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Bühlmann credibility approach to systematic mortality risk modeling for sub- 
Saharan Africa populations (Kenya)
Joab Odhiambo , Philip Ngare and Patrick Weke

Department of Mathematics, University of Nairobi, Nairobi, Kenya

ABSTRACT
The classical mortality models such as the Cairns-Blake-Dowd (CBD), Lee-Carter (LC), Linear 
Regression (LR) models are used to model Systematic Mortality Risk (SMR) for many developed 
countries populations for actuarial product valuations. This research study aims at incorporating 
the Bühlmann credibility approach (BCA) to improve the SMR models to fit sub-Saharan African 
populations like Kenya. Since the Kenyan population does not exhibit the Gaussian properties used 
in modeling the classical error terms, we proposed using Normal Inverse Gaussian distribution to 
model these error terms instead of a Gaussian distribution. We model the error terms of the 
classical models (LC, CBD, and LR) as a Normal Inverse Gaussian (NIG) distribution through the 
Bühlmann credibility approach. This novel approach demonstrates an improved precision of the 
predicted SMR as shown by the values of MAPE and RMSE measures compared to those under 
classical mortality risk models. Ultimately, we have done actuarial valuations of annuities and 
assurances using our determined SMR, thus concluding that this BCA approach improves the 
accuracy of actuarial products sold in the Kenyan market.
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1. Introduction
Mortality risk plays an essential role in determining the 
development strategies that countries worldwide may 
adopt when planning in several areas like health, indus
try establishment, and resource distribution (Li, 2010). 
Insurance companies and pension firms often charge 
premiums depending on the potential systematic mor
tality risk, thus modeling and predicting mortality risk 
becomes a vital concept for actuaries, demographers, 
and many other researchers (Dowd et al., 2006).

From the classical mortality risk model (Lee & 
Carter, 1992), many extensions exist today to reduce 
their shortcomings. From the LC model, crude death 
rates were determined by a constant age-specific change 
in age dynamic and mortality rate trends. (Cairns et al., 
2006) The model proposed a logit function of 
specific year death probabilities, which considers both 
the general time trend and age-related trend. Both (Lee 
& Carter, 1992) and (Cairns et al., 2006) have two-time 
trends that generally assume a random walk with a drift 
during mortality prediction.

Many models in research papers such as (Alavi et al., 
2021; Chen & Cox, 2009; Haberman & Renshaw, 2009; 
Hammal et al., 2020; Najafabadi, 2010; Pan et al., 2008; 
Plat, 2009; Tan et al., 2015) have been used in modeling 
mortality risks, with each of them making assumptions 

that the disturbances/error terms follow a Gaussian dis
tribution. This assumption primarily considers the kind 
of population data being used, especially in European 
countries. (Tsai & Yang, 2015) proposed linear regres
sion for a two-parameter with a time lag for a specific 
age when forecasting the mortality rates with Gaussian 
assumptions. Tsai and Lin (2017a) extended the (Lin 
et al., 2015) by including the copula and Generalized 
Autoregressive Conditional Heteroskedasticity model.

The purpose of this study is to incorporate the 
Bühlmann credibility approach introduced by 
(Buhlmann & Gisler, 2005) into three commonly used 
mortality models, namely, the (Lee & Carter, 1992) 
model, the (Dowd et al., 2006) model, and (Lin et al., 
2015) model. This introduction will boost the prediction 
of SMR capabilities when considering the Kenyan popu
lation. The novelty in this study is the assumption that 
the error terms of the three models ((the (Lee & Carter, 
1992) model, the (Dowd et al., 2006) model) follow 
a Normal Inverse Gaussian distribution as opposed to 
the Gaussian distribution commonly used in the origi
nal mortality models. The approach is applied because 
the Kenyan population does not exhibit the normality 
assumptions of the error terms in the classical models. 
(Tsai & Lin, 2017b) has had integrated the Bühlmann 
credibility into the three classical mortality models to 
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test their accuracy while assuming the Normality of the 
randomness, which our study improves for novelty.

We applied a Jarque-Bera test to check whether the 
Kenyan population data have kurtosis and skewness. 
The results match a Gaussian distribution to confirm 
our choice of using NIG distribution data as it does not 
possess Gaussian distribution properties. Furthermore, 
we have offered a credibility estimates interpretation 
with a person aged exactly x time trend and 
a conglomeration of trends for all individual ages. 
Ultimately, we applied the projected mortality rates 
under with and without Bühlmann credibility 
approaches to value the net annual single premiums 
payable by policyholders to life assurance firms. We 
also compared their corresponding MAPEs and 
RMSEs errors to the Kenyan population data.

The novelty in the study is the assumption that the 
error terms of the three classical models follow 
a Normal Inverse Gaussian distribution as opposed to 
the Gaussian distribution commonly used in the origi
nal mortality models. Our proposal is anchored on the 
fact that the Kenyan population does not exhibit the 
normality assumptions applied in the classical models, 
thus necessitating this research study. In addition, the 
inclusion of Bühlmann’s credibility approach improves 
the precision of forecasted systematic mortality risk 
used during life products valuation sold in the Kenyan 
markets.

We have structured this research study as follows: the 
introduction and literature review are in section 1. In sec
tion 2, Bühlman’s credibility approach and Normal Inverse 
Gaussian distribution mathematical concepts are reviewed. 
In section 3, we have incorporated the Bühlmann 
Credibility Approach into stochastic mortality models by 
stating the original models, justification of non-normality 
of Kenyan population data, and application of NIG distri
bution when modeling the error terms for each of the 
mortality models. In section 4, we compare the forecasting 
performances of these models with and without the 
approach of Bühlmann’s credibility theory. In section 
five, we have applied these predicted mortality rates both 
with and without the concept of Bühlmann’s credibility. 
We use the idea to value the standard assurances and 
annuities of actuarial products sold in the Kenyan 
Insurance market. In section 6, we offered conclusions as 
well as recommended areas for further research.

2. Mathematical preliminaries of Bühlmann 
Credibility theory

Let X1, X2; . . . ;Xn� 1, Xn;Xnþ1 represent the observed 
data points that are independently and identically dis
tributed. Let Θ denote the parameter of conditional risk. 

Also, let πΘðθÞ denote the risk characteristics distribu
tion of the policyholders in (Buhlmann & Gisler, 2005; 
Kim & Jeon, 2013). The experience of policyholders, 
which can either be the size of claims or the claim’s 
numbers for an individual policyholder with a risk para
meter, is denoted as ðΘ ¼ θÞ: In addition, it is modeled 
through a conditional distribution gX=ΘðX=θÞ given Θ ¼
θ and θ is defined as the prior information on the 
distribution of the number of claim amounts of X1, 
X2; . . . ;Xn as shown by (Pitselis, 2013).

Let observations X1, X2; ::;Xn denote the prior expo
sure periods. The Buhlmann Credibility Estimator, C, 
experienced at Xnþ1 is given by 

C ¼ Z�X þ ð1 � ZÞμ (1) 

where Z is the credibility factor estimate, which is 
assigned to the data of observed experience and μ is 
the unconditional mean E½X� (the mean value that has 
been taken on all the risk parameters, Θ; members) and 
�X is the sample mean. The Buhlmann credibility factor 
or estimator C is a linear function of all historical data 
written in the form: 

C ¼ ZX þ ð1 � ZÞμ � w0 þ
Xn

i¼1
wiXi (2) 

where w0 ¼ ð1 � ZÞμ and wi ¼
Z
n for i ¼ 1; 2; 3; . . . ; n 

and due to limited data, the actual mean in equation (1) 
can be approximated from sample mean in equation (2) 
mean under the assumption of central limit theory 
(Blackburn et al., 2017).

Buhlmann credibility factor or estimator is an opti
mal linear estimator to the mean of Bayesian predictive, 
E½Xnþ1jX1; � � � ;Xn�, and the hypothetical mean 
E½Xnþ1jΘ� ultimately minimizing the squared error 
loss (Najafabadi et al., 2012). Alternatively, the coeffi
cients denoted as wi are determined in such a way that 
the predictive expectations or the loss functions are 
minimized after taking all expectations over all the 
observations of Θ to get 

L ¼ E E½Xnþ1jX1; � � � ;Xn� � w0 �
Xn

i¼1
wiXi

" #2 !

(3) 

where equation (3) represents quadratic loss function that 
minimizes the expected squared error of a linear estimator 
of the past observations of deaths in a given population.

The hypothetical mean and variance of conditional 
on the risk parameter, Θ; is denoted by E½XjΘ� and 
Var½XjΘ�, respectively. Then, μ ¼ E½X� ¼ E½E½XjΘ�� is 
the expected present value of the hypothetical means or 
the unconditional mean. Thus, the total variance of the 
random process is defined as 
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Var½X� ¼ E½Var½XjΘ�� þ Var½E½XjΘ�� (4) 

From equation (4), it has two parts namely, the total 
variance E½Var½XjΘ�� expectation known as the 
expected value of process variance (EPV), whereas the 
first part Var½E½XjΘ�� is known as the variance of the 
hypothetical means (VHM). From the E½XjΘ� and 
Var½E½XjΘ��, the credibility factor Z is calculated as 

Z ¼
n

nþ K

� �

(5) 

where K ¼ E½XjΘ�
Var½E½XjΘ��

This study assumes that the Error terms in the three 
classical stochastic mortality models follow Normal 
Inverse Gaussian Distribution (NIG; Lillestol, 2000) 
instead of a Normal distribution with parameters 
μ; σ2ð Þ. Our models will now follow an NIG distribu

tion. Estimation of the parameters of the NIG distribu
tion using the Kenyan population data is then done. 
Thus, the distribution of the Error terms, say, X as 
X,NIGðα̂; β̂; θ̂; σ̂Þ with all the parameters to be esti
mated from the available Kenyan life table data.

3 Incorporation of the Bühlmann credibility 
approach into stochastic mortality models

Let A, B, and C denote LC (Lee-Carter), CBD and 
Linear Relational (LR) Models, respectively.

3.1. Mathematical modeling of mortality

Let qðx; tÞ denote the instantaneous death rates asso
ciated with μðx; tÞ, which is the force of mortality. With 

the assumptions of UDD (Uniform distribution of 
deaths) and constant force of mortality (CFMÞ in 
between the integer age x as well as year t. The force 
of mortality is equivalent to the central death rates, 
μðx; tÞ ¼ mðx; tÞ with the rate mðx; tÞ defined as the 
select central death rates.

We assumed an ordinary least squares method, dur
ing parameter estimations of the models since the 
Kenyan mortality data provided is in discrete form. 
We make an assumption of t years within the year of 
fitting span, say [xlow; xhigh] (xlow � xhigh þ 1 ¼ tÞ and k 
ages in the fitting age span [tlow; xhigh�

(tlow � thigh þ 1� ¼ m. We note that models A and C 
use lnðmðx; tÞ) while B uses logitðqðx; tÞÞ ¼ ln qðx;tÞ

1� qðx;tÞ

during mortality risk modeling.
The empirical Kenyan mortality data show that 

lnðmðx; tÞÞ in both models A and C and ln qðx;tÞ
1� qðx;tÞ in B 

has displayed a downward trend during period x (see 
Figure 1). By denoting Qðx; tÞ ¼ lnðmðx; tÞÞ �
lnðmðx; t � 1ÞÞ for the A and C models and Qðx; tÞ ¼
logitðqðx; tÞÞ � logitðqðx; t � 1ÞÞ for B, (as illustrated in 
Figure 1) for x ¼ xlow þ 1; . . . ; thigh, it eliminates this 
downward trend. This is an assumption that the ðt �
1Þ observed values for all Qx;klowþ1; . . ., Qx, khigh are 
provided.

Bühlmann credibility estimate Q̂x;thigh þ 1 for those ages 
x in the year thigh þ 1 is defined as the weighted average or 
weighted proportion of the mean sample and 

Q̂x ¼
1
m

Pxhigh

x¼xlowþ1
Qðx;tÞ, which is the exact mean, μ with 

weights of Z at the same time ð1 � ZÞ, in the following 

Figure 1. lnðmðx; tÞÞ and logitðqðx; tÞÞ against time for Kenyan Males(left) and Females(right), respectively, on top and Qðx; tÞ against 
time for Kenya Males (left) and Females (right), respectively, at the bottom.
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order. The distribution of the risk parameter, Qx;t deter
mines the kinds of parameters used when determining the 
value of μ and Z:

3.2. Incorporation of the Bühlmann credibility 
approach into the LC mortality model

Let Model A (Lee & Carter, 1992) is defined as; 

lnðmðx; tÞÞ ¼ αx þ βxκt þ eðx; tÞ (6) 

where the values of x ¼ 1; 2; 3 . . . ::n and t ¼

1; 2; 3 . . . :n are subjected to the constraints 
Pn

x¼1
βx ¼ 1 

and 
Pn

t¼1
kt ¼ 0. Moreover, αx denotes the expected age- 

specific mortality rate, κt is the overall mortality trend 
that varies with time t, βx is the sensitivity of age-specific 
mortality to time, and eðx; tÞ,Nð0; σ2

eÞ. This study 
models the error term associated with the model as 
a NIG distribution. See the appendix for the estimation 
of the parameters of equation (6).

3.2.1. Justification of non-normality feature of 
Kenyan population data
Jarque–Bera (JB) test for Lee-Carter Model is performed 
on Kenyan Data to test whether the kind of residuals of 
Kenya data used follow a normal statistical distribution. 
JB test needs pre-requisite conditions of a large number 
of data when doing the goodness-of-fit test of whether 
Kenyan population data possess kurtosis and skewness 
matching a Gaussian distribution. These conditions 
were all ascertained when the test was done on the 
Kenyan population data for normality assumptions.

This JB test statistic is non-negative meaning that it is 
much far from zero, which indicates that the specific 
data do not have the property of a Gaussian distribution 
(Thadewald & Büning, 2007). From the formulated null 
hypothesis against alternative hypothesis such as

JB test (P-value>0.05) = Accept H0 (Normal 
Distribution) Vs JB test(P-value<0.05) = Reject H0 
(Non-Normal Distribution)

This tells us that the test statistic is 4:1831 and the 
p � value of the test is 0:01235. In this case, we would 
reject the stated null hypothesis (H0Þ that the residuals 
of data are normally distributed. This means that we 

have sufficient evidence that the Kenyan population 
dataset residuals are not normally distributed, thus jus
tification of the choice of NIG distribution.

3.2.2. The LC mortality model under NIG 
assumptions
From the classical model in equation (6) and justifica
tion in Table 1, we assume that the error terms denoted 
as eðx; tÞ are independent with mean of ðθ þ β

τ σÞ and 
variance of σ α2

τ3 . The classical paper assumes that the 
overall mortality trend follows a simple random walk, 
with a drift # for the prediction of mortality such that 
κt ¼ κt� 1 þ #þ eðtÞ where trend errors (eðtÞ) of the 
time follows a NIG and are i:i:d: for eðtÞ such that 
t ¼ tx þ 1; . . . ::tm. From the work of (Hári et al., 
2008), with assumption of i:i:d. on the error terms 
being white noises satisfying the martingale structure 
equation as; 

eðx; tÞ
eðtÞ

� �

=Wt� 1,NIG θþ β
τ σ;

θþ β
τ σ;

σx
α2

τ3

σε
α2

τ3

( )

(7) 

where Wt� 1 provides the information about the process 
up to a time t � 1 and co-variances of the two random 
errors is zero.

Let Qx;t denote a random variable of the differences 
between the central death rates t and t � 1. This means 
that Qx;t ¼ lnðmðx; tÞÞ � lnðmðx; t � 1ÞÞ

Qx;t ¼ βxðkt � kt� 1Þ þ Δeðx; tÞ

Qx;t ¼ βx#þ βxet þ Δeðx; tÞ

where the value of x ¼ x1 . . . ; xm; t ¼ tx1 þ 1; . . . ; txm and 
Δeðx; tÞ,NIGðθþ β

τ σ; 2σ α2

τ3Þ are in equation (7). The 
result will lead to Qx;t,NIGð#1βx; #2βx; β

2
xσ2

ε þ 2σ2
xÞ, 

which follows the sum of independent variables of NIG 
distribution and still remains a NIG distribution with the 
new parameters.

From both conditional expectation and variance of 
Qx;t , we apply the Bühlmann credibility, such that 
θðxÞ ¼ E½Qx;t=X� ¼ βx# and ½VarQx;t=X� ¼ β2

xσ2
ε þ 2σ2

x 
in the subsequent order. Since the expectation of value 
of the stated hypothetical mean, 
θ ¼ E½θðxÞ� ¼ E½E½Qx;t=X�� ¼ θE½E½Qx;t=X��, the esti
mated value of θ, denoted by θ̂ is given by; 

Table 1. Jarque–Bera normality test for Lee-Carter Model
Distribution Mean Standard Deviation

Normal 0:56468 2:0568
The adjusted test statistic: JB ¼ 4:1831
Significance level: α ¼ 0:05
Critical value: 2:4538
Critical region: Reject H0 if JB< 0:01235
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θ̂ ¼
#̂

n

Xxn

x1

θ̂x ¼
#̂

n
(8) 

From the equation 8, the variance process of expected 
value is given as a ¼ E½aðXÞ� ¼ E½β2

x�σ
2
ε þ 2E½σ2

x�. The 
value of â is used to calculate the credibility factor in 
equation (5). Thus,  

â ¼
σ̂2

n

Xxn

x1

θ̂2
x þ 2

Xxn

x1

σ̂2

m
(9) 

while the hypothetical mean variance 
c ¼ Var½θðXÞ� ¼ #2Var½βX� ¼ #

2E½β2
X� � E½βX�

2. This 
can be estimated through 

â ¼ #2½
#̂

n

Xxn

x1

θ2
x � ð

1
n

Xxn

x1

θxÞ
2 

By writing the equation in form of the �ZX þ ð1 � ZÞμ;
it is easy to estimate the value of μ̂ as #̂n .

3.3 Incorporation of the Bühlmann credibility 
approach into the CBD mortality model

Model B (Dowd et al., 2006) is defined as
logitðqðx; tÞÞ ¼ lnð qðx;tÞ

1� qðx;tÞÞ, which can be simplified to 
give 

logitðqðx; tÞÞ ¼ kð1Þt þ kð2Þt ðx � �xÞ þ eðx; tÞ (10) 

where x ¼ 1; 2; 3 . . . ::; n, t ¼ 1; 2; 3; . . . ::m, and �x is the 
expected age over the specific age span and 
eðx; tÞ,Nð0; σ2

eÞ. See the appendix for the estimation 
of the parameters of equation (10). 

3.3.1 Validation of non-normality property of 
Kenyan life table data
We perform a Doornik-Hansen test for CBD Model to 
justify that the Kenyan population does not exhibit the 
Normality assumptions used in the classical models. 
Since the CBD model is a multivariate parameter 
model, we can model the model’s errors using indepen
dent univariate normal inverse Gaussian Levy processes 
(Ainou, 2011). Also, we use the Doornik-Hansen test 
see, Doornik and Hansen (2008) when testing whether 
the residuals of Kenyan Mortality data follow a Gaussian 
distribution before applying the proposed NIG 
distribution.

Therefore, we rewrite equation (10) in the form 

Ktþ1 ¼ Kt þ θþ CZtþ1 (11) 

where Kt is a two-dimensional random walk with drift 
terms, where θ and C are constants (C is a 2� 2 upper 

triangular matrix). Zt is a two-dimensional standard 
Gaussian random variable. While (Dowd et al., 2006) 
applied OLS to estimate the parameters of the model, we 
apply the MLE method when estimating its two 
parameters.

From equation (11), we rewrite it as; 

logitqðx; tÞ ¼ K1
tþ1 þ K2

tþ1ðxÞ (12) 

where ages x rangefrom 60 to 90 and t covers from 2010 
to 2020. Then, we apply linear regression in equation 
(12) to estimate the value of Kt . It is clear from (12) that 

E½Ktþ1 � Kt� ¼ θ
Var½Ktþ1 � Kt� ¼ CC0

�

(13) 

From equation (13), the mean and the variance of the first 
consecutive differences, Ztþ1 � At , can be used to estimate 
θ and W ¼ CC0, respectively. . Generally, those negative 
values for θ1 show mortality improvement. From the same 
trend, the positive value for θ2 indicates that mortality rates 
at significantly higher ages are now improving at a much 
slower rate. The Estimated Mean and Variance Matrices 
for the CBD Model have been determined as : ~θ is 
� 0:0868560
0:00082550

� �

and Ŵ is 0:052567300 � 0:00066890
� 0:00018935 0:000023457

� �

:

The multivariate section of Table 2 indicates that 
the test statistic is significantly based on the p-value 
of the test, which is a bi-variate normality assump
tion that has been rejected at a significance level of 
α ¼ 0:05. Subsequently, the multivariate/bi-variate 
normality assumption that has been made on the 
model does not hold. We confirm the Doornik- 
Hansen Normality test for CBD Model using 
a Multivariate Shapiro-Wilk Test for Normality, 
which is tabulated below as.

From table 2, test statistic of 0:8629 , which is less 
than the critical value at the level of significance of 
α ¼ 0:05, we therefore reject the null hypothesis, 
which is an assumption that the Kenyan data is 
normal. This prompts the use of NIG during errors 
modeling. Besides, it confirms the findings of the 
Doornik-Hansen test on the Normality for CBD 
Model, as in Table 2.

3.3.2. The CBD mortality model modification under 
NIG assumptions
From equation 10 and justifications on non-normality of 
Kenyan data from Table 2, the error term denoted as eðx;tÞ
is assumed to be NIG distributed and independently and 
identically distributed with a mean of θþ β

τ σ and var

iance of σx
α2

τ3 for "t . Besides, kð1Þt and kð2Þt are time trends 
modeled by a bi-variate random walk having a drift of #:

RMS: RESEARCH IN MATHEMATICS & STATISTICS 5



It is easy to model kð1Þt and kð2Þt time trends as Bi-variate 
random walk with the drift # i:e: kðiÞt ¼ kðiÞt þ #þ eðx; tÞ
where kðiÞt ; i ¼ 1; 2 equals ðkð1Þt kð2Þt Þ

0, # ¼ ð#1; #2Þ
0 and 

eðtÞ ¼ ðeð1Þt ; eð2Þt Þ
0 thus satisfying the equation 

eð1Þt

eð2Þt

" #

=Wt� 1,NIG θ1 þ
β
τ σ1;

θ2 þ
β
τ σ2;

σ2
e;1 σe;1σe;2

σe;1σe;2 σ2
e;2

( )

(14) 

with the two errors eðx; tÞ as well as eðtÞ are assumed to 
be identical and independent with the time trends for "t 
are also iid when values of i ¼ 1; 2.

By considering a random variable 

Qx;t ¼ ln
qðx; tÞ � pðx; t � 1Þ
pðx; tÞ � qðx; t � 1Þ

� �

¼ logit pðx; tÞ � logitðpðx; t � 1Þf g

Qx;t ¼ ðk
ð1Þ
t � kð1Þt� 1Þ þ ðx � �xÞðkð2Þt � kð2Þt� 1Þ þ Δeðx; tÞ

Qx;t ¼ fð#1 þ #2Þðx � �xÞg
þ fðeðtÞ þ eðt � 1ÞÞ � ðx � �xÞg þ Δeðx; tÞ

for x ¼ 1; 2; 3 . . . ::; n, t ¼ 1; 2; 3; . . . ::m, and Δeðx; tÞ ¼
eðx; tÞ � eðxÞ,NIGð0; 2σ2

xÞ and from equation (14), 
Qx;t ~NIGð#1 þ #2Þðx � �xÞg; σ2

e;1ðx � �xÞ

þ 2ðx � �xÞσe;1σe;2 þ 2σ2
xÞ

. 

The conditional expectation variance of ½Qx;t=X� ¼
#1 þ #2Þðx � �xÞ and the variance expecta
tion 
VarðυÞ ¼ υ̂ ¼ σ2

e;1ðx � �xÞ þ 2ðx � �xÞ � σe;1σe;2 þ 2σ2
x.

It is essential to estimate the hypothetical mean 
expected value, θ ¼ E½θðXÞ� ¼ #1 þ #21þ Eðx � �xÞ
such that; 

θ̂ ¼ #̂1 þ #̂2 þ
1
n

Xxn

x1

ðx � �xÞ (15) 

where 

θ̂ ¼ 1
n

Pxn

x1

½lnðmðx;t1� 1Þ� lnðmðx;t1� 1Þ�

m� 1

0

B
@

1

C
A ¼ 1

n
Pxn

x1

Q̂x;t ¼ �Qx;t . 

Similarly, the process variance expected value, 
VarðυÞ ¼ υ̂ ¼ σ2

e;1ðx � �xÞ þ 2ðx � �xÞσe;1σe;2 þ 2σ2
x is 

estimated as 

VarðυÞ ¼ σ̂2
e;1 þ

2σ2
e

n

� �
Xxn

x1

ðx � �xÞ2 þ
2
n

Xxn

x1

σ̂x
2 (16) 

The expected value of υ̂ is estimated as  

υ̂ ¼
#̂2

1
n

Xxn

x1

ðx � �xÞ2 

since Var½θð#Þ� ¼ #2
2Var½ðx � �xÞ�.

3.4. Incorporation of the Bühlmann credibility 
approach into the Linear Relational (LR) mortality 
model

Model C (Tsai & Yang, 2015) is defined as 

lnðmðx; tÞÞ ¼ κð0Þt þ κð1Þt � lnðmðx; tx � 1ÞÞ þ eðx; tÞ
(17) 

where x ¼ 1; 2; 3; . . . :n, t ¼ 1; 2; 3 . . . :m, tx � 1 denote 
the base year while the parameters κð0Þt and κð1Þt are 
obtained as the regression coefficients from lnðmðx; tÞ) 
on a line of ln(mðx; t � 1Þ) for values t ¼ 1; 2; 3; . . . ::m 
and it satisfies the precondition of the value. 

k̂ð0Þt þ k̂ð1Þt �
1
n

Xxn

x1

lnðmðx; tx � 1Þ ¼
1
n

Xxn

x1

lnðmðx; tÞ

(18) 

Moreover, the time trend in the model k̂ðjÞt ; j ¼ 0; 1 is 
assumed to follow a simple random walk of drift #i, i.e. 
k̂ðjÞt ¼ k̂ðjÞt� 1 þ #i þ eðj; tÞ since j ¼ 0; 1 and 
eðx; tÞ,Nð0; σ2

eÞ. See the appendix for the estimation of 
the parameters of equation (17).

3.4.1. Anderson-Darling test of non-normality 
property assumptions of Kenyan mortality data
We do the Anderson-Darling Test for the LR model to 
determine whether specific residuals of the data sample 
drawn from a particular type of statistical probability 
distribution (Evans et al., 2017). It means that we 

Table 2. Doornik-Hansen Normality test for CBD Model (left) and Multivariate Shapiro-Wilk Test for Normality (right)
Normal Distribution Kenyan Data Normal Distribution Kenyan Data

Adjusted test statistic: p � value ¼ 24:1831 Adjusted test statistic: p � value ¼ 0:8629
Significance level: α ¼ 0:05 Significance level: α ¼ 0:05
Critical value: 8:1235 Critical value: 0:6235
Critical region: Reject H0 if p � value< 0:0385 Critical region: Reject H0 if p � value< 0:0455
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ascertain that our data from Kenyan mortality does not 
conform to the normal distribution, thus choosing 
Normal Inverse Gaussian distribution.

We define our hypothesis as follows:
H0: Kenyan population data is following 

a Gaussian distribution Vs H1: Kenyan population 
data do not follow a Gaussian distribution.

We conclude that since the test statistic of 0.8257 
is greater than 0.752 from the Anderson-Darling test, 
we fail to reject the null hypothesis and conclude 
that there is no sifficient sufficient evidence at 5% 
to say that our residuals of data follow a Normal 
distribution. Hence, we choose to model the data 
follows a NIG distribution.

3.4.2. Mortality model modification under NIG 
assumptions
From equation 17 and justification from Table 3, the 
error terms denoted as eðx;tÞ is now assumed to be iid 
and NIG distributed with a mean of ðθþ β

τ σÞ with 
a variance of σx

α2

τ3 for "t . All the white Noises given in 
the (Tsai & Yang, 2015) must satisfy the following 
condition 

eðx; tÞ
eð0; tÞ
eð1; tÞ

2

4

3

5=Wt� 1,NIG
θ1 þ

β
τ σ

θ2 þ
β
τ σ

θ3 þ
β
τ σ
; σ2; σ2

ε;0; σ
2
ε;1

8
><

>:

9
>=

>;
(19) 

By considering the random variable given as Qx;t 
defined by lnðmðx; tÞÞ � ðmðx; t � 1Þ and replacing it 
with the values of the (Tsai & Yang, 2015) model as 
written in equation (17), we obtain 

Qx;t ¼ kð0Þt þ kð0Þt� 1 þ kð1Þt þ kð1Þt� 1
þ lnðmðx; t1 � 1Þ þ Δeðx; tÞ

Qx;t ¼ #0 þ #1
� lnðmðx; t1 � 1Þ
þ ½εð0; tÞ þ εð0; 1Þ � lnðmðx; t1 � 1Þ� þ Δeðx; tÞ

where x ¼ 1; 2; 3 . . . ::; n, t ¼ 1; 2; 3; . . . ::m, and 
Δeðx; tÞ ¼ eðx; tÞ � eðx; t � 1Þ,NIGð0; 2σ2Þ and from 
equation (19), we have 

Qx;t,NIGð#0 þ #1

� lnðmðx; t1 � 1Þ; σ2ðε; 0Þ
þ ½lnðmðx; t1 � 1Þ�2 � σ2ðε; 1Þ þ 2σ2� (20) 

where Qx;t following similar assumptions under the 
Normal Inverse Gaussian distribution of a heavy-tailed 
distribution and convolution properties.

At the specific ages, we assume that Δeðx; tÞ follows 
a white noise with Qx;t being i:i:d: for the values 
of x ¼ 1; 2; 3 . . . ::; n:

From the above model, we apply the approach of 
Bühlmann credibility theory by calculating the values 
of the hypothetical mean and variance where 

θðXÞ ¼ EðQX;t=XÞ ¼ #0 þ #1 � lnðmðx; t1 � 1Þ

VarðυÞ ¼ VarðQX;t=XÞ
¼ ðσ2ðε; 0Þ
þ ½lnðmðx; t1 � 1Þ�2 � σ2ðε; 1Þ þ 2σ2Þ

We proceed ahead to estimate the values of the means 
and variance, θðXÞ and Var ðυÞ, respectively, as follows 

θ̂ ¼ #̂0 þ
#̂1

n

Xxn

x1

lnðmðx; t1 � 1Þ

( )

(21) 

From equation (20), it is important to rewrite equation 
(21) in the Bühlmann credibility formulae as: 

�QX;t ¼
lnðmðx; t1 � 1Þ � lnðmðx; t1 � 1Þ

m � 1

� �

¼
1

m � 1

Xxn

x1

ðQX;tÞ

Consequently, we estimate the expected variance, Var 
ðυÞ as applied in the Bühlmann credibility approach as; 
VarðυÞ ¼ VarðQX;t=XÞ ¼ ðσ2ðε; 0Þþ

½lnðmðx; t1 � 1Þ�2 � σ2ðε; 1Þ þ 2σ2Þ
as 

VarðυÞ ¼ υ̂
¼ σ̂2ðε; 0Þ

þ
σ̂2ðε; 1Þ

n

Xxn

x1

½lnðmðx; t1 � 1Þ�2 þ 2σ̂2 

while the variance of the stated hypothetical mean is 
defined as υ ¼ Var½θðXÞ� ¼ Var½lnðmðx; t1 � 1Þ� ¼ #2

1 �

E½lnðmðx; t1 � 1Þ2� � E½lnðmðx; t1 � 1Þ�2 which is the 
probability theory for the computation of the variance is 
estimated as 

VarðυÞ ¼ υ̂ ¼ #̂1
2 1

n

Xxn

x1

lnðmðx; t1 � 1ÞÞ2 � ½
1
n

Xxn

x1

lnðmðx; t1 � 1ÞÞ�2
 !

(22) 

where the estimation of the parameters, υ̂, #̂ and θ̂ as the 
Bühlmann credibility estimates of the �QX;t: Also, this 
has a value of 

Table 3. Anderson-Darling Test for LR Model
Distribution Mean Standard Deviation

Normal 0:004360 1:001816
Adjusted test statistic: A2 ¼ 0:8257
Significance level: α ¼ 0:05
Critical value: 0:752
Critical region: Reject H0 if A2 > 0:752
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�̂QðX;tþ1Þ ¼ lnðm̂x;tnþ1Þ � lnðmx;tnþ1Þ; forACðq̂x;tnþ1Þ � logitðqx;tnþ1Þ; foB ¼ ZQ̂x þ ð1 � ZÞθ̂
�

(23) 

where Z of logitðqx;tnþ1Þ and lnðmx;tnþ1Þ for a given age x 
for a period of tn þ 1: Hence, the estimates are  

lnðm̂x;tnþ1Þ ¼ lnðmx;tnÞ þ ZQ̂x þ ð1 � ZÞθ̂
logitðq̂x;tnþ1Þ ¼ logitðqx;tnÞ þ ZQ̂x þ ð1 � ZÞθ̂

 

(24) 

3.5 Bühlmann credibility estimate determination

When fitting and forecasting the respective A;B, and C 
models, we use the following strategies

Bühlmann credibility estimate determination

When dealing with the three A, B, and C models, the 
parameters under the Bühlmann credibility approach are 
determined under the MLE method as tabulated in the 
table. 

Remark 1. It is essential to point out that the values are 
as follows E½Var½XjΘ�� ¼ θ and Var½E½XjΘ�� ¼ b from 
Table 4 as the values of b̂ could sometimes be negative 
because of subtraction. Whenever it happens, the value 
of b̂ can be set, that implies that the value of Z ¼ 0. 
Thus, the value of Bühlmann Credibility Estimate 
becomes θ̂ = �Q. We use the following strategies to fit 
and forecast the respective A, B, and C models.

3.5.1 Strategy EW: Expansion of the window by 
a year
We apply the estimate fQ̂X;tnþ1 to 
fQx;t0þ1;Qx;t1þ1; . . . Qx;tnþN} to predict the estimates of 
Bühlmann’s credibility for the year, tn þ 1, tn þ 2; . . . 

and obtain the value of �QX;tnþ1 ¼
1
m ½
Pxn

x1

QX;t þ Q̂x;t1þ1�, 

θ̂ðtn þ 2Þ ¼ 1
n
Pxn

x1

�QX;tnþ2 and Zðtn þ 2Þ ¼ n
nþK

n o
. To 

determine the Bühlmann’s credibility estimate for the 
different time lags i.e. τ ¼ 2; 3 . . . . . . ; we apply the 
following equation 

�QX;tþτ ¼
1

mþ τ � 2

Xxn

x1

QX;t þ
Xxn� τþ1

x1þ1
Q̂X;t

 !

(25) 

where the values of θ̂ðtn þ 2Þ ¼ Q̂x;t1þτ and 
Zðtn þ τÞ ¼ nþτ� 2

nþτ� 2þK . For the values of �QX;tþτ , 
τ ¼ 2; 3; 4 . . . . the value of Zðtn þ τÞ will be increasing 
for all τ for this EW strategy.

3.5.2 Strategy MW: Movement of the window by 
a year
To predict the estimates of Bühlmann credibility for 
the year, tn þ 1, we apply the estimate fQ̂X;tnþ1 to 
Qx;t0þ1;Qx;t1þ1; . . . Qx;tnþN}, then obtain the value of esti
mate at time tn þ 2; from the value of 

�QX;tnþ1 ¼
1
m
Pxn

x1

QX;t þ Q̂x;t1þ1

 !

, θ̂ðtn þ 2Þ ¼

1
n
Pxn

x1

�QX;tnþ2 and Zðtn þ 2Þ ¼ n
nþK . To estimate the 

Bühlmann credibility estimate for the different time 
lags i.e. τ ¼ 2; 3 . . . . . . ; we apply the following equation 

�QX;tþτ ¼
1

m � 1

Xxn� τþ1

x1þ1
Q̂X;t (26) 

and the value of 

Zðtn þ τÞ ¼
n � 1

n � 1þ K̂

� �

(27) 

where the values of θ̂ðtn þ 2Þ ¼ Q̂x;t1þτ and K̂ ¼
E½Var½XjΘ��
Var½E½XjΘ�� are determined. The values of �QX;tþτ , 
τ ¼ 2; 3; 4 . . . . we obtain Zðtn þ τÞ that is increasing 
value of τ for the MW strategy. 

For all the two strategies, we get the values of Zðtn þ

τÞ where Q̂X;t ¼ lnðm̂ðx; tÞ � lnðm̂ðx; t � 1Þ for the 
A and C while Q̂X;t ¼ lnðq̂ðx; tÞ � lnðq̂ðx; t � 1Þ for 
B when dealing with values of 
ðt ¼ t1 þ 1; t1 þ 2; . . . ; t1 þ τ þ 3Þ. The forecasted mor
tality rates for an individual aged exactly x in year tlow þ

τ under the A, C, and B models without credibility 
incorporated approach will be all linear functions of τ 
having different slopes.

A is defined as:  

lnðm̂ðx; tn þ τÞ ¼ lnðm̂ðx; tnÞ þ #̂β̂x � τ 

lnðm̂ðx; tn þ τÞ ¼ lnðm̂ðx; tnÞ þ Q̂LC
X;tnþ1 � τ (28) 

B is defined as: 

lnðq̂ðx; tn þ τÞ ¼ lnðq̂ðx; tnÞ þ ½#̂1 þ #̂2ðx � �xÞ� � τ 

lnðq̂ðx; tn þ τÞ ¼ lnðq̂ðx; tnÞ þ Q̂CBD
X;tnþ1 � τ (29) 

C is defined as: 

lnðm̂ðx; tn þ τÞ
¼ lnðm̂ðx; tnÞ þ ð̂#1 þ #̂1Þlnðm̂ðx; tn � 1Þ � τ 
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lnðm̂ðx; tn þ τÞ ¼ lnðm̂ðx; tnÞ þ Q̂LR
X;tnþ1 � τ (30) 

Remark 2. Using equations (28, 29, and 30), we get the 
values of predicted mortality rates under A, B, and C. Also, 
the EW strategy shows the downward trends of all esti
mated future mortality rates that are better for each of all 
ages x. From the two common invariant properties of the 
MW strategy, it is easier to do computations of Bühlmann’s 
credibility estimates before comparing the EW strategy.

4 Fitting and forecasting of models

In this section, the fitting of A, B, and C is done both 
with and without credibility before making sample- 
based predictions for future consecutive years using 
Kenyan data. We use StMoMo R packages (Villegas 
et al., 2015). For the study period of ½T1;T2� where 
mortality rates are always available, we assume the end 
of year of tn before making projections of the mortality 
rates. After the projections, we do an evaluation of the 
forecasting performances for the respective years 
tn þ 1, . . ., TN through the application of the mortality 
data within the rectangle (window) defined as 
½xn; xN � � ½tn; tN � where T1 � tn and tN <T2: An exam
ination of the forecasting performances in two cases is 
done before and after incorporating the Bühlmann 
credibility approach.

MAPE (mean absolute percentage error) is used as 
a measure of forecasting error of the true rate of mor
tality ðqÞ and predicted one (q̂; Blake et al., 2019), and 
(Tsai & Lin, 2017a). To be precise, given a specified 
fitting year span [tn, tN], we define MAPE and RMSE 
for a life aged x in year tN þ t as 

MAPEx;tnþ1 ¼ j
q̂ðx; tn þ 1Þ � qðx; tn þ 1Þ

qðx; tn þ 1Þ
j (31) 

RMSEx;tnþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
ðq̂ðx; tn þ 1Þ � qðx; tn þ 1ÞÞ2

TN � tn
Þ

s

(32) 

From equation (31) and (32), we fit A, B, and C models 
using Kenyan population data for both males and 

females from the values of the tabulated central death 
rates.

The model is done before fitting yearly for the given 
sets of age span [tn, tN], followed by forecast of mortality 
rates for the year under mortality. This helps in the 
calculation of the estimates of the Bühlmann credibility 
method for each of the years t ¼ 1; 2; 3 . . . :N with the 
application of both EW as well as MW strategies. We 
measure the forecasting performances by calculation of 
the average of the MAPE over the ages 25, . . ., 100 and 
predicting years for the remainder of the years. The 
AMAPE is then defined as 

AMAPEx;tnþ1 ¼
1

TN � tn

Xxn � τþ1

x1þ1

X100

x¼25
j
q̂ðx; tn þ 1Þ � qðx; tn þ 1Þ

qðx; tn þ 1Þ
j (33) 

Reduction ratio (RR) is done to measure how effectively 
the Bühlmann’s credibility approach improves predict
ing performance, which measures the percentage reduc
tion in AMAPE after incorporating the Bühlmann 
credibility into different sets of mortality models M for 
a given S strategy. Mathematically, it becomes 

RR ¼ 1 �
AMAPEx;tnþ1

AMAPEx;tnþN

� �

(34) 

Table 5 shows the measure values:

Remark 3. All models with and without Bühlmann 
Credibility for Kenyan Males and Females are shown 
in Table 4. In all the three models, the ratios have 
improved from the classical model for all the projected 
years. For example, in model A, values for males and 
females were 14.85 and 12.63, respectively, compared to 
8.56 and 7.25 under the EW strategy. For Model B, in 
2010, the values for males and females are 11.45 and 
14.33, respectively, compared to the given values of 7.85 
and 8.11 under the EW strategy. In Model C, for 
instance, in 2010, the values for males and females are 
15.95 and 12.44, respectively, compared to 7.96 and 7.35 
under the EW strategy.

We make conclusions from numerical calculations 
that incorporating the Bühlmann credibility method 
into the models A, B, and C have significantly improved 

Table 4. Estimations for the values of θ; v; and b
Estimation for values of θ,υ and b
�Qxi ¼ ðQxi;tþ1; . . . Qxi;tþnÞ �Qxi ¼

1
m� 1

Pxn

xi¼1
Qxiþt v̂xi ¼

1
m� 2

Pxn

xi¼1
ðQxiþt � �QxiþtÞ

2

. . . . . .. . . .
�Qxni ¼ ðQxni;tþ1; . . . Qxi;tþnÞ �Qxni ¼

1
m� 1

Pxn

xi¼1
Qxiþt v̂xni ¼

1
m� 2

Pxn

xi¼1
ðQxniþt � �QxniþtÞ

2

b̂ ¼ 1
n� 1

Pxn

xi¼1
ð�Qx � �QÞ2 � v̂

m� 1 θ̂ ¼ �Q ¼ 1
m

Pxn

xi¼1

�Qx v̂ ¼ 1
n

Pxn

xi¼1
υ̂x

RMS: RESEARCH IN MATHEMATICS & STATISTICS 9



their forecasting performances using the two strategies, 
thus contributing to similar prediction performances.

5 Actuarial valuation of Kenyan life assurance 
and annuities products

5.1 Valuation of life assurance products

We apply the predicted cohort mortality to value life 
assurance/annuities products (whether whole-life or 
endowment (pure/term) life assurance/annuities during 
a specified period as issued to a given insured aged x 
in year tN þ 1 see, (Mitchell et al., 2013). For assurances, 
we define A1 x:nj

, as the expected present value of 
a temporary life assurance of amount 1 payable to a life 
aged x at the end of the year of death during n years, will 

be A1 x:nj
¼
PN� 1

k¼1
kpxðqxþk:tþkþ1Þvt=. We calculate the 

value using the predicted probabilities with an assump
tion that interest rates are charged at 4 % per year and v 
as a discounting factor. The same procedure is followed 
when calculating the values of other types of Assurance.

We apply the use of predicted mortality rates, which 
are based on the stated models; A, B, and C without 
Bühlmann credibility and with the EW strategy when 
pricing these life insurance products for x = 25,...,100 
with N = 10, 20 and 30, respectively. This is derived 
from the following equation: 

AMAPEAx
x;tnþ1 ¼

A
_

1 x:nj
� A1 x:nj

A1 x:nj

(35) 

where A1 x:nj
denotes the Expected Present Value (EPV) 

of temporary life assurance with the actual mortality 

rates and A
_

1 x:nj
is EPV of temporary life assurance with 

corresponding forecasted ones.

Similarly, we define an annuity denoted by a1 x:nj
, as 

a temporary annuity payable in arrears by a life aged 
x for a period of n years. Mathematically speaking, 

a1 x:nj
¼
PN� 1

k¼1
kpxðvkÞ, with an assumption that interest 

rates being charged at 4 % per year, we can calculate 
the value using the predicted probabilities. Similarly, 
this can be done for the whole life annuity, ax; whether 
payable in arrears, advanced or continuously. We also 
measure the relative error in between two expected net 
present values determined from the actual and predicted 
mortality rates as 

AMAPEax
x;tnþ1 ¼

a_1 x:nj
� a1 x:nj

a1 x:nj

(36) 

where a1 x:nj
denotes the EPV of a temporary life annuity 

with the real mortality rates and A
_

1 x:nj
is EPV of tem

porary life assurance with corresponding predicted one.
Therefore, incorporation of the Bühlmann credibility 

has reduced the MAPEs and the differences between A, 
B, and C models; simultaneously, the MAPEs from the 
stated three models with credibility are almost similar 
for all cases. For both Kenyan Males and females where 
the MAPEs are under model A, it would differ slightly 
from those under models B and C.

From the numerical illustrations from Table 6, it is 
easy to note that incorporating the three Bühlman’s 
credibility into the mortality models, namely LC, CBD, 
and LR, improves forecasting performances signifi
cantly. From all the models above for both males and 
females, the life assurances improved; for instance, in 
model A, we have 9.12 compared to 2.55 in EW strategy 
for security and 77.52 compared to 21.68 in EW strategy 
for an annuity. Besides, the proposed two strategies 
contribute to similar forecasting performances. 

Table 5. Error Measures For Models A, B, and C Under with and without Bühlmann Credibility for Males and Females(In brackets), 
respectively

Kenya Model A AMAPE RR RMSE

Classical Model % EW% MW% EW% MW% EW% MW% Z
2010 14.85(12.63) 8.56(7.25) 9.55(8.95) 36.88(33.45) 33.56(32.65) 123.50(118.26) 182.20(180.18) 0.857
2020 16.45(14.85 8.23(7.92) 10.16(9.14) 38.35(36.25) 36.89(34.75) 126.45(122.34) 193.47(188.22) 0.925
2030 18.86(15.24) 9.34(8.35) 10.89(9.85) 39.89(37.56) 37.25(36.25) 132.75(126.36) 195.89(190.26) 0.950
Average 16.72(21.36) 8.71(7.84) 10.20(9.31) 38.37(35.75) 35.9(34.55) 127.56(122.32) 190.52(186.22) 0.910
Kenya Model B AMAPE RR RMSE

Classical Model % EW% MW% EW% MW% EW% MW% Z
2010 11.45(14.33) 7.85(8.11) 9.55(9.22) 36.88(35.55) 33.56(34.45) 122.33(116.75) 202.26(195.05) 0.857
2020 12.05(15.25) 8.25(8.44) 10.15(9.45) 37.85(36.45) 36.55(35.41) 128.36(117.82) 200.53(198.85) 0.925
2030 13.25(15.83) 9.45(9.45) 11.23(9.90) 38.15(37.10) 37.85(36.99) 134.37(118.27) 201.55(196.89) 0.950
Average 12.25(15.14) 8.52(8.67) 10.31(9.52) 37.63(36.37) 35.99(35.62) 128.35(118.62) 201.45(196.93) 0.910
Kenya Model C AMAPE RR RMSE

Classical Model % EW% MW% EW% MW% EW% MW% Z
2010 15.95(12.44) 7.96(7.35) 8.65(9.15) 35.35(35.54) 32.40(32.85) 140.33(132.52) 210.15(201.22) 0.900
2020 16.20(12.90) 8.15(8.55) 8.96(9.35) 35.95(35.80) 33.15(33.00) 141.65(134.35) 209.45(199.35) 0.925
2030 17.28(13.35) 9.06(8.95) 9.45(9.88) 36.55(36.05) 34.25(33.55) 139.45(136.36) 211.35(199.95) 0.975
Average 16.48(12.90) 8.39(8.28) 9.02(9.46) 35.95(35.80) 33.27(33.13) 140.48(134.42) 210.32(203.17) 0.933
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Incorporating the Bühlmann credibility drives the fore
casting MAPEs from the three mortality models that 
ultimately converge to a consistent level.

Table 6 shows the numerical results that indicate 
strong evidence that incorporating the Bühlmann cred
ibility approach improves the forecasting performances 
of the above-stated three underlying mortality models 
when calculating the values of Assurances sold in the 
Kenyan market.

6 Conclusion and recommendations

The study has shown that incorporating the Bühlmann 
credibility approach improves the accuracy of the SMR 
models (LC, CBD, and Linear relational (LR)) in Kenya 
from lower MAPE, RR, and RMSE. In addition, the EW 
strategy comes with two invariant properties, enhancing 
computation of the Bühlmann credibility estimates instead 
of using the MW strategy. In contrast, the MW computing 
strategy has a consistent Bühlmann credibility estimate or 
factor that generally produces lower AMAPE, RR, and 
RMSE ratios than the EW strategy, as shown in Table 4. 
Furthermore, the results have shown that life assurance and 
annuities are better estimated and priced under the 
Bühlmann credibility approach than the classical models, 
as shown in Table 5.

By modelling the error terms of the classical models (LC, 
CBD, and LR) as a Normal Inverse Gaussian (NIG) dis
tribution through the Bühlmann credibility approach 
improves the precision of SMR that is important in actuar
ial valuation. This novel approach demonstrates an 
improved precision of the predicted SMR as shown by 
the values of MAPE and RMSE measures compared to 
those under classical mortality risk models. Ultimately, 
the calculated actuarial valuations of annuities and assur
ances using our determined SMR have shown that the BCA 

approach improves the accuracy of actuarial products sold 
in the Kenyan market, as shown by AMAPE, RR, and 
RMSE ratios.

On recommendations for further research, we propo
sethe application of Bühlmann Credibility-based 
approaches when Modeling mortality risks for the multi- 
dimensional populations, especially for those countries 
with similar demographic characteristics in Sub-Saharan 
African Populations such as Kenya. This area of the 
Hierarchical Credibility approach to modeling mortality 
is an area that future researchers can explore when look
ing at the interdependence of the different countries 
regarding their demographic features.

On policy change recommendations, the results of 
the study should inform policymakers like the Insurance 
regulatory authority (IRA) and Retirement Benefits 
Authority (RBA) to come up with measures on how to 
improve the precision of actuarial products (annuities 
and assurances) sold in the Kenyan market.

Author’s statement

Systematic Mortality risk modeling in Sub-Saharan African coun
tries is key in the revolution of the financial sectors for the safety 
of the policyholders. Systematic mortality risk modelling plays an 
important role in determining the values of actuarial products 
sold in the market especially in the insurance industry. However, 
the availability of data determines the accuracy of the models used 
in pricing. The use of Bühlmann credibility approach is vital in 
improving the precision of the forecasted systematic mortality 
risk (SMR) of Sub-Saharan African countries, such as Kenya. 
Through the incorporation of the Bühlmann credibility approach 
into three commonly used classical stochastic mortality modeling 
models can help increase their individual predicting capabilities 
that are needed in Sub-Saharan African countries. Furthermore, 
the aim of the research is to reduce losses associated with poor 
modelling of systematic mortality risk that has cost many Sub- 
Saharan Africans lose money through the financial products sold 

Table 6. Actuarial Valuation of temporary life Assurance (top) and temporary annuities (bottom) for Males and Females, respectively
Model EW Strategy Reduction Ratio

N Sex A B C A B C A B C
10 Male 9.12 16.66 13.55 2.55 3.45 3.88 62.44 80.55 74.56

Female 9.45 14.54 13.95 2.45 2.11 2.22 78.15 63.45 86.45
20 Male 18.22 20.15 18.55 12.65 12.94 12.75 32.55 38.75 24.08

Female 15.56 12.45 12.20 7.35 6.95 6.99 48.90 7.15 44.05
30 Male 30.54 26.80 25.50 26.87 25.50 25.45 19.86 2.95 −7.45

Female 16.56 18.66 9.35 7.25 4.90 4.85 58.10 45.53 48.45
Average 16.58 16.06 15.52 9.85 9.31 9.35 50.00 39.73 45.02

Model EW Strategy Reduction Ratio
N Sex A B C A B C A B C
10 Male 77.52 16.66 115.18 21.68 29.33 32.98 530.44 683.55 632.76

Female 80.25 123.60 118.58 20.84 17.94 18.87 664.25 636.85 734.85
20 Male 154.82 171.25 158.55 157.65 109.94 110.05 280.25 280.80 208.25

Female 132.25 112.50 105.82 64.75 56.05 54.69 48.90 64.75 374.45
30 Male 253.84 226.90 215.85 26.87 225.35 215.85 169.60 21.55 8.95

Female 136.68 158.90 79.55 61.75 41.95 42.00 508.20 345.50 418.50
Average 139.23 134.96 132.25 58.92 80.09 79.08 366.94 338.83 396.29
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Appendix: The Parameter estimations for the 
Three Mortality Models

1. The LC Model

On the LC model, it is important to note that the parameters 

are subjected to two constraints namely 
Pn

x¼1
βx ¼ 1 and 

Pn

t¼1
kt ¼ 0 as well as the estimations using the method of 

singular value decomposition ðSVDÞ. From the constraint 

that 
Pn

t¼1
kt ¼ 0, it is key to note that the parameter of ax 

denoted as âx can be estimated as; 

âx ¼
1
n
Pn

t¼1
lnðmðx; tÞÞ for values of t ¼ 1; 2; . . . . . . n. In 

addition, the constraint of 
Pn

x¼1
βx ¼ 1 will lead to the estimates 

of kt, which is k̂t as follows; 

k̂t ¼
Xn

t¼1
½lnðmðx; tÞÞ � âx�

for values of t ¼ 1; 2; . . . . . . n. The value of β̂x is obtained 
through the process of regression of the ½lnðmðx; tÞÞ � âx� on 
the value of k̂t without involving the constant term being 
included in all ages of x.

The drift parameter, #, the variance of the time trend error, 
σ2

e , and the variance of the model error, σ2
x, are estimated by 

the process of; 

#̂ ¼ 1
n� 1
Pn

t¼1
ðkt � kt� 1Þ ¼

ðkt � k1Þ

n� 1

σ2
e ¼

1
n
Pn

t¼1
ðkt � kt� 1 � #̂Þ

2

σ2
x ¼

1
n
Pn

t¼0
½lnðmðx; tÞÞ � α̂x þ β̂xk̂t�

2

0

B
B
B
B
B
B
@

The logarithm of the predicted central death rates for all 
ages of x in year t þ η is given by 
lnðm̂ðx; t þ ηÞÞ ¼ α̂x þ β̂xðk̂t þ ηð#̂Þ ¼ lnðm̂ðx; tÞÞ þ β̂xðηÞ#̂
for all values of η ¼ 1; 2; 3; . . .

2. The CBD Model

For the CBD model, the values of kð1Þt and kð2Þt are determined 
by the logitqðx; tÞ on the value of ðx � �xÞ at each value of t that 
satisfies the following condition; 

k̂ð1Þt ¼
1
n

Xn

t¼1
½logitqðx; tÞ �

k̂ð2Þt

n

Xn

t¼1
ðx � �xÞ

k̂ð1Þt ¼
1
n

Xn

t¼1
logitqðx; tÞ
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The drift parameter, #, the variance of the time trend error, 
σ2

ei,i ¼ 1; 2, and the variance of the model error, σ2
x, are esti

mated by the process of; 

#̂ ¼ 1
n� 1
Pn

t¼1
ðkðiÞt � kðiÞt� 1Þ ¼

ðkðiÞt � kðiÞ1 Þ

n� 1

σ2
e ¼

1
n
Pn

t¼1
ðkðiÞt � kðiÞt� 1 � #̂iÞ

2

σ2
x ¼

1
n
Pn

t¼0
½lnðmðx; tÞÞ � kð1Þt � kð2Þt� 1ðx � �xÞ�

2

0

B
B
B
B
B
B
@

The logit function of the predicted mortality rate logitq̂ðx; tÞ
for all ages x in year t þ η is given by logit q̂ðx; tÞ ¼ kð1Þt þ

η#̂1 þ kð2Þt þ η#̂2ðx � �xÞ ¼ logitq̂ðx; tÞ þ #̂1 þ #̂2ðx � �xÞη for 
all values of η ¼ 1; 2; 3; . . .

3. The LR Model

The drift parameter, #i,i ¼ 0; 1; the variance of the time trend 
error, σ2

ei,i ¼ 1; 2, and the variance of the model error, σ2
x, are 

estimated by the process of;

#̂i ¼
1

n� 1
Pn

t¼1
ðkðiÞt � kðiÞt� 1Þ ¼

ðkðiÞt � kðiÞ1 Þ

n� 1

σ2
e;i ¼

1
n
Pn

t¼1
ðkðiÞt � kðiÞt� 1 � #̂iÞ

2

σ2 ¼ 1
nðm� 1Þ

Pn

t¼0

Pm

x¼0
½lnðmðx; tÞÞ � kð1Þt � kð2Þt� 1lnðmðx; t � 1ÞÞ�

2

0

B
B
B
B
B
B
@

The logarithm of the predicted central death rates for all ages 
of x in year t þ η is given by lnðm̂ðx; t þ ηÞÞ ¼ kð1Þt þ η#̂1 þ

kð2Þt þ η#̂2 ¼ lnðm̂ðx; tÞÞ þ ½̂#1 þ #̂2ðηÞlnðm̂ðx; t � 1Þ� for all 
values of η ¼ 1; 2; 3; . . .
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