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Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic 
therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson’s 
disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discov-
eries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced 
antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, 
apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and 
contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final 
conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, 
it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator 
of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the 
substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export 
mechanisms across the blood–brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain 
vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a 
better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-
brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, 
viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a 
major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The 
role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which 
is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase 
in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of 
PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail 
in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, “iron” is a major 
player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction 
of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic 
armamentarium of anti-Parkinson medications.
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Neuroinflammation · Iron model · Ferroptosis · ɑ-Synuclein and iron · Virus–iron interaction · COVID-19 · Hepcidin · 
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Introduction

Evolution of the human being was and will never be pos-
sible without the action of a variety of metals, like sodium, 
potassium, calcium, zinc, copper, manganese, iron, alumin-
ium, nickel and others. However, understanding their mode 
of action (MoA) was possible only by the development of 
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highly sophisticated armamentaria of methodologies over 
the past decades. These methods allowed to get insights into 
the biological mechanisms of metal ions interaction with 
peptides/proteins, enzymes, nucleotides etc.. Transport, 
metabolism, metal deficit and accumulation, respectively, 
and metal toxicity became important research fields (Sigel 
et al. 2006) (Fig. 1).

In this review, we focus on “iron” and its role in the 
pathology of Parkinson’s disease (PD). The brain utilizes 
metal ions for many metabolic purposes. Compared with 
other tissues, the brain shows the highest metabolic rate 
and need for aerobic metabolism. Uptake of iron is not as 
ease, because the blood–brain barrier (BBB) is a natural 
barrier for iron-uptake. Therefore, iron is taken up using 
transport proteins, like transferrin. Transferrin binds iron and 
this complex after endocytosis releases iron intracellularly 
through divalent metal transporter 1. Iron exit from brain is 
controlled by ferroportin, hepcidin and ferroxidases (Vela 
2018; Zecca et al. 2004b; Gerlach et al. 2021).

This condition is a vulnerable one for redox-active metals, 
like iron and copper. Indeed, reactive oxygen species (ROS) 
play a dominant role in the pathology of neurodegenera-
tive disorders, like Parkinson’s disease (PD) and Alzheimer 
disease (AD). A majority of radicals and ROS arise from 
redox reactions of metals (Berg et al. 2004). Metals, like 
iron and copper in their reduced state reduce oxygen  (O2) 
to  superoxide.O−

2  which is dismutated to hydrogen perox-
ide  (H2O2).  H2O2 crosses membranes and can be scavenged 
by glutathione peroxidase, catalase, etc. If not scavenged, 
 H2O2 may react with reduced metals to generate hydroxyl 
radicals (.OH). As .OH is an extremely reactive radical spe-
cies, it reacts easily with lipids, proteins to form, e.g. pro-
tein aggregation products and even RNA and DNA adducts 
(Sigel et al. 2006). Indeed iron-associated disorders can be 
divided as (1) genetic disorders, like Friedreich’s ataxia 
(frataxin), neurodegenerations with brain iron accumulation 
(NBIA), pantothenate kinase 2-associated neurodegenera-
tions, neuroferritinopathy (mutation of ferritin light chain) 
and aceruloplasminemia (together with copper; mutations 
in the ceruloplasmin gene), hemochromatosis (mutations in 

the HFE gene) and (2) disorders with protein aggregation, 
like PD (and eventually associated with copper pathology) 
(Schneider 2016; Gerlach et al. 2006). However, the notion 
is important, that iron accumulation can be detected in many 
other neurodegenerative disorders, like AD, Huntington’s 
chorea, multiple system atrophy (MSA), progressive supra-
nuclear palsy (PSP). In all these disorders iron accumulation 
is specifically located in brain regions associated with the 
key pathology of the disorder. For example, in AD increased 
iron concentration has been found in cortical brain areas 
(Ward and Crichton 2019; Seitelberger 1964), while there 
is iron pathology in PD detected in the substantia nigra pars 
compacta (SNpc); in MSA not only there is an accumula-
tion in the SN but also in the striatum and the same holds 
true for PSP. From such data, it is not farfetched to assume 
that iron pathology may be a secondary mechanism facilitat-
ing neurodegeneration rather than a primary causal trigger. 
To support this assumption, it has been demonstrated, that 
iron shows an age-dependent increase and distribution in the 
various brain areas, as already shown by Spatz (1922), Mül-
ler (1922), Hallgren and Sourander (1958), Schmidt (1940), 
Volkl and Ule (1972), and Ule et al. (1974).

Early measurements of total iron in qualitative histologi-
cal iron stainings (Schmidt 1940; Müller 1922; Spatz 1922) 
and in quantitative analyses have been reported in healthy 
individuals in many brain regions with the highest concen-
trations in globus pallidus, SN, putamen, caudate nucleus 
and red nucleus (Hallgren and Sourander 1958; Ule et al. 
1974; Volkl and Ule 1972; Stern et al. 1967). This is of inter-
est, because there are no regional differences in the concen-
trations of zinc, calcium and magnesium (Ule et al. 1974).

Of interest is the notion, that non-heme iron can be 
detected especially in mitochondria and microsomes (46% 
on average). 14% were found in nuclei and the remaining 
40% in the soluble fraction (Hallgren and Sourander 1958). 
Ule et al. (1974) assumed that iron, copper and zinc are 
bound to functional active macromolecules, like coenzymes, 
structural proteins or deposited pigments, although not much 
detailed, Spatz already mentioned in 1922 (on page 312) 
(Spatz 1922), that there is iron bound to pigment in the SN.
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Fig. 1  Generation of oxidative species by redox-active metals.  Mx−1 iron ions (eventually copper ions) in the reduced state,  Mx iron/copper ions, 
 O2 molecular oxygen, .O2

− superoxide radical,  H2O2 hydrogen peroxide, .OH hydroxyl radical, −OH hydroxyl ion
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Iron in Parkinson’s disease

Lhermitte et al. (1924) have described abnormal deposits of 
iron in globus pallidus but not in the SN of a patients with 
akinetic-rigid PD. Using different technologies, like X-ray 
fluorescent spectroscopy (Earle 1968), magnetic resonance 
imaging (Rossi et al. 2013; Lee and Lee 2019; Drayer et al. 
1986), inductively coupled plasma spectroscopy (Dexter 
et al. 1987), X-ray microanalysis (Hirsch et al. 1991; Kienzl 
et al. 1995; Jellinger et al. 1992), spectrophotometry (Sofic 
et al. 1988), T2*-, R2*- susceptibility weighting imaging 
(Wang et al. 2016; Graham et al. 2000), transcranial sonog-
raphy (Becker et al. 1995; Berg et al. 2005), quantitative 
susceptibility mapping (Pyatigorskaya et al. 2020), FDRI 
-method, iron relaxometry techniques, PRISME MRI and 
other imaging methods an increase of total iron in the SNpc 
could be established, as summarized by Chen et al. (2019), 
Genoud et al. (2020), Gerlach et al. (1994, 2006, 2021) and 
Feraco et al. (2021). In patients with von Economo encepha-
litis epidemica at late stages of the disease an accumulation 
of iron in the SN has been mentioned by Seitelberger (1964). 
In contrast to previous observers, Rutledge et al. (1987) did 
not find that MR signal correlated between Perls’ stain and 
the signal void exists everywhere. This early finding has 
been noted also by other researchers and has been discussed 
recently in more detail. Haacke et al. (2005) examined the 
response of the magnetic resonance visible iron in tissue that 
produces signal changes in both magnitude and phase imag-
ing and assumed that these images seem to correlate with 
brain iron content, perhaps ferritin specifically.

The mismatch of T2*-weighted MRI and Perl stains has 
been noted also by Blazejewska et al. (2013) in an imaging 
study of 2 subjects with unknown neurological condition 
(67 resp. 46 years old) and one patient diagnosed with PD 
(75 years old). Brains were fixed in 10% formalin (see our 
comments below). Although the data from this study are 
only preliminary (number of individuals, no healthy controls 
for comparison, age differences, 10% formalin for fixation), 
they relate the problem of the mismatch to a higher concen-
tration of iron (II) in PD brain due to the fixation process 
and/or increased oxidative stress, while Perl stains only iron 
(III). Certainly measurements of the proportion of divalent/
trivalent iron (Sofic et al. 1988; Galazka-Friedman et al. 
1996) are a challenge due to methodological uncertainties 
(Friedman and Galazka-Friedman 2012; Hare et al. 2012).

The review of Haacke et al. (2005) seems to be a good 
basis for the development of image analyses to improve 
the detection of iron with T1 and T2 techniques. In fact, 
Haacke’s group (Mittal et al. 2009) described susceptibility 
weighted imaging (SWI), which is 3–6 times more sensitive 
than conventional T2* weighted gradient echo sequences 
and gave example for clinical applications. The review 
of Feraco et al. (2021) describes the development of iron 

imaging techniques with details for nigrosome imaging, neu-
romelanin-sensitive sequences, iron-sensitive sequences and 
advanced diffusion weighted imaging techniques, which all 
afford new insights into the non-invasive study of the SNpc.

An interesting study using T1 and T2* mapping in iron-
overload-related heart failure may give an answer for prefer-
ring T1 or T2* mapping when measuring iron concentra-
tions (Torlasco et al. 2018). These authors concluded their 
studies as follows: T1 and T2* are concordant as long as the 
slopes for T2* are high. Nevertheless, while the sensitivity 
of conventional MRI sequences, i.e. T2 or T1 weighted, has 
been considered as poor for the detection of early PD (see 
Feraco et al. (2021)) these authors state, that quantitative 
susceptibility mapping and R2* may be effective tools for 
early detection as well as for the dynamic progression of PD.

For the detection of free (labile) iron, it should be criti-
cally noted that there are several caveats to be considered 
(Hare et al. 2012; Friedman and Galazka-Friedman 2012), 
like a metal transfer due to sampling, fixation and storage 
of post-mortem brain tissue, impact of analytical sensitivity 
(Hare et al. 2012), hemispheric asymmetry with a higher 
concentration of iron in the left hemisphere (Xu et al. 2008) 
and most importantly the measurement of changes in total 
iron and the labile iron pool (Hare et al. 2012). Here we 
focus on some methodological problems which have direct 
influence for the interpretation of findings related to free 
(labile) vs. total iron and their correlation to the pathology 
of PD: (1) as total iron is increased, does it mean, that free 
(labile) iron is increased too and is the relation of free to 
bound (ferritin, neuromelanin (NM)) iron an aspect to be 
considered important for the pathology of PD? and (2) is the 
increase of iron correlated to the staging of PD progression 
and is there specificity of increased SN iron in PD?

Ad (1) Free vs. bound iron: although an increase of free 
(labile) iron has been published by Wypijewska et al. (2010), 
there are no other publications supporting these data. This 
fact is not surprising, because quantitative detection of free 
cytoplasmic iron in formalin-fixed tissues is not possible 
due to the destruction of tissue membrane substructures. If 
not formalin-fixed, fresh tissue can be used or fresh-frozen 
tissue. In the latter case, however, freezing protocols would 
have been to be used extremely carefully avoiding shock-
freezing protocols and using instead slow/mild temperature 
reducing protocols (Hare et al. 2012). To detect free iron in 
fresh tissue or in frozen SN (frozen down using membrane 
protecting protocols) such tissue would have been to be 
merged using extremely tight methodology, e.g. squashing 
of tissue, but not using cutting technologies under cooling 
conditions. All these analytical procedures are extremely 
tricky and would have been followed by membrane filtra-
tion using ultra capsules to separate free from bound iron 
with the time-dependent possibility that the equilibrium of 
free and bound iron is changed. To avoid such complicated 
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methodology tissue in toto is placed into fluid; then free 
tissue iron is assumed to diffuse into such fluid with the 
possibility to be easily measured. However, iron equilibrium 
of free and bound iron might be changed as this is a time 
consuming strategy and longer time offers a greater pos-
sibility for changing this equilibrium in favour of free iron 
concentration.

Ad(2) iron and staging of PD
Although, and mentioned above, there is overwhelm-

ing evidence that iron is increased in the SN of sporadic 
PD, nevertheless, there are a few reports from post-mortem 
analyses showing that iron is not changed when compared 
to controls (Gałazka-Friedman et al. 1996; Friedman et al. 
2009; Uitti et al. 1989; Ryvlin et al. 1995). Reasons for these 
discrepancies are several fold and include (1) fixing proto-
cols of post-mortem tissue, e.g. has the whole brain or just 
one of the hemispheres been fixed in formalin? If so, which 
one? Were brain slices or special regions fixed as well? 
Furthermore, knowledge about the concentration of forma-
lin, number of repeated exchanges (N) of formalin, times 
between these repeated fluid exchanges, duration of forma-
lin fixation, use of phosphate-buffered formalin or formalin 
fixation without buffered fluid, washout phases of formalin 
(N) with water resp. considering also the composition of this 
fluid would be of interest. This is, because and as mentioned 
already by Spatz et al. (1922), who described the loss of iron 
in long-term treated brains with formalin. In addition, such 
information would give evidence for the redox potential of 
fluids integrated into the fixation protocol. Our own experi-
ence shows the phosphate-buffered formalin is superior to 
pure formalin for histological/immunohistological research 
strategies (Heinsen, pers.comm.); (2) length of tissue stor-
age and storage conditions, e.g. storage in formalin or as 
paraffin-embedded blocks (see also Hare et al. 2012; Fried-
man and Galazka-Friedman 2012; Blazejewska et al. 2013). 
Furthermore, time between death and brain autopsy as well 
as between brain autopsy and fixation protocol, temperature 
condition, dissection uncertainties of the substructure of the 
SN, e.g. SN pars compacta. SN pars reticulata (Sofic et al. 
1991) or SN to red nucleus, have been suggested to influence 
measurements of iron in post-mortem brain tissue (Friedman 
and Galazka-Friedman 2012; Hare et al. 2012; Blazejewska 
et al. 2015). In addition, it would be of great importance to 
learn about the origin of post-mortem tissue. For example, 
have post-mortem brain tissue of controls and PD collected 
at the same neuropathological institute or have they been 
collected at different neuropathologies? (Earle 1968; Schrag 
et al. 2010; Gellein et al. 2008).

While such details are mostly not reported in respec-
tive publications, the notion may be of interest namely that 
Spatz (1922) reported the disappearance of iron staining in 

long-term formalin fixed tissue. Another aspect is the fact 
that there are different progression rates of PD, which may 
indeed influence iron-induced pathology. Indeed, no increase 
of iron concentration has been found in incidental Lewy body 
disease (ILBD) (Dexter et al. 1991) and in PD with milder 
SN pathology (Bartzokis et al. 1999; Riederer et al. 1989)). 
Bartzokis et al. (1999) studied iron content in the extrapyram-
idal system in early- and late-onset PD by MRI-technique. 
This group showed that there were significant increases in 
early-onset PD in field-dependent R2 increases (FDRI) in 
the SN, putamen and globus pallidus, while later onset PD 
subjects had significantly decreased FDRI in the SN pars 
reticulata. These authors concluded that the increase of iron 
in the SN of PD as measured post-mortem is in line with the 
decreased FDRI measure in late-onset patients detected in 
their study (Bartzokis et al. 1999). Iron accumulation was not 
significant in different regions of interest in newly diagnosed 
patients with PD after adjustment for age (Dashtipour et al. 
2015). However, these authors calculated an average phase 
value from the left and right hemispheral side, thus not con-
sidering different pathological states in the regions of inter-
est, like the SN. Indeed, post-mortem findings showing an 
increase of SN iron and performed in tissue from advanced 
PD are overwhelming as mentioned above. However, a con-
clusion, that increase of total iron is correlated to advanced 
PD stages is questionable considering SN-iron-related imag-
ing, which shows increased iron-related alterations in even-
tually pre-symptomatic individuals as published by Becker 
et al. (1995) and Berg et al. (1999). However, later clinical 
studies showed, that hyperechogenicity detected by transcra-
nial ultrasound imaging is a highly increased risk for PD in 
elderly individuals (Berg et al. 2011) only, while other stud-
ies demonstrated SN hyperechogenicity also in other disease 
entities (Berg 2011). With MRI (3 Tesla magnet) using a 
multiple gradient echo sequence designed for rapid single-
scan mapping of the proton transverse relaxation rate R2* 
Martin et al. (2008) demonstrated increased iron content in 
early PD. Hyperechogenicity of the SN has been shown in 
the 6-hydroxydopamine model of PD to depend on iron accu-
mulation and microglia activation (Zhu et al. 2017). Such 
studies are important in order to get insights into the role of 
iron as a trigger of PD pathology and/or a deleterious disease 
progression factor. As the SN is the predominant brain region 
showing increased iron deposits in PD, the question raises as 
to the reasons of such localized pathology. Animal studies 
give evidence for a disturbed BBB in 6-hydroxydopamine 
lesioned animals with increase of SN iron and albumin (as 
indicator of a leaky BBB) (Oestreicher et al. 1994; Arendash 
et al. 1993). Alternatively, it has been suggested, there might 
be disturbances in the mechanisms of iron-uptake, iron-trans-
port and iron-storage.
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Iron‑induced pathology in the SN pars compacta 
of PD

Transferrin has been shown to be decreased in the SN of 
PD by 35% (Ayton et al. 2016). Such data agree with those 
by Morris et al. (1994), but is correlated with the loss of 
nigral neurons (Morris et al. 1994). Loeffler et al. (1995) 
concluded from their studies, that the transferrin/iron ratio, 
a measure of iron mobilization capacity, provides evidence 
for a disturbance in iron metabolism in PD (Loeffler et al. 
1995). However, lactoferrin has been shown to be increased 
in PD (Faucheux et al. 1995; Leveugle et al. 1996). There is 
also evidence that the expression of iron export protein fer-
roportin is increased in the SN of PD, while the iron-storage 
protein ferritin expression is unchanged (Visanji et al. 2013), 
increased (Riederer et al. 1989) or decreased (Dexter et al. 
1991). As all this information is not too convincing for the 
proof, that a disturbance of iron transport is causally respon-
sible for triggering an increased brain and especially SN 

accumulation of iron, the increase of iron in the SN of PD 
might be secondary to a disturbed BBB as demonstrated in 
animal models of PD (Oestreicher et al. 1994; Arendash 
et al. 1993). Increased staining of SN capillaries in post-
mortem SN as shown in Fig. 2 would be in line with such 
assumptions and data presented by Faucheux et al. (1999). 
“Therefore, the driving force of triggering PD might be the 
continuous uptake of free iron through a disturbed BBB at 
the site of the substantia nigra (SN). Intraneuronal facilita-
tion of oxidative stress (OS), driven by iron, may disturb 
mitochondrial respiratory chain activity and may contribute 
to the generation of fibril ɑ-synuclein (ɑ-syn) and reduc-
tion in proteasomal activity. NM-induced toxicity, protein 
aggregation and generation of Lewy bodies (LB) are the 
consequence. In addition, glial activation will release sev-
eral compounds, which enhance and synergistically drive 
toxic cell death cascades” (Riederer 2004). Evidence for 
a disturbed BBB comes from studies by Faucheux et al. 
(1999) and experimental studies using 6-hydroxydopamine, 

Fig. 2  Detection of iron deposits (Fe III) using Berlin blue reaction: 
intracytoplasmic fine granules in neuromelanin containing neurons of 
SN both in controls (A, B) and in PD cases (D–F) as well in glial 
cells in controls (C) (thin arrows). Coarsely deposits in capillary 

walls in PD cases (e.g. D) (thick arrow), whereas in controls (A–C) 
such reaction is missing (200× magnification, scale bar 50 µm). G-I 
Iron-free vessels in controls, J-L iron deposits in vessels of PD brains
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showing an increased uptake of iron at the site of the SN 
(Oestreicher et al. 1994). In addition, binding parameters of 
the iron-transporting protein transferrin are changed in PD 
(Gerlach et al. 2006) and an augmented expression of the 
divalent cation transporter has been shown in SN neurons 
(Qian and Wang 1998). Also using a unilaterally MPTP-
treated monkey model increased iron was found in degen-
erating dopamine cells, glia and neuron surrounding matrix 
(Temlett et al. 1994).

Conclusions from this part are

– IRON increases with age.
– IRON transfer through BBB is increased.
– IRON export from brain is increased.
– IRON is increased in SN blood vessels.
– IRON storage by ferritin and neuromelanin is dysregu-

lated.
– Free/labile IRON increases and induces Fenton reaction 

leading to toxic hydroxyl radicals.
– Ferroptosis causes proteasomal defect, mitochondrial 

disturbances and cellular cytotoxic processes, lysoso-
mal defects, apoptosis and autophagy dysregulation, all 
together causing cell degeneration. Ferroptosis is char-
acterized by an accumulation of lipid hydroperoxides 
(Dixon Scott et al. 2012). The sensitivity to ferroptosis is 
linked to numerous biological processes and in particular 
to iron, glutathione, phospholipid, NADPH, coenzyme 
 Q10 and polyunsaturated fatty acid metabolism (Yan and 
Zhang 2020; Stockwell et al. 2017). A deficient regula-
tion of ferroptosis has been found in MPTP-treated mice 
(Tapias 2019), a model of PD pathology (Fig. 3).

This scenario seems to be evident for a pathological 
mechanism in which iron is involved in the progression of 
PD. However, it cannot be excluded that iron is also a key for 
triggering PD in the gut/olfactory system as is suggested by 
the interaction of the type-II transmembrane serine protease 
TMPRSS6/hepcidin interaction.

Iron related animal models of PD

The assumption, that iron plays a predominant role in the 
pathogenesis of dopaminergic cell death in PD has favoured 
experimental studies to further elucidate pathological mech-
anisms underlying iron-induced pathology (Sengstock et al. 
1992; Wesemann et al. 1994).

As described in detail by Gerlach et al. (2021), the uni-
lateral intranigral injection of ferric iron at a low μg dose 
causes time-dependent altered motor behaviour in rats, 
which is accompanied by an average 95% reduction of the 
dopamine concentration in the ipsilateral striatum and a 
smaller reduction of its metabolites 3,4-dihydroxypheny-
lacetic acid and homovanillic acid. This is accompanied by 
reactive gliosis, iron-stained astrocytes and activated micro-
glia already early after iron SNpc intoxication (Gerlach et al. 
2021). To further elucidate the potential of an NM–iron-
induced neurotoxicity, a rat model based on the intranigral 
injections of human NM-bound ferric iron into the SN has 
been developed. Injection of a NM-ferric iron suspension 
(0.139 μg iron) into the ventrolateral region of the left SNpc 
leads to 50% reduction of dopamine neuron number eight 
weeks after injection (Double et al. 2003b; Gerlach et al. 
2021). At this dose of iron, no motor abnormalities could be 

A: BRAAKS DUAL-HIT- AND BOTTOM-UP- HYPOTHESIS OF NEURONAL CELL DEATH IN PARKINSON’S DISEASE. 

B: TOP-DOWN-THEORIES FOR THE PATHOLOGY OF PARKINSON’S DISEASE
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Fig. 3  Pathological events triggering Parkinson’s disease
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observed and there was no reduction of dopamine suggesting 
subclinical dopaminergic lesions under these experimental 
conditions (Gerlach et al. 2021). Multiple animal studies and 
experimental work using cell culture systems as described in 
more detail by Gerlach et al. (2021) confirm that iron and the 
NM–iron complex are important risk factors for the proper 
functioning of dopaminergic neurons in the SNpc. However, 
the notion is of interest, that in PD a significant correla-
tion between dopamine concentration and iron content is 
relevant only in the putamen but not in the SN (Gerlach 
et al. 1994). Under physiological conditions the putamen 
shows high concentrations of dopamine but only rather low 
levels of iron. This finding is vice versa in the SN. Therefore, 
one may assume that neither dopamine nor iron alone are 
primary toxins for the degenerating process related to the 
putamen and the SN.

As it has been described in more detail (Sian-Hulsmann 
and Riederer 2021), several hypothesis have been created to 
elucidate the pathological pathway(s) leading to PD. Braak’s 
“bottom-up hypothesis” (Braak et al. 2003b) claiming, that 
the pathology spreads in a prion-like manner from the gut 
via the vagus nerve and/or the olfactory system to brain 
regions (dual-hit-hypothesis), including the SNpc, has been 
challenged by Jellinger and others (Jellinger 2019), since 
only about 50% PD patients can be related to this pathology. 
Therefore, other hypotheses have been created to at least fill 
the gap and to provide evidence for other pathological path-
ways. One of these more recent hypotheses is the “top-down-
hypothesis”, which postulates a cortical–striatal excitation 
stress, finally leading to a striato-nigral retrograde process, 
that includes ɑ-syn pathology (Foffani and Obeso 2018; 
Urban et al. 2020). Support for this are neuropathological 
findings showing that early in PD only 30% of dopaminergic 
neurons of the SNpc are degenerated but about 60% of its 
dendrites (Cheng et al. 2010). A third causal pathology, the 
“threshold hypothesis”, has been forwarded by Engelender 
and Isacson (Engelender and Isacson 2017), which collec-
tively summarizes a variety of vulnerability factors.

In this respect, it is noteworthy, that already Lhermitte 
et al. (1924) reported an increase of iron in the globus pal-
lidus (but not in the SN) in a patient with PD. This has 
been confirmed by Dexter et al. (1991) and Griffith et al. 
(1999) suggesting a possible retrograde pathological pro-
cess. Indeed, multiple pathological processes and toxin 
interactions are suggested to be responsible for triggering 
and processing PD (Hare and Double 2016; Riederer et al. 
2019; Sian-Hulsmann et al. 2011). In particular, evidence 
accumulates, that the risk for triggering pathological pro-
cesses increases, when there is a high redox load (Berg et al. 
2004), e.g. resulting from rather high iron concentration, 
tyrosine hydroxylase activity and dopamine concentrations, 
as in the SN (Riederer et al. 1992; Sofic et al. 1992; Gerlach 
et al. 1994).

Tyrosine hydroxylase–iron relationship

Rausch et al. (1988) reported on the activity of tyrosine 
hydroxylase (TH) in post-mortem brain tissue of controls 
and PD under stimulating conditions in the presence of iron 
(II) and phosphorylating agents, like cAMP, exogenous pro-
tein kinase, calcium plus calmodulin and ATP. TH in control 
tissue was stimulated by 1 mM iron (II) by 13-fold. Although 
the activity of TH in striata of PD was 60% of controls, 
stimulation with 1 mM iron (II) reached an 11-fold increase 
of TH activity. This finding was similar to that of controls as 
was the Km-value of TH in controls and PD (Rausch et al. 
1988; Riederer et al. 1988). Soluble TH interacts with ɑ-syn 
and an increase of ɑ-syn leads to reduction of TH activity. 
Therefore, it is hypothesized that iron-induced enhancement 
of TH activity by reducing ɑ-syn activity increases dopa-
mine concentration. Furthermore, reaction of dopamine with 
iron causes ɑ-syn aggregation (Sian-Hulsmann et al. 2015).

Neuromelanin‑associated iron toxicity

NM is an insoluble complex organic polymer, which is accu-
mulated in neuromelanin granules of various brain regions 
and most important in the SN and the locus coeruleus, brain 
regions, which are predominantly involved in the patho-
genesis of PD (Marsden 1983). In fact, Hirsch et al. (1988, 
1989) has shown, that it is the NM-containing dopaminergic 
neurons of the SN, which are primarily degenerating in PD. 
As such, NM received much interest to elucidate the role of 
NM as pathological component of the degenerating process. 
Here of special importance is NM capacity to bind metals 
and in particular iron (Gerlach et al. 2021; Youdim et al. 
1989). This organic polymer binds iron with a high- and low-
affinity binding characteristic (Ben-Shachar et al. 1991) and 
NM has been shown to be the major iron-storing structure 
in neurons while ferritin is located especially in the glia. Of 
notice is, that intraneuronal iron homeostasis is guaranteed 
by NM (Ben-Shachar et al. 1991; Youdim et al. 1990, 1989). 
As determined by Gerlach et al. (1995) in isolated NM from 
post-mortem SN by Mössbauer spectroscopy iron bound to 
NM consists exclusively of ferric iron, that is bound to fer-
ritin-like oxyhydroxide cluster (Gerlach et al. 1995, 2021). 
The notion is of importance, that in dopaminergic neurons 
iron-mediated oxidation of dopamine might be responsible 
for the generation of NM (Double et al. 2000; Gerlach et al. 
2008; Zecca et al. 2004a; Riederer et al. 2019).

Indeed, there is a long tradition to discuss the question, 
whether biosynthesis of NM is a spontaneous chemical out-
oxidation reaction of dopamine/noradrenaline or whether 
some, but not all TH positive dopaminergic/noradrener-
gic neurons of the SN/locus coeruleus generate NM via a 
genetic programme (Zecca et al. 2001; Sulzer et al. 2000; 
Greggio et al. 2005; Ikemoto et al. 1998; Tribl et al. 2007; 
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Carballo-Carbajal et al. 2019; Vila et al. 2019; Bellinger 
et al. 2011; Xu et al. 1997; Plum et al. 2016). This aspect is 
challenged by the fact, that (a) not all TH containing dopa-
minergic neurons generate NM as intraneuronal compo-
nent (Hirsch et al. 1988, 1989) and (b) that treatment of PD 
patients with L-DOPA does not increase NM in remaining 
dopaminergic neurons (Jellinger and Paulus 1992), although 
it increases dopamine in remaining dopaminergic neurons. 
This is supported also by experimental studies showing 
that chronic levodopa is not further aggravating toxicity in 
rats with a nigrostriatal lesion (Murer et al. 1998). Further-
more, tyrosinase has been shown to be expressed in a sub-
population of dopaminergic neurons (Greggio et al. 2005; 
Carballo-Carbajal et al. 2019; Zecca et al. 2001; Miranda 
et al. 1984; Xu et al. 1997; Tief et al. 1998; Higashi et al. 
2000) as summarized by Zecca et al. (2001). Tyrosinase 
has not always been detected in human SN (Ikemoto et al. 
1998; Tribl et al. 2007) probably due to low sensitivity of 
methods used (Carballo-Carbajal et al. 2019). Even if the 
enzymatic expression seems to be extremely low, this does 
not exclude the possibility that tyrosinase synthesizes NM 
in an age-related manner in a subpopulation of dopaminer-
gic neurons in the SN. Biochemical studies unravelling the 
kinetics of human tyrosinase may shed lights on the charac-
teristics underlying NM biosynthesis (see e.g. Young et al. 
(2020). Besides tyrosinase, there might be other enzymes 
able to generate NM. As peroxidase is present in lysosomes, 
as well as NM, it has been suggested that this enzyme forms 
NM (Okun 1997). Indeed, peroxidase has been shown to be 
increased in post-mortem PD brain (De Iuliis et al. 2002). 
Also, by using subcellular proteomics, glutathione peroxi-
dase 4 (GPX4) has been shown to be colocalized with NM 
in SN neurons (Tribl et al. 2005). Immunohistochemistry 
shows that GPX4 is up-regulated in neurons of the SN and 
associated with dystrophic axons in the striatum of PD (Bell-
inger et al. 2011) suggesting, that GPX4 colocalizes with 
alpha-synuclein (α-syn) positive nigral LB and dystrophic 
TH-positive fibres in the putamen. As glutathione (GSH) 
is reduced in PD (Dexter et al. 1991; Riederer et al. 1985) 
and even in ILBD (Dexter et al. 1994) this might indicate 
a response to OS leading to enhanced NM pathology. Nev-
ertheless, NM protects neurons from excess free iron by 
its high iron-binding capacity and at least this mechanism 
operates until saturation of NM is evident (Ben-Shachar 
et al. 1991; Gerlach et al. 2003; Double 2006; Mochizuki 
et al. 2020; Mochizuki 1993). Thereafter and by unknown 
reasons iron may be released and promotes harmful redox 
reactions (Berg et al. 2004). Here Fenton reaction induced 
OS has been suggested a major pathological process includ-
ing reaction with proteins like α-syn (Riederer et al. 2019; 
Shamoto-Nagai et al. 2006; Zucca et al. 2017). The tox-
icity underlying degenerating processes in the SN of PD 
seem to include components like α-syn, NM, iron as well as 

dopamine/dopamine oxidation products (Mandel et al. 2004; 
Riederer et al. 2019). NM increases with ageing (Zucca et al. 
2018; Mann and Yates 1983; Vila et al. 2019) and NM depo-
sition is associated with α-syn accumulation in aging neu-
rons (Xuan et al. 2011). As in PD there is a greater overall 
reduction in the amount of melanin within remaining cells 
(15% in SN, 25% in locus coeruleus) because of a more 
severe (80%) loss of heavier pigmented cells, this further 
contributes to assume a massive disturbance of the iron–NM 
interaction with the consequence, that iron is set free from 
NM (Fasano et al. 2006). NM-sensitive imaging displayed 
reduced NM levels in the ventral (− 30 ± 28%) and dorsal 
tiers (− 21 ± 24%) as compared to controls (Martin-Bastida 
et al. 2017), thus agreeing with imaging studies performed 
by Pavese and Tai (2018), Hansen et al. (2016), Zupan et al. 
(2019).

As iron also undergoes an increase during ageing (Zecca 
et al. 2004a) the risk for a disturbance of iron homeostasis 
enhances and this may explain the vulnerability of dopa-
minergic neurons for pathological processes including dis-
ruption of endosomal and lysosomal function via multiple 
mechanisms as described in more detail by Perrett et al. 
(2015), Tribl et al. (2006), Plum et al. (2016), Isaias et al. 
(2016), Burbulla and Krainc (2019), Zecca et al. (2008), 
Carballo-Carbajal et al. (2019), Riederer et al. (2019), Pan 
et al. (2012). Support for this comes from studies show-
ing both structural changes of NM (Double et al. 2003a) 
associated with a loss of iron binding to NM in PD (Fasano 
et al. 2006). Experimental studies using unilateral intranigral 
injections of ferric iron as well as unilateral injections of 
human NM-bound ferric iron into the SN of rats are in line 
with the suggestion, that the toxic couple NM–iron plays 
a predominant role in the pathogenesis of SN related dys-
function and degeneration in PD (Gerlach et al. 2021). In 
addition, experimental studies in MPTP-lesioned hemi-par-
kinsonian African Green monkeys show contralateral hemi-
parkinsonism with significantly elevated iron compared 
to the unlesioned side (Temlett et al. 1994). In a seminal 
publication of Kurt Jellinger, he and his co-workers studied 
human post-mortem SNpc by using a X-ray-microanalysis 
technique. They found “weak but significant iron peaks—
similar to those of synthetic melanin-iron (III) complex—
only in intraneuronal highly electron-dense NM-granules of 
SNpc cells of PD plus AD. No detectable iron was seen in 
non-melanized cytoplasm of SNpc neurons and in the adja-
cent neuropil in PD and controls, in LBs in SNpc neurons 
of PD” (Jellinger et al. 1992). These findings demonstrated 
a NM–iron complex in dopaminergic SNpc neurons in PD 
supporting the idea, that a NM–iron interaction contributes 
significantly to dopaminergic degeneration in PD and AD 
(Jellinger et al. 1992; Kienzl et al. 1995). This data in PD 
has been confirmed by Good et al. (1992) and also recently 
via magnetic resonance transverse relaxation times  (T2 and 
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 T2*) studies in the SNpc (Lee et al. 2020). An increase in 
iron levels in the SN of PD by post-mortem  R2* or SWI 
measurements were observed also by Wang et al. (2016). 
Mean  R2* in the SNpc defined by NM-sensitive MRI is 
significantly increased in PD (Martin-Bastida et al. 2017; 
Priovoulos et al. 2020; Langley et al. 2019; Huddleston et al. 
2019). There is general agreement that NM is an excellent 
chelator of trace elements and especially iron. Therefore, and 
under physiological conditions NM protects neurons from 
toxic compounds (Fink et al. 2019; Zucca et al. 2018). In the 
case of increased iron support, NM may render saturated by 
iron. If so, excessive iron cannot be bound to NM and may 
cause generation of free hydroxyl radicals in the cytoplasm, 
OS with peroxidation of lipids, proteins, like α-syn, etc. fol-
lowed by neurotoxicity, degenerating processes and neuronal 
loss. Here the notion is of interest, that there is a covalent 
linkage between α-syn and NM from the early stages of the 
disease on (Halliday et al. 2005; Fasano et al. 2006). More 
recent findings from a proteomic characterization of human 
post-mortem NM granules indicate, that about 1,000 pro-
teins are bound and have been identified (Plum et al. 2016). 
A major question then is, what is the physiological function 
of TH-positive NM-containing vs. TH positive NM-negative 
dopaminergic neurons?

General aspects of Parkinson pathology

PD represents a progressive neurodegenerative disease. It 
mainly afflicts the older population, although juvenile cases 
have been reported. The principal pathology of the disorder 
is characterised by the depletion in striatal dopamine content 
as a direct consequence of the degeneration of the nigro-
striatal tract. The dopamine reduction largely contributes to 
many of the motor features exhibited by the disease.

There are other neuropathological features such as the 
presence of intracellular inclusions, LB in the SN and other 
afflicted areas in the brain. Although LB are not exclusive to 
PD and have been found in other diseases, nevertheless, its 
presence in the SN is paramount for the diagnosis of the ill-
ness. Indeed, LB diseases have been considered a spectrum 
including incidental LB disease, idiopathic PD, dementia 
with LB and Alzheimer’s disease (Jellinger and Korczyn 
2018). Interestingly, the prevalence of these structures 
appears to increase with age from 3.8 to 12.8% between the 
sixth and ninth decade (Gibb and Lees 1988b).This concords 
with the notion that increasing age is predisposing factor in 
the manifestation of the disorder. Interestingly studies sug-
gest that although there is similar LB pathology in young 
onset (less than 45 years) and older onset (over 70 years); 
however, the younger onset group exhibited a greater (24%) 
loss in the SN. However, there appears to be some underly-
ing pre-requisite which determines the development of the 
neurodegenerative disorder. A genetic predisposition may 

confer vulnerability of the nigral neurons to the onslaught 
of the mechanisms operational in the illness (Lewis and 
Cookson 2012).

Increasing evidence supports the involvement of an 
imbalance or dysfunction of the cellular protein homeostasis 
as an important factor in the pathogenesis of PD and other 
related disorders. Indeed, LB comprise mainly of misfolded 
proteins such as α-syn but iron staining can be seen occa-
sionally in the halo of LB (Jellinger et al. 1990). The appear-
ance of these α-syn/LB inclusion clearly reflects an inability 
of the proteasome to degrade these unwanted inclusions and 
an indisposition of the protein homeostasis system. Subse-
quently, the cells with α-syn affect normal healthy neurons 
and spread in a prion-like manner, the “host to graft trans-
mission” hypothesis (Recasens et al. 2014).

α-syn may exert its destruction via iron mode of cellu-
lar toxicity. Indeed, this concept is supported by its ability 
to function as ferrireductase (Sian-Hulsmann and Riederer 
2020). Iron-dependent ferrireductase is involved in iron 
metabolism and possibly under pathological conditions, it 
is possible that in the pathological state it might not func-
tion at its full capacity and thus build-up total nigral iron 
in PD. Studies using retinal cells suggest that α-syn aggre-
gates, interferes with iron autophagy and blocks its release 
from ferritin (Baksi and Singh 2017). Interestingly, unusual 
iron-responsive elements have been reported to be present in 
the 5’-untranslated region of α-syn (Ma et al. 2021), which 
may contribute to its oligomerisation and aggregation in the 
more advanced stages of the illness. Indeed, the absence of 
changes in iron levels in incidental Lewy body disease (Dex-
ter et al. 1994), suggests that the early α-syn accumulation 
and LB formation is not necessarily induced by iron. The 
precise role of LB in the process of neurodegeneration is 
still unclear (Jellinger 2014), since its patho-mechanisms are 
unknown. Therefore, they may represent a cause or a conse-
quence of cell death. In view of their early appearance in the 
asymptomatic phase of the illness (incidental Lewy body) 
(Gibb and Lees 1988a) coupled with their appearance in 
close vicinity in brain area exhibiting neuronal cell carnage, 
it, therefore, appears highly that α-syn plays some ominous 
role in neuronal destruction and progression. Indeed, in vitro 
and in vivo studies, suggest that α-syn undergoes a confor-
mational change to a toxic form and thus initiating or sub-
scribing to neuronal cell destruction (Lashuel et al. 2013).

Based on its location in the pre-synaptic area, its has, 
therefore, been suggested that the physiological role of 
α-syn may be in the release of neurotransmitters (Sulzer and 
Edwards 2019). Whereas, over expression of α-syn, appears 
to block the neurotransmitter release from the synaptic vesi-
cles. Additionally, it is also involved in the regulation of 
mitochondrial fusion–fission (Bernal-Conde et al. 2020). It 
appears that α-syn is able to conduct physiological functions 
in the monomeric form. However, misfolding of the protein 
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results in the conformational change to the toxic version 
of α-syn (this includes both the phosphorylated and non-
phosphorylated form) and the formation of oligomers, which 
induces mitochondrial malfunction and ultimately triggering 
patho-mechanisms characteristic to the disease.

Factors such as ageing, genetic predisposition, selective 
vulnerability of areas in the brain, may contribute to the 
cellular degeneration capacity of α-syn (Wong and Krainc 
2017). Indeed, mutations in the α-syn/SNCA gene (such as, 
A30P and A53T) augment the propensity for the α-syn to 
produce protofibrillar intermediates of its toxic oligomers 
(Bengoa-Vergniory et al. 2017). Perhaps these factors exert 
an indirect role, such that due to normal ageing coupled with 
some underlying genetic contribution the cellular protein 
homeostasis is disrupted, resulting in the accumulation of 
α-syn aggregates and thus the formation of LB. Furthermore, 
the interactions between α-syn and other PD proteins such 
as ubiquitin ligases encoded by PARK2 and PARK7 genes 
(Hauser et al. 2017) and kinase proteins, LRKK2 (Harvey 
and Outeiro 2018), suggest that α-syn may execute its patho-
logical role via interaction with other proteins. This notion 
is also supported by its association with proteins involved in 
cellular destruction, such as PARK2, which regulates apop-
tosis and STUB1 that manages cell death (Kalia et al. 2011). 
Although, familial PD comprises for less than 10% of the 
cases, of which not many are related to SNCA mutations, 
thereby suggesting that the involvement of other factors, thus 
a collection of conditions, e.g. molecules coupled with an 
underlying genetic link may all represent key members of 
the pathogenic orchestra.

Interestingly, there appear to be different forms of α-syn 
protein congregations, which in turn give rise to various 
synucleinopathies including, PD, MSA and dementia with 
LB (Peelaerts et al. 2018). Thus, the unique misfolded α-syn 
conformational variants confer to the distinct type of synu-
cleinopathies exhibited. This may be related to the differ-
ential accumulation processes and subsequent production 
of the α-syn variants. Additionally, this may also ascribe 
to the diverse clinical features of these neurodegenerative 
disorders.

Neuroinflammatory aspects of Parkinson disease

α-syn aggregates have also been implicated in the activa-
tion of a chronic state of inflammation in PD (Hirsch 1994; 
Varanita and Bubacco 2020; Hirsch and Standaert 2021). 
In fact, the presence of active microgliosis in SN in PD was 
first suggested in the occurrence of neuroinflammation in 
the diseases process (McGeer et al. 1988). The microglia 
under physiological conditions exert a protective function 
on the brain via neurotrophic secretion. However, in the dis-
eased state they adopt a pathogenic role. Therefore, perhaps 

a release of NM together with NM-bound components con-
tributing to initiate and worsen an eventual immune response 
and exacerbating OS and neuroinflammation contributes 
to the cell death and progression of the disease. Possibly 
in the early stages of the illness, the nigral cell death may 
evoke inflammation as a neuroprotective response; however, 
as the disease progresses, the dying neurons may release 
inflammatory molecules that contribute to a state of chronic 
inflammation and consequentially exacerbating the cell 
destruction. However, it is unclear whether inflammation is 
primary or secondary to the neurodegeneration (Hirsch and 
Standaert 2021; Depboylu et al. 2007). It is very likely that 
there are other factors in addition to neuroinflammation that 
contribute to the cell death downstream (Halliwell 2006). 
Indeed, the brain is modestly equipped with anti-oxidant 
artillery and thus easily assailable and susceptible to get 
overwhelmed by aggressive degenerative processes such 
as inflammation, OS, mitochondrial dysfunction and inad-
equacy of the protein clearance system to destroy unwanted 
protein aggregates (such as misfolded α-syn oligomers).

Glutathione–iron relationship

A plethora of evidence is indicative of the occurrence of 
oxidative stress in PD (Götz et al. 1990; Trist et al. 2019), 
although it is unclear whether it represents a cause or a con-
sequence of the characteristic neurodegeneration observed 
in the SN. Nevertheless, its cytotoxic pathways and their 
products carry the lethal potential to evoke cellular destruc-
tion. OS is implicated by a host of nigral changes such as, 
elevation of total iron, increase in monoamine oxidase 
(MAO A) activity (Tong et al. 2017), changes of aldehyde 
dehydroxygenase (ALDH) activity (Mandel et al. 2005; 
Michel et al. 2014), loss of NM, an increase in lipid peroxi-
dation, reduction in the antioxidant glutathione (GSH). It 
employs ROS or free radicals as leading culprits that inter-
fere with physiological function causing cellular havoc and 
eventually neuronal destruction in its wake. It has been 
suggested that the dopamine degradation mechanisms may 
contribute to the production of ROS. Indeed, the elevation 
of dopamine metabolic enzyme, MAO A activity and loss 
of ALDH-1A supports this notion and in addition oxida-
tion of dopamine produces toxic quinones and free radicals. 
Interestingly, the isoenzyme MAO B activity is increased in 
the frontal cortex but not in the SN (Tong et al. 2017). The 
main mode of free radical destruction is, antioxidants. How-
ever, no changes were reported in the antioxidant enzymes, 
total superoxide dismutase (Saggu et al. 1989) and catalase 
(Jenner et al. 1992a, b). Similarly, there was an absence of 
the change of activity of glutathione peroxidase (Sian et al. 
1994), the enzyme responsible for the conversion of GSH 
to GSSG, thereby suggesting that the reduction of nigral 
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GSH content (Sian 1991) is not due to its conversion to the 
oxidised form (GSSG), furthermore the GSSG content was 
unaltered in PD (Sian 1991). Interestingly, a depletion of 
glutathione appeared to evoke destruction of dopaminer-
gic nigral neurons and protein aggregation in rats (Garrido 
et al. 2011). GSH is synthesized in both the neurons and the 
astroglial cells (Dringen and Hirrlinger 2003), although the 
glia has higher GSH levels compared to neurons since it is 
able to utilise a larger variety of substrates (Smeyne and 
Smeyne 2013). Indeed, studies using mercury orange for 
staining GSH showed reduction of GSH in the surviving 
neurons in contrast to the microglial cells in PD (Pearce 
et al. 1997). Perhaps activated glial cells are unable to pro-
vide cysteine required for neuronal GSH synthesis, thereby 
contributing to depletion of the GSH content in the neurons. 
Therefore, the neurons may be more susceptible to OS. In 
addition, the cytotoxic molecules released from microglio-
sis may exacerbate the neuronal damage. This suggests a 
significant role played by GSH in the neurodegeneration, 
as demonstrated by its reduction in the early asymptomatic 
phase of the illness, incidental Lewy body disease (Dexter 
et al. 1994). The early stages of the illness are marked by 
a triad of pathological changes including nigral cell loss 
(~ 40%), the presence of LB and loss of GSH. Perhaps the 
GSH serves as a triage and is “consumed” by early cell loss, 
subsequently the loss of cellular protection of the antioxi-
dant may render the neurons vulnerable to the protein accu-
mulation and cytotoxic free radical mechanisms and OS. 
Furthermore, in the SN symptomatic phase of the disorder 
there are more LB inclusions, a greater loss of SN neurons 
(~ 82%, (Iacono et al. 2015)), similar loss in GSH (Dexter 
et al. 1994), elevation in iron (Riederer et al. 1989) and a 
reduction in mitochondrial complex 1 (Schapira et al. 1990, 
1989). Interestingly, the absence of any remarkable change 
in GSH loss in the symptomatic phase of PD compared 
to the asymptomatic phase, is bewildering, particularly in 
view of the escalation of neuronal cell death. Studies using 
human neuroblastoma cells suggest that an over expres-
sion of α-syn appears to alter the antioxidant capacity of 
GSH-deficient cells (Perfeito et al. 2017). Extrapolation 
of these findings would suggest, that possibly due to the 
progressively increasing formation of α-syn containing LB 
coupled with a depletion of GSH in the SN, this some-
how compromises antioxidant ability of glutathione, thus 
implicating α-syn oligomers as a potential candidate for 
initiating neurodegeneration. It has been reported, that the 
antioxidant GSH is able to form complexes with iron such 
as FeS-glutaredoxins, that exert an important role in iron 
metabolism and trafficking (Berndt and Lillig 2017). There-
fore, the depletion of nigral GSH in the early stages of the 
illness (Dexter et al. 1994) may at least in part contribute to 
the iron dyshomeostasis and subsequent elevation of iron in 
PD, as discussed above.

Ferritin

Additionally, since both an increased (Riederer et al. 1988) 
and a decreased (Dexter et al. 1991) ferritin content in SN 
in PD have been reported, it is difficult to make any clear 
deductions. L-ferritin is part of NM granules (Tribl et al. 
2009). This finding clearly proves NM/-L-ferritin as exclu-
sive iron storing structure in dopaminergic neurons of the 
SN. Ferritin is the major iron-binding protein in glial tissue. 
However, the role of L- and H-ferritin, which are differen-
tially distributed (Connor et al. 1994) and regulated on a 
post-transcriptional level has not been clarified in detail in 
human post-mortem tissue (Sammarco et al. 2008). A sub-
stantial decrease of L-ferritin concentration has been found 
in the SN by Connor et al. (1994), Connor and Menzies 
(1995) and Galazka-Friedman et al. (2004) even in ILBD. 
In contrast H-ferritin was higher in ILBD and controls 
(Koziorowski et al. 2007). As the ratio H/L-ferritin is sub-
stantially favouring H-ferritin, the different expression of 
both subtypes in the SN of PD deserves further attention, 
especially as the L-chain isoform is associated with iron 
long-term storage and the H-chain isoform predominates 
high iron-turnover (Boyd et al. 1985), suggesting a differ-
ent mode of iron handling in the brain. Additionally, the 
loss of iron chelator, NM, may also be associated with the 
elevation of nigral iron levels in PD. Consequently, dysho-
meostasis of the Fe(III):Fe (II) ratio develops (Sofic et al. 
1988), which is another pathognomonic of the disorder. It 
should be mentioned that Sofic et al. (1988) were interested 
to measure the total amount of iron in the SN, i.e. free/labile 
iron, iron bound to neuromelanin and ferritin as well as iron 
bound to tyrosine hydroxylase or other proteins. Therefore, 
tissue was pretreated with hydrochloric acid and pepsin. 
Fe(III) executes cellular destruction via triggering cytotoxic 
mechanisms (Minotti and Aust 1987). Indeed, the elevated 
iron promotes the Fenton and Haber–Weiss reaction and 
can exacerbate the production of free radicals such as toxic 
hydroxyl radical species from hydrogen peroxide (Youdim 
et al. 1993). These reactive species initiate processes such as 
cellular lipid peroxidation, mitochondrial dysfunction, cell 
blebbing and eventually destruction of the neuron.

Mitochondrial dysfunction

Indeed, free radicals can produce damage to mitochondrial 
DNA resulting in its loss of function (Liu and Chen 2017). 
Similarly, loss of mitochondrial function can also be pro-
duced by mutations in mitochondrial DNA as observed in 
familial PD. Consequently, disruption of mitochondria func-
tion may provoke disastrous events such as reduction of res-
piratory chain activity reported in PD (Schapira et al. 1989, 
1990; Reichmann and Riederer 1989; Mizuno et al. 1989), 
production of more free radicals, profound effects on iron 
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metabolism since mitochondria is involved in the production 
of haem and iron cluster proteins (Richardson et al. 2010), 
thereby suggesting that the nigral mitochondrial dysfunction 
may affect the iron metabolism via activity of ferrireductase/
α-syn and subsequently resulting in the elevation of iron in 
PD. It appears highly likely that the pathological changes 
in biochemical parameters are closely associated and can 
prompt the initiation of cellular deleterious mechanisms. 
Mitochondrial dysfunction generates OS, reduced synthe-
sis of iron–sulphur clusters and activation of iron regula-
tory protein 1. By this, accumulation of iron occurs, which 
causes hydroxyl radical-mediated damage (Muñoz et al. 
2016). Additionally, ageing and underlying genetic predis-
position are key players that orchestrate pathways. In fact, 
it has been suggested that α-syn accumulations’ and ageing 
can advocate a reduction in mitochondrial sirtuin 3, which 
physiologically plays a vital role in mitochondrial function 
and protection against OS (Park et al. 2020). Misfolded 
α-syn aggregates have the potential to invoke many of the 
pathological changes reported in PD, thereby endorsing its 
importance in the pathogenesis of the disorder.

The appearance of these α-syn oligomers also suggest a 
failing protein clearance system, namely the ubiquitin–pro-
teasome pathway. This concept is supported by the pres-
ence of p62 in the ubiquitinate aggregate of LB in PD (Zat-
loukal et al. 2002). Malfunction of p62 would ascribe to the 
build-up of unnecessary α-syn aggregates and LB formation 
since it executes the breakdown of incorrectly folded pro-
teins. Furthermore, since it regulates protein homeostasis via 
ubiquitin–proteasome system and autophagy, this therefore 
highlights p62 as a focal point in the faulty protein clearance 
system in the pathology of the illness (Shin et al. 2020). 
Interestingly, it was reported that rotenone, an inhibitor 
of the respiratory chain activity, produced overexpression 
of p62 which was associated with α-syn aggregates (Wu 
et al. 2015). Extrapolation of these finding would suggest a 
genetic component that induces the overexpression of p62 
and the α-syn accumulation and LB formation.

Bacteria– and SARS‑CoV‑2–iron interaction

Braak suggested that PD pathology may begin in the periph-
ery spreading to the glossopharyngeal and vagal nerve and 
to the brain (Braak et al. 2003a). Possibly, micro-bacteria 
residing in the gut may produce inflammation resulting in 
aggregation of α-syn. Indeed, an imbalance of gut bacteria 
or a state of dysbiosis may act as pro-inflammatory media-
tors (Sherer et al. 2003; Dodiya et al. 2020). Mice treated 
with the complex I inhibitor, rotenone, exhibited (1) intes-
tinal hyperpermeability, (2) glial cells inflammation, (3) 
increase in α-syn levels, (4) an increase of Gram-negative 
bacteria and (5) OS (Dodiya et al. 2020). Interestingly, there 

was also a reduction of “anti-inflammatory” bacteria such, 
Lactobacillus. This protective role may suggest that the bac-
teria is iron-independent similar to Lactobacillus plantarum 
(Archibald and Fridovich 1983), although iron is closely 
associated to most gut microbiota since it is vital for the 
propagation and survival of bacteria. Furthermore, it appears 
that iron may execute a rather ambivalent role, since low 
dietary iron appeared to produce dysbiosis of gut bacteria 
(Dostal et al. 2013). Conversely, an iron rich environment 
appears to support the growth of pathogenic bacteria such as 
Proteobacteria and induce inflammation (Jaeggi et al. 2015; 
Xiang et al. 2020).

Nevertheless, an association between iron, specific gut 
bacteria and inflammation is evident. It is likely that in PD 
the gut iron levels are elevated and this may produce OS, a 
state of dysbiosis and reproduction of bacteria that induce 
α-syn modification and inflammation. The inflammation may 
alter the environmental pH which may induce the α-syn mis-
folding and aggregation (Meade et al. 2019; Fitzgerald et al. 
2019). Subsequently, these α-syn accumulations may then 
be transported and deposited from gut via the vagus nerve to 
the brain in a retrograde and time-dependent manner. Indeed, 
α-syn aggregates from PD brain lysate injected into the sub-
mucosa of the enteric nervous system of mice endorsed this 
notion (Holmqvist et al. 2014; Fitzgerald et al. 2019). The 
dual-hit hypothesis suggests that a potential pathogen may 
enter the brain through the gut and the olfactory system and 
a two-way communication exists between the microbiota 
in the periphery and central nervous system (Perez-Pardo 
et al. 2017). Additionally, a disturbed microbiota gut-brain 
axis may advocate a pathogenic role via triggering inflam-
mation, α-syn oligomerisation and OS in PD. Interestingly, 
iron homeostasis and microbiota are said to be significant 
in eliciting intestinal inflammation (Yilmaz and Li 2018). 
Therefore, the notion is of interest, that even viruses selec-
tively infect iron-acquiring cells or interact with cellular 
iron metabolism, including hepcidin cells (Schmidt 2020). 
Hepcidin is a central regulator of systemic iron homeostasis 
(Nemeth and Ganz 2009). SARS-CoV-2 interacts with hae-
moglobin through CD 147, CD 26 and other receptors on 
erythrocyte and/or blood cell precursors and via hepcidin-
mimetic action of a viral spike protein, including ferroportin 
blockade (Cavezzi et al. 2020). Furthermore, SARS-CoV-
2-induced COVID-19 manifests in inflammation, immune 
dysfunction and hyperferritinemia suggesting iron overload 
(Habib et al. 2021). Gastrointestinal symptoms are frequent 
in patients with COVID-19 (Villapol 2020; Huang et al. 
2021; Weng et al. 2021; Buscarini et al. 2020; Xiang et al. 
2020; Riederer and Meulen 2020; Vetter et al. 2020). For 
long time, iron-binding proteins like transferrin, lactoferrin 
and ferritin have been associated with cells of the immune 
system, and regulatory effects of metals on immune cells, 
including iron, have been suggested to cause toxic effects 
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(Brock and de Sousa 1986). SARS-CoV-2 binds to ACE-2 
and the type-II transmembrane serine proteases TMPRSS2 
at the body’s epithelial cells. Furthermore, TMPRSS11D 
and TMPRSS13 activate the SARS-CoV-2 spike protein 
(Kishimoto et al. 2021). Other type-2-transmembrane ser-
ine proteases have not been studied so far on the replication 
of SARS-CoV-2. TMPRSS 6 gene is related to the genera-
tion of the protein matriptase-2 (Ramsay et al. 2009), which 
controls hepcidin biosynthesis and by this iron homeostasis. 
Indeed, a distant sequence similarity between the cysteine-
rich cytoplasmic tail of the coronavirus spike protein and the 
hepcidin protein has been described recently (Ehsani 2020). 
Therefore, it is not farfetched to assume, that iron homeosta-
sis is disturbed in various organs due to viral infection and 
thus contributes to the pathology induced by SARS-CoV-2. 
Indeed, Nai et al. (2021) in a clinical study involving 111 
COVID -19 patients showed that serum iron was extremely 
low in most cases and that this finding was a predictor of 
mortality. Conversely, hepcidin levels were significantly 
increased in 61.3% of patients. Patients with higher hepci-
din levels were significantly older and had higher concen-
trations of markers of inflammation, i.e. CRP and ferritin 
and cell damage, like LDH. Low serum levels of iron and 
increased concentrations of both ferritin and hepcidin are 
characteristic markers of patients with COVID-19 infection 
(Sonnweber et al. 2020; Hippchen et al. 2020; Cavezzi et al. 
2020; Cheng et al. 2020; Henry et al. 2020; Nai et al. 2021; 
Girelli et al. 2021; Mahat et al. 2021).

In addition, iron deficiency was still present 60 days after 
disease onset in 30% of subjects. Anaemic patients (9%) 
had increased markers of inflammation (IL-6, C-reactive 
protein). Hyperferritinemia was still present in 38% of all 
individuals and was more frequent in severe or critical 
COVID-19 (Sonnweber et al. 2020). Hepcidin is rapidly and 
potently stimulated by pro-inflammatory cytokines like IL-6, 
leading to hypoferremia, impaired haemoglobin synthesis 
causing anaemia or inflammation (Girelli et al. 2021; Nai 
et al. 2021).

As SARS-CoV-2 seems to have hepcidin-like action, the 
virus can directly increase ferritin levels. Furthermore, the 
release of iron may be secondary to the interaction between 
SARS-CoV-2 and haemoglobin and this may cause high 
ferritin concentration (Garrick and Ghio 2021; Abobaker 
2021). Indirect evidence of altered iron homeostasis comes 
from clinical studies in optimal individualized therapy plus 
deep brain stimulated patients with PD. Here blood levels of 
hepcidin and IL-6 concentrations in blood were significantly 
elevated, indicating neuroinflammatory induced disturbances 
of peripheral iron homeostasis (Kwiatek-Majkusiak et al. 
2020). It is suggested, that more attention should be given to 
the interaction of iron with SARS-CoV-2 and other viruses. 
Such studies may contribute to understand the viral toxicity 
on organs functions. In the 6-hydroxydopamine- as well as 

in the rotenone-induced PD models overexpression of hepci-
din suppressed major pathologies of parkinsonism, protected 
rotenone-induced mitochondrial deficits and reduced α-syn 
accumulation through a decrease of iron (Liang et al. 2020). 
Interleukin-6, which is significantly increased in the SN of 
PD (Mogi et al. 1994) and chronic inflammation (Hirsch and 
Standaert 2021) increases hepcidin levels (Camaschella et al. 
2020). Therefore, the interplay of hepcidin, iron-transport 
proteins like transferrin, lactoferrin and ferroportin and iron-
storing ferritin as well as NM controlling the concentration 
of free as well as bound/stored iron is a critical factor in the 
pathology of PD (Vila 2019). Therefore, chelation of excess 
peripheral free iron as well as excess of SN free/labile iron 
with iron chelators, which cross the BBB only at the site 
of SN BBB disturbance, we suggest to be potential targets 
for new drug developments to causally influence the iron-
induced pathology of PD.
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