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on the interval [−1,1] with respect to the weight function Where α0 = 2 and αn = 1 for
n≥ 1
Such that the Chebyshev expansion of a function u ∈ L2

w(−1,1) is:

u(x) =
N∑
n=0

ûnTn(x), ûn = 2
παn

∫ 1

−1
u(x)Tn(x)w(x)dx

Like always, the Chebyshev polynomial Tn+1(x) of degree n+1 has different simple zeros
or roots in [−1,1] at

xi = cos(2n+ 1
2n+ 2π), n= 0,1,2, ...,N (341)

Theorem 4.4.2. For g ∈ C2n[−1,1] and x0,x1, ...,xn are the zeros of Tn+1(x), then

∫ 1

−1

g(x)√
1−x2dx≈

π

n+ 1

n∑
k=0

g(xk) (342)

Procedure For The Solution

We consider the Fredholm Integral Equation of the Second Kind:

φ(x) = g(x) +
∫ 1

−1
K(x,t)φ(t)dt (343)

Where the functions K(x,t) and g(x) are given while φ(x) is the unknown function to be
determined. Using the logarithmic map, then equation (343) becomes

φ(x) = g(x) +
∫ 1

−1
K(x,stanh−1 t)φ(stanh−1 t) s

1− t2dt (344)

Suppose, x= stanh−1 t, then

φ(stanh−1 t) = g(stanh−1 t) +
∫ 1

−1
K(stanh−1 t,stanh−1 t)φ(stanh−1 t) s

1− t2dt
(345)

So, by letting u(z) = φ(stanh−1 z), then from (345) we obtain

y(z) = g(stanh−1 z) +
∫ 1

−1
K(stanh−1 z,stanh−1 t) s

1− t2dt (346)



102

Now, we set

M(z, t) = K(stanh−1 z,stanh−1 t)√
1− t2

dt

and

G(z) = g(stanh−1 z)

then (346) becomes:
y(z) =G(z) +

∫ 1

−1
M(z, t)y(t)w(t)dt (347)

Also, using the same method as above in algebraic map, we obtain the integral equation
of the form:

M(z, t) = K(sz(1− z2)− 1
2 , st(1− t2)− 1

2 )
1− t2

and

G(z) = g(sz(1− z)−
1
2 )

From the two cases, it suffices to solve the approximate solution of the mapped integral
equation in the form:

(I− sK)u=G (348)

In order to solve (348), we assume the operator K is compact on the space L2
w(−1,1)

with Pn the n+1−dimensional subspace spanned by the Chebyshev polynomials T0, ...,Tn
which motivates us to approximate the integral equation (347) by trying to solve;

(I− sPnK)un = PnG, Un ∈ Pn (349)

Using the Gauss-Chebyshev formula given in the theorem (4.4.2) to approximate the
integral part of (347) we obtain:

û(z) =G(z) + sπ

n+ 1

n∑
i=0

M(z, t)û(ti) (350)

which is a semi-discrete equation that is almost exact in the manner that the residual;

rn(x) = û(z)− sπ

n+ 1

n∑
i=0

M(z, t)û(ti)−G(z) (351)

The residual rn(z) = 0 at the collocation points zk, k = 0, ...,n. This leads to the
following system of linear equations:

û(zk)−
sπ

n+ 1

n∑
i=0

M(zk, ti)û(ti) =G(zj) (352)
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Thus, the Chebyshev polynomial approximations is given by

Pnu(z) =
n∑
k=0

ckTi(z) (353)

Where
c0 ≈

1
n+ 1

n∑
i=0

û(zk) (354)

and
ck ≈

2
n+ 1

n∑
k=0

û(zi)Ti(zk), i= 0, ...,n (355)

Eventually, the approximate solution of equation (343) from the real line is given by

• Logarithmic map

φn(x) =
n∑
k=0

ckTk(tanh(s−1x)) (356)

• Algebraic map

φn(x) =
n∑
k=0

ckTi(
x√

x2 + s2 ) (357)

For more details and illustrative examples, see [11],[30], [31], [22]

4.4.3 Legendre Series Solution Method

Here, the solution involves the use of truncated Legendre series approximation.
Normally, we first take the truncated Legendre series expansions of the functions in the
Fredholm integral equation and then substituting their matrix forms into the equation,
which corresponds to a linear system of algebraic equations with unknown Legendre co-
efficients.
For more detailed information and illustrative examples, see [16], [31] and [17].

Consider the Fredholm integral equation of the Second Kind:

y(x) = g(x) +λ
∫ 1

−1
K(x,t)y(t)dt, −1≤ x,t≤ 1 (358)

Where y(x) is the function to be determined λ is aconstant,while the kernel K(x,t) and
g(x) are given continuous functions in −1≤ x,t≤ 1 or just as [−1,1].

The solution of equation (358) is therefore expressed as a truncated Legendre Series, i.e:

y(x) =
∞∑
n=0

anPn(x) (359)
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Where Pn(x) is the Legendre polynomial of degree n.
The expression (359) can be expressed in its equivalent matrix form as:

y(x) = PxA (360)

Where

Px = P0(x)P1(x)P2(x)...Pn(x),

A= [a0a1a2...an]T

and

an, n= 0,1,2, ...,∞

are coefficients to be determined.
We choose n such that equation (359) becomes;

y(x) =
N∑
n=0

an(x)Pn(x)

Procedure For the Determination of y(x)

In order for one to obtain y(x) for equation (358) in the form of equation (359), we will
first have to deduce some of the Matrix approximations corresponding to the Legendre
polynomials, that is letting the known function g(x) to be approximated by the truncated
Legendre series as given below,

g(x) =
N∑
n=0

gnPn(x) (361)

with its equivalent matrix form is given by;

[g(x)] = PxG (362)

Where

G= [g0g1g2...gn]
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If we then consider the Kernel K(x,t) which we can approximate by double Legendre
Series of degree N (because of the presence of the two variables x and t) as:

K(x,t) =
N∑
n=0

N∑
n=0

Km,nPm(x)Pn(t) (363)

Which we can also in its equivalent matrix form as :

[K(x,t)] = PxKP T
t (364)

Where

Pt = [p0(t)p1(t)p2(t)...pn(t)]

and

K =



K00 K01 · · · K0N

K10 K11 · · · K1N

·

·

·

KN1 KN2 · · · KNN


Conversely, the unknown function y(t) in the integrand, we write it from the expression
(359) and (360);

[y(t)] = PtA (365)

When we substitute the matrix forms (360), (362), (364) and (365) which are congruent
to the functions y(x), g(x), K(x,t) and y(t) respectively into equation (358) and simplify
the resultant equation, we obtain the matrix equation;

A=G+λK(
∫ 1

−1
P Tt Ptdt)A (366)

OR simply as:
(I−λKQ)A=G (367)

Where
Q=

∫ 1

−1
P Tt Ptdt= [qmn], m,n= 0,1, ,2, ...,N (368)

and I is the identity matrix.

qmn =
∫ 1

−1
Pn(t)Ps(t)dt=

0, m 6= n
2

2n+1 , m= n
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In equation (368), when

D(λ) = |I−λKQ| 6= 0

we then obtain;
A= (I−λKQ)−1G, λ 6= 0 (369)

which implies that the unknown coefficients an, n = 0,1,2, ...,N can be determined
uniquely by the equation (369) thus the integral equation (358) has a unique solution
as we have already shown in the previous sections. The solution is normally given by the
truncated Legendre Series.

Exactness of the Solution

We can always check if this method is exact or accurate. Because equation (359) repre-
sents the approximate solution of equation (358) which must be satisfied.
For xi ∈ [−1,1], then

ε(xi) = |y(xi)−g(xi)−λ
∫ 1

−1
K(x,t)y(t)dt|u 0

or

ε(xi)≤ 10−k, (370)

ki is any positive integer.

suppose ε(xi)≤ 0, k is any positive integer, is specified, then the truncation limit N is
increased until the difference ε(xi) at each of the points xi smaller and smaller then the
specified 10−k.

Conversely, the error function can be determined by

ε(xi) = y(x)−g(x)−λ
∫ 1

−1
K(x,t)y(t)dt

Example 4.4.3. Approximate the following Fredholm integral equation

y(x) = 3x−5x3 +
∫ 1

−1
(1−xt)y(t)dt (371)

whose exact solution is given by;

y(x) = 3x−5x3 (372)



107

We seek a solution of y(x) in the Legendre Series;

y(x) =
N∑
n=0

anPn(x) (373)

So that:

f(x) = 3x−5x3

K(x,t) = (1−xt)
λ= 1
N = 3

By using the expressions for the powers of xn in terms of the Legendre Polynomials
pn(x) given by;

Pn(x) = 1
2nn!

dn

dxn
(x2−1)n (374)

Where

P0(x) = 1 =⇒ 1 = P0(x) (375)

P1(x) = x =⇒ x= P1(x) (376)

P2(x) = 1
2(3x2−1) =⇒ x2 = 2P2(x)

3 + 1
3P0(x) (377)

P3(x) = 1
2(5x3−3x) =⇒ x3 = 2P3(x)

5 + 3
5P1(x) (378)

Using the substitutions above in (371) we obtain

f(x) = 3x−5x3 = 3P1(x)−5(2P3(x)
5 + 3

5P1(x)) =−2P3(x)

K(x,t) = (1−xt) = P0(x)P0(t)−P1(x)P1(t)

Therefore, from the expressions (362) and (364) we obtain the matrices:

F =



0

0

0

−2


(379)
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and

K =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


(380)

Which is given by the coefficients of

K =



P0(x)P0(t) P0(x)P1(t) P0(x)P2(t) P0(x)P3(t)

P1(x)P0(t) P1(x)P1(t) P1(x)P2(t) P1(x)P3(t)

P2(x)P0(t) P2(x)P1(t) P2(x)P2(t) P2(x)P3(t)

P3(x)P0(t) P3(x)P1(t) P3(x)P2(t) P3(x)P3(t)


(381)

Now, using the expression (368) where

Q=
∫ 1

−1
P Tt Ptdt=

[
qmn

]
m,n= 0,1,2,3

Given by


P0(t)

P1(t)

P2(t)

P3(t)


[
P0(t) P1(t) P2(t) P3(t)

]
(382)

Whose recurrence relation is given by:

Pn(x) =
0, m 6= n

2
2n+1 , m= n

Yielding a diagonalized matrix Q,

Q=



2 0 0 0

0 2
3 0 0

0 0 2
5 0

0 0 0 2
7


(383)
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From (367) and (369) we have





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


−



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0





2 0 0 0

0 2
3 0 0

0 0 2
5 0

0 0 0 2
7







a0

a1

a2

a3


=



0

0

0

−2


(384)

Or equivalently as



a0

a1

a2

a3


=





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


−



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0





2 0 0 0

0 2
3 0 0

0 0 2
5 0

0 0 0 2
7





−1

0

0

0

−2


(385)

And from the expression (369) we obtain



a0

a1

a2

a3


=



−1 0 0 0

0 −6 0 0

0 0 1 0

0 0 0 1





0

0

0

−2


and clearly,



a0

a1

a2

a3


=



0

0

0

−2


(386)

Thus, using (359) we have

y(x) = a0P0(x) +a1P1(x) +a2P2(x) +a3P3(x) (387)

and from (386), (387) becomes

y(x) =−2P3(x) (388)



110

where P3(x) = 1
2(5x3−3x)

Giving

y(x) =−2
(

1
2(5x3−3x)

)
(389)

Hence,

y(x) = 3x−5x3

which is the same as the exact solution obtained analytically.

Example 4.4.4. We want to approximate the Fredholm integral equation below using
Legendre Series Solution Method,

y(x) = 2x+ 1
2

∫ 1

−1
xty(t)dt (390)

We seek a solution y(x) in the form of Legendre Series

y(x) =
N∑
n=0

anPn(x)

so that

f(x) = 2x, K(x,t) = xt, λ= 1
2 and N = 3

By using the expression for the powers of xn in terms of the Legendre Polynomials
Pn(x) given by

Pn(x) = 1
2nn!

dn

dxn
(x2−1)n

P0(x) = 1 =⇒ 1 = P0(x)
P1(x) = x =⇒ x= P1(x)

P2(x) = 1
2(3x2−1) =⇒ x2 = 2P2(x)

3 + 1
3P0(x)

P3(x) = 1
2(5x3−3x) =⇒ x3 = 2P3(x)

5 + 3
5P1(x)
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From the expressions (362) and (363), the matrices become

F =



0

1

0

0


and K =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


Now, using the expression (367)

Q=
∫ 1

−1
P Tt Ptdt=

[
qmn

]
, m,n= 0,1,2,3

=



P0(t)

P1(t)

P2(t)

P3(t)


[
P0(t) P1(t) P2(t) P3(t)

]

From

Pn(x) =
0, m 6= n

2
2n+1 , m= n

Q=



2 0 0 0

0 2
3 0 0

0 0 2
5 0

0 0 0 2
7


But we know that

A=
(
I−λKQ

)−1
F

Therefore

A=



1 0 0 0

0 3
2 0 0

0 0 1 0

0 0 0 1





0

1

0

0


=



0
3
2

0

0





112

a0 = 0

a1 = 3
2

a2 = 0
a3 = 0

Applying

y(x) =
3∑

n=0
anPn(x)

gives

y(x) = 3
2P1(x)

y(x) = 3
2x

Which is not the same as the exact solution as in the case of the standard decompo-
sition method where we found the exact solution as

y(x) = 3x

Example 4.4.5. Let us consider the problem

y(x) = e2x− 3x
4e2 −

1
4e

2x
∫ 1

−1
xty(t)dt (391)

Using the same same procedures from the two examples above, we want to analyze the
errors for N = 9,10
From figure 2, we can easily conclude that the larger the N the more the accuracy
hence in order to obtain the most approximate solution then N should be sufficiently
large since the margin of error is minimal.
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Figure 2. Numerical results for N=9,10
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5 Conclusion

In this thesis we have presented some analytical and numerical methods for solving the
Fredholm integral equation of the Second Kind. The analytical methods presented here
are: degenerate kernel methods, converting Fredholm integral equation to Ordinary Dif-
ferential Equations, the Adomain decomposition method, the modified decomposition
method, variational iteration method, noise terms methods, direct computation method
and successive approximation methods. Furthermore, we have used numerical methods:
projection methods including collocation method and Galerkin method, degenerate kernel
approximation methods and Nyström methods for solving Fredholm integral equation of
the second kind. Additionally, we have also approximated the Fredholm integral equation
of the Second Kind with the numerical solution using mapped Chebyshev polynomials
and Legendre Series methods. The importance of the Legendre series method presented
for the approximate solution of Fredholm integral equation has been demonstrated. The
advantage of the method is that the solution is expressed as a truncated Legendre series
which means that after calculation of the Legendre coefficients, the solution y(x) can be
easily evaluated for arbitrary values of x at low computation effort. If the functions f(x)
and K(x,t) can be expanded to the Legendre series in −1≤ x,t≤ 1, then there exists the
solution y(x); else, the method cannot be used in. On the other hand, it would appear
that the method shows to best advantage when the known function f(x) and K(x,t)
have Taylor series especially when they converge slowly. For computational efficiency the
truncation limit N must be chosen sufficiently larger.

5.1 Future Research

Due to time constraints, there are many areas in which we intended to extend this work.
One of the areas include:

1. Applications of Integral Equations in Aerodynamics and Geophysics.
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Matlab Codes
Listing 5.1. Matlab codes

1 clc ,clear all ,close all
2 E_9 =[2.14066E -04 ,7.043E -06 ,1.2992E -05 ,9.6585E -06 ,4.843E

-06 ,0 ,4.843E -06 ,9.717E -06 ,1.6442E -05 ,5.4748E
-05 ,0.000367792];

3 E_10 =[6.81207E -05 ,2.32566E -05 ,1.46982E -05 ,9.6881E
-06 ,4.8431E -06 ,0 ,4.843E -06 ,9.688E -06 ,1.4736E -05 ,2.4448E
-05 ,8.5605E -05];

4 x=[ -1 , -0.8 , -0.6 , -0.4 , -0.2 ,0 ,0.2 ,0.4 ,0.6 ,0.8 ,1];
5 plot(x,E_9 ,'g')
6 hold on
7 plot(x,E_10 ,'r')
8 xlabel('x values ')
9 ylabel ('Error ')
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