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ABSTRACT 

Fruit ripening is usually a natural process in which fruits undergo various chemical and 

physical changes before they become palatable. New artificial ways of fruit ripening have 

been developed as a result of recent breakthroughs in agricultural technology mainly to 

meet market demands and to deal with the logistics of storage and transportation. However, 

this practice has become a concern because of the human health risks resulting from the 

uncontrolled use of ripening agents which contain toxic elements. For instance industrial 

grade calcium carbide has impurities of arsenic and phosphorus as well as other heavy 

metals. High intake of these elements is known to cause neurological disorders such has 

cerebral edema and memory loss as well as carcinogenic disorders like cancer of the colon, 

lungs and peptic ulcers. Hardly is there a method capable of rapidly and non-invasively 

assessing artificial ripeners in fruits (ARF) with reliability and accuracy. The wet chemical 

techniques conventionally used such as the various forms of chromatography are time 

consuming, destructive, costly and involve laborious sample preparations. This work aims 

at developing a rapid and non-invasive technique for assessing calcium carbide ripened 

bananas using machine-learning (ML) assisted laser Raman spectroscopy (LRS). In this 

study, Raman spectra was recorded from naturally and carbide ripened banana samples 

using a 785 nm laser for excitation. The bananas were ripened using calcium carbide with 

concentrations ranging from 0.240 g/L to 2.0 g/L. Exploratory analysis using PCA revealed 

that clustering of the carbide ripened samples was due to the presence of sulfur, acetylene, 

calcium hydroxide and phosphine impurities contained in CaC2. These molecules have 

Raman bands centered at 480 cm
-1

 (S-S bond stretching), 612 cm
-1

 (C-H asymmetric 

bending), 780 cm
-1

 (O-H bending) and 979 cm
-1

 (P-H stretching) respectively. 

Classification and quantification of CaC2 concentrations used in ripening was achieved 

using the following ML algorithms: support vector machine, artificial neural networks and 

random forest. High correct classification accuracies were realized (> 85 %) in the ML 

classification models. Furthermore, the performance of the regression models showed good 

performance as indicated by high R
2
 values (>0.95) and the low RMSEP values (<0.34g/L) 

when predicting test data sets. Banana samples collected from local markets around 

Nairobi were found to have been ripened by CaC2 (up to 1.30 g/L) using the optimized 

LRS conditions and ML models developed in this work. Therefore, ML-assisted LRS 
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allows for rapid and direct assessment of artificial ripeners in fruits. The findings of this 

study will aid in the development of spectral libraries for use in food safety analysis 

procedures involving fruits. 
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    CHAPTER 1 

1 INTRODUCTION 

1.1 Background to the Study 

Fruit ripening is ordinarily a natural process involving a series of physiological changes in 

odour, colour and quality of the fruit (Adeniji et al., 2010). The time taken for fruits to 

ripen naturally varies across different fruits. Thus farmers and retailers ripen fruits 

artificially using chemicals and other ripening agents, primarily, to meet market demands 

and achieve uniform ripeness of their fruits. Artificial ripening is also done to deal with 

logistics of transportation and distribution as ripe fruits cannot be stored in transit for long; 

farmers harvest fruits whilst still raw and ripen them later (Dhembare, 2013).   

The use of artificial ripeners on fruits dates back to ancient China whereby pears were 

ripened artificially by placing them in closed spaces and burning incense in the chamber 

(Mehnaz et al., 2013).  In the 1920s, researchers observed that unsaturated hydrocarbon 

gases such as ethylene were responsible for ripening and that plants were able to produce 

ethylene by themselves (Kendrick, 2009). These observations led to growth of a variety of 

chemicals and ways of artificially ripening of fruits. Notably, the traditional chemical-free 

fruit ripening techniques hardly posed any human health risks. 

At present, artificial ripening agents commonly used include ethylene gas, calcium carbide, 

ethephon (2-chloroethylphosphonic acid), ethylene glycol (1,2-thanediol), carbon 

monoxide, potassium sulphate and oxytocin (Singal et al., 2012). Whereas the natural 

ripening process is usually initiated with the production of ethylene within mature fruits, 

artificial ripening agents like ethephon, methanol, and ethylene glycol produce ethylene for 

accelerating the process in a manner similar to the ethylene produced naturally by fruits 

(Nagel, 1989). The practice is mostly prevalent during post-harvest stages in the food 

chain, particularly, during transportation and storage. Fruits which are more prone to 

artificial ripening include  bananas, apples, mangoes, tomatoes and avocados (Dhembare, 

2013). These fruits are targeted owing to their widespread demand. 
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The uncontrolled use of hazardous ripening agents particularly in developing countries 

poses a great concern to human health. Several studies have shown the detrimental nature 

to human health of these ripening agents as they cause memory loss, cerebral edema, 

colonic and lung cancer among others (Kesse et al., 2019; Lakade et al., 2018; Chandel et 

al., 2018; Kathirvelan et al., 2017). As these ripeners could have direct and indirect health 

hazards, it is imperative to determine their elemental compositions and assess their safety 

levels within the artificially ripened fruits.  

1.1.1 Use of Calcium Carbide as an Artificial Ripener and Associated Health Risks 

Among the many chemicals used to ripen fruits artificially calcium carbide (CaC2) the most 

preferred due to its fast action, ease of use and availability. Hydrolyzed CaC2 liberates 

acetylene which functions as ethylene analogue to influence the ripening of fruits (Bari et 

al., 2018). Equation (1.1) represents the chemical reaction for liberating ethylene and 

equation (1.2) shows how it accelerates the ripening process.  

CaC2(s)  +  2𝐻2O(l)  →  Ca(OH)2(s) +  C2𝐻2(g) (1.1) 

 Unripe (green)banana +  C2𝐻2  →   Ripe (yellow) banana (1.2) 

 

Notably, the form of CaC2 that is usually readily available for purposes of artificial ripening 

of fruits is the impure form. Impurities of calcium phosphide and calcium arsenide  have 

been discovered in industrial grade calcium carbide (Nowshad et al., 2018).   Phosphine is 

liberated when calcium phosphide reacts with water and arsine liberated when calcium 

arsenide reacts with water. These hydrides are fat soluble and can dissolve through the wax 

surface of fruits and diffuse from the peel to pulp of fruits exposed to them (Haturusihghe 

et al., 2004). These impurities are the ones which largely contribute to making carbide 

ripened fruits having adverse health effects to humans. 

Workers who are directly involved in applying CaC2 to the fruits bear the highest risk 

burden of the negative health effects associated with it. They may suffer from conditions 

such as vomiting and diarrhea, fluid buildup in the lungs, peptic ulcers and colonic cancer 

caused by exposure to high levels of arsenic and phosphorus. Further, direct exposure to 

acetylene gas is known to affect the neurological system as it reduces the brain’s oxygen 
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supply causing dizziness, seizures, memory loss and cerebral edema  (Fattah et al., 2010). 

Dhembare. (2013) reports that the health risks resulting from consumption of CaC2 ripened 

fruits may even be passed down genetically, if consumed by pregnant women, resulting to 

children born with abnormalities. 

 

1.1.2 Challenges Associated with Conventional Methods for Assessing Artificial 

Ripeners  

There are various analyses methods, devices and procedures that are conventionally used 

for assessing artificial ripeners in fruits that are premised on chemical analysis. These 

include HPLC-MS, GC and ELISA. These processes are time-consuming, inconvenient in 

terms of sample preparation and not environmentally friendly (Liu et al., 2011). The 

chromatographic methods have indeed been successful in such kinds of tests but the 

destructive nature and analytical cost has hindered their widespread and regular use.  

Presently, more emphasis and research is geared towards the development of non-

destructive techniques which are rapid. Consequently, vibrational spectroscopic techniques 

such as near-infrared (NIR) spectroscopy, mid-infrared (MIR) spectroscopy and LRS have 

shown great potential in the fruit industry to check for ARF (Kangas et al., 2007 ). 

Nonetheless, the applicability of these spectroscopic techniques in studies involving fruits 

faces challenges arising from the complex nature of fruits such as sample inhomogeneity. 

In this case, it becomes difficult to resolve spectral intensity profiles of inhomogeneous 

fruit samples. It is for these reasons that spectroscopic techniques are coupled with ML 

techniques to aid in overcoming such challenges. Considering LRS, the technique 

facilitates quick analysis as the time taken for each cycle of measurement is less than one 

minute. However, this advantage is eroded in practical applications owing to the low 

reliability of data processing and hence, the need to validate the same measurements by 

multiple techniques. Nevertheless, with a high degree of accuracy and reliability, ML 

assisted LRS has the capacity to solve a wide range of complex issues such as the one in 

this research. 
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1.2 Statement of the Problem 

The challenge with conventional techniques for assessment of artificial ripeners in fruits is 

that they are costly, time-consuming, require specialized sample preparation and more 

often involve destruction of the test sample. The laser Raman spectroscopy (LRS) 

technique overcomes most of these challenges. However, analysis of trace analyte 

concentrations in complex matrices such as fruit samples can be challenging. This is 

because, the traditional data analysis approach assigns known individual peaks to specific 

vibrational groups but the composition of the entire sample affects each individual peak 

due to matrix effects, thus this approach cannot adequately represent the resulting peak 

intensity shifts. In addition, the fluorescence effect tends to be more intense than the 

Raman effect. This implies that the laser Raman spectroscopy technique may not be 

sufficient independently. Multivariate machine learning techniques offer alternatives to this 

traditional approach by using data from the entire wave range collected to solve issues 

connected with univariate Raman data analysis. Therefore, the machine learning assisted 

laser Raman spectroscopy approach has potential for rapid, non-destructive and cost-

effective assessment of artificial ripeners in fruits. 

 

1.3 Research Objectives 

1.3.1 Main Objective 

The primary goal of this research was to develop a machine learning-assisted laser Raman 

spectroscopy technique for the direct and rapid assessment of calcium carbide ripened 

bananas. 

1.3.2 Specific Objectives 

i. To design and optimize a protocol for the assessment of calcium carbide ripened 

bananas for rapid laser Raman spectroscopic measurements.  

ii. To pre-process the LRS measurements obtained from specific objective (i) for 

spectral noise reduction and perform exploratory analysis of the pre-processed data 

using PCA to assign molecular vibrations and for dimensionality reduction. 
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iii.  To develop calibration models for quantitative analysis of the data obtained from 

specific objective (ii) above using selected machine learning techniques, namely 

ANN, SVM/R and RF. 

iv. To test the applicability of machine learning-assisted laser Raman spectroscopy 

technique in assessing the presence of calcium carbide in market samples.  

1.4 Justification and Significance 

Fruits are a popular source of food as they are a vital source of nutrients for the well-being 

of humans. However, continued consumption of artificially ripened fruits has raised 

growing concern due the associated health risks. For instance, consumption of CaC2 

ripened fruits has been reported to cause peptic ulcers and colon cancer. To address this 

health concern, a rapid method for assessing ARF is needed. Hardly is there a rapid and 

non-invasive method for assessing ARF as the standard wet laboratory techniques are 

destructive and time-consuming and therefore inappropriate for such practical applications.  

Applied vibrational spectroscopy techniques such as LRS are non-invasive and rapid and 

have potential to be applied in assessment of ARF. However, when this technique is 

applied in studies involving fruits, it suffers from the influence of broad fluorescence 

baseline that obscures the requisite Raman signal. It also becomes difficult to assign Raman 

bands to different chemicals of interest when the spectra is recorded in the background of 

interfering molecules. Further, the inhomogeneity of fruit samples results to Raman spectra 

with variations in intensity making quantification studies difficult.  Therefore,  the practical 

application of LRS in studies such as in the current work increases significantly when 

combined with appropriate data pre-processing techniques as well as ML techniques such 

as ANN, RF and SVM. The findings in this study highlight optimal conditions for 

recording Raman spectra of fruits ripened artificially or naturally. In addition, the use of 

appropriate data mining techniques and optimally tuned ML parameters for the fast and 

reliable analysis of LRS data are outlined.  
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        CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Chapter Overview 

There is a discussion in this chapter of the literature on methods of assessing artificial 

ripeners in fruits. Various techniques such as chromatography, near-infrared spectroscopy 

and LRS are discussed as well as the role of ML in LRS.  

2.2 Common Artificial Fruit Ripeners 

The application of CaC2 to accelerate the ripening process of fruits alongside the negative 

health effects of using this chemical has been documented over time in several studies 

(Kesse et al., 2019; Lakade et al., 2018; Chandel et al., 2018; Kathirvelan et al., 2017) as 

discussed in section 1.1.1.. Other common chemicals used in artificial ripening of fruits 

include Ethephon (2-chloroethylphosphonic acid) which decomposes into ethylene when 

hydrolyzed,  (Roberts et al., 1998).  The liberated ethylene speeds up the ripening process 

in fruits. Impure ethephon may contain monochloroethyl ester which may degrade to 

monochloroacetic acid which can cause burn injury (Pirson et al., 2003). Further, health 

studies report that ethephon gets rapidly absorbed in the gut and has potential to damage 

liver cells (Bhadoria et al., 2018). The use of kerosene for ripening has also been on the 

rise. Kerosene is used in kerosene burners to generate smoke for ripening fruits. The 

generated smoke contains unsaturated compounds that are  known to accelerate ripening 

(Maduwanthi et al., 2019). Kerosene used for this purpose may have impurities like sulfur 

which is emitted as sulfur dioxide (SO2) in the process. High exposure to (SO2) can cause 

pulmonary injuries (Kan et al., 2010).  

 

2.3 Methods for Assessing Artificial Ripeners in Fruits 

Several studies on artificial ripening of fruits have been conducted. However, there is 

minimal literature that directly highlights spectroscopic methods used in assessing ARF. 
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One such study was conducted by Nowshad et al. (2018) to analyze artificial ripening 

agents used for ripening bananas.  From the elemental analysis of CaC2 samples obtained 

from their locality using an EDXRF spectrometer, sulfur, arsenic and phosphorus were 

found among other metals. The arsenic content found (160 ppm) exceeded the limit set by 

United States Food and Drug administration (0.5-2 ppm). Phosphorus present in the CaC2 

samples (120 ppm) was much higher than the lethal dose set by Center for Diseases 

Control and Prevention (CDC) for dogs (10 ppm) and cats (4 ppm) (Francois et al., 2015).  

The toxic dose set by the National Academy of Sciences, USA for sulfur is at 600 ppm. 

The sulfur found in CaC2 samples significantly exceeded this value. However the 

experimental techniques that were used to assess the ripening agents within the bananas 

were largely wet chemical techniques.  

The detection and quantification of CaC2 in carbide ripened fruits is complex owing to its 

instability in the presence of moisture. Further, the diffusion of calcium hydroxide and 

acetylene into the fruits make the detection even more challenging (Ramachandra et al., 

2016). In this regard, several studies propose that in order to detect CaC2 in carbide ripened 

fruits, the respective tests should be targeted at detecting the common impurities found in 

CaC2 like arsenic, sulfur and phosphine. In one such study Lakade et al. (2018) 

demonstrated that carbide-ripened mangoes contained arsenic as evidenced by color 

changes resulting from reactions between arsenic and lauryl sulphate-capped gold 

nanoparticles. In another study, Chandel et al. (2018) demonstrated that CaC2 ripened 

mangoes contained arsenic residues (ranging from 35 to 107 ppb) whereas mangoes which 

were left to ripen naturally  did not show any arsenic residues. Thus, the presence of the 

afore mentioned impurities in fruits can be used as indicators of ripening using CaC2. 

  

 

2.3.1 Wet Chemistry-based Techniques 

Various forms of chromatography have been used in assessing artificial ripeners in fruits. 

These include ICP-AES, GC, HPLC, and HPLC coupled with mass spectrometry (HPLC-

MS). These methods are more accurate and sensitive to trace concentrations but are not 
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rapid (Naushad et al., 2014). In particular, chromatographic methods are more costly, 

destructive and involve complex sample preparation techniques that require high level of 

expertise. Further, toxic waste are produced during measurement due to the solvents used; 

this has the implication that the number of samples to be tested must be limited for 

environmental reasons (Naushad et al., 2014). For this reasons, chromatography does not 

provide a rapid assessment method for artificial ripeners in fruits. 

2.3.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 

This technique has gained traction in the fruit industry as it has shown to be a radiation-

free, non-invasive and fast approach of obtaining chemical structure information of 

biological samples such as fruits and vegetables. Wyzgoski et al. (2010) highlighted that 

fruits have complex chemical structures and their analysis using the classical 1-dimensional 

NMR spectra was constrained in a study to ascertain bioactive components of raspberry 

fruits. The use of partial least squares, a chemometric tool, made it possible to establish 

relationships between bioactive components of raspberry fruits to biological responses. The 

biomarkers identified for different fruits can be used as fingerprints to point out differences 

between chemically and naturally ripened fruits in the present study. Further, the use of 

chemometrics to deal with highly multidimensional data resulting from the heterogonous 

fruit samples was employed in the current study. 

Lee et al. (2014) compared the performance of NMR spectroscopy with HPLC in a study to 

quantify Cordycepin, a medicinal compound, in mushrooms. The quantitative results 

showed that NMR was better than HPLC in terms of repeatability and sensitivity. 

However, preparation of the samples in this study involved preparing mushroom extracts 

using solvents like methanol. The present work envisages the use of a chemical free 

method to assess carbide ripened bananas.  

In another study conducted by Wu et al. (2020), it was demonstrated that NMR 

spectroscopy could obtain high resolution metabolic profiles of several fruits. The resulting 

spectra could aid in pinpointing significant metabolites that are unique to particular fruits 

and this could aid in fruit quality control. It was reported that these studies could be carried 

on site using portable NMR equipment. This presents an advantage in the present work 

whereby bananas can be assessed, in a fast way, for artificial ripeners on site. Nonetheless, 
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the method faces challenges in analysis where the fruit sample has non-uniform peel and 

pulp such that it becomes the metabolites cannot be easily discerned. Multivariate analysis 

approaches were thus recommended.  

2.3.3 Near Infrared Spectroscopy 

The challenges faced by chromatographic methods in assessing artificial ripeners in fruits 

can be addressed using vibrational spectroscopy techniques. These include NIR, MIR and 

laser Raman spectroscopy (LRS). They are relatively fast, non-destructive and require 

minimal sample preparation. Rapid assessment of artificial ripeners has been reported in 

tomato, apple, apricot, citrus, peach and olives using NIR spectroscopy (Gracia et al., 

2011). As a relatively quick and low-cost approach, NIR spectroscopy is a robust 

alternative. However, the NIR spectra is generally characterized by broad overlapping 

peaks. The mixed spectra from layered samples are often computationally difficult to 

resolve and allocate to the individual components.  Further, the extent of light penetration 

in the NIR reflectance mode is often limited by the relatively low radiation energy of the 

illumination sources (Qin et al., 2017). Thus NIR spectroscopy has not been used 

extensively for assessment of ARF. 

2.3.4 Laser Raman Spectroscopy  

LRS is a wide class of spectroscopic techniques based on inelastic scattering of light of a 

single wavelength. The technique is capable of analyzing molecular composition of a 

sample with high specificity owing to the unique nature of molecular vibrations (Gomez-

Lazaro et al., 2017). However, LRS has been used to a lesser extent in assessment of ARF 

in comparison with infrared absorption primarily because of problems associated with 

sample degradation and fluorescence. Further, Raman scattering is a weaker process 

compared to NIR and MIR spectroscopy and it has low signal-to-noise ratio (SNR). In 

addition, interpretation of Raman spectral data of target samples within different matrices 

is complex (Morris, 2008). Spectral data that was obtained in this work had a large number 

of variables with no properly defined peaks.  Consequently, the manual correlation of 

experimental spectra with the standard reference spectra for peak allocation  was difficult 

(Kiyohara et al., 2018). Therefore, LRS used independently could not be used to assess 

artificial ripeners in fruits. 
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Standard data analysis of LRS data involves preprocessing by cosmic ray removal followed 

by smoothing and then baseline correction. Studies show that proper application of these 

steps is able to suppress the fluorescent signal which is normally intense than the Raman 

signal, especially for biological samples (Wei et al., 2015). Additionally, in classification 

studies, principal component analysis (PCA) is normally used for reduction of data 

dimensionality before classification. However, proper choice of appropriate preprocessing 

steps without loss of vital information remains a challenge (Liu et al., 2017). In this study, 

appropriate preprocessing techniques were used and the experiment optimized to obtain 

most useful information with minimal loss of data. 

Calcium carbide, when used for ripening fruits chemically, must be hydrolyzed to produce 

acetylene gas and other by-products. Therefore, LRS could not be used to directly test for 

CaC2 in carbide ripened bananas as it was absorbed in different form by the fruits. Thus,  in 

order to detect and quantify how much CaC2 was used to ripen sample bananas, this study 

relied on the following Raman peaks of molecules resulting from impurities found in CaC2 

(see Table 2.1).  

Table 2.1: Common impurities found in CaC2 and their Raman peaks. 

  

Target molecule Raman vibrational modes (cm
 -1

) Reference 

Phosphine 2306, 1115, 979 (P-H bending) (Ceppatelli et al., 2020) 

Sulfur S8 160, 225, 480 (S-S bond stretching) (Nims et al., 2019)  

Calcium hydroxide 780 (O-H out-of-plane bending) (Chiriu et al., 2014) 

Acetylene 612 (C-H asymmetric bending) 
(Edwards, 1990) 

 

 

2.4 Applications of Machine Learning in Analytical Spectroscopy 

Section 2.3 above highlights some of the limitations encountered in analyzing spectral data. 

These limitations can be partially solved by applying multivariate analytical technique for 
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spectral data analysis using machine learning. In the case of LRS, hardly are there 

references pointing out machine learning techniques employed in LRS data for the 

assessment of artificial ripeners in fruits.   Liu et al. (2017) demonstrated a unified solution 

for identification of chemicals whereby a convolution neural network was trained to 

identify substances according to their Raman spectrum without data preprocessing. The 

network performed well with high classification accuracies (95%).  However, this network 

was only tested for mineral datasets. Madden et al. (2003) investigated the use of ML 

techniques for predicting the concentration of cocaine in solid mixtures by examining the 

Raman spectra of the samples. Several multivariate calibration models were tested in this 

study. The results showed that the neural network model aided with feature selection 

produced greater prediction accuracy than chemometrics models such as partial least 

squares.  In the present study, feature selection was vital for data reduction so as to reduce 

the dimensionality of the LRS data.  

The NIR spectra for heterogeneous samples, as described in section 2.3 above, is normally 

characterized by overlapped broad peaks without distinct signature of individual 

components. Multivariate calibration techniques using ML have since been proposed to 

solve this limitation. In one such study, RF was evaluated as an alternative multivariate 

technique for analyzing NIR spectral data of gasoline (Lee et al., 2013). In comparison to 

partial least squares, the quantitative analysis of varied gasoline samples using the RF 

model was more accurate without overfitting. ML models that are not properly tuned to the 

specific spectroscopic problem suffer the problem of poor generalization ability.  In the 

present work, parameters in the RF model were selected and adjusted such that the 

developed model did not overfit or underfit.  

Support vector machine (SVM) as non-linear calibration technique has also been proposed 

for solving complex problems in spectroscopy. Thissen et al. (2004)  demonstrated the use 

of SVM to solve a well-known chemical problem in which NIR spectra was measured at 

different temperatures leading to non-linear spectral variations. In comparison to the 

previously applied modelling techniques employed to find a solution to this problem, SVM 

performed best. In the present study, highly dimensional Raman spectral data was recorded 

and it was expected that this would present computational complexity for some ML 
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algorithms. SVM calibration models for pattern recognition and regression were therefore 

among the ML algorithms used for this work as the quality of the SVM is not directly 

dependent on the dimension of the input data (Liu et al., 2017).  

Machine learning was employed in this work to deal with the challenges associated with 

univariate analysis of spectral data. Among these include data from heterogeneous samples, 

which normally have varying intensity values for the same sample and highly dimensional 

data with many correlated variables. The application of machine learning models to build 

calibration models for concentration of molecules of interest amidst a field of interfering 

molecules was therefore crucial in this work.   
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    CHAPTER 3 

3 THEORETICAL FRAMEWORK 

3.1 Chapter Overview 

In this chapter, the principle underlying Raman Scattering is explained in detail. The basics 

of both classical and quantum mechanical formulations are presented, but not in a rigorous 

manner.  Also included in this chapter, is the theory behind spectral data analysis, 

exploratory data analysis and multivariate calibration of spectral data using ML algorithms. 

3.2 Raman Scattering 

The Raman effect was first experimentally observed by C. V. Raman, an Indian physicist 

around 1928. For this discovery, he was awarded the 1930 Nobel Prize for Physics (Müller 

et al., 2003). As a precursor to this discovery, a postulation had been put across by Smekal; 

that radiation scattered from molecules, comprises photons with the incident photon 

frequency as well as photons with a shift in frequency. In principle, the Raman effect is a 

manifestation of this. 

It is the inelastic scattering of light by matter that is responsible for the Raman effect. 

There are three unique ways that a photon of light, that does not have enough energy to 

cause an electronic transition from one state to another,   might be scattered when it 

collides with a molecule. Photons hitting a molecule can can be elastically scattered, 

meaning their energy is identical to their scattered counterpart’s energy. Rayleigh 

scattering is another name for this phenomenon. As an alternative, the incoming photon can 

be inelastically scattered by either gaining energy from the molecule or losing to it. In the 

case where the photon loses energy to the molecule, the phenomenon is referred to as 

Stokes scattering. The molecule ends up having excess energy that shows up as vibrational 

energy in the form of a phonon (Schrader, 2008). Figure 3.1 below is a representation of 

this process. 
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Figure 3.1: Feynman diagram of Stokes scattering. (Source: Feynman et 

al., 2011). The process is characterized by energy loss in the photon due to 

phonon creation. 

On the other hand, in the case where the photon gains energy from the molecule, the 

phenomenon is known as anti-Stokes scattering.  Consequently, the molecule ends up 

losing vibrational energy in the form of a phonon to the photon. As indicated in Figure 3.2 

below, the anti-Stokes process significantly relies on the phonon population. A strong 

correlation exists between this process and temperature since an increase in temperature 

results to increased phonon population. 
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Figure 3.2: Feynman diagram of anti-Stokes scattering. (Source: Feynman et al., 

2011). The process is characterized by energy gain in the photon due to the 

absorption of the phonon. 

 

3.2.1 Classical Theory of Raman Scattering 

Raman spectroscopy, in principle, traces foundations to an elementary classical theory 

(Larkin, 2017). This theory brings forth the idea that molecules are simply atoms that 

undergo simple harmonic vibrations without quantization of vibrational energy. It is based 

on polarizability theory of molecules as proposed by G. Placzek in 1934. When a molecule 

is put into a static electric field, it suffers some amount of distortion whereby the positive 

charges on the nuclei are attracted toward the negative pole of the electric field and 

electrons are attracted towards the positive pole of the electric field. This separation of 

charge centers induces a dipole moment which is set up on the molecules. Because of this, 

the classical theory presumes that molecules are dipoles. For small fields the induced 

dipole moment   is directly proportional to the applied electric field strength E. Thus: 

𝜇 = 𝛼𝐸 (3.1) 

Where  is the proportionality constant called the polarizability of the molecules, which is 

a measure of the ease with which the electron cloud may be distorted by the presence of an 

external electric field. For diatomic molecules aligned parallel to the direction of the 

electric field, polarizability is higher than when aligned vertically.  
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Where the electric field varies, there will be a varying dipole moment, of the same 

frequency, in response to that changing field. When a sample molecule is subjected to a 

radiation of frequency o , the electric field experienced by the molecules varies according 

to the equation below (Larkin, 2017): 

 

𝐸 = 𝐸𝑜 sin 2𝜋𝑣𝑜𝑡 (3.2) 

Where E is the amplitude (intensity) of the vibrating electric field,  is the frequency and 

t  is the time. Substituting equation (3.2) into equation (3.1), we obtain:  

𝜇 = 𝛼𝐸𝑜 sin 2𝜋𝑣𝑜𝑡 (3.3) 

Which is the expression for oscillating dipole which emits its own frequency known as 

Rayleigh scattering. 

When placing any molecule in the electric field there will be a change in the dipole 

moment and because of the induced dipole moments, the molecule will vibrate slightly. 

The molecular vibrations causes a change in the polarizability given by: 

𝛼 = 𝛼𝑜 + (
𝜕𝛼

𝜕𝑞
) 𝑞𝑜 sin 2𝜋𝑣𝑚𝑡 (3.4) 

 

Here, (
𝜕𝛼

𝜕𝑞
) is the rate of change of polarizability with vibration, 𝑞𝑜 is the period of 

molecular vibration and 𝑣𝑚 is the vibrational frequency. Substituting equation (3.4) into 

equation (3.3), we obtain: 

𝜇 = 𝛼𝑜𝐸𝑜 sin 2𝜋𝑣𝑜𝑡 + (
𝜕𝛼

𝜕𝑞
) 𝐸𝑜𝑞𝑜 sin 2𝜋𝑣𝑜𝑡 ∙ sin 2𝜋𝑣𝑚𝑡 (3.5) 

From the relation:  

   
1

sinAsinB cos cos
2

A B A B     
 

(3.6) 

Equation (3.5) can be written as: 

 

𝜇 = 𝛼𝑜𝐸𝑜 sin 2𝜋𝑣𝑜𝑡 +
1

2
(

𝜕𝛼

𝜕𝑞
) 𝐸𝑜𝑞𝑜 cos 2𝜋(𝑣𝑜 − 𝑣𝑚)𝑡 +

1

2
(

𝜕𝛼

𝜕𝑞
) 𝐸𝑜𝑞𝑜 cos 2𝜋(𝑣𝑜 + 𝑣𝑚)𝑡 (3.7) 
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If we consider 0
q

 
 

 
, then the last two terms of equation (3.7) disappear and we remain 

with Rayleigh scattering. But in actual case, 0
q

 
 

 
for a Raman active molecule; there 

should be a change in polarizability with respect to the vibration. Thus, the vibrating 

molecule can be a source of scattered radiation of three different frequencies. First, it can 

be of frequency   which remains without any change in relation to the incident radiation. 

This type of scattering is also known as Rayleigh scattering. Secondly the frequency can be 

(𝑣𝑜 − 𝑣𝑚) which is equivalent to the difference of the frequency of the incident radiation 

and that of the vibrations of the molecule, known as Stokes scattering. Lastly, it can be of 

frequency (𝑣𝑜 − 𝑣𝑚) which represents the sum of the frequencies of the incident radiation 

and the vibration of the molecule, known as anti-Stokes scattering. 

 

3.2.2 Quantum Theory of Raman Scattering 

Electromagnetic radiation is dual in nature i.e. it is both particulate and wave in nature. The 

Raman effect as previously interpreted was on the basis of wave theory, which was a 

classical approach to electromagnetic radiation. Quantum mechanics, on the other hand, 

acknowledges that a molecule's vibrational energy is quantized, revealing its particulate 

form (Larkin, 2017). In the case of electromagnetic radiation they are also known as 

photons. The relationship between the energy ( E ) of a photon and its frequency ( ) is 

described by the Planck formula: 

𝐸 = ℎ𝑣 (3.8) 

In the case of a photon's collision with a molecule, three events can occur: absorption, 

emission and scattering. In the case of LRS, scattering is the phenomenon of interest. 

Scattering takes place within a relatively short time (10
-14

s) of when a photon, of energy 

not equal to the energy difference between any two stationary levels of the molecule, 

interacts with that molecule. In particular, the typical Raman effect occurs whenever a 

photon interacts with a molecule at a far lower energy level than the energy difference 

between the ground state and the first excited state. 
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When a photon of frequency   is incident onto a molecule, two types of collision are 

possible: elastic and inelastic. If the collision is elastic, the frequency of the incident photon 

will be equal to the frequency of the scattering. On the other hand if the collision is 

inelastic, the resulting scattered frequency will either be higher or lower than that of the 

incident photon. The assumption here is that total kinetic energy of the photon and of the 

molecule remains unchanged before and after the collision (Meier, 2003). From the law of 

conservation of energy,  

ℎ𝑣𝑜 + 𝐸𝑜 = ℎ𝑣 + 𝐸 (3.9) 

Where h and E are energy of the photon and molecule respectively before collision 

whereas h and E are energy of the photon and molecule respectively after collision. On 

rearranging equation (3.9) above, we obtain: 

𝐸 − 𝐸𝑜

ℎ
= 𝑣𝑜 − 𝑣 

(3.10) 

 

From equation (3.10), three cases are possible when identical molecules are illuminated 

with monochromatic light as illustrated in the Figure 3.3 below. The first case is when the 

photon with an initial energy of h  proceeds without a change in energy, this is termed 

Rayleigh scattering. Secondly, the photon can experience a decrease in energy, a 

phenomenon known as Stokes scattering. Lastly, the photon can experience an increase in 

energy, this is referred to as anti-Stokes scattering. Raman shift occurs when there is a 

change between the incident and the scattered frequency (Morris, 2008). 



19 

 

  

Figure 3.3 Diagram of scattering during illumination with monochromatic light. 

(Source: Demtröder, 2008) 

In Figure 3.3 above, two electronic levels are shown. Ground state level and the first 

excited state. At the ground electronic state, the vibrational levels are also illustrated. The 

dashed lines depict virtual levels of the molecule, separated by vh  where v  is one of the 

possible vibrations of the molecule. This follows from the fact that most molecules 

generally have more than one Raman active vibrational modes. In accordance with 
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Boltzmann's rule of distribution, the vast majority of molecules will be in the vibrational 

ground state at room temperature. For this reason, Stokes transitions are more likely to 

occur than anti-Stokes transitions (Müller et al., 2003). In most of the practical applications 

of LRS, the Raman scattering is presented only as the Stokes spectrum and is given as a 

shift in energy form the energy of the incident laser beam. In this work, the Raman system 

that was employed uses the Stokes configuration.  

 In the case of Rayleigh scattering, the scattered frequency has a value equivalent to that of 

the incoming light and is by far stronger than that of the Raman frequencies (Stokes and 

anti-Stokes). This scattering process is the most intense and the most probable amongst the 

scattering processes. Consequently, it is necessary to filter away the Rayleigh signal 

efficiently in order to prevent the Raman signal from being swamped. Also luminescence 

(fluorescence) signals can easily swamp the Raman signal (Afseth et al., 2005). Figure 3.4 

below shows a schematic of the interaction between the incident beam (drawn in thick 

yellow line) and the sample. 

 

Figure 3.4: A schematic showing Rayleigh and Raman scattering. (Adapted from: 

Demtröder, 2008). Orange colored rays (majority) represent the intense Rayleigh 

scattering whereas the weaker Raman scattering is represented by the few blue rays. 

 

Rayleigh scattering, being the dominant process, is represented by multiple rays (drawn in 

orange lines) whereas Raman scattering is displayed as the weakest process (few rays 
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drawn in blue lines). This is because most photons scatter elastically without energy 

changes. 

The absolute differences between the frequencies of the incident photon and both scattered 

photons are the same as the molecular vibration frequency. 

ℎ𝑣𝑜 − ℎ𝑣(𝑠𝑡𝑜𝑘𝑒𝑠) = ℎ𝑣𝑣 = ℎ𝑣(𝑎𝑛𝑡𝑖−𝑠𝑡𝑜𝑘𝑒𝑠) − ℎ𝑣𝑜 (3.11) 

From equation (3.11) above, we conclude that the difference in frequency between the 

incident photon and the scattered photon is characteristic of a molecule and independent of 

the frequency of the incident radiation. Thus, even at different excitation wavelengths for 

the same molecule, the same Raman spectra are expected.  

It is imperative to highlight the fact that Raman scattering is governed by selection rules 

which are in turn determined by the symmetry and electronic structure of the molecular 

system under study. Consequently, such considerations are an important factor in Raman 

studies of materials as will be discussed in subsequent sections.  

3.3  Intensity of Raman scattered light  

Several factors affect the intensity of Raman scattered light as shown by equation (3.12). 
 

𝐼 = 𝐾(𝑣)𝐴(𝑣)𝑣4𝐼𝑜𝐽(𝑣)𝐶 (3.12) 

Where I is Raman scattered intensity, K is the spectrometer’s spectral response, A is the 

absorption of the medium, v is frequency of the exciting laser, Io is the excitation intensity, 

J is the molar scattering coefficient and C is the concentration of a given sample 

(Nakamoto, 2006). The intensity of the Raman scattered light is directly proportional to 

these factors. 

A Raman spectrum is a depiction of intensity as a function of the wave shift i.e. the 

difference between the excitation frequency and the Raman scattered radiation frequency. 

In the classical sense of Raman scattering as discussed in sections 3.2.1, Raman scattered 

intensity depends on the polarizability of the molecules, the concentration of these 

molecules in the sample and the excitation source (Schrader, 2008). Thus, it was expected 

that the Raman intensity profiles for various analyte concentrations were to vary linearly in 

the current study. 
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3.4 Molecular vibrations and the Raman spectra 

As discussed in section 3.2, a group of atoms interconnected by elastic bonds make up 

molecules which can perform periodic motions. Consequently, the energy of a molecule 

can be divided into a number of different parts of freedom on condition that there is no 

change in electronic energy. Three of these are translational whereas the other three are 

rotational. Therefore, polyatomic molecules having n atoms possess 3n-6 normal vibrations 

with the exception of linear molecules which possess 3n-5 vibrations (Demtröder, 2008). It 

is from these molecular vibrations that the vibrational spectra of molecules, such as Raman 

spectra, are defined. These vibrational spectra are highly dependent on their atomic mass, 

their geometrical orientation and nature of their chemical bonds among other factors. 

Raman active vibrations mainly result from symmetric vibrations in molecules, in 

particular, vibrations that can cause a shift in the polarizability of the electron cloud around 

molecules (Dieing et al., 2011). These vibrations are unique and thus can be used as 

fingerprints of molecules. In other words, the spectra shows specific vibration bands that 

can only be associated with a particular set of molecules. These spectra are more often than 

not defined by definite ranges of frequency (energy), intensity (polarizability) and shape of 

the bands (bond environment) (Demtröder, 2008).  

Molecular structure can be derived from vibrational spectra using two approaches. Group 

theory coupled with mathematical model calculations is one of the approaches. The second 

approach is by use of empirical characteristic frequencies for chemical functional groups 

(Larkin, 2017). These two approaches form the basis for interpretation of vibrational 

spectra. Notably, a vast number of the empirical functional groups approach have been 

confirmed and refined by using the group theory approach. Nonetheless, many 

identification problems, such as the one presented in the current study, employ the use of 

the empirical approach to solve them. Functional groups exhibit specific vibrations which 

only the atoms present in that particular group are dislocated. These characteristic group 

vibrations frequencies remain relatively unchanged regardless of whatever molecule the 

group is in (Schrader, 2008). This is to say that molecules of interest can largely be 

identified in a Raman spectra regardless of the matrix they are immersed in. Further, 

intensities of the bands in the spectra of a mixture are customarily proportional to the 
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concentration of the individual components (Dieing et al., 2011). These characteristics of 

vibrational spectra, make LSR an invaluable technique in the current study. 

In this work, the assignment and interpretation of Raman peaks of target molecules was 

based on the type of bonds involved and the different positions each bond occupied on the 

spectral line. The band regions spanning the functional groups of the target molecules were 

then evaluated and where possible, Raman shifts of a particular peak was able to give 

appropriate information regarding the exact molecule in the respective functional group 

region.  

3.5 Spectral Data Preprocessing 

The Raman spectra is capable of quantitatively reflecting the composition of a sample. 

However, noise resulting from instrumental components, surrounding light and software 

computations among other sources are normally added in varying proportions to the Raman 

spectra. Further, the physical and chemical inhomogeneity of biological samples makes 

them to be complex samples as the desirable quantitative information from their Raman 

signal becomes obscured. Therefore, there is need to apply data correction methods to the 

Raman spectra to eliminate the unwanted signal (noise) while at the same time enhancing 

the requisite signal such as the subtle differences between samples.  

Spectral data preprocessing normally employs the use of mathematical data correction 

methods prior to univariate or multivariate analysis. Thus, it is a crucial step in LRS studies 

where accurate, verifiable and robust quantitative information is required. Several 

approaches are normally used on LRS data depending on the type of study (Morris, 2008). 

Some of the most common preprocessing techniques applied to LRS data are discussed in 

this section. Also included, are the anticipated challenges in the current work which can be 

resolved by preprocessing.   

The LRS system intended to be used in this study has a CCD incorporated for recording the 

scattered spectra. As the experiment is expected to be carried out across a number of days, 

the data point spacing recorded by the CCD may vary from day to day due to the different 

calibration settings. These data points may even drift over the course of a day owing to 

changes in humidity and temperature. The use of different gratings can also contribute to 
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this challenge. These conditions lead to recordings with differences in the X-axes, a 

challenge commonly referred to as spectral axis drift (Byrne et al., 2016). Spectral axis 

alignment is therefore a necessary procedure prior to further analysis as most analysis 

techniques require common spectral axes to perform meaningful analyses.  

Fluorescence, as has been discussed earlier, is orders of magnitude stronger than the 

Raman signal. The fluorescent signal is characterized by a broad band signal and induces 

uneven amplitude shifts across the Raman signal for biological samples (Afseth et al., 

2006). Some hardware changes like the use of longer excitation wavelength lasers can 

tackle this limitation. In the current study, a 785 nm laser is expected to be used. Further, 

baseline correction methods, particularly modified polynomial fitting, will be employed. 

This involves choosing base points in the spectrum to fit a polynomial to the spectrum 

baseline and finally subtracting the polynomial fit from the original Raman spectrum. 

The Raman signal in certain instances consists of high frequency components which 

customarily have much lower FWHM compared with genuine Raman bands which need to 

be removed through a process called smoothing. The use of Savitzky-Golay algorithm is 

one of the most common smoothing techniques applied to LRS data. It involves the use of 

a moving window based local polynomial fitting procedure to get rid of the noise in the 

Raman spectra (Byrne et al., 2016).  

Normalization is a crucial preprocessing step that takes care of disparities in intensity 

levels. This is done by ensuring that for the same sample under same experimental 

environment, the intensity of a given Raman band is similar as possible across all spectra. 

The variations in intensity normally arise due to fluctuations in laser power as well changes 

in sample opacity as the experiment is carried out (Gautam et al., 2015). Correction of 

these variations is done by normalizing the spectra using normalization approaches like 

standard normal variate (SNV) and vector normalization.  

Spectra which significantly differ from the group are considered as outliers and need to be 

omitted before further analysis is carried out. The use of thresholding methods in the 

compressed domain based on the variance of the data in these domains can be used to 

eliminate such outliers. For instance, when using PCA, the axes which explain most of the 
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variance are used to judge the outliers (Shaver, 2001). Spectra that are also captured 

outside the region of interest are also considered as outliers.  

The use of the data preprocessing techniques must be applied in correct sequence and 

proper consideration of adjustable parameters must be made where necessary. An optimal 

combination of steps to be followed is necessary for each specific study so as to realize an 

increase in the SNR.  

3.6 Machine Learning Techniques in Raman Spectroscopy 

Machine learning is capable of handling complex data sets such as the laser Raman spectral 

data that was obtained in this work.  ML techniques were used to overcome problems 

associated with classical/univariate analysis of Raman data. Supervised and unsupervised 

methods were used for performing exploratory and multivariate calibration of acquired 

laser Raman spectra. 

The LRS measurements basically consist of two parts, i.e. the requisite signal and the rest 

of the signal which is considered to be noise. The requisite signal represents the underlying 

chemical information which greatly influences the property of interest. One of the principal 

roles of multivariate analysis is to filter out the noise from the requisite signal by using 

statistical measures such as covariance of variables within a data set. It is important to 

establish which variables have a great impact on the requisite signal. Broadly, the main 

objectives of multivariate data analysis are data exploration, classification and regression 

(Varmuza and Filzmoser, 2016). 

Adoption of ML techniques in a multivariate manner in LRS serves to overcome some of 

the limitations encountered during classical/univariate analysis of samples. For instance, 

the heterogeneous nature of biological samples makes their spectra complex due to the 

overlapping of several intense Raman bands among other issues. Thus the qualitative and 

quantitative analysis of spectral profiles associated with these kind of spectra requires the 

use of multivariate analytical techniques. These methods allow for complicated and large 

data sets to be analyzed by reducing the dimensionality such that the requisite information 

can be extracted (Byrne et al., 2016). In the current study, multivariate methods were used 
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to analyze multiple spectra simultaneously and make comparisons between groups of 

spectra to identify trends of spectral markers in control and non-control samples. 

 

3.6.1 Exploratory Analysis of Raman Spectra Using the Principal Component 

Analysis Technique 

When it comes to exploratory data analysis, an unsupervised method (one that does not 

require training) is always preferred. An example of a commonly used unsupervised 

technique is the PCA. It does analysis of data patterns in such a manner that highlights their 

similarities and contrasts. 

Multivariate analysis often starts out with data involving a significant number of correlated 

variables. Consequently, analysis of such kind of data becomes a challenge owing to the 

large number of variables. For this reason, data reduction techniques are proposed for such 

cases. PCA is a dimension reduction tool that can be used to reduce a large set of correlated 

variables to a smaller set of linearly independent variables that contain as much 

information as the original data set. The exploratory properties of PCA will be used in this 

work mainly for visualizing the data and transforming the highly multi-dimensional 

variables to a smaller set of latent variables that will be used in the supervised ML models. 

PCA works by decomposition of a correlation or covariance matrix into eigenvalue and 

corresponding eigenvectors which are orthogonal to each other (Shaver, 2001). In the 

process, the axes of original variables are rotated to a new coordinate system having 

principal axes (components). The axis or direction with maximum variation of the 

projected values of the original data points defines the first principal component (PC). The 

corresponding projected values are referred to as the scores whereas the coefficients of the 

PCs are known as the loadings. Each of the successive PC will have maximum variation of 

the projected points and will be orthogonal to its predecessor. Mathematically, PCA 

decomposes a data matrix X into an outer product of scores matrix T and loading matrix P  

plus a residual matrix E, as expressed in equation (3.13) below (Varmuza and Filzmoser, 

2016):  

.X T P E   
(3.13) 
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The graphical interface of PCA provides valuable information that helps in visualizing the 

data so as to get a general understanding of the data. For instance, the score plots show the 

covariance between samples. A different approach is to look at the loadings plots to see 

how the original factors affect each of the PCs. As a result, they demonstrate how a certain 

PC responds to changes in a variable over a period of time. The loadings in conjunction 

with the scores can therefore be used to give information leading to the process of 

identifying molecular bands that are unique to the constituents of the sample being studied. 

This feature will aid in identifying molecular signatures of analytes of interest from Raman 

spectra of fruits ripened naturally and artificially.  

 

3.6.2 Modeling Approaches for Multivariate Data Sets Using Supervised Machine 

Learning Methods 

The major aim of multivariate calibration of data is to define the relation that exists 

between a response (Y) variable and several input variables (X). ML models utilize both 

linear and nonlinear functions in a multivariate manner to establish the relationship 

between X and Y (Varmuza and Filzmoser, 2016). In this work, the X variable, 

representing the spectral data, was a matrix X (n x p) having n as the measured spectra and 

p as intensities and other spectral features. On the other hand, the Y variable was a matrix Y 

(n x m) with m being the concentration of the analyte and n being the samples.  

The following are three ML techniques that were used to develop models for classification 

and regression of the Raman spectral data in this work. 

 

3.6.3 The Artificial Neural Network Model  

Artificial neural network (ANN) is a type of machine learning technique that emulates the 

working of the human brain and the nervous system to process information and solve 

problems. ANNs have three basic parts each having neurons i.e. the input layer, hidden 

layer and the output layer. The artificial neuron is the foundation of every ANN and it can 

be viewed as mathematical model which performs the functions of multiplication, 
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summation and activation (Ciaburro et al., 2017). Several neurons in an ANN work in 

parallel to solve problems. Figure 3.5 below shows a side by side comparison of the 

biological and the artificial neuron. 

 

Figure 3.5: Biological and artificial neural design. (Source: Andrej Krenker et al., 

2011). The figure to the left shows the main parts of the biological neuron whereas 

to the right, an artificial neuron is shown.  

 

In a biological neuron, inputs are first received into the neuron through the dendrites then 

processed in the soma before being finally relayed via the axon. The artificial neuron is fed 

with weighted inputs at its entrance. These weighted inputs as well as the bias terms are 

then summed up by a summation function in the middle section before being passed 

through an activation (transfer) function at the exit of the neuron. Given an output 𝑦𝑖, 

input 𝑥𝑖, weight 𝑤𝑖, bias 𝑏 and a transfer function, the artificial neuron model can be 

summarized by the mathematical equation below (Gershenson, 2003): 

𝑦𝑖 = 𝑓 (∑ 𝑤𝑖 ∙ 𝑥𝑖 + 𝑏

𝑖

) (3.14) 

The only unknown variable in this artificial neuron model equation is the transfer function 

which is usually chosen on the basis of the problem at hand. In the current study, this was 

advantageous as the model could be tuned to handle data which was either linear or non-

linear in nature. 

When several individual artificial neurons are interconnected, they form artificial neural 

networks (ANNs). There are two ways in which the ANNs topology are built based on the 
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direction of flow of information: feedforward and feedbackward. The network topology of 

BP-ANNs is such that the artificial neurons are organized layers and transmit their signals 

forward whereas the network errors are relayed backwards. Figure 3.6 below is a general 

depiction of the BP-ANNs.  

 

Figure 3.6: A generalized schematic of the BP-ANN. (Source: Ilonen et al., 2003) 

 

The input layer is the independent variables used to predict the output layer (response 

variable). For regression problems, only one neuron in the output layer is normally 

expected whereas for classification problems, the output layer will have as many neurons 

as the distinct classes which are expected. The hidden layer transforms the input variables 

into higher order functions and by having more than one hidden layer results in achieving 

non-linearity (Krenker et al., 2011). In order for ANNs to make sense from complex, non-

linear data such as Raman spectra from fruits in this study, more than one hidden layer is 

necessary. Consequently, this explains why in deep learning neural networks, the number 

of hidden layers is quite substantial.  

Just as the human brain uses experiences to give responses to new environmental inputs, 

the BP-ANNs have to learn by supervised learning approaches. The training process entails 

providing the network with inputs and expected outputs that the network should compute. 
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Initially, the network is assigned random weights. The cost (loss) function then calculates 

the total error of the network, which is simply the difference between the network’s actual 

and the expected result. The main goal of BP-ANNs is to reduce this error to an acceptable 

level that is close to a predetermined threshold by adjusting the weights (Ciaburro et al., 

2017). When this happens, the network is said to have learned the training data and can 

therefore be used to generalize to new data.  During training, the total network error is 

broken down and distributed back to each weight, hence the reason as to why the network 

is referred to as backpropagation. The network updates the weight for each layer until the 

lowest network error is achieved. This whole process from the forward pass to the 

backpropagation makes up an epoch and it is an iterative process.  

The performance of the neural network can be assessed by several criteria including the 

coefficient of correlation (R), root mean square error and mean absolute error among 

others. A well trained model should result in an R value close to one and have very small 

values of error terms (Krenker et al., 2011). 

3.6.4 The Random Forest Model  

Random forest (RF) is a supervised ML algorithm that can simply be described as a bunch 

of decision trees bundled together. A proper understanding of decision trees is required to 

implement the RF algorithm. A decision tree is basically a step by step process that uses 

certain criterion and thresholds to classify or predict the output values of a variable of 

interest. In classification and regression problems, decision trees have several advantages. 

Their informative output and visualization makes them easy to interpret. Further, they are 

less sensitive to outliers as compared with some traditional regression techniques in 

addition to having the ability to analyze highly dimensional data (Ayyadevara, 2018).  

A decision tree, just like the biological tree, has roots, branches and leaves. In training the 

decision tree, the root decision node in the tree is first determined. The root node represents 

the whole or part of the input samples. In the case of Raman spectra, the input can be the 

wavelengths or intensities. The root node splits into two more sub-nodes through a decision 

process governed by some rules. Further sub-division among the daughter nodes proceeds 

in an iterative process until the final node in a decision tree is reached; this is called the leaf 
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or terminal node. Therefore, a branch or sub-tree in this case is a sub-section of the entire 

tree. 

 In order to use decision trees, we begin from the top and make decisions in series until we 

reach the bottom where an outcome is realized. At each decision making step, A decision is 

made between only two viable options. The criterion for splitting at the decision nodes 

depends on the nature of the variables we are predicting. In particular, we need to establish 

the variable which will form the basis of the first split in the root node. A variable which 

has the greatest potential to separate different classes as much as possible is required. For 

this purpose, two important measures are used to check for the quality of the split; 

“entropy” and “Gini impurity” (Hartshorn, 2016). 

Entropy is used for information gain and is a measure of uncertainty after splitting a node. 

Given input features 𝑖, the mathematical equation for entropy is: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑(−𝑃𝑖𝑙𝑜𝑔2𝑃𝑖)

𝑖

 (3.15) 

Where 𝑃𝑖 is the probability of picking a data point within class 𝑖. Considering that we 

expect maximum uncertainty at the root node, the choice of a good split should be such that 

the variable chosen decrease uncertainty the most. Thus, the lower the number of entropy, 

the better. Once the decision for the first split has been made, the next decision is to decide 

on which side of the split the distinct variable will go to. The Gini impurity metric, which 

refers to the extent of inequality within a node, is used to evaluate quantitatively how good 

a split is. It is given by the formula (Hartshorn, 2016): 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃𝑖
2

𝑖

 (3.16) 

Where 𝑃𝑖 is the probability of having data points within class 𝑖. The best possible value we 

could have is an impurity of 0 and this occurs when a class has all values belonging to one 

class or the other. The splitting process then continues until all the leaf nodes of a tree 

achieve their purest form possible. However, this process becomes disadvantageous as it 

suffers overfitting of the data and does not generalize well to new data. Nevertheless, this 
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limitation faced by a single decision tree can be solved by having several independent 

decision trees.  

Random forest overcomes the problems of overfitting by fitting multiple classification and 

regression trees to a data set and averaging the results. The randomness in the forest is 

achieved by bagging, which is short of bootstrap aggregating. Training the RF begins by 

taking a subset of the original data and building a decision tree based on this subset. The 

grown tree is then used to predict the out-of-bag (OOB) data, which is the subset of 

training samples that had not been selected during the growing of the first tree. OOB 

estimation is a significant cross validation method in RF regression (Zhang et al., 2014). It 

ensures that the final result from the model is drawn from the majority vote of the 

independent trees. Once the first tree is fully grown and its OOB error estimate calculated, 

these steps are repeated n times to have n trees. The final prediction of the result is the 

weighted average from all the n trees. As a result of fitting many independent trees by the 

bagging procedure, the risks of biased decisions and overfitting are greatly reduced.  

Random forest cannot be visualized as a single decision tree as it is a combination of 

several decision trees. Nonetheless, RF has a very important feature that allows to evaluate 

the variable importance of the input variables (Lee et al., 2013). This is achieved by 

evaluating the effect of the variable on the Gini impurity and entropy. Consequently, this 

was important in this study as we were interested to know the distinguishing features from 

the Raman spectra of naturally and artificially ripened bananas.  

3.6.5 The Support Vector Machine and Support Vector Regression Model  

Support vector machines (SVMs)  are a set of supervised ML methods that were developed 

mainly for binary classification problems but have been extended to regression problems 

(Liu et al., 2017). Both SVM and support vector regression (SVR) have the same 

architecture with slight differences in the inputs for the models; SVMs have categorical 

variables as inputs whereas SVR has continuous variables as their input. In the years 

leading up to1980, most of the ML methods were based on linear decision surfaces. 

Decision trees and neural networks were developed in subsequent years to allow for 

efficient learning of non-linear decision surfaces. However, these methods suffered from 

local minimum problems. It is against this background that  Vapnik et al., (1995) suggested 
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a way to create non-linear classifiers by applying the kernel trick to maximum-margin 

hyperplanes.  

The basic operating idea of SVM, just like 1 layer or multi-layer NNs is to find an optimal 

hyperplane for linearly separable patterns. Nonetheless, extensions to patterns that are not 

linearly separable has been achieved using the kernel function, where the original data is 

mapped (transformed) into a new dimensional space (Ma and Guo, 2014).  A hyperplane is 

defined depending on the dimension of data where each data point is viewed as a p-

dimensional vector in (p-1) dimensional space. The goal is to find an optimal hyperplane in 

(p-1) subspace which can separate these data points with the largest margin or separation 

possible. Consequently, the larger the margin the lower the generalization error of the 

classifier. A sample hyperplane for a 2 dimensional space is presented in Figure 3.7 below. 

 

 

Figure 3.7: A sample hyperplane in a 2 dimensional space. (Source:  Ma and Guo, 

2014). The best hyperplane is the one that maximizes the margin between the 

support vectors. 
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The hyperplane is found using support vectors and margins. The support vectors are the 

data points lying closest to the decision surface (hyperplane) and usually form the set of 

data points most difficult to classify. They directly influence the location and of the optimal 

decision surface. During the training phase, a SVM or SVR algorithm builds a model of 

support vectors in space such that support vectors of different categories are separated by 

maximal margin. In the predictive phase, new data points introduced to the algorithm are 

mapped into the same space and predicted to a class based on which side of the hyperplane 

they fall on. In other words, SVM maximizes the margin around the separating hyperplane. 

SVM is based on the use of the linear discriminant function: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏  (3.17) 

This function represents the hyperplane in feature space where 𝑥 = {(𝑥𝑖 , 𝑦𝑖)} is a set of 

training pair (input, output) sample with features 𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑛 and the output result 𝑦. 𝑤 

(or 𝑤𝑖) is a set of weights, one for each feature, whose linear combination predicts the 

value of y. the last term 𝑏 is the bias. The number of hyperplanes that can separate patterns 

such that the patterns form two classes lying on opposite sides of the decision tree are 

infinite. Thus, the linear discriminant function with maximum margin is the optimal 

solution to equation (3.17). The maximization of the margin around the separating 

hyperplane is a constrained optimization problem that can be solved using standard 

methods like the Lagrangian multiplier method (Amarappa et al., 2014).  

In a two class classification problem, the equation of the separating hyperplane or line is 

given by: 

𝑤𝑇𝑥 + 𝑏 = 0 (3.18) 

Therefore, points in the negative class will satisfy the equation:  

𝑤𝑇𝑥 + 𝑏 ≤ −1, 𝑤ℎ𝑒𝑛 𝑦𝑖 = −1 (3.19) 

Conversely, points in the positive class will satisfy the equation: 

𝑤𝑇𝑥 + 𝑏 ≥ −1, 𝑤ℎ𝑒𝑛 𝑦𝑖 = +1 (3.20) 
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The hyperplane parameters 𝑤 and 𝑏 are optimized in the SVM/SVR algorithm during 

training such that the support vectors are equidistant to the hyperplane on either sides. The 

optimization algorithm to generate the weights proceeds in such a manner that only support 

vectors determine the weights and thus, the boundary (Balabin and Lomakina, 2011). This 

was important in this study since there was an expectation that the Raman spectral features 

for the two classes of samples would have subtle spectral differences. The samples would 

therefore be classified based on these subtle differences arising from the different 

molecular composition in them.  

In the case where support vectors are not linearly separable, kernel functions are employed 

to transform (map) the data to a higher dimensional space. A common example of non-

linear kernel function is the radial basis function (RBF) of the form: 

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 {−
‖𝑥 − 𝑥𝑖‖2

2𝜎2
} 

(3.21) 

Where 𝑥𝑖 is the input vector and 𝜎 is the radial width.  
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    CHAPTER 4 

4 MATERIALS AND METHODS 

4.1 Chapter Overview 

The application of LSR for classification and quantification of additives arising from 

artificial ripening of bananas using calcium carbide has been investigated using 

multivariate classification and regression models developed from the molecules vibrational 

bands. The acquisition of spectra was done over an exposure time of 10 S per sample and 

Raman shift centered at 1050 cm
-1

 to cover the fingerprint spectral region of sulfur, 

acetylene, calcium hydroxide and phosphine compounds resulting from hydrolyzed 

calcium carbide which is between 200 and 1200 cm
-1

. The procedures used in preparation 

of control and treated samples and the methodologies for developing, customizing and fine- 

tuning the ML models are presented and discussed. 

4.2 Instrumentation for the Laser Raman Spectroscopy Set-up 

This study used a confocal laser Raman Spectrometer (STR Raman Spectrum, Seki 

Technotron Corp, Japan) equipped with an imaging spectrograph and a 785 nm exciting 

laser. A backscattered-illuminated CCD camera was also included in the system for 

acquiring spectra within optimal time frames. 
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      Figure 4.1: Layout of confocal laser Raman spectrometer. (Source: Cornes, 2012) 

 

During measurements, a beam of red (785 nm) laser light was delivered to the Raman 

optics via a system of optical fiber. Once at the Raman optics, the beam is passed through 

the neutral density (ND) filter where it is 1-100% filtered to the shutter. Thereafter, the 

shutter then delivers the beam to the band pass filter. The band pass filter then conveys the 

beam of light to the beam splitter that splits it into two equal parts such that fifty percent of 

the beam is reflected  while the rest passes through the beam splitter onto the sample where 

scattering occurs (see       Figure 4.1).  

The set up was equipped with a microscope that uses a lever to regulate the motorized stage 

for controlling the movement of the focused laser spot on the sample.  Therefore, it was 

possible to focus the laser and record the Raman spectra at different points of a sample 

mounted on the stage. Once the sample has been excited, the scattered beam is then passed 

through the objective to the 785 nm low pass filter which blocks the Rayleigh scattered 
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beam and only allows the Raman beam to pass through. Thereafter the beam is passed 

through fiber optic cables to imaging spectrometer and the CCD camera. Finally, the signal 

from the CCD camera is relayed to the computer equipped with STR software. This 

software provided an interface for controlling the components of the whole system in 

addition to providing decoding and visualization of the spectra recorded.  

4.3 Preparation of Fruit Samples 

The presence of CaC2 was assessed on the peels of banana fruit samples. In order to carry 

out these studies, three groups of banana samples were required. For the first and second 

group of samples, mature but unripe bananas were harvested from Muga farm in Kisii 

County. The farm practices organic farming and this was vital as pure banana samples free 

from pesticides or insecticides were required for this study. All the bananas were cleaned 

first by washing them under running water.  

A portion of the banana fruits were placed in a container and left to ripen naturally. These 

samples formed the control group (1
st
 group). The other samples (2

nd
 group) were ripened 

using commercial grade CaC2 in the form of solution using the following treatment 

schedule. Different concentrations of CaC2 solution were prepared ranging from 0.024% 

(0.24 g/ L water) to 0.2% (2 g/L water) in the same manner as prepared by Chandel et al. 

(2018). The masses were measured carefully using an electronic measuring balance whose 

sensitivity was 0.001 g. Starting with the smallest measured mass of CaC2, the chemical 

was dissolved into a container having one litre of deionized water. Deionized water was 

used here to try and eliminate common impurities found in tap water. Banana fingers were 

then immersed into the solution and left for about half an hour. After this step, the fruits 

were then taken away from the solution and left to dry under air to remove adhering 

droplets. The treated fruits were then placed in containers and allowed to ripen for 48 

hours. The process was repeated in steps for the subsequent concentrations up to the largest 

measured mass of CaC2. Table 4.1 below shows the concentrations and the assigned labels 

for analysis purposes.  
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Table 4.1: Concentration levels of CaC2 used in ripening samples 

Sample labels CaC2 ratio 

(g/L of water) 

Concentration of 

solution (%) 

A1 0.24 0.024 

A2 0.26 0.026 

A3 0.28 0.028 

A4 0.3 0.03 

A5 0.34 0.034 

A6 0.36 0.036 

A7 0.4 0.04 

A8 0.6 0.06 

A9 0.8 0.08 

A10 1 0.1 

A11 1.2 0.12 

A12 1.4 0.14 

A13 1.6 0.16 

A14 1.8 0.18 

A15 2 0.2 

A16 4 0.4 

A17 6 0.6 

A18 8 0.8 

A19 10 1 

A20 12 1.2 

A21 14 1.4 

A22 16 1.6 

 

The last group of samples (3
rd

 group) to be used in these studies was bananas which were 

already ripe. These bananas were purchased from local markets including Rongai, Kiserian, 

Marikiti and Gikomba markets, as well as from banana vendors around Chiromo campus.  
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4.4  Procedure for Laser Raman Spectra Acquisition  

The confocal Raman set up in this study could not allow the spectra of banana to be taken 

as a whole. This is due to the limiting focusing distance between the objective lens and the 

sample placed on the stage. Thus, the different samples were therefore sliced to a profile 

depth of about 5 mm (spreading through the peel and flesh) and placed on glass slides. At 

this depth, the laser power was largely absorbed and scattered within the samples with 

minimum chances of reaching the glass slides upon which the slices were mounted 

(Gierlinger et al., 2012). Figure 4.2 below shows how the sliced banana samples were 

mounted on the glass slides. 

 

 

 

Figure 4.2: Banana sample slices for mounting under the microscope. Top image is 

a side view of the mounted slice whereas the image at the bottom is a top view 

same samples. Confocal LRS requires the samples to be as flat as possible. 
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The effect of substrates, upon which the sliced samples was placed, on the Raman spectra 

was evaluated. The Raman spectra was taken on samples placed on glass slides and then on 

samples placed on glass slides coated with conductive silver paste. Conductive silver paste 

is normally used to enhance the Raman signal. Notably, the net effect on the spectral 

response was negligible. Therefore, Raman spectra for all the sliced banana samples were 

taken when the samples were placed on glass slides. Nonetheless, as a precautionary 

measure, the glass slides were cleaned in alcohol and rinsed with distilled water before 

placing the sliced banana samples on them.  

In order to have reliable data for analysis, further precautions were taken to optimize the 

Raman measurements. For instance, before any measurements were taken, the instrument 

was calibrated continuously over the course of the experiment using a standard silicon 

wafer which has peak at 520.5 cm
-1 

(McCreery, 2001). This ensured the recorded spectra 

was free from the problem of spectral axis drift discussed in section 3.5. This problem 

could have arose due to spectra which were recorded in different days. Further, to eliminate 

the effects of fluorescent light bulbs in the laboratory room, all measurements were done 

awhen the room was darkened. The temperature in the experiment room was also 

maintained at room temperature (24
o 

C) as variations in temperature could affect the 

measurements obtained. In a study conducted by Ghita et al. (2018) to investigate the 

change in intensity of Raman signals versus temperature, it was established that an 

elevation of temperature from 20 to 40
o
 C, lead to an increase in the signal (up to 2 fold) 

for biological samples. It was therefore imperative in this work to perform all 

measurements at the said constant temperature.  

For every banana sample, five slices were obtained as described earlier to represent the 

whole sample.  For each of these sliced samples, 6 spectra were obtained translating to 30 

spectra per single banana sample. Thus, inhomogeneity due to unequal distribution of 

chemicals on the samples was compensated for in this manner. 

 
During acquisition of the Raman spectra, 10 seconds exposure time was used over 5 

accumulations as per the optimized conditions described earlier. We also used X50 

objective lens with a laser power of 6.28 mW for the 785 nm laser as the best optimized 

combination for all Raman measurements (Gierlinger et al., 2012).  
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Over the entire process of preparing the CaC2 solutions and the banana samples as well as 

during spectra acquisition, safety precautions were observed. As discussed in section 1.1.1, 

continued exposure to CaC2 presents neurological and carcinogenic health risks. Further, in 

the presence of moisture, CaC2 liberates acetylene gas which is highly flammable. For this 

reason, the experiment was conducted in a well-ventilated room. Additionally, gloves and 

face masks were put on at all times when handling this chemical. The confocal LRS system 

used in this study is designed to ensure that the laser beam is maintained within the 

system’s optics at all times. Nevertheless, laser safety goggles were worn to protect the 

eyes from stray laser beams, should they have been propagated.  

 

4.5 Elemental Analysis of Calcium Carbide 

Energy dispersive X-ray fluorescence spectroscopy (EDXRF) was used for determining the 

elemental composition of CaC2 that was used in ripening bananas in this study. Industrial 

grade CaC2 (75 % pure) was purchased from a local store and it comprised of chunks 

(<2cm wide) and granules. The CaC2 granules were ground to loose powder to ensure 

uniform grain size. Thereafter, the loose powder was weighed in masses of 3.5 g before 

being pressed into pellets to ensure that the CaC2 samples had uniform density across the 

analysis area. The pellets were then irradiated for 120 S and analyzed using a tube-excited 

EDXRF spectrometer. The results for elemental analysis are attached in Appendix 5. 

 

4.6 Preprocessing of laser Raman spectra 

The confocal LRS system used in this study was embedded with mechanism for 

background noise removal. The system had inbuilt parameters for removing cosmic-ray 

signals by use of interpolation based algorithm in the STR software. During the 

measurements, the spectrometer was calibrated continuously after a number of 

measurements. Thus, the recorded spectra were devoid of spectral axis drift discussed in 

section 3.5. Once the data was acquired, it was transferred to spectragryph software 

(Menges, 2017) for pre-processing and graphing before further analysis.  
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To begin with, the fluorescence background from the spectra had to be removed. This was 

done to obtain accurate laser Raman spectra as the fluorescence background tends to 

suppress the Raman signal in such measurements.  Baseline offsetting was done by 

applying a modified polynomial fit with a coarseness value of 3 points to the raw data. The 

baseline was then subtracted from the spectra to have spectra free from the broad 

fluorescence baseline.  Smoothing was then done using Savitzky-Golay algorithm with an 

interval of 9 points and polynomial of order 2 to remove noisy artefacts in the spectra as 

discussed in section 3.5. In order to take care of disparities in the intensity levels, 

normalization was done by SNV. This was to ensure that the intensity of a given Raman 

band of the same sample group was as similar as possible across the spectra recorded. 

Finally, the spectra were cut to a region of 200 – 1300 cm
-1

 as this was our region of 

interest.  

The goal of doing data pre-treatment was to have spectrally cleaned data without loss of 

vital information. Therefore, the choice of adjustable parameters in the pre-processing steps 

was chosen on how best the preview fitted the data.  

4.7 Software for Data Analysis 

Two software were used for data analysis in this study; Spectragryph (Menges, 2017) was 

mainly used in the previous step of data pre-treatment. Once the data was cleaned, it was 

then transferred to R (version 3.5.3), an open source software, which was used as the main 

software for data visualization and analysis. R has inbuilt packages dedicated for spectral 

data analysis and machine learning applications. The software consists of functions for 

plotting and inspecting spectra, peak alignment, principal components analysis and model-

based clustering, regression and prediction. Thus, the software was well suited for this 

study. The specific packages which were used include chemospec, caret and neuralnet.  
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4.8 Utility of Machine Learning Techniques in the analysis of laser Raman 

spectra 

Machine learning is capable of handling complex systems such as the laser Raman spectral 

data that was obtained in this work. Multivariate ML techniques were used to overcome 

problems associated with classical/univariate analysis of Raman data. Supervised and 

unsupervised methods were used for performing exploratory and multivariate calibration of 

acquired laser Raman spectra.  

4.8.1 Exploratory analysis of laser Raman spectra utilizing PCA  

In this work, the spectral data was represented by a data matrix consisting of 42 rows that 

corresponded to samples for use in qualitative studies. These included 20 spectra for 

naturally ripened samples while the rest were spectra for artificially ripened samples. On 

the other hand, for qualitative studies, the spectral data was represented by a data matrix 

consisting of 224 rows correspond to artificially ripened samples which were treated at 

different concentrations. The original number of columns for both matrices was 1024 but 

this was reduced to 636 after performing a spectral cut for the region of interest as 

discussed in data-pretreatment.  

PCA models were built using the samples with the main aim of detecting the composite 

features (PCs) that would be later used as inputs for the ML models. Some PCA models 

were developed using subsets of wavelengths corresponding to certain Raman vibrational 

bands of the compounds in the artificial ripener. The graphical visualization of scores and 

loading plots provided insights on the vibrational modes of the molecules present in the 

samples.   

4.8.2 Multivariate Calibration of Laser Raman Spectra Utilizing ANN 

In this work, ANN models were developed for classification and regression. In both cases, 

PCs were used as inputs to the ANNs. Further, the wavelengths and their corresponding 

intensities were used as inputs in developing the models and a comparison made with the 

former choice of inputs. Regardless of the choice input, the input data was scaled using the 

min-max approach. Feedforward ANNs trained by backpropagation were used in this 
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study. In a broad view, the process of model development consisted of assembling the data, 

creating the network object, training it and predicting the response to new inputs.  

Initial values of weights were generated randomly by the command in R once the BP-

ANNs were fed with input data (training set). Nonetheless, some parameters had to be 

manually selected and tuned for the models to converge in the shortest time possible. The 

number of neurons and size of the hidden layer was selected based on the number of input 

variables (Huang et al., 2007). A network's complexity is determined by the number of 

neurons and layers, and maximizing these parameters is crucial; too many neurons and/or 

layers may result in overfitting to the training data, while too few neurons and/or layers 

may not have enough complexity to discriminate the data spectrally (Madden and Ryder, 

2003). In practice, this range of parameters can be chosen using optimization functions 

such as random search (used for this work) or genetic algorithms. 

The output layer size was determined from the size of the targets and whether the model 

was regression or for classification. The transfer function used for hidden layers (non-

linear) was logistic while purelin (linear) was employed as transfer function for the output 

layer in the case of regression models. For classification, both the hidden and the output 

layers had non-linear transfer functions.  The error function that was used by the BP-ANNs 

for adjusting the network weights was the sum of square errors (SSE). The network was 

trained until the SSE was minimized. However, since the initial weights were randomized 

by the network, the output varied each time. Therefore, the training process was repeated 

several times and the trained network that provided the best performance was retained.  

Once the neural network analytical model was adopted, the model was first put to test by 

simulating the output of the neural network with the measured input data in the case or 

regression. The results herein were then compared with the measured outputs. The models 

were then validated using an independent (test) data set that the BP-ANNs had not been 

exposed to. The model’s performance was evaluated by root mean square error of 

prediction (RMSEP) and coefficient of determination (R
2
).   RMSEP was calculated using 

the formula: 
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𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

𝑛
 

(4.1) 

where 𝑦𝑖 is the predicted concentration by ANN, 𝑦𝑖̂ is the actual concentration, and n is the 

number of test samples. R
2
 was calculated using the formula: 

𝑅2 = 1 −  
∑(𝑦𝑖 − 𝑦𝑖̂)

2

∑(𝑦𝑖 − 𝑦̅)2
 

(4.2) 

where the symbols have the same meaning as in equation (4.1) and 𝑦̅ represents the actual 

mean concentration. In the case of classification, confusion matrices were drawn and 

misclassification error rate calculated. Appendices 2 and 3 contain a detailed description of 

the commands and algorithms used for the neural network models. 

 

4.8.3 Multivariate Calibration of Laser Raman Spectra Utilizing RF  

Random forest (RF) is a highly predictive machine learning technique that is able to model 

and extract data from target systems that are complex and non-linear (Cutler et al., 2007). 

In this work, RF was used to develop a classification scheme for samples ripened naturally 

versus samples ripened artificially using the PCs data of their Raman spectra. Additionally, 

multivariate calibration schemes were developed from RF models for predicting the 

concentration of artificial ripeners in samples ripened using CaC2.  

Decision trees were built in the following manner in R: The PCs data set was first divided 

into a training and test data set. Initially, a number of samples were randomly selected from 

the training set with replacement (bootstrap resampling technique) and used to construct an 

equivalent number of classification or regression trees (Zhang et al., 2014). Some samples 

were repeated whereas others were left out to form the OOB data, which was later used to 

calibrate the performance of each tree line. The splitting (decision making) criteria as 

discussed earlier in section 3.6.4 was applied from the root to the terminal nodes. The node 

building procedure was applied repeatedly until full classification of the selected samples 

for a given tree was achieved and each classified sample assigned to the corresponding 

reference concentration or class. By repeating each tree building step, k independent trees 
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were built to form the RF model(s). The average results from the k trees was therefore the 

output.  

Two important parameters were optimized in this model using the OOB data: number of 

trees (ntree) and the number of variables randomly tried at each split (mtry). This was done 

by comparing the effect of the number of trees on the OOB error and by evaluating the 

variables that had much more significance than others and adjusting the RF model 

accordingly. The trained model which gave the least errors (MSE) of OOB data was 

adopted.  

The performance of the adopted RF classification model was evaluated by drawing 

confusion matrices and calculating correct classification accuracy of the test data. On the 

other hand, the performance of the random forest regression model was evaluated using the 

RMSEP and R
2
 metrics on the test data. Appendices 2 and 3 contain a detailed description 

of the commands and algorithms used for the RF models. 

 

4.8.4 Multivariate Calibration of Laser Raman Spectra Utilizing SVR 

In this work, support vector machines was used for discrimination of samples based on the 

presence and the concentration of compounds resulting from hydrolyzed CaC2. 

Quantitative features (sample concentration owing to intensity values) and qualitative 

features (spectral peak bands) of each of the samples can infer whether the samples were 

ripened artificially or not. Considering the Raman spectra of  naturally ripened bananas in 

relation to artificially ripened ones, SVR hyperplanes can be used to classify a new sample 

as to whether it contains the artificial ripeners or not.  

Using R, PCA for Raman spectral data of banana samples ripened naturally versus 

artificially was done and the principal components plus their score values were saved as a 

matrix. The saved data was then split into a training and a test set before the data was fed 

into the model. The PCs were used as the predictors whereas the class labels and the 

concentrations were the response values in the case of classification and regression 

respectively.  
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The model was run several times by varying the number of support vectors (PCs) in a bid 

to establish the PCs which would best classify the data. Additionally, the model was tuned 

by adjusting the gamma and cost parameter so as to obtain the best parameter combination 

that produced optimal hyperplanes. Notably, both linear and radial kernels were utilized. 

Training automatically stopped when the model’s calibration error were reduced to a 

minimum. Samples that had not been shown to the model (test set) were then fed to the 

model to determine the clustering ability of the model. Confusion matrices were drawn and 

misclassification error calculated. The classification of the samples into their correct groups 

is a useful component of this work as this can be utilized in a rapid identification of fruit 

samples ripened artificially. For regression, the model’s ability to predict correctly the 

concentration of the measured values for the test set was evaluated by RMSEP and R
2
. 

Appendix 2 and 3 contain a detailed description of the commands and algorithms used for 

the SVM and SVR models. 

In order to validate the predictive ability of multi-molecular calibration models in banana 

samples, we compared the result of support vector regression with random forest regression 

and artificial neural network regression, by means of prediction accuracy, R
2
 and RMSEP. 

The schematic of the ML modelling approaches proposed in this work is given in figure 4.3 

below. 
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Figure 4.3: Conceptual framework for machine learning methodologies employed 

towards calibration and prediction of Raman spectral data. 
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4.9 Evaluation of Limits of Detection (LOD) and Quantification (LOQ) 

In order to determine the least CaC2 concentration that could be detected and quantified by 

the ML-assisted LRS system, the LOD and the LOQ had to be evaluated. For any given 

analytical technique, the LOD refers to the minimum analyte concentration that is 

detectable and can be proven to be present with a certain degree of confidence (Uhrovčík, 

2014). On the other hand, LOQ refers to the minimum analyte concentration that can be 

quantified with reasonable reliability. These two limits are normally derived from 

univariate calibration approaches whereby single instrumental measurements are done per 

sample. The formulae for calculating univariate LOD and LOQ are well prescribed by the 

International Union of Pure and Applied Chemistry (IUPAC) (Chandran and Singh, 2007).  

In the present work, the Raman spectra for the analytes of interest were recorded amidst a 

background of unknown number of interfering species. As such, there were multiple 

instrumental data for a single sample. The universal univariate calibration approach in this 

case fails to adequately cater for the multiple spectral responses in this data as discussed in 

section 3.6. Consequently the well-defined IUPAC formulae for evaluating LOD and LOQ 

could not be correctly applied in this case. Thus, the multivariate approach for determining 

LOD and LOQ values was adopted in this work.  

Currently, there is no well-defined procedure for obtaining LOD and LOQ in multivariate 

calibration as this is still an active research area (Uhrovčík, 2014). However, the normative 

approach involves plotting the model-predicted analyte concentration against their 

measured concentration (Shrivastava and Gupta, 2011). In this work, the analyte 

concentration were obtained from the multivariate calibration curves of the ML models and 

plotted against actual concentrations as recorded in Table 4.1. The graphs were then 

processed as univariate graphs. In this pseudounivariate approach, the LOD and LOQ were 

computed using the following reduced formulae derived from the standard LOD and LOQ 

equations (Shrivastava and Gupta, 2011): 

𝐿𝑂𝐷 =
3𝜎

𝑆
    

(4.3) 
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𝐿𝑂𝑄 =
10𝜎

𝑆
 

 

(4.4) 

Where S is sensitivity (slope of the calibration curve) and 𝜎 is the standard deviation of 

response obtained by several approaches. The method of using standard deviation of the y-

intercept of the regression line was used herein as it is more accurate than using the mean 

blank signal approach. It is important to note that this approach provided averages for LOD 

and LOQ of the whole methodology and not the LRS instrument independently. 
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     CHAPTER 5 

5 RESULTS AND DISCUSSIONS 

5.1 Chapter Overview 

In this chapter, the results of the analysis of LRS of banana samples based on the spectra 

obtained from the control and treated samples as well as market samples are presented. In 

addition, optimal instrumental and analysis conditions for conducting this study are 

discussed in this chapter. In addition, results of exploratory qualitative and quantitative 

analysis of LRS data using multivariate ML methods are presented. 

5.2 Optimized Conditions for Rapid Laser Raman Spectroscopic 

Measurements  

The STR system used in this study was equipped with two lasers for excitation; 532 nm 

and 785 nm. Owing to the nature of this study, whereby Raman spectra of bananas are to 

be recorded, the 785 nm was preferred. Such kinds of sample tend to suffer from a strong 

fluorescence background, particularly, when short excitation wavelength lasers are used. A 

laser in the NIR region, say 1025 nm, will likely overcome this challenge and so the 

justification for the choice of 785 nm laser in this study (Zhang et al., 2006a) .  

Optimization of the spectral window to be used depends on the region where most 

vibrational bands of the sample occur.  The Raman spectrometer used in this study was 

therefore set to cover the shift range 37 – 1800 cm
-1

 which encompasses the fingerprint 

region. Further, most of the vibrational bands for the compounds of interest were expected 

to be found in this region. The spectrograph’s CCD camera was set at 256 X 1024 pixels. 

The excitation laser light intensity was regulated by use of ND filters with different 

attenuating capabilities. For this study, the laser power was set to maximum (100%) as 

better quality spectra were realized for this laser power setting as compared to lower power 

settings. In addition, no burning of the sample was observed. This was ascertained by 

inspecting the microscope objective for presence of residues and inspecting the spectra for 

flat-line effect which normally arises due to CCD saturation brought about by high laser 
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intensity (Butler et al., 2016). In both cases, these common pointers of photo-damaging did 

not feature. In order to measure the laser excitation field powers at different objective 

lenses, an Orion Laser Power meter from Ophir photonics was used.  The intensities are as 

shown in Table 5.1 below.  

 

Table 5.1: Power of different lasers at different objectives 

 Objective 

Numerical 

Aperture (NA) 

Power to 

sample (mW)  

 X10 0.30 10.45  

 X20 0.45 8.87  

 X50 0.80 6.72  

 X50 0.50 6.28  

 X100 0.90 5.57  

     

 

In this work, the objective was set to X50 with NA = 0.5. At this resolution, it was possible 

to see the features of the banana samples up to the cellular level.  

Figure 5.1 below shows the microscopic images of naturally and carbide ripened banana 

samples at different concentrations obtained from the confocal LRS system at X50 

objective lens magnification.  
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Figure 5.1: Images of banana samples as seen under the microscope (X 50 lens) 

Deposits are seen on the artificially ripened samples and the amount of deposits 

seen increases with the increase in CaC2 used in ripening. 
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From the images in figure 5.1, it is clear that when CaC2 is used for ripening banana 

samples, deposits of its impurities remain embedded in these samples. As discussed in 

section 1.2, these impurities are fat soluble and they can diffuse through the cell wax of the 

peel into the flesh. Further, it is also evident from the images in  

Figure 5.1 that when higher concentrations of the ripening agent are used, the residue 

concentration also increases accordingly. 

One of the advantages of using confocal LRS in this study was its ability to focus the laser 

to particular points on the mounted samples which showed residues of CaC2. Setting the 

objective lens at X50 made it possible to focus the laser on the points of interest by 

utilizing the laser spot diameter.  

5.3  Raman Spectra of Samples before and after Data Preprocessing  

Under the same conditions described in section 4.4, the Raman spectra of banana samples 

ripened naturally and artificially were recorded at several surface points. The typical 

spectra obtained are shown in Figure 5.2 and Figure 5.3 below. Figure 5.2 shows the 

spectra for the samples ripened naturally whereas Figure 5.3 shows the spectra for samples 

ripened using CaC2 at different concentrations. The fluorescence background was strong 

for the two groups of samples, and the spectra demonstrated no obvious characteristic 

peaks among various samples. Notably, intensity differences were readily noticeable in the 

two groups of spectra. The carbide ripened spectra portrayed relatively higher intensity 

values as compared to the naturally ripened spectra. This agrees with discussions in section 

3.3 that Raman scattering (intensity) varies directly as the concentration of the analyte 

present amongst other factors. However, this relationship did not hold for all spectra 

recorded for different concentrations as will be discussed.  
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Figure 5.2: Raw Raman spectra for naturally ripened banana samples. The N 

numbers represent different samples ripened naturally. 

 

Figure 5.3: Raw Raman spectra of CaC2 ripened banana samples. H represents 

samples ripened with high concentrations, M represents medium whereas L 

represents low concentrations. 
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As observed from the Raman spectra above, the broad fluorescence background (Raman 

shift region <400cm
-1

) obscures the Raman signal of the molecules of interest. The strong 

autofluorescence was produced by molecules of carotenes (alpha and beta), tyrosine and 

folate contained in the bananas (Yakubovskaya et al., 2019). Thus the spectra had to be 

cleaned to reduce the noise and enhance the desired spectral features. Since multivariate 

ML methods rely on the shape of the peak/ Raman band to a small extent, band overlaps 

and other spectral matrix effects were resolved through a series of spectral pre-processing 

steps to remove spectral noise.  

The first step was to subtract the broad fluorescence baseline. Modified polynomial fitting 

was applied to correct the drifting baseline. This was then followed by smoothing using 

Savitsky-Golay algorithm with a window of 7 points and polynomial of order 2. The choice 

of these parameters was based on the best smoothing capability for the spectra specific to 

this study.  

To correct for intensity variations in the spectra, normalization was done using SNV.  The 

non-linearity in the spectral response that was observed (in terms of the signal intensity 

relative to the concentration) can be attributed to several factors.   To begin with, the 

banana samples were non-homogenous. This had the implication that the spectra obtained 

had overlapping signals owing to the numerous Raman active molecules contained therein. 

Imperfections in the LRS system optics and CCD detector giving non-linear responses in 

the presence of stray light could also have contributed to the non-linearity in the recorded 

spectra. Lastly, chemical factors like intermolecular reactions would have affected the 

bonding structures resulting to a shift or broadening of the Raman bands. For these reasons, 

deviations in the spectra in terms of peak regions and non-linear intensity response was 

observed and that explains why normalizing the spectra was imperative. 

The classical approach of assigning peaks to a Raman band of interest was not sufficient 

under these circumstances. A multivariate approach would thus form a better basis as will 

be described later in section 5.6. Notably, the proposed multivariate ML methods that were 

used in this work were capable of overcoming the problem of non-linear data in developing 

regression models as will be discussed in subsequent sections.  
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Outlier detection was an important aspect before a calibration strategy was employed. At 

this point, spectra which manifested deviation to a greater extent relative to the others were 

removed. As a final step, data compression was done by selecting only appropriate region 

of interest (200 cm
-1

 – 1200 cm
-1

). This was important to reduce the computational burden 

during development of the ML models as there would be fewer inputs relating directly to 

the analyte of interest and that our models will not be modeling noise.  

The preprocessed Raman spectra for the two groups of samples are shown below: 

 

 

 

Figure 5.4: Pre-processed Raman spectra of naturally and carbide ripened banana  

 samples 

After pre-processing, it can be seen that the obscured Raman signal becomes enhanced and 

the random instrumental noise is reduced significantly. This shows that appropriate 

mathematical software computations can be carefully employed to clean noisy Raman 

spectral data. The cleaned data can thereafter be used appropriately in the subsequent 

analysis steps.  
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5.4 Exploratory Multivariate Analysis of Raman Spectra by PCA and 

Assignment of Peaks. 

The chemical compositions of fruits are complex. The cleaned Raman spectra in Figure 5.4 

above exhibit some characteristic features of the various chemical components therein. 

However, it is difficult to visually distinguish between the two groups of samples from 

their spectra as several peaks overlap and some of the peaks are not clearly defined. It is 

also evident that the spectra contain noisy artifacts (unwanted spectral information) which 

make it difficult to identify the spectra by visual inspection. PCA was therefore used for 

exploratory multivariate analysis of the whole spectral region of the cleaned Raman 

spectra. The scores and loadings plot were used for identifying and assigning peaks 

responsible for the group differences. Principal components are the basis behind groupings 

in score plots since for some spectra to be clustered in one group they must have factors 

that are similar (Shaver, 2001). In the case of quantitative studies, PCA was used for 

dimensionality reduction such that the PCs were used as the inputs as will be discussed 

later.  PCA for the whole spectral ROI gives a clear distinction between the samples 

ripened artificially and samples ripened naturally as shown in Figure 5.5 below: 
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Figure 5.5: PCA scores plots of naturally (NRF) and artificially (ARF) ripened 

samples for waveshift region 200 -1200 cm
-1

. 
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Figure 5.6: PCA loadings plots of naturally and artificially ripened samples for 

waveshift region 200 -1200 cm
-1

  

 

However, the PC scores recorded for this explained low percentages of the variability. 

About 10 PCs were needed to explain 95 % 0f the variability in this dataset which 

contained the spectral region after pre-processing. This could be attributed to the fact that 

PCA was done including regions which did not have molecules of interest and therefore 

constituted noise in the PCA model. Therefore, PCA was further done in the Raman shift 

regions where the target molecules resulting from artificial ripening by calcium carbide are 

found (as highlighted earlier in Table 2.1). 

 

5.4.1 PCA for Raman shift Region 450 cm
-1

 - 500 cm
-1

 

Owing to the production process of CaC2, sulfur is usually contained in larger proportions 

as compared to other impurities in CaC2. The focus for PCA for this band region was the 
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sulfur peak centered at 480 cm
-1

. Figure 5.7 and Figure 5.8 below show the scores and 

loading plots for this ROI. The sulfur molecule bonding is also shown alongside.  

 

Figure 5.7: PCA scores plots for sulfur molecules ROI (450 -500 cm
-1

 ) 
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Figure 5.8: PCA loadings plot for sulfur molecules ROI (450 -500 cm
-1

). The 

puckered ring bonding of the sulfur molecule is shown at the top right corner. 

 

The scores plot of the first two PCs depict a distinction between the carbide ripened and the 

naturally ripened samples. The positive of PC1 receives influence almost exclusively from 

the ARF samples. Correlating this to the loadings plot, this influence peaks at around 480 

cm
-1

. This peak can be assigned to ν(S-S) cross-ring stretching vibration mode of sulfur 

molecules that exist as puckered rings. Thus, from the loadings and scores plots, we can 

conclude the clustering of carbide ripened samples in this band region was influenced by 

the presence of sulfur molecules in the ARF samples. 

 

5.4.2 PCA for Raman shift Region 600 cm
-1

 - 650 cm
-1

. 

This wavelength region was evaluated to investigate the presence of Acetylene molecules 

in the ARF samples. As discussed earlier, acetylene liberated from hydrolyzed CaC2 is the 

one which speeds up the ripening process. The scores and loadings plots are as shown in 

Figure 5.9 and Figure 5.10 below:  
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Figure 5.9: PCA scores plots for acetylene molecules ROI (600 -650 cm
-1

) 
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Figure 5.10: Loadings plot for acetylene molecules ROI (600 -650 cm
-1

). The 

bonding structure of the acetylene molecule is shown at the top right corner.  

 

The negative of PC1, which explains about 60 % of the variability in this wavelength 

region, is dominantly influenced by the ARF samples. The negative of PC3 is also largely 

influenced by the ARF samples. A comparison of these influences with the loadings plot 

can be attributed to the (C-H) out-of-plane bending mode of acetyl molecules with a peak 

at 612 cm
-1

. This mode presents a very weak vibrational mode of the acetyl group.  

5.4.3 PCA for Raman shift Region 750 cm
-1

 - 800 cm
-1

. 

In the chemical reaction of CaC2 with water in equation (1.1), we saw that calcium 

hydroxide is formed alongside the liberated acetylene gas. PCA was done for this region to 

investigate whether the two groups of samples could be distinguished based on their 

Raman spectra for this band region. Figure 5.11 and Figure 5.12 below shows the scores 

and loadings plot for this ROI.  
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Figure 5.11: PCA scores plots for hydroxyl molecules ROI (750 -800 cm
-1

 ) 

 

Figure 5.12: Loadings plot for hydroxyl molecules ROI (750 -800 cm
-1

). The 

bonding structure of calcium hydroxide molecule is shown at the top right corner.  
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From the scores plots, it is clear that the ARF samples give major influence to the negative 

of PC1, which explains 64 % of the variability of the data in this band region. When 

compared to the loadings plot, this negative influence of PC1 is more pronounced at the 

peak centered at 780 cm
-1

. This peak can be assigned to the (O-H) asymmetric bending 

vibration of the hydroxyl molecule. Therefore, the clustering in this band region is as a 

result of the calcium hydroxide molecules present in the ARF samples. 

 

5.4.4 PCA for Raman shift Region 950 cm
-1

 - 1000 cm
-1

. 

In order to assess whether fruits have been ripened artificially using CaC2, the test for the 

presence of phosphine molecules in those fruits is one of the common pointers of this 

practice. The scores and loadings plots for this ROI are shown in Figure 5.13 and Figure 

5.14 below:  

 

Figure 5.13: PCA scores plots for phosphine molecules ROI (950 -1000 cm
-1

 ) 
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Figure 5.14: Loadings plot for phosphine molecules ROI (950 -1000 cm
-1

) 

The bonding structure of phosphine molecule is shown at the top 

right corner.  

 

Positive PC1, explaining 73 % variability of data in this ROI, is strongly and exclusively 

influenced by the ARF. Correlating this with the peak at 979 cm
-1

 in the loadings plot, 

where PC1 is most positive, we can conclude the clustering in this band region is due to 

presence of phosphine molecules in the ARF samples.  This Raman vibrational peak 

centered at 979 cm
-1

 can be assigned to the out-of-plane bending mode of the non-polar 

covalent bonds of phosphine molecules.  

From these results, we arrive at the initial finding that PCA can be used, on an exploratory 

basis, for qualitative identification of fruits ripened naturally versus fruits ripened 

artificially from their Raman spectra. Nonetheless, we note that the chemical composition 

of bananas is complex as there are usually different amount of water, sugar, carotene, 

protein, fat, vitamin, as well as other components and elements such as calcium, iron and 

phosphorus (Bari et al., 2018). The assignment of peaks to molecules in this complex 

domain of mixtures using univariate way of analysis was therefore not sufficient as there 
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were peak shifts owing to the complexity of the mixture background. Further, at 785 nm 

excitation, the fluorescence background was relatively strong.  The incident excitation 

energy at 785 nm was consumed, to a great extent, by the resonance absorption and 

fluorescence, hence the interaction with the components of interest was weak. Therefore, 

the Raman peaks of such components did not show up distinctively in the recorded spectra.  

Owing to the reasons stated above, it was therefore difficult to characterize and analyze the 

constituent molecules in fruits by Raman technique using the classical/univariate approach. 

Several research papers report on how to tackle Raman spectra of samples with such 

characteristics as highlighted in this work (Wei et al., 2015, Liu and Liu, 2011). Some 

studies propose hardware changes, whereas others propose mathematical software 

computations to address these challenges. For instance, fluorescence can be overcome by 

using lasers with high excitation wavelengths such as 1064 nm  (Zhang et al., 2006b).   

However, in this study we were limited to a 785 nm laser. Thus the mathematical software 

approach was adopted for this work in the pre-processing steps.  

Whereas the classical approach for analysis of LRS data could not perform exploratory 

analysis of LRS data in this study in a satisfactory manner, it has been shown that the use 

of multivariate chemometric techniques can offer solutions to this limitation. PCA was 

applied successfully for the exploratory analysis of the complex, multidimensional LRS 

data in this work. Apart from the information deduced about the peaks that were 

responsible for the different clusters, new set of fewer variables (PCs) were obtained to be 

used in the subsequent ML steps. 

The results obtained from exploratory analysis were in agreement with the results collected 

from the elemental analysis of CaC2 by the EDXRF spectrometer (Appendix 4). Among 

others, elements of phosphorous, calcium and sulfur were found to be present in the 

industrial carbide. As discussed in section 1.1.1, reactions between calcium and phosphorus 

produces calcium phosphide which in turn liberates phosphine in the presence of water. 

Using LRS (a molecular method) in conjunction with PCA, the presence of phosphine in 

the carbide ripened bananas was verified. 
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5.5 Qualitative Analysis (Classification) of Raman Spectra Using Machine 

Learning.  

One of the main goals of this work was to establish whether LRS coupled with machine 

learning can be able to be used for assessing artificial ripeners in fruits qualitatively. To 

this end, selected ML classification models were developed form the pre-processed Raman 

spectra and the PCs obtained in section 5.4 above were used as inputs.  Supervised ML 

techniques have the potential to reveal any hidden properties and they can learn selectively 

even in the presence of noise. This feature is particularly important as the classification 

model envisaged should be able to classify distinctly samples ripened naturally versus 

artificially using slight differences in their Raman spectra. The samples were split into a 

training set (27 samples) and a test set (14 samples). 

 

5.5.1 Classification of Naturally and Carbide Ripened Samples Utilizing Support 

Vector Machine Classifier 

In this sub-section, SVM was first used to visualize the decision boundary between banana 

samples which were ripened naturally and samples ripened artificially using the latent 

variables obtained in section 5.4 above. Some of the critical parameters that affect the 

output of an SVM classifier include the kernel type, the cost and the gamma functions. The  

cost factor controls the degree of violation of the margin such that a small cost factor 

results to widening of the margin to accommodate more support vectors and vice versa 

(Amarappa et al., 2014) The gamma function gives a measure of similarity between two 

given points. The SVM classifier was tuned using these parameters through 10-fold cross 

validation and the best parameter combination with the lowest error retained. The radial 

basis kernel function provided the most flexible separating hyperplanes and was found to 

be most appropriate for Raman data such as in this work.  The SVM classification plot for 

the test data is shown in Figure 5.15 below.  
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Figure 5.15: SVM classification plot utilizing PCs as inputs with RBK function 

 

For test samples data hidden from the model, the confusion matrix in Table 5.2 shows that 

all samples ripened either artificially or naturally were correctly classified as belonging to 

their respective class. There was no misclassification and therefore correct grouping 

accuracy was 100 %. 

Table 5.2: Confusion matrix of test data set  

Classification ability Predicted class  

NRF ARF 

Actual class NRF 6 0 

ARF 0 8 

Classification accuracy (%) 100 

 

ARF 

 

 

NRF 
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5.5.2 Classification of Naturally and Carbide Ripened Samples Utilizing Random 

Forest Classifier 

Multiple classification decision trees were grown as discussed in section 4.8.3 and the 

average result from the prediction results were used to classify the input samples as either 

naturally or artificially ripened. Two key tunable parameters which were optimized 

included the number of trees (ntree) and number of variables tried at each split (mtry). 

These range of parameters were tuned during the training phase of model development and 

the outputs cross validated using the OOB data. The lowest OOB estimate of error rate 

achieved was 3.33 % and the corresponding model was adopted and used to predict the 

classes of the test data. Further, variable importance was evaluated and it was found that 

PC1 followed by PC5 were mostly responsible for the classification of the two groups of 

samples as shown in Figure 5.16. This is consistent with the discussion in section 3.6.4.  A 

variable that gives a good split at the nodes is one that lowers the value of Gini impurity 

and entropy to the lowest possible values (Ayyadevara, 2018).  

 

Figure 5.16: RF top 5 variable importance plot. The variables that had the most 

influence in the decision nodes to classify samples into different classes. 
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Referring to the loadings and score plots in section 5.4, PC1 and PC5 are linear 

combination of variables (Raman band regions) centered at 480 cm
-1

, 612cm
-1

, 780 cm
-1

 

and 979 cm
-1

. These are Raman vibrational bands associated with compounds resulting 

from artificial ripening using CaC2. Thus, the RF classifier model classified the samples as 

either artificially or naturally based on the presence or lack of those compounds 

respectively.  

For test samples data hidden from the model, the confusion matrix in Table 5.3 shows that 

one sample of NRF and another one sample of ARF were wrongly classified. An overall 

correct grouping accuracy of 85.71 % was realized in the RF classifier. 

Table 5.3: Confusion matrix of test data set (ntree = 12, mtry=6) 

Classification ability Predicted class  

NRF ARF 

Actual class NRF 5 1 

ARF 1 7 

Classification accuracy (%) 85.71 

 

5.5.3 Classification of Naturally and Carbide Ripened Samples Utilizing Artificial 

Neural Network Classifier 

The ability of LRS coupled with the use of ANN for distinguishing fruits ripened naturally 

versus artificially was assessed using the first 20 PCs from the Raman datasets obtained in 

this work. The idea behind using PCs instead of the whole wavelength as inputs is to have a 

smaller subset of inputs, thus reducing significantly the computational burden and making 

ANN models converge faster.  

Several parameters were tuned in the ANN classifier. To begin with, the ANN was created 

with 18 total neurons in the hidden layers: 10 neurons in the first hidden layer, 5 and 3 

neurons in the second and third hidden layers respectively. The network training times and 

error rates were most acceptable with those settings. This agrees with earlier discussions in 
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sections 3.6.3 and 4.8.2 that more than one layer allows the model to assess different levels 

of detail in the data. The ANN was able to learn the key spectral features amidst the 

background noise. The logistic transfer function was used for the hidden layers as well as 

for the output layer. Resilient backpropagation with weight backtracking algorithm was 

used to update the network weights. These range of parameters were optimized through 

random search and training stopped when the network realized low errors.  

The trained ANN classifier model was then applied to test samples data hidden from it. The 

confusion matrix in Table 5.4 shows that only one sample of NRF was wrongly classified 

as belonging to the ARF group whereas all ARF samples were correctly classified. An 

overall correct grouping accuracy of 92.86 % was realized in the ANN classifier. 

 

Table 5.4: Confusion matrix of test data set  

Classification ability Predicted class  

NRF ARF 

Actual class NRF 5 1 

ARF 0 8 

Classification accuracy (%) 92.86 

 

In all the three classification models, important spectral differences between samples 

ripened naturally versus artificially are associated with the presence of sulfur (225, 480 cm
-

1
), acetylene (612 cm

-1
),  phosphine (979, 1115 cm

-1
) and calcium hydroxide (780 cm

-1
) 

molecules in the ARF group. The ML models were able to learn these spectral features and 

use them in predicting the classes of test data not exposed to them with high correct 

classification accuracies (>85 %). In this regard, SVM classifier provided the best results 

followed by the ANN classifier and then the RF classifier model. 
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5.6 Multivariate Calibration Using Machine Learning for Quantitative 

Analysis  

In this section multivariate modeling involving ANN, RF and SVM are discussed. This 

approach has proven to be reliable with data sets that are known or suspected to be non-

linear such as in this work. The univariate approach for calibration of such data is 

insufficient (Zhang et al., 2014). This is true especially when trace quantities of the 

molecule of interest are involved. In this case, it becomes difficult to achieve a linear 

relationship between the emitted intensities of the spectral lines and concentration. Such 

linear relationships work well for high concentrations and fail for very low concentrations. 

Moreover, achieving a linear relationship of the analyte of interest with respect to the 

Raman signal becomes difficult in the presence of interfering molecules.  

Multivariate calibration takes into account multiple instrumental data for a single sample. 

Herein, the use of inverse regression models on latent variables allows for quantification of 

analytes of interest in a sample without knowing the chemical identity of the interfering 

molecules. The presence of the latter is adequately compensated for by the calibration 

model which is built from a training set where the interfering agents have been 

incorporated (Lee et al., 2013). This is important in food safety analyses such as in the 

current work where the number of interfering species is unknown. The constituent signals 

are proportional to their concentration.  

ANN, RF and SVM were utilized in multivariate calibration and prediction of the 

concentration of artificial ripening compounds in banana samples as described in section 

4.8. Exploratory analysis was done as a first step whereby the ARF samples were sub-

divided into groups of low (0.024-0.06%), medium (0.08-0.2%) and high (0.4-1.6%) 

concentrations. Figure 5.17 below shows the scores plot. 

 



76 

 

 

Figure 5.17: PCA scores plot of naturally (NRF) and artificially ripened samples 

showing clusters based on concentration of CaC2. The NRF samples cluster on their 

own on positive side of PC1. The carbide ripened samples cluster on the negative 

side of PC1 and also according to the level of concentration used in ripening 

beginning from low to medium and high concentrations. 

It can be seen from the scores plot in Figure 5.17 above that the samples can be 

distinguished as either naturally or carbide ripened by PC1 (horizontal axis). PC2 (vertical 

axis) and the subsequent PCs show the concentration profile of the ARF samples.  Having 

successfully reduced the dimensionality of the LRS data using PCA, the PCs were used as 

inputs in developing the ML regression models. 

 

5.6.1 Quantitative Analysis of Carbide in Samples Using Artificial Neural Network  

The merits for using ANN for multivariate calibration have been published over time (Fan 

et al., 2019; Allouche et al., 2015). Of importance in the present work, includes the 

capability of ANNs to be able to learn from input-output target examples amidst an 
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environment coupled with noise. Additionally, ANNs are capable of modelling non-linear 

relationships between the input and target response variables. These make up some of the 

reasons why ANN was preferred for use in calibration. 

Principal components were used as the input to the ANN which was implemented in R 

software. In particular, the first 20 PCs were used meaning the ANN had 20 neurons at the 

input layer. The corresponding known concentration were administered as targets in the 

network. Prior to running the network, the input matrix was scaled using the min-max 

function which transforms the inputs to have mean of zero and a standard deviation of one. 

This ensured that the input variables participated equally in the modelling process. The data 

was split into training and test data in the ratio 4:1 respectively. This resulted to a training 

set of 123 samples whereas the test samples were 31. 

Optimization for the best combination of parameters was done. This included a variation in 

the number of hidden nodes and neurons as well as the transfer function. The number of 

nodes and hidden layer were determined after trying various network structures as 

presently, no theory gives an exact number of neurons and hidden layers required to 

approximate a given function. A trial and error approach was therefore used following 

recommendations by Ciaburro and Venkateswaran (2017) that the neurons in the hidden 

layer should be an average of the neurons in the input and the output layer. The number of 

hidden layers was varied with other parameters held constant such that the number of 

layers that produced the lowest RMSEP and highest prediction accuracy was adopted. 

Thereafter, the number of neurons was varied as the number of hidden layers was kept 

constant and this was also evaluated against RMSEP and R
2
 values. The outcomes are as 

summarized in Table 5.5 and Table 5.6 below: 

Table 5.5: Model prediction ability with a variation of hidden layers 

Hidden 

Layers  

Number of 

neurons  

Transfer 

function  

RMSEP  

(g/L) 
R2  

1 12 logistic 0.656 0.9369 

2  12  logistic  0.331  0.9831  

3  12 logistic  0.466  0.9686 

4  12 logistic 0.273  0.9890 

5  12 logistic  0.597  0.9477 

6  12 logistic 0.597  0.9477  
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Table 5.6: Model prediction ability with variation of the number of hidden neurons 

Hidden 

Layers  

Number of 

neurons  

Transfer 

function  

RMSEP 

(g/L) 
R2  

2 8 logistic 0.363 0.9807 

2 10 logistic 0.316 0.9854 

2  12  logistic  0.331  0.9831  

2  14 logistic  0.416  0.9747 

2  16 logistic 0.518  0.9606 

3  6 logistic  0.597  0.9477 

3  9 logistic 0.483  0.9658 

3  12 logistic  0.466  0.9686 

3 15 logistic 0.269 0.9893 

3 17 logistic 0.311 0.9859 

4 8 logistic 0.363 0.9807 

4 10 logistic 0.316 0.9853 

4  12 logistic 0.273  0.9890 

4 16 logistic 0.355 0.9815 

 

It was found that a three hidden layered network with fifteen hidden neurons and logistic 

transfer function resulted into the rapid convergence of the network. This is consistent with 

literature discussions that a model with only one or two hidden nodes is strongly biased and 

therefore limited in the number of functions that it can fit (Ciaburro and Venkateswaran, 

2017). On the other hand, a model which is ideally unbiased (having infinite hidden 

neurons) tends to overfit to the training set and could only work well with noise-free data. 

Having significantly many hidden neurons was not conducive for the current study as the 

Raman spectra for the molecules of interest was recorded in an environment of interfering 

molecules. A balance was therefore achieved by using three hidden layers having fifteen 

hidden neurons. Other transfer functions like tansig resulted in models with high error rates 

In addition, highest R
2
 and the lowest RMSEP values for the training and test data sets 

were achieved under these conditions. As such, these parameters were adopted and utilized 

for subsequent modeling.   

The type of backpropagation rule under which these were realized was gradient descent 

algorithm. The output of the layers was calculated from the net input by means of the 

logistic transfer function. Consequently, differences between the output and expected 

values from the ANN’s input were interpreted as errors in the network and were back-

propagated through the layers until the network converged to the lowest acceptable errors. 
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The optimized network was then stored before the next step of analyzing the predictive 

capabilities of the BP-ANN.  The basis of this procedure was to demonstrate the prediction 

performance of the developed models in predicting the concentration of artificial ripeners 

in banana samples ripened using CaC2. To this end, the testing set which was originally 

hidden from the network was exploited to evaluate the confidence in the performance of 

the trained network.  

The obtained results were graphically plotted showing comparison of predictions through 

ANN analysis method. Figure 5.18 shows predicted concentrations of CaC2 compounds 

used in ripening banana samples. The predictions on Figure 5.18 are based on data from the 

testing set implemented to samples that were not in the training set. The figure clearly show 

that experimentally measured concentrations of the ripening agent are in strong consistency 

with the values predicted through ANN for most of the samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: ANN regression plot for test data set. The error bars were obtained as standard 

deviations associated with spectra recorded at different spots on the same sample 

(concentration). 
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In evaluating the multivariate LOD and LOQ for the ANN model, a linear fit function was 

applied to the calibration curve and the values of slope and standard deviation calculated as 

discussed in section 4.9. Figure 5.19 below shows the linear fit from the calibration curve 

and the calculated values. 

 

 

 

Figure 5.19: ANN calibration plot for calculating LOD and LOQ 

 

The computed values for LOD and LOQ were 0.00189 % (0.0189g/L) and 0.00633 % 

(0.0633g/L) respectively for this method. 

 

5.6.2 Quantitative Analysis of Carbide in Samples Using Random Forest Regression 

The use of RF in multivariate calibration for quantitative analyses has been reported in 

several studies (Lee et al., 2013; Zhang et al., 2014; Ayyadevara, 2018). Many researchers 

have proved that the method has a good tolerance to noise, it is not heavily affected by non-

  

A
N

N
 p

re
d

ic
te

d
 c

o
n

ce
n

tr
a
ti

o
n

 (
%

) 
(X

 1
0
g
/L

) 

Measured concentration (%) (X 10g/L) 



81 

 

linearity in data and avoids the problem of overfitting. For these and other reasons like 

being able to give valuable information about variable importance,   RF was employed for 

multivariate calibration in this work.  

Optimization of the RF regression models involved tuning two key parameters: no of trees 

(ntree) and number of variables tried at each split (mtry). The optimum number of trees for 

predicting concentration of the CaC2 used in ripening banana samples was evaluated from 

the OOB error estimates. An increase in the number of decision trees was reported to 

decrease the OOB error up to a certain limit where further increase did not have much 

effect on the model. Figure 5.20 below shows that beyond 230 trees in the RF model, there 

was no change in the OOB error. On the other hand, when the value of ntree was too low, 

the OOB error estimate increased significantly. This supports the idea of having several 

independent trees to improve the quantitative accuracy of a RF model.   Further, the 

randomness in the forest was achieved by the bagging technique discussed in section 3.6.4.  

This ensured that for each grown tree, different samples were picked up for training and on 

the final result, the vote from each of these trees was averaged to obtain the final values. 

This helps overcome the challenges of bias in predicting values and so avoiding overfitting 

(Lee et al., 2013). 
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Figure 5.20: RF variation of OOB error against number of trees in the forest. The 

lowest OOB error rate was achieved at 230 trees. This was the optimum number of 

trees for the model 

Input variables form a critical component of RF regression models. Although the cleaned 

Raman spectra in section 5.3 brought out rich spectral information concerning the analytes 

of interest, there was a lot of interfering information from other molecules. The advantages 

of using PCs as inputs in such a case have been discussed previously. However, there was 

need to establish the number and the importance of the PCs used as input variables in 

developing the RF predictive models. An evaluation of the input variables showed that the 

first 20 PCs were able to explain 86% of the variance in the training data in the RF model. 

In the decision nodes, it was established that 16 variables were optimum to be tried at each 

split to give the best predictive accuracy. Figure 5.21 below shows the variation of OOB 

estimate error with the mtry parameter. When mtry becomes too small, the variables 

considered at each split are insufficient resulting to diminished predictive accuracy.  
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Figure 5.21: RF variation of OOB error against number of variables tried at each 

split. The lowest OOB error rate was achieved when the variables tried at each 

decision node was 16.  

The variables used in the decision nodes for prediction in this model were PCs which arose 

from the Raman shift of the molecules present in CaC2 ripened samples. As discussed in 

section 5.5.2, variable importance is an important feature which can be evaluated in this RF 

algorithm. The variables which lowered the Gini impurity the most were PC2 followed by 

PC1 as shown in Figure 5.22 below. These two variables had the greatest impact on the 

decision nodes for predicting the concentration values.  
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Figure 5.22: RF regression top 10 variable importance plot 

A score plot of PC2 against PC1 (see Figure 5.17) depicts the concentration profile and 

reveals that these PCs give vital information necessary for predicting the concentration of 

CaC2 used at different levels. In comparison with the loadings plot in section 5.4, the 

regions associated with these PCs are Raman bands centered at 480 cm
-1

, 612 cm
-1

, 780 

cm
-1

and 979 cm
-1

. Thus, the RF model was able to predict different concentrations based 

on the present amount of the molecules represented by the listed peaks.    

Once the two key parameters were properly tuned as described in the preceding paragraph; 

such that the lowest OOB error estimates were obtained, the trained RF model was used to 

predict concentration values for the test set. The calibration and validation plots for the 

predicted against the actual concentration are shown in Figure 5.23 below. The R
2
 and 

RMSEP values were calculated and show a strong correlation between the actual measured 

concentrations and the RF model estimates.  
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Figure 5.23: RF regression plot for test data set. The error bars were obtained as 

standard deviations associated with spectra recorded at different spots on the same 

sample (concentration) 

Detection and quantification limits were calculated using the 3𝜎 and 10𝜎 approach 

discussed in section 4.9 using the pseudounivariate calibration curve. The RF 

concentrations were plotted against the actual concentrations and from the linear fit, 

of slope and standard deviation of the y-intercept were calculated. The plot is as 

shown in  

Figure 5.24 below. The calculated values of LOD and LOQ were 0.00539 % (0.0539g/L) 

and 0.01796 % (0.1796g/L) respectively.  
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Figure 5.24: RF calibration plot for calculating LOD and LOQ 

In order to increase the accuracy of RF model, the inclusion of samples with narrower 

concentration intervals in a calibration set is necessary (Lee et al., 2013). 

 

5.6.3 Quantitative Analysis of Carbide in Samples Using Support Vector Regression 

The use of SVR for multivariate calibration and prediction of concentration of CaC2 used 

to ripen banana samples is discussed in this sub-section. Several parameters were 

optimized to have the final model with low RMSEP values and relatively high R
2
 values.  

To begin with, the optimal number of input variables (PCs) was evaluated.  The PCs were 

set as the predictors whereas the different concentration used in ripening were set as the 

target response values. Using all PCs as input variables resulted to calibration curves that 

overfitted to the training data such that SVM models in this case generalized poorly to the 

test set. The number of input variables (PCs) was reduced gradually up to the first 6 PCs 

whereby the SVM model performance improved for both the training and test data. The 
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input PC scores determined the number of support vectors (data points which affect the 

decision surface). The inclusion of the least dominant PCs resulted to an increased number 

of support vectors leading to overfitting of the training data. The use of the first 6 PCs 

(explaining 50 % variability) with 96 support vectors was found to be optimal for this 

study. 

The choice of kernel function is an important consideration in developing SVR regression 

models. Consequently, the radial basis kernel (RBF) had a better performance compared to 

the linear kernel function for the data in this work.  This is consistent with literature 

discussions (section 3.6.5); that non-linear data sets work well with non-linear mapping 

functions in the SVR models (Balabin and Lomakina, 2011). Finally, the cost and the 

gamma were optimized by running the model through a 10-fold sampling cross validation 

and evaluating the model error. Figure 5.25 below shows that a cost value of 1 provided the 

least model error and therefore provided optimum degree of violation of margin to 

accommodate the support vectors. 

 

Figure 5.25: variation of the SVR model error with the cost function 

The performance of the trained SVR model was evaluated by a test set not previously 

shown to the model. The SVM predicted estimates were plotted against the actual 

experimentally measured concentrations as shown in Figure 5.26 below. The R
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RMSEP values were calculated and show a strong correlation between the actual measured 

concentrations and the SVR model estimates.  

 

Figure 5.26: SVR plot for test data set. The error bars were obtained as standard 

deviations associated with spectra recorded at different spots on the same sample 

(concentration) 

In determining the multivariate LOD and LOQ for the SVR model, a pseudounivariate 

graph was drawn as described in section 4.9. Using the 3𝜎 and 10𝜎 approach in equations 

(4.3) and (4.4) the LOD was found to be 0.008741% (0.0874g/L) while the LOQ was 

0.0291% (0.291 g/L).  
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Figure 5.27: SVR calibration plot for calculating LOD and LOQ 

In order to validate the predictive ability of the developed multivariate calibration models 

in test data sets initially hidden to the models, we compared the result of ANN with RF 

regression and SVR by means of RMSEP and R
2
. In regression models, RMSEP gives a 

robust measure of how accurately the model predicts the target response variable. Table 5.7 

shows the comparison of the performance of the three models used in this work based on 

these parameters. The model predicted values are contained in Appendix 4. Notably, all the 

three models used in this study provided nearly same indications. This justifies the use of 

the three models since they all have different architectures but they were able to make 

similar predictions for the same inputs. 
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Table 5.7: Model performance based on explained variance (R
2
), root mean square 

error of prediction (RMSEP) and multivariate LOD and LOQ 

Model R
2
 RMSEP (g/L) LOD (g/L) LOQ (g/L) 

ANN 0.964 0.327 0.0189 0.0633 

RF 0.973 0.215 0.0539 0.1796 

SVR 0.966 0.298 0.0874 0.2913 

 

The method developed was envisaged to be a rapid method. Once the Raman 

measurements were optimized and the machine learning models trained, tested and 

validated, a quick evaluation was done to establish how rapid the method was. In this 

regard, the time required to assess whether a sample had been ripened by calcium carbide 

and the extent thereof i.e. from sample preparation to data analysis was as summarized in 

the table below: 

Table 5.8: Results turn-around time: from sample preparation to data analysis 

Stage Activity Time (minutes) 

1 Sample preparation Washing, drying, slicing <5 

2 Raman spectroscopy Spectra data acquisition (10 S 

exposure time, 5 accumulations) 

<2 

3 Data analysis Preprocessing, classification, 

quantification 

<10 

Total time per sample                                                                               <17 minutes 

 

In comparison with other techniques such as HPLC and ICP-AES which have average 

results time of 12-48 hours and 0.5-12 hours respectively for these kind of measurements 

(Cramer et al., 2017), the method developed in this work is better suited.  
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5.7 Prediction of Calcium Carbide Concentration used in Ripening Market 

Samples 

After exploration of data using PCA, testing and validating the developed quantitative 

analytical models, data from market samples was input into the models to predict, if 

present, the concentration of CaC2 used in ripening them. Raman spectra obtained from 

banana samples collected from Nairobi open air markets and its environs were 

preprocessed as described earlier in section 4.6. The ANN, RF and SVR models developed 

in sections 5.6.1, 5.6.2  and 5.6.3 were then used to predict CaC2 concentrations used to 

ripen the samples. The results of these predictions were averaged and summarized as 

shown in Table 5.9 which indicates mean concentration per sampling market together with 

the standard error of the mean (SEM).  

 

Table 5.9: Market samples predictions 

Sampling 

market 

Model predicted concentrations of CaC2 used in ripening 

(g/L) 

(8 samples per 

market) 
ANN RF SVR 

mean SEM mean SEM Mean SEM 

CHIROMO 1.204 0.198 1.130 0.207 1.083 0.200 

RONGAI 1.066 0.076 1.157 0.084 1.030 0.074 

GIKOMBA 0.819 0.069 0.667 0.059 0.660 0.062 

MARIKITI 0.795 0.104 0.786 0.107 0.779 0.088 

KISERIAN 0.267 0.028 0.304 0.052 0.312 0.039 

 

Table 5.9 shows that banana samples from Chiromo and Rongai area have been ripened 

using CaC2 concentrations of up to >1g/L. These samples were suspected to be artificially 

ripened from their outlook. Previous studies have shown that bananas ripened artificially 

tend to have an attractive bright yellow, spotless colour with green or yellow stalks. On the 

other hand, naturally ripened bananas present an unattractive, light yellow colour with 

black spots as well as blackish yellow stalks (Akter et al., 2020). A side by side 

comparison of a banana from Kiserian and Chiromo is as shown in Figure 5.28 below. 
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Figure 5.28: A visual comparison of suspected artificially ripened banana and 

naturally ripened banana from local markets. Carbide ripened bananas usually have 

a spotless, bright yellow appearance whereas naturally ripened bananas normally 

present an unattractive yellow color with black spots. 

The samples from Kiserian market (left) in Figure 5.28 are indicative that they might have 

ripened naturally. Indeed this is as evidenced by the relatively low mean concentrations of 

CaC2 as predicted by the ML models (0.267 g/L – 0.312 g/L). The ML models predictions 

for most samples in this market had concentrations <0.150 g/L which was close to the 

quantification limits of these ML models. This leads us to the conclusion that these samples 

were ripened naturally as most of the predictions of concentration from the ML models 

were below the LOQ; suggesting very low concentrations.   

In general, the predicted concentrations from the ML models were characterized with high 

standard deviations as evidenced by the SEM values in Table 5.9. In some cases, the mean 

and the median concentration varied significantly. This can be attributed to the fact that 

different samples within a sampling region may have been exposed to different levels of 

the artificial ripener. Thus, the mean values in Table 5.9 are population mean for all 

samples within the specified market. The SEM metric is therefore used as a dispersion 

Kiserian Chiromo 
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measure in this table as it gives an estimate of how the sample mean varies with respect to 

the population mean.  

A comparison of the CaC2 concentrations from the ML models predictions show similar 

trends for the sampled regions. This shows that LRS coupled with ML can be used to 

detect the presence and quantify artificial ripeners in fruits. The performance of the models 

to predict market samples was compared using the ANOVA technique.  

Table 5.10: Anova statistics showing comparison between different model 

performance 

Model comparison t-test P-test 

RF - ANN -0.099 0.995 

SVR - ANN -0.266 0.962 

SVR - RF -0.167 0.985 

 

The results summarized in Table 5.10 indicated that all the three models were significant 

with regards to the market sample predictions and that none was better than the other. This 

was evidenced by the small variations in the mean values from the different models as 

shown in Table 5.9. The predictions from all models were comparable. Nonetheless, RF 

model had the least errors in its predicted values followed by the SVR model and then 

ANN model. In this regard, RF’s performance was marginally better than ANN and SVR 

for this study.    
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusion  

This study was undertaken to explore the possibility of the laser Raman spectroscopy 

method as an alternative for assessment of carbide ripened bananas owing to its advantages 

of being a fast and non-invasive technique.  

The presence and quantity of CaC2 in carbide ripened bananas was evaluated based on 

impurities that are always present in the industrial CaC2 that was used in this study. Sulfur, 

acetylene, calcium hydroxide and phosphine, having Raman peaks centered at Raman shift 

regions 480 cm
-1

 (S-S bond stretching), 612 cm
-1

 (C-H asymmetric bending), 780 cm
-1

 (O-

H bending) and 979 cm
-1

 (P-H stretching) respectively, are some of the impurities in CaC2 

that have been reported to have been found in carbide ripened fruits. Detection and 

quantification of these molecules from the Raman signal require quality and repeatable 

spectra. Consequently, optimization of LRS equipment and parameters for acquisition of 

spectral data need to be done appropriately to suit the study at hand. In this work, using a 

785 nm laser delivering 6.28mW to the sample through a microscope objective of X50 over 

an exposure time of 10 seconds and 5 accumulations provided optimized conditions for 

spectra acquisition.  

Herein, Raman data obtained from naturally and carbide ripened banana samples were 

analyzed using ML models; ANN, RF and SVM. PCA was utilized for exploratory data 

analysis and dimensionality reduction prior to qualitative and quantitative modeling. It has 

been shown that the multivariate approach for analysis of data such in this work is 

necessary as opposed to the univariate approach. The Raman spectra of the analyte of 

interest were buried in the background of interfering molecules. However, the application 

of several pre-processing steps and use of PCA (a multivariate ML approach) enhanced the 

spectral features that were otherwise not easily visible in the raw Raman spectra. 
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Moreover, it has been shown that ML aided LRS model is a superior alternative to the 

quantitative methods used in classical Raman quantification models which solely rely on 

the intensity of target peaks. It has been shown that the ML models are capable of 

modeling calibration schemes accurately from Raman spectra without properly defined 

peaks or even in the presence of noise as well as in cases where the spectral response is 

non-linear. Accurately tuned ML models were developed with the ability to classify and 

quantify banana samples based on how much CaC2 was used to ripen them. Banana 

samples were classified as either artificially ripened or naturally ripened with high correct 

classification accuracies (> 85 %) using the ML classification models. Further, the 

quantitative models recorded low RMSEP values for the validation data sets as well as high 

R
2
 values (> 90%). This showed that there was a high correlation between the known 

concentrations and the model predicted concentrations. The ML assisted LRS models also 

recorded low detection limits (≤ 0.088 𝑔/𝐿) and quantification limits (≤ 0.291 𝑔/𝐿).  

In conclusion, coupling machine learning techniques (PCA, ANN, RF and SVM) with 

Raman spectroscopy eliminates the challenges commonly encountered when using 

classical Raman analysis techniques. Properly trained ML models can learn Raman spectral 

features of samples exposed to them and use them to make predictions on new data as was 

the case with the test and market samples data. This work shows that LRS coupled with 

ML models can be used to assess levels of artificial ripeners in fruits. Furthermore, the 

method can give test results in about 15 minutes, which makes it a rapid alternative to the 

conventional wet chemistry methods. 

 

6.2 Recommendations and Future Prospects 

Apart from artificial ripening of fruits, there are harmful practices of preserving already 

ripened fruits. The methodology presented in this work, using bananas and calcium carbide 

can be extended to several fruits that are prone to these practices that pose risks to food 

safety and human health. A comprehensive LRS spectral library consisting of fruits in their 

pure form as well as fruits that have artificial additives can be developed and used as a 

basis for evaluating their safety for consumption.  
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The major challenge encountered in this work with the use of 785 nm excitation laser was 

the broad fluorescence signal that was several orders above the requisite Raman signal. In 

as much as mathematical corrections can be used to correct this limitation, there is always 

the likelihood of loss of vital information alongside the subtracted baseline. The use of 

1025 nm excitation or higher excitation wavelengths in the analysis of artificial ripeners in 

fruits is therefore recommeded. Zhang et al. (2006) demonstrated that at 1064 nm 

excitation, the fluorescence signal was suppressed and different fruits could be 

characterized by their Raman spectra at that excitation wavelength. 

Lastly, this study was carried out in a lab using a confocal LRS system with controlled 

parameters. Use of a portable Raman micro-spectrometer system that is field is also 

recommended. The system should be embedded with programmable software from the 

developed ML models to enable direct and instantaneous assessment of artificial ripeners in 

fruit samples at source.  
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APPENDICES 

APPENDIX 1: PCA code in R for Exploratory Analysis 

#load required package 

library(ChemoSpec) 

 

# Reading a matrix data file stored in the working directory 

raw <- matrix2SpectraObject(gr.crit =  c("L","M", "H","N"), gr.cols = 

c("auto"), 

                                freq.unit = "Raman shift (cm^-1)", 

                                int.unit = "Intensity", 

                                in.file = "ARFNEW31.csv", 

                                out.file = "Raman_data") 

 

#Perfom classical PCA  

pca<-c_pcaSpectra(raw, choice = "autoscale", cent = TRUE) 

 

#Visualize the scores and loadings plots 

plotScores(raw, pca, main ="pca", pcs = c(1,2), tol = 0.01) 

plotLoadings(raw, pca, main ="pca",  loads = 1:3, ref = 1) 

 

#Remove frequencies from both ends at once to remain with spectral ROI: 

spec1 <- removeFreq(raw, rem.freq = raw$freq > 1200 | raw$freq < 200) 

 

#Remove groups of spectra: 

spec2 <- removeGroup(spec1, rem.group = "L") 

spec3 <- removeGroup(spec2, rem.group = "M") 

 

#PCA for sulfur ROI 

spec4 <- removeFreq(spec3, rem.freq = spec3$freq > 500| spec3$freq < 

450) 

pca4<-c_pcaSpectra(spec4, choice = "autoscale", cent = TRUE) 

 

#PCA for acetylene ROI 

spec4 <- removeFreq(spec3, rem.freq = spec3$freq > 650| spec3$freq < 

600) 

pca4<-c_pcaSpectra(spec4, choice = "autoscale", cent = TRUE) 

 

#PCA for clacium hydroxide ROI 

spec4 <- removeFreq(spec3, rem.freq = spec3$freq > 800 | spec3$freq < 

750) 

pca4<-c_pcaSpectra(spec4, choice = "autoscale", cent = TRUE) 
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#PCA for phosphine ROI 

spec4 <- removeFreq(spec3, rem.freq = spec3$freq > 1000| spec3$freq < 

950) 

pca4<-c_pcaSpectra(spec4, choice = "autoscale", cent = TRUE) 

 

# getting the PC from PCA attributes and saving it as a csv   

attributes(pca)  

pca_scores <-pca[["x"]] 

write.csv(pca_scores,'Raman_raw_pca_scores.csv') 
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APPENDIX 2: ANN, RF and SVM Codes in R for Classification (Qualitative Studies) 

ANN Classifier 

#load required packages 

library(neuralnet) 

 

# Load the PC saved data, these will be used as model inputs 

data <- read.csv(file.choose(), header = T) 

 

#Transform the samples into factors  

data$samples <- as.factor(data$samples) 

 

# Data Partition into training and test set 

ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.75, 0.25)) 

train <- data[ind==1,] 

test <- data[ind==2,] 

 

#Designing the neural network 

nn = neuralnet(samples ~ ., 

               data = train,  

               hidden = c(10,5,3),  

               linear.output = F) 

 

#Making predictions on the training and test data 

pred<- predict(nn, train) 

predt<-predict(nn, test) 

 

#confusion matrix for the training and test data 

tab<-table( pred[,1]>0.5, train$samples==1) 

tab2<-table( predt[,1]>0.5, test$samples==1) 

 

#Calculating error (misclassification) rate for the training and test 

data 

1-sum(diag(tab))/sum(tab) 

1-sum(diag(tab2))/sum(tab2) 

RF Classifier 

#load required packages 

library(caret) 

library(randomForest) 

 

# Designing the Random Forest 

rf <- randomForest(samples~.,  
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                   data=train[,1:21], 

                   ntree = 2000, 

                   mtry = 4) 

 

# Prediction & Confusion Matrix - train data 

p1 <- predict(rf, train[,1:21]) 

confusionMatrix(p1, train$samples) 

 

# Tune mtry and ntree and save the best tuned parameters  

t <- tuneRF(train[,2:21], train[,1], 

            ntreeTry = 20, 

            stepFactor = 0.5, 

            improve = 0.05, 

            doBest=TRUE) 

 

# # Prediction & Confusion Matrix - test data 

p3<-predict(t, test[,1:21]) 

confusionMatrix(p3, test$samples) 

 

# Variable Importance plot 

varImpPlot(t,sort = T,n.var = 5,main = "Top 5 - Variable Importance") 

SVM Classifier 

#Load required packages 

library(e1071) 

 

#Read data 

data1 <- read.csv(file.choose(), header = T) 

 

#Designing support vector machine model 

mymodel <- svm(samples~., data=train) 

 

#Confusion matrix and misclassification error for training data 

pred <- predict(mymodel,train) 

tab <- table(predicted=pred,actual=train$samples) 

1-sum(diag(tab))/sum(tab) 

 

#Fine tuning the SVM model 

tmodel <- tune(svm,samples~.,data=train, kernel = "radial",  

               ranges= list(cost = c(0.01,0.1, 1, 10,100,1000))) 

 

#Best model from results above 

mybestmodel <- tmodel$best.model 
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#confusion matrix and misclassification error for test data 

predtest <- predict(mybestmodel,test) 

tab <- table(predicted=predtest,actual=test$samples) 

1-sum(diag(tab))/sum(tab) 

 

#Decision surface (hyperplane) plot 

plot(mybestmodel,data=test, 

     PC2~PC1, slice = list(PC3=3,PC4=4)) 
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APPENDIX 3: ANN, RF and SVR Codes in R for Regression (Quantitative Studies) 

Artificial Neural network Regression 

#Read the Data and transform the concentration values to numeric 

data <- read.csv(file.choose(), header = T) 

data$conc <- as.numeric(data$conc) 

 

#Splitting the data into training and test set and then scaling using 

min-max 

samplesize = 0.8 * nrow(data) 

index = sample( seq_len ( nrow ( data ) ), size = samplesize ) 

datatrain = data[ index, ] 

datatest = data[ -index, ] 

max = apply(data , 2 , max) 

min = apply(data, 2 , min) 

scaled = as.data.frame (scale(data, center = min, scale = max - min)) 

trainNN = scaled[index , ] 

testNN = scaled[-index , ] 

 

# Fit neural network 

NN = neuralnet(conc ~ ., 

               trainNN, 

               hidden = c(5,5,5),  

               threshold = 0.01, 

               stepmax = 1e+5, rep = 10, 

               learningrate.factor = list(minus = 0.2, plus = 1.7), 

               lifesign.step = 1000, algorithm = "rprop+", err.fct = 

"sse", 

               act.fct = "logistic", linear.output = TRUE) 

 

#plot neural network 

plot(NN, rep="best") 

 

# calibration using neural network 

predict_trainNN = compute(NN, trainNN[,c(2:25)]) 

predict_trainNN = (predict_trainNN$net.result * (max(data$conc) - 

min(data$conc))) + min(data$conc) 

## Prediction using neural network 

predict_testNN = compute(NN, testNN[,c(2:25)]) 

predict_testNN = (predict_testNN$net.result * (max(data$conc) - 

min(data$conc))) + min(data$conc) 

 

#Graphs of actual versus the predicted value with a 45 degree slope line  
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par(mfrow=c(1,2)) 

plot(datatrain$conc, predict_trainNN, col='blue', pch=16) 

plot(datatest$conc, predict_testNN, col='blue', pch=16) 

 

#Root Mean Square Error of calibration(RMSEC) and Root Mean Square Error 

of prediction (RMSEP) 

RMSEC(datatrain$conc, predict_trainNN) 

RMSEP(datatest$conc, predict_testNN) 

 

#Relative measure of fit for calibartion and validation data (R^2) 

Rsqcal_ = 1 - sum((datatrain$conc-

predict_trainNN)^2)/sum(datatrain$conc-

(sum(datatrain$conc)/nrow(datatrain))^2) 

Rsqpred_ = 1 - sum((datatest$conc-predict_testNN)^2)/sum(datatest$conc-

(sum(datatest$conc)/nrow(datatest))^2) 

 

#Save calibration values, Predicition values and the ANN model for later 

use 

valuesc1 <-cbind(datatrain$conc, predict_trainNN) 

write.csv(valuesc1, "tabulated_valuesc1.csv") 

valuesc11 <-cbind(datatest$conc, predict_testNN) 

write.csv(valuesc11, "tabulated_valuesp11.csv") 

save(NN, file = "ANNR13.rda") 

 

#Fit a linear model of the actual and the predicted calibration values 

to obtain the slope and SD of the y-intercept of the psuedounivariate 

graph to calculate LOD and LOQ. 

Lm_Mod <- lm(datatrain$conc, predict_trainNN) 

summary(Lm_Mod) 

 

#Load the saved model for use in prediciting new data sets and saving 

the results to a CSV file 

load(file="ANNR13.rda") 

df2 = read.csv(file.choose(), header = T) 

DataPred <- compute(NN, df2[,c(1:24)]) 

new_predictions1 <- DataPred$net.result 

write.csv(new_predictions1, file = "new_predictionsP.csv") 

Random Forest Regression 

# Develop the Random Forest model 

rf <- randomForest(conc~., 

                   data=train[,1:26], 

                   ntree = 2000, 
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                   mtry = 14) 

 

# Tune RF parameters and save best model 

t <- tuneRF(train[,2:26], train[,1], 

            ntreeTry = 2000, 

            stepFactor = 2, 

            improve = 0.05, 

            doBest=TRUE) 

 

# Variable Importance plot 

varImpPlot(rf, sort = T, n.var = 10, main = "Top 10 - Variable 

Importance") 

 

# Calibration using tuned RF model   

p1 <- predict(t, train[,1:26]) 

# Prediction using tuned RF model 

p3 <- predict(t, test1) 

 

#Graphs of actual versus the predicted value with a 45 degree slope line  

par(mfrow=c(1,2)) 

plot(train$conc, p1, col='blue', pch= 16) 

plot(test1$conc, p3, col='blue', pch=1) 

 

#Root Mean Square Error of calibration(RMSEC) and Root Mean Square Error 

of prediction (RMSEP) 

RMSEC.rf = (sum((train$conc - p1)^2) / nrow(train)) ^ 0.5 

RMSEP.rf = (sum((test1$conc - p2)^2) / nrow(test1)) ^ 0.5 

 

#Relative measure of fit for calibartion and validation data (R^2) 

Rsqcalib = 1 - sum((train$conc-p1)^2)/sum(train$conc-

(sum(train$conc)/nrow(train))^2) 

Rsqpred = 1 - sum((test1$conc-p2)^2)/sum(test1$conc-

(sum(test1$conc)/nrow(test1))^2) 

 

#Save calibration values, Predicition values and the RF model for later 

use 

valuesc2 <-cbind(train$conc, p1) 

write.csv(valuesc2, "tabulated_valuesc2.csv") 

valuesy22 <-cbind(test1$conc, p3) 

write.csv(valuesy22, "tabulated_valuesp22.csv") 

save(t, file = "RFR13.rda") 

 

#Load the saved model for use in prediciting new data sets and saving 
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the results to a CSV file 

load(file="RFR13.rda") 

df2 = read.csv(file.choose(), header = T) 

DataPred2 <- predict(t, df2[,c(1:25)]) 

write.csv(DataPred2, file = "new_predictionsPR.csv") 

Support vector Regression 

#Develop SVR model 

library(e1071) 

SVR <- svm(conc ~ ., 

           data = train, 

           type = 'eps-regression', 

           kernel = 'radial', 

           cost=10, gamma=0.04) 

 

#Fine tuning and saving model with optimized parameters 

tmodel <- tune(svm, conc~ ., 

               data=train, kernel = "radial",ranges= list(cost = 

c(0.01,0.1, 1, 10))) 

mybestmodel <- tmodel$best.model 

 

# Calibration using tuned SVR model   

predtrain <- predict(mybestmodel,train) 

# Prediction using tuned SVR model 

predtest1 <- predict(mybestmodel,test) 

 

#Graphs of actual versus the predicted value with a 45 degree slope line  

#prediction -train data 

par(mfrow=c(1,2)) 

plot(train$conc, predtrain, col='blue', pch= 16) 

plot(test$conc, predtest1, col='blue', pch=16) 

 

#Root Mean Square Error of calibration(RMSEC) and Root Mean Square Error 

of prediction (RMSEP) 

RMSEC(predtrain, train$conc) 

RMSEP(predtest1, test$conc) 

 

#Relative measure of fit for calibartion and validation data (R^2) 

Rsqcal1 = 1 - sum((train$conc-predtrain)^2)/sum(train -

(sum(train)/nrow(train))^2) 

Rsqpred1 = 1 - sum((test$conc-predtest1)^2)/sum(test -

(sum(test)/nrow(test))^2) 
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#Save calibration values, Predicition values and the SVR model for later 

use 

valuesc3n <-cbind(train$conc, predtrain) 

write.csv(valuesc3n, "tabulated_valuesc3n.csv") 

valuesp3n <-cbind(test$conc, predtest1) 

write.csv(valuesp3n, "tabulated_valuesp3n.csv") 

save(mybestmodel, file = "SVR13.rda") 

 

#Load the saved model for use in prediciting new data sets and saving 

the results to a CSV file 

load(file="SVR13.rda") 

df2 = read.csv(file.choose(), header = T) 

DataPred3 <- predict(mybestmodel, df2[,c(1:6)]) 

write.csv(DataPred3, file = "new_predictionsRS.csv") 
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APPENDIX 4: Model Predictions for Test Data Sets 

Table A4.1: The model predicted concentrations in g/L alongside their mean and 

corresponding standard deviations. The test data set was the data hidden from the ML 

models during the calibration phase. 

 ANN RF SVR 

observed 
predict

ed 
Mean±SD predicted Mean±SD 

predict

ed 
Mean± SD 

0 

-0.07,   

-0.07,   

-0.05,   

-0.03,   

-0.03 

  -0.05±0.02 

0.01, 

0.02, 

0.04,  

0.01 

0.02±0.01 

-0.01,     

-0.04,     

-0.05 

-0.03±0.02 

0.24 0.37 0.37±0.00 

0.33, 

0.30, 

0.40,  

0.35 

0.35±0.04 

0.35, 

0.15, 

0.49, 

0.16 

0.29±0.14 

0.26 0.39 0.39±0.00 
0.34,  

0.58 
0.46±0.12 

0.64, 

0.31 
0.48±0.16 

0.28 
0.89, 

0.27 
0.58±0.31 

0.34,  

0.38 
0.36±0.02 

0.29, 

0.54 
0.41±0.13 

0.30 
0.42, 

0.28 
0.35±0.07 

0.58,  

0.38 
0.48±0.10 

0.55, 

1.04 
0.79±0.25 

0.34 0.51 0.51±0.00 - - - - 

0.36 

0.26, 

0.42, 

0.25, 

0.44 

0.34±0.09 0.34 0.34±0.00 0.37 0.37±0.00 

0.40 0.52 0.52±0.00 0.79 0.79±0.00 0.76 0.76±0.00 

0.60 

0.70, 

0.56, 

0.33 

0.53±0.15 

0.58, 

0.45,  

0.56 

0.53±0.05 

0.84, 

0.62, 

0.51 

0.66±0.14 

1.00 
0.91, 

1.65 
1.28±0.37 

1.22, 

0.59,  

0.83 

0.88±0.26 

1.22, 

0.59, 

0.75 

0.86±0.27 

1.20 1.30, 

1.01, 
1.19±0.13 - - - - 
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1.27 

1.40 - - 

1.51,   

1.46,  

1.43 

1.47±0.03 

0.79, 

1.11, 

1.16 

1.02±0.16 

1.60 1.74 1.74±0.00 
1.62,  

1.56 
1.59±0.03 

1.30, 

1.44 
1.37±0.07 

1.80 

1.70, 

1.47, 

1.79 

1.65±0.13 
1.00,  

1.76 
1.38±0.38 

1.37, 

2.06 
1.71±0.34 

2.00 
1.65, 

1.71 
1.68±0.03 1.79 1.79±0.00 1.38 1.38±0.00 
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APPENDIX 5: EDXRF Analysis of Calcium Carbide 

Table A4.2: Elemental composition of the industrial grade calcium carbide used in ripening 

bananas artififically.  

 

Analyte Result (ppm) 

S 518000 

Ca 301000 

Pb 95600 

Al 43300 

Si 15000 

Mg 10100 

Cd 7710 

Fe 5530 

P 1570 

Hg 848 


