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Abstract

There are a wide range of industries that make use of the Weibull distribution, includ-
ing industrial engineering, general insurance, survival analysis, electrical engineering,
and reliability engineering, to name just a few. The Weibull distribution is expanded
to become the Weibull-Pareto distribution, also known simply as the Weibull dis-
tribution. A notable use of the Weibull-Pareto distribution is in the modeling of
asymmetrical data, which is also one of its most important applications. During the
course of this inquiry, a hierarchical Bayesian model will be created with the use of
a Weibull-Pareto distribution as a reference.

Words to note: MCMC, survival model, right censoring,WPD, Heavy-tailed Dis-
tribution, hierarchical Bayesian model,
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Chapter 1

Introduction

1.1 Study Background

In the field of modeling survival analysis and reliability, the Weibull distribution is applied
rather frequently. Because of the value of the shape parameter, it is adaptable and can
take on the characteristics of a variety of other distributions. Because of this, it is ex-
tremely well-liked among quality control engineers and analysts, particularly those who
have experience working with data modeling and reliability. A huge number of academics
have come up with many versions of the Weibull distribution; one of these variants is
called the EPD(Exponential-Weibull distribution). (Mudholkar et al.,1995).

Both the generalized Weibull distribution that Kollia and Mudholder (1994) produced,
as well as the Beta-Weibull distribution that Famoye et al.(2005) constructed, have cer-
tain similarities. A prior discussion introduced the idea of the New generalized Weibull
distribution. This distribution can also be referred to as the Weibull Pareto distribution.
It was generated from a family of probability density models known as ”Transformed-
Transformer” (Alzaatreh et al., 2013). This distribution has a severely skewed nature
when compared to the Weibull distribution, which is the standard. As a consequence of
this, the tactic that is suggested is modeling extremely skewed data, which is something
that frequently occurs in survival analysis and dependability.

According to Alzaatreh et al. (2013), the value of the shape parameter of the WPD
is smaller than one. This conclusion was reached in 2013. There is no such thing as a
Maximum Likelihood Estimator (MLE), and this applies to both the scale and the shape
parameter. After that, they mandated two different parameter estimation methodologies,
which were the modified maximum likelihood estimation (MMLE) and the alternative
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maximum likelihood estimation (AMLE). Despite the fact that this was the case, the
AMLE resulted in a significant bias, and using the MMLE is costly. In the following part,
2.1.1, we will talk about the two different approaches.

The Bayesian Weibull Pareto Model will be explained in detail during the course of
this article’s discussion. Bayes’ methodology differs from the frequentist approach in that
it operates under the assumption that the parameters are subject to random variation
and adhere to the probability that was previously stated. The researcher’s prior credence
regarding the distribution parameters is defined by the random distribution, which is cap-
tured as the prior distribution.

Estimating Bayesian parameters has been the subject of multiple publications au-
thored by a number of researchers over the past few years. Estimating the generalized
lognormal distribution was the topic of an article that Perez and Martin (2009) wrote.
With the use of Type-I censoring, Aslam and Noor (2013) were able to estimate the pa-
rameters of the inverse Weibull distribution. When conducting data analysis, the Weibull
distribution has proven to be extremely helpful, particularly when used to censored data,
which is the kind of study that is typically performed in survival analysis. For instance,
survival time is the end result that is of interest in cancer research since it is the event of
interest. In spite of this, it is sometimes known as the time between complete remission
to the beginning of a recurrence. In addition, there is the possibility that some people
will not experience the event of interest by the time the actual time to occurrence has
passed. As a result, a censored observation takes place. As a consequence of this, in the
event that it takes place, we will truncate the final findings due to random factors.

1.2 Problem Statement

Because of the extreme skewness of many real-world data sets, the most recent iteration
of the Weibull Distribution is unable to effectively simulate the distributions of a number
of these collections of data. Because of this, it is essential to broaden the application of
the Weibull-Pareto distribution by incorporating a fresh component into the model. Be-
cause of this, the current Weibull-Pareto distribution will have greater flexibility, and the
resulting distribution will provide a better fit than the Weibull-Pareto Distribution. The
Weibull-Pareto distribution needs to be extended in order to account for this necessity.
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1.3 Study Objectives

The purpose of this study is to propose a novel distribution that will be referred to as the
generalized Weibull-Pareto Distribution (Generalised WPD), and to deduce its features
using the transformation.

The following is a list of the specific goals:
i. Construct the Generalized Weibull-Pareto Distribution, analyze the reliability of the

data, and derive a variety of structural features.

While the General Objectives are

i. Make an educated guess as to the values of the modified distribution’s parameters.
ii. Evaluate how well the WPD is working.

1.4 Importance of the Study

The incorporation of a generalized parameter into the Weibull-Pareto Distribution will
result in a significant increase in both the sensitivity and the efficacy of the statistical
tests associated with the distribution. This will be the case because the sensitivity of
the tests will increase while the efficacy of the tests will remain the same. This is going
to be the case due to the fact that the test’s level of sensitivity is going to improve,
although the test’s level of accuracy will remain unchanged. As a result of this, it will be
possible to model and carry out flexible analyses of skewed data sets based on real-world
examples in a wide variety of application domains. These studies can be conducted in
a wide variety of application domains. There are some real-world data sets that do not
follow the Weibull or Pareto distributions as expected. These data sets can be found all
around the world. As a direct consequence of this, the Weibull-Pareto distribution needs
to be extended by adding a new parameter to it in order to boost its adaptability and
make it applicable to a wider number of scenarios. This can be accomplished by making
the distribution more general.
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Chapter 2

LITERATURE REVIEW

PARAMETER ESTIMATES-BAYESIAN MODEL

2.1 WP Distribution

Lifespans, on the whole, are an excellent illustration of the kind of favorably skewed data
that frequently occurs in analyses of survival and dependability. For instance, the data
on breast cancer that Khan et al. (2014) investigated is skewed to the right. When
modeling this kind of data, the Weibull and distributions are typically the ones that are
utilized. These distributions are able to describe right-skewed data because of the pa-
rameter choices; but, in the ecent that the data is substantially skewed, As a result of
their more rapid decline, the models are unable to accurately represent the right-hand
heavy tail.

Alzaatreh et al.(2013) were the ones who came up with the Weibull-Pareto distribu-
tion). This distribution is a member of a family of distributions that is commonly referred
to as the ”Transformed-Transformers” family (T-X family).

2.1.1 Estimation

Estimating the model parameters is our primary objective whenever we work with a prob-
ability distribution. The approach of maximum likelihood estimation (MLE) is a good
illustration of a choice that should be evident. However, Alzaatreh et al. (2013) empha-
sized that applying this strategy requires taking into consideration two primary concerns.
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The first scenario is when c is less than 1, This indicates that the likelihood function
approaches infinity when the θ value trends toward the highest value that has been seen,
which is represented by the symbol x(1). In the case where c is less than 1 and the estimate
θ is approximated by x(1), the β and c MLE does not exist. Smith (1985) conducted study
on the topic and presented a different approach known as the AMLE, which makes the
assumption θ to be equal x(1). Although employing this method will result in a cheaper
cost of computation, it is not successful when c is bigger than 1 since it does not take
into account the exponential growth of the data. Figure 2.1 illustrates that when c is less
than one, x(1)is possible to estimate the most accurate value for θ due to the fact that
the probability density function is at its highest point. Despite the fact that this is the
case, the WP distribution will become more symmetric as c continues to grow; hence,x(1)
will not be able to produce an exact estimate when alternative MLE methods are utilized.

In a subsequent piece of research, Alzaatreh et al. (2013) evaluated the parameters
of the WPD using a different technique known as maximum likelihood estimation. This
method was utilized. In his computations, he ensured that he took into consideration the
probability densities.

The alternate version of greatest likelihood is not quite transparent but consistent.
The behavior of it with comparatively smaller samples is not clearly defined at this point.
A simulation was carried out by Alzaatreh et al. (2013) with a sample size of two and
a total of 36 parameters. They came to the conclusion that the parameters β and θ
should each have values of 0,5, 1, and 3, and they came to the conclusion that c should
have values of 0,5, 1, 3, and 7. Both a sample size of n = 500 and a sample size of n
= 100 were chosen after some deliberation. They applied the transformation that was
discussed before for each and every one of the parameters. Within this transformation,
the random variable generated are y1, y2, .......yn, the random variables belongs to the
Weibull distribution with parameters 1

β
and c. Consequently, a random sample taken

from the WP has the formula xi = θexp(yi)

When c was more than one, the simulation results revealed that the alternative
maximum likelihood estimator possessed a significant amount of bias. In cases where
θ̂ = x(1) > θ by only a narrow margin, there will be a significant amount of bias for the
variable c. The conclusion that may be drawn from this is caused byĉ.

A significant amount of bias is produced by the phrase log(log(xi
θ̂
)). Alzaatreh et al.

(2013) explained that if the actual parameter θ = 1, the estimated parameter θ̂ = 1.3,
and the observed parameter xi = 1.3001, then this indicates that the value xi = 1.3001
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is the one that should be used. As a result, the log[log(xi
θ̂
)] = −9.4727, whereas the

initial value is log[log(xi
θ
)] = −1.3377. In particular, the results of the simulations show

that an incorrect estimate of the true value of θ is produced whenever c is made larger
and θ̂ = xi is used.

The other possibility is that c is greater than one, in which case, the estimate θ will
be poorly predicted by x(1) and the AMLE will depict a substantial huge bias in its results.
Smith (2014) created a modified MMLE,which will be helpful in this circumstance.
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2.2 Introduction to Bayesian Statistics

Bayesian statistics is a method of applying the possibility to problems. It gives us mathe-
matical techniques to inform our perceptions about stochastic events in response to new
evidence or data about such events (Giovagnoli, 2008). Bayesian inference, in particular,
perceives probability as a way of measuring beliefs or trust that a person may have in a
specified event. Researchers may well have preconceived ideas for an occasion, but that
belief will vary if new evidence is presented (Rossi Allenby, 2003). Bayesian statistics
provides a solid theoretical formulation for integrating preconceived beliefs and proof to
generate posterior perceptions.

We begin with a definition of conditional probability, which provides a rule for de-
ciding the likelihood of an outcome A given the incidence of some other incident B.The
conditional Probability is given by;

p(A|B) = P (B|A)P (A)
P (B)

where P (B) ̸= 0

The parameter P(B) is a simple constant that does not play a big role due to the fact
that it is the marginal distribution and does not depend on our previous perspectives.
This is due to the fact that the marginal distribution is unaffected by the ideas we have
held in the past (Giovagnoli, 2008; Rigollet, 2016). The equation that was just given
can, as a direct consequence of this, be rewritten as follow

P (A|B) ∝ P (B|A)P (A)

If we have a multivariate data distribution, we derive the likelihood function L(A),
the posterior distribution will be given by

P (A|B) ∝ L(A)P (A)

This is the likelihood function that is measured based on an earlier belief (Rigol-
let, 2016). In spite of the fact that these are not traditional nor frequentist data, it is
still possible to reconstruct the result by working under the assumption that there is no
prior. This is done by working under the premise that there is no prior variable. In other
words, the preceding might be disregarded as relevant by making the assumption that it is
comparable to a unit, which will simply serve to emphasize the likelihood (Rigollet, 2016).

It is possible to have invariant priors, which are prior records that contain no addi-
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tional information at all, but this can only happen under very particular circumstances
(Giovagnoli, 2008). Instead, and more generally speaking, some researchers use an objec-
tive approach to Bayesian statistics, employing a ”non-informative” or ”reference” prior.
This is an event that led up that carries few (if any) details and allows the data to start
driving the results. This makes it possible to have a more straightforward connection
between the facts and the inferences that can be taken from them (Giovagnoli, 2008;
Van Dongen, 2006).

A prior of this type presumes that the occurrence of any event is comparable to any
other (Giovagnoli, 2008). The purpose is to be as objective as is humanly possible while
avoiding attempts to affect the likelihood function with previous subjective views, which
could cause the results to be inaccurate (Van Dungan, 2006). A non-informative prior
would be something like the uniform distribution as an example (Van Dungan, 2006).
There are a number of drawbacks associated with using a non-informative prior, and
Bayesian statistics in particular is based on the concept that we always have an ex ante
anticipation, which can be utilized in a variety of settings. Despite these drawbacks,
Bayesian statistics remains one of the most popular approaches to statistical analysis
(Giovagnoli, 2008). The following inquiry that requires a response is, ”How can we
choose the proper prior?”

In reality, although it is true that erroneous priors can occasionally lead to an inac-
curate posterior distribution (Taraldsen Lindqvist, 2010), it is also true that sometimes
the choice of the prior can have an effect on the posterior distribution. This is the case
despite the fact that it is true that erroneous priors can sometimes lead to an inaccu-
rate posterior distribution. This is the case despite the fact that erroneous priors can
occasionally lead to an inaccurate posterior distribution. However, this does not change
the fact that this is the case. This is true even though it is true that incorrect priors
can sometimes cause an incorrect posterior distribution (Rossi Allenby, 2003). You may
utilize methods that assess the sensitivity in order to determine whether or not a prior
has an effect on the posterior, despite the fact that such methods may also result in
responses that are irrelevant (Wasserman, 1996). As a result, locating reliable priors is of
the utmost importance, despite the fact that doing so is not always achievable (Wasser-
man, 1996). For the purposes of this investigation, we might take the approach of a
textbook and, for the sake of clarity and conciseness, steer clear of the enormous body of
literature around the process of selecting the belief. The use of ”conjugate priors,” which
is a strategy that can be put into practice and refers to a prior that, from a mathematical
point of view, has an equal form of distribution that follows the same format as the
posterior (Giovagnoli, 2008), is a practical method that may be used.
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In the same vein, if a researcher plans to use a normal distribution for her pattern,
she must also use a normal distribution as a prior, which can lead to a normal distribu-
tion for the results of her study (Giovagnoli, 2008). In point of fact, a beta distribution
must be followed as a prior if the pattern was generated by a binomial process. On the
other hand, a Gamma distribution must be followed if the pattern was generated by a
Poisson process, and the latter is indicated by the fact that the pattern was generated
by a Poisson process (Donovan Ruth 2019; Giovagnoli, 2008).

The frequentist method is used to make an estimation in section 2.1.1; this strategy
presupposes that the unknown but fixed factors are present. In contrast to this, the
Bayesian methodology takes into account random parameters. A probabilistic technique,
also known as the prior distribution, is utilized to simulate the stochastic nature of model
parameters.

In effort to provide a more tangible example of how Bayesian techniques work, let us
investigate the following scenario: If we were to administer medication that had a high
rate of success, we would be able to determine, based on the data that was provided,
which is binary, whether or not the drug that was administered was successful. This
would be the case if we were to administer medication that had a high success rate. Let
us assume that the data follow a Bernoulli distribution, in which the probability of being
successful is represented by the letter p, and we know from previous experience that this
probability is fairly high. If the previous data is defined in the interval (0,1), then the
Beta distribution, Beta(αp, βp), is the distribution that seems to make the most sense
to utilize. If we make some tweaks to the αp and βp) values, we will be able to cover a
wide variety of different form types. For instance, Beta(5,1) can provide us a density that
is positively negatively biased in our favor. Given the current state of affairs, selecting
this course of action is recommended.

Estimating the likelihood of various outcomes is the function of the prior distribution,
which is a distribution that models the researcher’s belief concerning the model param-
eter. The interval serves as the foundation for the definition of the uniform prior, which
is yet another outstanding example of a prior distribution (0,1). Within the context of
this particular case, the preceding contained parameter p can take on any value within
the supplied range (0,1). In spite of the fact that this is the case, the Beta(5,1) prior is
thought to be informative, in contrast to the Uniform(0,1) prior, which is not thought
to be useful. When it comes to the opinions that people have concerning the parameter,
the non-informative prior offers very little to no information. A prior that is informative
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offers a more precise representation of the parameter that is being investigated, such as
the Beta distribution. You can see some examples of previous decisions that people have
made by looking at Figure 2.1.

The model can be stated hierarchically as follows, using the aforementioned example
as an illustration.

Likelihood: Yi ∼ Bernoulli(n, p) i = 1, ..., n

Prior: p ∼ Beta(αp, βp)

In which the hyper-parameters αp and βp can be adjusted to effectively capture the
prior information, respectively. Therefore, the following holds true:∏

(p|data) = f(data|p)g(αp,βp)
h(data|αp,βp)

Here, g(p|αp, βp) and f(data|p) correspond, respectively, to the prior and the likeli-
hood. Utilizing the information and observations Y1, Y2....YN , in particular, h(data|αp, βp)
is the marginal data and can be derived as below.

h(data|αp, βp) =
∫ 1
0 f(data|p)g(p|αp, βp)dp

We shall refer to the marginal data as h(data) rather than h(data—alpha p,beta p)
for the purpose of convenience. h(data|αp, βp) would read as follows: In day-to-day
practice, deriving h(data) might be difficult if the model is more complex because doing
so requires integrating all of the model’s parameters in their totality. This can be a
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demanding task. As a result, it is possible to get at the posterior through the application
of an approximation;

∏
(p|data) ∝ f(data|p)g(p||αp, βp), normalizing the constant.

The probability distribution, according to Bayes’s theorem, takes the following form:

∏
(η|data) = f(data|η)g(η)

h(data)

The posterior for η is
∏
(η|data), the likelihood is f(data|η) and the posterior is g(η),

while prior distribution is h(data). Therefore, the derived likelihood is arrived as;

L(η|xi) =
∏
f(xi|η)

Within this context, marginal probability functions admirably as a normalizing con-
stant actor. When there is continuous parametric space, the following applies:

h(data) =
∫
η f(data|η)g(η)dη

The following are the steps that Lynch (2007) outlined in order to make generic
Bayesian inferences:

1. Perform a check on the model and define the parameters of the model.
2. Indicate the sample size for the Posterior distribution.
3. Using the likelihood, revise the prior in order to obtain a revised posterior in order to
produce a summary of the parameters.

We would like for our priors to be conjugates, as this will cause the posterior distribu-
tion to belong to the same family of distributions as the previous assumption.Because of
the way the model is constructed, we haven’t been able to find any earlier study that is
applicable to our model that is useful. We shall take samples using the MCMC method in
the section that comes after this one, section 2.2.1. The Markov Chain Monte Carlo al-
gorithm gives us a wide variety of choices for dealing with the multivariate component by
sampling densities over several dimensions.To provide additional detail, the Gibbs Sam-
pler is the method that works the best for this situation. The following procedures are
described by Lynch(2007) in reference to the Gibbs Sampler.
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0. provide the parameter vector with the base values, which are denoted by S.

ηj=0 = η1, η2, ....ηk = S,

v indexes will be available throughout this iteration of the process.

1.Make v = v + 1

2.Sample(ηv1 |ηv−1
2 , ηv−1

3 , ...ηv−1
n )

.

.

.
n.Sample(ηvn|η

jv
1 , η

v
2 , ....η

v
n−1)

n + 1. Return to number one
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2.2.1 Bayesian WPD

The Weibull-Pareto Distribution has been decided to be used as the likelihood for the
model. The likelihood is based on three parameters. η is the parameter vector that is
being used (c, β, θ). In this particular situation, the gamma and exponential models are
being used as priors to the analysis.

Likelihood: X|c, θ, β ∼ WPD(c, θ, β)

Prior: c|αc, γc ∼ Γ(αc, γc) , β|αβ, γβ ∼ Γ(αβ, γβ)

In this scenario, it is not necessary for θ to have a prior distribution in order for the
Bayesian form of the AMLE to be applied. But at the other side, we make an exception
for the equation θ = x1, where x1 refers to the number that represents the bare minimum
of the data that is highlighted in Section 2.1. In this particular situation, we are working
with two priors, which correspond to two parameters that the Gibbs Sampler is tasked
with estimating. Both of these parameters are being estimated by the Gibbs Sampler. In
addition to this, we include the modified form of the maximum likelihood estimator in
our calculations (MMLE). In this particular situation, the previous value of θ has been
abbreviated to x(1).

θ|αθ, γθ ∼ Γ(αθ, γθ)I0,x(1)(θ)

It is possible for the Priors that are going to be selected for β, c, and theta to take
over any distribution that is stated in the ℜ+ space.Take into account the following: for
instance, if we want to make a guess as to what the value of the parameter c is, we have:

∏
((c|x) = L(WPD)Γ(αc, γc)Γ(αβ, γβ)Γ(αθ, γθ)

= 1
Γ(αc)γ

αβ c
(αc−1) exp(− c

γc
)
∫
β

∫
θ
βc
x

(
β log(x

θ
)
)(c−1)

exp
(
−(β log x

θ
)c
)

1
Γ(αβ)γ

αβ β
(αβ−1)

exp(− β
γβ
) 1
Γ(αθ)γ

αθ
θ(αθ−1) exp(− θ

γθ
)I(0,x(1))(θ)dβdθ

Both θ and β can have their values determined by us. As can be seen in the preceding
equation, it is difficult to get accurate estimates for the parameters. As a result of this,
we make use of the Gibbs Sampler, which was initially discussed in section 2.2.
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In the following part 4.2, we will make use of the melanoma data, which is a prior
test that evaluates how well the exponential and gamma functions. Both the informative
and the non-informative were utilized in this study. The first 50,000 iterations generated
by the Gibbs Sampler will be discarded, and the 10th iteration will be used to select the
iteration from which the estimates will be derived. The previously discussed graphs can
be seen in Figures 2.2 and 2.3.
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The below plots indicates the autocorrelation and the history of the prior choices are
depicted in Figures 2.4 and 2.5 respectively. In order to determine if the Markov Chain is
functioning properly, the history plots and the autocorrelation of the parameters can be
investigated. R version 4.0.3 is what we’re working with to carry out the implementation
of the convergence checks. In order to facilitate a deeper comprehension of the data, the
parameter values can be displayed in the form of a function of the sampler number when
utilizing the history plots. In the event that the model is shown to converge, there will be
oscillations of the plots to the right and left of the median of the posterior distribution.
If we look back through the history of the data and find a trend, that will be a clear
evidence that the data are not converging. The autocorrelation plot, on the other hand,
will show you whether or not there is a correlation between the data that are subsequent
to one another. If there is correlation, the samples won’t be as successful in moving
completely on the posterior distribution. As a result, it may be necessary to perform a
significant number of iterations or to reconstruct the entire Bayesian model.

The non-informative priors of the exponential and the gamma display substantial au-
tocorrelation, as shown in Figures 2.4 and 2.5, and the history plot depicts a trend. There-
fore, it can be concluded that the non-informative priors demonstrate non-convergence.
The informative priors point to relatively few connections, and the history plots are
completely random in nature. This suggests that the informative priors have reached a
consensus.
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Chapter 3

RESEARCH METHODOLOGY

3.1 Weibull-Pareto Parameters

Let’s say we’re going to use the notation F(x) to represent the cumulative distribution
function (CDF) of any random variable X, and let’s say we’re going to use the notation
r(t) to represent the probability density function (PDF) of any stochastic variable T de-
fined on the interval [0,∞]. Suppose we’re going to do this so that we can compare the
two.
In the event that the random variable follows the parameters of the Weibull distribution
with the values of c and γ,

r(t) = c
γ

f(x)
1−F (x)

(
log(1−F (x))

γ

)c−1
exp(−

(
− log(1−F (x)

γ

)c
)

In the event that X follows a Pareto distribution together with a pdf

f(x) = kθ
x(k+1) x > θ

The generalized family family CDF can be calculated as follows:

G(x) =
∫− log(1−F (x))
0 r(t)dt.

Therefore, the GWPD g(x, c, θ, β) reduces to

g(x) = kc
γx

(
k
γ
log(x

θ
)
)(c−1)

exp(−
(
k
γ
log(x

γ
)
)c
), x > θ

Assuming that β = k
γ
, we have the pdf of the WPD, which has the parameters c, β,

23



and θ

g(x) = βc
x
(β log x

θ
)c−1 exp

(
−(β log(x

θ
))c
)
, x > θ, c, β, θ > 0

The WPD(c, β, θ) has a CDF

G(x) = 1− exp
(
−(β log(x

θ
))c
)

As a result of the connection between the Weibull distribution and the WPD. It is
possible to get at the transform by producing some random samples based on the WPD.
Therefore, we can get started by producing random observations based on the Weibull
distribution, and then we can use this transformation to get results based on the Weibull-
Pareto distribution.
If we have a variable, let’s call it Y, and that variable follows the Weibull distribution,
then the parameters of that distribution are 1

β
, c. The equation for the variable X is:

X = θeY

In light of this, we can deduce that the distribution is WPD(β, c, θ)
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The pdf is given by;

f(x, θ, ϕ) = (x− θ)(c−1) q (x− θ; Φ) , for x > θ

A situation in which the parameter vectors θ and Φ are not known. For the alternative
maximum likelihood estimator Φ = (c, β), it is proposed that x(1) = θ. Additionally, the
observed sample minimum would need to be removed from the data. The alternative
maximum likelihood estimator function for the WPD provided by.

L∗ =
∑
x ̸=x(1) log g

(
xi; c, β, x(1)

)

=
∑

x ̸=x(1)

(
c log β + log c− log xi + (c− 1) log((log(

xi
x(1)

))− (β log(
xi
x(1)

))c
)

When we take the derivatives of c and β, we get.

∂L∗
∂c

=
∑
xi ̸=x(1)

(
c
β
− cβ(c−1)(log( xi

x(1)
))c
)

=
∑
x(i) ̸=x(1)

(
c+ log β + log(log( xi

x(1)
))− log β(β log( xi

x(1)
))c − (β log( xi

x(1)
))c log(log( xi

x(1)
)
)

Bringing this equation down to zero gives us the following:

β =

(
(n−n′

)∑
xi ̸=x(1)

log(
xi

x(1)
)

) 1
c

where the count of the lowest possible occurrence is denoted by n
′
.

c−1 +
∑
xi ̸=x(1) log(

xi
x(1)

)−

∑
xi ̸=x(1)(log(

xi
x(1)

))c log(log(
xi

x(1)
))∑

xi ̸=x(1)(log(
xi

x(1)
))c

= 0
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Take a look at the log likelihood function, for example.

Ln(c, θ, β) =
∑n
i=1 log g

(
x(i); c, β, θ

)

In the event that this is defined for θ is less than x(1). We have used the conventional
MLE method, and for each parameter of interest, we have taken the derivatives. It is
intended to demonstrate that;

∂Ln(c,θ,β)
∂θ

exist and where θ < x(1), it reduces to,

∂Ln(c,θ,β)
∂θ

= 1
θ

∑n
i=1

1−c
log(

xi
θ
)
+ cβc

θ

∑n
i=1(log(

xi
θ
))(c−1)

As can be seen in the following example, the solution that is found on the right-hand
side of the equation is continuous on the interval that ranges from 0 < θ < x(1)

∂Ln(c,θ,β)
∂θ

exist. if we set ∂Ln(c,θβ)
∂θ

equal to zero, we have;

∑n
i=1

1−c
log(

x(i)
θ

) + cβc

θ

∑n
i=1(log(

x(i)
θ
))(c−1) = 0,

β = n∑n

i=1
(log(

xi
θ
))c

c−1 +
∑n
i=1 log(

xi
θ
)−

∑n

i=1
(log(

xi
θ
))c log(

xi
θ
)∑n

i=1
(log(

xi
θ
))c

= 0

The employment of numerical methods is required in order to find solutions to the
aforementioned three equations. In this case, there is a possibility of gradual convergence,
despite the fact that the starting assumption is that the procedure will not converge. As
a direct consequence of this, parameter estimation is challenging. To yet, a concept for
a strategy using a hierarchical Bayesian model has proven to be excellent.
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3.2 The Simulation Technique

In the following part of the article, we will present two distinct simulation situations for
you to view. The Bayesian WPD model is going to be displayed in the first stage in terms
of the bias and mean square errors (MSE) of the model parameters. This is going to
be the primary focus of this step. This is going to be the main point of attention. The
outcomes of this research were reevaluated with a variety of other parameter configura-
tions. The generation of one hundred informational collections, each of which contains
one hundred observations, and one hundred informational indexes, each of which contains
five hundred observations, is performed for each parameter decision. The accompanying
recreation study was carried out in order to examine how well this model can continue
to function even after some of the observed values were omitted from the data. During
the course of this inquiry, one of our primary objectives is to locate the true parameter
value for a number of different censoring percentiles by employing the 95 percent credible
interval. Tables 3.3 and 3.4 contain outcomes that are reliant on a total of 500 pieces
of pseudoinformation, each of which has 100 observations. These results are provided
as a dependency on the tables. Because the Weibull-Pareto distribution model is so
complicated, we limit the number of simulations that we run to either 100 or 500 unique
data sets that have been developed. This decision was made because of the difficulty of
the model. No matter what the circumstances are, at a later stage we are going to talk
about a very big number of the different iterations that could occur. We came to the
conclusion that the exponential prior would work best for both β and c. In addition, as
was mentioned in Section 2.2.1, we considered adopting a prior that was exponentially
truncated on θ. Our prior choices are,

θ ∼ exp(0.05)T (0, x(1)), β ∼ exp(0.05), c ∼ exp(0.05) where x(1) is the sample
minimum.

3.2.1 The Generation of Data

In this part of the presentation, we will demonstrate the algorithm that can be used to ex-
tract pseudo information from the WP circulation. We discovered that the T-X family is
quite useful since it ties the Weibull-Pareto distribution to the Weibull distribution. This
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was very helpful to us. In order to generate data, we follow the steps that are listed below.

1. Generate n observations using the Weibull distribution by adjusting 1
β
, θ and c.

2. In order to generate data of size from the WPD, you can use simulation and Step
1.

3. Repeat steps 1 and 2 from the previous section using significant iterations.

4. Repeat steps 1 through 3 while selecting various values for the parameters each
time to generate new sets of data.

3.3 Performance of BayesianWPDmode:Simulation

Study 1

The goal of the research is to determine how accurately the Weibull-Pareto model can
estimate the model’s myriad parameters, and the study’s purpose is to do so. We set n
equal to 100 in Tables 3.1 and 3.2; however, in Table 3.2, we set n equal to 500. We con-
duct experiments with a variety of sample sizes to investigate the impact that increasing
the number of observations has on the mean squared error (MSE) as well as the bias.
The purpose of this study is to evaluate how well the Weibull-Pareto distribution works
when applied to data that has a positive skewness to it. When c is given extremely small
values, the Weibull-Pareto distribution displays a positive skew as a consequence of this.
Figure 2.1 presented this information earlier on.
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The bias can be calculated by subtracting the mean parameter value from the actual
value of the parameter, which is denoted by the notation c − ĉ.. When calculating the
Mean Square error, the variation on addition of the squared bias is used as a starting
point. To put it another way, that would be V ar(ĉ)− bias2c. In this particular situation,
c ≤ 1. The model’s mean squared error (MSE) and bias are remarkably low across the
board for all of the parameters that were selected. This demonstrates that the model is
accurate even when applied to data with a positive skew. When c is greater than one,
there is an increase in both the MSE and the bias. When c is greater than one and β is
greater than one, the MSE and bias for β both go up.
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The value of the parameter θ was found to be relatively accurate. When β and c were at
their largest value, the maximum was also the point at which the mean squared error and
bias were at their highest levels. When there are more observations, both the MSE and
the bias decrease, which can be shown by comparing Table 3.2 to Table 3.1. In the event
that we carry out a comparison of the last three rows of Tables 3.1 and 3.2 ((WPD(7,3,1),
WPD(7,1,3), and WPD(7,3,3)), we will see that both the MSE and the bias reduce con-
siderably as was to be anticipated.
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3.4 Bayesian WPD under Censoring: Simulation

Study 2

In accordance with the survival model below

S(x, t) = [g(x)]t ∗ [1−G(x)](t−1)

The equation t = (0,1) represents the censoring variable in the Weibull-Pareto distri-
bution. The probability distribution function g(x) and the cumulative distribution func-
tion G(x) are both based on x. The formula for the survival function is written down
as S(x) = 1 − G(x). The value is acquired from the survival function if the data that
was observed was censored; if this was not the case, then the value was taken from the
probability distribution function (pdf), which is designated by the letter g(x). On the
simulation, right-censoring was used, and 100 observations were created in accordance
with the procedures outlined in Section 3.2. Censorship is performed in the following
manner: first, an order is established for the observations; next, beginning with the jth

observation and continuing with the censoring of everything else; finally, the results are
expressed as a percentage: (100-j). In accordance with what is presented in Figure 3.1,
we investigated both the symmetrical and asymmetrical aspects of the model.

The mean square error and the bias can be determined using Tables 3.3 and 3.4,
following the steps outlined in section 3.3. The censoring percentage is denoted by the
letter %C.” The confidence interval for the percentage of times that the true parameter
was recorded by the 95 percent credible interval, divided by the total number of iterations,
which in this case was 500. It is clear from looking at Table 3.3 that both the mean
squared error (MSE) and the bias for ĉare on the higher end of the scale. In the case of
β, the mean squared error as well as the bias are on the lower end of the spectrum for
the 20 percent and 10 percent censoring, respectively.
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In spite of the fact that this is the case, there was an increase in self-censorship
at both the 35 and the 50 percentage point levels. There is not much of a difference
between the bias and the MSE, which is an encouraging indicator for the parameter θ.
When the censoring percentage was increased, both the mean square error (MSE) and
the bias increased across the board for all of the parameters. In addition, the performance
of the credible interval dropped, particularly in terms of its ability to capture a proportion
of the actual values.
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As we can notice on following Table 3.4, ĉ has a high MSE in addition to its bias,
while β̂ has both a large MSE and its bias, regardless of the censoring option used. The
MSE and bias of θ̂ are both extremely high.
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Chapter 4

APPLICATION AND
DISCUSSIONS

4.1 Tribolium Confusum and Tribolium Casteneum

In this section of the study, we apply the Weibull-Pareto to the data from two distinct
investigations on the adult number of Tribolium confusum and investigate the outcomes
of this analysis. The data have been evaluated in order to have a better knowledge of
how well the Weibull-Pareto distributions mount for the various forms of the data that
have been applied. This has been done in order to have a better understanding of how
well the distributions mount. The data in Table 4.1 are pretty symmetrical, whereas the
data in Table 4.2 have a very long tail that is skewed to the left. This indicates that
Table 4.2’s data are more accurate.

Park (1954) and Park et al. were the ones who kept track of the two separate data
points, which were 29 degrees and 24 degrees census (1964). In this portion of the
article, the WPD, the generalized Weibull distribution, the Weibull distribution, and the
exponentiated-Weibull distribution are all contrasted with one another. The values that
were actually observed for the two data points are shown in both Table 4.1 and Table 4.2.
Both tables also contain the predicted frequency for the two data points. Figures 4.1 and
4.2 each provide a visual representation of the data that is reported in Tables 4.1 and 4.2,
respectively. Data similar to that which is shown in Figure 4.2 may be found in Table 4.2.

The model takes into account the outlying portions of the data that are derived from
the primary data. If one examines Table 4.1, they will see that the projected frequency for
the Weibull model produces a value of 11.3131. This can be seen by looking at the table.
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The Weibull-Pareto distribution has an expected frequency of 5.12015 and is most closely
associated with the range of values 30-40 for the x value. This distribution was named
after the two statisticians who first developed it. The exponentiated-Weibull(EW) model
and the generalized Weibull(GW) model both arrived at the same correct result when
calculating the initial value. Even though it would appear that the named models function
as anticipated, the Weibull model does not do very well when it comes to capturing the
tail characteristics of the data for the three most recent observations. When compared
to the other three models, the values dropped at a rate that was significantly faster than
average. Both EW and WPD had the same level of performance, which enabled them
to successfully catch the tail of the data. Although the drop for the Generalized Weibull
occurs more quickly than the drops for the EW and WPD, the drop for the Generalized
Weibull occurs more slowly than the drop for the Weibull.

The Weibull distribution produced inaccurate estimates of the x-values in Table 4.2.
It would appear that the WPD and the EW are able to produce an approximation of
the data’s tail values. It would appear that the GW does not take into account the tail
values. It can be seen that the GW, EW, and WPD all capture the same thing in the
centre for the x-values.

The histograms that were generated combined with the overlay curves for each table
provide a clear pictorial picture of how each table fared in comparison to the others.
Figure 4.1 presents a breakdown into their individual figures of the numerous approaches
that can be utilized in order to make an estimation of the data. As can be seen on the top
right, the Weibull tail declines at a rate that is significantly faster than that of any other
model. Figure 4.2 makes it quite evident that the curves are superimposed on top of one
another. When compared side-by-side, WPD, Generalized Weibull, and Exponentiated
Weibull are difficult to differentiate from one another.

Figure 4.3 demonstrates, once more, that the right tail of the Weibull distribution
falls off very quickly and does not provide a precise approximation of the data. When
compared to WPD and EW, GW offers more accurate predictions of the middle x-values.
As can be seen in Figure 4.4, the models all perform similarly well in terms of capturing
the tails of the data.
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4.2 Censoring with Melanoma data

This component of the report analyzes the data as part of a study on cutaneous melanoma
in order to evaluate a specific medication that was given after surgery. The research was
carried out during the years 1991 and 1995. After then, in the year 1998, there was a
subsequent investigation. Park selected a random sample of 417 patients to study; the
event of interest was the amount of time that passed before the patient passed away,
also known as the censoring time. The patient’s age is also taken into account. The
Weibull-Pareto model is utilized in both the construction of the survival model as well
as its subsequent utilization in the application of the appropriate censoring data. The
survival function can be summarized as follows:

S(x) = 1− F (x) = exp(−(βlog(x
θ
))c)

In this case, t denotes the checking time indicator, and with the help of the data
presented in Section 3.4, we are able to formulate the likelihood as follows:

Likelihood = [f(x)]t ∗ [S(x)](1−t)

We would like to model one parameter of the Weibull-Pareto utilizing the age covari-
ate that is at our disposal. This model will serve as an example. The first option that
comes to mind is the employment of the log(scale), which involves the application of a
linear function; to put it another way,

1
β
= eψage∗xage (ψ has been employed as regression coefficient to communicate effi-

ciently).

Because θ and c would really be difficult to read, the choice to represent the cavariate
was made to employ β instead. In spite of the fact that this is the case, the prior on
θ within the Bayesian model is capped at x(1). When θ is modeled through the co-
variate, it is not necessarily a straightforward exercise to ensure that this restriction is
met. If option c were picked instead, the model’s price would be higher than it is currently.

The previous specification is the phase that comes after this one, and it covers the
parameters ψage, θ, andc. Flat gamma priors are used for both θ and c as their respec-
tive priors. We make use of normal priors for the ψage calculation.

Priors:
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c ∼ Γ(0, 0.1)

θ ∼ Γ(1, 0.1)I(0,x(1))(θ)

ψage ∼ N(0, 0.1)

In the very last stage of the procedure, which is the estimation of the survival function,
the role that the covariate performs is the primary focus of our attention. The fact that
the positive gauge of the regression parameters demonstrates that the rate parameter of
the Weibull-Pareto distribution, (β), decreases as age increases demonstrates that the
tail of the distribution will drop at a much more moderate rate, which will result in a level
bend in the distribution. This will lead to a noticeable acceleration in the deterioration
of the survival function as a consequence. Taking a look at Figure 4.5, which illustrates
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the survival curves for our population at the ages of 25, 40, and 65, is a good way to
illustrate this point. It should come as no surprise that a person who is 25 years old
has a significantly higher probability of surviving the challenges of life than an individual
who is 65 years old does. For instance, the survival curve for 65 implies that there is no
possibility of survival when t equals 0.25, whereas the survival curve for 25 indicates that
there is approximately a 20 percent probability of survival. Both curves are shown below.
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Chapter 5

CONCLUSION

Through the use of simulations, we investigated the effectiveness of Bayes estimates for
the parameters of the Weibull-Pareto Distribution. The estimates generated by Bayes
were evaluated next to the actual values. The results of the simulation showed that
the model worked well for values of c that were lower than one, which is proof that the
distribution has a positive positive skew. When both c and β are greater than1, as in
the previous illustration, there is a significant amount of bias present in the parameters.
The simulation that included the requisite right censoring demonstrated how correctly the
model works for censored data when applied to both symmetrically and skewedly formed
Weibull-Pareto distributions.

As the degree of censoring increased, so did the level of bias, and so did the number
of times our credible interval successfully projected the value for WPD (2,2,2). Due to
the fact that β was improperly calculated at a censoring rate of 35 percentage points for
WPD(5,2,2), we discovered that the credible interval was unable to take into account β.
As a consequence of this, we were unable to determine the true value of β. When the
Tribolium Confusum was used in the research, it was discovered that the WPD Bayesian
estimates were comparable to the EW and GW estimates. We note, as part of the pro-
cess of carrying out a survival analysis, how the covariate age reveals that the likelihood
of survival decreases with increasing age. This discovery is in line with what we would
anticipate seeing to be the case. R, version 4.0.3, was used to do the analysis on the data.

The continuation of this research effort will require the examination of additional loss
functions, such as the Linex loss, amongst others. It is necessary to conduct additional
research into WPD using a number of different censoring methods, such as type I, type
II, and progressive. The application of the approach to data sets that are both more
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relevant and have a longer tail is being considered. The efficiency of utilizing Bayesian
WPD with a restricted amount of available data.
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