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Abstract

In this work we determine generalizations of the logistic distribution using the methods
of construction of the logistic distribution. The generalized logistic distributions are of
type I,II,III and IV. The methods of cons considered are: the difference of two standard
Gumbel random variables, the Burr differential equation, transformations and mixtures.
Also, the generalized logistic distributions have been considered using various transforma-
tions, the Burr differential equation, mixtures of Gumbel,beta I and beta II distributions.
GLIV, extended GLIV and Exponential generalized beta II distributions have been
obtained whence with their special cases.
A new distribution, the "extended standard logistic" has been introduced as a result of
the generalizations. We also show the application of the cdf of the logistic distribution
in determining the probability of default in logistic regression using data from a money
lending company in Kenya - Mobipesa Ltd.
Additionally, generalized logistic distributions based on beta I and beta II distributions
have been constructed. Special cases of the extended generalized Logistic type IV have
also been obtained.
We further determine the discrete and continuous mixtures of minimum and maximum
order statistic distributions from the standard logistic and exponentiated logistic distri-
butions. The mixing distributions used are zero truncated Poisson, binomial, negative
binomial, geometric and the logarithmic series distribution. The minimum and maximum
order statistics distributions have been constructed alongside their hazard and survival
functions.
We also construct continuous mixtures of the logistic distribution with scale and location
parameters. The mixing distributions used are; logistic, exponential, gamma I, gamma
II, inverse gamma, half logistic and reciprocal inverse Gaussian. The mixed distributions
have been expressed in terms of the modified Bessel function of the third kind. A
new distribution, the Logistic Inverse Gaussian distribution has been introduced. Its
properties like the log-likelihood function, moments and expected maximum algorithm
have been obtained.
Since we have quite a number of generalized logistic distributions and their special cases,
the current study has not exhausted all the mixing distributions proposed by Nadarajah
and Kotz (2004), however, the rest can be employed in a similar manner.
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1 GENERAL INTRODUCTION

The main objective of this charpter is to outline the background information of the logistic
distribution, define terminologies to be used in the research, state various notations, outline
the research problem, objectives of the study, literature review, the mathematical tools to be
used in the research and the significance of the study respectively.

1.1 Background Information

In recent times, the focus of constructing distributions,has shifted to generalizations, that
is, adding more parameters to a distribution under consideration for flexibility in its shape,
location, scale and tail(s).

The logistic probability distribution originated as a model for growth of a population. It has
no shape parameter, this means that the logistic distribution function has only one shape,
the bell shape and this does not change.

In practical applications it cannot be distinguished from the normal. It is therefore one of the
most important statistical distributions because of its simplicity and significance as a growth
curve. The use of the logistic curve for economic and demographic purposes was very popular
from the end of the nineteenth century onwards.

Various methods have been developed for constructing distributions; among them are the
generator approach.

The concept of "Exponentiated Generator Approach" was given by Burr (1942); while the
beta-generator was given by Eugene et al (2002) and Jones (2004). In this case, if one of the
parameters in a distribution is varying then we have the notion of mixtures which also takes
care of flexibility.

The pioneers of mixtures are Greenwood and Yule (1920) who mixed a Poisson distribution
with a gamma distribution. Adamidis and Loukas (1998) introduced lifetime distributions
based on the discrete mixtures of order statistics. They considered the minimum order
statistics from an exponential distribution as the conditional distribution and shifted geometric
distribution as the mixing distribution.

The general purpose of this research falls under mixtures of generalized distributions and
their special cases. The mixtures of Logistic distributions cannot be studied without a sound
knowledge of associated univariate distributions. Therefore we shall pay special attention to
the univariate standard Logistic distribution.
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1.2 Definitions and Terminologies.

1.2.1 Beta Generator

The beta generator was First introduced by Eugene et al. (2002) through its cumulative
distribution. Beta generated distributions may be characterized by their pdf. It has been used
to generate the generalized beta-generated distributions. The distributions generated have
very flexible tails and tractable properties. The generator enables the resulting distributions
to gain a modest degree of kurtosis. Beta generated distributions with more parameters were
studied by Nadarajah and Kotz (2004, 2005).

1.2.2 Logistic distribution

The logistic distribution is a continuous probability density function that is symmetric and
unimodal; It’s characterized by two main parameters, the location µ and the scale σ. It has a
shape similar to the normal distribution though it has heavier tails (higher kurtosis).

1.2.3 Beta distribution

The beta distribution is a continuous probability distribution which models events constrained
to take place within an interval defined by a minimum and a maximum value.

1.2.4 Mixtures

A mixture is a distribution obtained by combining two or more distributions. A mixture or
mixed distribution also arises when the pdf or the pmf of a random variable depends on a
parameter. Mixing one distribution with another to get a new distribution is one way of
constructing probability distributions. Finite, discrete and continuous mixed distributions are
the three types of mixtures.

1.2.5 Generalized distributions.

The term ’Generalized’ used in this research has the notion of adding more parameters to the
existing distribution in order to give a more universal distribution. GLI,GLII,GLIII and
GLIV stand for generalized logistic distribution types I,II,III and IV respectively.
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1.2.6 Special Functions

The special functions used in this research are outlined as follows.

The Beta function

The Beta function denoted by B(a,b) is defined as;

B(a,b) =
1∫

0
ta−1(1− t)b−1dt, a > 0, b > 0 (1.1)

The Gamma function

The Gamma function denoted by Γ(α) is defined as;

Γ(α) =
∞∫
0
tα−1e−tdt, α > 0 (1.2)

Modified Bessel Function of the third Kind

The Modified Bessel Function of the third kind denoted by Kv(w) is defined as;

Kv(w) = 1
2

∞∫
0
xv−1 exp

(
− w2 (x+ 1

x
)
)
dx, −∞< x <∞ (1.3)

1.2.7 Probability density function pdf, Probability Mass function pmf and Cumu-
lative distribution function cdf

Consider a random variable X. A real valued non-negative function f(x), that is, f(x)≥ 0
such that

∞∫
−∞

f(x)dx = 1 for continuous X then f(x) is a pdf and such that ∑x f(x) = 1

then f(x) is a pmf. In general both pdf and pmf are referred to as probability distributions.
The cummulative distribution function (cdf) denoted by F (x).

F (x) =


x∫
−∞

f(t)dt, continous X∑x
t=−∞ f(t), discrete X

(1.4)
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In particular, for f(x) = dF (x)
dx for continuous X. Moreover, for discrete X,

f(x) = F (x)− lim
x→x̄

F (t)

1.2.8 Exponentiated Generator

The power of a cumulative distribution function can be referred to as an exponentiated
generated distribution. Thus,let

F (x) =
(
G(x)

)α
, α > 0 (1.5)

where G(x) is the old or parent or baseline cdf. Then F (x) is the exponentiated distribution
function. The corresponding pdf is given by;

f(x) = α
(
G(x)

)α−1
g(x), α > 0 (1.6)

where g(x) is the old pdf .

1.2.9 Order Statistics

Ordered observations of an independent identically distributed sample are known as order
statistics. Let X1,X2, ...,Xn be a random sample of size n from a population having pdf f(x)
and cdf F (x). Then, X1 ≤X2 ≤, ...,≤Xn denotes order statistics for continuous X. Also, let
X1 <X2 <,...,< Xn where Xi denotes ith order statistic. The sample observations can be
arranged in ascending order of magnitude and written in the symbol form as X1,X2, ...,Xn

where the numbers i = 1,2, ...,n in parenthesis indicate the rank of the observation in the
sample so. Xi is the ithorder statistic, X1 is the first order statistic, Xn is the nthorder
statistic, similarly f1:n is the pdf of the ith order statistic and F1:n is the cdf of the ith order
statistic.

1.2.10 Beta Generator Approach

Let
w(t) = ta−1(1− t)b−1

B(a,b) , 0< t < 1, a > 0, b > 0 (1.7)

which is a classical beta pdf; also called beta 1 pdf or beta pdf of the first kind; where B(a,b)
is a beta function with parameters a and b. The cdf of the beta distribution is given by;

W (x) =
x∫

0
w(t)dt= 1

B(a,b)

G(x)∫
0

ta−1(1− t)b−1dt, 0< x < 1, a > 0, b > 0 (1.8)
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The beta generated distribution is defined in terms of cdf as

F (x) =W
(
G(x)

)
=

G(x)∫
0

ta−1(1− t)b−1

B(a,b) dt 0< t < 1, a > 0, b > 0 (1.9)

Where 0≤G(x)≤ 1 is the cdf of any distribution for −∞< x <∞

The corresponding pdf is

f(x) =

(
G(x)

)a−1(
1−G(x)

)b−1
g(x)

B(a,b) (1.10)

We refer to G(x) and g(x) to as old/parent cdf and pdf respectively.

1.2.11 The Method of Mixtures

Mixtures can be obtained by taking different distributions with pdf ′ s or pmf ′s, f1x,f2x, . . . ,fkx

with weights ω1,ω2, . . . ,ωk. The new density or mass function is

f(x) =
k∑
j=1

ωjfj(x)

for ωj > 0 and
k∑
j=1

ωj = 1 which is called a finite mixture.

Suppose the distribution of a random variable X depends on a parameter θ, then the mixture
or mixed distribution becomes;

f(x) =
∞∫
−∞

f(x|θ)g(θ)dθ (1.11)

Where f(x|θ) is a conditional pdf or pmf and g(θ) is a continuous mixing distribution. Then
f(x) is a continuous mixture. If g(θ) is discrete, then we have;

f(x) =
∑
θ

f(x|θ)g(θ) (1.12)

In this case f(x) is a discrete or countable mixture.

1.2.12 Credit scoring

Credit scoring is a term commonly used in the finance industry. It refers to the process that
financial institutions use to determine the credit worthiness of a borrower. Credit scoring
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models are used to predict probability of default P.D of a borrower. The models give financial
institutions a chance to determine the risk they are willing to take when determining the
credit worth of a borrower.

Predicting probability of default is a classification problem and hence classification models
are mostly used. A classification model is designed to use observed values to come up with
conclusions. These models use single or multiple inputs to predict single or multiple outcomes.

The inputs (explanatory variables) can be about a borrowers financial history, their personal
status or social life. The financial institutions decide the variables to use (or which they can
get) in their models. Its also crucial to ensure that the model robust and adequacy checks
are done to keep the model properly interpreted and fitted.

1.2.13 Logistic Regression

One of the classification models used in credit scoring is logistic regression. This is a type of
generalized linear model mainly used to approximate probability that a binary response occurs
based on the given explanatory variables. Logistic regression is used in different industries for
purposes like marketing, biomedical studies, financial applications and many others.

1.2.14 Stepwise Logistic regression

This is the process of automatically selecting a reduced number of predictor variables for
building the best performing logistic regression model. Stepwise selection reduces the
complexity of the model without compromising its accuracy.

1.2.15 Model Robustness

This is the ability of a model to remain stable even when there are external disturbances.
This implies that the output forecasts are consistently accurate even when an assumption or
input variables are drastically changed due to unforeseen circumstances.

1.2.16 Model Adequacy

The fit of a regression model shows how adequate it is. Globally- to understand this term, there
is an assumption that the borrower borrows from the primary financial institution (Mobipesa-
the institution under study) and from other institutions. To give the borrower a loan, Mobipesa
needs to know the borrowers behavior when borrowing from other institutions. The behavior
is obtained from CRB. Hence CRB gives the borrowers behavior in the entire financial
industry hence the term "globally".
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1.2.17 My-Sector /Other Sectors

CRB gives data in two parts, my sector and other-sectors. In this case, Mobipesa is a
digital lending firm hence "my sector" implies similar financial institutions i.e digital lending
institutions that give short-term loans. "Other-sectors" implies banks and other financial
institutions giving long-term loans.

1.2.18 Credit Risk

This is the probability that someone who has borrowed money will not repay it all. When
someone fails to pay a loan, it is said to be in default. Sometimes it is the calculated risk
difference between lending individuals and government bonds.

1.2.19 Probability of default

The likelihood that an individual will default on a loan is called the probability of default.
The cdf of the logistic gives the probability of default. The estimates are the coefficients.
The probability of default is a credit risk which gives a gauge of the probability of a borrowers
will and identity unfitness to meet the financial commitments. Evaluating the P.D enables a
firm to manage credit exposure.

1.2.20 Bad Customers/Good customers

Bad are customers who defaulted on paying a loan while good customers are customers who
paid back the loan.

1.2.21 Expected Loss

This is the amount a firm loses as a result of loan default. It has three components.

(i) Probability of default (PD)
This is the likelihood that a borrower will fail to pay back a debt. The cdf of the logistic
gives the probability of default

p= 1
1 + e−y

(1.13)

where
y = β0 +β1x1 + ...+βixi

(ii) Exposure at default (EAD)
This is the predicted amount a lender is likely to lose when a borrower defaults on a
loan.
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(iii) Loss given default (LGD) This is the amount of money a lender loses when a borrower
defaults on payment of a loan.

Expected loss = PD ∗EAD ∗LGD

1.2.22 Bin

To bin is to categorize/group variables in a way that summarizes as much information as
possible in order to build models that eliminate weak variables or those that do not conform to
good business logic. Bins are a form of data partitioning. Binning is a powerful process because
it eliminates outliers because they can be contained in the smallest or the largest group,
missing values are assigned to their own group, grouping can reflect non linear relationships
since there is no need to worry about linearity assumptions.

1.2.23 Weight of evidence (WOE)

WOE defines the relationship between a binary response variable and an explanatory variable.
Its calculated from the basic odds ratio. This is the difference between the distribution of
good and bad characteristics of an individual borrower. WOE tells the predictive power of
an independent variable in relation to the dependent variable.

Its a measure of separation of good and bad customers. The computer package being used in
building the model for credit scoring automatically defines the bins or they are automatically
defined by an expert based on certain characteristics or their distribution. From raw data
bins are calculated and a weight of evidence is assigned to each bin.

WOE = ln
(Distribution of good

Distribution of bad

)
(1.14)

Positive WOE means that distribution of good customers is greater than distribution of
bad customers while a negative WOE means that the distribution of good is less than the
distribution of bad. Weight of evidence helps in eliminating outliers through grouping, it
also helps in handling missing values as they can be binned separately . A new customer is
assigned the weight of evidence of the bin in which they fall.

1.2.24 Information Value

Denoted by IV . This is a technique for selecting important variables in a predictive model.
It helps to rank variables on the basis of their importance. It’s a measure of the "strength" of
a grouping for separating bad and good risk.

IV =
∑

(Distribution Goodi−Distribution Badi)∗WOEi (1.15)
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1.2.25 Odds

Odds are a measure of the likelihood that something will occur. Usually expressed as a ratio.
They represent the relative frequency with which different outcomes occur. Odds are directly
related to probabilities and can be translated back using the translation in equation 1.2

The transformation from probability to odds is a monotonic transformation, meaning the
odds increase as the probability increases and vice versa. Probability ranges from 0 to 1.
Odds range from 0 to positive infinity.

The odds of probability of a success are defined as the ratio of the probability of success over
that of failure. The transformation from odds to log of odds is the log transformation.

Odds = P.D

1−P.D (1.16)

1.2.26 Points to double Odds.

Often abbreviated as PDO. This refers to the increase in in score points that results in the
score that corresponds to twice the odds. The PDO accepts integers greater than or equal to
1. The default value is 20. Its the source of the ln2. So the interpretation of 20

ln2 is that for
a 20-point increase in the score, the odds double. For example how many points does the
score change if the odds increase from 100: 1 to 200:1

1.2.27 Application Programming Interface

Denoted by A.P.I. This is a communication protocol between different parts of a computer
program. It specifies how software components should interact. It defines the kinds of calls
or requests that can be made, how to make them, the data formats that should be used and
the conventions to follow.

1.2.28 Credit Modelling in R

The R-Script shows the analysis of customers data, logistic regression and conversion to
scores that are used to grade customers.

1.3 Research Problem

Adamidis and Loukas (1998) introduced lifetime distributions based on the discrete mixtures
of distributions of order statistics. They considered the minimum order statistic from an
exponential distribution as the conditional distribution and shifted geometric distribution as
the mixing distribution.

Nadarajah and Kotz (2004) constructed the extended generalized logistic type IV from the
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difference of two independent Gumbel random variables, but did not give explicit results.
Moreover, Nadarajah and Kotz (2006) constructed logistic mixtures but did not obtain
moments and posterior distributions.

Morais (2009) constructed discrete mixtures of minimum order statistics from exponential,
Weibull and Pareto distributions. She did not consider discrete mixtures of maximum order
statistics or continuous mixtures of both minimum and maximum order statistics. Motivated
by this work, one realizes that mixtures of order statistics from logistic distribution don’t
seem to have been studied.

A lot of beta- generated distributions have been constructed after the work of Eugene (2002)
and Jones (2004). However, mixtures of beta-generated distributions and their special cases
don’t seem to have been studied apart from the work of Nadarajah and Kotz (2006) mentioned
above.

Olapade (2004,2005) introduced introduced the extended generalized logistic type I and
II, Wu, Hung (2000) introduced the extended generalized logistic type IV . However, the
extended standard logistic distribution has not been studied.

In this work we shall determine generations of the logistic distributions using the methods of
construction of the logistic distribution. We shall also determine the discrete and continuous
mixtures of order statistics arising zero truncated mixing distributions. The standard logistic
distribution shall also be applied to data alongside the generalized logistic distributions.

1.3.1 Mathematical Formulation of the Research Problem

The cdf and pdf of the standard logistic distribution

Let the cdf and pdf of the standard logistic distribution be given by;

G(x) = 1
1 + e−x

, −∞< x <∞ (1.17)

g(x) = e−x

(1 + e−x)2 , −∞< x <∞ (1.18)

Then the cdf and pdf of the beta-logistic shall be stated as follows;

F (x) = 1
B(a,b)

(1+e−x)−1∫
0

ta−1(1− t)b−1dt

f(x) = e−bx

B(a,b)
(
1 + e−x

)a+b , a > 0, b > 0, −∞< x <∞ (1.19)
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Which is the Beta-Generalized logistic type IV , BGLIV .

Mixtures of Logistic Distribution

For the standard logistic we shall introduce a new parameter σ in the standard logistic to
obtain the distribution:

f(x/σ) = 1
σ

e−x/σ

(1 + e−x/σ)2 (1.20)

and the mixture or mixed distribution is

f(x) =
∞∫
0
f(x|σ)g(σ)dσ

=
∞∫
0

1
σ

e
−x/σ

(1 + e−x/σ)2 g(σ)dσ (1.21)

Discrete mixtures for minimum order statistics

For the discrete case, Pn is a zero truncated power series distribution.
Let

f1:n(x) =
∞∑
n=1

f1:n(x|n)Pn

Then

f(x1:n) =
∞∑
n=1

ne−n(x−µσ )

σ
(
1 + e−

x−µ
σ

)n+1Pn (1.22)

Discrete mixtures for maximum order statistic

fn:n(x) =
∞∑
n=1

fn:n(x|n)Pn

=
∞∑
n=1

(
F (x)

)n
Pn

=
∞∑
n=1

(1 + e−x)nPn (1.23)

Pn is a zero truncated pmf .
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Continuous mixtures for nth order statistics

f(x) =
∞∫
0
ne−n(x−µσ )g(λ)dλ (1.24)

Type I Exponentiated Distribution

When b= 1, a > 0
F (x) =

(
G(x)

)a
f(x) =a

(
G(x)

)a−1
g(x) (1.25)

Type II Exponentiated Distribution

When a= 1, b > 0
F (x) = 1−

(
1−G(x)

)b
f(x) = b

(
1−G(x)

)b−1
g(x) (1.26)

The ith order statistics distribution

When a= i, b= n− i+ 1

fi:n(x) =

(
G(x)

)i−1(
1−G(x)

)n−i
B(i,n− i+ 1) g(x) (1.27)

In particular, the minimum order statistic is given by:

fi:n(x) = n
(
1−G(X)

)n−1
g(x) (1.28)

and the maximum order statistic is given by:

fn:n(x) = n
(
G(X)

)n−1
g(x) (1.29)

Continuous and Discrete mixtures

Using equation 1.10 and 1.11 for the continuous and discrete case respectively, we define
f(x) is the mixed distribution or mixture
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f(x|θ is the conditional distributional
g(θ) is the mixing distribution.

1.4 Objectives of the study

The main objective of this study is to determine the generalizations of the logistic distribution
and their mixtures, and the specific objectives are:

(i) To construct the standard logistic using; transformations, mixtures, the Burr differential
equation and the difference of two independent Gumbel random variables.

(ii) Calculate credit scores using the cumulative distribution function of the logistic in logistic
regression.

(iii) To construct the generalized logistic distributions of type I, II, III, IV and their extended
versions using the methods of constructing the standard logistic .

(iv) To construct discrete and continuous mixtures from minimum and maximum order
statistics of the standard logistic distribution using zero truncated Poisson, binomial,
negative binomial, geometric and logarithmic distributions.

(v) To construct the continuous mixtures of logistic with scale and location parameters
based on modified Bessel functions of the third kind alongside their moments.

1.5 Literature review

Various methods of constructing logistic distribution and its generalization have been developed.
A review of these follows under different sub- headings .

1.5.1 Construction of the Logistic distribution and its generalizations.

Verhulst (1845) used the logistic distribution to model the growth of populations.

Burr (1942) obtained the logistic distribution by solving what is called the Burr differential
equation. He applied the concept of exponentiation by solving the differential equation in cdf.

Gumbel (1944) obtained the logistic distribution by considering the distribution of the
difference of two independent Gumbel random variables.

Gumbel (1944) found that the logistic distribution arises as a limiting distribution of the
standard mid-range (average of the largest and smallest values) of random samples of size n
from a symmetric distribution of exponential type.

Gumbel and Keeney (1950) showed that a logistic distribution is obtained as a limiting
distribution of an appropriate multiple of the "the extreme quotient" that is, the largest
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divided by the smallest value.

Dubey (1969), Balakrishnan and Leung (1988) showed that the Logistic distribution can
be obtained as a mixture of a Gumbel distribution and a one parameter Gamma mixing
distribution.

Prentice (1976) and Kalefleish and Prentice (1980) studied the generalized logistic type
GLIV .

Balakrishnan and Leung (1988) showed that If X is a random variable with type I generalized
Logistic distribution, then −X is a type II generalized logistic distribution.

Stefanski (1991) showed that the standard logistic distribution can be represented as a
scale mixture of the standard normal distribution where the mixing density is related to
Kolmogorov-Smirnov distribution.

Wu et al (2000) showed a mixture of a two- parameter generalized Gumbel with a two-
parameter gamma mixing distribution yields an Extended Generalized Logistic distribution.

Eugene et al (2002)obtained exponentiated distributions as special cases of the beta generated
distribution.

Olapade ( 2004) called it the Extended Generalized Logistic distribution.
Nadarajah and Kotz (2004) constructed a generalized logistic distribution by considering the
distribution of the difference of two independent Gumbel random variables.

Villa and Escobar (2006) obtained the logistic distribution from the mixtures of Gumbel.
Gupta and Kundu (2010) discussed two types of generalizations of logistic distribution. The
first generalization is carried out using the basic idea of Azzalin (1985) and called it the
skew logistic distribution. The second generalization was called "proportional reversed hazard
logistic distribution".

1.5.2 Application of logistic to credit scoring

Credit scoring is the most recent development in the application of the logistic to data analysis.
Mondal (2016) discussed response modeling and credit scoring in R using machine learning
techniques. He showed the R codes for logistic regression in machine learning using German
credit data. Hongri (2018) showed how to build a statistical model using a scorecard. He
defined the variables to be used in a model showing their information value and weight of
evidence. Dominguez (2011) showed how the cdf of the logistic distribution can be used in
calculating the probability of default in logistic regression.

1.5.3 The Beta-Generated Approach

The beta- generated approach was introduced by Eugene et al (2002) and Jones (2004).
Jones calls it a generalization of order statistics. The popularity of this approach can be
verified by considering the number of papers that have been published as;
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Beta - Normal (Eugene et al (2002)
Beta - Log F (Jones (2004)
Beta - Gumbel (Nadarajah and Kotz (2004)
Beta - Fretchet (Nadarajah and Gupta (2004)
Beta - Weibull (Famoye et al (2005)
Beta - exponential (Nadarajah and Kotz (2006)
Beta - Hyperbolic Secant (Fisher and Vaughan (2007)
Beta - Gamma (Kong et al (2007)
Beta - Pareto (Akinsete et al (2008)
Beta - Rayleigh (Akinsete and Lowe (2009)
Beta - beta Prime (Morais (2009)
Bata - F (Morais (2009)
Beta - Burr XII (Paranaiba et al (2010)
Beta - Dagum (Condino and Domma (2010)
Beta - Fisk (Log- Logistic) (Paranaiba (2010)

Morais (2009) extended GLIV distribution by introducing two extra shape parameters to
introduce skewness and to vary tail weights. The GLIV has been beta-generated to come
up with a four parameter beta generalized logistic distribution.

Nassar and Elmasry (2011) studied Beta-logistic distribution which is GLIV distribution.
They expressed it in terms of the Gauss hyper-geometric function. They also obtained the
hazard function, the mode, the median and the characteristic function.

1.5.4 Mixtures Based on order statistics from the Logistic distribution

Adamidis and Loukas (1998) introduced lifetime distributions based on the discrete mixtures of
order statistics. They used the distribution of the minimum order statistic from an exponential
distribution as the conditional distribution and shifted geometric distribution as the mixing
distribution. The mixture is known as the exponential-geometric distribution.

Nadarajah and Kotz (2006) studied mixtures of logistic distribution. The mixing distributions
used are;

i. Exponential

ii. Gamma

iii. Half Logistic

iv. Inverse Gaussian

v. Weibull

vi. Stacy
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vii. Half Normal

viii. Fre’chet

ix. Two sided power

x. Beta

xi. Inverted Beta

xii. Lomax

xiii. Generalized Pareto

xiv. Burr III

xv. Burr XII

xvi. Pareto

The mixtures are expressed in terms of the modified Bessel function of the third kind; confluent
hypergemetric function and generalized hypergeometric function.
Morais (2009) did not work on logistic mixtures. We can however borrow her ideas to study
Logistic mixtures.
Morais (2009) obtained discrete mixtures of minimum order statistics from exponential,
Weibull and Pareto distributions.
The mixing distributions are zero truncated Poisson, binomial and negative Binomial.

1.6 Research Methodology

The Mathematical tools to be used in this research are special functions; specifically, beta
and gamma functions and modified Bessel functions of the third kind.

Continuous mixing distributions to be used in continuous mixtures are: exponential, gamma,
inverse Gaussian, reciprocal inverse Gaussian, generalized inverse Gaussian, beta I, beta II,
shifted gamma, inverse gamma and Pareto I.

For discrete mixtures , we shall use the following discrete mixing distributions; Zero-truncated
Poisson,zero truncated Binomial, zero truncated negative Binomial distributions, geometric
and logarithmic. We shall particularly use;

i. Beta and Gamma functions: their definitions, properties and relationships.

iii. Modified Bessel functions and their properties.

These functions have been defined in subsection 1.2.6, we now consider some of their
properties.
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1.6.1 Properties of the beta and gamma functions

Beta I function (Beta function of the first kind)

B(a,b) =
1∫

0
xa−1(1−x)b−1dx, a > 0, b > 0. (1.30)

Beta II function(Beta function of the second kind)

Properties

B(a,b) =B(b,a) (1.31)

B(a,b) =
∞∫
0

ta−1

(1 + t)a+bdt (1.32)

Gamma Function

Properties

Γ(α+ 1) =αΓ(α), α > 0
Γ(1) =1
Γ(α) =(α−1)!, α = 1,2,3, ...

Γ(t)Γ(1− t) = π

sinπt

Γ(1
2) =
√
π

The relationship between the beta and gamma functions is given by the equation.

B(a,b) = ΓaΓb
Γ(a+ b) (1.33)
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1.6.2 Properties of Modified Bessel function of the third kind

Kv(w) =K−v(w)

K 1
2
(w) =

√
( π2w )exp(−w)

K 3
2
(w) =

√
( π2w )exp(−w)

(
1 + 1

w

)
K 5

2
(w) =

√
( π2w )exp(−w)

(
1 + 1

w
+ 1
w2

)

1.6.3 The Basel Problem

The Basel problem that has been used to simplify expressions in this research is stated as
follows.

∞∑
n=1

1
n2 = π2

6 (1.34)

It shall be mainly applied to expansion of sequences and series in charpter two.

1.7 Significance of the Study

The results of the study will contribute to the construction of distributions through general-
ization. In particular, the generalization techniques used are the mixture and beta generated
methods. The generalized logistic distributions shall improve flexibility when fitting data .
The study has also helped in identifying a pattern in the construction of generalized logistic
distributions through reviewing methods of constructing the standard logistic.
The study has also made use a practical application of the cdf of the standard logistic in
credit scoring. Credit scoring is very useful in finance and for determining credit worthiness of
individuals by lending institutions.
A graph of the logistic scale and location parameter, standard logistic and normal distribution
indicated that the logistic distribution provided a better fit for data than the normal and
the standard logistic distribution. The study has also introduced new distributions like the
Logistic Inverse Gaussian and the Extended Standard Logistic. This distributions provide a
basis for further investigation and research.



19

1.8 Outline of the Thesis

The rest of the thesis is organized as outlined below:
In chapter 2: Various methods of constructing the standard logistic have been shown
explicitly. The moments have been derived alongside the first four derivatives. A practical
application of the standard logistic to credit scoring has also been shown in logistic regression

In chapter 3: Various generalized logistic distributions have been constructed based on
methods of constructing the standard logistic. The generalized logistic distributions are
GLI,GLII,GLIII and GLIV .Their extended versions have also been obtained.

In chapter 4: Generalized logistic distributions have been constructed based on the beta
distributions and their generalizations. The new distribution the "extended standard logistic
distribution" has also been obtained using beta distributionsand other methods of construction

Charpter 5: Discusses discrete and continuous mixtures of minimum order statistics from a
standard logistic distribution. New distributions have been proposed. The truncated power
series distributions have been used as mixing distributions. The shapes of the resulting
distributions have been simulated

Chapter 6: Discusses the continuous mixtures of the logistic distributions and their moments.
Of particular interest is the logistic inverse Gaussian distribution and its properties which has
been constructed and studied in detail

Charpter 7: Gives the summary, conclusions and recommendations of the study.



20

2 CONSTRUCTION AND MOMENTS OF A STANDARD
LOGISTIC DISTRIBUTION

2.1 Introduction

The main objective of the charpter is to construct the standard logistic distribution based on
four different methods. The methods are based on;

(i) The difference of two standard Gumbel distributed random variables.

(ii) Burr differential equation.

(iii) Transformations.
and

(iv) Mixtures.

Moments of the standard logistic have also been derived by direct method and by using the
moment generating function (mgf) technique.

The charpter also shows the application of the cdf of the logistic distribution to data. Logistic
regression has been used to calculate the probability of default using the data.

The organization of this chapter is as follows; Section 2.2 states the results, followed by
constructions based on Gumbel distribution, Burr differential equation, transformations and
mixtures in sections 2.3, 2.4, 2.5 and 2.6 respectively. The even and odd moments of the
standard logistic have also been evaluated including the moment generating function.

2.2 The distribution and moments of a standard logistic random variable

Let Z be a standard logistic random variable. Then;

(i) The pdf is given by,

g(z) = e−z

(1 + e−z)2

= ez

(1 + ez)2 (2.1)

(ii) The cdf is;
G(z) = 1

1 + e−z
, −∞< z <∞ (2.2)
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(iii) The survival function is

1−G(z) = 1
1 + ez

, −∞< z <∞ (2.3)

(iv) The hazard function is

h(z) = g(z)
1−G(z) = 1

1 + e−z
(2.4)

(v)
E(Z) = 0 (2.5)

(vi)

V ar (Z) = E(Z2) = π2

3 (2.6)

(vii)
µ3 = E(Z−µ)3 = E(Z3) = 0 (2.7)

(viii)
µ4 =E(Z−µ)4

=E(Z4)

=7π4

15 (2.8)

2.3 The standard logistic distribution based on the difference of two
standard Gumbel random variables

Let
Z =X1−X2

where X1 and X2 are independent random variables from a standard Gumbel distribution
whose cdf is given by;

F (x) = exp(−e−x), −∞< x <∞ (2.9)

The pdf is;
f(x) = e−x exp(−e−x), −∞< x <∞ (2.10)

Let G(z) be the cdf of Z, then

G(z) =Prob{Z ≤ z}
=Prob{X1−X2 ≤ z}
=Prob{X1 ≤ z+X2}

G(z) =Prob{X1 ≤ z+X2, , −∞<X2 <∞}
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=
∞∫
−∞

z+x2∫
−∞

f1(x)f2(x)dx1dx2

=
∞∫
−∞

{ z+X2∫
−∞

f1(x)dx1

}
f2(x)dx2

=
∞∫
−∞

F1(z+x2)f2(x)dx2

=
∞∫
−∞

exp(−e−(z+x2)e−x2 exp(−e−x2)dx2

=
∞∫
−∞

e−x2 exp{−ez+x2− e−x2}dx2

=
∞∫
−∞

e−x2 exp{−ex2(e−z + 1)}dx2

Let y =e−x2 =⇒ dy =−ex2dx2

G(z) =
∞∫
0

exp{−(e−z + 1)y}dy

=
∞∫
0
y1−1e−(e−z+1)ydy

∴G(z) = 1
e−z + 1 ,−∞< z <∞

=⇒ g(z) = d

dz
G(z) = e−z

(1 + e−z)2 , −∞< z <∞ (2.11)

which is the standard logistic distribution as obtained by Gumbel (1944).

2.4 The standard logistic distribution based on Burr differential
equation

Burr (1942) considered the differential equation;

y′ = y(1−y)g(x,y) (2.12)

where y′ is the cdf and g(x,y) is a function of x and y. The cdf of standard logistic is obtained
by solving the special case when g(x,y) = 1. Thus, y = F (x) which is the cdf of standard
logistic. The proof follows. Letting,

g(x,y) = g(x)
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the differential equation becomes

y′ = y(1−y)g(x)

∴
1

y(1−y)
dy

dx
= g(x)

∴
∫ dy

y(1−y) =
∫
g(x)dx

∴
∫ (1

y
+ 1

1−y

)

∴
∫ (1

y
+ 1

1−y

)
dy =

∫
g(x)dx

∴ logy− log(1−y) =
∫
g(x)dx

∴ log( y

1−y ) =
∫
g(x)dx

∴
y

1−y = e
∫
g(x)dx

y = e
∫
g(x)dx−ye

∫
g(x)dx

∴ y(1 + e
∫
g(x)dx) = e

∫
g(x)dx

∴ y = eg(x)dx

1 + eg(x)dx

= 1
1 + e−

∫
g(x)dx

F (x) = [1 + e−
∫
g(x)dx]−1 (2.13)

If g(x) = 1, then
F (x) =[1 + e−x]−1

= 1
1 + e−x

F (x) = 0 =⇒ x=−∞
F (x) = =⇒ x=∞

∴ F (x) = 1
1 + e−x

, −∞< x <∞ (2.14)
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2.5 The standard Logistic Distribution Based on Transformations.

2.5.1 Using Uniform distribution for the old variable.

Let
Z =− ln( U

1−U ) (2.15)

where U has a uniform distribution in [0,1]

∴
u

1−u = e−z

∴ u= e−z−ue−z

∴ u(1 + e−z) = e−z

∴ u= e−z

1 + e−z
= 1

1 + ez

∴
dy

dx
= ez

(1 + ez)2

∴ g(z) = f(u)
∣∣∣∣∣dudz

∣∣∣∣∣
=1 · ez

(1 + ez)2

= ez

(1 + ez)2 , −∞< z <∞

Alternatively, let

Z =− ln
(

e−X

1− e−X

)
(2.16)

where X is the exponential random variable, that is, X is exponential with mean 1.

∴
e−x

1 + e−x
=e−z

∴ e−x =e−z− e−xe−z

∴ e−x(1 + e−z) =e−z

∴ e−x = e−z

1 + e−z

= 1
1 + ez

∴ ex =1 + ez

∴ ex
dx

dz
=ez
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∴
dx

dz
= ez

1 + ez

∴ g(z) =f(x)dx
dz

=e−x ez

1 + ez

= 1
1 + ez

ez

1 + ez

= ez

(1 + ez)2 , −∞< z <∞

2.5.2 Using the standard Laplace Distributed Random variable as the old variable

Let
Y =− ln

( 1
2e
−X

1− 1
2e
−X

)
(2.17)

where X is a standard Laplace distributed random variable; i.e.

f(x) =1
2e
−|x|, x > 0

∴
1
2e
−x

1− 1
2e
−x = e−y

∴
1
2e
−x = e−y− 1

2e
−xe−y

∴
1
2e
−x(1 + e−y) = e−y

∴
1
2e
−x = e−y

1 + e−y

e−x = 2e−y
1 + e−y

1
ex

= 2
1 + e−y

∴ ex = 1 + ey

2

∴ x= ln
(

1 + ey

2

)

∴
dx

dy
= 2ey

1 + ey
1
2 = ey

1 + ey

∴ g(y) =f(x)
∣∣∣∣∣dxdy

∣∣∣∣∣
= 1

2e
|x| ey

1 + ey
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= 1
2e
−| ln( 1+ey

2 )| ey

1 + ey

= 1
2e

ln( 1+ey
2 )−1 ey

1 + ey

= 1
2

(
1 + ey

2

)−1
ey

1 + ey

= 1
2

2
1 + ey

· ey

1 + ey

= ey

(1 + ey)2 , −∞< y <∞

2.5.3 Using Pareto distributed random variable as the old variable

A Pareto I random variable has pdf given by;

f(x) = αβα

xα+1 , x > β > 0; α > 0 (2.18)

Put α = p and β = 1
f(x) = p

xp+1 , x > 1; p > 0 (2.19)

Now let

y =− ln(xp−1)
xp−1 =e−y

∴ x=(1 + e−p)
1
p

dx

dy
=− 1

p
(1 + e−y)

1
p−1e−y

g(y) =f(x)
∣∣∣∣∣dxdy

∣∣∣∣∣
= p

xp+1
1
p

(1 + e−y)
1
p−1e−y

= (1 + e−y)
1
p−1

(1 + e−y)
1
p (p+1)

e−y

∴ g(y) =(1 + e−y)
1
p−1

(1 + e−y)1+ 1
p

e−y

= e−y

(1 + e−y)2 , −∞< y <∞
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2.6 Standard Logistic distribution based on mixtures

2.6.1 Gumbel mixture of standard exponential

Let
Y = e−X

where Y is an exponential distribution with mean 1, that is.

g(y) = e−y, y > 0

Therefore the pdf of X is

f(x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=e−ye−x

=e−e
−x
e−x

=e−x exp(−e−x), −∞< x <∞

which is called a standard Gumbel distribution or Type I extreme value distribution.

Remark 2.6.1. The standard Gumbel distribution has no parameter.

To introduce a parameter, let us consider an exponential distribution with mean 1, so that;

g(y) = λe−λy, y > 0;λ > 0 (2.20)

If
Y = e−X

then,

f(x) =λeλy
∣∣∣− e−x∣∣∣

=λe−λe
−x
e−x

=λe−x exp(−λe−x), −∞< x <∞; λ > 0

This is a Gumbel distribution with parameter λ.

Suppose f(x|λ) = λe−x exp(−λe−x)
g(λ) = e−λ, λ > 0

(2.21)
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Then

f(x) =
∞∫
0
f(x|λ)g(λ)dλ

=
∞∫
0
λe−x exp(−λe−x)g(λ)dλ

If g(λ) is an exponential distribution with mean 1, then,

Then

f(x) =
∞∫
0
λe−x[exp(−λe−x)]e−λdλ (2.22)

=e−x
∞∫
0
λe−λe

−x−λdλ

=e−x
∞∫
0
λe−(e−x+1)λdλ

=e−x
∞∫
0
λe−(e−x+1)λdλ

=e−x
∞∫
0
λ2−1e−(1+e−x)λdλ

=e−x Γ(2)
(1 + e−x)2

= e−x

(1 + e−x)2 , −∞< x <∞

which is a standard logistic pdf.

Another Gumbel distribution with parameter λ is obtained by letting

x=−z =⇒ dx

dz
=−1

where the pdf of X is

f(x) = λe−x exp(−λe−x), −∞< x <∞; λ > 0 (2.23)

Therefore the pdf of Z is

g(z) =f(x)
∣∣∣∣∣dxdy

∣∣∣∣∣
=λe−x exp(−λe−x)
=λez exp(−λez), −∞< z <∞; λ > 0

(2.24)
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Considering
g(z|λ) = λez exp(−λez) (2.25)

Then

g(z) =
∞∫
0
λez exp(−λez)g(λ)dλ

=
∞∫
0
λez[exp(−λez)]e−λdλ

=ez
∞∫
0
λe−λe

z−λdλ

∴ g(z) =ez
∞∫
0
λe−(1+ez)λdλ

=ez Γ(2)
(1 + ez)2

= ez

(1 + ez)2 , −∞< z <∞

which is a standard logistic pdf .

2.7 Moments

The pdf of standard logistic distribution is given by

f(x) = e−x

(1 + e−x)2 , −∞< x <∞

which can also be written as

f(x) = ex

(1 + ex)2 , −∞< x <∞

we shall use both expressions in determining moments.

It suffices to write

E(X2r+1) =
∞∫
−∞

x2r+1f(x)dx, r = 0,1,2,3, ...

=
0∫

−∞
x2r+1f(x)dx+

∞∫
0
x2r+1f(x)dx, r = 0,1,2,3, ...

=
0∫

−∞
x2r+1 ex

(1 + ex)2dx+
∞∫
0
x2r+1 e−x

(1 + e−x)2dx, r = 0,1,2,3, ...

(2.26)
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Let
x=−y =⇒ dx=−dy

∴
0∫

−∞
x2r+1 ex

(1 + ex)2dx=
0∫
∞

(−y)2r+1 e−y

(1 + e−y)2 (−dy), r = 0,1,2,3, ...

0∫
−∞

x2r+1 ex

(1 + ex)2dx=
∞∫
0

(−y)2r+1 e−y

(1 + e−y)2dy, r = 0,1,2,3, ...

=−
∞∫
0
y2r+1 e−y

(1 + e−y)2dy, r = 0,1,2,3, ...

∴ E(X2r+1) =−
∞∫
0
y2r+1 e−y

(1 + e−y)2dy+
∞∫
0

x2r+1e−x

(1 + e−x)2dx, r = 0,1,2,3, ...

=
∞∫
0

x2r+1e−x

(1 + e−x)2dx−
∞∫
0

y2r+1e−y

(1 + e−y)2dy, r = 0,1,2,3, ...

∴ E(X2r+1) = 0 for r = 0,1,2 . . .
∴ E(X) = E(X3) = E(X5) = 0

(2.27)
that is, moments of odd powers are zero. Next, let us now consider

E(X2r) =
∞∫
−∞

x2rf(x)dx

=
0∫

−∞
x2r ex

(1 + ex)2dx+
∞∫
0
x2r ex

(1 + ex)2dx

Let
x=−y =⇒ dx=−dy

∴
0∫

−∞
x2r ex

(1 + ex)2dx=
∞∫
0
y2r e−y

(1 + e−y)2dy

E(X2r) =
∞∫
0

y2re−y

(1 + e−y)2dy+
∞∫
0

x2re−x

(1 + e−x)dx

=2
∞∫
0

x2re−x

(1 + e−x)dx

=2
∞∫
0
x2re−x(1 + e−x)−2dx
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=2
∞∫
0

{
x2re−X

∞∑
k=0

(
−2
k

)
e−kx

}
dx

=2
∞∑
k=0

{(
−2
k

) ∞∫
0
x2re−(k+1)x

}
dx

=2
∞∑
k=0

{(
−2
k

) ∞∫
0
x(2r+1)−1e−(k+1)x

}
dx

=2
∞∑
k=0

{(
−2
k

)
Γ(2r+ 1)

(k+ 1)2r+1

=2(2r)!
∞∑
k=0

{(
−2
k

)
1

(k+ 1)2r+1 .

∴ E(X2r) =2(2r)!
∞∑
k=0

(−1)k
(

2 +k−1
k

)
1

(k+ 1)2r+1

=2(2r)!
∞∑
k=0

(−1)k
(
k+ 1
k

)
1

(k+ 1)2r+1

=2(2r)!
∞∑
k=0

(−1)k(k+ 1) 1
(k+ 1)2r+1

=2(2r)!
∞∑
k=0

(−1)k 1
(k+ 1)2r (2.28)

Let
k+ 1 = n =⇒ k = n−1

∴ E(X2r) =2(2r)!
∞∑
k=1

(−1)k+2 1
(k+ 1)2r

=2(2r)!
∞∑
k=0

(−1)n+1 1
n2r

E(X2r) =2(2r)!
{

1
12r −

1
22r + 1

32r −
1

42r ± . . .
}

(2.29)

In particular,

E(X2) =4
{

1
12 −

1
22 + 1

32 −
1
42 + ...+ (−1)n+1 1

n2 + ... . . .

}

E(X4) =2(4!)
{

1
14 −

1
24 + 1

34 −
1
44 + 1

54 + ...+ (−1)n+1 1
n4 + ... . . .

}

=2(4!)π
4

90 = 7
15π

4 (2.30)
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Proof.

E(X) =
∞∫
−∞

xf(x)dx

=
∞∫
−∞

xex

(1 + ex)2dx

w = (1 + ex)−1

w = (1 + ex)−1

x= ln( w

1−w )

=
1∫

0
ln( w

1−w )dw =
1∫

0
ln(w)dw−

1∫
0
ln(1−w)dw

=
1∫

0
ln(w)dw−

1∫
0
ln(w)dw

= 0

The standard logistic distribution has a mean 0. The variance is equal to E(X2) because
the mean is zero

V ar(X) = E(X2) =
∞∫
−∞

x2e−x

(1 + ex)2dx

=
0∫

−∞

x2e−x

(1 + ex)2dx+
∞∫
0

x2e−x

(1 + ex)2dx

= 2
∫ ∞

0

x2e−x

(1 + ex)2dx

= 2
∫ ∞

0
x2
∞∑
n=1

(−1)n+1ne−nxdx

= 2
∞∑
n=1

(−1)n+1n
∫ ∞

0
x2e−nxdx (2.31)

to solve the part under the integral,
let;
u= x2 =⇒ du= 2xdx

dv = e−nx =⇒ v =− 1
n
e−nx
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= 2
∞∑
n=1

(−1)n+1n[−x
2e−nx

n
+ 2
n

∞∫
0
xe−nx]dx

= 4
∞∑
n=1

(−1)n+1− [xe
−nx

n
.

∣∣∣∣∣
∞

0
+ 1
n

∞∫
0
e−nx]dx

integrating the second part of the equation by parts, let;

u= x,du= dx

dv = e−nxdx,v =− 1
n
e−nx

= 4
∞∑
n=1

(−1)n+1( 1
n

)[−e
−nx

n

∣∣∣∣∣
∞

0
]

= 4
∞∑
n=1

(−1)n+1 1
n2

= [ 1
12 −

1
22 + 1

32 −
1
42 + 1

52 + ...]

= 4
[
{ 1

12 −
1
22 + 1

32 −
1
42 + 1

52 + ...}+ π2

12 −
π2

12
]

= 4
[π2

6 −
π2

12
]

= 4
[π2

12 ]

= π2

3

Compared to the normal distribution, the variance of the logistic is different from that of the
normal only by a scaling value of π

2

3 . The expectation is equal to the location parameter µ;

E(X) = µ

Proposition 2.7.1. The non central and central moments are equal. Hence

µ1 = E(X) = 0
as shown in 2.61 above

µ2 = V ar(X) = E(X2) = π2

3
as shown in 2.61 above

µ3 = E(X−µ1)3 = E(X3) = 0

µ4 = E(X−µ1)4 = E(X4) = 7π4

15 = 0
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Gupta and Kundu (2010)discovered that the first four central moments of the standard
logistic distribution can be given as;

µ1 = 0, µ2 = π2

3 , µ3 = 0, µ4 = 7π4

15

Since it is symmetric about 0, the reversed hazard rate at x is the hazard rate at −x.
Therefore the reversed hazard rate r(x) and the survival rate S(x); are identical moreover
for −∞< x <∞

V ar(X) = E(X2) = 1
12 −

1
22 + 1

32 −
1
42 + 1

52 −
1
62 ± . . .

∴ V ar(X) =
( 1

12 + 1
22 + 1

32 + 1
42 + 1

52 + 1
62

)
− 2

22 −
2
42 −

2
62 − . . .

=π
2

6 −2
( 1

22 + 1
42 + 1

62 + . . .
)

=π
2

6 −
2
22

(
π2

6

)

=
(

1− 2
22

)
π2

6

=1
2 ·
π2

6

V ar(X) =π
2

3
E[X−µ]4 =E(X4)

=2(4!)
( 1

14 −
1
24 + 1

34 −
1
44 + 1

54 −
1
64 ± . . .

)
=2(4!)

( 1
14 + 1

24 + 1
34 + 1

44 + 1
54 + 1

64 ± . . .
)
−2×2(4!)

( 1
22 + 1

44 + 1
64 + . . .

)
2(4!)

=
( 1

14 + 1
24 + 1

34 + 1
44 + 1

54 + 1
64 ± . . .

)
−2

( 1
1424 + 1

2424 + 1
2434 + . . .

)
=
( 1

14 + 1
24 + 1

34 + 1
44 + 1

54 + 1
64 ± . . .

)
− 2

24

( 1
14 + 1

24 + 1
34 + 1

44 + 1
54 + 1

64 ± . . .
)

=π
4

90 −
2
24

p4

90

=
(

1− 1
23

)
π4

90

=7
8 ·
π4

90(2 ·4!)

= 7
15π

4

(2.31)
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2.8 Moment Generating Function (MGF)

MX(t) =E[etX ]

=
∞∫
−∞

etxex

(1 + ex)2dx

let
y =(1 + ex)−1

∴ dy =− (1 + ex)−2exdx

and
1 + ex =y−1

ex =1
y
−1 = 1−y

y

MX(t) =
0∫

1

(
1−y
y

)t
(−dy)

=
1∫

0

(
1−y
y

)t
dy

=
1∫

0
y−t(1−y)tdy

∴MX(t) =
1∫

0
y1−t−1(1−y)1+t−1dy

=Γ(1− t)Γ(1 + t)
=tΓ(t)Γ(1− t)

=t
[

π

sinπt

]

MX(t) = πt

sin(πt) , −1< t < 1 (2.32)

since 1− t > 0 =⇒ 1> t and 1 + t > 0 =⇒ t < 1 and 1 + t > 0 =⇒ 1>−t =⇒ −1< t

and therefore −1< t < 1.
The first four derivatives of the mgf of a standard logistic distribution are stated by the
following propositions.

Proposition 2.8.1.

M
′
X(t) =π

{
sinπt− cosπt

sin2πt

}
=−π[πtcot(πt)−1]cosec(πt)
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Proof.
d

dt

[
πt

sin(πt)

]
=π d

dt

[
t

sinπt

]

=
π d
dt(t)sin(πt)− t ddtsin(πt)

sin2πt

=
πsin(πt)− cosπt ddt(t).t

sin2(πt)

=
π
[
sin(πt)−πtcos(πt)

]
sin2πt

=
π
[
sin(πt)−πtcos(πt)

]
sin2(πt)

=−π[πtcot(πt)−1]cosec(πt) (2.33)

Proposition 2.8.2.

M ′′X(t) =π2
{

πt

sin(πt) −
2cos(πt)[sin(πt)−πtcos(πt)]

sin3(πt)

}
=π2cosec(πt)[πtcosec2(πt) +πttcot2(πt) + 1)−2cot(πt)]

Proof.

M ′′X(t) = d

dt

[
π

{
sinπt− cosπt

sin2πt

}]

=π
[ d
dt [sin(πt)−πtcos(πt)]sin2(πt)−

(
sin(πt)−πtcos(πt) ddtsin

2(πt)(
sin2(πt)

)2

]

=π
[(
cos(πt)πt′−π(t′cos(πt) + t ddt [cos(πt)]sin

2(πt)−2sin2(πt)cos(πt)[πt′sin(πt)−πtcos(πt))
sin4(πt)

]

=π
[
cos(πt)πt′−π(cos(πt) + t(−sin()πt)πt′))sin2(πt)−2sin(πt)cos(πt)πt′sin(πt)−πtcos(πt))

sin4(πt)

]
(2.34)
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=
[
πcos(πt)−π(cos(πt)− tπt′sin(πt))sin2(πt)−2πsin(πt)cos(πt)sin(πt)−πtcos(πt)

sin4(πt)

]

=π
[
πcos(πt)−π[cos(πt)−πtsin(πt]sin2(πt))−2πcos(πt)sin(πt)sin(πt)−πtcos(πt)))

sin4(πt)

]

=π
[
sin2(πt)(πcos(πt)−π(cos(πt)− tsin(πt)))−2πcos(πt)sin(πt)(sin(πt)−πtcos(πt)))

sin4(πt)

]

= π3t

sin(πt) −
2π cos(πt)
sin2(πt)

− 2tπ cos2(πt)
sin3(πt)

=π2
{

πt

sin(πt) −
2cos(πt)[sin(πt)−πtcos(πt)]

sin3(πt)

}
=π2cosec(πt)[πtcosec2(πt) +πttcot2(πt) + 1)−2cot(πt)]

(2.35)

Proposition 2.8.3.

M ′′′X (t) =
π3
(
3sin3 (πt)−5πtcos(πt)sin2 (πt) + 6cos2 (πt)sin(πt)−6πtcos3 (πt)

)
sin4 (πt)

=π2 csc(πt)
(
πtcsc2 (πt) +πtcot2 (πt)−2cot(πt)

)

Proof.

M ′′′X (t) = d

dt

{
= π2

{
πt

sin(πt) −
2cos(πt)[sin(πt)−πtcos(πt)]

sin3(πt)

}}

=2π3 (sin(πt)−πtcos(πt))
sin2 (πt)

+ 6π3 cos2 (πt)(sin(πt)−πtcos(πt))
sin4 (πt)

+ π3

sin(πt) −
3π4tcos(πt)

sin2 (πt)

=
π3
(
3sin3 (πt)−5πtcos(πt)sin2 (πt) + 6cos2 (πt)sin(πt)−6πtcos3 (πt)

)
sin4 (πt)

=π2 csc(πt)
(
πtcsc2 (πt) +πtcot2 (πt)−2cot(πt)

)
(2.36)

Proposition 2.8.4.

M ′′′′X (t) =
π4
(
5πtsin4 (πt)−20cos(πt)sin3 (πt) + cos2 (πt)sin2 (πt)− cos3 (πt)sin(πt) + 24πtcos4 (πt)

)
sin5 (πt)

=− π
4 csc5 (πt)(4sin(4πt)−πt(cos(4πt) + 76cos(2πt) + 115) + 88sin(2πt))

8
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Proof.

M ′′′′X (t) = d

dt

{
π3
(
3sin3 (πt)−5πtcos(πt)sin2 (πt) + 6cos2 (πt)sin(πt)−6πtcos3 (πt)

)
sin4 (πt)

}

=
π3
(
5π2tsin3 (πt)−8π cos(πt)sin2 (πt) + 8π2tcos2 (πt)sin(πt)

)
sin4 (πt)

− ...

4π4 cos(πt)
(
3sin3 (πt)−5πtcos(πt)sin2 (πt) + 6cos2 (πt)sin(πt)−6πtcos3 (πt)

)
sin5 (πt)

=
π4
(
5πtsin4 (πt)−20cos(πt)sin3 (πt) + 28πtcos2 (πt)sin2 (πt)−24cos3 (πt)sin(πt) + 24πtcos4 (πt)

)
sin5 (πt)

=− π
4 csc5 (p it)(4sin(4πt)−πt(cos(4πt) + 76cos(2πt) + 115) + 88sin(2πt))

8
(2.37)

2.9 Application of the standard Logistic to Credit Scoring

2.9.1 Introduction

The use of probability distributions in data analysis has gained popularity in the recent times.
Notably machine learning has become an important component of application of mathematics.
In this section the cdf of the standard logistic distribution will be applied to generate the
probability of default in the logistic regression.

Sample data from Mobipesa limited,a mobile lender in Nairobi has been used. The steps
involved in arriving at a credit score have been clearly described. The coding has been done
on the R platform attached on the various appendices.

2.9.2 Steps in calculating a credit score

(i) Determining data quality and characteristics.
Here the data variables must be clearly defined, the data should then be collected and
cleaned. Cleaning data means removing outliers, missing variables and checking the
correlation between independent variables. Highly correlated variables are discarded.
Application programming interface (API) is used to help in mining data characteristics
of the borrower from the lenders platform and also other sectors. Borrowers behave
differently on repaying bank loans compared to mobile loans. Transactional data is
mainly used in this case .
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(ii) Univariate Analysis
This involves creating bins based on the response variables. Information value of the
variables is created . This may include weight of evidence transformation, CRB score,
CRB grade. Binning is a powerful process because it helps to eliminate outliers

(iii) Logistic Stepwise Regression
In this stage coding language is used preferably R. The R -codes are available in Ap-
pendix R5 toR5. All the variables must be used. The model is trained to calculate the
probabilities. Probabilities of default are obtained, the smaller the PD the better. The
main purpose of logistic regression is classification of individuals in different groups. It
allows evaluation of multiple explanatory variables.

Dominguez (2011) suggested use of the logit transformation;

F (y) = 1
1 + e−y

which is the cdf of the standard logistic distribution.
Let p be the probability of default(bad customer) and y = β0 +β1x1 + ...+βkxk be the
linear predictor, then:

y =logit(p) = ln{ p

1−p}

and

p= 1
1 + e−y

In logistic regression, P (Y = 1|x) = p, where x is a predictor variable. In the model,
there are k predictor/explanatory variables.

(iv) Obtaining the credit score.
The credit score is obtained using the formula;

Score = offset+ factor× ln (odds)

Score = a+ b× log
(1−pdselected

pdselected

)
where a= offset and b= factor

offset = score−{factor× ln(odds)}

factor =pdoln2 which means for a 20-point increase in a score, the points double.

Its usually the common default value for pdo though users can change it.
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Example 2.9.1. If a company wishes to scale a scorecard where the user wanted the odds of
60: at every 800 points and wanted the points to double every 20 points , that is p.d.o= 20;
then the factor, offsets and the score would calculated as follows;

Solution

Factor = 20
ln2 = 28.8539

Offset= 800−28.8539 ln60
Score= 681.86

2.9.3 The Problem

We shall use data from Mobipesa limited, a digital lending financial institution to show logistic
regression is used by the institution to reduce default rates and advise on the risk associated
with lending to their borrowers. Full data set is available from the appendix

Example 2.9.2. The data set used from Mobipesa has 33 predictor variables , 1 categorical
variable and 32 numerical variables. There is a response variable for each borrower
indicating their actual classification (0 = "Good customer" or 1= "Bad customer"). The
table below shows all the variables in the data set. The data is for 495 individuals with
their identity concealed. The variables that are defined in the table below have been
obtained from the data. These variables shall form the design matrix to be used in logistic
regression in arriving at the probability of default for each individual borrower.
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Table 2.1. Table of predictor Variables

S/N Variable Definition

1 Id A unique identifier ton identify each borrower

2 CRB Grade Its a grade between A and F and a special case
of Y (Where CRB does not have any data on the
borrower)

3 CRB Score It is a score provided by CRB between 0 and 800.The
higher, the better the borrower is.

4 Max The maximum amount the borrower has ever bor-
rowed globally

5 Min The minimum amount the borrower has ever bor-
rowed globally

6 Avg The average amount the borrower has borrowed
globally

7 Last The last amount the borrower has borrowed globally

8 Count Non Performing
Account-My sector

The number of non-performing loans within my sec-
tor

9 Count-Non Performing
Account-Other sectors

The number of non- performing loans within other
sectors

10 Count-Non Performing
open Accounts-My sector

The number of open non-performing loans-my sector

11 Count-Non Performing
open Accounts- Other sec-
tors

The number of open non-performing loans-other
sectors

12 Count-Non Performing
closed Accounts-My sec-
tor

The number of closed non-performing loans-my sec-
tor

13 Count-Non Performing
closed Accounts-other sec-
tors

The number of closed non-performing loans-other
sectors

14 Count- Performing
Accounts-my sectors

The number of performing loans-my sector

15 Count- Performing
Accounts-other sectors

The number of performing loans-other sectors

16 Count- Performing Ac-
counts closed-my sector

The number of closed performing loans- my sector



42

17 Count- Performing Ac-
counts closed-other sec-
tors

The number of closed performing loans- other sectors

18 Count- Performing Ac-
counts open-my sector

The number of open performing loans- my sector

19 Count- Performing Ac-
counts open-other sectors

The number of open performing loans-other sectors

20 Credit history-My sector The length of the borrowers credit history- my sector

21 Credit history-other sec-
tors

The length of the borrowers credit history- other
sectors

22 Count performing ac-
counts default history-my
sector

The number of performing accounts with default
history-my sector

23 Count performing
accounts default history-
other sectors

The number of performing accounts with default
history-other sectors

24 Number of loans bor-
rowed

The total number of loans borrowed on Mobipesa
platform

25 Maximum amount bor-
rowed

The maximum amount borrowed on Mobipesa plat-
form

26 Minimum amount bor-
rowed

The minimum amount borrowed on Mobipesa plat-
form

27 Average amount bor-
rowed

The average amount borrowed on Mobipesa platform

28 Number of defaulted
loans

The number of defaulted loans on Mobipesa platform

29 Maximum time to pay-
ment

The maximum time the borrower has ever taken to
pay a loan on Mobipesa platform

30 Average time to payment The average time the customer takes to pay a loan
on Mobipesa platform

31 Total amount defaulted The total amount the borrower has in default on
the mobipesa platform

32 Total amount of loans The total amount of loans the borrower has ever
taken on the Mobipesa platform

33 Borrowers lifespan The total time the borrower has been on the Mo-
bipesa platform
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34 Amountv default ratio This is the ratio of the total amount defaulted to
the total amount of loans

35 def This is the target variable with 0 or 1 as the input

Table 2.2. Table of Variables for the first three customers

Id Crb
grade

Crb
Score

Max Min Avg last

1 FF 534 - - - -

2 EE 604 5,000.00 1,000.00 2,000.00 5,000.00

3 AA 675 7,500.00 7,000.00 7,333.00 7500.00

Id v1 v2 v3 v4 v5 v6

1 0 0 0 0 0 0

2 0 0 0 1 0 1

3 0 0 0 0 0 0

Id v7 v8 v9 v10 v11 v12

1 0 2 1 0 0 1

2 0 8 7 1 0 1

3 0 5 3 0 0 2

Id v13 v14 v15 v16 Number
of loans
borrowed

Maximum
amount
borrowed

1 0 50 0 0 13 13,000.00

2 0 40 0 2 1 1,500.00

3 0 18 0 0 1 1,500.00
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Id Minimum
amount
borrowed

Average
amount
borrowed

Number of de-
faulted loans

Maximum
time to
payment

Average
time to
payment

Total
amount
defaulted

1 1,000.00 3769.23 5.00 128.19 35.28 2,000

2 1,500.00 1,500.00 - 20.72 20.72 -

3 5,000.00 5,000.00 1.00 63.09 63.09 -

Id Total
amount
of loans

Borrowers
lifespan

Amount def
ratio

def

1 49,000.00 999.2743634 0.040816327 1

1 1,500.00 185.4036111 0 0

3 5,000.00 193.7046875 0 1

2.9.4 Data Partitioning

The raw data shall be analyzed using R. To train the model, we have to partition the data
into train and test data. The train data is usually allocated a higher value in order to improve
the precision of the model. The higher the proportion of the train data, the more likely the
model is to be reliable.

In this case the train data shall be 70 percent while the test data is 30 percent. The test
data us to test for the model accuracy as the target variable is not defined for reliability in
detecting what is default or not.

2.9.5 Bins

The next part is to bin the train data. Each variable is partitioned into different segments and
the WOE and total IV calculated, we can get the variables with the highest total IV. This
implies that we preselect the variables to be used.In this case we have decided to use variables
whose IV is greater than 0.1. Appendix C contains the identified variables. Appendix B has
full information.
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2.9.6 WOE Transformation

The full train data converted to WOE is in Appendix D. We get data like the one shown
below for the first three customers. The results are obtained from the R- script attached on
the appendix

Table 2.3. Table showing weight of evidence transformation for the first three customers

def Crb
grade
woe

Crb
score
woe

Max
woe

Min
woe

Avg
woe

last woe Count
non per-
forming
account
my
sector
woe

Count
non per-
forming
account
other
sectors
woe

1 0.34244 0.26386 0.21627 0.121483 0.242955 0.134052 0 -0.0304

1 0.34244 0.26386 0.21627 0.121483 0.242955 0.134052 0 -0.0304

0 0.34244 0.26386 0.21627 -0.0204 0.242017 0.134052 0 -0.0304

Count
non
per-
form-
ing
open
ac-
counts
my
sec-
tor
woe

Count
non
per-
form-
ing
open
ac-
counts
other
sec-
tors
woe

Count
non
per-
form-
ing
closed
ac-
counts
my-
sector
woe

Count
non
per-
form-
ing
closed
ac-
counts
other
sector
woe

Count
per-
forming
ac-
counts
my
sector
woe

Count
per-
form-
ing
ac-
counts
other
sector
woe

Count
performing
accounts
closed my
sector woe

Count
per-
forming
accounts
closed
other
sectors
woe

Count
per-
forming
accounts
open my
sector
woe

0 -
0.0311

0 0.00597 0.013594 0.294823 0.294326 0.01322 0.01244

0 -
0.0311

0 0.00597 0.013594 0.294823 0.294326 0.01322 0.01244

0 -
0.0311

0 0.00597 0.013594 0.074963 0.25354 0.01322 0.01244
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Count
per-
form-
ing
open
ac-
counts
open
other
sector
woe

Credit
history
My
sector
woe

Credit
history
other
sectors
woe

Count
per-
form-
ing
ac-
counts
default
history
my-
sector
woe

Count
per-
form-
ing
ac-
counts
default
history
other
sectors
woe

Number
of loans
bor-
rowed
woe

Maximum
amount
bor-
rowed
woe

Minimum
amount
bor-
rowed
woe

Average
amount
bor-
rowed
woe

0.29007 -0.01782 0.323424 0 -0.002 1.154883 1.104582 0.76811 0.991254

0.29007 -0.01782 0.323424 0 -0.002 1.154883 0.383968 -
0.10197

0.332792

0.29007 -0.01782 -
0.07164

0 -0.002 0.18973 0.45971 -
0.10197

0.93664

2.9.7 Logistics Modeling

Next, we train the logistic model using the transformed outcomes. The following results are
obtained.

Table 2.4. Table showing results of logistic modeling using train data

Term Estimate Std error Statistic p-value

(Intercept) 0.144 0.191 0.751 0.453

Crb score woe 1.283 0.522 2.458 0.014

Max- woe 0.983 0.476 2.067 0.039

Min- woe 0.947 0.42 2.258 0.024

Count performing accounts
closed - my sector woe

1.005 0.527 1.906 0.057

Count performing accounts
closed -Other sectors woe

-2.029 0.838 -2.422 0.015
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Number of loans borrowed woe 0.973 0.317 3.073 0.002

Minimum amount borrowed
woe

0.975 0.661 1.474 0.14

Average amount borrowed woe 0.951 0.371 2.564 0.01

Number of defaulted loans woe 2.582 0.58 4.451 0

Maximum time to payment
woe

1.395 0.21 6.649 0

Total amount of loans bor-
rowed woe

0.841 0.436 1.928 0.054

Borrower lifespan woe 0.661 0.411 1.608 1.108

Amount default ration woe 0.611 0.195 3.132 0.002

2.9.8 Test Data

Now, we have modeled data using the train data and have a trained.We need to use the test
data to score it using the trained model. The test data needs to be transformed into WOE.

2.9.9 Train P.D

Using the trained logistic model, and the transformed test data into WOE, we can now get
the probability of default for the test data. The full data PD are in Appendix F. The table
below shows the calculations of probability of default for the first customer in the test data.



48

Table 2.5. Table showing parameter estimates for the first customer using Test data

Term Estimate Customer 1

(Intercept) 0.144 0.144

Crb score woe 1.283 0.263863566 0.338536956

Max- woe 0.983 0.216276572 0.21259987

Min- woe 0.947 0.121483054 0.115044452

Count performing accounts closed
- my sector woe

1.005 -0.253541028 -0.254808734

Count performing accounts closed
-Other sectors woe

-2.029 -0.220882345 0.448170277

Number of loans borrowed woe 0.973 -1.283160446 -1.248515114

Minimum amount borrowed woe 0.975 -0.435862585 -0.424966021

Average amount borrowed woe 0.951 -0.936637873 -0.890742617

Number of defaulted loans woe 2.582 0.000855066 0.002207781

Maximum time to payment woe 1.395 0.74705681 1.04214425

Total amount of loans borrowed
woe

0.841 -0.010803783 -0.009085982

Borrower lifespan woe 0.661 0.119414801 0.078933183

Amount default ration woe 0.611 -0.451130057 0.275640465

y -0.722122163

To find the probability of default

p= 1
1 + e−y

= 1
1 + e−0.722122163

=0.9987622542

(2.38)

This customer has a very high likelihood of defaulting if lend cash. Therefore any loan
application should be rejected. The probabilities of default for the first 50 customers are
shown in the table below alongside their credit scores.
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2.9.10 Scoring the PD

The next phase is to convert the probability of default obtained into a credit score. Using the
formulas above the scores and probability of default can be generated. The table below gives
the scores for the first thirty customers.

Table 2.6. Table of Probability of Default and Credit Scores for the first 30 customers

Borrower Id Probability of default Credit Score

1 0.997269968 206

2 0.9877227005 250

3 0.001884618088 558

4 0.1106696092 437

5 0.07577957773 449

6 0.4425447388 383

7 0.09346134419 442

8 0.09346134419 366

9 0.5911024803 236

10 0.9924940912 496

11 0.01559419569 563

12 0.001569612212 349

13 0.9977096842 201

14 0.9707854188 276

15 0.00327358036 542

16 0.1612004438 424

17 0.007199711476 519

18 0.0477897629 463

19 0.9619201935 283

20 0.8090821387 335

21 0.03397039292 473

22 0.412135661 387

23 0.9538852391 289

24 0.3512241865 394
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Borrower Id Probability of default Credit Score

25 0.01379099899 500

26 0.05220895084 460

27 0.00461219678 532

28 0.4838327497 378

29 0.001530961058 564

30 0.0002904474396 612

where full set of the borrowers , their probability of default and scores is available in the
appendix. From the table its evident that, the higher the probability of default the lower the
credit score and the lower the probability of default, the higher the credit score. This can be
be used to distinguish between good and bad borrowers and minimize the risk of loss.

2.9.11 Summary scores for test Data

The table below shows a summary of the scores calculated for the borrowers in the test data

Table 2.7. Table showing summary of scores for borrowers in the test data

def min max median mean n

Default 137 501 334 324 68

Non default 256 560 430 428 80
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Figure 1. Graph of scores
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Figure 2. Graph showing model performance based on test data

2.10 Summary

In this charpter, the pdf,cdf, hazard and survival functions have been obtained. The mean,
variance and moments have been calculated. Expressions for the rthof even and odd moments
have explicitly obtained. The first four central moments have also been calculated. The
fourth central moments are equal to the Kurtosis. The central and non-central moments are
equal because the mean of the standard logistic is zero.

The moment generating function has been calculated and its first four derivatives expressed
as propositions.

Following the application of the cdf of the logistic distribution to data,its evident that the
true positive rate sensitivity value of a model shows its efficiency in predicting the probability
of default hence the credit score.

From figure 1, the graph of non defaulters peaks higher than that of defaulters, which means
the model developed is more reliable. The mean credit score for the customers who are likely
to default is 315. The mean credit score for the customers who are likely not to default is
428. The model has good performance hence gives reliable results. Using the data of 500
customers, the model developed is 82.5 percent efficient meaning that it can give reliable
results in decision making about the credit worthiness of customers.
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3 CONSTRUCTION OF GENERALIZED LOGISTIC
DISTRIBUTIONS

3.1 Introduction

Several different forms of generalizations of the logistic distribution have proposed in literature.

The objective of this charpter which is to construct generalizations of the standard logistic
distribution and their extended versions. The generalized logistic distributions considered are
of type I,II,III and IV. The methods used in generalizing are transformations, difference of
two independent Gumbel random variable, the Burr differential equation and mixtures.

Distributions used in each method are generalized to obtain generalized logistic distribution.

The first part of this charpter outlines the generalizations of Gumbel and Gumbel II mixtures,
and Pareto I. The second and third parts show construction of the generalized logistic type IV
and the extended GLIV respectively. The special cases arising from GLIV have also been
considered

The fourth and fifth sections show the construction of generalized logistic type I and extended
GLI respectively. The sixth and seventh sections show the construction of the generalized
logistic type II and the extended GLII respectively.

The eighth section shows the construction of the generalized logistic type III.

3.1.1 Generalizations based on Gumbel I mixtures

Generalizations based on Gumbel I mixtures shall be obtained as follows; Let

Y = e−X

where Y is standard exponential.
dy

dx
=−e−x

Therefore the pdf of X is given by

f(x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=e−ye−x

=e−x exp(−y)

y = 0 =⇒ x=∞ and y =∞ =⇒ x=−∞
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Therefore

f(x) = e−x exp(−e−x), −∞< x <∞

which is a standard Gumbel I distribution or type I extreme values distribution . We shall call
it Gumbel I.

Remark 3.1.1. The standard Gumbel distribution has no parameter.

To introduce a parameter we consider the transformation

Y = e−X

where y is exponential with parameter λ

∴ f(x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=λe−λye−x

=λe−x exp(−λy)
=λe−x exp(−λe−x), for −∞< x <∞; λ > 0, (3.1)

This is a Gumbel I distribution with parameter λ.

If λ is a varying parameter, then we write

f(x|λ) = λe−x exp(−λe−x) (3.2)

and the continuous Gumbel mixture is given by

f(x) =
∞∫
0
f(x|λ)dλ

=
∞∫
0
λe−x exp(−λe−x)g(λ)d(λ) (3.3)

where g(x) is a mixture distribution .

3.1.2 Generalized Gumbel I mixtures

We now wish to derive a generalized Gumbel I distribution as follows: Let

Y = e−X (3.4)
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where Y is a gamma distributed with two parameters α and λ; i.e.

g(y) = λα

Γ(α)e
−xyyα−1, y > 0; α > 0, β > 0.

Thus the pdf of X is

f(x) = λα

Γ(α)e
αyyα−1e−x

= λα

Γ(α)
[
exp(−λe−x)

]
e−x(α−1)e−x

= λα

Γ(α)
[
exp(−λe−x)

]
e−αx

= λα

Γ(α)e
−αx exp(−αe−x), −∞< x <∞; α > 0, λ > 0 (3.5)

which is a generalized Gumbel I distribution with parameter α and λ

If λ is a varying parameter, then we write

f(x|λ) = λα

Γ(α)e
−αx exp(−λe−x), −∞< x <∞; α > 0, λ > 0. (3.6)

For a generalized Gumbel I mixture we have.

f(x) =
∞∫
0
f(x|λ)g(λ)dλ

=
∞∫
0

λα

Γ(α)e
−αx exp(−λe−x)g(λ)dλ (3.7)

3.1.3 Generalized Gumbel II mixtures

Another form of Gumbel distribution is given by letting

X =−Z

where Z is a Gumbel I distribution, that is,

g(z) = e−z exp(−e−z), −∞< x <∞ (3.8)

Therefore the pdf of X is

f(x) =g(z)
∣∣∣∣∣dzdx

∣∣∣∣∣ ·1
=e−z exp(−e−z) ·1
=ex exp(−e−z) ·1
=ex exp(−ex), −∞< x <∞ (3.9)
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We shall call this standard Gumbel II distribution.

Let
Y = eX

where Y is exponential with parameter λ

Then the pdf of x is

f(x) =λe−λy
∣∣∣∣∣dydx

∣∣∣∣∣
=λe−λyex

=λexex exp(−λex), −∞< x <∞; λ > 0 (3.10)

3.1.4 Gumbel I- Gumbel II mixture and vice versa

Villa and Escobar (2006), name Gumbel I as the largest extreme value (LEV ) distribution.

Gumbel II is named the smallest extreme vales (SEV ) distribution.

Introducing the location and shape parameters, we have,



fLEV (x) = 1
σe
−(x−mσ ) exp(−e−( z−mσ ))

for −∞< x <∞; − −∞<m<∞, σ > 0.
and
fSEV (x) = 1 1

σe
κ−m
σ exp(eκ−m

σ )
(3.11)

3.1.5 Generalizations Based on Pareto I

The pdf of Pareto I distribution with parameter α and β shall be defined by;

g(y) = αβα

yα+1 , y > β > 0; α > 0 (3.12)

The cdf is

G(y) =
y∫
β

αβα

tα+1dt

=αβα
y∫
β

t−α−1dt
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=αβα
[
t−α

−α

]y
β

=−βα
[
tα
]y
β

=1− β
α

yα
, y > β > 0; α > 0 (3.13)

3.2 Generalized Logistic IV distribution (GLIV)

3.2.1 Construction based on generalized Gumbel I

g(λ) =λ
β−1

Γ(β) e
−λ, λ > 0, β > 0

∴ f(x) =
∞∫
0

λα

Γ(α)e
−αx exp(−λe−x)λ

β−1

Γ(β) e
−λdλ

= eαx

Γ(α)Γ(β)

∞∫
0
λ(α+β)−1 exp(−λ−λe−x)dλ

= e−αx

Γ(α)Γ(β)

∞∫
0
λ(α+β)−1e−(1+e−x)λdλ

∴ f(x) = e−αx

Γ(α)Γ(β)
Γ(α+β)

(1 + e−x)α+β

= e−αx

β(α,β)(1 + e−x)α+β for −∞< x <∞; α > 0, β > 0 (3.14)

3.2.2 Construction based on the mixtures of Gumbel I and Gumbel II

LetX1 be generalized Gumbel with parameter α andX2 be generalized Gumbel with parameter
β

Then,

g(z) =
∞∫
−∞

e−α(z+x2)

Γ(α) exp(−e(z+x2))e
−βx2

Γ(β) exp(−e−(z+x2))dx2

= e−αz

Γ(α)Γ(β)

∞∫
−∞

e−(α+β)x2 exp(−e−ze−x2− e−x2)dx2

= e−αz

Γ(α)Γ(β)

∞∫
−∞

e−(α+β)x2 exp(−(1 + e−z)e−x2)dx2
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Let y = e−x2 =⇒ dy =−e−x2dx2 =⇒ dx2 =−dy
y

∴ g(z) = eαz

Γ(α)Γ(β)

∞∫
0
yα+βe−(1+e−z)y dy

y

= e−αz

Γ(α)Γ(β)

∞∫
0
yα+β−1e−(1+e−z)ydy

∴ g(z) = e−αz

Γ(α)Γ(β)
Γ(α+β)

(1 + e−z)α+β

= 1
β(α,β)

e−αz

(1 + e−z)α+β for −∞< z <∞; α > 0, β > 0 (3.15)

3.2.3 Construction based on transformation

A uniform distribution is a special case of beta 1 distribution.

Thus let
X =− ln Y

1−Y (3.16)

where Y is beta random distribution with parameter a and b

∴ y = (1 + e−x)−1 (3.17)

and
dy

dx
=− ex

(1 + ex)2

∴ F (x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=y

a−1(1−y)b−1

β(a,b)
ex

(1 + ex)2

=(1 + e−x)−(a−1)

β(a,b) [1− 1
1 + ex

]b−1 ex

(1 + ex)2

= ebx

β(a,b)(1 + ex)a+b

= e−ax

β(a,b)(1 + e−x)a+b for −∞< x <∞; a > 0, b > 0 (3.18)

which is generalized logistic type IV GLIV distribution.
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3.3 Extended Generalized Logistic IV

3.3.1 Construction based on mixtures of Generalized Gumbel I

g(λ) = Φβ

Γ(β)e
−Φλλβ−1, λ > 0; Φ> 0, ‘β > 0

∴ f(x) =
∞∫
0

λα

Γ(α)e
αx exp(−λe−x) Φβ

Γ(β)e
Φλλβ−1dλ

= Φβe−αx

Γ(α)Γ(β)

∞∫
0
λα+β−1 exp(−Φλ−λe−x)dλ

= Φβe−αx

Γ(α)Γ(β)

∞∫
0
λα+β−1e−(Φ+e−x)λdλ

∴ f(x) = Φβe−αx

Γ(α)Γ(β)
Γ(α+β)

(Φ + e−x)α+β

= Φβ

β(α,β)
e−αx

(Φ + e−x)α+β for −∞< x <∞; α > 0, β > 0, Φ> 0. (3.19)

Wu,Hung and Lee (2000) included the location and shape parameter δ

3.3.2 Construction based on the Mixtures of Gumbel I and Gumbel II

Let X1 be generalized Gumbel with parameter α and X2 be generalized Gumbel with two
parameter Φ and m. That is;

f1(x) = e−αx1
Γ(α) exp(−e−x1),−∞< x1 <∞,α > 0

f2(x) = Φm

Γ(m)e
−mx2 exp(−Φe−x2),−∞< x2 <∞; Φ> 0, m> 0.

(3.20)

Therefore,

g(z) =
∞∫
−∞

e−α(z+x2)

Γ(α) exp(−ez+x2) Φm

Γ(m)e
−mx2 exp(−Φe−x2)dx2

∴ g(z) = Φm

Γ(α)Γ(m)

∞∫
−∞

e−αze−αx2 exp(−e−zex2−Φe−x2)e−mx2dx2

= Φme−αz

Γ(α)Γ(m)

∞∫
−∞

e−(α+m)x2 exp(−(Φ + e−z))e−x2dx2
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Let y = e−x2 =⇒ dy =−ex2dx2 =⇒ dx2 =−dyy

∴ g(z) = Φme−αz

Γ(α)Γ(m)

∞∫
0
yα+me−(Φ+e−z)y dy

y

= Φme−αz

Γ(α)Γ(m)

∞∫
0
yα+m−1e−(Φ+e−z)ydy

= Φme−αz

Γ(α)Γ(m)
Γ(α+m)

(Φ + e−z)α+m

= Φme−αz

β(α,m)(Φ + e−z)α+m
for −∞< z <∞; α > 0, m> 0, Φ> 0 (3.21)

3.3.3 Special cases of the Extended Generalized Logistic IV

(i)

Φ = 1 =⇒ f(x) = eαx

β(α,β)(1 + e−x)α+β

which is GLIV .

(ii)

β = 1 =⇒ f(x) = Φαe−αx
(Φ + e−x)α+1

which is extended GLII.

(iii)

α = 1 =⇒ f(x) = βΦβe−x

(Φ + e−x)β+1

∴ f(x) =βΦβ+1

Φ
e−x

(Φ + e−x)α+1

=β

Φ
e−x

(1 + 1
Φe
−x)α+1

= ρβe−x

(1 +ρe−x)α+1

which is extended GLI distribution.
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(iv)

α = β = 1 =⇒ f(x) = Φe−x
(Φ + e−x)2

which is extended standard logistic distribution.

(v)

α = β = Φ = 1 =⇒ f(x) = e−x

(1 + e−x)2

which is standard logistic distribution.

3.4 Generalized Logistic I Distribution (GLI)

The generalized logistic type I can be constructed using the five methods discussed below.

3.4.1 Construction based on mixtures of Gumbel I

Let the mixing distribution be;

g(λ) = λα−1e−λ

Γ(λ) , λ > 0; α > 0

which is a gamma mixing distribution with one parameter α

∴ f(x) =
∞∫
0
λe−x exp(−λe−x)λ

α−1

Γ(α) e
−λdλ

= e−x

Γ(α)

∞∫
0
λ(α+1)−1 exp(−λ−λe−x)dλ

= e−x

Γ(α)

∞∫
0
λ(α+1)−1e−(1+e−x)λdλ

= e−x

Γ(α)
Γ(α−1)

(1 + e−x)α+1

= αe−x

(1 + e−x)α+1 , −∞< x <∞; α > 0 (3.22)
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3.4.2 Construction based on mixtures of Gumbell II

g(λ) =e−λ, λ>0

f(x) =
∞∫
0
eαx

λα

Γ(α) exp(−λex)e−λdλ

= 1
Γ(α)

∞∫
0
eαxλαe−(1+ex)e−λdλ

= 1
Γ(α)

Γ(α+ 1)
(1 + ex)α+1 e

αx

= αeαx

(1 + ex)α+1

= αeαxe−(α+1)x

(1 + ex)α+1e−(α+1)x

= αe−x

(1 + e−x)α+1 , −∞< x <∞; α > 0
(3.23)

3.4.3 Construction based on the difference of two independent Gumbel random
variables

Let X1 be standard Gumbel and X2 be Gumbel with parameter α i.e.

Let X1 be standard Gumbel and X2 be generalized Gumbel with one parameter α


f1(x) = e−x exp(−e−x)

for −∞< x2 <∞, α > 0
f2(x) = e−αx2

Γ(α) exp(−e−x2)
(3.24)

Therefore,

g(z) =
∞∫
−∞

e−(z+x2) exp(−e−(z+x2))e
−αx2

Γ(α) exp(−e−x2)dx2

= e−z

Γ(α)

∞∫
−∞

exp
(
− (e−ze−x2 + e−x2)

)
e−αx2e−x2dx2

= e−z

Γ(α)

∞∫
−∞

yαe−(1+e−z)ydy
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Let,
y = e−x2 =⇒ dy =−e−x2dx2

∴ g(z) = e−z

Γ(α)
Γ(α+ 1)

(1 + e−z)α+1

= αe−z

(1 + e−z)α+1 , α > 0, −∞< z <∞ (3.25)

3.4.4 Construction based on the Burr differential equation

Burr(1942) introduced a system of distribution based on a differential equation of the form;

y′ = y(1−y)g(x,y) (3.26)

where y = F (x), a cdf of continuous random variable

y′ = f(x) a pdf and g(x,y) is a non negative function of x and y.

The problem is to solve the above differential equation known as Burr differential equation for
various cases of g(x,y). Consider the case when g(x,y) = g(x) Thus the differential equation
becomes,

y′ = y(1−y)g(x)

∴
∫ dy

y(1−y) =
∫
g(x)dx

∴
∫

(1
y

+ 1
1−y )dy =

∫
g(x)dx

∴ log y

1−y =
∫
g(x)dx

∴
y

1−y = exp
{∫

g(x)dx
}

∴ y = (1−y)exp
{∫

g(x)dx
}

= exp
{∫

g(x)dx
}
−y exp

{∫
g(x)dx

}
∴ =

exp
{∫

g(x)dx
}

1 + exp
{∫

g(x)dx
}

= 1
1 + exp{−

∫
g(x)dx

F (x) = [e
∫
g(x)dx+ 1]−1 (3.27)

as obtained by Burr (1942). If,

g(x) = 1
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then

F (x) =[e−
∫
dx+ 1]−1

=(e−x+ 1)−1

= 1
1 + e−x

F (x) = 0 =⇒ x=−∞ and F (x) = 1 =⇒ x=∞

∴ F (x) = 1
1 + e−x

, −∞< x <∞

which is the cdf of standard logistic distribution

Burr (1942), further considered the power of the cdf that is:

G(x) =[F (x)]α

=(1 + e−x)−α, −∞< x <∞, α > 0

The pdf is
g(x) = α(1 + e−x)−α−1e−x

= αe−x

(1 + e−x)α+1 , for −∞< x <∞, α > 0

which is GLI distribution. It is called exponentiated logistic distribution. According to Burr
system it is Burr II distribution.

3.4.5 Construction based on Exponentiated Generalized approach

Let
X = ln(Y

β
−1) (3.28)

where Y is Pareto I with parameter α and β

∴
y

β
−1 = e−x

y =β(1 + e−x)

and
dy

dx
=−βe−x

Therefore the pdf of X is

f(x) = αβα

yα+1

∣∣∣∣∣dydx
∣∣∣∣∣

= αβα

[β(1 + e−x)]α+1βe
−x

= αe−x

(1 + e−x)α+1 , −∞< x <∞; α > 0 (3.29)
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3.5 Extended Generalized logistic Type I

3.5.1 Constructions based on mixtures of Gumbel I

Let the mixing distribution be;

g(λ) = βλ

Γ(α)e
βλ, λ > 0, α > 0, β > 0

which is a gamma mixing distribution with two parameters α and β

∴ f(x) =
∞∫
0
λe−x exp(−λe−x) βα

Γ(α)e
−βλλα−1dλ

∴ f(x) = βα

Γ(α)

∞∫
0
λ(α+1)−1e−(β+e−x)λdλ

= βα

Γ(α)e
−x Γ(α+ 1)

(β+ e−x)α+1

= αβαe−x

(β+ e−x)α+1

=α
β

βα+1e−x

(β+ e−x)α+1

=α
β

e−x

(1 + 1
β e
−x)α+1

= αρe−x

(1 +ρe−x)α−1 , −∞< x <∞, α > 0, 1
β

= ρ > 0 (3.30)

which is extended Type I generalized logistic distribution as given by Olapade (2004).

3.5.2 Construction Based on mixtures of generalized Gumbel I

g(λ) =βe−βλ, λ > 0; β > 0

∴ f(x) =
∞∫
0

λα

Γ(α)e
−αx exp(−λe−x)βe−βλdλ

=βe
−αx

Γ(α)

∞∫
0
λ(α+1)−1 exp(−βλ−λe−x)dλ

=βe
αx

Γ(α)
Γ(α+ 1)

(β+ e−x)α+1

= βαe−αx

(β+ e−x)α+1 , −∞< x <∞; α > 0, β > 0 (3.31)
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3.5.3 Construction based on the mixtures of Gumbel II

g(λ) =βe−βλ, λ > 0, β > 0

∴ f(x) =
∞∫
0
eαx

λα

Γ(α) exp(−λex)βe−βλdλ.

= β

Γ(α)e
αx Γ(α+ 1)

(β+ ex)α+1

= αβeαx

(β+ ex)α+1

= αβeαxe−(α+1)x

(β+ ex)α+1e−(α+1)x

= αβe−x

(1 +βe−x)α+1 (3.32)

3.5.4 Construction based on the mixtures of Gumbel I and Gumbel II

Let X1 be standard Gumbel and X2 be generalized Gumbel with parameter α and λ. That is;f1(x) = e−x exp(−e−x), −∞< x <∞
f2(x) = λα

Γ(α)e
−αx2 exp(−λe−x2), −∞< x2 <∞, α > 0, λ > 0

(3.33)

Therefore,

g(z) =
∞∫
−∞

e−(z+x2) exp(−e−(z+x2)) λα

Γ(α)e
−αx2 exp(−λe−x2)dx2

∴ g(z) = λα

Γ(α)e
−z

∞∫
−∞

e−αx2 exp(−(λ+ e−z)e−x2)e−x2dx2

= λ

Γ(α)e
−z

∞∫
−∞

yαe−(λ+e−z)ydy

= λα

Γ(α)e
−z Γ(α+ 1)

(λ+ e−z)α+1

=αλα e−z

(λ+ e−z)α+1

= αλαe−z

[λ(1 + 1
λe
−z)]α+1

=α
λ

e−z

(1 + 1
λe
−z)α+1

= αρe−z

(1 +ρe−z)α+1 , −∞< z <∞; α > 0, ρ > 0, ρ= 1
λ

(3.34)
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3.6 Generalized Logistic type II distribution GLII

3.6.1 Constructions based on Generalized Gumbel I

g(λ) = e−λ

∴ f(x) =e
−αx

Γ(α)

∞∫
0
λα exp(−λe−x) · eλdλ

=e
−αx

Γ(α)

∞∫
0
λα exp(−λ−λe−x)dλ

=e
−αx

Γ(α)

∞∫
0
λ(α+1)−1e−(1+e−x)λdλ

=e
−αx

Γ(α)
Γ(α+ 1)

(1 + e−x)α+1

= αe−αx

(1 + e−x)α+1 , −∞< x <∞; α > 0 (3.35)

3.6.2 Constructions based on mixtures of generalized Gumbel II

g(λ) =λ
α−1

Γ(α) e
−λ, α > 0, λ > 0

∴ f(x) =
∞∫
0
λex exp(−λex)λ

α−1

Γ(α) e
−λdλ

= ex

Γ(α)

∞∫
0
λ(α+1)−1e−(1+ex)λdλ

= ex

Γ(α)
Γ(α+ 1)

(1 + ex)α+1

= αex

(1 + ex)α+1 −∞< x <∞, α > 0

= αexe−(α+1)x

(1 + ex)α+1e−(α+1)x

= αe−αx

(1 + e−x)α+1 , −∞< x <∞, α > 0 (3.36)

which is GLII distribution according to Balalrishnan and Leung (1988)
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3.6.3 Construction based on Gumbel I and Gumbel II mixtures

Let X1 be a generalized Gumbel distributed variable with parameter α and X2 be standard
Gumbel. That is f1(x) = e−αx1

Γ(α) exp(−e−x1), −∞< x1 <∞, α > 0
f(x2) = e−x2 exp(−e−x2), −∞< x2 <∞

(3.37)

Therefore,

g(z) =
∞∫
−∞

e−α(z+x2)

Γ(α) exp(−e−(z+x2))e−x2 exp(−e−x2)dx2

=e−αz

Γ(α)

∞∫
−∞

e−αx2 exp(−e−ze−x2− e−x2)e−x2dx2

=e−αz

Γ(α)

∞∫
0
yαe−(1+e−z)ydy

=e−αz

Γ(α)
Γ(α+ 1)

(1 + e−z)α+1

= αe−αz

(1 + e−z)α+1 , −∞< z <∞; α > 0 (3.38)

3.6.4 Constructions based on transformations

Constructions based on the uniform distribution

X =− ln( U
1
p

1−U
1
p

), p > 0 (3.39)

where U has uniform distribution in[0,1]

Then
u= (1 + ex)−p

and
du

dx
=−p(1 + ex)−p−1ex

Therefore

f(x) =1 ·
∣∣∣du
dx

∣∣∣
= pex

(1 + ex)p+1 , −∞< x <∞; p > 0
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∴ f(x) = pexe−(p+1)x

(1 + ex)p+1e−(p+1)x

= pepx

(1 + e−x)p+1 , −∞< x <∞; p > 0 (3.40)

Construction based on the exponential

where Y is an exponential with parameter α

Then
f(x) =g(y)

∣∣∣∣∣dydx
∣∣∣∣∣

=αe−αy ex

1 + ex

=α(ey)−α ex

1 + ex

=α(1 + ex)−α ex

1 + ex

= αex

(1 + ex)α+1

= αe−αx

(1 + e−x)α+1 , for −∞< x <∞; α > 0
(3.41)

3.7 Extended Generalized Logistic type II

3.7.1 Construction based on the mixtures of Gumbel II

g(λ) =∗ βα

Γ(α)e
−βλλα−1, λ > 0; α > 0, β > 0

∴ f(x) =∗
∞∫
0
λex exp(−λex) βα

Γ(α)e
−βλλα−1dλ

= βα

Γ(α)e
x
∞∫
0
λ(α+1)−1e−(β+ex)λdλ

= βα

Γ(α)e
x Γ(α+ 1)

(β+ ex)α+1

=αβα ex

(β+ ex)α+1



70

=αβ
α+1

β

ex

(β+ ex)α+1

=α
β

ex

(1 + 1
β e

x)α+1

=αρ ex

(1 +ρex)α+1 , ρ= 1
β

∴ f(x) = αρexe−(α+1)x

(1 +ρex)α+1e−(α+1)x

= αρeαx

(ρ+ e−x)α+1 (3.42)

3.7.2 Construction based on mixtures of Gumbel I and Gumbel II

Let X1 be generalized Gumbel with parameter α and X2 be Gumbel with parameter λ.

Then, f1(x) = e−αx1
Γ(α) exp(−e−x1), −∞< x1 <∞, α > 0

f2(x) = λe−x2 exp(−λe−x2), −∞< x2 <∞, λ > 0

Therefore,

g(z) =
∞∫
−∞

e−α(z+x2)

Γ(α) exp(−e−(z++x2)) ·λe−x2 exp(−λe−x2)dx2

= λ

Γ(α)e
−αz

∞∫
−∞

e−αx2 exp(−e−ze−x2−λe−x2)e−x2dx2

= λ

Γ(α)e
−αz

∞∫
−∞

e−αx2 exp(−(λ+ e−z)e−x2)ex2dx2

= λ

Γ(α)e
−αz

∞∫
−∞

yαe−(λ+e−z)ydy

where y = e−x2 =⇒ dy=−e−x2
dx2

∴ g(z) = λ

Γ(α)e
−αz Γ(α+ 1)

(λ+ e−z)α+1

= αλe−αz

(λ+ e−z)α+1 , −∞< z <∞; α > 0, λ > 0 (3.43)
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Construction based on the uniform distribution

Let

X =− ln
(
λY

1
p

1−Y
1
p

)
p > 0

where Y has uniform distribution in [0,1]

∴ y =
(

e−x

λ+ e−x

)p

and

dy

dx
=−pλ e−px

(λ+ e−x)p+1

∴ f(x) =1 ·
∣∣∣∣∣dydx

∣∣∣∣∣
= pλe−px

(λ+ e−x])p+1 , −∞< x <∞; p > 0, λ > 0 (3.44)

whic is extended GLII distribution according to Olapade (2005)

Construction based on the exponential

Let
X =− ln

(
λe−Y

1− e−Y

)
(3.45)

where Y is an exponential with parameter α.

∴
λe−y

1− e−y =e−x

∴ e−y = e−x

λ+ e−x

∴ y =ln(λ+ e−x)− ln(e−x)
dy

dx
= λ

λ+ e−x

∴ f(x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=αe−αy λ

λ+ e−x

= αλ

λ+ e−x
(e−y)α
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= αλ

λ+ e−x
· e−αx

(λ+ e−x)α

= αλe−αx

(λ+ e−x)α+1 , −∞< x <∞; α > 0 (3.46)

Constructions based on Exponentiated generalized approach

The cdf of Pareto I when α = p and β = 1 is given by;

G(y) = 1−y−p

Let
H(y) = [G(y)]α

i.e. The new cdf is the power of the old/parameter cdf.

∴H(y) = (1−y−p)α

∴ h(y) = αp(1−y−p)α−1y−p−1 (3.47)

which is an exponentiated Pareto I distribution with parameter α and β

which is a GLII distribution. Let

X =− ln(Y p−1) (3.48)

where y is an exponentiated Pareto I distribution with parameters α and p

Then
y = (1 + e−x)

1
p

and
dy

dx
=1
p

(1 + e−x)
1
p−1(−e−x)

∴ f(x) =h(y)
∣∣∣∣∣dydx

∣∣∣∣∣
=αp

(
1− 1

yp

)α−1 1
yp+1 · e

−x(1 + e−x)
1
p−1 1

p

=α
(

1− 1
1 + e−x

)α−1
e−x

(1 + e−x)1+ 1
p

(1 + e−x)
1
p−1

= αe−x(α−1)ex

(1 + e−x)α−1+1+ 1
p−

1
p+1

= αe−αx

(1 + e−x)α+1 (3.49)
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3.8 Generalized Logistic type III distribution GLIII

3.8.1 Construction based on the mixtures of Gumbel I and Gumbel II

Let X1 and X2 be both generalized Gumbel variable with the same parameter α

∴ g(z) =
∞∫
−∞

f1(z+x2)f2(x)dx2

=
∞∫
−∞

e−α(z+x2)

Γ(α) exp(−e−(z+x2)) · e
−αx2

Γ(α) exp(−e−x2)dx2

= e−αz

Γ(α)Γ(α)

∞∫
−∞

e−αx2−αx2 exp(−e−ze−x2−e−x2 )dx2

= e−αz

Γ(α)Γ(α)

∞∫
−∞

e−2αx2 exp(−(1 + e−z)e−x2)dx2

Let y = e−x2dx2 =⇒ dy =−e−x2dx2 =⇒ −dyy = dx2

∴ g(z) = e−αz

Γ(α)Γ(α)

∞∫
0
y2αe−(1+e−z)y dy

y

= e−αz

Γ(α)Γ(α)

∞∫
0
y2α−1e−(1+e−z)ydy

= e−αz

Γ(α)Γ(α)
Γ(2α)

(1 + e−z)2α

= e−αz

β(α,α)(1 + e−z)2α −∞< z <∞, α > 0 (3.50)

which is GLIII distribution, a result obtained by Davidson (1980).

3.8.2 Special case of GLIV

If β = α, then

f(x) = e−αx

β(α,α)(1 + e−x)2α (3.51)
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3.9 Summary

In this charpter, generalized logistic type I, II, III and IV have been explicitly obtained based
on different methods of constructing the standard logistic distributions(this is a new method
of generalization that has been proposed). Their extended versions have also been obtained.
The results obtained are similar to what other authors obtained earlier in literature review.
The new distribution introduced " extended standard logistic" has been constructed using
four different methods.

Clearly, five different distributions have been obtained as special cases of the extended standard
logistic type IV.

Generalized logistic type III has only been obtained from mixtures of Gumbel I and Gumbel
II and as a special case of extended GLIV . This a distribution that needs to be further
investigated.

The mixing distributions used with the method of mixtures are all continuous.
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4 GENERALIZED LOGISTIC DISTRIBUTIONS BASED
ON BETA DISTRIBUTIONS AND THEIR
GENERALIZATIONS

4.1 Introduction

The objective of this chapter, is to obtain generalized logistic distributions based on beta
distributions and their generalizations. More precisely, to use beta I and beta II distributions
and their generalizations through transformations and to generalize the standard logistic
distribution using the beta generated approach.

Through generalizations a new distribution" The Extended standard logistic has been pro-
posed." It’s methods of construction are also shown.

The charpter is organized as follows; the second section constructs the generalized logistic
type IV and extended GLIV using transformation technique based on beta I, the third section
shows the construction on GLIV and extended GLIV using based on beta II. It also shows
the construction of the four parameter generalized logistic based on beta II. Additionally, it
shows construction of the generalized logistic distributions from the beta generator approach.

The fourth sections shows construction of the moment generating function for the extended
standard logistic distribution. Section five gives the concluding remarks.

4.2 Generalized Logistic distribution based on beta I distribution and its
generalizations

(a) Let
X = ln(1−Y

Y
) (4.1)
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where Y is beta I with parameters a and b
Then

y

1−y = e−x

y =e−x

∴ y =e−x−ye−x

∴ y(1 + e−x) =e−x

∴ y = e−x

1 + ex
,

∴
dy

dx
=−(1 + e−x)e−x+ e−xe−x

(1 + e−x)2

= −e−x

(1 + e−x)2

Therefore, pdf of X is

f(x) =g(y)
∣∣∣dy
dx

∣∣∣
=y

a−1(1−y)b−1

β(a,b)
e−x

(1 + e−x)2

=
(

e−x

1 + e−x

)a−1[
1− e−x

1 + e−x

]b−1
e−x

(1 + e−x)2

∴ f(x) = e−(a−1)x

β(a,b)(1 + e−x)a−1

(
1

1 + e−x

)b−1
e−x

(1 + e−x)2

= e−ax

β(a,b)(1 + e−x)a+b (4.2)

which is GLIV

(b) Let

X =− ln
(
λY

1−Y

)
, λ > 0 (4.3)
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where Y is beta I with parameters a and b.

∴
λy

1−y = e−x

∴ λy = e−x−ye−x

∴ (λ+ e−x)y = e−x

∴ y = e−x

λ+ e−x

∴
dy

dx
= −(λ+ e−x)e−x+ e−xe−x

(λ+ e−x)2 = −λe−x

(λ+ e−x)2

∴ f(x) =y
a−1(1−y)b−1

β(a,b)
λe−x

(λ+ e−x)2

=
(

e−x

λ+ e−x
)a−1

[
1− e−x

λ+ e−x

]b−1
λe−x

(λ+ e−x)2

= λe−axλb−1

β(a,b)(λ+ e−x)a+b

= λbe−ax

β(a,b)(λ+ e−x)a+b , −∞< x <∞, λ > 0, a > 0, b > 0. (4.4)

which is extended GLIV

4.3 Generalized logistic distributions based on beta II distribution and
its generalizations

(a.) Let
X =− lnY (4.5)

where Y has beta II distribution with parameters a and b. Then,

y =e−x

∴
dy

dx
=− e−x

∴ f(x) =g(y)
∣∣∣∣∣dydx

∣∣∣∣∣
= ya−1

β(a,b)(1 +y)a+b · e
−x

= e−x(a−1)e−x

β(a,b)[1 + e−x]a+b

= e−ax

β(a,b)(1 + e−x)a+b for −∞< x <∞; a > 0, b > 0 (4.6)
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which is a GLIV distribution.

(b.) Let

X =− lnλY

∴ y =e
x

λ
=⇒ dy

dx
=−1

λ
e−x

∴ f(x) = ya−1

β(a,b)[1 +y]a+b
1
λ
e−x

= (e−x)a−1

λa−1β(a,b)
1

[1 + e−x
λ ]a+b

1
λ
e−x

= e−ax

λaβ(a,b) (λ+e−x)a+b

λa+b

= λbe−ax

β(a,b)(λ+ e−x)a+b (4.7)

which is extended GLIV

(c.) A four parameter generalized beta II G4BII distribution.
Let

T =
(
Y

p

)q
where T is a beta II distribution with two parameters a and b

Therefore the pdf of y is

g(y) = ta−1

β(a,b)(1 + t)a+b

∣∣∣∣∣ dtdy
∣∣∣∣∣

= ta−1

β(a,b)(1 + t)a+b ·
q

p

(
y

p

)q−1

=

(
y
p

)aq−q
β(a,b)[1 +

(
y
p

)q
]a+b

q

p

(
y

p

)q−1

=

(
q
p

)
β(a,b)

(
y
p

)aq−1

[1 +
(
y
p

)
]a+b

, y > 0, a,b,p,q > 0 (4.8)

This is G4BII distribution.

Next, let
Y = e−X

where y is G4BII distributed.
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Then the pdf of x is

f(x) =
( qp)

β(a,b)

(
y
p

)aq−1

β(a,b)[1 +
(
y
p

)p
]a+b

[
dy

dx

]
(4.9)

Therefore,

f(x) =q

p

(
e−x

p

)aq−1

β(a,b
[
1 +

(
e−x
p

)q]a+b

= q

paq
eaqx

β(a,b)[1 +
(
e−x
p

)q
]a+b

; x > 0; a,b,p,q > 0 (4.10)

McDonald (1984) calls this distribution exponential generalized beta II, EGBII

When q = 1, then

f(x) = 1
pa

e−ax

β(a,b)[1 + e−x
p ]a+b

= pb

β(a,b)
e−ax

p+ (e−x)a+b (4.11)

which is extended GLIV distribution.

Therefore EGBII is a generalization of extended GLIV .

4.3.1 Beta Generators Approach

A cumulative distribution function (cdf) of beta 1 random variable is given by;

W (y) =
y∫

0

ta−1(1− t)b−1

β(a,b) dt (4.12)

Since 0≤ y ≤ 1, it can be replaced by a continuous cdf of X, say G(x), for −∞< x∞

This is because 0≤G(x)≤ 1

∴ F (x) =W [G(x)] =
G(x)∫
0

ta−1(1− t)b−1

β(a,b) dt

∴ f(x) = d

dx

G(x)∫
0

ta−1(1− t)b−1

β(a,b) dt

=[G(x)]a−1[1−G(x)]b−1g(x)
β(a,b) (4.13)

where g(x) = d
dxG(x). This concepts were introduced by Eugene et al (2000) and Jones

(2004).
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Special cases

(i) b= 1

b= 1 =⇒ F (x) =
G(x)∫
0

ata−1dt

=
(
G(x)

)a
and

f(x) = a
(
G(x)

)a−1
g(x), a > 0 −∞< x <∞

which is exponentiated Type I distribution.

(ii) a= 1

a= 1 =⇒ F (x) =
G(x)∫
0

b(1− t)b−1dt

Let y = 1− t =⇒ dy =−dt

F (x) =b
1∫

1−G(x)

yb−1dy

=1− [1−G(x)]b

which is exponentiated Type II distribution.

(iii) a= i and b= n− i+ 1

∴ F (x) =
G(x)∫
0

ti−1(1− t)n−i
β(i,n− i+ 1)dt

when i= 1, then

F (x) =
G(x)∫
0

(1− t)n−1

β(1,n)

=1− [1−G(x)]n

and
f(x) = n[1−G(x)]n−1g(x)

which is the distribution of the minimum order statistic.
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When i= n, then

F (x) =
G(x)∫
0

tn−1

β(n,1)

=[G(x)]n

and
f(x) = n[G(x)]n−1g(x)

which is the distribution of maximum order statistics.

For the extended standard logistic distribution

G(x) = λ

λ+ e−x
, −∞< x <∞; λ > 0

∴ F (x) =
λ(λ+e−x)−1∫
−∞

ta−1(1− t)b−1

β(a,b) dt

∴ f(x) =

(
λ

λ+e−x
)a−1 [

1− λ
λ+e−X

]b−1

β(a,b)
d

dx
λ(λ+ e−x)−1

= λa−1[λ+ e−x−λ]
β(a,b)(λ= e−x)a+b−2

λe−x

(λ+ e−x)2

= λae−bx

β(a,b)(λ+ e−x)a+b for −∞< x <∞; a < 0, b > 0, λ > 0 (4.14)

which is an extended GLIV

Special cases

(i) b= 1

b= 1 =⇒ f(x) = λae−x

β(a,1)(λ+ e−x)a+1

i.e. f(x) = aλae−x

(λ+ e−x)a−1

= aλae−x

(λ+ λ
λe
−x)a+1

=
a
λe
−x

(1− 1
λe
−x)a+1

= aρe−x

(1 +ρe−x)a+1 −∞< x <∞, a > 0,ρ > 0 (4.15)

This is an extended GLI distribution.
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(ii) a= 1

a= 1 =⇒ f(x) = λe−bx

β(1, b)(λ+ e−x)b+1

= bλe−bx

(λ+ e−x)b+1

which is an extended GLII distribution.

(iii) b= a

b= a =⇒ f(x) = λae−ax

β(a,a)(λ+ e−x)2a (4.16)

which is an extended GLIII distribution.

(iv) a= 1, b= n

∴ f(x) = λe−nx

β(1,n)(λ+ e−x)n+1

= nλe−nx

(λ+ e−x)n+1 for−∞< x <∞, λ > 0, n= 1,2,3 . . . (4.17)

This is minimum order statistics distribution of an extended standard logistic
distribution.

(v) a= n, b= 1

∴ f(x) = λne−x

β(n,1)(λ+ e−x)n+1

= nλne−x

(λ+ e−x)n+1 for−∞< x <∞, λ > 0, n= 1,2,3 . . . (4.18)

which is a maximum order statistics distribution from the extended standard logistic.

(vi) Other special cases are: Standard logistic , GLI,GLII,GLIII,GLIV , maximum
and minimum order statistic distribution of the standard logistic.

4.4 The Extended Standard Logistic Distribution

Extended Standard Logistic is a new distribution which has been introduced. It’s methods
of construction follow. The moment generating function of the Extended standard logistic
distribution has been calculated.
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4.4.1 Constructions based on Gumbel I mixtures

Let
g(λ) = βe−βλ, λ > 0, β > 0
This is an exponential mixing distribution with parameter λ

∴ f(x) =
∞∫
0
e−xλexp(−λe−x)βe−βλdλ

=βe−x
∞∫
0
λexp(−(β+ e−x)λ)dλ

=βe−x Γ2
(β+ e−x)2

= βe−x

(β+ e−x)2 , −∞< x <∞ (4.19)

4.4.2 Constructions based on Gumbel II mixtures

g(λ) =βe−βλ, λ > 0, β > 0

∴ f(x) =
∞∫
0
λex exp(−λex)βe−βe−βλdλ

=βex
∞∫
0
λexp(−(β+ ex)λ)dλ

∴ f(x) =βex
∞∫
0
λe−(β+ex)λdλ

= βex

(β+ ex)2 −∞< x∞, β > 0

= βe−x

(1 +βe−x)2 (4.20)

4.4.3 Construction based on the differences of two independent Gumbel random
variables

f(x1) = e−x1 exp(−ex1) −∞< z <∞
f(x2) = αe−x2 exp(−αe−x2) −∞< z <∞

(4.21)
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∴ g(z) =
∞∫
−∞

e−(z+x2) exp(−e−(z+x2))αe−x2 exp(−αe−x2)dx2

=αe−z
∞∫
−∞

e−x2 exp(−e−ze−x2−αe−x2)e−x2dx2

=αe−z
∞∫
−∞

ye−(α+e−z)ydy

where y = e−x2 =⇒ dy =−ex2dy

∴ g(z) = αe−z

(α+ e−z)2 , −∞< z <∞, α > 0 (4.22)

4.4.4 Construction based on logarithmic transformation

Let

X =ln
(

1− 1
2e
−y

λ
2e
−y

)

∴
1− 1

2e
−y

λ
2e
−y =ex

∴ 1− 1
2e
−y =λ2 e

xe−y

∴ 1 =1
2e
−y(1 +λex)

∴ e−y = 2
1 +λex

−y =ln2− ln(1 +λex)
y =ln(1 +λex)− ln2
dy

dx
= λex

1 +λex

∴ f(x) =1
2e
−|y| dy

dx

=1
2 ·

2
1 +λex

· λex

1 +λex

= λex

(1 +λex)2 , −∞< x <∞; λ > 0

that is,

f(x) = λe−x

(λ+ e−x)2 ,−∞< x <∞; λ > 0
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4.4.5 MGF Extended Standard Logistic Distribution.

MX(t) =E[etX ]

=
∞∫
−∞

etx
λe−x

(λ+ e−x)2dx

Let
y = 1

λ+ e−x
= (λ+ e−x)−1

dy

dx
= e−x

(λ+ e−x)2

MX(t) =

1
λ∫

0
λetxdy

=λ

1
λ∫

0
etxdy

from y = 1
λ+ e−x

=⇒ λ+ e−x = 1
y

∴ e−x =1
y
−λ= 1−λy

y

∴ ex = y

1 +λy

MX(t) =λ

1
λ∫

0

(
y

1−λy

)t
dy

Let z =λy =⇒ dz

λ
= dy

∴MX(t) =λ
1∫

0

(
z

λ(1− z)

)t
dz

λ

=
1∫

0

(
z

λ(1− z)

)t
dz

= 1
λt

1∫
0
zt(1− z)−tdz

= 1
λt
B(t+ 1,1− t)
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= 1
λt

Γ(t+ 1)Γ(1− t)

= 1
λt

Γ(1− t)Γ(1 + t)

= 1
λt

Γ(t)Γ(1− t)

= πt

λt sinπt (4.23)

4.5 Summary

Using beta distribution and their generalization, we have obtained GLIV , Extended GLIV and
EGB2 distributions.

Whence their special cases can be determined . The major contribution of this chapter is an
introduction of the "Extended " standard logistic distribution and using it in beta generated
approach to determine extended GLIV distribution and its special cases.

EGB2 is a generalization of the extended GLIV distribution.
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5 DISCRETE MIXTURES BASED MINIMUM AND
MAXIMUM ORDER STATISTICS FROM STANDARD
LOGISTIC DISTRIBUTION

5.1 Introduction

The main objective of this chapter is to construct the pdf, survival functions and hazard
functions of discrete mixtures based on minimum and maximum order statistics from the
standard logistic distribution. The shapes of the resulting distributions thereof, have been
simulated.

The mixing distributions used are the zero truncated power series distributions namely;
zero -truncated Poisson, zero-truncated binomial, zero- truncated (shifted) geometric, zero-
truncated negative binomial and the logarithmic series distributions.

The results shall be obtained for both minimum and maximum order statistics distributions.

David and Johnson (1952) gave the pdf of the truncated distribution. Generally they expressed
the pmf of the truncated distribution as;

g(x) = f(x)
1−f(0) (5.1)

where f(x) is the pmf of the untruncated distribution and f(0) is the pmf evaluated at 0.

Generally the pdf of the mixed distribution can be given by;

f(x) =
∑
λ

f(x|λ)g(λ) (5.2)

where

f(x|λ) is the conditional probability distribution,

g(λ) is the mixing distribution and

f(x) is the mixture or mixed distribution.

The problem is to find f(x) for various g(λ), which in this case are the zero- truncated
distributions. The survival S(x)and hazard h(x) functions of the mixed distributions shall
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also be obtained as follows;

S(x) = 1−G(x) (5.3)

where G(x) is the cdf of X

h(x) = g(x)
S(x) (5.4)

or by the pgf technique

5.1.1 Distributions of Order statistics using the beta generator

The beta generator is given by;

f(x) =

(
G(x)

)a−1(
1−G(x)

)b−1

B(a,b) g(x), a, b > 0; 0<G(x)< 1, −∞< x <∞

B(a,b) = ΓaΓb
Γ(a+ b) (5.5)

For ith order statistic, a= i and b= n− r+1, then i= 1 is for the minimum and i= n is for
the maximum. Thus,

f(x) =[G(x)]r−1[1−G(x)](n−r+1)−1

B(r,n− r+ 1) g(x), 0<G(x)< 1,−∞< x <∞

= Γ(n+ 1)
ΓrΓ(n− r+ 1)g(x)[G(x)]r−1

(
1−G(x)

)(n−r
, 0<G(x)< 1, −∞< x <∞ (5.6)

When r = 1 we shall obtain the pdf of the minimum order statistics as;

=Γ(n+ 1)
Γ1Γn g(x)[1−G(x)](n−1, 0<G(x)< 1,−∞< x <∞

=ng(x)
(
1−G(x)

)(n−1
, 0<G(x)< 1, −∞< x <∞ (5.7)

When r = n we shall obtain the pdf of the maximum order statistics distribution as;

f(x) =

(
G(x)

)n−1

B(n,1) g(x), 0<G(x)< 1, −∞< x <∞

=ng(x)
(
G(x)

)n−1
(5.8)

Also, from the beta generator, if a= i and b= n− i+1 where 1≤ i≤ n , then we shall have
the ith order statistics distribution given by;
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Fi:n(x) =
G(x)∫
0

ti−1(1− t)n−i
B(i,n− i+ 1)dt

and

fi:n(x) = [G(x)]i−1[1−G(x)]n−i
B(i,n− i+ 1) g(x)

When i= 1, we have the minimum distribution given by:

F1:n(x) = 1− [1−G(x)]n

and
f1:n(x) = n[1−G(x)]n−1g(x)

When i= n, we have the maximum distribution given by;

Fn:n(x) = [G(x)]n

and
fn:n(x) = n[G(x)]n−1g(x)

5.1.2 The discrete mixture distribution

Let X1,X2, ...,XN be iid continuous random variables where N is also a random variable
independent of X ′is
Suppose

Z = min(X1,X2, ...,XN )

Then the cdf of Z given N = n is

F (z|n) = 1− [1−G(z)]n (5.9)

where G(z) is the cdf of the parent distribution

∴ 1−F (z|n) = [1−G(z)]n (5.10)

The survival function of Z given N = n is

S(z|n) = 1−F (z|n) (5.11)
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i.e the survival function of Z given N.

=
∞∑
n=1

[1−G(z)]npn

=E[1−G(z)N

=φN (1−G(z)) (5.12)

pgf of N at 1−G(z)

The survival function of the discrete mixture of minimum order statistic is the pgf of N at
the survival function point of the parent distribution.

Let
ψN (s) = E(sN )

the pgf of N,
∴ S(z) = E[1−G(z)]N

= ψN [1−G(z)]

The pdf of the mixture is obtained by the formula

f(z) =−dS
dz

The hazard function of the mixture is

h(z) = f(z)
S(z)

and the cdf is
G(z) = 1

1 + e−z
−∞< z <∞

therefore, the survival function of the discrete mixture of minimum order statistic from a
standard logistic distribution is given by;

S(z) =ψN (1−G(z))

=ψN [1− 1
1 + e−z

] (5.13)
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5.2 Discrete Mixtures based on Minimum order statistics from
Standard Logistic Distribution

5.2.1 The Minimum order statistics Distribution

Let Y be the first order statistics in a minimum sample

Y = min(X1,X2, ...,Xn)

then
G(x) =Prob{X1 ≤ x}

=1−Prob{X1 > x}
=1−Prob{X1 > x,X2 > x, ...,Xn > x}

=1−Prob
(
Xi > x

)n
=1−{1−Prob(Xi ≤ x)}n

=1−
(
1−F (x)

)n
(5.14)

which is the cdf of the minimum order statistics distribution.

g(x) =n
(
1−F (x)

)n−1
)f(x)

G(x|n) = 1−
(
1− 1

1 + ex

)n
= 1−

(1 + ex−1
1 + ex

)n
= 1− ( ex

1 + ex
)n

g(x) = ( ex

1 + ex
)n−1 nex

(1 + ex)2 , −∞< x <∞

= exn

(1 + ex)n
1 + ex

ex
nex

(1 + ex)2 −∞< x <∞

= nexn

(1 + ex)n+1 −∞< x <∞ (5.8)

Survival and Hazard functions of the minimum order statistics distribution for the
standard logistic

S(x) = 1− [1− 1
1 + ex

]n = ( ex

1 + ex
)n
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h(x) =n( ex

1 + ex
)n−1 ex

(1 + ex)2

/(
ex

1 + ex

)n
= exn

(1 + ex)n
1 + ex

ex
ex

(1 + ex)2 ×
(1 + ex)n
exn

= exn

(1 + ex)n
1 + ex

ex
ex

(1 + ex)2 ×
(1 + ex)n
exn

= n

1 + ex
(5.15)

Mixture based on minimum order statistic from standard logistic

The pdf of the discrete mixture distribution of minimum order statistics from a standard
logistic is given by :

g(x) =
∞∑
n=1

n( ex

1 + ex
)n−1 ex

(1 + ex)2Pn

=
∑∞
n=1ne

xn

(1 + ex)n+2Pn (5.16)

where Pn is the mixing distribution. Let us consider different cases of Pn

5.2.2 When Pn is Zero- Truncated Poisson distribution

Construction of the Zero- Truncated Poisson distribution

From

eθ =
∞∑
n=0

θn

n! = 1 +
∞∑
n=0

θn

n!

eθ−1 =
∞∑
n=0

θn

n!

1 =
∞∑
n=0

θn

n!(eθ)−1

therefore
Pn = θn

n!(eθ−1) , n= 1,2... (5.17)

is a zero truncated Poisson distribution
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The Mixed distribution- Logistic- Poisson distribution

This distribution is obtained using the Poisson as the mixing distribution. It can be constructed
using two different methods.

Method 1; Construction using the pgf approach:

ψN (s) =
∞∑
n=1

pns
n = eθs−1

eθ−1 (5.18)

therefore
S(z) =ψN [1−G(z)]

=ψN
( e−z

(1 + e−z)
)

=e
θe−z

1+e−z −1
eθ−1 (5.19)

ds

dt
= 1
eθ−1

d

dz

[
e
θe−z

1+e−z −1
]

∴ f(z) = 1
eθ−1

{
e
θe−z

1+e−z [ d
dz

θe−z

1 + e−z
]
}

= 1
eθ−1e

θe−z
1+e−z

{(1 + e−z)e−z− e−z.e2

(1 + e−z)2
}

= 1
eθ−1e

θe−z
1+e−z

{ e−z

(1 + e−z)2

}

= θe−ze
θez

1+e−z

(eθ−1)(1 + e−z)2 (5.20)

h(z) = θeze
θe−z

1+e−z

(1 + e−z)2 .
1

1 + e
θe−z

1+e−z

= θeze
θ

1+ez

(1 + ez)2(e
θ

1+ez )
(5.21)

Method 2; Construction of the pdf using the discrete mixture approach

To obtain the discrete mixture we shall proceed as follows:

g(x) =
∞∑
n=1

n( ex

1 + ex
)n−1 ex

(1 + ex)2
θn

n!(eθ−1)
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= θex

(1 + ex)2(eθ−1)

∞∑
n=1

n( θex

1 + ex
)n−1 1

n!

= θex

(1 + ex)2(eθ−1)

∞∑
n=1

( θex

1 + ex
)n−1 1

(n−1)!

therefore
g(x) = θex

(1 + ex)2(eθ−1)e
θex

1+ex , −∞< x <∞

= θ

eθ−1
ex

(1 + ex)2 e
θex

1+ex , −∞< x <∞ (5.22)

which is the pdf of the minimum zero- truncated logistic-Poisson distribution.

To show that g(x) is a pdf

∞∫
−∞

g(x)dx=
∞∫
−∞

θ

eθ−1
ex

(1 + ex)2 e
θex

1+ex dx (5.23)

Let
y = 1

1 + ex
=⇒ y+yex = 1 =⇒ ex = 1−y

y
dy

dx
= d

dx
(1 + ex)−1 =−(1 + ex)−2ex = −ex

(1 + ex)2

x=−∞ =⇒ y = 1;x=∞ =⇒ y = 0
therefore
∞∫
−∞

g(x)dx= +
1∫

0

θ

eθ−1e
θy(1−y)

y dy

=
1∫

0

θ

eθ−1e
θ(1−y)dy

= θ

eθ−1e
θ

1∫
0
e−θydy

= θ

eθ−1e
θ[e
−θy

−θ
]

=− eθ

eθ−1[e−θy]
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=− eθ

eθ−1[e−θ−1]

=− eθ

eθ−1[1e−θ−]

= eθ−1
eθ−1

= 1 (5.24)

as required.

5.2.3 Graphs of the pdf and hazard of logistic Poisson distribution

The graphs below show the pdf and hazard functions of the logistic-Poisson with varying
values of theta. The pdf of the logistic Poisson is an increasing function while the hazard
function is a decreasing function.
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5.2.4 When Pn is Zero truncated Binomial distribution

Construction of Zero- Truncated Binomial distribution

The probability distribution of the binomial is given by:

P (X = n) =
(
m

n

)
θn(1− θ)m−n, n= 0,1,2, ...,m

=
∞∑
k=0

P (X = n) = (1− θ)m+
m∑
k=1

(
m

n

)
θn(1− θ)m−n = 1 (5.25)
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Therefore

P (X = n) =

(
m
n

)
θn(1− θ)m−n

1− (1− θ)m , ,n= 1,2, ...m (5.26)

which is the pmf of the zero-truncated binomial distribution. 5.26 can also be expressed as

P (X = n) =

(
m
n

)
θn

(1 + θ)m−1 , n= 1,2, ...,m (5.27)

because
(1 + θ)m−1 =

(
1− (1 + θ)m

)
(1 + θ)n−m

5.2.5 Logistic-Binomial Distribution

Here the mixing distribution is the the zero-truncated binomial. The mixed distribution shall
be obtained using two methods as follows.

Method 1 using the pgf approach

pn =

(
m
n

)
θn

(1 + θ)m−1 , n= 1,2, ...,m

ψN (s) =(1 + θs)m−1
(1 + θ)m−1 (5.28)

therefore
S(z) =ψN

( e−z

1 + e−z

)

=
(1 + θe−z

1+e−z )m−1
(1 + θ)m−1

=

(
1+e−z+θe−z

)m
−1

(1+e−z)m

(1 + θ)m−1 (5.29)

f(z) =
m(1 + θe−z

1+e−z )m−1

(1 + θ)m−1
{ d
dz

θe−z

1 + e−z

}

=
mθ(1 + θe−z

1+e−z )m−1

(1 + θ)m−1
(1 + e−z)e−z− e2e−z

(1 + e−z)2

=
mθ(1 + θe−z

1+e−z )m−1

(1 + θ)m−1
e−z

(1 + e−z)2

= mθe−z

(1 + e−z)m+1
1

(1 + e−z + θe−z)(1 + θ)m−1 (5.30)
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h(z) =
mθ(1 + θe−z

1+e−z )m−1

[(1 + θe−z
1+e−z )m−1]

e−z

(1 + e−z)2 (5.31)

Method 2 : Using the discrete mixture approach

f(x) =
∞∑
n=1

n( ex

1 + ex
)n−1 ex

(1 + ex)2

(
m
n

)
θn

(1 + θ)m−1

= 1
(1 + ex)(1 + θ)m−1

∞∑
n=1

θnex

(1 + ex)n
m!

(n−1)!(m−n)!

= 1
(1 + ex)(1 + θ)m−1{

θm!ex
(1 + ex)(m−1)! + θ2m!e2x

(1 + ex)2(m−2)! + θ3m!e3x

(1 + ex)3(m−3)! + ...}

= 1
(1 + ex)(1 + θ)m−1{

θm!ex
(1 + ex)(m−1)! [1 + θex

1 + ex
+ θ2e2x

(1 + ex)2 + θ3e3x

(1 + ex)3 + ...}

=
mθex(1 + θex

(1+ex)2 )m−1

(1 + ex)2(1 + θ)m−1
(5.32)



99

5.2.6 Graphs of the pdf and Hazard of Logistic Binomial
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To plot the above graphs, one parameter is fixed while the other one is varied. The graphs of
the pdf are both increasing functions while the graphs for the hazard are both decreasing
functions.

5.2.7 When Pn is the shifted Geometric distribution

Construction of the zero-truncated shifted Geometric distribution

The Zero-truncated geometric is also referred to as the shifted geometric distribution. The
probability distribution of the geometric with parameter θ is given by:

P (X = θ) = (1− θ)θn−1, 1,2, ...,
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The logistic -shifted geometric distribution

The logistic-shifted geometric distribution can be constructed using the two methods given
below.

Method 1

g(x) =
∞∑
n=1

n( ex

1 + ex
)n−1 ex

(1 + ex)2 (1− θ)θn−1,

=e
x(1− θ)

(1 + ex)2

∞∑
n=1

n( θex

1 + ex
)n−1,

=e
x(1− θ)

(1 + ex)2
1

(1− θex

1+ex )2

=e
x(1− θ)

(1 + ex)2
(1 + ex)2

(1 + ex− θex)2

= (1− θ)ex
(1 + ex− θex)2

= (1− θ)ex
[1 + (1− θ)ex]2 , −∞< x <∞, (5.33)

Method 2

The shifted (zero-truncated) distribution has

pmf:
pn = θn−1(1− θ), n= 1,2, ...;0< θ < 1

ψN (s) = (1− θ)s
1− θs

S(z) = ψN ( e−z

1 + e−z
)

= (1− θ)e−z
1 + e−z− θe−z

= (1− θ)e−z
1 + (1− θ)e−z

= 1− θ
1− θ+ ez

(5.34)
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f(z) = (1− θ)e−z
(1− θ+ e−z)2

= (1− θ)e−z
(1 + (1− θ)e−z)z (5.35)

h(z) = (1− θ)e−z
[1 + (1− θ)e−z]2 .

1 + (1− θ)e2

1− θ

= e−z

1 + (1− θ)e−z (5.36)

5.2.8 Graphs of the pdf and hazard functions of the logistic geometric
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5.2.9 When Pn is zero-truncated negative binomial distribution

Construction of Zero- Truncated Negative binomial distribution

Let
(1 + θ)α = 1 +

∞∑
n=1

α(α−1)...(α−n+ 1)
n! θn, −1< θ < 1 (5.37)

Now change θ to −θ and substitute r for α

(1− θ)−α = 1 +
−α∑
n=1

(−α−1)...(−α−n+ 1)
n! (−θn), −1< θ < 1,
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dropping off (−1)n =
(
(−1)2

)n
= 1n = 1 so that (−α)(−α− 1)(−α− 2)...(−α− n+

1)(−θ)n = α(α+ 1(α+ 2)...(α+n−1)(−1)2n)θn = α(α+ 1(α+ 2)...(α+n−1)θn

= 1 +
∞∑
n=1

α(α+ 1)...(α+n−1)
n! θn,

rearranging

= 1 +
∞∑
n=1

(α+n−1(α+n−2)...α)
n! θn

=
∞∑
n=0

(
n+α−1
α−1

)
θn,

which is the negative binomial expansion

P (n;θ,α) =P (Y = n) = 1
1− (1− θ)α

(
n+α−1
α−1

)
(1− θ)αθn,

=Pn =
(
α+n−1

n

)
θn

(1− θ)−α−1 , n= 1,2,3, ..., (5.38)

which is the pmf of the zero-truncated negative binomial distribution.

The logistic-negative binomial distribution

For the zero- truncated negative binomial distribution

ψN (s) = (1− θs)−α−1
(1− θ)−α−1

s(z) =
(1− θez

1+ez )−α−1
(1− θ)−α−1

f(z) = 1
(1− θ)−α−1

{
−α(1− θez

1 + e−z
)−α−1

{ d
dz

(1− θe−z

1 + ez
)}

(5.39)

= αθ

(1− θ)−α
{

(1− θe−z

1 + e−z
)−α−1

}(1 + e−z)e−z− e−z.e2

(1 + e−z)z

= αθ

(1− θ)−α−1
(
1− θe−z

1 + e−z
)−α−1

( e−z

(1 + e−z)2

)
= αθ

(1− θ)−α−1
( 1 + e−z

1 + e−z(1− θ)
)α+1 e−z

(1 + e−z)2 (5.40)

h(z) = αθ
[
(1− θe−z

1 + e−z
)−α−1 e−z

(1 + e−z)2
1

(1− θe−z
1+e−z )−α−1

]
(5.41)
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5.2.10 Graphs of pdf and hazard for the logistic negative binomial

The graphs have been obtained by fixing θ and varying α and also by fixing α and
varying θ. The graphs obtained show a similar trend for the pdf and hazard functions.
The pdf’s are decreasing functions while the hazard functions are decreasing functions.
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5.2.11 When Pn is the logarithmic distribution

Construction of the logarithmic series distribution

The probability distribution of the logarithmic with parameter θ is given by

Pθ =−log(1− θ), (5.42)

To obtain the power series of −log(1− θ) we start by expanding (1− θ)−1;

1
1− θ = 1 + θ+ θ2 + ...,

Integrating both sides w.r.t θ
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∫ dθ

1− θ =
∫

[1 + θ+ θ2 + ...]dθ,

−log(1− θ) =θ+ θ2

2 + θ3

3 +, ...,

=
∞∑
n=1

θn

n
,

therefore
1 =

∞∑
n=1

θn

−nlog(1− θ)

P (X = n) = θn

−nlog(1− θ) , n= 1,2, ... (5.43)

which is the logarithmic series distribution

The logistic-logarithmic series distribution

In this case
pmf:

Pn = θn

−log(1− θ) ,n= 1,2, ... (5.44)

pgf:

ψN (s) = log(1− θs)
log(1− θ)

S(z) =
log(1− θ e−z

1+ez )
log(1− θ)

= log[1 + (1− θ)e−z]− log(1 + e−z)
log(1− θ) (5.45)

f(z) = 1
log(1− θ)

{ (1− θ)e−z
1 + (1− θ)e−z −

e−z

1 + e−z

}
= 1
log(1− θ)

{(1− θ)(1 + e−z)e−z− e−z− (1− θ)e−2z

(1 + e−z)[1 + (1− θ)e−z]
}

= 1
log(1− θ)

{(1− θ)e−z + (1− θ)e−2z− e−z− (1 + θ)e−2z

(1 + e−z)[1 + (1− θ)e−z]
}

= 1
log(1− θ)

{ −θe−2z

(1 + e−z)[1 + (1− θ)e−z]
}

=− θe−z

log(1− θ)(1 + e−z)[1 + (1− θ)e−z] (5.46)

h(z) = θe−z

(1 + e−z)[1 + (1− θ)e−z]{log(1 + e−z)− log[1 + (1− θ)e−z]} (5.47)
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5.2.12 Graphs for the pdf and hazard functions for the logistic geometric distri-
bution.
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5.3 Discrete Mixtures based on Maximum Order statistics from
Standard Logistic Distribution

5.3.1 Introduction

The objective of this section is to construct the pdf, survival functions and hazard functions
of discrete mixtures of the maximum order statistics from the standard logistic distribution.
The mixing distributions are zero truncated power series distributions i.e zero -truncated
poisson, zero-truncated binomial, zero- truncated(shifted) geometric, zero-truncated negative
binomial and the logarithmic series distributions. The resulting distributions shall be obtained
for maximum order statistics distributions.

The pdf of the discrete mixtures of maximum order statistics from a logistic distribution is
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given by :

g(x) =
∞∑
n=1

n
( ex

1 + ex

)n 1
1 + ex

Pn, −∞< x <∞ (5.48)

where Pn, the mixing distribution is a zero truncated power series distribution.

5.3.2 Distribution of maximum order statistics from logistic distribution

LetXn denote the nth observation of a random sample from such that: Xn = max(X1,X2, ...,Xn)
sample. Let Xn be the largest X and;

Xn = max(X1,X2, ...,Xn)

Let F (x) be the cdf of X and Z = max(X1,X2, ...,Xn), then the cdf of Z is

G(z) =Prob(Z < z)
=Prob

(
max(X1,X2, ...,Xn)< z

)
=Prob

(
X1 < z,X2 < z, ...,Xn < z

)
=

n∏
i=1

Prob
(
Xi < z

)

=
n∏
i=1

F (z)

=
(
F (z)

)n
(5.49)

which is the cdf of the maximum order statistics distribution. This is an exponentiated
distribution which can also be derived from the beta generator as ;

5.3.3 Exponentiated distribution

Eugene et al.(2000) considered a cdf of the classical beta distribution as

W (x) =
∫ x

0

ta−1(1− t)b−1

β(a,b) dt (5.50)

Since 0≤ x≤ 1 Eugene et al. replaced it by a cdf G(x). Thus we have

F (x) =W [G(x)] =
∫ G(x)

0

ta−1(1− t)b−1

B(a,b) dt (5.51)
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Put b= 1 we get

F (x) =
∫ G(x)

0
ata−1dt

=at
a

a

∣∣∣∣∣
G(x)

0

=
(
G(x)

)a
When a= 1, we have Making the substitution y = 1− t =⇒ dy =−dt

F (x) =
∫ G(x)

0
b(1− t)b−1dt=−

∫ 1−G(x)

1
byb−1(−dt)

The distribution of the maximum order statistics for the logistic shall be obtained as follows;

G(x) =
[ 1
1 + ex

]n
g(x) =n

( ex

1 + ex

)n−1 ex

(1 + ex)2

=n
( ex

1 + ex

)n 1
1 + ex

, −∞< x <∞

= nexn

(1 + ex)n+1 −∞< x <∞ (5.52)

5.3.4 The hazard and survival functions of the maximum order statistics from a
logistic distribution

The pdf and hazard functions shall be obtained as follows.

S(x) =1−
[ 1
1 + ex

]n
,

=1− 1
(1 + ex)n

=(1 + ex)n−1
(1 + ex)n

h(x) = nexn

(1 + ex)n(1 + ex) .
(1 + ex)n

[(1 + ex)n−1]

= nexn

(1 + ex)[(1 + ex)n−1] , −∞< x <∞ (5.53)
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5.3.5 The logistic Poisson distribution

This is obtained when the mixing distribution is the zero- truncated Poisson distribution.

S(y) =
∞∑
n=1

ne−y

(1 + e−y)n+1
θn

n!(eθ−1) , −∞< y <∞

= e−y(e
θ

1+e−y −1)
(eθ−1)(1 + e−y) (5.54)

f(y) = e−y(θ−y−1)e
θ−y−e−y

1+e−y + e−y + e
θ−y−e−y

1+e−y −y + e−2y

(eθ−1)(1 + e−y)2 (5.55)

h(y) =(θ−y−1)e
θ−y−e−y

1+e−y + 1 + (θ−y−1)e
θ−y−e−y

1+e−y −1 + e−y

(1 + e−y)(e
θ

1+e−y −1)
(5.56)

5.3.6 Graphs of the pdf and hazard of logistic Poisson distribution
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5.3.7 The logistic-binomial distribution

S(y) =
∞∑
n=1

ne−y

(1 + e−y)n+1

(
m
n

)
θn

(1 + θ)m−1

= me−y(e
θ

1+e−y −1)
(1 + e−y)((1 + θ)m−1) (5.57)

f(y) =− m

(1 + θ)m−1
d

dS

(e θ
1+e−y −1
1 + e−y

)

=−mθe
−ye

θ
1+e−y + e−y(1 + e−y)(e

θ
1+e−y −1)

((1 + θ)m−1)(1 + e−y)3 (5.58)
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h(y) = θe
θ

1+e−y + (1 + e−y)(e
θ

1+e−y −1)

(1 + e−y)2(e
θ

1+e−y −1)
(5.59)

5.3.8 Graphs of the pdf and Hazard of Logistic Binomial
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5.3.9 The logistic shifted geometric distribution

S(y) =
∞∑
n=1

ne−y

(1 + e−y)n+1 θ
n−1(1− θ)

= (1− θ)e−y
(1− θ+ e−y)2 (5.60)

f(y) = d

dS

(1− θ)e−y
(1− θ+ e−y)2

=−e
−y(1− θ− e−y)(1− θ)

(1− θ+ e−y)3 (5.61)
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h(y) =−e
−y(1− θ− e−y)(1− θ)

(1− θ+ e−y)3 × (1− θ+ e−y)2

(1− θ)e−y

=−(1− θ− e−y)
1− θ+ e−y

= θ+ e−y−1
1− θ+ e−y

(5.62)

5.3.10 Graphs of the pdf and Hazard of Logistic Geometric
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5.3.11 The logistic zero- truncated negative binomial distribution

S(y) =
∞∑
n=1

ne−y

(1 + e−y)n+1

(
α+n−1

n

)
θn

(1− θ)−α−1

=
e−y(1− θ

1+e−y )−α−1
(1 + e−y)(1− θ)−α−1

(5.63)

f(y) = 1
(1− θ)−α−1

d

dS

{(1− θ
1+e−y )−α−1
(1 + e−y)

}

=
−
[
− e−y

{
( 1+e−y

1+e−y−θ )α−1
}]

(1 + e−y)2

(5.64)

h(y) = −{(1− θ)
−α−1}

1 + e−y
(5.65)
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5.3.12 Graphs of the pdf and Hazard of Logistic Negative-Binomial
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5.3.13 The logistic-logarithmic series distribution

S(y) =
∞∑
n=1

ne−y

(1 + e−y)n+1
θn

−log(1− θ)

= θe−y

(1 + e−y− θ)2log(1− θ)

=− θ

log(1− θ)
d

dy

e−y

(1 + e−y− θ)2

= θe−y(1− e−y− θ)
log(1− θ)(1 + e−y− θ) (5.66)

h(y) = θe−y(1− e−y− θ)
log(1− θ)(1 + e−y− θ) ×

(1 + e−y− θ)2log(1− θ)
θe−y

=(1− e−y− θ)(1 + e−y− θ)
=2θ+ e−2y− θ2−1 (5.67)

5.3.14 Graphs of the pdf and Hazard of Logistic Logaritmic
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5.4 Summary

In this charpter we obtained results for distributions resulting from mixtures of order statistics
for both minimum and maximum order statistics from the logistic distribution. The mixing
distributions used were zero truncated poisson, binomial, negative binomial, geometric and
the logarithmic distribution. Graphs of the resulting mixed distributions were simulated for
various values of θ and α. A similar trend of increasing or decreasing has been observed for
the pdf’s and hazard functions.
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6 CONTINUOUS MIXTURES OF LOGISTIC
DISTRIBUTION WITH SCALE AND LOCATION
PARAMETERS

6.1 Introduction

From literature, its only Nadarajah and Kotz (2006) who have studied mixtures of logistic
distribution. They used 16 mixing distributions to obtain the pdfs of type II exponential
mixtures which were expressed in terms of special functions.

In this charpter we shall construct the mixed distributions the logistic distribution with scale
and location parameters. We shall also introduce a new distribution "The Logistic Inverse
Gaussian" whose rth moments and EM algorithm have been obtained.

6.2 Logistic Distribution with Scale and Location Parameters

6.2.1 The Pdf and cdf

They considered the conditional pdf and cdf of the logistic distribution given by;

f(x|λ) = e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

, −∞< x <∞,λ > 0, θ > 0

F (x|λ) = 1
1 + e−

x−θ
λ

, −∞< x <∞,λ > 0, θ > 0 (6.1)

Where θ and λ are scale and location parameters respectively.
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Figure 6.1: Graphs of the standard logistic, logistic with scale and location parameter
normal
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The graph above shows a comparison between the normal, standard logistic and the logistic
with scale and location parameters.
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Hazard and survival functions

The conditional survival function;

S(x|λ) =
∞∫
x

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

dx

= 1
λ

∞∫
x

e−
x−θ
λ

[1 + e−
x−θ
λ ]2

dx

let
z =1 + e−

x−θ
λ dx

= λdz

e−
x−θ
λ

= 1
λ

∞∫
1+e−

x−θ
λ

e−
x−θ
λ

z2
λdz

e−
x−θ
λ

=
∞∫

1+e−
x−θ
λ

1
z2dz

=1
z

∣∣∣∣∣
∞

1+e−
x−θ
λ

S(x|λ) = 1
1 + e−

x−θ
λ

(6.2)

the conditional hazard function shall be given by;

h(x|λ) = e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

/ 1
1 + e−

x−θ
λ

= e−
x−θ
λ

λ[1 + e−
x−θ
λ ]

(6.3)

6.2.2 Mathematical formulation of the problem

Let

f(x) =
∞∫
0
f(x|λ)g(λ)dλ

Where f(x) is the mixed pdf f(x|λ) is the conditional pdf g(λ) is the mixing pdf.
By applying a linear transformation on the standard logistic;

f(x) = e−x

(1 + e−x)2 , −∞< x <∞
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let
x= y− θ

λ
=⇒ ,y = xλ+ θ =⇒ dy

dx
= λ

therefore
dx= dy

λ
f(x) becomes f(x|λ)) as indicated in equation 6.1.
The problem is to find the mixed pdf f(x), the survival function S(x), hazard function h(x)
and the rthmoment E(Xr) for various cases of mixing distributions g(λ).
The mixtures shall be expressed in explicit form and in terms of modified Bessel functions of
the third kind.

The rth moment shall be obtained directly by definition

E(Xr) =
∞∫
0
xrf(x)dx (6.4)

The rth moment shall be obtained indirectly using the conditional expectation approach
stated below;

E(Xr|Λ) =
∞∫
0
xrf(x|λ)dx

=
∞∫
0
xr

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

dx

=
∞∫
0
xrλ0−1

[
1 + e−

x−θ
λ

]−2
e−

x−θ
λ dx

=
∞∫
0
xrλ0−1

∞∑
k=0

(
−2
k

)
e−k(x−θλ )−x−θλ dx

=
∞∑
k=0

(
−2
k

) ∞∫
0
xrλ0−1e−k(x−θλ )−x−θλ dx

=
∞∑
k=0

(
−2
k

) ∞∫
0
xrΛ0−1e−

1
λ [(k−1)(x+θ)]dx

let

λ=
√

(k−1)(y+ θ)x

dλ=
√

(k−1)(y+ θ)dx

dx= dλ√
(k−1)(y+ θ)
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=
∞∑
k=0

(
−2
k

) ∞∫
0
xr
(√

(k−1)(y+ θ)x
)0−1

e
− 1√

(k−1)(y+θ)x
[(k−1)(y+θ)] dλ√

(k−1)(y+ θ)

=r!
{ ∞∑
k=0

(
−2
k

)
E(λr)

(k+ 1)r
}

(6.5)

so that
EE

(
Xr|Λ

)
= E(Xr)

6.2.3 Distributions based on Bessel function of the third kind

The logistic mixing distribution

g(λ) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

dx

=
∞∫
0
λ0−2e−

x−θ
λ −

x−θ
λ [1 + e−

x−θ
λ ]−2[1 + e−

x−θ
λ ]−2dλ

=
∞∫
0
λ0−2

∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

)
e−2(x−θλ )−k(x−θλ )−l(x−θλ )dλ

=
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0
λ0−2e−2(x−θλ )−k(x−θλ )−l(x−θλ )dλ

=
∞∑
k=0

∞∑
l=0

(
−2
k

)(
−2
l

) ∞∫
0
λ−(1)−1e−

1
λ [(x−θ)(2+k+l)]dλ

=
∞∑
k=0

∞∑
l=0

(
−2
k

)(
−2
l

)
Γ1

(x− θ)(2 +k+ l)

= 1
(x− θ)(2 +k+ l)

∞∑
k=0

∞∑
l=0

(
−2
k

)(
−2
l

)
(6.6)

The Exponential mixing distribution

In this case the exponential distribution is used as a mixing distribution. The exponential
distribution has two ways of representing its pdf;

f(x,λ) = λe−λx (6.7)

and
f(x,λ) = 1

λ
e−

1
λx (6.8)
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Proposition 6.2.1. The logistic exponential distribution is given as

f(x) =− 2
µ

∞∑
k=0

(
2
k

)
k02

√
(k+ 1)(x− θ)

µ

E(Xr) =r!
{ ∞∑
k=0

(
−2
k

)
E(λr)

(n+ 1)r
}

Proof. Using equations (2) and (9)

f(x) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

1
µ
e−

λ
µdλ

= 1
µ

∞∫
0
λ0−1[1 + e−

x−θ
λ ]−2]e−

x−θ
λ −

λ
µdλ

= 1
µ

∞∫
0
λ0−1

(
−2
k

)
e−k(x−θλ )−x−θλ −

λ
µdλ

= 1
µ

∞∑
k=0

(
−2
k

) ∞∫
0
λ0−1e−

λ
µ−

(k+1)(x−θ)
λ dλ

= 1
µ

∞∑
k=0

(
−2
k

) ∞∫
0
λ0−1e−

1
µ (λ+(k+1)(x−θ)µ) 1

λdλ

Let the transformation

λ=
√
µ(k+ 1)(x− θ)z

dλ=
√
µ(k+ 1)(x− θ)dz

then

f(x) = 1
µ

∞∑
k=0

(
−2
k

) ∞∫
0

(
√
µ(k+ 1)(x− θ)z)0−1e−

1
µ (
√
µ(k+ 1)(x− θ)

z(k+ 1)(x− θ)) 1√
µ(k+ 1)(x− θ)z

√
µ(k+ 1)(y− θ)dz

= 1
µ

∞∑
k=0

(
−2
k

) ∞∫
0
z)0−1e−

1
µ (
√
µ(k+ 1)(x− θ)[z+ 1

z
]dz

= 2
µ

∞∑
k=0

(
−2
k

)
1
2

∞∫
0
z0−1e{

−2
√

(k+ 1)(x− θ)
µ

[z+ 1
z

]dz

=− 2
µ

∞∑
k=0

(
−2
k

)
k0

(
2
√

(k+ 1)(x− θ)
µ

)
(6.9)

as required
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The Gamma I mixing distribution

The mixing distribution is given as ;

g(λ) = βαe−βλλα−1

Γα ,λ > 0,α > 0,β > 0 (6.10)

The mixed distribution shall be obtained as follows

f(x) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

βαe−βλλα−1

Γα dλ

=βα

Γα

∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

e−βλλα−1dλ

=βα

Γα

∞∫
0
λα−2[1 + e−

x−θ
λ ]−2e−βλdλ

=βα

Γα

∞∫
0
λα−2

∞∑
k=0

(
−2
k

)
e−

k(x−θ)
λ −x−θλ −βλdλ

=e
ββα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0
λ(α−1)−1e

1
λ [(k+1)(θ−x)−λ2]dλ

let
λ=

√
(k+ 1)(θ−x)z

dλ=
√

(k+ 1)(θ−x)dz

= eββα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0

(√
(k+ 1)(θ−x)z

)(α−1)−1
∗

e
− 1√

(k+1)(θ−x)z
{

(k+ 1)(θ−x) + z2(k+ 1)(θ−x)
}
dz

=e
ββα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0

(√
(k+ 1)(θ−x)z

)(α−1)−1
e
− (k+1)(θ−x)√

(k+1)(θ−x)z
{

1 + z2
}
dλ

=e
ββα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0

(√
(k+ 1)(θ−x)z

)(α−1)−1
e
−
√

(k+1)(θ−x)
z

{
1+z2

}
dλ

=e
ββα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0

(√
(k+ 1)(θ−x)z

)(α−1)−1
e
−
√

(k+1)(θ−x)
{

1
z+z

}
dλ

=e
ββα

Γα

∞∑
k=0

(
−2
k

)
Kα−1

(√
(k+ 1)(θ−x)

)
(6.11)
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The Gamma II mixing distribution

The pdf of the mixing distribution is given by;

g(λ) = 1
µβΓβ e

−λµ
λβ−1,λ > 0,µ > 0 (6.12)

The mixed distribution shall be obtained as follows;

f(x) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

1
µβΓβ e

−λµ
λβ−1dλ

f(x) = 1
µβΓβ

∞∫
0
λβ−2e−

x−θ
λ −

λ
µ [1 + e−

x−θ
λ ]−2dλ

f(x) = 1
µβΓβ

∞∫
0
λ(β−1)−1e−k

x−θ
λ −

x−θ
λ −

λ
µ

∞∑
k=0

(
−2
k

)
dλ

=
∞∑
k=0

(
−2
k

)
1

µβΓβ

∞∫
0
λ(β−1)−1e−k

x−θ
λ −

x−θ
λ −

λ
µdλ

=
∞∑
k=0

(
−2
k

)
1

µβΓβ

∞∫
0
λ(β−1)−1e

1
λµ [µ(k+1)(θ−x)−λ2]dλ

let
λ=

√
µ(k+ 1)(θ−x)z

dλ=
√
µ(k+ 1)(θ−x)dz

=
∞∑
k=0

(
−2
k

)
1

µβΓβ

∞∫
0

(√
µ(k+ 1)(θ−x)z

)(β−1)−1
×

e
1

µ
√
µ(k+1)(θ−x)z

[µ(k+1)(θ−x)−µ(k+1)(θ−x)z2]
dλ

=
∞∑
k=0

(
−2
k

)
1

µβΓβ

∞∫
0

(√
µ(k+ 1)(θ−x)z

)(β−1)−1
e
− µ(k+1)(θ−x)
µ
√
µ(k+1)(θ−x)z

[1+z2]
dλ

=
∞∑
k=0

(
−2
k

)
1

µβΓβ

∞∫
0

(√
µ(k+ 1)(θ−x)z

)(β−1)−1
e

√
µ(k+1)(θ−x)

µ [ 1
z+z]dλ

=
∞∑
k=0

(
−2
k

)
1

µβΓβKβ−1

(√(k+ 1)(θ−x)
µ

)
(6.13)
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The Inverse Gamma mixing distribution

The pdf of the mixing distribution is given as;

g(λ) = βαe
−β
λ λ−α−1

Γα ,λ > 0,α > 0,β > 0 (6.14)

The mixed distribution shall be obtained as follows ;

f(x) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

βαe
−β
λ λ−α−1

Γα dλ

=βα

Γα

∞∫
0
λ−α−2[1 + e−

x−θ
λ ]−2e−

x−θ
λ −

β
λdλ

=βα

Γα

∞∫
0
λ−α−2

∞∑
k=0

(
−2
k

)
e−k(x−θλ )−x−θλ −

β
λdλ

=βα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0
λ−α−2e−

1
λ (k+1)(θ−x)−βdλ

=βα

Γα

∞∑
k=0

(
−2
k

) ∞∫
0
λ−(α−1)−1e−

1
λ (k+1)(θ−x)−βdλ

=βα

Γα

∞∑
k=0

(
−2
k

)
−Γ(α−1)(

− 1
λ(k+ 1)(θ−x)−β

)−α−1

=βα

Γα

∞∑
k=0

(
−2
k

)
−αΓ(α)(

− 1
λ(k+ 1)(θ−x)−β

)−α−1

= −αβα(
− 1

λ(k+ 1)(θ−x)−β
)−α−1

=−αβα
(
− 1
λ

(k+ 1)(θ−x)−β
)α+1

=αβα
(1
λ

(k+ 1)(θ−x) +β
)α+1

(6.15)

The Half Logistic mixing distribution

The pdf of the mixing distribution is given as;

g(λ) = 2µe−µλ
(1 + e−µλ)2 (6.16)
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The mixed distribution shall be obtained as follows;

f(x) =
∞∫
0

e−
x−θ
λ

λ[1 + e−
x−θ
λ ]2

2µe−µλ
(1 + e−µλ)2dλ

=2µ
∫ ∞

0
λ0−1[1 + e−

x−θ
λ ]−2(1 + e−µλ)−2e−

x−θ
λ −λµdλ

=2µ
∫ ∞

0
λ0−1

∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

)
e−k(x−θλ )−x−θλ −lλµ−λµdλ

=2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0
λ0−1e−k(x−θλ )−x−θλ −lλµ−λµdλ

=2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0
λ0−1e−

1
λ (θ−x)(k+1)−λ2µ(l−1)dλ

let

λ=
√
µ(θ−x)(k+ 1)z

dλ=
√
µ(θ−x)(k+ 1)dz

=2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0

(√
µ(θ−x)(k+ 1)z

)0−1
×

e
− 1√

µ(θ−x)(k+1)z
[(θ−x)(k+1)+µ2(θ−x)(k+1)z2(l−1)]√

µ(θ−x)(k+ 1)dz

=2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0

(√
µ(θ−x)(k+ 1)z

)0−1
×

e
− (θ−x)(k+1)√

µ(θ−x)(k+1)z
[1+µ2z2(l−1)]√

µ(θ−x)(k+ 1)dz

=2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

) ∞∫
0

(√
µ(θ−x)(k+ 1)z

)0−1
×

e−
√
µ(θ−x)(k+1)[ 1

z+µ2z(l−1)]
√
µ(θ−x)(k+ 1)dz

= 2µ
∞∑
k=0

(
−2
k

) ∞∑
l=0

(
−2
l

)
K0

(
−
√
µ(θ−x)(k+ 1)

)
(6.17)

6.3 Logistic Inverse Gaussian Distribution

6.3.1 Introduction

Let
X = µ+ZU (6.18)
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Where µ is a constant, z is a positive random variable independent of U , a standard logistic
random variable. Suppose F (x),G(z) and H(u) are cdfs of X, Z and U respectively; and
their corresponding pdfs being f(x), g(z) and h(u). Then

F (x) =Prob{X ≤ x}
=Prob{X ≤ x, 0< Z <∞}
=Prob{µ+ZU ≤ x 0< Z <∞}

=Prob{U ≤ x−µ
Z

, 0< Z <∞}

=
∫ ∞

0

(∫ x−µ
z

−∞
h(u)du

)
g(z)dz

=
∫ ∞

0
H(u)

∣∣∣g(z)dz

=
∫ ∞

0
H

(
x−µ
z

)
g(z)dz

and

f(x) =
∫ ∞

0

1
z
h

(
x−µ
z

)
g(z)dz

=
∫ ∞

0
f(x|z)g(z)dz, −∞< x <∞

where

∴ f(x) =
∫ ∞

0

1
z

e−
x−µ
z

[1 + e−
x−µ
z ]2

g(z)dz, −∞< x <∞ (6.19)

is the conditional pdf and g(z) is the mixing pdf Therefore

f(x|z) = 1
z

e−
x−µ
z

[1 + e−
x−µ
z ]2

, −∞< x <∞, −∞< µ <∞, z > 0 (6.20)

Which is conditional pdf and g(z) is the mixing distribution. Formula (6.18) is called a
stochastic representation while formula (6.20) is hierarchical representation.

6.3.2 Generalized Inverse Gaussian (GIG) Distribution.

Generalized Inverse Gaussian (GIG) distribution is based on modified Bessel function of the
third kind of order λ evaluated at ω is denoted by Kλ(ω) and defined as

Kλ(ω) = 1
2

∫ ∞
0

xλ−1e−
ω
2 (x+ 1

x )dx −∞< λ <∞,ω > 0. (6.21)

By parametrization ω = δγ We have

Kλ(δγ) = 1
2

∫ ∞
0

xλ−1e−
δγ
2 ( 1

x+x)dx
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And by transformation,
x= γ

δ
z =⇒ dx= γ

δ
dz

We have
Kλ(δγ) =1

2

∫ ∞
0

(γ
δ
z)λ−1e

− δγ2 [ 1
γ
δ
z

+γ
δZ]γ

δ
dz

=1
2(γ
δ

)λ
∫ ∞

0
Zλ−1e−

1
2 ( δ

2
Z +γ2z)dz (6.22)

Therefore,

I =
∫ ∞

0
(γ
δ

)λ z
λ−1e−

1
2 ( δ

2
z +γ2Z)

2Kλ(δγ) dz

Thus we have a pdf

g(z) = (γ
δ

)λ z
λ−1e−

1
2 ( δ

2
z +γ2z)

2Kλ(δγ) for z > 0, −∞< λ <∞, δ > 0, γ > 0 (6.23)

This is a generalized inverse Gaussian (GIG) distribution. It has three parameters : λ, δ and
γ

Thus we write it in short form
Z ∼GIG(λ,δ,γ)

6.3.3 Moments of the generalized inverse Gaussian (GIG)distribution

The rth moment of (GIG) is given by:

E(Xr) =
∫ ∞

0
zrg(z)dz

=
∫ ∞

0
zr(γ

δ
)λ z

λ−1e−
1
2 ( δ

2
z +γ2z)

2kλ(δγ) dz

∴ E(Xr) =
(γδ )λ

2Kλ(δγ)

∫ ∞
0

zλ+r−1e−
1
2 ( δ

2
z +γ2z)dz

=
(γδ )λ

2Kλ(δγ)(γ
δ

)−λ−r2Kλ+r(δγ)
∫ ∞

0
(γ
δ

)λ+r z
λ+r−1e−

1
2 ( δ

2
z +γ2z)

2Kλ+r(δγ) dz

=(γ
δ

)λ(γ
δ

)−λ−r 2Kλ+r(δγ)
2Kλ(δγ) ·1

=(γ
δ

)−r
Kλ+r(δγ)
Kλ(δγ)

=( δ
γ

)rKλ+r(δγ)
Kλ(δγ) (6.24)

Where λ is a positive or a negative integer.
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6.3.4 Logistic GIG distribution

Using GIG as a mixing distribution :

f(x) =
∞∫
0
f(x/z)g(z)dz

=
∞∫
0

1
z

e−
x−µ
z

(1 + e−
x−µ
z )2

·
(γδ )λzλ−1

2Kλ(δγ) e
− 1

2 ( δ
2
z −γ

2z)dz

=(γ
δ

)λ 1
2Kλ(δγ)

∞∫
0

zλ−2e−
x−µ
z −

1
2 ( δ

2
z +γ2z)

(1 + e−
x+µ
z )2

dz

∴ f(x) =(γ
δ

)λ 1
2Kλ(δγ)

∞∫
0

Z(λ−1)−1e−
1
2 [γ2z+ 2(x−µ)

z ]

(1 + e−
(x−µ)
z )2

dz

=(γ
δ

)λ 1
2Kλ(δγ)

∞∫
0

∞∑
j=0

(
−2
j

)
e−j

x−µ
z z(λ−1)−1e−

1
2 [γ2z+ δ2+2(x−µ)

z ]dz

=(γ
δ

)λ 1
2Kλ(δγ)

∞∑
j=0

{(
−2
j

)} ∞∫
0
z(λ−1)−1e−

1
2γ

2ze−
1
2 [ δ

2+2(j+1)(x−µ)
z ]dz

∴ f(x) =(γ
δ

)λ 1
2Kλ(γδ)

∞∑
j=0

{(
−2
j

)} ∞∫
0
Z(λ−1)−1e−

1
2 [γ2z+δ2+ 2(j+1)(x−µ)

z ]dz (6.25)

Let

δ2 + 2(j+ 1)(x−µ) =δ2[1 + 2(j+ 1)(x−µ)
δ2 ]

=δ2φ(j,x)

where φ(j,x) = 1 + 2(j+1)(x−µ)
δ2

∴ f(x) =( δ
γ

)λ 1
2Kλ(δγ)

∞∑
j=0

(
−2
j

) ∞∫
0
Z(λ−1)−1e−

1
2 [γ2z+ δ2φ(j,x)

z ]dz

∴ f(x) =( δ
γ

)λ 1
2Kλ(δγ)

∞∑
j=0

(
−2
j

) ∞∫
0
Z(λ−1)−1e−

γ2
2 [z+ δ2φ(j,x)

δ2z
]
dz

Let

z =
δ
√
φ(j,x)
γ

t =⇒ dz =
δ
√
φ(j,x)
γ

dt
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∴ f(x) =( δ
γ

)λ 1
2Kλ(δγ)

∞∑
j=0

(
−2
j

)δ
√
φ(j,x)
γ

λ−1 ∞∫
0
t(λ−1)−1eγδ

√
φ(j,x)(t+ 1

t )dt

∴ f(x) =( δ
γ

)λ 1
2Kλ(δγ)

∞∑
j=0

(
−2
j

)δ
√
φ(j,x)
γ

λ−1

Kλ−1(γδ
√
φ(j,x))

∴ f(x) =( δ
γ

)
∞∑
j=0


(
−2
j

)δ
√
φ(j,x)
γ

λ−1
Kλ−1(γδ

√
φ(j,x))

2Kλ(δγ)

 (6.26)

6.3.5 Logistic Inverse Gaussian (LIG) Distribution

Construction

The inverse Gaussisan is a special case of GIG with λ = −1
2 . The pdf of logistic inverse

Gaussian (LIG) is given by substituting λ=−1
2 in equation (6.26) i.e.

g1(z) =(γ
δ

)−
1
z
Z−

1
2−1e−

1
2 ( δ

2
z +γ2z)

2K− 1
2
(δγ)

=(γ
δ

)−
1
z
Z−

3
2 e−

1
2 ( δ

2
z +γ2z)

2
√

π
2δγ e

−δγ

= eδγ

[γδ
4π
2δγ ] 1

2
z−

3
2 e−

1
2 ( δ

2
z +γ2z) (6.27)

The pdf of logistic inverse Gaussian (GIG) is given by substitution λ=−1
2 in (4.1) to get;

f1(x) = δ

γ

∞∑
j=0


(
−2
j

)(√
φ(j,x)

)− 3
2 K− 3

2
(γδ

√
φ(j,x))

2K− 1
2
(δγ)


= δ

γ

∞∑
j=0


(
−2
j

)(√
φ(j,x)

)− 3
2

(1 + 1
δγ
√
φ(j,x)

)K− 1
2
(γδ

√
φ(j,x))

K− 1
2
(δγ)


f1(x) = δ

γ

∞∑
j=0


(
−2
j

)(√
φ(j,x)

)2
(1 + 1

δγ
√
φ(j,x)

)


√
π

2γδ
√
φ
e−δγ

√
φ√

π
2δγ e

−δγ


= δ

γ
eδγ

∞∑
j=0


(
−2
j

)(√
φ(j,x)

)2
(1 + 1

δγ
√
φ(j,x)

)
 eδγ√φ(j,x)√

φ(j,x)


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But
(
−2
j

)
=(−1)

(
2 + j−1

j

)
= (−1)

(
j+ 1
j

)
= (−1)j(j+ 1)

∴ f(x) =γ
δ
eγδ

∞∑
j=0

(−1)j(j+ 1)
 1√

φ(j,x)

21 + 1
δγ
√
φ(j,x)

e−δγ√φ(j,x) (6.28)

The log-likelihood function of LIG Distribution

`=logL= log
n∏
i=1

f1(xi)

∴ `=
n∑
i=1

logf1(xi)

=
n∑
i=1

logγ− logδ+γδ+ log
∞∑
j=0

(−1)j(j+ 1)
 1√

φ(j,x)

21 + 1
δγ
√
φ(j,x)

e−δγ√φ(j,x)


Therefore,

`=


n logγ−n logδ+nδγ+
n∑
i=1

[log∑∞j=0(−1)j(j+ 1)
(

1√
φ(j,x)

)2(
1 + 1

δγ
√
φ(j,x)

)
eδγ
√
φ(j,x)]

}
(6.29)

6.3.6 EM Algorithm for LIG Distribution

EM algorithm is a technique for obtaining maximum likelihood estimates for parameters when
there’s missing or latent data, by repeatedly performing expectation and maximization of the
likelihood function until convergence of old and new parameter estimates is achieved. It was
introduced by Dempater et. al (1977).

Assume that the true data are made of an observed part x and unobserved part z.

This then ensures the log-likelihood of the complete data xi, zi for i= 1,2, . . . ,n factorizing
into two parts (Kostas, 2007).

L=
n∏
i=1

f(xi|zi)g(zi)

=
n∏
i=1

f(xi|zi)
n∏
i=1

g(zi) (6.30)
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The log-likelihood function is

l = logL=log
n∏
i=1

f(xi|zi) + log
n∏
i=1

g(zi)

=
n∑
i=1

logf(xi|zi) +
n∑
i=1

logg(zi) (6.31)

Let
`1 =

n∑
i=1

logf(xi|zi)

and
`2 =

n∑
i=1

logg(zi)

6.3.7 M-steps for the conditional pdf

f(x|z) =1
z

e−(x−µz )

(1 + e−(x−µz ))2

`1 =
n∑
i=1

logf(xi|zi)

=
n∑
i=1

log 1
zi

e
−(xi−µzi

)

(1 + e
− (xi−µ)

xi )2

=
n∑
i=1

− logzi−
(xi−µ)
zi

− log
(

1 + e
−(xi−µ)

zi

)2
=−

n∑
i=1

logzi−
n∑
i=1

(
xi−µ
zi
−2

n∑
i=1

log
(

1 + e
−(xi−µzi

)
))

∂`

∂µ
=

n∑
i=1

1
zi

2
n∑
i=1

1
zi

e
−(xi−µ)

zi

1 + e
−(xi−µzi

)

∂`1
∂µ

=0 =⇒
n∑
i=1

1
zi

= 2
n∑
i=1

e
− (xi−µ)

zi

zi(1 + e
− (xi−µ)

zi )

∴
n∑
i=1

1
zi

=2
n∑
i=1

[
1

zi(1 + e
xi−µ
zi )

]
(6.32)
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6.3.8 M-step for the mixing distribution

g(z) = δeδγ

Γ(2π)Z
−3
2 e
−1
2 ( δ

2
z +γ2z)

∴ `2 =
n∑
i=1

logg(zi)

=
∑{

log(2π) + δγ− 3
2 logzi−

δ2

2zi
− γ

2

2 zi
}

=n logδ− n2 log(2π) +nδγ− 3
2

n∑
i=1

logzi−
δ2

2

n∑
i=1

1
zi
− γ

2

2

n∑
i=1

zi

∂`2
∂γ

=nδ−γ
∑

zi

∂`2
∂γ

=0 =⇒ δ̂ = γz̄

∂`2
∂δ

=n
δ

+nγ− δ
n∑
i=1

1
zi

=n
δ

+n
δ̂

z̄
− δ

∑ 1
zi

∴
∂`2
∂δ

=0 =⇒ n+n
δ2

z̄
= δ̂2

∑ 1
zi

n=δ2
[
n∑
i=1

1
zi
− n
z̄

]

δ̂ =
√

n∑ 1
zi
− n

z̄

(6.33)

where z̄ =
n∑
i=1

zi
n

6.3.9 E-STEP

Since there is no data for z and 1
z we shall estimate them by the posterior expectation E(Z|x)

and E( 1
Z |x) respectively.

A posterior pdf is defined as

f(Z|x) = f(x|z)g(z)∫∞
0 f(x|z)g(z)dz (6.34)

so that
E(Z|x) = z

∫∞
0 f(x|z)g(z)dz∫∞

0 f(x|z)g(z)dz (6.35)
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Next

E(Z|x) =

∞∫
0
zf(x|z)g(z)dz
∞∫
0
f(x|z)g(z)

dz

=

∞∫
0
z 1
ze
− (x−µ)

z [1 + e−
(x−µ)
z ]−2g(z)dz

∞∫
0

1
ze
− (x−µ)

z [1 + e
−(x−µ)

z ]−2g(z)dz

∴ E(Z|x) =

∞∫
0
e−

(x−µ)
z [1 + e−

(x−µ)
z ]−2g(z)dz

∞∫
0
z−1e−

(x−µ)
z [1 + e

−(x−µ)
z ]−2g(z)dz

(6.36)

But

e−
x−µ
z [1 + e−

(x−µ)
z ]−2g(z)

=e−
x−µ
z

∞∑
j=0

(
−2
j

)
e−

j(x−µ)
z

δeδγ√
2π
z
−3
2 e−

1
2 ( δ

2
z +γ2z)

= δeδγ√
2π

∞∑
j=0

(
−2
j

)
z−

3
2 e−(j+1) (x−µ)

z − 1
2 ( δ

2
z +γ2z)

= δeδγ√
2π

∞∑
j=0

(
−2
j

)
z−

3
2 e−

1
2 [ δ

2+2(j+1)(x−µ)
z +γ2z]

= δeδγ√
2π

∞∑
j=0

(
−2
j

)
z−

3
2 e
− 1

2

[
γ2z+δ2(1+2 (j+1)(x−µ)

δ2 ) 1
z

]

= δeδγ√
2π

∞∑
j=0

(
−2
j

)
z−

3
2 e
− 1

2

[
γ2z+ δ2φ(j,x)

z

]
(6.37)

where φ(j,x) = 1 + 2(j+1)(x−µ)
δ2

∴ E(Z|x) =

1
2
∞∫
0

∞∑
j=0

(
−2
j

)
z−

3
2 e
− 1

2

[
γ2z+δ2 φ(j,x)

z

]
dz

1
2
∞∫
0
z−1

∞∑
j=0

(
−2
j

)
z−

3
2 e
− 1

2

[
γ2z+δ2 φ(j,x)

z

]
dz

=

∞∑
j=0

{(
−2
j

)
1
2
∞∫
0
z−

1
2−1e

− 1
2

[
γ2z+δ2 φ(j,x)

z

]
dz

}
∞∑
j=0

{(
−2
j

)
1
2
∞∫
0
z−

3
2−1e

− 1
2

[
γ2z+δ2 φ(j,x)

z

]
dz

}



148

E(Z|x) =

∞∑
j=0

(−2
j

)
1
2
∞∫
0
z−

1
2−1e

−γ
2

2

[
z+ δ2

γ2
φ(j,x)
z

]
dz


∞∑
j=0

{(
−2
j

)
1
2
∞∫
0
z−

3
2−1e

−γ
2

2

[
z+ δ2

γ2
φ(j,x)
z

]
dz

}

Let

z = δ

γ

√
φ(j,x)t =⇒ dz = δ

γ

√
φ(j,x)dt

∴ E(Z|x) =

∞∑
j=0


(
−2
j

)(
δ
γ

√
φ(j,x)

)− 1
2
K− 1

2

(
δγ
√
φ(j,x)

)
∞∑
j=0


(
−2
j

)(
δ
γ

√
φ(j,x)

)− 3
2
K− 3

2

(
δγ
√
φ(j,x)

)

=
( δγ )− 1

2

( δγ )−3
2

∞∑
j=0


(
−2
j

)(√
φ(j,x)

)− 1
2
K− 1

2

(
δγ
√
φ(j,x)

)
∞∑
j=0


(
−2
j

)(√
φ(j,x)

)− 3
2
K− 3

2

(
δγ
√
φ(j,x)

)

=

∞∑
j=0

(
−2
j

)(√
φ(j,x)

)− 1
2
[

π

2δγ
√
φ(j,x)

] 1
2
e−δγ
√
φ(j,x)

( δγ )−1
∞∑
j=0

(
−2
j

)(√
φ(j,x)

)− 3
2
(

1 + 1
δγ
√
φ(j,x)

)
K− 1

2
(δγ

√
φ((j,x))

∴ E(Z|X) =
δ
∞∑
j=0

(
−2
j

)(√
φ(j,x)

)− 1
2
[

π

2δγ
√
φ(j,x)

] 1
2
e−δγ
√
φ(j,x)

γ
∞∑
j=0

(
−2
j

)(√
φ(j,x)

)− 3
2
(

1 + 1
δγ
√
φ(j,x)

)[
π

2δγ
√
φ(j,x)

] 1
2
e−δγ
√
φ(j,x)

= δ

γ

∞∑
j=0

(
−2
j

)(√
φ(j,x)

)−1
e−δγ
√
φ(j,x)

∞∑
j=0

(
−2
j

)(√
φ(j,x)

)−2(
1 + 1

δγ
√
φ(j,x)

)
e−δγ
√
φ(j,x)

(6.38)

Next,

E( 1
Z
|x) =

∞∫
0

1
z ·

1
ze
− (x−µ)

z

[
1 + e

−(x−µ)
z

]−2
g(z)dz

∞∫
0

1
z · e
− (x−µ)

z

[
1 + e

−(x−µ)
z

]−2
g(z)dz
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=

1
2
∞∫
0
z−2 ∞∑

j=0

(
−2
j

)
z−

3
2 e
−γ

2
z

(
z+ δ2φ(j,x)

γ2z

)
dz

1
2
∞∫
0
z−1

∞∑
j=0

(
−2
j

)
z−

3
2 e
−γ

2
z

(
z+ δ2φ(j,x)

γ2z

)
dz

E( 1
Z
|x) =

∞∑
j=0

{(
−2
j

)
1
2
∞∫
0
z−

5
2−1e

−γ
2
z

(
z+ δ2φ(j,x)

γ2z

)
dz

}
∞∑
j=0

{(
−2
j

)
1
2
∞∫
0
z−

3
2−1e

−γ
2
z

(
z+ δ2φ(j,x)

γ2z

)
dz

}

=

∞∑
j=0


(
−2
j

)(
δ
γ

√
φ(j,x)

)− 5
2
K− 5

2

(
δγ
√
φ(j,x)

)
∞∑
j=0


(
−2
j

)(
δ
γ

√
φ(j,x)

)− 3
2
K− 3

2

(
δγ
√
φ(j,x)

)

=
( δγ )− 5

2

( δγ )− 3
2

∞∑
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(
−2
j

)(√
φ(j,x)

)− 5
2
K− 5

2

(
δγ
√
φ(j,x)

)
∞∑
j=0

(
−2
j

)(√
φ(j,x)

)− 3
2
K− 3

2

(
δγ
√
φ(j,x)

)

=
(γ
δ

)−1

∞∑
j=0

(
−2
j

)(√
φ(j,x)
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6.4 Summary

The major contribution of this charpter is the introduction of the "Logistic Inverse Gaussian
distribution" which has been obtained as a special case of the generalized inverse Gaussian
(GIG).

The likelihood function and the posterior distribution based on LIG have been obtained. The
EM algorithm has been calculated but not applied to data.
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7 SUMMARY CONCLUSION AND
RECOMMENDATIONS

This charpter presents the accomplishments of the thesis, summary of the results and the
general recommendations for further areas of investigation following the study. A distributional
framework of generalizations of the logistic distribution has been shown on the title page.
The framework represents a summary of the entire work in a pictorial depiction.

The appendix shows the results of credit scoring applied in chapter two in logistic regression.
The results were obtained using R codes.

7.1 Summary of Results

The objectives of the study stated in 1.4 have been achieved as follows.

The standard logistic distribution has been constructed explicitly using the method of mixtures,
Burr differential equation, transformation and the difference of two independent random vari-
ables. The Transformation method required appropriate choice of transformations. Moments
were obtained directly and by the mgf technique.

The cdf of the standard logistic was applied to data collected from a mobile phone money
lending company (Mobipesa Ltd) in Nairobi- Kenya. Logistic regression was applied in
determining the probability of default. Credit scores were then computed for all the 496
customers whose data was collected. The data was divided into train and test data. The
probabilities of default obtained have helped to distinguish between good and bad customers
by the lender. The results obtained are plausible because they indicated that the probability
of default and the credit score are inversely related.

Various generalizations of the standard logistic distribution were obtained using the various
methods of constructing the standard logistic. A clear pattern of construction was devel-
oped for constructing the generalized distributions. Generalized logistic distribution types
GLI,GLII,GLIII and GLIV . Their extended versions were also obtained.

The generalized distributions were also obtained using the beta I and beta II distributions
through transformations. The beta generated approach has also been used to generalize the
standard logistic distributions.

A new distribution " The Extended Standard logistic" has been introduced and constructed
using five different methods.
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Special cases were obtained for the generalized logistic distribution type IV and the extended
GLIV .All the generalized logistic distributions GL1,GLII,GLIII and GLIV were obtained
as special cases from the extended GLIV .The extended standard logistic and the logistic
distribution were also obtained from the extended GLIV as special cases.

The discrete mixture distributions of minimum and maximum order statistics from the standard
logistic distribution have been constructed.

Construction of pdf ′ s, survival functions and hazard functions of the discrete mixture
distributions has also been done for minimum and maximum order statistics. The mixing
distributions used are the zero truncated power series distributions namely; zero truncated
Poisson, zero truncated binomial, zero truncated negative binomial, zero truncated (shifted)
geometric and the logarithmic series distributions.

The logistic distribution with the shape and location parameter was considered. The mixed
distributions obtained were based on modified Bessel functions of the third kind. The
mixing distributions considered were the logistic, half logistic, exponential, The inverse
Gaussian,inverse Gamma, I and Gamma II.

A new distribution the logistic inverse Gaussian has been introduced and studied in detail. Its
properties like the rth moments, log-likelihood and EM algorithm have been obtained.

7.2 Recommendations

For further research we recommend studies in the following areas that have not been covered;

i. A study of finite mixtures is not covered in the current study, however, its is captured in
the distributional framework as part of the work. A study of finite mixtures of the logistic
is therefore recommended.

ii. The study recommends the use of Tricomi confluent hypergeometric functions, however,
confluent hypergeometric functions (Kummers and Tricomi ) were listed among the tools
to be used in the current study.

iii. A detailed study on the properties of the generalized logistic distributions. This study
has mostly concentrated on the various methods in which they can be constructed.
Applications to real time data also needs to be investigated . This study investigated the
application of the standard logistic distribution to credit scoring.

iv. Properties of the new distribution" the extended standard logistic distribution" need to be
investigated. The study has mostly concentrated on the properties of the logistic inverse
Gaussian distribution,a new distribution proposed.Further work can be done on properties,
estimations and fitting the generalized logistic distributions to data.
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v. The study further recommends further use of data to investigate the discrete mixtures of
minimum and maximum order statistics from a standard logistic distribution.
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APPENDIX

Appendix I- R-codes
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Appendix II- Data sets

Full data set;

click here

Table of probability of default and credit scores for all the customers

click here

https://drive.google.com/file/d/1qC9G6wIBPWxw8USBZHQP0tOki_k_23iS/view?usp=sharing
https://drive.google.com/file/d/1hAVMnDZVGXxy95_pUedr4O0Qfbv23vHI/view?usp=sharing
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