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ABSTRACT 

Theoretical and practical investigations in the 

drawing of the following sections directly from an entirely 

round stock have been reported: polygonal bars, polygonal 

tubes with the outside and bore surfaces geometrically similar, 

and tubes with the outside polygonal surface and circular 

bore. The derived theoretical solutions enabled the 

industrialists to design tools to manufacture tubing or bar 

stocks directly from round with minimum amount of energy being 

dissipated in the drawing process; the resulting optimal 

tools also produced relatively superior polygonal stocks. 

This thesis extends the theoretical analysis to the manufacture 

of a polygonal tube by drawing an entirely round stock through 

a deformation passage formed by a conical die and a polygonal 

plug. 

Using a prescribed shape of the plug and a regular 

conical die, two solutions of the drawing loads were derived: 

the lower bound and the upper bound. The lower bound load 

considered the homogeneous deformation and the friction work 

and thus ignored the redundant work. The upper bound value 

of the drawing force was derived from the minimum energy 

associated with the velocity pattern obtained by con formal 

napping. Unlike the axisynmetric drawing on a mandrel, the 
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plug profile was corrplex; an equivalent plug semi-angle was 

therefore used to enable comparisons to be made between 

deformation passages formed by a known die profile and the 

polygonal plugs and also to facilitate the optimization of 

the process parameters. 

The graphs of the drawing forces drawn against the 

various parameterrs such as the die angle, the equivalent plug 

angle, the reduction of area as well as friction snowed trends 

similar to those tried practically and reported in the 

literature of polygonal tube drawing directly from round stock. 
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NOTATION 

Diameter of the inlet circular section 

D0(=2R ) Diameter of the outlet circular section 
a. a. 

H Diagonal length of the drawing plug equal to the 
a 

diameter circumscribing the polygon 

L Die length measured along the draw axis 

Ns Nurrber of sides of the drawn polygonal tube 

t. Inlet tube wall thickness 

d^(=2rb) Plug diameter equal to the bore of input stock 

Ak . Cross-sectional area at entry 

A Cross-sectional area at exit 
a 

Af Ratio of cross-sectional area at entry to that at 

the exit 

red, ' r' Reduction of area 

t Minimum tube wall thickness along the diagonal 
a 

of the drawn tube 

K Factor (0«<i ) expressing the tube wall thickness 

at the diagonals in terms of Da i .e. ta = <Da 

de Diameter of an equivalent circular section of the 

plug at the exit 

a Die semi-angle of the conical surface 

ct The equivalent plug semi-angle; it is the semi-angle 

of a conical plug corresponding to the polygonal 

tube drawing plug through a conical die for the same 
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reduction of area and the same die length 

a
c Plug semi-angle of the conical surface of a polygonal 

section drawing plug 

as Plug semi-angle of the flat surface of a polygaial 

section drawing plug 

Xc Angle subtended by the conical surface of a symmetric 

section of the plug at the draw axis 

A3 Angle subtended by the flat surface of a symnetric 

section of the plug at the draw axis 

3 Included angle of a syrrmetric section of the plug 

p,9,<p General spherical co-ordinates 

p Radial distance frcm the virtual apex of the conical 

surface of die to the centroid of the assumed shape 

element at the inlet section 

9 Inclination of the radius to the tube axis 

4> Inclination of a particle measured in a plane 

perpendicular to the draw axis 

f Relative angular deflection of an element measured 

in the p-Q plane 

n Relative lateral displacement of the assumed shape 

element referred to the inlet 

u Velocities in the p, 9 and 4> directions 
P O <J> 

u , u The mean coefficient of friction at the die-tube 
m' 

and plug-tube interfaces 
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p , p Mean pressure at the die-tube and the plug tube 

interfaces 

a Mean draw stress 
za 

k Mean yield stress in shear 

Y Mean yield stress in tension 
m 

W Work dene per unit volume of material 

VOL Volumetric rate 

J* Actual externally supplied power 

V Volume of deforming material 

i. . Strain rate 
ij 

T Shear stress at the sliding surface 

|Au| Velocity discontinuities along the sliding surfaces 

Sp Surface of velocity discontinuities 

TV Predetermined body tractions 

S Surfaoe area subjected to pre-determined body 

tractions 

S^ Surface of prescribed velocity 

u^ Velocity at entry and exit surfaces having 

predetermined body tractions 

a. . Stress tensor component 
ij 

a Generalised stress or t^rta. .a. .}* 

2 i 
i Generalised strsiin or ^ e ' e' } 

j-j 

t Factor (-l<t<l) selected to cptlmise the inlet and 

exit shear surfaces by minimizing the plastic work 
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dene 

N Nunber of hyperbolic curves banding the exit 

section 

M Nianber of sectors into which the inlet section is 

divided. 

General subscripts 

a exit parameter 

b entry parameter 

p plug surface 

d die surface 

c conical 

s straight or flat 

m mean 

5. . Kronecker delta 
ij 

V Poisson's ratio 
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1. A GENERAL INTOCDUCTICN 

The prevailing economic factors such as manpower, 

equipment and energy facing the world today force industry to 

be en the look-out for alternative ways of manufacturing 

products for exajrple the manufacture of polygonal products by 

drawing or extrusion. 

Hie project undertook to investigate the mechanics of 

drawing polygonal tube from round through a cylindrical die on 

a polygonal plug. This is a process whereby the bore of the 

tube changes from round to the polygonal shape whilst the 

external surface remains circular. The process would be 

Important to industry in for exanple the manufacture of 

spanners and locking devioes. Such a process would bring 

significant savings in the cost of raw materials, tooling, 

pcwer and labour. In addition the process would inpart improved 

mechanical properties on the final product. 

The aim of the investigation was to establish a theore 

solution. The solution provides an estimate of the forces on 

the drawing tools, the optimum design of the tools and an 

understanding of the flow of the deforming metal. This leads to 

an efficient utilization of material and selection of a draw 
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bench. 

The project is an extension of the work in polygonal-

bar and -tube drawing. The drawing of regular polygonal bars 

was investigated experimentally and theoretically by Basily {3}; 

the drawing of regular polygonal tube from round through a 

polygonal die on a polygonal plug by Kariyawasam {4}; and the 

drawing of regular polygonal tube from round on a cylindrical 

plug by Muriuki {5}. In each of the forementicned drawing 

processes, the theoretical predictions agreed reasonably with 

the actual data. There is havever, no known literature on the 

drawing of regular polygonal tube from round through a cylindrical 

die on a polygonal plug. This project therefore undertakes to 

study the drawing process and establish a theoretical model to 

predict the drawing- and plug- forces for a range of the process 

parameters. 

In the works of the three forementioned authors (3, 4 & 5) on 

polygonal drawing, the workpiece of initially circular section 

had to transform to a polygonal section in a single pass. 

The passage through which the workpiece deformed into the final 

product combined both conical and plane surfaces of different 

inclinations to the draw axis to allow for gradual deformation. 

The shapes of the dies and the plugs in case of tubing included 
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the pyramidical plane surfaces, the elliptical plane/conical 

surfaces, the triangular plane/conical surfaces and the inverted 

parabolic plane/conical surfaces. In this project, the elliptical 

plane/conical surface profile of the plug and a straight conical 

surface for the die were selected for the theoretical analysis. 

In chapter (2), a review of the drawing theories is 

presented. Unlike the case of axisyrrmetf'ic drawing, in the 

polygonal drawing processes, the flow pattern is very complicated 

and the resulting theoretical models are solved numerically using 

a computer. Two solutions are established in this project: the 

first is based on the equilibrium of forces and predicts a lcwer 

bound solution; and the second predicts an upper bound solution 

and is based on a velocity field that minimises the energy required 

for the process and incorporates an apparent strain method and 

Coulomb friction. The actual draw load is bracketed by the two 

solutions. 

The corresponding axisyrrmetric tube drawing solutions 

are also analysed with the aid of a computer to facilitate 

comparison between polygonal tube drawing and axisyrrmetric tube 

drawing. 

Details of the derivations are in chapters (3) and the 



appendix. The oamputer programs developed to solve the solutions 

are in the appendix. 
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2. REVIEW OF THE LITERATURE 

2.1 INTRODUCTION 

Drawing of metal is an ancient craft, dating back to 

ancient Egypt where the process was used to draw ornamental 

wires. Today, large quantities of rods, tubes, wires and 

special sections are finished by cold drawing {6}. 

Cold drawing gives a good dimensional control, a good 

surface finish and irrproved strength of the drawn metal {6}. 

However, a limit on the reduction of area possible in 

a single pass is determined by the condition that the longitudinal 

stress at tte exit cannot exceed the strength of the drawn metal. 

It is important, therefore to have the tensile stress on the 

drawn metal as lew as possible. 

A lot of literature, both theoretical and experimental 

has been published on the drawing process. The factors 

considered in the various theories include the die geometry, 

mechanical properties of the work material, the coefficient of 

friction, etc. A wide review of the drawing process is given 

by Wistreich {1}. 
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Recently, investigators have been mainly working on the 

drawing of non-circular sections e.g. polygonal rods and tubes, 

channels, etc. which had not received attention in the past. 

In these cases, the flow is either syirmetric or asynmetric as 

opposed to plane strain deformation for drawing sheets or 

axisyrrmetric drawing of bars and tubes. Among recent 

investigators on polygonal drawing include Juneja and Prakash 

{2}, Basily {3}, Kariyawasam {4} and Muriuki {5}. There is 

however, no known literature, experimental or theoretical on 

the direct drawing of round tube to a tubular section having 

an external circular surface and a polygonal bore inspite of 

the importance of this type of shape in engineering works such 

as manufacture of spanners and locking devices. This project 

therefore undertakes to establish a general theoretical solution 

on the direct drawing of such a tube. 

Metal working theories can be grouped broadly under 

the following headings:-

( i ) equilibrium approach, 

( i i ) slipline field approach/ 

( i i i ) upper and lower bound solution, 

(iv) energy approach where the total work consists of 

homogeneous, redundant and friction components, 

(v) visioplasticity, and 
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(vi) finite element method. 

A comprehensive review for the equilibrium approach is 

presented in the next section and that for the upper and lower 

bound solution in section 2.3. These two theories formed the 

basis of the theoretical analysis presented in chapter (3) . 

2.2 EQUILIBRIUM APPROACH IN DRAWING 

This method is based on the equilibrium of forces. 

It therefore takes into account only that distorsion necessary 

for the shape change and neglects any redundant deformation. 

When using the theoretical models derived by this method, the 

errors involved for exairple in the drawing forces may be large 

especially for large die angles with small reductions. 

However, the loads determined by this method have been found to 

agree closely with experimental results in seme processes 

especially wire drawing {1}. 

2.2.1 AXISYMMFIBIC BAR DRAWING 

One of the first useful equations in wire drawing was 

proposed by Sachs {6} in 1927. It was assumed that plane 

cross-sections of the workpiece remain plane as they pass through 

the die; the stress distribution on such planes is uniform; 
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the die surface is a principal plane; the mean yield stress 

(Y ) is a constant; Coulomb friction applies and that this 

friction does not affect the stress distribution. By considering 

the equilibrium of forces and applying Tresca's yield criterion, 

the following expression for the drawing stress was obtained:-

a = Y 
za m 

1 -

2B 

(2.1) 

where B = u cot a, 

U is the mean coefficient of friction 

a is the mean die semi-angle 

Y is the mean yield stress 
m J 

D is the diameter at exit and 
a 

D^ is the diameter at entry. 

Several papers on drawing processes using Sach's approach have 

been published; a comprehensive review is presented by 

Blazynski {7}. 

2 .2 .2 AXI5YV1METRIC TUBE DRAWING 

The methods of deforming tubes by cold drawing are based 

on three fundamental processes, viz. sinking, plug drawing and 

mandrel drawing. In the sinking process, the tube is drawn 

without any internal support resulting in a decrease in tube 
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diameter with ideally no change in wall thickness. Wall 

thickening may take place but it rarely exoeeds 7%. In the 

plug drawing process, the tube is drawn over a fixed or 

floating plug positioned in the die throat. In practice, a 

small amount of sinking is present in the process using a 

plug; there is a reduction in both the diameter and the wall 

thickness. In the mandrel drawing process, the internal tool 

moves with respect to both the tube and the die. 

In 1946, Sachs and Baldwin {11} derived a formula for 

the draw stress in the sinking of thin walled-tubing: -

where B = u cot oi 

Da and D^ are the mean diameters at exit and entry 

respectively and 

Y' ^1-1 Y is the modified mean yield stress from 
m m 

the von Mises yield criterion. 

The solution was based on the following assumptions: -

A pressure normal to the working tool-metal interface 

exists on the interface of tube and die and is a principal 

stress; a shear stress exists on the interface because of 

fricticn; transverse sections are free of shear stresses; the 

(2.2) 
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normal stress acting on the transverse sections is uniformly 

distributed over the cross-section and is a principal stress; 

the wall thickness is small in corrparison to the tube diameter; 

the wall thickness of the tube remains constant throughout the 

process. 

Oie of the limitations on the application of the 

equilibrium solutions is that they only account for homogeneous 

work and friction work and no account is taken for the redundant 

work. Hcwever, various investigators have proposed the 

incorporation of a redundancy factor in the theories and a 

carprehensive review is presented by Blazynski {7}. A more 

general method of accounting for the effect of redundancy on 

the parameters and mechanics of various processes was proposed 

by Blazynski and Cole {11}. The authors extended Baldwin and 

Sachs { 17} theory to account for redundant work by obtaining 

the difference between the loads of the total and useful 

deformation. An upper bound solution for the sinking process 

incorporating the effect of redundancy has been extensively 

treated by Avitzur {12}. Avitzur assumed the deforming zone 

to be bounded by spherical shear surfaoes with their centres 

at the virtual apex of the die. The flew through the die was 

thus expressed by kinematically admissible velocity field. 
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2.3 UPPER AND LOWER BOUND SOLUTIONS 

Prager and Hodge (16) formulated the upper bound 

theorem for a rigid perfectly plastic material. The theorem 

states that among all kinematically admissible strain rate 

fields, the actual one minimises the power required to effect a 

given process. With the additional assumption that the material 

is a von Mises material {12}, the final upper bound expression 

beccmes: -

The actual externally supplied power J is never higher than 

that carputed by using equation (2.3). The first term expresses 

the power for internal deformation over the volume of deforming 

body. The second term includes shear power over the surfaces of 

velocity discontinuities including the boundaries between the 

tool and material. The last term includes power supplied by 

predetermined body tractions e.g. the back tension in wire 

drawing. 

The normal component of velocity across a shear boundary 

between two zones must be continuous because of volume constancy. 

Parallel to the shear surface, a velocity discontinuity may exist. 

Also since the velocity of the tool is prescribed, the normal 
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ccmpcnent of the postulated velocity field for the deforming 

material should be equal to the normal caipcnent of the velocity 

of the tool over the surface of contact. When the postulated 

velocity field satisfies the relaxed continuity requirements, 

i .e . permitting velocity discontinuities parallel to the shear 

boundary, it is called a kinematically adnissible velocity 

field {12}. 

Kinematically actnissible solutions are useful in that 

in addition to predicting the loads required for a certain 

process, it is also possible to optimise the process taking into 

consideration the effects of various parameters. Also the 

proportion of the redundant deformation and the defects such as 

shaving, central burst, dead metal zone, etc. can be predicted. 

The approach also unveils information to eliminate the various 

defects. 

The lower bound theorem states that among all 

statically admissible stress fields, the actual one maximizes 

the expression 

I = / T.u.ds (2 .4) 

v 1 1 

where I is the computed power supplied by the tool over 

surfaces over which the velocity is prescribed, T^ is the 

normal component of traction over the prescribed surfaces and 
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iii is the relative velocity between the tool and workpiece. 

The stress field describing the stress distribution 

within the deforming zone should satisfy the following 

requirements:- It should be a smooth function; it should 

obey the equilibrium equations; it should satisfy the surface 

conditions when surface tractions are prescribed and the state 

of stress does not violate the yield criterion. Such a stress 

field is called a statically admissible stress field. 

Different kinematically admissible velocity fields can 

be assumed to determine a value of J*. For the lowest value of 

J*, it is presumed that the velocity field that led to it is 

approaching the actual velocity field. 

Several statically admissible stress fields can be 

assumed with a view to obtaining a value for I. For the highest 

value of I, it is presumed that the stress field that led to it 

is closer to the actual stress field. For actual stress and 

strain rate fields, J* = I = actual power. 

A nurrber of investigators have developed the upper 

bound technique and applied it to specific problems. A brief 

recount of the more recent work relevant to the current 

research is presented in the next two subsections. 



2.3.1 DRAWING OF SECTION RODS 

In 1975, Juneja and Prakash {2} obtained an upper bound 

solution for the symmetric drawing of polygonal sections. The 

solution predicted the cptimum convergent angles of the die 

surfaces for the minimum drawing stress and the critical 

convergent angles for the formation of a dead metal zone. The 

draw stress was observed to decrease rapidly to that of the axi-

symnetric solution by Avitzur {12} as the nunber of sides of 

section increases. 

Concurrently but independently, Basily {3} obtained 

an upper and lover bound solution for the asynmetric drawing of 

regular polygonal bars from round bar. It was shown that the 

equivalent die angle can be optimised for every relevant 

combination of the coefficient of friction and reduction of 

area. It was further shewn that as the number of sides of the 

drawn section rod increases, results of both the upper and lower 

bound solutions approach those of the corresponding axisyrrmetric 

case. 

2.3.2 TUBE DRAWING 

A general upper bound solution was derived for axi-

symnetric contained plastic flow occuring in processes like 



drawing and extrusion of tubes and wires by Juneja and Prakash 

{13}. The solution was extended to particular cases for 

instance plastic flow through conical dies using a plug or a 

mandrel. 

Kariyawasam & Sansome {4} investigated the process of direct 

drawing of round tube to any regular polygonal shape both 

experimentally and theoretically. In addition to designing 

draw tools optimised to give the least work of deformation, the 

effect of diameter to thickness ratio of the undrawn tube and 

the effect of reduction of area on the draw force was also 

investigated. 

wa Muriuki {5} investigated the direct drawing of 

regular polygonal tube from round on a cylindrical plug both 

experimentally and theoretically. The derived theoretical 

solutions were based on a method of conformally mapping 

triangular elements in the inlet plane to corresponding 

triangular elements in the exit plane. Several sets of the 

die profiles shown in Figure 3.2 on page (20) were tested 

experimentally. The elliptical plane/conical surface die 

produced results which agreed fairly well with the predicted 

values. Hie reports by Basily & Sansome {3} and Kariyawasam 

& Sansome {4} also recommended this type of the 

die profile to be the optimal 



This project therefore selected the elliptical plane/ 

surfaces to be the profile of the plug to be investigated. 
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3 DERIVATION OF'THEORY FOR THE UPPER AND LOWER BOUND SOLUTION 

3.1 INTRODUCTION 

Equations for the upper and lower bound solution in 

the drawing of regular polygonal tube from round through a 

cylindrical die on a polygonal plug are developed in this 

chapter (See Figure 3 .1 ) . Close pass drawing is assumed in 

the derivations. 

The deformation passage is complex and numerical 

integration was used to obtain the solutions for any given set 

of drawing parameters. The deformation pattern was selected 

such that the difference between the two bounding loads is as 

small as possible since the actual load lies between the two 

limits. 

The upper bound solution was obtained by equating the 

total power derived for the prescribed deformation pattern to 

the applied power. The development of the velocity field for 

the upper bound solution is described in section 3.4 and 

Coulomb friction was incorporated by an apparent strain method 

presented in section 3 .6 .3 .1 on page (43). 



Figure 3.1 ISCMmiC DRAWING OF THE DEFORMATION PltOCESS IN THE DRAWING OF POLYQDNAI 

TOI3E FRCM ROUND ON A POLYGONAL PLUG 
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The derivation for the lcwer bound solution was based 

on the equilibrium of forces and Tresca's yield criterion. The 

solution was developed for the elliptical plane/conical surface 

plug (Figure 3.2) and a cylindrical die. 

Equations for the lower and upper bound solution for 

axisyrrmetric drawing are presented in appendix A-5 on page (A72) 

The computer programmes presented in Section 3.3 

provides the results for the upper and lower bound solution 

for polygonal drawing and also for axisyrrmetric irawing for 

the purpose of comparison. 

3.2 UPPER BOUND SOLUTION 

In the upper bound solution, the minimum energy 

required to deform the material is calculated. In addition 

to the homogenous deformation, relative shearing at the inlet 

and outlet regions of the deformation zone is considered. 

FUrther relative shearing of the material elonents in the 

deformation zone is also considered and finally, friction 

between the deforming metal and the tools is accounted for 

using Coulomb's relationship. 



(a) Shape 'A1 (b) Shape 'B 

(c) Shape 'C1 (d) Shiipe 'D' 

Figure 3.2 ISOMETRIC DRAWING CF THE GENERAL FEATURES OF THE FOUR BASIC SHAPES OF THE PLUG, 

SIMILAR TO DIE SHAPES INVESTIGATED IN REFERiiNOES 3, 4 AND 5. 

(a) Pyramidical plane surface 

(b) Elliptical plane/conical surface 

(c) Triangular plane/conical surface 

(d) Inverted parabolic plime/conical surface 
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A velocity field is assumed and if the deforming metal 

obeys von Mises yield criterion and the Levy-Mises flow rule, 

the upper bound solution described in section 2.3 of Chapter 2 

indicates that the actual strain rate field e^ is the one that 

minimises the expression given by equation (2 .3 ) on page 11 

The velocity field is derived from a ccnformally mapped 

deformation pattern described in section 3.3. Having derived 

the velocity field, the minimum value of J*, the power to effect 

the process, is obtained for the given set of drawing parameters. 

3.3 DEFORMATION PATTERN 

The entry plane (X^ (see Figure 3.3) is defined 

as the plane normal to the die axis through the point where the 

outermost tube elements (D = D^) first contact the die and 

start to deform. 

Similarly the exit plane (X , Y ) (Figure 3.3) is the 
cl 2L 

plane normal to the draw axis through the point where the 

outermost material (D = D a ) starts to flew parallel to the draw 

axis and deformation ceases. 



FIOTRE 3 .3 DEFORMATION PATITSRN TOR THE DRAWING OF REGUUR 

POLYGONAL TUBE FRCM ROUND 
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The method applied for obtaining the deformation 

pattern is based on conformally mapping each triangular element 

in the inlet plane to the corresponding triangular element at 

the exit plane (Figure 3 .3) . 

At the exit plane, the cross-sectional area of the 

polygonal tube is banded by (N—2) hyperbolae, in each of which 

the focal distance a^ is adjusted to suit the asymptotes such 

that the hyperbola corresponding to the inner surface is almost 

coincident with the flat surface of the polygonal tube. The 

outermost curve remains circular corresponding to the die 

surface. The area between consecutive curves is calculated. 

Assuming a constant reduction in area, the corresponding cross-

sectional area at the inlet plane is determined and hence 

the radii bounding it (see Figure 3 .4) . 

The banded area at the inlet cross-section of the 

tube is divided into (M-l) equal sectors. Each sector, say 

ABCD, is further divided into two triangles, the large triangle 

ADB and the small triangle DCB. The area of each triangle can 

be determined and frcm the known co-ordinates of the vertices, 

the centroid is located. 

Assuming a constant reduction in a_rea of the large 

triangle ADB on the inlet plane, the corresponding area of the 
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(b) ENTRY PLANE 

(a) EXIT PLANE 

FIGURE 3.4 MAPPING THE ENTOY PLANE TO THE 

EXIT PLANE 
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l*irge triangle A'D'B' on the exit plane can be determined. Let 

this triangle at the exit plane be defined by the co-ordinates 

( X r Y x ) . (Xg, Y 2 ) and (X3, Y3) (or (Xa> Y J ^ 

and (Xa , Y & ) i j + 1 ) of which (X^, Y^) lies on the hyperbola i. 

Starting with kncwn vertices (1) and (2) (or (X^, Y^) and 

(X2, Y 2)) ,the third unknown vertex can be found by solving the 

equation of the triangle in which (X^, Y^), (X2> Y2) and the 

area are kncwn and the third point satifies the hyperbola i. 

Having determined the third vertex (X„, YJ (or (X , Y ). . , ) » 

d o a a i , j+i 

the point is then substituted for (X2 , Y 9 ) of the small 

triangle D'C'B' and the third unknown vertex which satifies the 

hyperbola i+1 is found from the known area of triangle. The 

procedure is repeated until the whole exit section is mapped 

into triangles. The centroids of the large and small triangles 

can now be located. 

Details of the conformal mapping are given in Appendix 

A-l, section A-l.l. 

3.4 VELOCITY FIELD 

It is assumed that before meeting the die, all 

particles of the tube material travel parallel to the draw axis 

towards the die entry. Within the die, the velocity of a 
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particle is expressed 3-dimensionally by a spherical co-ordinate 

system, li = u(up, uQ , u^) and changes as the deformation proceeds. 

Beyond the exit plane, the particle travels parallel to the draw 

axis without further plastic deformation. A boundary therefore 

exists which separates the undeformed metal zone to the zone 

where relative deformation occurs. A particle cn reaching this 

surface shears and changes direction. 

A similar distortion occurs at the exit except that the 

particles pass through the boundary from the deforming zone into 

a region subject to elastic distortion cnly. 

There is no general theoretical method to determine the 

shape and position of these boundaries. It is usual to 

assume that the boundaries are plane, spherical or conical. 

In the current problem, the deformation mode is ccmplex. 

A general shear surface was defined such that a particle on 

any streamline cn entry was assumed to shear at an angle (—-10) to th 

draw axis where -l<t<l (see Figures 3 . 5 and A-1 .6 ) . The 

position of the particle was defined on the general spherica 

surface (pb,0,4>). The parameter t was used to optimise the 

shear surface by minimizing the shear work. A general 

pyramidical shear surface was defined at the exit of the 

deformation zone. 
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Once a shear surface has been defined, a plane parallel to 

•exit' or 'entry' planes and passing through the centroid of the 

particle on the respective shear surfaces can be drawn. Such 

planes are denoted by (X^, Y^) and (X^, Y£) for the exit and 

entry shear surfaces respectively. Let the centroid of the 

triangular elonent at entry be denoted by (X^, Y.^Ki.j) and 

that of the corresponding triangular element at the exit by 

(X\ Y ' ) ( i , j ) . By joining the centroids of the corresponding 
a a 

triangular elements, the drawn vector was assumed to define 

the path followed by the element. Detailed derivations of the 

flew path parameters are in Appendix A-l, section A-1.2. 

Having defined the flew path, the velocity field 

u(p,9,4>) is established and therefore the strain rates (see Figure 

A - l . 1 2 ) . 

Let lî  be the velocity of an element before shear at 

the assumed velocity discontinuity surface and u(p,9,4>) the 

velocity immediately after shear. The component of velocity 

normal to the shear surface must be of the same magnitude on 

both sides of the shear surface for continuity of flew 

(Figure 3.5) i .e . 

ll ccstQ = ucosncosf cos (1-t )9 
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SHEAR S U R F A C ^ v s i p e - t e 

GENERATOR 

'// /Ucos(9^t9)cosr|cos^ 

a tef-

FIGURE 3.5 DETAILED DIAGRAM SHOWING VELOCITY 

OF THE PARTICLE IMMEDLATELY AFTER 

SHEAR AT THE ENTRY SHEAR SURFACE 
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or d = a S2S* ( 3 > 1 ) 

cosncosf cos( 1-t )9 

For convenience of analysing the final results, an equivalent 

plug semi-angle a was defined as the semi-angle of the axi-

synmetric tube drawing plug which produces the same reduction 

of area as the polygonal tube drawing plug for the same die 

length. Detailed derivation of the cross-sectional area (A) 

of the tube material at any radius p frcm the assumption of 

an equivalent plug is in Appendix A-l, section A-1.3. 

Due to continuity of flow, equation (3.1) becomes 

uA = OA , — (3 .2) 
D D cosn cosY cos(l-t)6 

where A and A^ are obtained from equations (A-l.67) and 

(A-l.73) on pages (A28) and (A29) respectively. 

ph C i " costQ D I J 
Therefore, a - t^ ^ _ (C 2+p') 2) 

0" 2 

costQ _b 
^ cosr,cos1,cos( 1-t )0 p" 

(3 .3 ) 

v/here 

p; 2 = P k - c 3 (3 .4 ) 

and p" 2 = C ^ P ^ C g + p ' ) 2 ) (3 .5) 

The velocity a can be resolved into three components, 
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namely up, u^ and u^ in the p, 8 and <p directicns. Considering 

the geometry of Figure A-1.4 on page (A16) and substituting 

for u from equation (3.3), the velocity ccnponents of the 

particle thus become: 

iip = u cosncos^ 

P'7 

costQ 

cos(l-t)0 
(3.6) 

Uq = u cosncosT 

2 
(Pbl 

"b pni 

cos t6 tanY 

cos(l-t)9 
(3.7) 

u = u smn 

% 
costQ tann 

cos (l-t)9 cosy 

(3.8) 

3 .5 STRAIN RATES 

i. a 

The general expressions for strain rates as functions 

of velocity components up, Uq and in the directions p, 0 

and $ respectively, in the general spherical polar co-ordinate 

system (15) are as follows:-
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EP = 

3u 

3p 

u 

y p 30 p 

( 3 . 9 ) 

(3.10) 

^ 3u, u Uq 

3ue ue i 3UQ 
Y P 0 = 3 O ~ " O - + P 3 E _ ( 3 - 1 2 ) 

]. 9U9 1 9U. U, 

'9* = 5 5 9 3T + p 99 " p c o t 9 (3 .13) 

' , 1 
Y<J>p 3p p psin9 90 (3 .14) 

Equations (3.9) to (3.14) were applied to the derived velocity 

expressions (equations (3 .6) to (3 .8) )to yield the strain rates. 

The final expressions for the strain rates become: 

_ =
 2 C L "b. C C 6 t 9 [fb\ {p-(C2+p»)/Pl_| }p (3 .15) 

P "2 p os(l-t)e \p"/ ' p~pbl 

where C^, and p' are given in Appendix (A-1.3) by the 

equations (A-1.68), (A-1.59) and (A-1.70) respectively, while 

2 2 
p" and p" are evaluated using equations (3.4) and (3.5) on 
b 
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on page (29). 

li / p bl 2 ocstQ 
£9 = " p p77/ cos( l-t)9 (1+tanY(-t tant9+(l-t)tan(l-t)9 

+ — — ) ) (3.16) 
os'f 

• ^ ( f b f coste . {1 + tan* + \ 0 0 t f 0 Q B ( ^ A ) t (3.17) 

P \P'7 Cos(l-t)9 t a n Q Zgoosf ' 

where 0 and Z are given by equations (A-1.53) and (A-1.44) 
A S 

on pages (A22) and (A15) respectively. 

Ob 
YP6 " p 

, A „ I 2 

%) coste { t a r t f _ 1 tartf {p-(C9+p') 

P 1 cos(l-t)9 p" 2 2 

(-£—) }p-t tantQ + (1-t)tan(l-t)9} (3.13) 
P-Pb 

• - ^ 
Y94> P 

bl ccst9tann { < z l _ _ t t a n t 9 

PI cos(l-t)6coslF tan9 

+ tanQ +(l-t)tan(l-t)6+tan*} 

= Jb 
Y *P p 

Ui_ /Pu 
2 

b ) cost9tann ( " l { p _ ( c + p , ) ( _ g _ ) } } 

[p"l cos( 1-t )9cos4/ P"2 2 P-Pb 
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3.6 TOTAL POWER REQUIRED FOR DEFORMATION 

3.6.1 INTERNAL POWER OF DEFORMATION 

The following assumptions were made when deriving the 

rate of internal work to deform the material in the deforming zone: 

(i) The material obeys von Mises yield criterion, 

a ' j a' . = 2k2 (3.23) 

where a< . = a. . - . (3 .21) 

and k is the yield stress of the material in shear. 

(ii) The flow obeys the Levy-'lises stress-strain relationship 

. = a' dX where dA is a constant (3.22) 
ij ij 

of proportionality. * 

( i i i ) The material is rigid perfectly plastic and non work-

hardening. 

(iv) The inccmpressibility condition is satisfied 

i .e . ^ = = 0 (3 .23) 

The rate of work required to deform an elemental 

volixne dV is 
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dWj = a i j 6 i J dV . 

Therefore power to deform material of volume V is 

W_ = / o. i . ,dV 
I Jv ij ij 

Multiplying each side of the Levy-Mises expression 

by gives 

e, .e. . = dAa 'e . . (3 .24) 
ij ij ij iJ 

Also multiplying the equation by a! . gives 
J 

a! i. . = dAa! .a'. . (3.25) 
ij ij ij iJ 

Therefore, o ! .e . . = 2dAk2 (3 .26) 
J "̂ J 

from von Mises equation (3.20). 

Equation (3.21) can be rewritten as 

a ' i y - Catj - i a ^ j i y 

= a. i . . (3 .27) 
ij ij 

and from equations (3.24) and (3.25), 

(3 .28) 

Substituting equations (3.27) and (3.28) into equation 

(3.25) gives 
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By substituting equation (3.29) into the expression for Wr 

gives 

W x = Ik A e. j e i j dV (3 .30) 

If k is assumed constant, 

Wj =k /2 . /v dV (3 .31) 

If the mean yield stress is Y , then for the von Mises 
m 

condition, 

Y 
k - J 

/3 

Therefore, W, = /| y J i, . dV ( 3 3 2) 
^ 3 m v ij ij 

Substituting for the strain rates frcm equations 

(3.9) to (3.19). 

e. i, » e? + t* + ei? + 2(e?0 + A + fe2 } 
IJ LJ 1 2 3 12 23 31 



36 

Therefore, the expression for the internal power of deformation 

becomes 

wi = j 2 'v
 / { 2 ( £ p + + + 4 * * ^ V d v 

Y ••• 2 Y or 
_ m r D , b. costs Ar .v 

where 

2C,o 
p' 

2C1P . -- -- _Pl 2 

P"" " ^ b 

K = 2 { ^ (p - (C2+P') ) )} 
„2 ^ 2 

2 
+2 {-(l+tanYC-ttante +(l-t)tan(l-t)9 + —) ) } 

oosY 

+2 {l+ + } 
tanB tan(^-^A)cos4'sin9 

2 

(3.34) 

+ {-(tan f-2CTtan¥(p-(C0+p')(—£—))—~ - ttant9+( l-t)tan( 1-t )Q )} 1 2 p-p^ p"2 

+. (.(tanr^jJ. t t a n t 9 +tan8+( 1-t) tan( 1-t )9 +tan*)}) 

tan^ tanQ 

2 

'tan? ' ^ ^ I J ^ ^ > 2 ^ (3.35) 

2 

The elemental spherical volume is 

2 
dV = p sin8dpd9ckj> (3.36) 
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Therefore, 

Y_ A _ ^ u o" 2 

I " 
W„ » -IS f V " r271" r^K ^ ^ costs ^ 2 . 

• 3 e ^ J ^ ^ ^ smedodec^ 

a (3.37) 

Y ' , ,2 

- IT- J27r (/pb £,,2 * dp} costesinede^ ( 3 b 3 8 ) 

e <,=0 P=p P cos(l-t)0 
a 

The elemental spherical surface area at entry-

is 2 
dA^ = Pbsin6d9cfc> (3.39) 

Equation (3.38) becomes:-

* r J s % fb 2 / 9 2 - F { / P b 0 ^ d o } coste ^ (3.40) 

3 pb 9=ct
e 4>=0 P=Pa oos(l-t)9 

Equation (3.4) can be rewritten as 

p»» ^ Q 

c—) = c - — 
0 1 2 

Pb 

Substituting for C^ and C3 from equations (A-l.68) and (A-l.74) 

on pages (A28) and (A29) respectively and rearranging, 

D" 2 A, 

(-£) = (3.41) 
pb P,2 
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Therefore, 

W - f % fb f 2 n ;p costa 
1 /3 p^ 9«a • i o o 0»2 cos( l-t)9 " "b 

b e "a. " 

= Y m V V ( s ) <3-42> 

where 

f(s) = / 3 2 = a J27T
 { |P b _£_ /K do) dA (3 .43) 

b 

f(s) is evaluated numerically by dividing the inlet section 

into N x(M-l)x(N-2) elemental areas which are themselves 
O 

subdivided into large and small triangles i.e. 

f ( s ) = V ^ 1 ( A dA.} (3 .44) 

E B
/ 3 M- 1 = 1 J=1 Pa P" 2 cos(l-t)6 

3 .6 .2 POWER LOSS IN SHEARING MATERIAL AT INLET AND EXIT 

SHEAR SURFACES 

The internal power Wj derived in the last section 

is required to overcome the homogeneous deformation and the 

necessary relative shearing within the material itself as it 

progresses through the deforming zone. Power is also 

required to corrpensate for the losses due to the shearing 
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of material on both the inlet and exit shear surfaces. 

The rate of work on crossing a. shear boundary of 

elemental area dA is given by 
3 

dWR = ku*dAg (3 .45) 

where 

u* is the velocity discontinuity along the surface, 

k is the yield stress of the material in shear equal 

Y 

to __m by the von Mises yield criterion. 

/3 

The velocity discontinuities at the entry and exit 

shear boundaries are derived in Appendix A-1.4, equations 

(A-1.78) and (A-1.79) respectively. The rate of work 

dissipation at the entry shear surface is 

= / ( 3 - 4 6 ) 

= / k V S S I ? < 3 - 4 7 ) 

The rate of work dissipation at the exit shear surface is 

WD = / k'u dA! (3 .48) 
Ra . ra s 

a 
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where 

k' = k for a non work-hardening material and 

dA' is the elemental area on the shear boundary at 
s 

exit. 

. <*A 
Therefore, W^ = / k u r a ^ f t 9 (3 .49) 

a 

Assuming a passage formed by an equivalent conical plug and a 

conical die, 

2 
dA. p" 

—^ = (-£) (3.50) 
dA p" 

a a 

2 
pr 

and u r a =(—) u^ (3 .51) 

2 • pa 2 ^ 
Therefore, WDo - / k (-2) u . ( — ) 

^ A p" **> 01* ccste 
T) a b 

= { k u r b S t 9 - < 3 ' 5 2 > 

D 

The total rate of work of shear at the inlet and exit surfaces 

of velocity discontinuity is 

WD = WD + WD, R Ra Rb 

. dA 

= 2/ k u . 
Ab rb cost6 
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Y u . dA , 
2 J 2 n A. / — - 1 

/3 costQ ^ 

- ; 3 Y m V b R ( s > ( 3 - 5 3 > 

where 

B(8) - T- / i2 • {-sin* • Afa ' cos( 1—t )9tan4/ 

cost9 tanf + cost9 tan(l-t)6}2) * (3.54) 

frcm equation (A-1.78) on page (32). 

R(s) is evaluated numerically by dividing the inlet 

section into N x(M-l)x(N-2) elemental areas which are 
s 

themselves subdivided into large and small triangles. 

Therefore, 

N N-2 M-l ^ 

R(s) = — lim 2 I ( {ccstetann }2 + 
A, j=l cos(l-t)8taM 

2 * b 
{-sint9+cost9tan4,+cost9tan( l-t)9} ) * — ^ (3.55) 

Values of -l<t<l are used to select the shear surface that 

gives the minimum value of R(s). This if. then the optimum 

shear surface for the given draw conditions. 



42 

3.6.3 FRICTICNAL LOSSES AT THE TOOL-WORKPIECE INTERFACES 

Besides the internal paver W^ and the shear power 

additional power is required to overccme the frictional 

losses which occur as the tube slides between the die and the 

plug. 

In the case of Coulomb friction, a mean coefficient 

of friction y is usually assumed for the given relative 

sliding surfaces. The rate of work loss is given by:-

» F = V W s ^ s +  f A , W s ^ s  ( 3' 5 6 )  

SI S<5 

where the first term on the right calculates the loss at the 

die-tube interface and the second term calculates the loss 

at the plug-tube interface. 

The die and plug pressures and the coefficients of 

friction are unknown. A mean pressure at both interfaces 

can be assumed and if the distribution of pressure and the 

mean coefficient of friction axe known, the frictional loss 

can be calculated. The values are however unknown. To 

avoid this difficulty, can be obtained indirectly by the 
r 

apparent strain method. The method .allows the calculation 

of the draw load in the case of Coulcrrb friction without 
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obtaining the distributicn of pressure at the tube-tool 

interfaces. 

3 . 6 . 3 . 1 APPARENT STRAIN METHOD 

This is an energy method where the work done 6er 

unit volume is divided into the plastic work and the surface 

frictional energy {14}. 

Friction produces shear stresses and strains at the 

interface and these have two major effects on the work done. 

Energy is dissipated at the interface as a result of the 

relative motion and when the surface shear stress is 

significant compared with the yield shear stress, additional 

internal distortion results within the deformation zone. 

The two effects increase the work done. 

The total work done per unit volume of the material 

is equated to an area under the equivalent stress-strain 

curve (see Figure 3 .6) . The strains i and e corresponding 
cL 

to the total work and plastic work per unit volume are known as 

the apparent and mean.equivalent strains, respectively. 



FIGURE 3.6 THE EQUIVALENT STRESS-STRAIN DIAGRAM 

SHOVING THE TERMS USED IN THE APPARENT 

STRAIN ANALYSIS 
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By definition, work dene per unit volime 

z — 
W = / a adi = Y e (3 .57) 

0 m a 

Assuming that the presence of friction at the die-tube and 

plug-tube interfaces has a negligible effect on the plastic 

work, 

ea = em
 + sf • (3 .58 ) 

For a drawing process with no back pull, the total work done 

per unit volume equals the draw stress. 

i .e . w = a
z a (3 .59) 

It is assured that a mean coefficient of friction (y ) and 
m 

a mean pressure (pm) occur at both the die-tube and the plug-

tube interfaces during the drawing process. 

Using subscripts s^, c^ and c9 to denote the straight, 

conical plug and die surfaces respectively:-

From Figure 3.7 for steady draw, the equilibrium of horizontal 

forces gives, 

azaAa = Pm < E « W » » + s i m ) + ( 3 ' 3 3 > 

£(Umcosas - si«xs) dA s l • I(PmC06ac - S i m , ) dAc l 

From equations (3.57) and (3.59), 
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° z a U a 

FIGURE 3.7 STRESS AND THE DEFORMATION PATTERN IN THE 

DRAWING OF POLYGONAL TUBE FROM ROUND 

THROUGH A CYLINDRICAL DIE 
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a 
za 

e = — 
Y 
m 

a = T " (3.61) 

Substituting for a in (3.60) gives, 
za 

cr p , 
- _ za m l J v ,A 
ea - V- = r I f ^ V 0 8 0 + s l n B ) c2 

m m a 

+ ^(umcosas - sinas)dAs l +£(Umcos>c - s i roJdA^} 

P_ 
or e • I. (3.32) 

a V 1 
m 

where 

I1 = - {Z(umcosa + sim)dA c 2 (3 .63) 
A 

a 

+E(Mmcosas - sir»s)dAs l + £(umCQsac - s inaJdA^} 

= Apparent strain factor . 

Frcm the definition of friction strain work done against 

friction per unit volume of material 

W. = (Y ) £ (3.64) 
f m ^ f 

The friction work Wf can also be determined by the energy 

dissipated as the material slides between the die and the 

plug surfaces as follows:-

Using u s l , uQ l and u c 2 to represent the respective surface 
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velocities, equation (3.66) gives, 

' W f X " V m V s l + V A A l 

+  UnPaF%2 < i Ac2 (3-05) 

By expressing the elemental surface velocities in terms of 

the input velocity u^ gives 

V 0 1 = dAsl + > dAcl 

Uc2 
+ E ( t ~ ) d A J (3.66) 

% 

Substituting for 

( V / f V o 1 = <*8i
 + 

dAcl + £(^£2) dAc2} 

^ "b 

P_ 
or E . • — I9 (3.67) 

(Y ) 
nrf 

where 

•p Umllb slv , r /
u cl . 

2 = T - { i : ( — > ^ s i + £ ( r-> ^ d 
Vol "b 
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+ ) d A
C 2 } (3 .68) 

= Friction strain factor . 

Dividing equation (3 .62) by (3.67), 

i a _ ( V h 1 h 

T ' 12 B r2 
m 

where B = — (3 69} 

< V f 

Therefore e„ = B — £ 
f 2 " a 

= He (3 .70) 
cL 

I, 

where f = B — (3 .71) 

X2 

Substituting equation (3.58) into (3.70) and rearranging, 

e = e + Ye 
a m a 

e 
- _ m 

or £a 1 -V (3 .72) 

From equations (3.62) and (3.72), 

i 
^ _ v a 

p m~ Ym T 7 

= y (3.73) 
m 

I L ( " ) 
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Fran equation (3.61), 

£ 
a » y e - ? " 
za m a m 1-i' za (3.74) 

Therefore, if the value of em is known, the draw stress and the 

mean pressure (equations (3.73) and (3.74))aan be calculated 

from the geometry of the deforming passage, the velocity 

distribution, the strain factors and I2 

and the work hardening factor B. e can be derived from 

the total plastic work as shewn below. 

3 .6 .3 .2 THE MEAN EQUIVALENT STRAIN 

It is assumed that the metal undergoing deformation 

obeys von Mises yield criterion and Levy-Mises flow rules. 

The plastic work dene per unit volume can be expressed as 

m 

(3.75) 

where a = /5(a! .a! 
2 U ^ 

(3 .76) 

(3 .77) 

The mean equivalent strain is defined as the strain which 

bounds an area under the equivalent stress-strain curve 
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(Figure 3.6) equal to the total plastic work done per unit 

volume of the material. 

i o w - f^ 

p 0 5 d e " <3-78> 

The plastic work W^ consists of the internal work of 

deformation (VT) and the redundant work (W ) of shearing the 

material at the assumed surfaces of discontinuity at both the 

inlet and outlet boundaries. 

i .e . W = W. + W (3 .79) 
p l r 

In terms of pcwer, 

W x Vol = tATt + WD (3.3Q) 

P 1 rv 

From equations (3.42) and (3.53), 

" i = Y m V V < s ) 

Y 

and W = ^ ^ ( s ) 
/3 

Equation (3.78) beccmes 

<YmSm> V o 1 " V b V ( s ) + W s ) 

Therefore, = ± ^ H s ) * ^ V b R t s ) } (3 .31) 

f(s) and R(s) are evaluated numerically by the use of a 

computer and hence the value of the mean equivalent strain. 
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3.6.3 .3 WORK HARDEN DC FACTOR B 

This is the ratio of the mean flow stress over the 

whole strain range ) to the mean flow stress over the 
cL 

strain range em ^ e . The value will therefore depend on 

not only the material characteristics but also on the 

process and the friction. 

If the coefficient of friction is anall, the strain 

range e ^ I is also small. The mean flow stress over this 
m a 

range can therefore be approximated as, 

<Ym) = ^ (3.82) 

f a 

By definition, 

V a = / af(Odi 
0 

1 e 
o r Y m ~T f a f(e)de (3.33) 

"a 0 

Y e 

Therefore B = = ±- f a f(e)de (3.34) 

< V f 0 

5 sr=e 
a 

If the equivalent stress-strain curve of the material 

follows the pcwer law or 
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f(e) = o = oQcn , (3.85) 

where o is the true stress and oQ is the stress 

corresponding to unit strain , then equation ( 3 . 8 4 ) gives 

B = —— (3.86) 
1+n 

3.G.3.4 EVALUATION OF AND 

Ij and I2 given by equations (3.C3) and (3.63) are 

found by integrating the respective expressions over the 

relative sliding • surfaces of the deforming tube. 

To determine I 2 , the product of the elemental 

respective area and the velocity on the relative sliding 

surface between the workpiece and the tools must be known. 

The deforming die is conical but the plug has a corrplex shape. 

The longitudinal velocity increases towards the plug exit as 

well as circumferentially. Therefore the flow especially 

at the intersection of the conical and plane surfaces is very 

complicated. An approximate method is used to evaluate I2 

when the sliding velocity distribution is estimated for an 

equivalent conical plug. 

Let u -, be the mean sliding velocity at the plug 
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surface; then 

f\ udA 
asl = 3 (3 .87) 

/ . dA 
As s 

For a convergent plug and conical die passage and the 

continuity of flow, 

u = ~ ubcosote (3 .38) 

and dAg = 2Tr(rb-(p.-p)cosa tanae)dp (3.39) 

Therefore, 

P" 2 

b 

u , = 
si 

f % ( 7 7 ) c o s a
e

2 7 r ( r b" ( p b" p ) c o s o t t a x i ae ) d p 

P 

/ 2rr(r.-(p.-p)cosa tana )dp 
0 D O e 

(3 .90) 

2nA 

% ^ e f " < 3 ' 9 1 > 

r 

For the die-tube interface, the mean sliding velocity 

u g 9 is given by:-

(u^ + ua)cosa 

us2 
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3.7 LOVER BOUND SOLUTION 

The upper bound solution developed in the previous 

sections is an overestimate of the load required to effect 

the process. The value overestimates the load. A lower 

bound solution which neglects the effect of redundant work is 

thus necessary; the actual load lies within the two limits. 

By considering the equilibrium of forces on an 

elemental volume and applying Tresca's yield criterion, an 

expression for the draw stress is obtained. A computer 

prograirme is developed to solve the problem numerically. 

3.7.1 DEFORMATION PATTERN OF THE LOWER BOUND SOLLTICN 

The four basic tool profiles in the deforming zone 

are the pyramidical plane surface, the elliptical plane/conical 

surface, the inverted parabolic plane/conical surface and the 

triangular plane/conical surface (see Figure 3.2). The lower 

bound solution is developed for a conical die and the 

elliptical, plane/conical surface plug. This type of plug 

allows a gradual deformation in the die-plug deforming 

passage and the surface equation is readily derived. 
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The conical surface of the plug is inclined at an 

angle to the draw axis while the elliptical plane surface 

is inclined at an angle a to the draw axis. 
s 

3 .7 .2 DERIVATION OF THE LOWER BOUND SOLUTION 

The lower bound solution is derived by considering 

the equilibrium of forces acting on an element at a distance 

Z from the selected origin (see Figure 3 .8 ) . Figure 3.3 

shows a round tube deforming through a conical die on an 

elliptical plane/conical surface plug to produce a polygonal 

tube. The following geometrical relations are derived:-

(i) General parameter's for the plug 

ft - 1 
D Ns (3 .92) 

A^ = Area ratio 

Area at entry ^b (3 93) 

Area at exit 

rb " 2 

i ^ ~ H 

a = tan"1 (— (A-l.61) 
2L 

_1 ^ - H- cos 3 

2L 

a = tan" (— ) (A-l.62) 
s v 
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FIGURE 3.8 STRESS AND DEFORMATION PATTERN FOR THE 

DRAWING OF REGULAR POLYGONAL TUBE FROM 

ROUND THROUGH A CYLINDRICAL DIE 
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FIGURE 3.8 STRESS AND THE DEFORMATION PATTERN FOR THE 

DRAWING OF REGULAR POLYGONAL TUBE FROM ROUT® 

THROUGH A CYLINDRICAL DIE 
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V d e 

2tam (A-l.eO) 
e 

where d0 = /{H2(SPAR)|} ( 3 . 9 4 ) 

N 
and SPAR = ccsSsinB 

4 

(ii) Parameters for the elliptical plane surface 

% c o s a
c 

a = 
2 sin(oc +ot ) 

c sy 

b = r s l n ( a ^ ) ^ c c s 2 ^ " 0 0 6 ̂  C 3 ' 9 6 ) 
c s 

ccsot 

c 

(iii) At any section Z, 

b /(2aZccsas-Z2) 

cosa 
s 

(3.95) 

6 = H ^ T (3.97) 

R = R^ - Ztam (3.98) 

r = rb - Ztamc (3.99) 

rs= r cos*s (3.100) 

, /2aZccsa -Z2 

sinAs = ~~ = r (3.101) 
cosot (r.-Ztana ) 

s b c 

6 « Ac + Ag (3.102) 
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The cross-sectional area of the tube at any section Z in the 

deformation zone is given by 

A = *R23 - ( h r j + ir2Xc> 

- *RV(Kr h -ZtamJ 2 (cosA sinA +A )} (3.103) 
U O b O C 

For a small element dZ at Z, 

dZ 
flat surface area dA , = y ——— (3.104) 

si cosa ' 
s 

rX dZ 

oonical surface area dAcl = — (3.105) 

c 

tube-die surface area dAc2 = RB C Q s a (3.106) 

sin 2 X c ; 
oA = r{ ( cosX s s inX s +X c ) tana c + 

cosa s cosX s 

. r(acosa -Z) 9 

- - { rr-r—+ (2aZccsa -Z")tam }} (3.107) 
a r (2aZcos^s-Z)" s 

-(X +X )Rtana 
o S 

Hie forces are resolved in the Z direction and for equilibrium 

of the element, £FZ = 0. 

(az+daz)(A+dA) - czdA - PjdA^sim 

+P2(dAslsims+dAclsirtxc) - W^^cc&L 

-M2P2(dAslcosas+dAclcosccc) = 0 (3.108) 

which on rearranging becomes 
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daz(A+dA) = - o^dA + p^dA^sirtt 

-p2(dAslsinpts+dAclsinac) + p ^ d A ^ c o s a 

+ p 2 y 2 ( d A s l c o s a s + d A c l c o s a c ) (3 .109) 

Equation (3.109) is siirplified by making the following 

assumptions:-

( i ) a mean pressure pm acts at both the die-tube and plug-

tube interfaces, 

( i i ) a mean coefficient of friction u acts at both the 
m 

die-tube and plug tube interfaces, 

( i i i ) the horizcntal stress a^ and the mean normal pressure 

Pm are principal stresses 

(iv) a mean yield stress Ym applies. 

Applying Tresca's yield criterion, 

a 7 ~ ( " P j = Y
m L m m 

or o = Y - a„ (3 .110) 
* m m Z 

Equation (3.109) after simplifying beccmes 

d § } = d s { - ( r 5 dA*<1-<T>> ^ c c s a + s i ^ d A ^ 
m m m 

+(Mmcosa s-sinoi s )dA s l+(ymcosa c-sina c )dA c l}} ( 3 . 1 1 1 ) 

A computer programme is developed to solve equation (3.111) 

numericallv. 
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3.8 COMPUTER P ROCRAMME 

The four sub-programmes consist of:-

( i ) the development of the deformation pattern and hence 

the velocity field, 

( i i ) the upper bound solution for the polygonal tube 

drawing , 

( i ii ) the lower bound solution for the polygonal tube 

drawing , and 

(iv) the upper and lower bound solutions for the 

corresponding axisyrrmetric drawing of tube cn a 

conical or cylindrical plug. 

In each of the sub-progranmes are the following 

four main components of the flow chart: 

( i ) the input statement, 

(ii) three major Do loops, 

(iii) the main programme , and 

(iv) print out statements. 

The input statement consists mainly of the incoming 

and outgoing tube dimensions and the stress-strain properties 

of the material. The three major Do loops generate the 

nurrber of sides of the bore of drawn section, the die semi-angle 
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and the coefficient of friction. 

The main parts of the upper bound solution 

are: -

( i ) conformally mapping triangular elements in the inlet 

plane to corresponding triangular elements in the exit 

plane, 

( i i ) calculation of the flow path parameters for each 

element, 

( iii ) optimization of the entry and exit shear surfaces , 

(iv) calculation of the mean equivalent strain, 

(v) calculation of strain factors and I 2 , 

(vi) calculation of the mean draw stress and the die 

pressure , 

(vii) tabulation of the mean draw stress and the mean die 

pressure. 

The equations for the upper and lower bound solution for 

axisyrrmetric drawing are reproduced in appendix A-5. The 

complete programmes a r e presented in appendix A-3. 

Sample solutions for the upper and lower bound solution are 

tabulated in appendix A-4. 

Sampled graphical output of the mapped entry and exit 

tabular sections are shown in Figures 3.9, 3.10 and 3.11 

where the points plotted are the centroids of the large 

triangles at the entry and exit. The flow charts for the 
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10 Yb (mmJ 

^a) entry plane 

(mm) 

b) exit plane 

JRE 3.9 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF THE 

SQUARE TUBE FOR THE REDUCTION IN AREA OF 9% 
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FIGURE 3 .10 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF THE 

S^ARE TUBE FOR THE REDUCTION IN AREA OF 25% 



(a) entry plane 
10 Yb (mm) 

(b) exit plane 
5 10 VQ(mm) 

FIGURE 3.11 DEFORMATION PATTERN OF THE SYMMETRIC SECTION OF TEE 

HEXAGCNAL TUBE FOR THE REDUCTION IN AREA OF 15% 
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FLOW CHART FDR THE UPPER BOUND SOLUTION 

FOR POLYGONAL DRAWING 

CALCULATE SECTION PARAMETERS 

i .e . Aa, Ab, Ar, Re , Ha, 
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USE SINGLE SYMMETRIC SECTION FOR 

THE CALCULATIONS THAT FOLLOW. 

BAND INLET WITH M-l EQUAL SECTORS 

AND MAP OUTLET WITH N-2 HYPERBOLIC 

CURVES, M=10 AND N=10 

DEFINE VARIOUS KNOWN PARAMETERS AT 

ORIGIN e.q. t^ l± , A^, Er 

GENERATE N-2 HYPERBOLIC CURVES AT EXIT 

CORRESPONDING TO CIRCULAR CURVES AT ENTRY 

CALCULATE GEOMETRICAL PARAMETERS e.£ 

l v x. , y v A E r , As, ^ 

CALCULATE CO-ORDINATES OF TRIANGLES AT 

INLET AND CORRESPONDING CENTROEDS 
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i 
PRINT RESULTS FOR THE ENTRY PLANE i.e. 

V V ^ W *bcs' Ybcs ^ Er 

TO MAP CORRESPONDING TRIANGLES AT EXIT 

PLANE, BEGIN WITH TWO KNOWN 

CO-ORDINATES. BEGIN WITH LARGE TRIANGLES 

CALCULATE THIRD CO-ORDINATE FROM KNOWN 

AREA OF TRIANGLE AND EQUATION OF CURVE 

i.e. A CIRCLE 

CALCULATE THIRD CO-ORDINATE BY 

SUBSTITUTING X AND SOLVING FOR Y 

CALCULATE THIRD CO-ORDINATE FROM KNOWN 

AREA OF TRIANGLE AND EQUATION OF CURVE 

i.e. HYPERBOLA 
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0 — 

MAP SMALL TRIANGLES AT EXIT BY BEGINNING WITH 

TWO KNCWN CO-ORDINATES, AREA AND EQUATION OF 

CURVE i.e. HYPERBOLA 

CALCULATE THE CENTROIDS OF THE LARGE AND 

SMALL TRIANGLES AT EXIT 

PRINT RESULTS FOR TIE EXIT PLANE i.e. 

X , Y , X , Y i X _ i X 
a a acs acs acl acl 

CALCULATE PERCENTAGE ERROR IN AREA 

OBTAINED FROM MAPPING AND ACTUAL VALUE A 

PRINT THE RESULT 

CALCULATE RADIAL DISTANCE OF PARTICLES Ra> R^ 

DEFLECTICN ANGLES n» <P AND LENGTH OF 

FLOW PATH Z FOR ALL (i, j) 

OPTIMIZE THE SHEAR SURFACES i .e . 

MINIMIZE R(s) FOR 0<t<+l 

CALCULATE INTERNAL POWER OF DEFORMATION 

FACTOR f(s) FOR OPTIMAL VALUE OF t 



TABULATE THE RESULTS 
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FLOH CHART FOR THE LOWER BOUND SOLUTION FOR 

POLYGONAL DRAWING 
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i 
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G 

PRINT ENDING REMARK 
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FLON CHART FOR THE UPPER BOUND SOLUTION FOR 

AXISYMMETRIC DRAWING 
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FLOW CHART FOR THE LOWER BOUND SOLUTION FOR 

AXISYMMETRIC DRAWING 

( STCP ) 
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4 RESULTS AND DISCUSSION 

4 . 1 INTRODUCTION 

The theoretical account deals with the effect of 

the following parameters on the drawing process; namely, 

the draw force, the mean coefficient of friction, the die 

semi-angle, the equivalent semi-angle of the plug as well 

as the limitation of the achievable reduction of area. 

In both the upper and lower bound solutions, the influence 

of the forementioned drawing parameters in the design of 

the draw tools i . e . the die and the polygonal plug are 

presented. The results of axisymmetric drawing are 

presented for the purpose of comparing the mode of 

analysis . 

4 . 2 THE LOWER BOUND SOLUTION 

The lower bound analysis was based on the 

equilibrium of forces of an elemental slug of the material 

undergoing plastic deformation leading to a differential 

equation (3.111) on page (61) . The method neglects the 

increase in the drawing stress produced by the onset of 

the redundant shearing and as a result it underestimates 

the magnitude of the draw forces especially at large die 

angles where the redundant work is at its greatest (for 

a fixed plug) . The draw load obtained by the integration 
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of the basic d i f ferential equation (3 .111) can be shown, 

for the case of Ng = ® to comprise approximately of a 

constant term and a second term which incorporates the mean 

coefficient of friction and the die semi-angle (7) . The 

former term represents the homogeneous component which is 

virtually a constant for a given reduction of area. The 

later term represents the frictional component and decreases 

with die semi-angle ( i . e . shorter contact lengths) , for a 

given input-output tubing. 

Although the lower bound analysis oversimplifies 

the mechanics of the process by ignoring the effect of the 

pattern of flow, the analysis involved is usually straight-

forward and forms an important conjugate in the upper bound 

analysis. 

Figures 4 . 1 to 4 .5 show the effect of different 

parameters on the draw force for the axisymmetric tube 

drawing. 

Figures (4 .3) and (4 .4 ) show that for a particular 

reduction, the total draw stress decreases as the die semi-

angle increases. The explanation for this is that increasir 

the die angle implies decreasing the die length and hence 

surface area of tool-workpiece contact. This results in 

lower friction work. The homogenous work remains constant 
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Die semi-angle (a ) 

FIGURE 4 .3 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE 

AND REDUCTION OF AREA FOR THE LCWER BOUND SOLUTION 

FOR AXISYMETRIC DRAWING 

FIGURE 4.4 VARIATION OF THE MEAN DRAW STRESS -WITH THE DIE SEMI-ANGLE 

AND REDUCTION OF AREA FOR THE LOWER BOUND SOLUTION FOR 

AXISYMMETRIC DRAWING 
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Reduction of area (rao) 

XJRE 4.5 VARIATION OF THE MEAN DRAW STRESS WITH REDUCTION OF AREA 

AND COEFFICIENT OF FRICTION FOR THE LCWER BOUND SOLUTION 
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for a particular reduction of area. 

It is also seen that as the reduction increases 

from 20% to 40% for a particular die semi-angle, the tot 

draw stress increases. The result is expected since 

increasing the reduction implies increasing the area rat 

and from the equation of homogenous work (W • Yfcn 

there is a corresponding increase in the homogenous work 

component. 

Another feature that is observed from the graphs 

that when the die semi-angle is small (about 4°) , the cu 

are very steep but when the die semi-angle is large (abc 

2 0 ° ) , the curves are almost horizontal. The explanation 

that at very low die semi-angles, the die length is larg 

implying a large frictional work component as the main 

contribution to the total draw stress. For large die se 

angles , the die length is small and the main contributio 

of the total draw stress is the homogenous component whi 

is independent of the die angle. 

Figure (4 .5) shows that for a particular coeffic 

of friction , the total draw stress increases almost line 

with reduction. The explanation is that increasing redu 

implies increasing the homogenous work component. Furth 

for a particular coefficient of friction, e .g . u « 0, th. 

jUNAL, iUBfc DRAWING 
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curve crosses the abscissa at a reduction of about 16.5%. 

This is the minimum possible reduction for the given set o] 

draw parameters. A smaller reduction implies a smaller an 

ratio which would occur if the plug semi-angle is less thar 

0° which is inadmissible. 

It is further observed that as the coefficient of 

friction increases from 0 . 0 to 0 . 1 for a particular reducti 

the total draw stress increases since the frictional work i 

directly proportional to the coefficient of friction . 

In the case of polygonal drawing, figures (4.6) and 

( 4 . 7 ) show that for any coefficient of friction not equal t 

zero, the total draw stress decreases as the die semi-angle 

increases. This result is expected since as the die semi-

angle increases the frictional work component decreases whi 

the homogenous work component remains constant for constant 

reduction of area. When u = 0, the frictional work 

component is zero and the graph is a straight horizontal 

line representing the homogenous work component. 

Figure ( 4 . 8 ) shows that for any particular die , the 

total draw stress increases with reduction since the 

homogenous work component increases with reduction. 

Figures ( 4 . 9 ) , (4 .10) and (4 .11) show the variation 

of the total draw stress with the number of sides of drawn 
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section for a given tube using the concept of close { 

drawing. For a given input tube and drawing d ie , and 

constant coefficient of friction , the draw stress dec 

s l ightly with the number of sides. Although the surfc 

increases with consequential increase in the frictior 

component, there is a decrease in the homogeneous wor 

component because of the decrease in reduction of are 

4 . 3 THE UPPER BOUND SOLUTION 

The upper bound solution was obtained from a 

velocity field that minimizes the energy to effect th 

deformation and incorporates an apparent strain metho< 

include Coulomb fr ict ion . The velocity pattern was 

developed by conformal mapping of triangular elements 

entry plane to the positions at the exit plane. The 

solution therefore accounts for the mode of deformatic 

Figure (4 .12) shows that for a given die semj 

angle and coefficient of friction, the total draw stre 

increases with the reduction of area for the case of o 

symmetric drawing. Figures (4 .13) and (4 .14) show the 

variation of the total draw stress with the die semi-a 

for axisymmetric drawing. 

Figure (4 .16) shows the variation of the draw 

ratio against the die semi-angle in the upper bound so 

for drawing a square tube directly from round. At ver 

die angles the draw stress ratio tends to in f in ity . T 



88 

O 4 8 12 16 20 

Die semi-angle (ot°) 

FIGURE 4.13 VARIATION CF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE 

AND REDUCTION OF AREA FOR THE UPPER BOUND SOLUTION 

FOR AXISYMMETRIC DRAWING 

1. 2t 

u 
•M 
M 

-a 
r-t 
0) 

I 
•M 
CO 

ci 

J 

o.a 

Tube diarreter 
Product c 
Thickness 

iameter 

= 28 
= 25 

= 9. 

= 0 . 

. 6 17171 

.4 rrm 

?25 mm 

)6 

0.4 

23% 

21% 

m 

0 4 "§ 12 ~ 1 6 20 

Die semi-angle (a ) 

FIGURE 4.14 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-BANGLE 

AND REDUCTION OF AREA IN THE UPPER BOUND SOLUTION 

FOR AXISYMMETRIC DRAWING 



89 

Tube outer diameter = 28.6nm 
Die size = 25. 4mn 
Thickness = 9.525m 

06 

4.15 THREE DIMENSIONAL PLOT OF THE VARIATION. OF THE MEAN 
DRAW STRESS WITH THE DIE SEMI-ANGLE AND THE EQUIVALENT 
PLUG SEMI-ANGLE FOR THE LOVER BOUND SOLUTION FOR 
POLYGONAL TUBE DRAWING 

Tube 
Die 
Thi 
r 
N 

outer diameter 
size 

dkness 

31.75 mm 
25.4 rim 
9.525 rrm 
35.9% 
4 

10 
Die semi-angle (oc) 

15 20 

[GURE 4.16 VARIATION OF THE MEAN DRAW STRESS WITH DIE SEMI-ANGLE 
AND COEFFICIENT OF FRICTION FOR THE UPPER BOUND 
SOLUTION FOR POLYGONAL TUBE DRAWING 



90 

expected because for very low die angles, the die must be 

very long to achieve a certain reduction for a given 

coefficient of fr ict ion . A large die length implies a 

large surface area of tool-workpiece contact and hence a 

large component of frictional work. As the die angle 

increases for a given coefficient of friction the draw stre 

decreases to a certain die angle where the combined effect 

of friction work and redundant work is a minimum. At highe 

die angles, the e f fect of redundant work is much greater 

than that of the friction work and the draw stress increase 

It is therefore possible to predict the optimum die angle 

for the given set of drawing parameters that gives the leas 

work of deformation. 

Figures ( 4 . 17 ) and (4 .18) show a comparison of the 

upper and lower bound solution for drawing a square tube. 

In the case of square drawing, the particles of the tube 

undergo severe distortion as they pass through the deformat 

passage. Therefore, the upper bound analysis which account 

for the redundant work required to deform these particles a 

the entry and exit to the deformation zone shows very high 

values (see ref. (5) for the case of polygonal tube drawi 

using a cylindrical plug) . 

Figures ( 4 . 1 9 ) and (4.20) shows the values of the 

upper and lower bound solution for the hexagon and octagon 
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FIGURE 4.18 VARIATION OF THE MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE 
AMD COEFFICIENT OF FRICTION FOR THE UPPER AND LOWER 
BOUND SOLUTIONS FOR POLYGONAL TUBE DRAWING 
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sections drawn for the same input tube. In each of the 

graphs, the upper bound values are higher than the lower 

bound values for y<0.04 for all values of the die angle a. 

However, for p>0.4 , the upper bound values are only higher 

than the lower bound values for large and low die angles. 

At low die angles, the friction contribution is higher 

because of the increased contact surface area and hence the 

values of the two solutions almost agree since the redundant 

work would be low for low reductions. In the case of large 

die angles, the redundant work predominates and the upper 

bound solution takes it into account. 

At the intermediate die angles, the effects of 

friction and redundant work on the draw load are comparable. 

The upper bound analysis assumes an equivalent plug-tube 

interface which in effect reduces the surface area on which 

the friction acts. The term is therefore lower. In the case 

of the lower bound analysis, the frictional term is evaluated 

numerically on the geometrical surface of the plug. This 

may give rise to a frictional term which is lower than that 

of lower bound analysis and hence lower bound values which 

are higher than the upper bound values. The foregoing 

explanation holds for figure 4 .20 which is drawn for a 

different input-output tubing. 
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Figure 4 . 2 1 shows the variation of the draw stress 

against the number of sides of the drawn section from the 

same input tube. The lower bound curve shows that as the 

number of sides of drawn section increases the draw stress 

increases slightly due to the increase in reduction of area. 

However, in the case of the upper bound values which are 

higher than the lower bound values, the load decreases with 

increased number of sides though the homogeneous work 

increases. This is due to the reduced distortion the element 

undergo with increased number of sides. 

The variation of the draw stress with the semi-

angle (a) of the conical die and the plug shape described 

by the equivalent plug semi-angle (a e ) is shown in Figures 

( 4 . 1 5 ) and ( 4 . 2 3 ) . The graphs enable the capacity of the 

draw bench to be estimated to produce a given input-output 

tubing, the selection of the optimum draw tools and lubricant 

which give the least work of deformation. 

i i u i u 1 v h ruuiva-i 'ni j ivjulmj iyivnni-ivj 
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FIGURE 4.21 

Upper bound solut 
Lcwer bound solut 

26.99 
25.4 
9.525 

O.Q4 
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9 . 0 , 1 0 . 9 

and 11 .64 

8 
Nunber of sides of drawn section (N ) 3 

VARIATION OF THE MEAN DRAW STRESS WITH NUMBER OF SIDES 

OF DRAWN SECTION FOR THE UPPER AND LOWER BOUND SOLUTIONS 

FOR POLYGONAL TUBE DRAWING 

Die semi-angle (a ) 

FIGURE 4.22 VARIATION OF THE MEAN DRAW STRESS WITH DIE ^ ^ ^ 

AND COEFFICIENT OF FRICTION FOR THE UPPER AND LOWER BCUMD 

SOLUTIONS FOR POLYGONAL TUBE DRAWING 
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Tube outer diametei*=31.75fnn 
Die s i ze =25.4rrm 
Thickness =9.525mn 

FIGURE 4.23 THREE DIMENSIONAL PLOT OF THE VARIATION* OF THE 

MEAN DRAW STRESS WITH THE DIE SEMI-ANGLE AND 

THE EQUIVALENT PLUG SEMI-ANGLE FOR THE UPPER 

AND LOWER BOUND SOLUTIONS FOR POLYGONAL TUBE 

DRAWING 
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5 . 4 LIMITATION OF ACHIEVABLE REDUCTION OF AREA 

The expressions for the cross-sectional area of the 

tube material at entry and exit are:-

A b = ^ b " ( 5 . 1 ) 

Aa = -D2 - H2 (SPAR), respectively, ( 5 . 2 ) 
4 a a 

Where SPAR is a shape parameter equal to 

cos|3sin8 (N s) 

Therefore the reduction is given by: 

I D 2 - H 2 ( S P A R ) 

r = 1 - i — - ( 5 . 4 ) 

- 1 1 

For close pass drawing, Ha = db and the reduction of area 

is given by 

I D 2 - d?(SPAR) 
r = 1 * b } ( 5 . 5 ) 

* t 2 a > - 1 ) 
b t b 

In practice , H a<d b to allow for sinking . 

i 

The maximum reduction of area possible occurs when 

Ha = db = Da and tb = Db - Da and is given by: 

4D2(tt/4 - SPAR) x 
r = 1 - ^ a 1 

M D * - D2) 
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5 CONCLUSIONS 

An extensive investigation of the mechanics of 

drawing polygonal tube from round stock through a 

cylindrical die and a polygonal plug has been accomplished 

theoretically to enable the following conclusions to be 

drawn. 

1. In general for any given set of draw parameters, the 

derived upper bound solution predicts a higher value 

of draw stress due to the account taken for redundant 

work whilst the simpler lower bound solution under-

estimates the draw stress as it neglects the redundant 

effect . 

2. Unlike the axisymmetric tube drawing problem, the shape 

of the die deforming passage forms an integral part of 

the analysis of drawing polygonal tube directly from 

round stock through a cylindrical die. 

3. The predicted loads in the drawing of a square section 

proved to be the severest of all polygonal sections 

implying that it may be very diff icult to draw the 

section (Figures 4 . 16 , 4.17 and 4 . 1 8 ) . This is 

because the material suffers the greatest lateral 

displacement as the bore of the workpiece transforms 
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from round to square with the external surface 

remaining circular for a particular reduction of area. 

4. The upper bound solution predicts the optimum die semi-

angle a and the corresponding plug semi-angle a e . The 

predicted values form a useful guide in the design of 

draw tools that would dissipate the least amount of 

energy. 

5. The developed theory and accompanying computer program 

form a useful guide when producing draw schedules and 

in the design of draw tools for any given set of draw 

parameters. 
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6 SUGGESTIONS FOR FURTHER WORK 

On the basis of the present study of mechanics of 

drawing regular polygonal tube directly from round stock 

through a cylindrical die and a polygonal plug, further work 

is suggested as follows:-

1. Experimental investigation of the process: 

Because of the unavailability of a draw bench, the 

experimentation was not part of the project study. It 

it suggested that experimental investigations be carried 

out using dies and plugs designed according to the 

proposed theory. The study would provide the actual data 

for the drawing process and hence the verification of the 

theoretical solutions. It is expected that the actual 

draw loads would lie between the upper and lower bound 

values. 

2. Irregular polygonal tube drawing: 

The derived theoretical solution was limited to regular 

polygonal sections. The solution could be extended to 

include irregular polygonal sections. 
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Other plug profiles: 

The theoretical solutions were confined to the drawing 

on plug made of elliptical plane/conical surfaces. The 

study could be extended to other profiles such as those 

shown in Figure 3.2. 

Equivalent plug semi-angle cĉ : 

In the present study, the theory was developed for 

a conical die with a semi-angle a and a plug with 

an equivalent semi-angle . The results however were 

obtained for close pass drawing where H^ = d^. It is 

suggested that adjustments be made for the case where 

H <<± by taking account of the prior sinking. 
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APPENDIX 

A-L UPPER BOUND SOLUTION 

A-L.L DETAILED DEFORMATION PATTERN 

The general equation of a hyperbola with respect 

to the x i , y i axis (Figure 3.3 on page 22) is 

2 2 
x. y. 

- i - 4 = i (A-i.i) 
a. b 

The equation with respect to the Xa> Y a x i s beccmes 

(X sin£+Y ccsZ-l. ) 2 (XQCOS5-Y s i n S ) 2 

— 2~ = 1 (A-l.2) 
a. b. 

The orientation of the X , Y axis is selected such that 
a a 

5 = 0(=0). 

The equation of the line inclined at 25 to the Y axis is 
a 

y. = -x.tan<f> + I. tan$ (A-l.3) J l l l 

and its intersection with the hyperbola i (equation A-l.l) is 

9 2 
x. (l.tanti - x.tan{>) 
4 - 1 1 = i 
o 2

 u 2 1 

a b 
i i 

which yields 



2 

1 , . 2 2 2. N 
(b.-a. tan $) 

i i 

(A-l.4) 

Equation (A-l.l) can be re-written in the form 

2 
2 , 2,, 2. a i 

X i = ( W ^ 

i 

2 
2 ai 

U r n . = y. -2 

i 
b.x. 

Therefore, y^ = ± * 1 is the equation of the asynptotes 

of the hyperbola i. 

Also from Figure A-l.l, the slope of the asynptotes with 

respect to the x^, y. axis is tan(Tr/2^>). 

The foregoing analysis yields 

b. = (A-l.5) 
I taitp 

Referring to equation (A-l.4) let (v,w) = ( x i , y i ) the point 

of intersection; then 

-Zitan 4 *±/U 2 tanV( 1-tan4* K a f t a n 4 * ) } 

v = x = t ^ 
1 1-tan<P ( B<I 

4 

and w = y = taixK-v+iL) ' (A-l.7) 



A3 



4 

or v = x. = 
1 

I. + a2 

_i i_ 

2Z. 
l 

for 

8 = — 

and w = y. = -x. + I. 
Ji l l 

Hie total area bounded by the hyperbola i, the 

straight line y^ = tanp O-x^H^), the die surface and the 

Y axis is found to be 
a 

a 2 a 2 a 2 

AT(i) = -2tan$ { + + Un{w+(w2 + )*}) 
T 2 tan 9 2tan $ tan $ 

a 2
 a . D 2 

" i a n 2 / " ^ } ^ 

2 
+ v tanp - JL (w+vtan0) 

a (see Figure 3.3) is the distance frcm the origin ( 0 , 0 ^ 

to the vertex of the hyperbola and is adjusted as the X^,Y^ 

axis translate along the straight line Xa = Yatan;, the line 

of symmetry. The value of ai is selected to suit the corners o 

the asymptotes drawn for every ljL e.g. a.L = 1 - ^ . 

The diagonal wall thickness is divided into N-2 elemental 

lengths. Let the elemental lengths be At2, At3> At4 

N-l 
At. , such that Z At. = t 

3-1 i = 2 1 a 
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D 
Then A. « ~ - £ At , (2<i<N-l) 

1 2 n=2 . 

Let At 2 = At3 = AtN_1 = At 

D H 
a a 

Then At = — 

1 

N-2 

Dr 

~2 
i± = - (i-l)At (A-l.9) 

Assuming a constant reduction in area, the inner 

radius u ( i ) (Figure A-l. 2) of the cross-sectional area at 

the entry plane corresponding to the area A^,(i) can be 

deteirnined. 

Let A = Area ratio 
r 

_ Area at entry 

Area at exit 

fb 

A 
a 

Then, -J § - mi2 ( ! ) ( § ) -

(A-l. 10) 

which simplifies to 

Db * 
u r ( i ) = { T ~ r Y i } > (A-l.II) 
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The area banded by the radii u r(i+l) and ur(i) 

(Figure A-1.2) tis divided into M-l equal sectors each 

subtending an angle dtt> . where j refers to the element 
j 

between the radial lines j and j+1. Let the inclination of 

the radial line j to the axis be # then ctt . = 4> - $ .. 
J J J J 

Let + d<$>2 + + c t t ^ = Zdfr = 2J> 

and d01 = ctf>2 = d s p ^ = dp , 

then dp = — (A-l. 12) 
M-l 

Frcm Figure (A-l.2), + . , 
6 J J-l J-l 

= + dt>2 + + ^ j - l 

= (j-l)<# 

= (j-l) — (A-l.13) 
M-l 

The elemental area enclosed by the radial lines and 

circular bands, say ABCD is divided into two triangles; a 

large triangle ADB and a small triangle DBC. Let the angle 

subtended at the centre . = dy and the radial increment 
J 

AD = <5R, where u (i ) = R. 

The approximate area of the large triangle ADB is 

AL - &R6R5Y (A-l.14) 



FIGURE A-1.2 (a) DIVIDING THE ENTRY PLANE INTO (N-2) 

BANDS X(M-l) SECTORS 

(b) EACH ELEMENTAL AREA IS FURTHER 

SUBDIVIDED INTO A LARGE AND 

SMALL TRIANGLE 
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and that of the small triangle DBC is 

As = £RcR5y - *6R26y (A-1.15) 

The difference between the two areas 

A . = At - A 
d L s 

= *6R26y (A-1.16) 

and the sum of the two areas 

Al + As = R6R6y - i<5R25y (=ABCD) (A-1.17) 

Therefore, 

Al = KABCD + Ad) (A-1.18) 

and As = *(ABCD - Ad) (A-1.19) 

Substituting for A^ and area ABCD, 

Al = J (u r(i){u r(i) - ur<i+l)}) (A-1.20) 

and As = i f^ ({(u r(i) - u r ( i + l » ur(i)}-{ur(i)-ur(i+l)}2) 

(A-1.21) 

Equations (A-1.20) and (A-1.21) are the expressions for the 

elemental areas of the large and small triangles. 

The co-ordinates of the vertices A, B, C and D are 

obtained as follows; 
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At A, j) = u (i ) sin<J> (A-1.22) 
J 

Y b ( i , j ) = u r ( i ) cos0^ 

At B, y i , j + l ) = u r ( i ) siat>.+1 (A-1.23) 

Y b ( i , j+1) = u r ( i ) cos0 j + 1 

At C, y i + l j + l ) = u .U+1 ) sir*J)j+1 (A-1.24) 

Y b (i+l fj+1) = u r(i+l) ccs$ j+1 

At D, X b ( i+l , j ) = u r(i+l) sin? . (A-1.25) 

Y b ( i+l , j ) = ur(i+l) cast. 

The centroids of the large and small triangles are located 

as follows:-

The centroid of the large triangle ABD 

x^cLCi, j) = cy i, j) + - y i + i , j) + y i. j+i ) ) /3 CA-I.26) 

YbCL(i, j) = (Y b ( i , j ) + Y b ( i+l , j ) + Y b ( i , j+l ) ) /3 

and the centroid of the small triangle DCB, 

^ C S d J ) = ( y i + l j ) + y i + l , j + l ) * y i , j + l ) ) / 3 (A-1.27) 

YbCS(i,j) = c y i + l , j ) + Yb(i+l,j+l) + Y b ( i , j+l ) ) /3 

Assuming the same constant reduction A^, each 

triangle at the entry plane is transformed into a corresponding 

triangle at the exit plane where 



AlO 

r 

and As = ^ (A-1.28) 

r 

Considering the Y axis and its intersection with the hyperbola 
a 

i and i+1, the vertices © and (2) (or (X ,Y ). .and 
a a 1, j 

( x
a » Y

a ) j + l j w h e r e J=l) of the large triangle are known. 

is known and the third vertex must lie on hyperbola i. 

To determine the third vertex, consider the triangle A' B' D' 

(Figure A-1.3a). Let the co-ordinates of the triangle be 

A , (X 1 , Y 1 ) , B ' (X 2 ,Y 2 ) and D' (X 3 ,Y 3 ) . Applying the trapezium 

rule, 

AL = i ( X l ( Y 3 - V + X 2 ( Y l " Y 3 ) + X 3 ( V Y 1 ) } ( A " 1 - 2 9 ) 

Vertex (I) lies on the intersection of the outer curve 

(a circle) and the Y axis (Figure A-1.3b). 
a 

Therefore, X (=X,) =0 
a 1 D (A-1.30) 

and Y (=Y,) = ± — 
a 1 2 

where the appropriate value of Y^ is the positive value. 

Vertex © lies on the intersection of the hyperbola i and 

the Y axis, 
a ' 

i .e . X (=X0) = 0 (A-1.31a) 
a ct 

Y (=Y9) is obtained frcm equations (A-1.2) and (A-1.3) as 
a ^ 



A l l 

(a) 

\ 

FIGURE A - 1 . 3 (a) APPLICATION OF TRAPEZIUM RULE 

(b) DETAILED LOCATION CF TAJBD VERTEX 
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v = 
ig 4 

cos£( 1-tan £) 

(A-1.31b) 

The appropriate value of Y9 is the smaller positive value. 

TWo vertices are new known and the third vertex lies 

on the outer curve corresponding to the die surface. The 

vertex is obtained fran the simultaneous solution of the 

equation of the curve and the area of the triangle. 

The equation of the curve is 

2 2 D a 2 

X 3 + Y 3 - ^ 

and equation (A-1.29) is re-written in the form 

(A-1.32) 

A L = * « W Y 1 X 2 ) + Y 3 ( X 2 " X 1 ) + W V > 

rearranging and dividing through by (Xg-X^) gives 

" ( W Y 1 X 2 ) 

Y 3 
X 2 " X 1 

Y -Y 
1 2 

(A-1.33) 

Let 2A£ - ( Y ^ - Y ^ ) 

V X 1 

(A-1.34) 

and V Y 2 

V X 1 

= K-, (A-1.35) 

Then Y
3
 = ~ (A-1.36) 
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Substituting for Y3 in equation (A-1.32), expanding and 

rearranging yields 

X = W ^ W 2 - ( l ^ X m ^ - C ^ ) 2 ) } (A-1.37) 

3 1+K2 

1 

The appropriate value of Xg is the larger positive value. 

Having determined vertex (3) (X^.Y^) of the large 

triangle, vertex (2) (X 2 ,Y 2 ) of the large triangle becomes 

vertex @ of ^ 3 n a 1 1 triangle and vertex (D 

(X3>Y3) of the large triangle becomes vertex (2) of the small 

triangle. 

Two vertices of the small triangle are known and the 

third one lies on the hyperbola i, i .e. 

(XgS in£ +Y3COS£ -I ± ) 2 (X^ccsC -YgS in£)2 

2 72 = 1 

a. b. 
i l 

(A-1.38) 

and Y3 = (m^ -K^X^) (A-1.39) 

2A' - (YJC,-Y 

where m' = —^ Z 1 1 - (A-1.40) 

X 2 " X 1 

Equations (A-1.39), (A-1.38) and (A-1.5) are solved 

simultaneously to yield X^ as 
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4 C3 + *3 C2  +  C1 " 4*3 -V2 "  dl "  ai "  0  

which on factorizing gives 

-(C2-d2)±/{(C2-d2)
2-4(C3^2)(C1-d1-af)} 

3 " 
2(C3-d3) 

where 

9 2 2-
C^ = sin C-^sin^+k^ccs * 

2 
C9 = rn^sin2^-2£isin^-a7i^k1coswC+2k1ilicosC 

C1 = m^2ccs2C-2m^ilicosC^i 

2 2 2 2 
d3 = tan 0 (cos C+kjSii^+kjSin £) 

2 2 
d2 = tan"J$(-HnJsin2£-2m^k^sin S) 

_ 9 2 
d i = m i £ 

The appropriate value of X^ is the smaller positive value, 

The centroids of the triangles at the exit plane 

can now be obtained. 

For the large triangle, 

X CL(i, j) = (X (i , j) + X ( i , j + 1 ) • X Ci+l.j)>/3 (A-1.42) 
a a a a 

Y a ( i , j ) = {Y ( i . j ) * Y (i,j+1) * Y (i+1,j)} /3 
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For the small triangle, 

X C S ( i J ) = (X a ( i+lJ ) + Xa(i+l,j+l) + X a ( i , jfl)>/3 (A-l. 

Y aCS(i , j ) = (Ya(i+l,j) + Y^Ci+l,j+1) + Y a ( i , j+l)} /3 

A-l.2 DERIVATION OF THE FL£W PATH PARAMETERS 

6 b ( i , j ) is the horizontal distance a particle travels 

after shearing at the assumed discontinuity boundary, .neasured 

relative to the entry plane (see Figures A-l.4 and A-l.5). 

<5a(i,j) is the horizontal distance the particle travels after 

shear at the assumed discontinuity boundary, measured relative 

to the exit plane. 

Therefore the total distance covered by the particle 

in the deforming zone is 

Z s ( i , j) = L + 5 b (i , j) - 5 a ( i , j) (Figures A-l.6 and A-l.7) 

(A-l.44) 

The length of the flow path Zt for each element and the 

relative angular diflections n and V as the element flews 

through the deformation zone are determined from geometry as 

follows; 

R u C U ) K 
Sin0(i, j) = or 6 ( i , j ) = sin ( — ) (A-1.45) 



ENTRY SHEAR 
S U R F A C E G E N E 

EXIT SHEAR 
SURFACE GENERATOR 

> 
M 
O 

FIGURE A-1.4 FLOY PAW OF AN E I M A R Y PARTICLE FOR TllLi DRAWING OF POL/ 

TUBE DIRECTLY IBOM ROUND 
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V SHEAR 
CE 

GENERATOR 

EXIT SHEAR 
SURFACE GENERATOR 

Cb)£XJT; PYRAMfDICAL 

FIGURE A-1.5 GENERAL PCSITICN OF SHEAR SURFACES AT THE ENTRY 

AND EXIT ID THE DEFORMATION ZONE 
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PYRAMIDR 
SURFACE 

SPHERICAL 
SURFACE (P 

YO( VIRTUAL APEX 
X| OF EQUIVALENT 

CONICAL PLUG) fa-

Zs(ij) 

I (=HD) 

FIGURE A-1.6 DIAGRAM TO ILLUSTRATE THE APPROXIMATE FLOW PATH 

OF AN ELEMENT IN THE DEFORMATION ZONE 
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FIGURE A-1.7 THE PYRAMIDICAL SURFACE AT THE EXIT TO 

THE DEFORMATION ZONE SHOWING THE 

DEFINITION OF <S ,. . N 
a(i,J) 
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where p^ is derived frcm gecmetry as 

La 

Pb = — 2 (A-l .46) 

( ^ o o w 

<$b(i,j) = Pb{cos9(i,j) - ccsa} (A-l.47) 

X j i j ) + Y 2 ( i , j ) = R^(i,j) 

where X ^ i , j) and Y ^ d . j ) are defined by equation (A-l.22) 

on page 

Therefore R b ( i , j ) = AX^U.j) + Y2(i, j)} (A-l.48) 

Similarly R ( i , j ) = /{xf(i ,j ) + Y f ( i J ) } (A-l.49) 

a. a a 

Considering the geometry of Figures A-l.5 and A-l.6, 

6 ( i | j ) = 6 { — - 1} (A-l.50) 
a a 2Ra(i,j)Cos4)A(i,j) 

i X ( i, j ) 
where tan"1 {— •} > for * <6 

Y (i , j) 
• A U . J ) - A (A"1-51) 

-1 X a ( i J ) 

20-tan {-= } , for <J>A>0 

Y a ( i J ) 

Considering Figure A-l.3a, 

Z t ( i J ) = ( C y i J ) - X a ( i , j ) } Z + { Y b ( i , j ) - Y a ( i , j ) } ^ ( i , j ) ) 

(A-l.52) 
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A (yaxi , j ) fXb(ij)-Xa(i,j) 

FIGURE A-l.8 (a) DETAILED DERIVATION OF Z^ti, j) 

(b) PLANE THROUGH THE ELEMENT (i , j) 

WHERE IT CEASES TO DEFORM 
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Considering Figure A-l. 8b, 

X (i , j) -l / V i , J \ /A-l 53) 

a 

X
b ( i . J ) -1 r

X b ( i , J \ (A-l.54) 

^ B ^ " j ) = Y ^ I j I ° r * B ( 1 ' J ) = t a n Yj|(iJ) 

Ra(i,j)Sin4>B/A(i>j) 

tann( i, j) = 
Z p ( i . j ) 

R a ( i . j )Sln» B / A ( i . j ) (A-l.56) 

or n(i.j) = tan { —~ 
Z ( i . j ) 

where 

2 2 J 

z D(ij) = (CB b ( i . j)-a k ( i . J )<»B /A ( 1 ' J ) } + Z s ( i ' j ) ) ( A " 1 ' 5 7 ) 

Rb( i, J )-R^iiJ)Cosl>B/A(i»J) 

tanG = 
Z 
s 

Bh(l,3)-lt.(i.J)0«*B/A ( 1 ' J )
1 (A-l. 58) 

or 0 = tan { ^ 

j) = |ec±.J> " ®(i.J>l 
(A-l.59) 
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A-1.3 EQUIVALENT PLUG SE? II-ANGLE AND CROSS-SECT ICNAL 

AREA OF TUBE MATERIAL 

In the drawing of polygonal tube from round through 

cylindrical die on a polygonal plug, a circular section at 

entry transforms into a polygonal section at the exit in a 

single pass. The die-plug passage consists of conical and 

plane surfaces of different inclinations to the tube axis to 

allow for gradual deformation (Figure A-1.9). The 

conventional plug conical semi-angle is not applicable since 

the plug angle changes from a minimum at the diagonals to a 

maximum at the mid-section of the plug. It is therefore 

necessary to define an equivalent plug semi-angle 'a ̂  to 

facilitate comparison between plugs used for drawing tubes 

with the same number of sides and with different number of 

sides. 

From the equivalent axisynmstric drawing, 

Figure A-1.10, 

d. •-d d.-d 
tana = or L = ——— (A-1.00) 

e ^ 2tanae 

The inclinations of the conical and plane surfaces of the 

polygonal tube drawing plug become; 
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I 

FIGURE A-1.9 SKETCH SHOWING THE DRAWING OF REGULAR 

POLYGONAL TUBE FRCM ROUND THRGjGH A 

CYLINDRICAL DIE 



(A)SQUARE TUBF. DRAWING , 
PLUG / 

\ f 

// / / / < 

/ \ 

(b)AXISVMMETRIC TUBE 
DRAWING PLUG 

FIGURE A-l.IO SKETCH SHOWING THE SQUARE AND THE 

CORRESPONDING AXISYMMFTRIC TUBE 

DRAWING PLUG 
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"b 
H 

2 ? l ^h ~ ^ 
tan* = — or a = tan {— — } (A-1.S1) 

L c 2L 

^b _ Ha co60 

. 2 2 _ -lrcL-H cos8, /A , 
tanpc = ot = tan { o a } (A-1.62) 

s T s 
L 2L 

The cross-sectional area of the tube material at 

any radius p (Figure A-l.lla) is given by 

Ap= 7r(R2-r2) (A-1.63) 

where 

R = psinct (A-1.64) 

and r Is obtained from the expression 

r.-r 
tana = 

e (pb-p)ccsa 

as r = - (pb-p)cosatanae (A-1.65) 

Substituting for r and R into equation (A-1.63) and 

factorizing, 

j* 2 
A = Tr3in23(p2-{~r—-- + (p-PK)cotatam } ) (A-1.66) 

p sine d " 



FIGURE A-l.ll (a) DETAILED DIAGRAM SHOWING THE CROSS-

SECTIONAL AREA OF THE TUBE MATERIAL 

AT ANY RADIUS p 

(b) SPECIAL CASE OF POLYGONAL TUBE DRAWING 

WHERE THE DIE AND EQUIVALENT PLUG SURFACES 

CONVERGE TO ONE VIRTUAL APEX 
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Equation (A-l.66) can be re-written as 

A = C ^ P ^ C g + p ' ) 2 ) (A-l.67) 

(A-l. 68) 

sina 
(A-l.69) 

and p' = (p-p, ) comanw 
e 

(A-l.70) 

Considering a case where the nurrtoer of sides of the 

polygonal tube drawing plug tend to infinity (i.e. the 

equivalent diameter of the plug is approximately equal to H ), 
a 

the solution reduces to that of axisyrrmetric tube drawing on a 

conical plug. Assuming a further condition that tends to 

zero, the solution reduces to axisymnetric tube drawing on a 

cylindrical plug. Equation (A-l.66) becomes 

2 
area = Tr(psina) - Ap (A-l.71) 

Considering the case when the plug radius tends to 

zero, then A = 0 and the solution reduces to axisyrrmetric 
P 

wire (or bar) drawing. Equation (A-l.66) becomes 

2 

area = Tr(psina) (A-l. 72) 

When p = p. (equation A-l.66), the cross-sectional area of 
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the tube material at entry is obtained as 

2 0 

\ = Tr{(pbsiflcO - r£} 

This expression can be re-written in the form 

, _ 2r r (A-1.73) 

~ PbCl " 3 

_ 2 (A-1.74) 
where C3 = Trrfa

 v 

and C, is equation (A-1.38). 

A-1.4 DERIVATION OF VELOCITY DISCONTINUITY SUFFERED BY AN 

ELEMENT ENTERING THE DEFORMATION ZONE (Figures 

A-1.12 and A-1.13) 

Referring to Figure A-1.13a, 

(A-1.75) 
^rsl = -%sint9^cos(e-t9)+upsin(6-t9) 

Referring to Figure A-1.13b, 

u is the corponent of velocity nonral to the p-8 plane and 

$ 

, .2-2 * (A-1.76) 
urb = rsl 

2, i 
= {u^C-i^sintS+UgCOsCe-tfi )nipsin(9-t9)) > 

The resultant velocity (of the tangential carponents) on b o * 

sides of the shear surface gives the velocity discontinuity. 
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SHEAR SURFACE 
\GENERATOR 

0 (VIRTUAL APEX 
OF CONICAL DIE) 

\GENERAL SPHERICAL 
SURFACE GENERATOR 



FIGURE A-1.13 (a) RESULTANT VELOCITY DISCONTINUITY TANGENTIAL 

TO THE SHEAR SURFACE IN THE p - & PLANE 

(b) RESULTANT VELOCITY TANGENTIAL TO THE 

SHEAR SURFACE i .e . VELOCITY DISCONTINUITY 

SUFFERED BY AN ELEMENT ON ENTERING THE 

DEFORMATION ZCNE 
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From Figures A-1.12 and A-l. 13, the entry shear surface yields 

u r b = Cu2+{-ubsint9+u9cos(l-t)9^psin(l-t)e}2)i (A-l.77) 

From equations C3.6) to (3 .8 ) , the values of the velocity 

components are substituted in the above equation to yield, 

a = a ((ccstetann 2 + 

rb o cos(l-t)9tanf 

+ ccst9tan(l-t)6}2)i (A-l.78) 

Any particle with initial velocity u^ before deformation, 

travels through the deformation zone with a velocity LI=U(U2,Uq ). 

At the exit boundary, the velocity of a particle just before shear 

is u=d(up ,UQ^). After shear, the particle travels parallel to 

the tube axis with a velocity il . Assuming an equivalent 
a 

divergent deformation passage, 

p» 2 
u = u w C—) (A-l.79) 

ra rb D " 
^a 

where p" 2 is equation (3 .4) and P"2 is obtained from 
b a 

equation C3.5). 
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2 LOWER BOUND SOLUTION 

2 . 1 LOWER BOUND NUMERICAL INTERORATION 

c z ^ i l z. IS THE POSITION 

! OF SURFACE j(=i) 

z r A ° z 1 

2
= A

1 
>AA j I 

A. IS THE CROSS-
SECTIONAL AREA 
j 0 N jN) 

FIGURE A-2.I ROUND TUBE DRAWN THROUCE A CYLINDRICAL DIE ON A 

POLYGONAL PLUG DIVIDED INTO ELEMENTS FOR THE 

LOWER BOUND SOLUTION 
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A-2.1.1 GEOMETRICAL DERIVATIONS 

Referring to Figure A-2.1, the die length is divided 

into (NL-1) elemental lengths such that 

NL-1 

£ AZ.=L 
i = 1 i (A-2.1) 

Using Figure A-2.1 and the geometrical relationships derived 

in section (3.7), and starting frcm the inlet plane where 

= O, the following calculations are done:-

(a) At any section Zi> calculate R(i), r(i ) , 

and A^. From Figure A-2.1, the following relationship 

is developed:-

A. = A, + i AA._ (A-2.2) 
i 1 j . 2 J-l 

i 
and Z. = Z. + Z AZ . . (A-2.3) 

1 1 j=2 3 

(b) Considering the tube element i, between the surfaces i 

and i+1, the die-tube surface area dAc9 and the plug-tube 

surface areas dA , and dA , are calculated. The change 
si el 

in cross-sectional area over the element i, AAi is also 

determined. 

A-2.1.2 DEVELOPMENT OF THE RECURSIVE EQUATIONS TO EVALUATE 

THE DRAW STRESS AND THE MEAN PRESSURE 

Starting frcm the inlet plane surface i = 1, and 

assuming no backpull (a =0), the stress on the surface i=2 
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can be determined from the equilibrium equation (3.11). The 

calculated value of is used to determine a ^ , etc. 

From Figure A-2.1, a .=a , + L Aa . , (A-2.4) 
' zi zl j=2 zj-1 v 

The equilibrium equation (3.111) applied to the element i can 

be conveniently re-written as 

A( I { - (!zi) AA. + (1 -{-£}) 
Y A.+AA. Y 1 Y 

l l 

( K c 2 M c 2 ( i ) + K s i a A s l ( i ) + K c l A A c l ( i ) ) } ( A " 2 ' 5 ) 

vhere 

K = (\i cosa -sim ) = constant 1 (A-2.6) 
si m s s 

K = (p cosa -sim ) = constant 2 (A-2.7) 
cl m c c 

K ~ = (u cosot+sim) = constant 3 (A-2.8) 
c2 m 

Example: 

Starting at Z± = l = 0 where the conditions of stress are 

known f z l = 0 ) , the change of stress over element i=l 
Y 

can be determined; 
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A ( ! f i ) = { ' ( 0 ) A A i + ( 1 - ( 0 ) ) 

^ s ^ + K cl A A cl ( 1 ) + K C2 A A C2 ( 1 » 

°zl 
which yields A (-—). 

But a 0 a . a , 0-, 
( rf) = (J5i) + = A ( ^ ) 

Y Y Y Y 

Therefore, 

^ (A^AA 2 ) { - Z f < > + 

( K s l M s l ( 2 ) + K c l A A c l ( 2 ) + K C 2 M C 2 ( 2 ) ) 

az2 
which yields A( ) etc. 

Y 

The mean pressure at the die-tube (or plug-tube) 

interface can be calculated from the total normal force for 

elements i=l, 2, NL divided by the total die-tube 

surface area. For the element (i), the normal force NF^Ci) 

at the die-tube interface is given by; 

NF, ( i ) = P .(AA 9 ( i ) ) (A-2.9) 
1 mi c^ 

= { 1 _ ( ! 5 i ) } « « , (A-2.10) 
V Y c2 
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Therefore, the total normal force for elements i=l, 2, 3, 

NL is 

NF, NL-1 . a . 

£ ^ ( " f )> A A ^ i ) (A-2.il) 

The dimensionless pressure ratio becomes 

& = ! V Y 

E4Ao2(i) 

a , 

E (1 - H | i ) } M c 2 ( i ) 

ZAAc2(i) 

a , 

Z (-f±) AA 2 ( i ) 
= 1 _ { 1 9£ ; (A-2.12) 

ZAAc2(i) 

The expression for the mean pressure at the plug-tube 

interface is 

3 . , E ( A . 2 1 3 ) 

Z(AAcl(i)+AAsl(i)) 



A38 

A-3 COMPUTER PROGRAMMES 

A-3.1 UPPER BOUND SOLUTION FOR POLYOONAL DRAWING 

1 TRACE 2 
2 MASTER IJBFPTD 
3 C UPPER BOUND SOLUTION PQR POLYGONAL TUBE DRAWING 
4 DIMENSION PL(IO),A(10),AT(!0),ER(10),X(10),Y(IQ),XA(ll,ll), 
5 lYAdl, 11) ,ARLT3(10) ,ARSTB(10),ARLTACilO),ARSTA(lO),XBCL(11,11), 
6 2Y8CL(11,11),X3CS(11,11),YBCS(11,11),KACL(11,11),fACL(11,11), 
7 3XAC5(11,11), YACS (11,11), KB(11,11),YB(11,11),RAS(11,11), 
3 4R8S (11,11), THETAS(11,11),DAS(11,11),PHISBA(11,11),ZS(11,11), 
9 5ZTS(11,11),ETAS(11,11) ,HETALC (11,11) ,RAL11,11), 

10 6RBL(ll,ll),0BL(ll,ll) ,DAL(U,11),PHILBA(U,11) ,ZL(llfll), 

11 7ZTL(11,11) ,PSIS( 11,11) ,HETASC(11,11),PSIL(11,11), 
12 IDBS(11,U) ,THETAL( 11,11),ETAL( 11,11) 

13 4RITE(2.10) 
14 10 FORMAT<//5X,'UPPER BOUND SOLUTION FOR POLYGONAL TUBE DRAWING ) 
15 t»RITE(2,20) 
16 20 FORMAT(5X,'SOLUTION FOR SQUARE HEXAGON AND OUODECASON) 
17 C STOCK OUTER QIAMETER=90B,PfiQ0UCT OUTER OIAMETER=DOA GAUSE=TB 
18 C FRICTION COEFFICIENT=MU 
19 #RITE(2,30) 
20 30 FORMAT(5X, DOB,DOA AND TB ARE FIXED') 
21 C INPUT STATEMENTS 

22 READ(1,31)DOB,OOA,TB 

23 31 FORMAT(3F0.0) 
24 DI3=QGB-(2.0*T8) 

25 ROB-OOB/2.0 
26 R0A=D0A/2.0 
27 RIB=0tB/2.0 
28 PI=3.1415927 
29 C GENERATE NUMBER OF SIDES OF SECTION REQUIRED BY GENERATING BETA 
30 DO 100 I3ETA=15,45,15 
31 *RITE(2,40) IBETA 
32 40 F0RMAT(5X, 'BETA5',14) 

33 BETA=PI*BETA/130.0 

34 C8ETA=C0S(BETA) 

35 SBETA=SIN(BETA) 

36 T8ETA=TAN(BETA) 

37 TB2=T8ETA**2 

38 T84=T82»2 

39 TB8=TB4«2 
40 T828=l.0/TB2 
41 TB18=1.0/TBETA 

42 SPAR=CBETA*SBETA*P I / < 4.0*6ET A) 

43 C CALCULATE SECTION PARAMETERS I.E.AA,A8,AR,ETC 
44 HA=0i3 
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45 AB=PIt|(R0B**2MRI8"2)) 

46 AA*Pl *RQA*t2-HA**2*SPAR 

47 R£3SQRT (R0ft**2-(AA/PI)) 
48 AR-AB/AA 

49 RED-1.0-1.0/AR 

50 RA=HA/2.0 

51 ¥RITE(2,42> HA,RE,TB,ftED 

52 42 FORMAT(21,4F10.5) 

53 C RADIUS OF INSCRIBED CIRCLE AT E W ( R A I ) 

54 RAI=HA»CBETA/2.0 

55 C SINGLE SYHHETRIC SECTION USED TO SAVE COMPUTER TI*E,DENOTED 

56 C HEREAFTER BY 'DOUBLE! SYMMETRIC 

57 C BAND THE INLET (DOUBLE)SYHIIETRIC INTO .1-1 EQUAL 

58 C SECTORS AND MP OUTLET rflTH N-2 HYPERBOLIC CURVES,(I,J) 

59 C DEFINES GENERAL INTERSECTION AND (l.DDENOTES THE ORIGIN 

60 M=10 

61 M=10 
62 C FIRST CURVE OF OUTLET CIRCULAR SECTION CORRESPONDS TO THE 

63 C DIE ,PL!I) REFERS TO THE POSITION OF HYPERBOLA VIRTUAL ORIGIN 

64 C ALONG LINE OF SYMMETRY AND A(I) IS THE FOCAL LENGTH 

65 TA=ROH-RA 

66 PL(l>=D0A/2 

67 PL(10)=0.0 

68 C TA IS THE THICKNESS OF SECTION ALONG TUBE DIAGONAL AND IS 

69 C DIVIDED INTO N-2 EQUAL LENGTHS 

70 DT=(TA*\ROA* (<1.0/CBETA)-1.0 >))/(N-2) 

71 C INCLUDED AREA OF THE DIE AT(l),ATilO) CORRESPONDS TO THE 

72 C ORIGIN 

73 AT(1)=0.0 

74 AT(10)=PI*(R0A«2)/(2.0*PI/BETA) 

75 ER(1)=ROB 

76 ER(10)=0.0 

77 C DETAILED HAPPIN6 STARTS HERE i t t U U M t t 

79 DO 305 1=2,N-l 

79 PL (I) =(ROA/CBETA)-((I-1)*DT) 

90 A(l)~(i.0-I.0*l/N)*5.00 

81 C CALCULATE CO-ORDINATES AT INTERSECTION OF HYPERBOLA AND 

32 C LINE INCLINED TO(DOUBLE) BETA BY THE YA-AIIS 

83 IF(IBETA,EQ,45) GO TO 55 

34 T(I)=(-PL <I) »T84*SQRT(PL (I) **2»T88* (1.0-T84) *(A( I) **2*PL (I)*»2 

35 l*TB4) M/U.0-TB4) 

36 GO TO 56 

37 55 X(I) = (PHI)«2+A(I>**2)/I2.0*PL(I)) 

38 56 Y (I) =TBETA*< -X i I > <-PL H)) 
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89 C CO-ORDINATES OF INTERSECTION TO 5L3AL IA-YA AXES 

90 V=X(I) 

91 K»Y(I) 
92 *A<l,H)=« 
93 YA(I,N)=-VfPL(I) 

94 C AREA ENCLOSED 3Y HYPERBOLA 1 AND THE DIE I=DENOTED 3Y AT CI) 

95 A T U ) = i2.0»T3£TAf((K/2.0US8RT(yu2*Am«2»T328)<-A(l)«2 

96 1 *Q. 5*T828*(AL06(W+SflRT(H*»2*A (I)f*2»TB2B))) -A( I) "2*0.5*TB2B 

97 2*ALQ6(A(I) tRBIB) )MBETA*D0A**2/4.0)*(VH2fT3ETA) -(PL( I) 

98 3TBETA))) 
99 C AREA ENCLOSED BY THE DIE AND THE CURVE REFERRED TO THE INLET 

100 A8T=AT(I)*AR 

101 C EQUIVALENT RADIUS AT INLET ER(I) 

102 ER(I)=SGRT(D08»*2/4.0-ABT/BETA) 

103 C AREA OF THE BAND AT INLET ENCLOSED BY THE CIRCULAR ARC I t i-l 

104 ABAND=(ER(I-l)»2-ER(l>**2HBETA/2.0 

105 C DIVIDE THE AREA OF THE 3AN0 INTO fl-1 EQUAL SECTORS AND ALSO 

106 C CALCULATE THE RADIAL MIDTH OF SAND 

107 A8CD=ABAND/(M-1) 

108 DR=€R(I-l)-£R(n 

109 DPHIJ=BETA/(H-1) 

110 C CALCULATE AREAS OF LARGE AND SHALL TRIANGLES AT INLET PLANE 

111 DD=O.5*0R«2*DPHlJ 

112 ARLT8(11 =0.5*(ABCD*DD) 

113 AfiSTB (I) =0.5*(A8C0-0D) 

114 C EQUIVALENT TRIANGULAR AREAS AT EXIT PLANE 

115 ARLTA(l)=ARLT8(I)/AR 

116 AfiSTA(I)=ARSTB(I)/AS 

117 C INTERSECTION OF HYPERBOLA I AND YA-AIIS 

118 <A(l
f
 l)=0.0 

119 IF(I3ETA.E9.45) GO TO 107 

120 YAR3= (PL (I) +SQRT (PL(I) " 2 - (1.0-TB4) * (PL i IJ "2-A(I) «2))) / 

121 HCBETAM1.0-TB4)) 

122 YAR4=(PL(I)-SQRT(PL(I)**2-(1.0-TB4)*(PL (I)**2-A(1)»*2I))/ 

123 • 1(C8£TA*(1.0-TB4)) 

124" IF <YAfi3.LT.VAR4) SO TO 103 

125 YA(I,1)=YAR4 

126 GO TO 305 

127 103 YA(I,l)=YAR3 
128 60 TO 305 

129 107 YA(l,t)=PL(l)*A(l) 

130 305 CONTINUE 

131 C CURVE 1=1 IS A CIRCLE AND CO-ORDINATES OF INTERSECTION HITH 

132 C LINE INCLINED AT SETA TO YA-AHS CAN 3E FOUND 
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133 YAU,M)=(D0A/2)«SSRTIl.0/U.0fTB2)> 

134 KA(l,l1>*fAU,ft)*T9£TA 

135 YA(1,1)=R0A 

136 XAtl,l)=0.0 

137 XAilO,10)=0.0 

138 YAUO,10)=0.0 

139 HRITE(2,70> 

140 70 FORMAT(SX
r
 LIHITIN6 CO-QftOIMATES AT EXIT PLANE ,11) 

141 iiRITE(2,7l) (XA(I,N), 1=1,N) 

142 *RITE<2,71) <YAC1,H>,1*1VM> 
143 71 F0RNAT(2X,10(2X^,6),/) 

144 C CO-ORDINATES OF TRIANGLES AT INLET 

145 00 310 I=l,N-l 

14b DO 315 .3=1,11 

147 PH1J*(J-1)*BETA/(H-1) 

148 X8!l,J)=ER(I)*SIN(PHiJ) 

149 YB(I,J)=ER(D*COS(PHIJ) 

150 315 CONTINUE 

151 310 CONTINUE 

152 C LOCATE CENTRGIOS OF LARGE AND SHALL TRIANGLES AT INLET 

153 DO 320 1*1,(1-2 

154 DO 325 .j=l,H-l 

155 XBCL(Ifl,Jfl)a(X8(I,J)fX8(Ifl,J)fXB(I,Jfl))/3.0 
156 YBCL(lfl,Jfl)=<YB(I,J)fYB(IflfJ)fYB(I,Jfl))/3.0 
157 XBCSi!fl,Jfl> = aBU*l,J)*<B(Ifl,JM>«-XBiI,Jfl))/3.0 

158 Y3C3( l+t, Jfl)=(YB( If l . J W B d M , M I fYB(I,Jft)>/3.0 

159 325 CONTINUE 

160 320 CONTINUE 

161 80 TO 503 

162 C CALL FOR A FRESH PAGE TO PRINT RESULTS 

163 WRITE(2,350) 

164 350 FORMAT<1HI) 

165 C PRINT CO-ORDINATES OF INLET TRIANGLES AND EQUIVALENT RADIUS 

166 WRITE(2,352) 

167 352 FORMAT(5X, VALUES OF XB,YB AT INLET PLANE AND EQUIVALENT 

168 IRADIUS ER'/) 

169 «RITE(2,353> 

170 353 FORMAT(2X, 1=',5X,'J=l',7X,'J=2',7X, J
s

3',7X,'J=4',7X, 3=5 , 

171 17X,'J=6',7X, J=7',7X,'J=8',7X,'J=9',7X, J=10',2X,'E9 RADIUS', 

172 2/) 

173 DO 370 1=1, N 

174 *RITE(2,355) K I , (XBiI,J),J=t«M) ,ERU)>) 

175 JjRITE(2,356)(YB(I,J),J=l,i1) 
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176 355 F0RNAT(2X,I2,10(2X,F8.4),2X,F9.4) 

177 356 FORHAT(7X
f
10(2X

y
F9.4>> 

173 370 CONTINUE 

179 C CENTftOIDS OF TRIANGLES AT INLET AND RESPECTIVE AREAS 

130 MR ITE (2,3591 

131 359 FORMAT(//5X,'VALUES OF IBCS,YBCSVXBCL,Y8CL AND AREAS OF 

132 ITRIAN6LES',/) 

183 DO 375 1=2,N-l 

184 *RITE(2,3560> (I, (XBCS(IJ) ,J=2,?I) ,ARST8(H)) 

135 MRITE(2,3561)(YBCS(I,J),J*2
l
!f) 

136 #RITE(2,3560) (I, (KBCL(IJ) ,J
s

2,i1) ,ARLTI(I))) 

1S7 WRITE (2,3561) t YBCL (I, J), J=2, M) 

133 3560 F0R«AT(5X,I2,8X
f
?(2X,F8.4),2X,F8.4) 

139 3561 FQRf!ATil5X,9t2X,F8.4)) 

190 375 CONTINUE 

191 C NAPPING CORRESPONDING TRIANGLES AT EXIT PLANE 

192 503 AZER0=0.0 

193 DO 330 1=1,N-2 

194 DO 335 J=1,N-1 

195 C NAPPING LARGE TRIANGLES 

196 AREAL=AftLTA(IH) 

197 Xl«A(I,J) 

193 YI—YA(I,J) 

199 X2
S

XA(I+1,J) 

200 Y2*YA(H-l,J) 

201 IF(I.ST.l) SO TO 97 

202 IF(J.EQ.i) GO TO 72 

203 Df11
s

(2.0*AREAL-(Xl*Y2-YUX2) )/(X2-Xl) 

204 DK1=(Y1-Y2)/(X2-X1) 

205 X3R1»(COW 1 «DK1) *SQRT ((SH t *0K 11 " 2 - U 1 . O^Wtl« *2) t tDHl **2 

206 1-R0A«2) )))/<!. 0*DKt«2) 

207 X3R2
S

 ((DM frDKl) -SfiRT ((DM *DK 1) «2- € € I - O+DK1 «2) * (DM »2 

208 l-ROA**2))))/lt.O*OKlH2) 

209 Y3RI=CM-DK1*X3R1 

210 Y3R2=0M-DKi*X3R2 

211 C SELECT CO-ORDINATE OF THIRD VERTEX 

212 IFU3Ri.6T.X3R2) GO TO 75 

213 YA(I,J+1)=Y3R2 

214 (A(I,Jft)=X3R2 

215 30 TO 76 

216 75 YA(I,JH)*Y3Rl 

217 XA(I,JM)=X3Ri 

218 76 GO TO 77 

219 C NAPPING THE INITIAL LARGE TRIANGLES BY SUBSTITUTING ( 
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220 C AND SOLVING FOR Y 

221 72 DHI=(2.0*AR£AL-(Y2«1-YUX2)>/(Y1-Y2) 

222 DKl»(X2-n>/m-Y2> 

223 Y3R1
3

 (OH 1 *0K 1) *SQR T {(DHI fOK I /1 «-2- U 1 . 0*0K U*2) * (DH1 »*2 

224 1-R0A«2)))>/(1.<W)K1M2) 

225 Y3R2
3

((OHI*0KI) -SQRT ((OH I *DK I) **2- < (I. O+DK1 **2) * < OH I *«2 

226 i-RQA«2)>})/(1.0*0KI«2) 

227 X 3R1 =0« I -OK 1 »Y3« 1 

228 X3R2=DH1-DKUY3R2 

229 C THIRD VERTEX OF TRIANGLE 

230 IFIY3R1.ST.Y3R2) 50 TO 78 

231 XA(I,.M)=X3R2 

232 YA(I,J+1)
S

Y3R2 

233 SO TO 77 

324 73 XA<I,J+l)
s

X3Rl 

235 YAiI,Jfl)»Y3Rl 

236 30 TO 77 

237 C HAPPING LARSE TRIANGLES ĤEftE THE THIRD VERTEX LIES ON 

239 C HYPERBOLA I 

239 C NAPPING LARGE TRIANGLES SY SUBSTITUTING < AND SOLVE FOR 1 

240 97 HH1=(2.0*AREAL-(X1*Y2-YI*X2))/(YI-Y2) 

241 HK1=(X2-X1)/(Y1-Y2) 

242 HCl
s

PL(l) «2-T8l*HNt»*2 

243 HC2=-2.0*PL (I) +2.0*HK1 *HHUTB2 

244 HC3
3

1.0-HK1»2»T82 

245 3QT=SQRT(HC2«*2-4.0*HC3(HC1-A(I)«2)) 

246 Y3Ll=(-HC2tSQT)/I2.0fHC3) 

247 Y3L2=(-HC2-SST)/(2.0*HC3) 

248 X3Ll=ttHl-HKl*Y3Ll 

249 X3L2=HN1-HK1*Y3L2 

250 C SELECT THE THIRD VERTEX 

251 IF(Y3Ll.LT.Y3L2.AND.X3Li.5T. AZERO) SO TO 112 

252 XA(I,JH)*X312 

253 YAiI,J+l)=Y3L2 

254 50 TO 77 

255 112 XA(l,J+l)
s

X3U 

256 YAU,J+l)
s

Y3Ll 

257 GO TO 77 

253 C HAPPIN6 SHALL TRIANGLES AT INLET 

259 ' 11 XU=XAIIH,J> 

260 YU*YAU*I,J> 

261 X22=XA(I,J+1) 

262 Y22=<A(L,JH> 

263 AREAS=ARSTA(I+1) 
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264 FNls(2.0AREAS-(YlUX22-Y22»Xl t) I / (X! i-X22> 

265 FK1=(Y22-Y11)/ (X11-X22) 

266 C3=FK1«2=TB2 

267 C2--2.0*FH1*FK I +2.0*FK I *PL( IH> 

268 Cl=FMl»*2*PL (I+l) «2-2.0*PL ( I ) »FM 

269 SQT»SSRT(C2»2-4.0tf3*(Ct-A(!*l)**2l) 

270 X3SI—(-C2+SQT)/(2.0#C3) 

271 X3S2= < —C2-3QT>/(2.0+C3) 

272 Y3Sl
s

FNl-FKl*X3Sl 

273 Y3S2=FIU-FKlfX3S2 

274 C SELECT THIRD VERTEX 

275 IF(X3S2.LT.X3S1.QR.X3S2.6T.AZER0) 80 TO 91 

276 XftU+t,J+l)=X3St 

277 YA(l*l,J+l)
s

Y3Sl 

278 50 TO 335 

279 91 XAU*l,JM)*X3S2 

230 YA(U*l,J*l)*Y3S2 

291 335 CONTINUE 

282 330 CONTINUE 

293 C LOCATING THE CENT ROI OS OF THE HAPPED TRIANGLES AT EXIT PLANE 

234 DO 340 1=1,N-2 

285 DO 345 J=1,K-1 

236 XACL(I+M+l)=<XA(IfJ)*XA(I,J+lKXA<IM,J)>/3.0 

237 YACLUM J*l)=(*A<I,J)*YA(I,JM>*YA(I*M)>/3.0 

288 XACS(IMfJMMXA(M,J)*XA(I*l,J*l>*XA(I,J*l))/3.0 

239 YACSiM,Jfl)=(YA(IM
l
J)+YA(Ifi

l
Jfl)<'YA(I,Jfl)>/3.0 

290 345 CONTINUE 

291 340 CONTINUE 

292 SO TO 504 

293 C CALL FOR A FRESH PASE TO PRINT RESULTS 

294 *RITE(2,349) 

295 349 FORMAT(1 Hi) 

296 C PRINTOUT FOR EXIT PLANE 

297 *RITE(2,3565) 

298 3565 F0PNAT(//5X,'VALUES OF XA,YA AND FOCAL DISTANCE A(I) OF 

299 IHYPERBOIA I',/) 

300 *RITE(2,353) 

301 A(10)=0.0 

302 A t U *ROA*(1.0/CBETA-i.0) 

303 DO 380 1=1,N 

304 *R!TE<2,355M(I,(XA(I,J=M>,A<1))> 

305 *RITE(2
f
356)(YA(M»,J

s

M> 

306 380 CONTINUE 

307 «RITE(2,3570) 
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308 3570 FORMAT(//5X, VALUES OF lACS.YACS.XAClJACl AMD AREAS OF 

309 ITRIN6ALE3',/) 

310 D0 385 1=2, N-l 

311 *ftITE(2,3560()U,UCASU,J)
f
J»2,H)

f
ARSTAU)>> 

312 WfiITE(2,356lMYACS(I,J),J=2,M) 

313 KRtTE(2,3560)((I,(XACL(l,J),J=2,M),ARLTA(l))) 

314 HRITE(2,356l) (YAClil,J),J=2,R) 

315 385 CONTINUE 

316 C PER CENTA6E ERROR IN AREA OBTAINED FROM MAPPING AND ACTUAL 

317 C VALUE AA 

318 AS8=AA/(PI/BETA) 

319 ERRCR=((ASB-AT(N-l)I/ASB)*100.0 

320 WRITE(2,3571)ERROR 

321 3571 FORMAT (//5X, 'PERCENTAGE DIFFERENCE OF TOTAL (-SECTIONAL AREA 

322 ls',f8.4,//> 

323 C «*$*$**$ END OF CONFORilAL MAPPING *$$W$ms 

324 C ttttt&ttt UPPER BOUND SOLUTION NO* BEGINS MfcttttM 

325 504 WRITE(2,400) 

326 400 FORMAT I//,5X,'i*ttfc UPPER 30UND SOLUTION BEGINS HERE Itttit') 

327 C GENERATE THE DIE SEMI ANGLE 

328 DO 200 IALPHA=2,13,4 

329 ALPHA= <Pf /180.0)H ALPHA 

330 TAD»TAN(ALPHA) 

331 DIEH-(RQB-ROA)/TAD 

332 ALPHAE=ATAN(RIB-ftE) /DIEH) 

333 ALFAEM180.0/P I) ALPHAS 

334 C CALCULATIONS OF THE RADIAL DISTANCE OF THE PARTICLES AND 

335 C DIFLECTIQN ANGLES PSI
a
XI

f
ETA

f
...ETC AND LENGTH OF FLOW PATH 

336 CAD=COS(ALPHA) 

337 SAD=SIN«ALPHA) 

338 TAE=TAN(ALPHAE) 

339 CAE=COS(ALPHAE? 

340 SAE=SIN(ALPHAE) 

34! RH08=OIEH»ROB/ICAD*(RGB-ROA) 

342 C CALCULATIONS FOR THE SHALL TRIANGLES AT EIIT(A) AND ENTRY(8) 

343 DO 405 I=2,N-l 

344 DO 410 d=2,M 

345 RAS (I, J i =SQftT( KACS (I, J) »»2*YACS (I, J) " 2 ) 
346 RBSii.J) =SQRT (I8CS (I, J) "2+YBCS (I, JI "2) 

347 THETAS(I,J)
s

ASIN(R8S(I,J)/RHQ8) 

348 PHlA=ATAN()(ACS(I
f
J>/YACS<l

f
J>> 

349 DB=RH08Mi.O-CAO) 

350 BET2=2.0*BETA 

351 DBS(I,J)=RHOB*(COS(THETAS(I, J))-CAD i 

352 DA=DB 
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353 IF(PHIA.ST.BETA) 50 TO 402 

354 DAS(I
f
J)=0AHQ0A/(2.0*RAS(U)*CQ3<PHIA) 1-1.0) 

355 80 TO 403 

356 403 I DAS (I, J) 'Oft* (DOA/ (2. 0*RAS (I, J) *C0S (BET2-PHI A)) -1.0) 

357 i PHI8=ATAN(X8CS(I,j)/Y5CS(l,J)) 

358 PHISBA(I,J i =PHIB-PHIA 

359 ZSIt,J)=D[EH*D8SiI,J)-DAS(I
f
J) 

360 C TOTAL LENGTH OF PLOW PATH IN DEFORMING ZONE 

361 ZT3 (I, J) =S6R T C (XBC5 (I
 f
 J) -XACS (1, J) > YBC3 C t, J) -

362 lYACSfI,J))*»2+ZS(I,J)**2) 

363 ZPS=SQRT( (R3S (I,J) -RAS ! I, J) *CQS <PHISBA (l,J)))§*2* 

364 IZS(!,J)»2) 

365 ETASil,J)=ATAN(RA3(I,J)*SIM(PH1S8A(I,J)I/ZPS) 

366 HETASC (I, J) =ATAN ((RBS (I
T
 J > -RAS (I. J) *CGS (PHISBA ([, J) 

367 l))/ZS(I,J)> 

368 PSIS(I,J)=A8S(HETALC(I,J)-THETAS11,J)> 

369 410 CONTINUE 

370 405 CONTINUE 

371 C CALCULATIONS FOR THE LARGE TRIAN6LE3 AT EKIT(A) AND ENTRY(8) 

372 •00 415 1=2,N-l 

373 DO 420 J=2,.i 

374 RAL(I,J i=SQRT(KACL(I,J)**2+YACL(I,J)**2) 

375 R8L (I, J) =SfiRT( XBCL (I, J)«2+YBCL (I, J) « 2 ) 

376 THETAL(I,J)=ASIN(RBL(I,J)/RH08) 

377 DBL (I, J )=ROB*(COS(THETAL i I, J))-CAD) 

378 PHIA=ATAN(XACL(I,J)/YACL(I,J) I 

379 IF <PHI A.ST.BETA) 50 TO 406 

380 DAL'.I, J)=DA*(00A/(2.O*RAL(I, J)*C0S(PHIft))-1.0) 

381 SO TO 407 

382 406 DAL (I, J)=DA*<DOA/(2.0*RAL(I,J)*COS i8ET2-PHI A) -1.0) 

383 407 PHIB-ATAN (XBCL (£, J>/Y8CL( I, J) > 

384 PHILBA(I,J)=PHI8-PHIA 

385 ZL'I,J)=DlEH*D3L!I,J)-DALiJ.I,J) 

336 ( TOTAL LENGTH OF FLOW PATH IN DEFORMING ZONE 

C-4
 

CO
 —1
 

ZTL(I,J)=S8RT((X8CL(I,J)-J(ACL(I,J) )**2Mf8CL(l,J)-

388 IYACLU,J))«2*ZL(I,J>«2) 

389 ZPL=SQRT{ (RBL'I,J) -RAL(I,J)*CGSiPHILBA(l,J)l )*»2* 

390 IZL(I,J)**2) 

391 ETAL(I,J)=ATAN(RALU,J)«SlN{PHILBA(l,J>)/ZPL> 

392 HETALC (E, J > =ATAN(RBL i £
 f
 J> -RAL (I

 f
 J > »COS (PHILBA (E«J))) 

393 l/ZL(I,J)> 

394 PS IL < I, J >
s

A8S(HETALC 11, J)-THETAL(I,J)) 

395 420 CONTINUE 

396 415 CONTINUE 

397 SO TO 18 
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398 WRITE(2,408> 
39? 408 FORMAT(5X

t
 "LENGTH OF FLOW PATH IN THE DEFQMIIN6 ZONE ITS 

400 l,ZTL',/) 

401 rfRITE(2,353) 

402 DO 425 l»2,N-l 

403 NRITE(2,411) (I, (ZTSU,J),J
s

2,H)) 

404 WRITE(2,4t2)(ZTL(I,J),J=2,M) 

405 411 FORMAT *5X
t
I2,3X,?<3X,F8. *)) 

406 412 F0RMAT(15X,9(3X,F9.4>) 

407 425 CONTINUE 

408 C OPTIMIZATION OF SHEAR WORK IE VALUE OF T THAT MINIMIZES 

409 C SHEAR WORK FACTOR R(S) 

410 18 MR1TE(2,413) 

411 413 FORMAT(51,'PARAMETER T SHEAR FACTOR R(S)',/I 

412 C GENERATE T BETWEEN 0 AND 1 

413 DO 430 IT=1,10 

414 MTifl.l 

415 TP=l.O-T 

416 RS=0.0 

417 DO 460 I=2
f
N-l 

418 DO 465 j=2,H 

419 C VALUE OF RS FOR SMALL TRIANGULAR ELEMENTS 

420 AR£AS=ARST8-:n 

421 THETA=THETAS(I,J) 

422 ETA=ETAS(I,J) 

423 P3I=PSI5(I,J) 

424 RSSF=SQRT ((COS < WHETA*TAN (ETA) / (COS (TPHHETA) HAN (PSI 

425 I)))**2+(-SIN (T *THETA)*COS(T*THETA)*TAN(PSI)«-CGS(T*TKETA 

426 2> *TAN(TP*THETA> > **2> 

427 RSS-(RSSF*(2.0»PI/8ETA)/A8)*AAftEAS/C0S(T*THETA) 

423 C VALUE OF RS FOR SMALL TRIANGULAR ELEMENTS 

429 AREAL=ARLT9(li 

430 THETA=THETAL(I
f
J) 

431 ETA=ETAL!I,J) 

432 PSI=PSIL(I,J) 

433 RSIF=SQRT(ICOS(T*TKETA)tTAN(ETA)/(CQS(TP*TH£TA)*TAN(PSI 
434 l)))«2M-SINiT*THETA)̂ C0S(T*THETA)»TAN(PSI)̂ C0S(T*THETA 

435 2)<TAN(TP*THETA>)**2) 

436 RSL*(RSLF*(2.0*P I /BETA) /AB) *AREAl/CQS (T*TH£TA) 

437 RS=RS*RSL*RSS 

438 465 CONTINUE 

439 460 CONTINUE 

440 HRITE(2,414)T,RS 

441 414 F0RMAT(9X|F5.,3,8X,F10.6) 

442 S5V-RS 
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443 IF(IT.EQ.1) 60 TO 416 

444 C 1 SELECT MINIMUM SHEAR FACTOR 

445 IF(RSV.LT.RSH) 60 TO 416 

44b 60 TO 430 

447 416 RSN
s

RSV 

443 TM=T 

449 430 CONTINUE 

450 *RITE(2,4t7)TM,RSM 

451 417 FORMAT 1//,5)(, OPTIMAL T= F5.3,5X, AND MINIMUM RS='
f 

452 IF10.6//) 

453 T=TM 

454 RS=RSM 

455 TP=l.O-T 

456 C CALCULATE SHAPE FACTOR FS US IMS OPTIMAL T FOR INTERNAL 

457 C PGNER OF DEFORMATION 

458 C1=PI*SAD**2 

459 C2=RI8/SA0 

440 C3-PI*RIB**2 

461 RH08DO=RHOB**2Cl-C3 

4e2 RHOA=RHOB*RQA/ROB 

463 FS=0.0 

464 00 435 1=2,N-l 

465 DO 440 J=2,M 

466 C VALUE OF FS FOR SMALL TRIANGULAR ELEMENTS 

467 AREAS=ARST8(I) 

468 THETA=THETAS(I,J) 

469 HETA=HETA3C(I,J) 

470 ETA=ETAS(I,J) 

471 ZDIE=ZS(I,J > 

472 PS1=PSIS(I,J) 

473 RAD=RAS(I,J) 

474 PHl=PHISBA<I
t
J) 

475 RHOE=(RHOB-ZS(I,J)}*COS(THETA) 

476 C DIVIDE (RHOB-RHOA) INTO 10 ELEMENTAL LENGTHS 

477 ORHG='RHOA)/lO.O 

478 DO 445 IRH0=1,9 

479 RHO=RHOA*(DRHO *IRHO! 

430 RH0D='RH0-RH08)*TAE/TAD 

481 RHOOD=Cl*(RHQ«2-(C2*RHOD)«2) 

482 ft 1=(2 *C I *fiHO / RHO DD) * (RHO- (C2 +RHO D) * i RHQO / (RHO-RHOB) >) 

433 R2=2.0*RU*2 

484 R3=(-(1.0+TAN(PSI)»(-T»TAN(T»THETA)tTP*TAK(TP«THETfl) 

485 l + (1.0/(C0S(PSI))))))«2 

486 R4= (1. 0*RAD*COS(PHI)/((RHOB-RHOE)•COS(THETA)fSIN(THETA) 

487 I •COS (PSI>) H A N !PSI)/TANUHETA)) «2 



A49 

483 R5= (-T AW <PSI) -ft I *TAN (PSI)-TtTAII (T*THETA) (TP* 
439 ITHETA)) )**2 

490 R6
S

 (- U TAN(ETA)/TAN(PSI))* 1-1 J)/TAN(THETA) -T *TAN I T» 
491 ITHETA) +TAN(THETA) «-TPHANHP»THETA) *TAN(PST)))) " 2 

492 R7=(<TAN(ETA)/TAN(PSI))tll.0*Rl))»2 
493 R0QTK=S9RT(R2fR3+R4*R5*R6*R7> 
494 ROQTKS=ROQTK*RHO*ORHO/RHODD 
495 FSS=RQGTKS*AREAS>CQS! THHETA) / COS (TP»THETA) 
49a C VALUE OF FS FOR LAPSE TRIANGULAR ELEMENTS 
497 AREAL=ARLT6(I) 

498 THETA=THETALtI,J) 

499 HETA=HETALC(l,J) 

500 ETA=£TAL(I,J) 

501 PSI=PSIL(I,J) 

502 ZDIE=ZL(I,J) 

503 PHI=PHIL3A(I,J) 

504 RAD=RAL(J,J) 

505 RHOE=( RHG8-ZL(I, J)) *CQS (THETA) 

506 S3= (=(1.0+TAN(PSI/•(-T »TAN1T *THE TA)+TP*THETA) 
507 l*(t.0/<CQS(PSI>)>))>«2 

508 S4= (1.0*RAD+COS(PHI)/((RHOB-RHQE)«CQSTITHETA)*SIN(THETA) 

509 I *COS (PS I)) *TAN (PS I) / TAN (THET A)) **2 

510 55*((-TAN(PSI)-R1*TAN(PSI)-T*TAN(T*THETA)*TP*TAN(TP* 

511 ITHETA)))«2 

512 S6=((TAN(ETA)/TAN(PSI))*(-1.0/TAN(THETA)-T*TAN(T» 

513 ITHETA) * TAN(THETA) *TP*TAN(TP«THETA)+TANIPSI)) ))«2 

514 S7
s

 ((TAN (ETA) / TAN (PS I)) * (1.0+fil )•) *»2 

515 RQGTK=SQRT (S2fS3<-S4*S5*S6*S7) 

516 RQQTKL=RGQTK*RHC*DRHO/RHODD 

517 FSL=ROOTKL*COS (T »THETA) *AR£AL/COS (TP »THETA) 

J13 FS=FS+-FSL+F3S 

519 445 CONTINUE 

520 440 CONTINUE 

521 4 CONTINUE 

522 *RITE(2,441)FS 

523 441 FORMAT(5)1,'VALUE OF F(S)= \F10.6,//) 

524 FS=FS*(PI/8ETA)/(RH08t*2»S6RT(3.0)) 

525 C CALCULATE THE MEAN EQUIVALENT STRAIN(E3STH) 

526 E9STH=FS> (2.0/SfiRT (3.0)) *RS 

527 *RITE(2,442)E3STN 

528 442 FORMAT<51, VALUE OF HEAN EQUIVALENT STRAIN* ',flO.S» 

529 C PRINT HEADING FOR FINAL TABLE OF RESULTS 

530 *RITE(2,443) 

531 443 FORMAT(7X,'ALPHA',2X,'AL?HAE',5X, RED',, 'NU',3K,'0SR' 

532 l,7X,'OPR') 
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533 MITE(2,444) 

534 444 format(2x, $ $ $ st $mm*t$m*m$sfmtmm*$t f $ $s$ ) 

535 UA«3.0*25.4 

536 UB=UA/AR 

537 V0L=UB*A8 

538 C TO FIND FRICTION FACTORS II AND 12 

53? USBARI =UB »CAE«AL08 (AR) / RED 

540 USBAR2
s

<UB+UAJ»CAD/2.0 

541 D£
S

R18*8ETA/(IH) 

542 0A32= iBETA/2.0) *CAD* (R08*RH0B-R0A*RHCA) 

543 C GENERATE COEFFICIENT OF FRICTI0N(0,0.02, O.ll 

544 DO 450 ICOEFF=0.10,2 

545 CMU=IC0EFF*0.01 

546 Fli-O.0 

547 FI2=0.0 

548 C INTEGRATE EXPRESSIONS OVER PLUS-TUBE INTERFACE 

54? DO 455 J=l, 11-1 

550 THETA=THE TAL•N-1, J+1 > 

551 D0Eu=Sfi?.T(ilA(N-l,jH)-j(A(N-l,J))«2MYA':N-l,JH)-

552 1YA(N-1,J))«2) 

553 OASl=0.5*(DE*DDE!)lfZTL(N-l,J*i> 

554 FIl=FIl+DASlKCf!U*COS(THETA)-SIN!THETA) J 

J J J FI2=FIH-DAS1 

55o 455 CONTINUE 

557 FACT 1 D= (<C«U*CA0+5AD) «DAS2MF I1)) / AA 

558 FACT20= ((USBAR 1 /UB) *F 12*(US8AR2/U8) *0AS2) *CNU/ AB 

55? NS=PI/BETA 

560 FACT1=FACT1D*NS*2.0 

561 FACT2=FACT2D*NS*2.0 

562 C ASSUME A TYPICAL VALUE FOR THE *GRK HARDENING FACTOR 

563 YN=0.232i 

564 BFACT31.0/(i.O*YNI 

565 C HENCE DRAW STRESS RATIO AND DIE PRESSURE RATIO CAN 

566 C BE FOUND 

567 DSR=EQSTM/(l,0-BFACT*FACT2/FACTli) 

568 DPR=EQS TH/ iFAC r I * U. 0-8FACT*FACT2/FACTt)) 

56? HRITE (2,456 > I ALPHA, ALFAE,KRED, CNLI, DSR, DPR 

570 456 FORMAT(2X,I8,F10.4,I3
f
3FI0.4i 

571 450 CONTINUE 

572 300 CONTINUE 

573 200 CONTINUE 

574 100 CONTINUE 

575 STOP 

576 END 

577 FINISH 
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A-3.2 LOWER BOUND SOLUTION FOR POLYGONAL DRAWING 

1 TRACE 2 

2 MASTER LBFPTD 

3 C LOWER BOUND SOLUTION FOR POLYGONAL TUBE DRAHIK6 

4 C PRCGRAM CALCULATES LOfcER BOUND BY NUMERICAL INTEGRATION 

5 KRITE(2,10) 

6 10 FORMAT(//,5K,'LONER BOUND SOLUTION FOR POLYGONAL TUBE DRAHIN6',//) 

7 «RITE(2.20 

8 20 FORMATl//,5X
f
 'SOLUTION FOR SQUARE HE(A60N AND DUODECAGON',//> 

9 C STOCK OUTER 01AMETER=0G3 PRODUCT OUTER OIAMETER=OOA 3AU6E=TB 

t COEFF=MU 

10 WRITE(2,30) 

11 30 FORMAT(2X,'DOB,DOA AND TB ARE FIXED') 

12 C INPUT STATEMENTS 

13 READ(1,33)DOB,DOA,TB 

t4 33 FORMAT(3F0.0) 

15 0IB=DOB-(2.O*TB) 

16 R0B=D0B/2.0 

17 R0A=DQA/2.0 

18 RIB=DI8/2.0 

19 C DIE ANGLE=ALPKA PLU6 EQUIVALENT AN6LE=ALPHAE DIMENSIONLESS STRESS 

I RATIO=DSR DIE PRESSURE RATIO=')Pfi 

20 Pl=3.1415927 

21 C GENERATE NUMBER OF SIDES OF SECTION REQUIRED BY GENERATING BETA 

22 DO 100 18£TA
S

15,45,15 

23 WRITE(2,40)2BETA 

24 40 F0FMAr(2X,'BETA=',I6) 

25 BE TA=P1^I BETA/100.0 

26 CBETA=COS(BETA) 

27 S8ETA=SIN(BETA) 

29 C CALCULATE SECTION PARAMETERS I.E.AA,AB,AR,HA,5PAfi,ETC 

29 HA=0I8 

30 A B = P H M ( R Q B » 2 H R i B * * 2 ) ) 

31 SPAR»C8ETA*S6ETA*Pi/(4.0tBETA) 

32 AA=PI*R0A**2-HA«2*SPAR 

33 Aft-AB/AA 

34 RED-1.0-1.O/Aft 

35 RE=SfiflT(RQA**2-(AA/PI)) 

36 *RITE(2,43)HA,RE,TB,RED 

37 43 FGRMAT2X,4F 10.5 

38 C PRINT HEADING FOR FINAL TABLE OF RESULTS 

39 *RITE(2,50) 

40 50 FORMAT(7X,' ALPHA',2X,'ALPHAE',6X,'MU',IX,'DSR', 

41 17X,'DPR') 

42 «RITE(2,70) 

43 70 FORMAT (2X, tt$$$t$f$$Sti$$U$ti$S$$$$ft$99t*$$iitSS$$$$tS$tf$$ > 
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44 C GENERATE THE DIE SEMI-ANGLE 

45 DO 225 IALPHA=2,22,4 

46 ALPHA* (PI/180.0) HALPHA 

47 TAD=TAN(ALPHA) 

49 CAD=COS(ALPHA) 

49 5AD=SIN(ALPHA) 

50 DIEH=(RQ8-RQA)/TA0 

51 ALPHAE=TAN((RI9-RE)/DIEH) 

52 ALFAE=(130.0/PIi *ALPHAE 

53 TAE=ThN(ALPHAE> 

54 C CALCULATE CONICAL ANO FLAT SURFACE ANGLES 

55 ALPHAC=ATAN(DI3-HA)/(2.')*DIEH)) 

56 ALPHAS=ATAN( iOI9-(HA»C&ETA)) /(2.0*DIEH)) 

57 C CONSTANTS FOR THE ELLIPSE 

53 CAC=COSlALPHAC) ' 

59 CAS=COS(ALPHAS) 

60 SAC=SIN(ALPHAC) 

61 SAS=SIM<ALPHAS) 

62 TAC=TAN(ALPHAC) 

*3 TAS=TAN(ALPHAS) 

64 8=RIB* (1.0/SIN (ALPHAC+ALPHAS)) *S&RT( (CAC) **2-<CAS) «2 

65 A-RIB* <CAC/SIN( ALPHAO ALPHAS)) 

66 C NUMERICAL INTEGRATION OF THE DRAW STRESS 

67 C ACCUMULATIVE SURFACE AREA OF DIE 13 9SURFA 

68 DSURFA=0.0 

69 C FOR NO BACKPULL THE NORMAL STRESS AT INLET PLANE IS ZERO 

70 DSR=0.0 

71 C EVALUATE FRICTION CONSTANTS KS1,KC1 AND KC2 

72 DO 425 KCQEFF=0,t0,2 

73 COEFF=KCOEFF/100.0 

74 S1=(C0EFF*CAS)-3AS 

75 Cl=(COEFFtCAC)-SAC 

76 C2*(C0EFF«CA0)*3A0 

77 C DIVIDE DIE LENGTH INTO 50 E3UAL LENGTHS 

78 NL=5l 

79 C ACCUMULATE PRODUCT OF DSRI AND DIE SURFACE AREA 

80 DSRSF=0.0 

31 DZ=DIEH/(NL-1) 

32 A11=0.5*8ETAMR08-R18)KRQ8*-RI&) 

33 DO 500 I=2,NL,1 

34 Z I = ( M ) * O Z 

35 RIL=RQ8-(ZItTAD) 

36 RIS=RI8-(ZI*TAC) 

37 C Y VALUE ON THE ELLIPSE 

33 YI=8*S6RT(2.0*A*ZI*CAS-(Zl**2))/(A*CAS) 
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39 C INLCUDED ANGLE FOR THE CONICAL AND FLAT SURFACE ALONG Z-AXIS 

90 AHB0AS
s

ATAN((YI/R(S)/§QflT(l.d-((Y[/RlS)t*2))> 

91 AMBDAC=BETA-AM8DAS 

92 CAMS=COS!AHBDAS) 

93 SAMS=SIN(AMBDASI 

9+ C AREA AT SECTION ZONE 

95 AI=0.5*(RIL«2)*BETA-(0.5*(RIS"2)KICAI1S*SA«)>AHBOAC) 

96 C CHANGE Of CROSS-SECTIONAL AREA OVER ELEMENT I 

97 P1=(CAMStSAMS)•AHBDAC 

98 P2
s

A>CAMS*CAS*RIS 

99 P3=RIS*((A*CAS)-ZI) 

100 P4=2.0*A*ZUCAS-(Zl«2) 

101 P6=<A«B0AS«-ANBI>AC)»RIL»TAD 

102 P7=(SAHS«2»*B/P2 

103 DAI=(RIS*((P1«TAC)MIP7)K(P3/SQRTIP4))MP4«TAC))))-P6)«DZ 

104 80 TO 76 

105 75 DAI=AI-A11 

106 C CALCULATE SURFACE AREA OF ELEMENTS 

107 76 DAStI-(YI*DZ>/CAS 

108 DAClI = (RIS*AMSOACtOZ)/CAC 

109 DAC2I=(RIL*BETA*DZ)/CAD 

110 C ACCUMULATE SURFACE AREA OF DIE 

111 DSURFA=DSURFA+DAC21 

112 PSURFA=OSURFA+DAC11 <-DAS 11 

113 C 0MENS IONLESS STRESS RATIO 

114 SKl=(SUDA3lI)*<CUQAClli«-(C2*DAC2I) 

115 D3RI=(1.0/ (AI*DAI))*((-9SR*DAiM(1.0-DSR)*(SKl))> 

116 DSR3F=DSRSFMDSRI*&AC2I) 

117 C STRESS ON THE SECOND FACE BECOMES STRESS FOR FACE ONE OF 

119 C ELEMENT I+l 

119 DSR=DSR*DSRI 

120 AII-AI 

121 500 CONTINUE 

122 DPR=1.O-IOSRSF/OSURFA) 

123 NRITE (2,600)IALPHA,ALFAE,COEFF,DSR,DPR 

124 600 FQRHAT«2X,I9,F10.4,3Ft0.4) 

125 425 CONTINUE 

126 225 CONTINUE 

127 100 CONTINUE 

128 KRITE(2,800> 

129 SOO FORMAT(//
V
2X,'END OF LOWER BOUND SOLUTION") 

130 STOP 

131 END 

132 FINISH 
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A-3.3 UPPER BOUND SOLUTION FOR AXISYVMETRIC DRAWING 

1 MASTER UBFAO 
2 C UPPER BOUND SOLUTION FOR CORRESPONDING AXISVMMETRIC CASE 

3 KRITE(2,15> 

4 15 FGRMAT(//,2X, UPPER BOUND SOLUTION FOR AXISYNHETRIC DRAWING',//) 

5 £ DIMENSIONS FOR INC0MIN6 TUBE AND PROCESSED PRODUCT 

6 c TUBE QD IS D01 GAUGE(Tl) PRODUCT OD IS 002 M FRICT FACTER FACT 

7 DO 1=0.0296 

8 D02=0.0254 

9 T1=0.004064 

10 PI=3.1415927 

11 ROI=001/2.0 

12 R02=DG2/2.0 

13 RI1=RQ1-Tl 

14 r 
i> PRINT HEADING FOR FINAL TABLE OF RESULTS 

15 HRITE(2.10) 

16 20 FORMAT(//,5X,'IALPHAD',4X, ALPHAP',5X, R E D ' , 4 ^ , ' 1 U ' D S R ' , 

17 I7X,'DPR') 

18 C GENERATE THE DIE AND PLUG SEMIANGLE 

19 DO 30 IALPHA=4,16,4 

20 DO 40 <RED=5,50,5 

21 DO 45 IFACT=2,10,2 
T) FACT=IFACT/100.0 

23 ALPHAO=(PI»'130.0) *IAL?HA 

24 TAD=TAN(ALPHAD) 

25 CAD=CQS(ALPHAD) 

26 C CALCULATE GEOMETRICAL PARAMETERS Al A2 AR DIEH RED 

27 DIEH=(R01-tfG2)/TAD 

29 AR=100.0/(100.0-KRED) 

29 Al=PI*t(RGl«2)-iRU**2)) 

30 A2=A1/AR 

31 RI2=S8RT<(R02**2)-(A2/PI)) 

32 ALPHAP=ATAN(<RIl-RI2)/DIEH> 

33 ALFAPO
s

(180.0/PI)*ALPHAP 

34 CAP=COS(ALPHAP> 

35 TAO=TAN(ALPHAD) 

36 IF lRl2.6T.RIl.0R.RI2.GT.RQ2) GO TO 40 

37 IF (ALPHAP.ST.ALPHAD) 30 TO 40 

38 C NCK SOLVE THE DRAM STRESS EQUATION 

39 HI=ROl-ftli 

40 H2*fiQl»2-Rll«2 

41 H3=R02-RI2 

42 H4=R02«2-RI2**2 

43 H5=<ROt«3-RI2«3)/3.0 

44 H6=(R02883-RI2H3)/3.0 
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45 H7»(RQ2*TADMR12*TAP) 

4b H8='RQ1*TAD)-(R11*!AP) 

47 H9=(Rll*TAD)-(R0l*TAP) 

43 Hl(MRI2HADMR02tTAf> 

4? FI*(RQ1«-RIU/(IHI2*R[2) 

50 F2
a

( (1.0/(tCA0)«*2)) •(!.')/UCAP)w2>) I 

51 H*=ALQ6(H2/H4) M (1.0/6.0) *ALOG< (H2/H41M (H7/H9) « 2 ) 1) 

52 S«ls(2.0/SQRT(3.0)»(H2"2i)*((H5»(-He)>HR0l*Rll»Hl*H9)) 

53 SH2»(2.0/SQRT(3.0)»(H4«2l)K(H6*(-H7»)MRO2*RI2»«3tHlO)) 

54 FW
s

(FACT/SQRT(3.0) )* (ALQ6(H1 /H3) / (TAD-TAP)-(Al06(Fl)/(TAD* 

55 1TAP)))*F2 

56 DSR=HH+SM1+SH2+FM 

57 DPR
s

1.0-0SR 

58 C PRINT THE RESULTS 

5? WRITE (2.50) I ALPHA, ALF APO, KRED, FACT, BSR, DPR 

60 50 FQRMAT(2X,I3,F10.4,I8,3F10.4) 

61 45 CONTINUE 

62 40 CGNTINUE 

63 30 CONTINUE 

64 WRITE(2,60) 

65 60 FORMAT(5X,'END OF UPPER 30UN0 SOLUTION') 

66 STOP 

67 END 

63 FINISH 
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A-3.4 LOVER BOUND SOLUTION FOR AXISYMMETRIC DRAWING 

1 TRACE 2 

2 MASTER L8FA0 

3 *R1TE(2,10) 

4 10 FORMAT(//,5X,'LOWER BOUND SOLUTION FOR AXISYNMETRIC DRAN1N6',//) 

5 C DIMENSIONS FOR INC0MIN6 TU8E ANO PROCESSED PROOUCT 

6 C STOCK OUTER RADIUS IS ROB PRODUCT 0 R IS KOA MU IS COEFF 

7 C SAU6E=Tl STOCK INNER RADIU5=RI8 PRODUCT INNER RADIUS=RIA 

3 RQB=0.0143 

9 RQA=0.0127 

10 TH16=0.375*0.0254 

11 R18=RQ8-THI8 

12 Pl=3.1415927 

13 WRITE(2,20) 

14 20 FORMAT(//,5X,'ALPHAD",5X, RED',4X, MU',3X,'DSR', 

15 17X,'DPR') 

16 DO 30 IALPHA=4,20,4 

17 DO 40 KRED=15,50,2 

18 DO 45 IC0EFF=2,L0,2 

19 COEFF
3

ICOEFF/I00.0 

20 ALPHAD=(P1/130.0)*IALPHA 

21 QIEH»(RQB-RQA)/ TAN (ALPHAD) 

22 AR-100.0/(100.O-KRED) 

23 A9=PI*((ROB**2)-iRI3**2)) 

24 AA=AB/AR 

25 RI ASSORT ((R0A**2)-IAA/PI)) 

26 ALPHAP=ATAN((RI8-RIA)/DIEH) 

27 ALFAPO®(180.0/P t)*ALPHAP 

28 THIA=ROA-RIA 

29 IF (RIA.3T.R18.0R.RIA.ST.R0A) 50 TO 40 

30 IF (ALPHAP.ST.ALPHAD) SO TO 40 

31 C CALCULATE DRAW STRESS RATIO ANO DIE PRESSURE RATIO 

32 B= (2.0 tCOEFF)/< TAN(ALPHAD)-TAN(ALPHAP)) 

33 DSR
s

((1.0+8)/8)*ll.0-UTHlA/THI8)**B>) 

34 DRPM.O-DSR 

35 IWITE (2,50) I ALPHA, ALFAPD ,KRED, COEFF. DSR. DPS 

36 50 F0RNATI2X,l8,Ft0.4,I8,3F10,4) 

37 45 CONTINUE 

38 40 CONTINUE 

39 30 CONTINUE 

40 WRITE(2,60) 

41 60 FORMAT(5X, END OF LOWER BOUND SOLUTION) 

42 STOP 

43 END 

44 FINISH 
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TABULATED SAMPLE SOLUTIONS OF THE UPPER AND 

LOWER BOUND FOR POLYGONAL AND AXISYiWETRIC 

DRAWING 
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TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 28.6 rrm O.D. x 9.52 rrm THICKNESS 
REDUCTION OF AREA: 21.61% 
OUTPUT TUBE SIZE 25.4 rrm O.D. 

/-v Upper bound Lower bound 

0) 
M-d 
3 w 

a 
(V Mean draw .Vfean die Mean draw Mean die 

r—t rH (J) 
a. a ;d a stress/yielc i pressure/ stress/yiel d pressure/ r—t 

stress yield stress stress yield stress 
1 I) 

•r-t UJ 
Sbi 
MO 

C t—i 
V hO 
3 § 
> 1 

-H 
1) -U 
o a 

(a /Y ) 
za' m 

(p/Y) 
tn 

(o /Y ) v za' nr 

c 

a 3 
ffl 

i ^ 

£ O 

2 0.54 0.02 2.0661 3.9779 0.6077 0.9964 
0.04 2.3101 2.8578 0.9416 0.9978 
0.06 2.4587 2.2407 1.1501 0.9990 
0.08 2.5648 1.8501 1.2298 0.9997 
0.10 2.6484 1.5809 1.2309 1.0000 

6 1.63 0.02 1.0401 3.1860 0.5314 0.9971 
0.04 1.1411 2.7135 0.8204 0.9981 
0.06 1.2194 2.3696 1.0749 0.9987 

0.08 1.2833 2.1083 1.2701 0.9992 

0.10 1.3374 1.9031 1.3971 0.9996 

LO 2.73 0.02 0.3062 2.9125 0.5147 0.9973 

0.04 0.8531 2.7252 0.7879 0.9982 

0.06 0.3936 2.5635 1.0426 0.9987 

0.08 0.9306 2.4226 1.2614 0.9991 

0.10 0.9647 2.2987 1.4333 0.9994 

L4 3.86 0.02 2.1694 7.4811 0.5073 0.9974 

0.04 2.3269 6.7690 0.7728 0.9982 

0.06 2.4614 6.1917 1.0260 0.9987 

0.08 2.5789 5.7145 1.2538 0.9991 

0.10 2.6837 5.3137 1.4467 0.9994 

18 5.02 0.02 2.4043 8.7732 0.5031 0.9974 

0.04 2.5088 8.3968 0.7641 0.9983 

0.06 2.6064 8.0570 1.0159 0.9987 

0.08 2.6983 7.7488 1.2484 0.9991 

0.10 2.7853 7.4681 1.4533 0.9993 
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TABLE A-4.1.2 THE UPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF HEXAGONAL TUBE FROM ROM) THROUGH A 
CYLINDRICAL DIE CN A POLTOCNAL PLUG 

INPUT TUBE SIZE: 26.99 mm O.D. x 8.89 rrm THICKNESS 
REDUCTION OF AREA: 10.66% 
OUTPUT TUBE SIZE: 25.4xrm O.D. 

Upper bound Lower bound 

Q) 
r—1 
SP 

T" 

ffll 
an 
•iHV. 
QC 

3 
i—» D 
a s 

D 
1 CrV^ 

j M 
i s f g 
i-3'gg 
a c/>—' 

c 
a> 
•H a. 
o 
•H C 
«H 0 
«H -H 

8 o 

Mean draw 

stress/yiel 
stress 
(a /Y ) 

za' m 

Mean die 
d pressure/ 

yield stress 

Mean drav 

stress/yiel< 
5 stress 

(a /Y ) v za' m 

Mean die 

i pressure/ 

yield stress 

( p / Y ) 
m 

2 1.05 0.02 
0.04 
0.06 
0.08 
0.10 

3.2388 
3.6601 
3.9212 
4.1097 
4.2595 

13.0959 
9.5102 
7.5060 
6.2271 
5.3409 

0.3088 
0.5424 
0.7636 
0.9369 
1.0498 

0.9980 
0.9984 
0.9989 
0.9993 
0.9996 

6 3.16 0.02 
0.04 
0.06 
0.08 
0.10 

0.5355 
0.5920 
0.6367 
0.6738 
0.7055 

3.4268 
2.9569 
2.6078 
2.3385 
2.1245 

0.2541 
0.4136 
0.5793 
0.7396 
O.S848 

0.9986 
0.9989 
0.9992 
0.9994 
0.9995 

10 5.29 0.02 
0.04 
0.06 
0.08 
0.10 

0.4945 
0.5328 
0.5663 
0.5962 
0.6233 

3.4965 
3.2183 
2.9860 
2.7891 
2.6202 

0.2427 
0.3841 
0.53C9 
0.6767 
0.8158 

0.9987 
0.9991 
0.9993 
0.9994 
0.9995 

14 7.46 0.02 
0.04 
0.06 
0.08 
0.10 

0.5024 
0.5313 
0.5582 
0.5833 
0.6070 

3.6041 
3.4441 
3.3002 
3.1702 
3.0522 

0.2376 
0.3710 
0.5066 
0.6463 
0.7801 

0.9987 
0.9991 
0.9993 
0.9994 
0.9996 

18 9.68 0.02 
0.04 
0.06 
0.08 
0.10 

1.3719 
1.4254 
1.4767 
1.5261 
1.5737 

10.7605 
10.4497 
10.1618 
9.8943 
9.6454 

0.2348 
0.3635 
0.4956 
0.6282 
0.7583 

0.9988 
0.9991 
0.9993 
0.9995 
0.9996 
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TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 26.99 mm O.D. x 8.89 rim THICKNESS 
REDUCTION OF AREA: 8.15% 
OUTPUT TUBE SIZE: 25.4 mm O.D. 

/—V Upper bound Lower bound 

0 
r - t & 

| 
w. 

• H 

Qi 

r - t (1) 

- a a 
ii tJ 
1 C — t 

I 0 

> f « i 
I - H - H 

: a w 

• P 
rf 
3 

3 = ^ § 
« M - H 

Q y 
0 - H 

tn 

Mean draw 

stress /yiel 

stress 
(a /Y ) 

za' m 

Vie an die 

d pressure/ 

yield stress 

(p/Y ) 
m 

Mean draw 

stress/yiel 
stress 
(a /Y ) v za' m 

Mean die 

d pressure/ 

yield stress 

2 2.34 0.02 
0.04 
0.06 
0.08 
0.10 

3.9176 
4.4468 
4.7769 
5.0157 
5.2056 

16.4255 
11.9934 
9.4961 
7.8949 
6.7820 

0.2550 
0.4709 
0.6847 
0.8602 
0.9814 

0.9983 
0.9986 
0.9989 
0.9993 
0.9996 

6 7.02 0.02 
0.04 
0.06 
0.08 
0.10 

2.2232 
2.4637 
2.6554 
2.8148 
2.9520 

14.6811 
12.7423 
11.2872 
10.1558 
9.2517 

0.1986 
0.3336 
0.4792 
0.6250 
0.7617 

1 0.9989 
0.9991 
0.9993 
0.9994 
0.9995 

10 11.66 0.02 
0.04 
0.06 
0.08 
0.10 

2.3528 
2.5361 
2.6980 
2.8433 
2.9755 

17.0116 
15.7551 
14.6926 
13.7831 
12.9962 

0.1868 
0.3C23 
0.4259 
0.5522 
0.6760 

0.9990 
0.9992 
0.9994 
0.9995 
0.9996 

14 16.27 o.ce 
0.04 
0.06 
0.08 
0.10 

3.5528 
3.7628 
3.9584 
4.1416 
4.3144 

26.3100 
25.1762 
24.1542 
23.2285 
22.3868 

0.1816 
0.2883 
0.4013 
0.5172 
0.6324 

0.9990 
0.9993 
0.9994 
0.9995 
0.9996 

18 20.83 0.02 
0.04 
0.06 
0.08 
0.10 

3.5060 
3.6813 
3.8469 
4.0041 
4.1542 

27.6629 
26.6545 
25.7351 
24.8939 
24.1218 

0.1787 
0.2804 
0.3871 
0.4964 
0.6058 

0.9991 
0.9993 
0.9995 
0.9996 
0.9996 
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TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 26.99 rnn O . D . x 7.93 rrm THICKNESS 
REDUCTION OF AREA: 10.24% 
OUTPUT TUBE SIZE: 25.4 mm O.D. 

Upper bound Lower bound 

tuO 
0) a 
RH r-t OJ 
hp 

-!-> <D 

I S g 

cnbc > i Jh 
V -H-pjbi 

arc z 
crfra 

Qa a 

•P 
a 
o 
•H 3. 
CJ 
<M S 

-H 
8 t» 
o 'H 

U 
3
 S^ 

' Is 0 

.Mean draw 
stress/yield 
stress 
(o /Y ) 

za' m 

Mean die 
pressure/ 
yield stress 

) Mean draw 

stress/yieJ 
5 stress 

(o /Y ) 
za' m 

Mean die 
Ld pressure/ 

yield stresi 

2 1.27 0.02 
0.04 
0.06 
0.08 
0.10 

2.8058 
3.1259 
3.3152 
3.4507 
3.5594 

10.8644 
7.4976 
5.7596 
4.6996 
3.9863 

0.3090 
0.5506 

! 0.7754 
0.9453 
1.0498 

I 0.9980 
0.9984 
0.9989 
0.9993 
0.9996 

6 3.81 0.02 
0.04 
0.06 
0.08 
0.10 

0.4839 
0.5347 
0.5727 
0.6031 
0.6287 

3.1570 
2.6138 
2.2384 
1.9637 
1.7542 

0.2478 
0.4083 
0.5757 

1 0.7369 
0.8814 

0.9986 
0.9989 
0.9992 
0.9994 
0.9995 

10 6.37 0.02 
0.04 
0.06 
0.08 
0.10 

0.6869 
0.7423 
0.7886 
0.8286 
0.8640 

5.0665 
4.5139 
4.0796 
3.7297 
3.4418 

0.2349 
0.3752 
0.5216 
0.6671 
0.8054 

0.9987 
0.9991 
0.9993 
0.9994 
0.9995 

14 8.87 0.02 
0.04 
0.06 
0.08 
0.10 

0.7468 
0.7927 
0.8337 
0.8710 
0.9053 

5.6508 
5.2568 
4.9212 
4.6322 
4.3808 

0.2283 
0.3604 

0.4965 
0.6329 
0.7654 

0.9988 
0.9991 
0.9993 
0.9995 
0.9996 

18 11.63 0.02 
0.04 
0.06 
0.08 
0.10 

0.7300 
0.7644 
0.7966 
0.8270 
0.8557 

5.4422 
5.2103 
5.0012 
4.8119 
4.6397 

0.2261 
0.3519 
0.4818 
0.6125 
0.7407 

0.9988 
0.9992 
0.9993 
0.9995 
0.9996 

22 14.35 0.02 
0.04 
0.06 
0.08 
0.10 

3.1558 
3.2763 
3.3920 
3.5032 
3.6105 

9.4421 
8.8023 
8.2062 
7.6498 
7.1295 

0.2240 
0.2240 
0.4722 
0.5989 
0.7239 

0.9988 
0.9992 
0.9994 
0.9995 
0.9996 
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TABLE A-4.1.7 THE UPPER AND LOWER BOUND SOUUTIOTS FOR THE 

DRAWING OF OCTAOCNAL TUBE FRCM ROUND THROUGH 

A CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 31.75 rrm O.D. x 9.52 rrm THICKNESS 
REDUCTION OF AREA: 39.56% 
OJTFUT TUBE SIZE: 25.4 rrm O D . 

Mean draw 
stress/yield 
stress 

Mean die 
pressure/ 
yield stress 

Lower bound 

Mean draw I Mean die 
stress/yield pressure/ 
stress yield stress 

1.0980 
1.3702 
1.3654 
1.2859 
1.2226 

0.9941 
0.9982 
1.0000 
1.0003 
1.0002 

1.0511 
1.4762 
1.7089 
1.7642 
1.7097 

0.9946 
0.9972 
0.9988 
0.9998 
1.0002 

1.0389 
1.4979 
1.8244 
1.9991 
2.0419 

0.9947 
0.9969 
0.9984 
0.9993 
0.9999 

1.0333 
1.5071 
1.8812 
2.1300 
2.2541 

0.9948 
0.9968 
0.9981 
0.9990 
0.9996 

1.0301 
1.5122 
1.9151 
2.2132 
2.3989 

0.9948 
0.9968 
0.9980 
0.9988 
0.9994 

1.0279 
1.5155 
1.9378 
2.2710 
2.5041 

0.9948 
0.9968 
0.9979 
0.9987 
0.9992 



A63 

TABLE A-4.1.1 THE CPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF HEXAGONAL TUBE FROM ROUND THROUGH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 31.75 mn O.D. x 9.52 rrm THICKNESS 
REDUCTION OF AREA: 35.94% 
OUTPUT TUBE SIZE: 25.4 rrm OS). 

r Upper bound Lower bound 

I sp 
H rH 1) 
fcp as 
L j ^ p ® 

§ 2 
m sua > r X 
OJ-S 3'% Q 
|H—' cr* 3; x 
p s w M v 

G 
0J 
•H 2. 
O 

- =*H -H 
3 o 

J J -H 
-i U 
5ll C «H 
J d 
3 D =M 
H S 0 

Mean draw 
s tress /yielc 
stress 

( a z a / V 

Mean die 
pressure/ 
yield stress 

<p/V 

Mean draw 
stress/yiel 

; stress 

Mean die 
.d pressure/ 

yield stress 

< p / v 

2 0 . 8 1 0.02 
0.04 
0.06 
0.08 
0.10 

5.9384 
6.4796 
6.7877 
7.0030 
7.1726 

5.2951 
3.5707 
2.7065 
2.1877 
1.8418 

1.0071 
1.2958 
1.3187 
1.2551 
1.1989 

0.9944 
0.9980 
0.9999 
1.0G03 
1.0002 

1 6 2.43 0.02 
0.04 
0.06 
0.08 
0.10 

2.2836 
2.4819 
2.6242 
2.7349 
2.8260 

3.4704 
2.8015 
2.3560 
2.0383 
1.8004 

0.9411 
1.3432 
1.5803 . 
1.6564 
1.6259 

0.9951 
0.9973 
0.9988 
0.9997 
1.0001 

llO 4.08 0.02 
0.04 
0.06 
0.08 
0.10 

1.7829 
1.9053 
2.0032 
2.0848 
2.1551 

3.o463 
2.7233 
2.4059 
2.1590 
1.9617 

0.9246 
1.3474 
1.6597 
1.8400 
1.9009 

0.9952 
0.9972 
0.9984 
0.9993 
0.9998 

J14 5.76 0.02 
0.04 
0.06 
0.08 
0.10 

2.3474 
2.4748 
2.5833 
2.6780 
2.7625 

4.4302 
3.9861 
3.6289 
3.3354 
3.0903 

0.9171 
1.3482 
1.6973 
1.9394 
2.0718 

0.9953 
0.9971 
0.9982 
0.9990 
0.9996 

| 18 7.48 0.02 
0.04 
0.06 
0.08 
0.10 

3.3003 
3.4435 
3.5706 
3.6853 
3.7903 

6.4454 
5.9495 
5.5312 
5.1740 
4.8653 

0.9127 
1.3483 
1.7192 
2.0016 
2.1866 

0.9954 
0.9971 
0.9981 
0.9989 
0.9994 

I 22 9.28 0.02 
0.04 
0.06 
0.08 
0.10 

5.9063 
6.1130 
6.3023 
6.4774 
6.6409 

11.7439 
11.0431 
10.4310 
9.8918 
9.4136 

0.9099 
1.3482 
1.7337 
2.0444 
2.2692 

0.9954 
0.9971 
0.9981 
0.9987 
0.9992 
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TABLE A-4.1.7 THE UPPER AND LOWER BOUND SOUUTIOTS FOR THE 

DRAWING OF OCTAOCNAL TUBE FRCM ROUND THROUGH 
A CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 37.75 rrm O.D. x 9.52 am THICKNESS 
REDUCTION OF AREA: 40.96% 
OUTPUT TUEE SIZE: 25.4 rrm O.D. 

-

•M 
C 

Upper bound Lower bound 

0 
l—l 
sp 

1 0 
•H ' 

l t 
: 

•Hv. 
Q fi 

d 
rH U 
a a 

N JJ (J) 

13M 
(i^Q 

I > i S 
•H -H b 

;d a 

«M S 
VH IH 
Q O 
0 -H 

in 

i1-
<U =M 

- S 0 

Mean draw 

stress/yield 
stress 
(a /Y ) 

za' nr 

Mean die 
pressure/ 
yield stress 

( p / V 
m 

Mean draw 
s tress/yiel< 
stress 
(a /Y ) 

za' m 

Mean die 
i pressure/ 

yield stress 
(p/Y ) 

m 

2 0.20 0.02 
0.04 
0.06 
0.08 
0.10 

2.4639 
2.6750 
2.7946 
2.8780 
2.9436 

1.9868 
1.3357 
1.0107 
0.8159 
0.6862 

1.1341 
1.3992 
1.3834 
1.2977 
1.2319 

0.9940 
0.9982 
1.00C1 
1.0003 
1.0002 

6 0.62 0.02 
0.04 
0.06 
0.08 
0.10 

0.8747 
0.9463 
0.9974 
1.0370 
1.0695 

1.2001 
0.9650 
0.8094 
0.6988 
0.6162 

1.0951 
1.5290 
1.7594 
1.8062 
1.7420 

0.9944 
0.9971 
0.9988 
0.9998 
1.0002 

10 1.03 0.02 
0.04 
0.06 
0.08 
0.10 

0.7882 
0.8306 

0.8805 
0.9143 
0.9434 

1.2627 
1.0871 
0.9565 
0.8556 
0.7753 

1.0848 
1.5581 
1.8897 
2.0617 
2.0969 

0.9945 
0.9968 
0.9983 
0.9993 
0.9999 

14 1.46 0.02 
0.04 
0.06 
0.08 
0.10 

0.7574 
0.7971 
0.8305 
0.8595 
0.8852 

1.3125 
1.1725 
1.0612 
0.9708 
0.8959 

1.0800 
1.5708 
1.9545 
2.2055 
2.3258 

0.9946 
0.9967 
0.9981 
0.9990 
0.9996 

18 1.90 0.02 
0.04 
0.06 
0.08 
0.10 

0.7445 
0.7763 
0.8042 
0.8291 
0.8518 

1.3567 
1.2410 
1.1451 
1.G643 
0.9953 

1.0772 
1.5779 
1.9933 
2.2973 
2.4828 

0.9946 
0.9967 
0.9979 
0.9988 
0.9994 

22 2.37 0.02 
0.04 
0.06 
0.08 
0.10 

0.7388 
0.7648 
0.7883 
O.8C09 
0.8298 

1.3976 
1.3002 
1.2168 
1.1447 
1.0817 

1.0754 
1.5826 
2.0194 
2.3613 
2.5972 

0.9946 
0.9966 
0.9978 
0.9986 
0.9992 
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TABLE A-4 .1.8 THE tPPER AND LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF OCTAGONAL TUBE FRCM ROUND THROUGH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 26.99 inn O.D. x 8.89 rrm THICKNESS 
REDUCTION OF AREA: 11.63% 
CUIPUT TUBE SIZE: 25.4 run O.D. 

<D % 
a co 

a 3 
33 tuo 

ICQ a; 
TJ 

<D 
•ni 
2 3 

<D 
tbOTJ 
3 
rH 
a a 
-uj 0) 
S -I 

3 SP 

2 f 
•H -H 

I I 

C 
0) 

• H 3 . 
y 
:H S 
a-, O 

-H 
8tS 
O -H 

U 

CD « h 
s o 

Upper bound 

Mean draw 
stress/yield 
stress 

« W V 

Mean die 
pressure/ 
yield stress 

<P/*m> 
m 

Lower bound 

Mean dray/ LMean die 
stress/yield pressure/ 
stress yield stress 

« W < p / V 

0.59 0.02 
0.04 
0.06 
0.08 
0.10 

1.9488 
2.2017 
2.3587 
2.4721 
2.5621 

7.7633 
5.0491 
4.4634 
3.7053 
3.1793 

0.3300 
0.5704 
0.7942 
0.9666 
1.0762 

0.9979 
0.9984 
0.9989 
0.9993 
0.9996 

1.78 0.02 
0.04 
0.06 
0.08 
0.10 

0.5471 
0.6044 
0.6498 
0.6874 
0.7196 

3.4408 
2.9708 
2.6214 
2.3515 
2.1369 

0.2760 
0.4451 
0.6185 
0.7844 
0.9329 

0.9985 
0.9989 
0.9991 
0.9993 
0.9995 

10 2.99 0.02 
0.04 
0.06 
0.08 
0.10 

0.4234 
0.4560 
0.4845 
0.5100 
0.5330 

2.9498 
2.7135 
2.5163 
2.3493 
2.2063 

0.2646 
0.4163 
0.5721 
0.7255 
0.8705 

0.9986 
0.9990 
0.9992 
0.9994 
0.9995 

14 4.22 0.02 
0.04 
0.06 
0.08 
0.10 

0.4928 
0.5211 
0.5475 
0.5721 
0.5952 

3.4992 
3.3397 
3.1966 
3.0676 
2.9509 

0.2597 
0.4035 
0.5507 
0.6969 
0.8380 

0.9986 
0.9990 
0.9993 
0.9994 
0.9995 

18 5.501 0.02 
0.04 
0.06 
0.08 
0.10 

0.7526 

0.7856 

0.8174 

0.8480 

0.8776 

5.2569 
5.1423 
5.0336 
4.9306 
4.8327 

0.2569 
0.3961 
0.5383 
0.6800 
0.8181 

0.9987 
0.9991 
0.9993 
0.9994 
0.9995 
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TABLE A-4.1.9 THE UPPER A>D LOWER BOUND SOLUTIONS FOR THE 

DRAWING OF SQUARE TUBE FROM ROUND THKXXH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

L W T TUBE SIZE: 26.99 rrm O.D. x 7.62 mn THICKNESS 
REDUCTION OF .AREA: 5.61% 
OJTPtrr TUBE SIZE: 25.4 mn O.D. 

Upper bound Lower bound 

<D —( 

& 

M 
Si 
'n i „ 1 

cut: 

9 
t—i D 
a / 

N iJ 0 
S H / 
V tsfl 

) ^ 3 ( 
S d 

0 > 1 
•H -H 1 

' g11 ^ 

4-> 

s 
•H 3L 
O 
•H C 
«M 0 

-> Vi -H 

Q o 

G ^ 
d 

tf 
- S O 

Mean draw 

stress/yield 
stress 
(a /Y ) 

za/ m 

Mean die 
pressure/ 
yield stress 

( e / y 

1 Mean draw 

stress/yiel< 
s stress 

(a /Y ) 
za' m 

Mean die 
i pressure/ 

yield stress 

< e / V 

2 2 . 9 9 0.02 
0.04 
0.06 
0.08 
0.10 

14.9998 
16.7400 
17.7631 
18.4973 
19.0892 

60.6583 
41.5045 
31.7552 
25.8551 
21.9046 

1 0.2160 
0.4324 
0.6498 
0.8258 
0.9438 

0.9984 
0.9986 

' 0.9989 
0.9993 
0.9996 

6 8 . 9 2 

f 

0.02 

0.04 

0.06 

0.08 

0 .10 

2.9367 
3.2575 
3.4957 
3.6858 
3.8455 

20.3027 
16.7174 
14.2646 
12.4826 
11.1307 

0.1487 
0.2679 
0.4030 
0.5424 

1 0.6752 

0.9991 
0.9992 
0.9993 
0.9994 
0.9996 

10 14.75 0.02 
0.04 
0.06 
0.08 
0.10 

3.4550 
3.7438 
3.9846 
4.1917 
4.3746 

26.9145 
23.9277 
21.5898 
19.7116 
18.1711 

0.1345 
0.2297 
0.3369 
0.4504 
0.5646 

0.9992 
0.9994 
0.9995 
0.9995 
0.9996 

14 2 0 . 4 2 0.02 
0.04 
0.06 
0.08 
0.10 

3.6085 
3.8394 
4.0449 
4.2308 
4.4011 

28.9524 
26.8472 
25.0647 
23.5371 
22.2143 

0.1283 
0.2126 
0.3062 
0.4056 
0.5072 

0.9993 
0.9994 
0.9995 
0.9996 
0.9997 

18 25 . 89 0.02 
0.04 
0.06 
0.08 
0.10 

1.7363 
1.8280 
1.9123 
1.9904 
2.0634 

14.5340 
13.7299 
13.0245 
12.4012 
11.8469 

0.1248 
0.2028 
0.2884 
0.3790 
0.4721 

0.9993 
0.9995 
0.9996 
0.9996 
0.9997 

22 31 .11 0.02 
0.04 
0.06 
0.08 
0.10 

6.1123 
6.4033 
6.6714 
6.9208 
7.1550 

57.1004 
53.9408 
51.1712 
48.7251 
46.5507 

0.1226 
0.1965 
0.2766 
0.3612 
0.4483 

0.9993 
0.9995 
0.9996 
0.9997 
0.9997 
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TABLE A-4.1.10 TOE UPPER AND LOWER BOUND SOLUTION FOR THE 

DRAWING OF HEXAGONAL TUBE FRCM ROUND THRCUCH A 
CYLINDRICAL DIE ON A POLYGONAL PLUG 

INPUT TUBE SIZE: 26.99 rrm O.D. x 7.62 rrm THICKNESS 
REDUCTION OF AREA: 10.06% 
OUTPUT TUBE SIZE: 25.4 rrm O.D. 

Upper bound Lower bound 

0) rH 

T < M 
5 1 CA 
®3 
•H 

bfl 3 . „ rH QJ 
.0 ->-> <1) p C H ^ 

B g f > D-H-H - 3 | ( 
< Sen 3 

c 
© 

•H C «H 0 - -H 

E 

3 s o 

Mean draw 
stress/yielc 
stress 

( a z a / V 

Mean die 
i pressure/ 

yield stress 

m 

Vie an draw 

stress/yiel 
stress 
(a /Y ) v za' m 

.Mean die 
d pressure/ 

yield stress 

<p>V 

l 2 1.34 0.02 
0.04 
0.06 
0.08 
0.10 

28.8523 
31.9847 
33.8099 
35.1168 
36.1707 

110.0514 
74.5862 
56.7769 
46.0763 
38.9433 

0.3089 
0.5534 
0.7795 
0.9479 
1.0492 

1 0.9980 
0.9984 
0.9989 
0.9993 
0.9997 

6 4.03 0.02 
0.04 
0.06 
0.08 
0.10 

0.4803 
0.5305 
0.5673 
0.5964 
0.6208 

3.1629 
2.5766 
2.1824 
1.8995 
1.6868 

0.2452 
0.4G60 
0.5740 
0.7356 
0.8797 

0.9986 
0.9989 
0.9992 
0.9994 
0.9995 

10 6.73 0.02 
0.04 
0.06 
0.08 
0.10 

0.5961 
0.6449 
0.6850 
0.7191 
0.7491 

4.4833 
3.9419 
3.5265 
3.1979 
2.9318 

0.2317 
0.3715 
0.5177 
0.6631 
0.8011 

0.9987 
0.9991 
0.9993 
0.9994 
0.9995 

14 9.48 0.02 
0.04 
0.06 
0.08 
0.10 

0.7169 
0.7620 
0.8018 
0.8376 
0.8702 

5.5640 
5.1190 
4.4341 
4.1653 

0.2258 
0.3560 
0.4915 
0.6274 
0.7593 

0.9988 
0.9991 
0.9993 
0.9995 
0.9996 

18 1 .2.27 0.02 
0.04 
0.06 
0.08 
0.10 

0.7696 
0.8069 
0.8415 
0.8738 
0.9041 

5.9033 
5.5993 
5.3304 
5.0910 
4.8767 

0.2225 
0.3471 
0.4762 
0.6061 
0.7335 

0.9988 
0.9992 
0.9994 
0.9995 
0.9996 
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TABLE A-4.1.11 THE UPPER AND LOWER BOUND SOLUTIONS POR THE 
DRAWING OF OCTAGONAL TLBE FROM ROUND THROUGH 

A CYLLVDRICAL DIE ON A POLYGONAL PLUG 

INPUT TLBE SIZE: 26.99 rrm O.D. x 7.62 rrm THICKNESS 
REDUCTION OF AREA: 11.78% 
OUTPUT TUBE SI2Z: 25.4 rrm 

Upper bound Lover bound 

V 
r-» 

n 
If 
arc 
•-fv-
Q8 

1
 

B
 

f 
E
q
u
iv

a
l
e
n
t
 
p
lu

g
 

s
e
m

i-
a
n
g
le

 a
 

(d
e
g
r
e
e
s
) 

e
 

•J 

s 
2 a 
<M 0 
«M -H 

Q y 
0 *H 

u 

j 0 

Mean draw 
stress /yield 
stress 

< ° z a / V 

Mean die 
pressure/ 
yield stress 

Mean draw 
stress/yield 
stress 

(a /Y ) 
za' m 

Mean die 
pressure/ 
yield stress 

2 0.76 0.C2 
0.04 
0.06 
0.08 
0.10 

1.8572 
2.0586 
2.1763 
2.2605 
2.3282 

6.9106 
4.7019 
3.5858 
2.9129 
2.4634 

0.3458 
0.6013 
0.8303 
0.9953 
1.0900 

0.9976 
0.9983 
0.9989 
0.9993 
0.9997 

6 2.26 0.02 
0.04 
0.C6 
0.08 
0.10 

4.3332 
4.7807 
5.1096 
5.3702 
5.5884 

27.6833 
22.6025 
19.1729 
16.7043 
14.8441 

0.2836 
0.4609 
0.6418 
0.8119 
0.9602 

0.9984 
0.9988 
0.9991 
0.9993 
0.9995 

10 3.81 0.02 
0.04 
0.06 
0.08 
0.10 

0.5139 
0.5555 
0.5897 
0.6188 
0.6443 

3.7612 
3.3068 
2.9582 
2.6824 
2.4590 

0.2706 
0.4280 
0.5896 
0.7475 
0.8947 

0.9985 
0.9989 
0.9992 
0.9994 
0.9995 

14 5.38 0.02 
0.04 
0.06 
0.08 
0,10 

0.5190 
0.5515 
0.5001 
0.6058 
0.6291 

3.9477 
3.6256 
3.3579 
3.1321 
2.9392 

0.2648 
0.4132 
0.5652 
0.7156 
0.8594 

0.9986 
0.9990 
0.9992 
0.9994 
0.9995 

18 7.00 0.02 

0.04 

0.06 

0.08 

0.10 

3.2430 

3.4008 

3.5463 

3.6813 

3.8090 

24.5271 
23.2122 
22.0548 
21.0287 
20.1135 

0.2615 
0.4047 
0.5510 
0.6965 
0.8374 

0.9986 
0.9990 
0.9993 
0.9994 
0.9995 
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TABLE A-4.1.12 THE UPPER AND LOWER BOUND SOUTH (US FOR 
AXISYMMETTUC TUBE DRAWING 

INPUT TUBE SIZE: 
REDUCTION OF AREA: 
CUTFUT TUBE SIZE: 

28.6 rrm O.D. x 9.525 nm THICKNESS 
VARYING FRCM 15% TO 40% 
25.4 am O.D. 

Upper bound Lower bound 

•8 

Mean draw 

stress/yield 
stress 

Mean die 
pressure/ 
yield 
stress 

Mean draw Jean die 
stress/ | pressure/ 

yield 
stress 

(o /Y ) 
za' m 

yield 
stress 

( p / Y ) 
m 

3 

7.4450 
7.445C 
7.445C 
7.4450 
7.4450 

15 
15 
15 
15 
15 

0.0200 
0.0400 
0.0600 
0.0000 
0.1000 

0.1322 
0.1144 
0.0966 
0.0788 
0.0610 

0.8678 
0.8856 
0.9034 
0.9212 
0.9390 

|0.1339 
|0.2284 
0.3126 
0.3878 
0.4548 

0.8661 
0.7716 
0.6874 
0.6122 
0.5452 

6.0631 
6.0531 
6.0531 
6.0531 
6.0531 

20 
20 
20 
20 
20 

0.0200 
0.0400 
0.0600 
0.0800 
0.1C00 

0.2175 
0.2142 
0.2108 
0.2075 
0.2042 

0.7825 
0.7858 
0.7892 
0.7925 
0.7958 

0.2070 
0.3006 
0.3834 
0.4569 
0.5220 

0.7930 
0.6995 
0.6166 
0.5431 
0.4780 

4.6962 
4.6962 
4.6962 
4.6962 
4.6962 

25 
25 
25 
25 
25 

0.0200 
0.0400 
0.0600 
0.0800 
O.IOOO 

0.3077 
0.3192 
0.3308 
0.3424 
0.3540 

0.6923 
0.6808 
0.6692 
0.6576 
0.6460 

0.2833 
0.3755 
0.4567 
0.5283 
0.5912 

0.7167 
0.6245 
0.5433 
0.4717 
0.4088 

3.3729 
3.3729 
3.3729 
3.3729 
3.3729 

30 
30 
30 
30 
30 

0.0200 
0.0400 
0.0600 
0.0800 
0.1000 

0.4036 
0.4306 
0.4576 
0.4846 
0.5116 

0.5964 
0.5694 
0.5424 
0.5154 
0.4884 

0.3632 
0.4538 
0.5330 
0.6023 
0.6627 

0.6368 
0.5462 
0.4670 
0.3977 
0.3373 

2.0816 
2.0816 
2.0816 
2.0816 
2.0816 

35 
35 
35 
35 
35 

0.0200 
0.0400 
0.0600 
0.0800 
0.1000 

0.5061 
0.5492 
0.4576 
0.4846 
0.5116 

0.4939 
0.4508 
0.5424 
0.5154 
0.4884 

0.4474 
0.5360 
0.5330 
0.6023 
0.6627 

0.5526 
0.4640 
0.4670 
0.3977 
0.3373 
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TABLE A-4.1.12 TOE UPPER AND LOWER BOUND SOLLTTIONS FOR 
AXISY\WmiC TUBE DRAWLNG 

CONT'D. 

8 0.8213 40 0.0300 0.6164 0.3836 0.5366 0.4634 

8 0.8213 40 0.0400 0.6765 0.3235 0.6227 0.3773 

8 0.8213 40 0.0000 0.7365 0.2635 0.6966 0.3034 

8 0.8213 40 0.0000 0.7965 0.2035 0.7599 0.2401 

8 0.8213 40 0.1000 0.8565 0.1435 0.8140 0.1800 

12 11.1797 15 0.0200 0.1380 0.8620 0.0994 0.9006 

12 11.1797 15 0.0400 0.1250 0.8741 0.*I655 0.8345 

12 11.1797 15 0.0000 0.1139 0.8861 0.2269 0.7731 
12 11.1797 15 0.0800 0.1018 0.8982 0.2838 0.7162 

12 11.1797 15 0.1000 0.0898 0.9102 0.3365 0.6635 

12 9.1114 20 0.0200 0.2185 0.7815 0.1727 0.8273 
12 9.1114 20 0.0400 0.2163 0.7837 0.2384 0.7616 
12 9.1114 20 0.0000 0.2141 0.7859 0.2991 0.7009 
12 9.1114 20 0.0800 0.2118 0.7882 0.3551 0.5932 
12 9.1114 20 0.1000 0.2096 0.7904 0.4068 0.5932 

12 7.0823 25 0.0200 0.3009 0.6961 0.2493 0.7507 
12 7.0823 25 0.0400 0.3116 0.6884 0.3143 0.6857 
12 7.0823 25 0.0000 0.3194 0.6806 0.3741 0.6259 
12 7.0823 25 0.0800 0.3272 0.6728 0.4291 0.5709 
12 7.0823 25 0.1000 0.3350 0.6650 0.4796 0.5204 

12 5.0936 30 0.0200 0.3947 0.6053 0.3296 0.6704 
12 5.0936 30 0.0400 0.4128 0.5872 0.3937 0.6063 
12 5.0936 30 0.0600 0.4309 0.5691 0.4524 0.5476 
12 5.0936 30 0.0800 0.4490 0.5510 0.5061 0.4939 
12 5.0936 30 0.1000 0.4671 0.5329 0.5552 0.4448 

12 3.1465 35 0.0200 0.4919 0.5081 0.4143 0.5857 
12 3.1465 35 0.0400 0.5208 0.4792 0.4773 0.5227 
12 3.1465 35 0.0600 0.5497 0.4503 0.5868 0.4132 
12 3.1465 35 0.0800 0.5785 0.4215 0.6342 0.3658 
12 3.1465 35 0.1000 0.6074 0.3926 0.5042 0.4957 

12 1.2420 40 0.0200 0.5966 0.4034 0.5043 0.4957 

12 1.2420 40 0.0400 0.6368 0.3632 0.5658 0.4342 

12 1.2420 40 0.0600 0.6770 0.3230 0.6214 0.3786 

12 1.2320 40 0.0800 0.7172 0.2828 0.6717 0.3283 

12 1.2320 40 0.1000 0.7574 0.2426 0.7170 0.2830 

16 14.9288 15 0.0200 0.1408 0.8592 0.0814 0.9186 

16 14.9288 15 0.0400 0.1316 0.8684 0.1319 0.8681 

16 14.9288 15 0.0000 0.1224 0.8776 0.1797 0.8203 

16 14.9288 15 0.0800 0.1131 0.8869 0.2248 0.7752 

16 14.9288 15 0.1000 0.1039 0.8961 0.2675 0.7325 
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TABLE A-4.1.12 TOE UPPER AND LOWER BOUND 90LUTC0NS FOR 

AXISYVMETRIC TUBE DRAWING 

C O N T ' D . 

16 12.2061 20 0.0200 0.2191 0.7809 0.1549 0.8451 

16 12.2081 20 0.0400 0.2174 0.7826 0.2051 0.7949 

16 12.2081 20 0.0600 0.2157 0.7843 0.2524 0.7476 

16 12.2081 20 0.0800 0.2140 0.7860 0.2970 0.7030 

16 12.2081 20 0.1000 0.2123 0.7877 0.3391 0.6600 

16 9.5148 25 0.0200 0.3020 0.6980 0.2316 0.7684 

16 9.5148 25 0.0400 0.3079 0.6921 0.2813 0.7187 

16 9.5148 25 0.0600 0.3J38 0.6862 0.3281 0.6719 

16 9.5148 25 0.0800 0.3197 0.6803 0.3721 0.6279 

16 9.5148 25 0.1000 0.3256 0.6744 0.4134 0.5866 

16 6.8567 30 0.0200 0.3903 0.6097 0.3121 0.6879 

16 6.8567 30 0.0400 0.4040 0.5900 0.3613 0.6387 

16 6.8567 30 0.0600 0.4177 0.5823 0.4073 0.5927 
16 6.8567 30 0.0800 0.4314 0.5686 0.4505 0.5495 
16 6.8567 30 0.1000 0.4451 0.5549 0.4908 0.5092 

16 4.2412 35 0.0200 0.4848 0.5152 0.3971 0.6029 
16 4.2412 35 0.0400 0.5067 0.4933 0.4455 0.5545 
16 4.2412 35 0.0600 0.5285 0.4715 0.4906 0.5094 

16 4.2412 35 0.0800 0.5503 0.4497 0.5327 0.4673 

16 4.2412 35 0.1000 0.5721 0.4279 0.5720 0.4280 

16 1.6753 40 0.0200 0.5867 0.4133 0.4873 0.5127 

16 1.6753 40 0.0400 0.6171 0.3829 0.5347 0.4653 

16 1.6753 40 0.0000 0.6474 0.3526 0.5787 0.4213 

16 1.6753 40 0.0800 0.6778 0.3222 0.6196 0.3804 

16 1.6753 40 0.1000 0.7081 0.2919 0.6574 0.3426 
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A-5 EQUATIONS FOR EQUIVALENT AXI SYMMETRIC DRAWING 

The corresponding upper bound solution for tube 

axisymnetrtc drawing {13} is as follows:-

2 2 D2 02 
a R - R . i R . - R.. 

U n < 3 - U 2 ) 

Y o _ R o K - K. 
m R - R. u aoa " ia oa ia 

R tana - R. tan8 o 
(_J* ia ) } + 1 

R ob t a m - Rib t a n B / 3 iRdb-*lb)2 

(R^ -R^ ) 
{ & ib (R tan8-R . tana) • 1 3 v ib ob 

2 1 { ° (R. tan0-R tana) 

+ — —o f) o 3 i* oa 
/3 (R2 -R? ) 

oa ia 

+ R R. (R -R.n)(Riatax» " R oa t a n 6 ) } 

oa ia oa ia ia oa 

V o b - y , l n
( ! * 3 b ) 

R -R. - a__+R. 
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In R , •-R.. In 
^ ob ib^ ( O b lb^ 

nu 0 R -R. R +R 
+ -2 Sec 8 { <» i a o a o a } 

/3 tana-tan 8 tam+tan8 

where m^ and m2 are constant friction factors on the die-tube 

and plug-tube interfaces respectively. 

a is the mean die semi-angle 

8 is the mean plug semi-angle 

R . is inlet tube external radius 
ob 

R., is inlet tube bore radius 
lb 

R is outlet tube external radius 
oa 

R. is outlet tube bore radius 
ia 

The corresponding lower bound solution for tube 

axi-symnetric drawing (6) is as follcws:-

t B * 
Ha = 1 * 1 (l - (-*) } (3.113) 

Y B* 
m 

U i n , 2 
where B* = 

tarn-tang 

u and u„ are the mean coefficients of friction on the 
1 2 

die-tube and plug-tube interfaces respectively, 
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a is the mean die semi-angle, 

8 is the mean plug semi-angle, 

t^ is inlet tube wall thickness, 

t is outlet tube wall thickness. 
a 

The die or plug pressure in both cases is 

o 
a (3.114) 

Y 
m 


