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Abstract

In this study, we introduce a mixed distribution by mixing the distributions of negative binomial and three
Parameter Lindley distribution This new mixed distribution has a thick tail and may be considered as an
alternative for modelling count data with overdispersion. The properties and special cases of the compound
distribution are studied. In addition, the parameter estimation for the compound distribution via the method of
moments (MME) and the Maximum Likelihood Estimation (MLE) are provided. We present the performance
of the Poisson, NB, L3,NBL, NBL2 and NBL3 distribution using real data in terms of log-likelihood, p-value,
AIC (Akaike Information Criteria), BIC(Bayesian Information Criteria) and Kolmogorov-Smirnov statistic. It
is shown that the negative binomial three parameter Lindley distribution provides a better fit compared to the

other distributions under study for fitting over dispersed count data.
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Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

In this chapter, a background of studying mixture distributions is discussed. A
brief description of the research problem is given, followed by the objectives of
the study.

1.2 Background Information

Since 1894 the concept of mixture distribution was studied by a number of au-
thors such as Blischke who defined mixture distribution as a weighted average
of probability distribution with positive weights, which were probability distri-
butions, called the mixing distributions that sum to one.

The Poisson distribution is typically used to fit count data when the number
of events is randomly distributed over the time and/or space over which the event
counts occur. In practice, however, observed count data often exhibit features
such as overscattering and underscattering that commonly occur in applied data
analysis(Rainer, 2000). Greenwood and Yule (1920) proposed a model with a Pois-

son mean gamma, or negative binomial (NB) distribution. The NB distribution
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is gaining popularity as a more flexible alternative to the Poisson distribution
(Johnson et al.,)

In most cases, for mixed distributions, especially mixed Poisson binomial and
mixed negative binomial, Increased customizability of count data compared to
others handouts.

The overdispersion problem is usually solved by introducing mixed NBs. dis-
tribution. Several studies have shown that the mixed NB distribution fits the
count data better. Compare with Poisson and NB distributions. These include
the negative binomial beta exponential (Pudprommaratet al.2012) and the neg-
ative binomial Erlang (Kongrod et al. 2014). The Lindley distribution is It has
been popularized by many researchers in recent years. Lindley distribution is a
mixture of exponential distributions

The NB distribution is suitable for scattered count data that are not necessar-
ily strong. A very heavy tail implies overdispersion, but the opposite is not true
(Wang, 2011). Traditional statistical distributions and models, such as Poisson
and NB distributions, cannot be used effectively for count data with strong tails.
The Poissondistribution tends to underestimate the number of zeros given the
mean of the data, whereas the NB distribution may overestimate the zeros and
underestimate the observations to qualify as count data.

Many researchers have proposed mixed distributions. It is one of the most
important methods for obtaining new probability distributions in applied prob-
ability and operations research (Gomez-Déniz et al., 2008). In this work, we con-
sider mixed NB distributions as a more flexible alternative for analyzing count
data, especially countdata with overdispersion. It is a combination of the NB

distribution and the three-parameter Lindley distribution.
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1.3 Research Problem

The traditional statistical distributions, such as the Poisson and Negative-Binomial
distributions, cannot be used effectively for heavy-tail count data. we are there-
fore considering the mixture Negative Binomial-3 Parameter lindley distribution
as a more flexible alternative to analyze overdispersed count data.

1.4 Ojectives

The main objective of this study is to propose a mixture of Negative Binomial
and three parameter Lindley distributions that can be used to analyze count data

with overdispersion.

1.4.1 Specific objectives

1. To study the properties of negative binomial three parameter lindley distribu-
tion and identify the special cases.

2. To estimate parameters of the distribution by using MLE and method of
moments.

3. To compare efficiency of proposed distribution over Posisson, negative
binomial, Three parameter Lindley, Negative Binomial Lindley and Negative Bi-
nomial weighted Lindley distributions.



Chapter 2

LITERATURE REVIEW

2.0.1 Introduction

In this chapter, we look at various work that has been done in the literature on
mixtures of Negative Binomial and Lindley distributions.This chapter provides
related literature useful in undertaking our research.It con- sists of researcher’s
critique and comparisons from other studies related to our area of interest They
include methodologies used,theoretical or conceptual framework,relationships
and differences between studies Critical aspects of reviewing the literature in
clear and systematic way from existing studies has been done and missing gaps

identified

2.0.2 Mixed Negative Binomial distributions

Lindley (1958) at first proposed a one-parameter distribution called the Lindley
distribution which is a finite mixture of exponential (6) and gamma (2, ) distri-
butions. where 0 represents the scaling parameter.

Bowman et al (1992) derived a large number of new Binomial mixtures distri-
butions by assuming that the probability parameter p varied according to some

laws, mostly derived from frullani integrals. They used the transformation e =
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p~! and considered various densities for the transformed variables. They also
gave graphical representations for some of the more significant distributions.

Alanko and Duffy (1996) developed a class of Binomial mixtures arising from
transformations of the Binomial parameter p as 1 — e~* where 1 was treated as
a random variable. They showed that this formulation provided closed forms
for the marginal probabilities in the compound distribution if the Laplace trans-
form of the mixing distribution could be written in a closed form. They gave ex-
amples of the derived compound Binomial distributions; simple properties, and
parameter estimates from moments and maximum likelihood estimation. They
further illustrate the use of these models by examples from consumption pro-
cesses.

G’omez (2006) proposed a new compound negative binomial distribution by
mixing the p negative binomial parameter with inverse Gaussian distribution.
Basic properties of the new distribution were given, three estimation of paramet-
ers method were given using method of moments, maximum likelihood method
and zero proportion method. Finally, examples of application for both univariate
and bivariate cases were given.

Zamani and Ismail (2010) came up with negative binomial - Lindley distribu-
tion which provides a better fit compared to the Poisson and the negative bino-
mial for count data where the probability at zero has a large value. They gave
simple properties, and parameter estimates from method of moments and max-
imum likelihood estimation. They also illustrated the use of model by examples
from insurance count data.

Bodhisuwan and Zeephongsekul (2012) introduced a new distribution and

a more flexible alternative to Poisson distribution when count data are over-
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dispersed in the form of a Negative Binomial — Beta Exponential (NB — BE) dis-
tribution. They gave properties and parameters estimation using maximum like-
lihood method.

Shanker and Mishra (2013a, 2013b), Shanker and Amanuel (2013), and Shanker
et al. (2013) Obtain various forms of the two-parameter Lindley distribution,
they They discussed various properties such as skewness, kurtosis,hazard rate
function, meanremaining lifetime function, probabilistic order, Mean Deviation,

Stress Intensity Reliability.



Chapter 3

REVIEW OF POISSON,AND RELATED DISTRIBUTIONS

3.1 Introduction

In this chapter, a review of distributions used to fit count data is discussed. These
distributions include Poisson, Negative Binomial distribution, One Parameter
Lindley Distribution, Two Parameter Lindley Distribution, Three Parameter Lind-
ley Distribution, Negative Binomial One Parameter Lindley Distribution, Negat-

ive Binomial two parameter Lindley Distribution.

3.2 Poisson Distribution

A random variable X is said to have a Poisson distribution with parameter u if it
takes integer values x = 0, 1, 2, . . . with probability

e A
x!

f(x;2) =

:x=0,1,2,... and 1 > 0. (3.2.1)

In actuality, however, observed count data frequently exhibit characteristics
like over- or under-dispersion, which are typical in applied data analysis (Rainer,
2000).
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Because the Poisson distribution has an equal mean and variance, any factor

that influences one will also affect the other.

3.3 The Negative Binomial Distribution

As a more adaptable substitute for the Poisson distribution, the NB distribution
has grown in popularity (Johnson et al., 2005).The Negative Binomial (NB) dis-
tribution is another distribution for count data. The NB distribution is often em-
ployed in case where a distribution is over-dispersed, i.e., its variance is greater
than the mean which relaxes the equality of mean and variance property of the
Poisson distribution. If X denotes a random variable distributed under a NB dis-
tribution with parameter r and p, then its probability mass function (pmf) is given

by:

X+r—-1
fCer,p) = pPA-p*x=01.,r>00<p<1 (33.1)

Case 1 Let X= the total number of failures before the rth success. therefore
x+1-1= the total number of trials before the rth success. Therefore,

B = Prob(X = k)

= [probability of having (r-1) successes out of (x+r-1) trials] x probability of
achieving the rth success].



THE NEGATIVE BINOMIAL DISTRIBUTION

x+r—1 o
= p"'q"lp
r—1
x+r—1 .
- qp
r—1
x+r—1
= q“p’ . k=0,12...
k

Case 2 Let Y be the total number of trails required to achieve r successes. If

Y=k then k-1= the number of trials required to obtain the first (r-1) successes

B = Prob(Y = k)

=[Probability of obtaining r-1 successes out of k-1 trials]x [probability of obtain-

ing the rth success]
k-1
= P p
r—1
k-1

- "D, k=t, 141, 142,
r—1
Its mean and variance are

EX) = r(l—;—”) (33. 2)

and

var(o) = r: ;2" ) (33.3)

respectively

For X =~ NB(r, p), the parameter p can be represented in terms ofrias p=

10
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r s 3 T - .
e where u is the mean response and r is the inverse of the dispersion parameter.

Therefore the probability mass function of x can be written as follows:-

L y—E—px=012,...

fGer,p) =I‘(r+x)(#+r ey

where y >= 0,r > 0I'(.) is a complete gamma function. Then, its mean and

variance can be defined as

E(x)=pu

var(x) = u + (%)#2

We are going to apply the following identity to derive the moment generating
function of the negative binomial distribution:-
-r x+r-1
= (-1)"
x b
we can prove that in this in the following way

11
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( = 3 ) _ (=r)=r-1).... (=r—x+1)
- x!
x
r+x-=1..0r+r

=1y x!
x+r—1
X

0 -1
M(:)=Ze”‘(x+r )(l—p)"*p’

Now,

x=0 X

Grouping terms and using the above identity we get,

® [ x+r—1
M(,)=p’2(x ' )[e‘(l—p)l"

x=0 X

Ms

=p’ ( e )(—1)" [e'(L - p)IF
x=0 b
X [ —-r
=p' Z ( ) [ - p))*
x=0 b

By using Newton'’s Binomial theorem,

(x+1)’=i(r)x‘
i=1\ i

12

provided that | x |< 1.
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the last term becomes

Mgy = (3.1.4)

p
[1-Q1-ple]
provided that t < —log(1 — p)

3.4 One Parameter Lindley Distribution

This is a finite mixture of an exponential distribution and gamma distribution
given as follows; Let,

fi(x) = 6e7%* x,6 > 0, which is exponential with parameter 0.

J2(x) = 6%x which is gamma distribution with parameters 2 and 6

its pdf is given by

f(x;6) = %(1 + x)e~8* (34.1)

x,6>0

It is clear that this distribution is a combination of the exponential distribu-
tion with parameter 6 (or Gamma distribution(1, 8)) and Gamma distribution
with parameters (2, ) as follows:-

f(x:6) = mf1(x) + (1 — 7)f2(x)

where the mixing proportion 7 is equal to

13
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6
6+1

35 The Negative Binomial Weighted Lindley distribu-
tion

Sunthree et al. (2018) created this brand-new mixed NB distribution, which is an

NB-WL distribution created by combining the NB distribution with a WL distri-

bution. This distribution consists three parameters, namely, r,6 and a.
TheoremLet X | A be a random variable following a NB distribution with

parametersrand p = exp(—1),X | A ~NB(r,p = exp(—2)). If A is distributed as

the WL distribution with positive parameters 6 and a, denoted by 1 ~ WL(6, @)),

then X is called a NB-WL random variable.
Theorem 1. Let X ~ NB-WL(r, 6, a). The pmf of X is given by

rex=1\&[ x G-a)B—a+r+j+1)
f(x.r.e,a)-( i )12_%( -)(_1)1(9—a+1)(9—a+r+j)2' x=0,1,2,..
=0’y J
(34.1)
where 8 > 0and 6 > a
Proof. f X | A ~ NB(r, p = exp(—2)) and A ~ WL(6, @)), then the pmf of X
can be obtained by f(x) = [~ fi(x | )g(4;6,a)dA, where f(x | 1) is express

as

14
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r+x-1
ilx|A)= ( )exp(—lr)(l — exp(—2))*
x

=(””"l )Z(" )(—wexp(—zt(ru»
x J=0\ j

By substituting f;(x | ) into f(x) = Jo° fi(x | )g(A; 6, a)dA, thus

x j=o\ j

=1 X
- ( T )Z ( ) )(—1)'MA(—(r+j))
X j=0\ j

Substituting M;(—(r + j)) the mgf of the WL distribution in the equation

f) = ( ol )Z ( Y )(-1)1 ( f exp(—A(r+j»g(A;e,a)dA)
j 0

above, the pmf of the NB —WL(r, 6, @) is given as

r+x-1 x X (6—a)b-a+r+j+1)
fGar6,a) = ( ; )ZJ=0( j )(_l)l(e—a+l)(9—a+r+l)z'
The pmf of the NB-WL distribution of some specified values of r, 6 and a are

as shown

15
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et theta=1 alpha=0.5

0s

s

(L}

f(x)

f(x)

Theorem 2. If X ~ NB — WL(r, 6, @), the factorial moment of order aof X is

yoon Tr+a) - @ B-a)6—a+r+j+1) B
#aX) ="y~ Z%( 7 )(—I)J(G—a+1)(9—a+r+j)2' x=0,1,2,..

(3.4.2)

for8>0and 6 > ¢.
Proof: According to Gomez-Déniz et al. (2008), the mixed NB distribution’s
factorial moment of order a can be written in terms of an elementary function

by

rr+a)(1- exp(—).))") - I'(r+a)

et = Ex ) exp(—4a) G

E;(exp(d) — 1)

Using the binomial expansion of (exp(1) — 1)?, then pg(X) can be written as

16
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' 2. r(r+ a) l"(r+a) .
paX) =~ ,ZE,( )( ~1VEx(exp(a—)) = 1o 12_%( )(—I)JMA(a—J).

From the mgf of the NWL distribution with t = a — j, the uy(X) is finally

given as

Jj=0

p l"(r+a) gy 6-a)@-¢+r+j+1)
HalX) = E( )( l)1(6—4’+1)(6—<I’+r+j)2'
_Definition 2. Let X ~ NB-WL(r, 6, a). some properties of X are as follows

1. The first two moments about zero of X are

EX)=r(w-1),
E(X?)=r(r+ Vw; —r(2r+ 1)w, +r2,

2. The mean and variance of X respectively, are

EX)=rw-1), o

Var(X) = r(r + 1)1172 — r(l + rw)wl.

(6—a)(@—a+k+1)

where @) = :
k= (@—a+1)(@-a+k)?

17
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3.6 Three Parameter Lindley Distribution

R. Shanker et al(2017) introduced a three parameter Lindley Distribution
62
fOx;a,B,6) = m(a + pA)e~0x (3.5.1)
x,B,a,6>0,a6+8>0
This distribution can easily be expressed as a mixture of exponential (8) and
gamma (2, 6) with mixing proportion

ab
ab-p

we have

f(x;6,a,8) = pgi(x) + (1 — p)ga(x)

_ ba
P=Ba+p
gi(x) = 6e~°*

g,(x) = 6%xe%%

18
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Proof

f(x)=p, *I'(1,6) + p, = I'(2,6)

__ab —6x B -
= 20 p0 ) @™
62 BOOX . o,

=@+iglet—a@ k ’

_ e ﬁ(ex) -
e G e U

<= 62 [ —Bx

= 0+8 a+ Bxle

= eej_ 5[a + Bx]e % (35.2)

The graph of the pdf of the Three parameter Lindley distribution for different

values of 6, 8, with a constant value of a are as shown below:-

19
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o [ ¢
o™ i Pdf plot of L3 at alfa=1
: — theta=1 beta=5
£ ---- theta=15 ,beta=10
w Ha theta=2 ,beta=15
- T 000 s - theta=2 5 beta=20
{ --- theta=3 beta=30
= o] °
= -— "
g
:
w |
- i
o _| \\ __________________________
o
1 1 | | \
0 1 2 3 4

Figure 2.1 displays the probability density function’s shapes. They claim that
the parameter 6, whereas f is the weight parameter, is a shape parameter since

various values of theta alter the overall shape.

20
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The cumulative density function

= g
F(x) = l mf(x)dx

oo 62
= f —_[a+ Bx]e%dx
0

ab + B
F(x) = ¢ f D‘,[a + Bx]e ®*dx
T ab+B ),
62
=w+p
I = f (Bx + a)e~*dx
0
=fx+a= -g—: — ﬁ
dv=e*=v=| e%dx= e
g g
T —0x ® _p,—6x
I, =[—(Bx+e+)e]8°-f 52 dx
()
®  p.-6x
0
du
u=-0x= e -0
a
=5 e“du

_ —(Bx+a)e®* peox
6 62

F(x) = -GC;L-I-ﬁ /; (Bx + a)e™®*

21
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_ —B(Bx+ ) e

Ga+B  Ba+p
_ (6Bx + 6+ B)e”®
T Ba + B
- OBa | _ox
F(x)-1—[14.___9‘!_"5]e ]
F(x;6,a,)=1-[1+ ee‘i"ﬂle-ex

x,6,>0,6a+p>0

—1—(148%%) o
F(x)6,a,8)=1 (1+6+B)e
Theorem Let A be a random variable with the parameters a, 8 and € in a

three-parameter Lindley distribution. Then, A’s mgf is provided by

M;(t) = E(e")

- 25 St =
M;(t) = E(e?) = f e”1 g B(a + BA)e%4dA
Proof: ea+ ﬁ[ f e A®-Dda + B f Ae~4E- ‘)d}.]
- ea+ﬁ [“ e—t *5((9_-'5)] N 6a+ﬁ [a(?e_—tz;ﬁ
- iw"i (35.2)

where

22
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_al6-2)+B

- (e-2p
w_a(6—1)+ﬁ
1T(e-1p
wo = “66“;3.6 #0,1,2.

23



Chapter 4

THE NEGATIVE BINOMIAL-THREE PARAMETER LINDLEY DISTRIBUTION

4.1 Introduction

In this chapter, a new distribution which is a mixture of Negative Binomial and
Three parameter Lindley distribution is Introduced. Its properties are studied,
including its special cases. A simulation study is conducted to determine the
consistency of the parameter estimates of the new distribution and finally data
analysis is done to compare the performance of the new distribution over all

other related distributions.

4.2 Definition

If the random variable X complies with the following stochastic formulation, it

has a Negative Binomial-Three Parameter Lindley distribution.

X|rA~NB(r.p=e*) (4.2.1)

and

A~LyA| @B, 6) (4.2.2)

24
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where,x > 0,r> 0and 6,a,8 > 0.

ez

A~fd|apB,0)= Ba+ B

(a + BA)e®*

distribution refers to three Parameter Lindley distribution as proposed by Shanker
et al (2017)

Theorem 4.2.1 Let X be a random variable which follows a Negative Bino-
mial three parameter Lindley distribution with parameters r,a, 8 and 6. Then,
the pmf of X is given by Pr(X = x | r,a, 8, 6)

X¥#r=1 2 X[ x a@+r+j)+B] .
a6+ﬁjzo j (_l)"[ @+r+j2 I’ x=0,1,..

X
(4.2.3)

where a > 0,8 > 0and 6 > 0.

Proof: If X | r,A ~ NB(r,p = e*) and 4 ~ Ls(a, B, 6), then the marginal
distribution for X can be obtained using

PrX =x|r,a,p.0) = f; PiX =x | r,A)f(1| a,B,6)dA

Know that

(1- e-‘)x =), * (—1)e 4 (4.2.4)
=\ j
Therefore,
— 1 X
PriX=x|r,A) = ( i ) Z ( * )(—1)’e“"*” (4.2.5)
x j=o\ j
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By using marginal distribution formula above, the pmf of the NBL; distribu-
tion can be obtained as

Pr(X = x| r,a,B.6)
| ( x4+r-1 ZLO( X )(_l)j j;)‘” e—l(r+1)f(l | a, B, 0)dA
J

b 4

x+r—1

¥ x
i (Rl SV BTG 426
x J
where M;(t) is the moment generating function (mgf) of Ly(a., B, 6).
Therefore the probability mass function of the three parameter Lindley Neg-
ative binomial distribution will be given by:-

x4r=1 x a(@+r+)+B].
Pr(X = x| r.aB.6) = » )a9+ﬁ %j=0 j = 1)1[ @+ I’
x=0,1,.. (2) 427
where a > 0,8 > 0and 6 > 0.
and the corresponding cdf is
r+s—1 s s
I:x(x) — Zssx f!(x) — ZSSX 21:0 "
s J
gesL [
(—1)194—1 ((6+r+j)= * (6+r+j)ﬁ) 428

43 Properties of Negative Binomial Three Parameter

Lindley distribution

43.1 Shape of the Probability function

The graph of the pdf of the Negative Binomial three parameter Lindley distribu-

tion for different values of 8, B, a and r are as shown below:-
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f(x)

Figare 4
w
- Pdf plot of NBL3 at oc=5
— p=5 0=2, r=1,
e B=10, 0=4, r=2
''''' p=15, 0=6, r=3,
8 S ﬂ=20' 0=8, r=4,

05

0.0

——- p=25 0=10,r=5

Based on the figure, the pmf of NBL3 has the lowest mass at zero and the

probability is significantly small at zero, when 6, B, r are large. However, when

these parameters are small, the pmf of the NBL3 is right-tailed and has the highest

mass at zero. Thus this proposed distribution is an alternative distribution to

adequatelly fit the proportional data in the case where the probability at zero has

either a small value or a large value. Also 6 is a shape parameter since different

values of 6 change the overall shape of pmf hence determining the tail of the

distribution. r is the dispersion parameter from Negative Binomial distribution,

and it indicates whether the distribution is wide or narrow. From the pdf diagram,

the large values of r indiate a narrow distribution whereas small values of r result
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to a wider disribution.

The Moment Generating Function

Given that X | A follows the NB distribution, (r, p = e — 1), X | 4’s mgf will be

=Y 7 |i—ea-pr

x=0 X

[—e! + AP

]
L - |

~
M

e
Il

°

=

(—e' + et — Ax)

]
~

-
Ms

*
Il
)

=

As a result, the law of total expectation may be used to obtain the moment

29
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generating function of the NBL3 distribution as shown below.

M,(t) = E(e'™)

Ezle(e™ | )]
% f > ( i )(e‘ — 1ye A f(A)dA
0 x=o\ x

(e! = 1)* f e~ f;(A)dA
0

- )(e' — 1)*M;(~x)
X
) al6—-t)+ B

. 0
-1 ea+B[ ©6-1)2

. 6% [a@+r+j)+B
(e'=1) B2t B Y 431

43.2 Moments
If X ~ NBL; (r,a,p,6), then the factorial moment of X at the k th degree be-

. _ o Te+) ok [ K)o ( ga+l o8 )
comes ”[k](xv I, avﬁv e) == 1+8)I'(r) Zj:()( J )* ( 1)’ (6—(k—i))= - (e—(k—j))ﬁ

k=1,23,..,andr,a,B,6>0 432

Proof. The k th factorial moment of X, i.e.,

y[kl(x;r, p) = E[X(X— l)-(X —k+ 1)]
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.18

I'(r)

e—

I'(r+ k)1 —p) 432
M (s, p) = (I'(r) ) ka ;k=1,23,..
where I'(-) is the complete gamma function, i.e.,
) = f xle™*dx, t > 0 433
0
. where p = e~ we can write it as follows:-
re+0(-¢)']_re+n k
Hik] (x; I, C_A) =E; o) = E; (e‘ - l) 434

Using a binomial expansion in the term (¢! — 1)k we can write as

- k £ ==
i (i) = SR T o 1VER ()

k
_ I+k) ok _1Yi o
= [.(r) Zj=o J ( lyMA(k J)-
If

X|A~NB(r,p=e"%)

and

A~ Ly(a, B,6)

when substituting the mgf of A as in (4) with t = (k — j) into g (x;r,e™*). The

kth factorial moment of X is
k 1
T'(r+k) k g ga+ of
;ra,B.6) = ) = ( ) 435
Hi(xir a.B.6) = oo Zimo D\ G=or * ear
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We can determine the first four moments, or the variance and skewness, from
the factorial moment of the NB — L distribution. E(X) = r(m; — 1)

E(X?) = (P +r)m— (22 +1)m +r?

E(X?) = (r +3r2 + 2r)m; — (3r° + 6r% + 3r) m, + (Br+3r+r)m—r

E(X*) = (r* + 6r° + 11r* + 6r) ma—(4r* + 188 + 26r% + 12r) myrmy—(4r* + 6r° +4r? +r)mr?,

V(X) = (r? + 1) — 1y (1 +1711)

Skewness

= {E(X®) — 3E (X?) E(X) + 2E (X°)} /0%

={(? +32 +20)m— (38 4+ 6r% +30) My + (30 + 3% +1)m — O

—r(m - D)[3(P+r)m— (2r +3r+2Pm)m + r?|}/ox

Kurtosis = {E (X*) — 4E (%) (X?) [EX)]? — 3[EQX)]*} /ox = {(* +6r* + 1112 + 61) 714

—(4r* + 187 + 26r% + 12r) 3 + (6r* + 18° + 197 + 7r) m,
—(@art+6r +ar +r)m +rt —4r(m —1)
(P +3% +2r)m — (3 +6r7 +3r)m+ (38 + 37 +r)m — ]
437 (my — P [2(P 4 1) 7, — (2(F + 1) + PPm) my + P2} o,

1 [ 69 of
where 7, = =0 ((9——0): + (e-c)ﬂ) and oy = VV(X)

Index of dispersion

The index of dispersion, which is also called variance-to-mean ratio, is a very
useful tool to indicate a set of observations are clustered or dispersed compared

to a standard statistical model. The index of dispersion of the LB3 distribution
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comes out to be

®|%

E(X?) - [EX)P
E(X)
E(X?)
_E-(Y)- - EX)
(40w —(2?+r)m 4+ —r(m—1)
£ r(m—-1)
_(P+)m-rmQ+mm) 436
r(m —1)

Given that the value or r is greater than one, the dispersion index will be
greater than one,implying that the distribution is overdispersed

433 Order Statistic density function

Let X;, X3, ..., X, be n independent and identically distributed (iid) random vari-
ables defined on Q with the cumulative density function (cdf) Fy(x) and the pmf
f(x). Let Xy < X(z) < - £ X(n) denote these random variables rearranged
in non-descending order of magnitude. Thus, X{x) is the kth smallest number
in the sample, k = 1,2,...,n. Because order statistics are random variables, it is
possible to compute probability values associated with values in their support.
The kth order statistics density function of X(y) is (e.g., Casella and Berger, 2002)

given by
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£ () = e £ ) [FO] 1 -E 0 *:xen
(k) k=D!(n—-k!* & = 2 ’

If X,, X3, ..., X, be n iid variables with the pmf f.(x) as in (5) and cdf F(x)

as follows

~ . r+s-1 8 s 1 6a+1 65
Fx(x) —g,xfx(x)- 2( )Er)( ) )("1)16+1 ((6+r+j)“ = (6+r+j)")

s<x s J

Definition Let X ~ NB-L3(r, a, 8, 6). Then, the order statistic density func-

tion of X is

n! rtx—1
b= gD |
0= . 5 ga+1 68
,-Zc:,(j )(—l)’6+1((9+r+1)"+(6+r+j)ﬂ)

r+s-—1 2 s 1 ga+1 o8
le( . )J‘Z“’(')(—we“(“’“w"+(e+r+5)ﬂ)}

J

k-1

n—k

r+s—1\_2 /[ s 1 ga+l oFf
xll"§( : ),;»(j)(_1)’9+1((9+r+1)"+(9+r+j)ﬁ)]
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wherek=1,2,..,n,5,x=0,1,2,..fors <xandr,a,3,6 > 0.

434 Special Cases of Three Parameter Lindley Negative Bino-
mial Distribution

Corollary 4.3.1 Let X ~ NBL3(r,,,6). Ifa =1 and § = 1The negative
binomial-Lindley (NB-L) distribution is obtained using positive r and 6 paramet-
ers. Its pmfis

i g2 [ r+x—1 x X (841
t(xo r, 6) = ;_: ) Zj=0 J (—1)‘ (9+l‘+j)z X = 01 1) 29 e

where the NB-L distribution was proposed by Zamani and Ismail (2010).
Proof. If X ~ NB — Ls(r,a,B,6). and substitutinga = 1 and § = 1in
equation above, then pmf of X is given by

. g | T+x-1 & 1> (O+r4i)+1
far.8) = Y| | |V G X = O L2
X J
r+x—1 X x (B+4r+j)+1
- % Ej:o . (_l)l_(e_*_—r.‘_")Tqx —0, 1,2,...

which is the pmf of NB-L distribution.
Corollary 4.3.2. If a = 1. we get

) o] r+x=1 - X (O+r+)+B.
fix;r,0,8) = 5.5 . Z,=o( j D Gy =012

which Adil Rashid et al. (2020) call the Negative Binomial Two Parameter
Lindley Distribution. Corollary 4.3.3 If a = 1 and § = 0. we get

I'+X—1 X X (e+r+])
f(x;r,0) =6 . Zj=o . (—l)‘m——:—j)z,x =0,1,2, .
=0l T [ F )= 0,1,2,... This i
fix;r,6) = . 2ii=0 j (- )’(e“ﬂ),x = 0,1,2,.. This is
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the exponential distribution This probability distribution was obtained by Will-
mot et al (1981)
Corollary 4.3.41fa =1and r = 1. we get

X (6+1+j+B)
fx:8,6) = 733 2,_0 j (- )'——_(e+1+,)z x=0,1,2,..,6,>0

This is the geometric distribution with 2 parameter Lindley Distribution.

Corollary 4.3.5. fa=1,r=1 and g = 1. we get

X
f6) = =l © |V ix = 0,1,2,..,0,6 > O which Is 2

6+1 @+1+j)2’
compound of geometric distribution with one Parameter Lindley Distribution.

Corollary 43.6fa=1,r=1 and g = 0. we get

X
0 =05| | Vemy a4 .y _0,1,2,..,6,8> 0
j

(9+l+))z

(e+1+) x=0,1,2,..,6,>0

(0 =0T | |V
J

This is a compound of geometric distribution with exponential distribution.

44 Estimation

The Maximum Likelihood Estimate

Here, we calculate the parameter point and interval estimates using the max-
imum likelihood procedure. In the NBL3 distribution, the log-likelihood function,

l, is given as
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l=InL(r,apB.6)= zn:ln[Pr(X, =xi|rap.0)]= i ny In[Pr(X = x | r,a,3,6)]
i=1

x=0
o[ X)), ya@+r+)+B
Eo(,-)‘ Prerrp H

441

x=0

s X+r—1
=Zn,{ln( )+21ne-1n(ae+5)+1n
X

where the frequency for data with a x value is denoted by n,. The first partial

derivative is provided as the following with regard to all four parameters:

' |
x 1 x(@+r+))+28
- Z]=° ( - ) -1y @+r+j»
il__n(g_ a )+ ; J 442
8 "\6 ab+p =0x AT,
J
ZX X ( )j+l W
al i =\ o
n
da "_ae+ﬁ+§{,"" e
x Zx X (=1)/ a(6+r+j)+6
Jj=0 j (6+r+j)?
X X +1 1
al P ZJ:"( j )(_1)] @+r+jR
n 444
B~ aB+B 2, s

=0 - c(6+r+l)+é
zj=0 ( 1) (8+r+j)2
- J e
Xtr-r—
X

al 9w B I - a@+r+j)+B
el el o]
445
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Let the representation of the expression in the first term of the partial derivative

with regard to r, partiall/ in (10) be

x=0 ? 5

& x+r—1 !
A(r)=Zn, In ) 446

The phrase A(r)’s derivative can be expressed as (Klugman, Panjer, and Will-
mot 2008).

d _ )< x+r—-1 o O, (x4r—1)x+r-2)..
E[A(r)]—a an In —ana_[ln

1
x=0 b o x=0 x:

A simplified version of the formula above yields

© x-1

3 o F) x=1 o F) x-1
E[A(r)] = é)n,; In H(r+m) = Z nx3; ,..Z=:o In(r+m) = Z ny

m=0 x=0 x=0 m=0

1
r+m

Maximum likelihood estimates are obtained by

—=0,—=0,— =0,— = 0. 448

But solving these equations is complicated and difficult. So these equations

are solved numerically using Newton Raphson method.
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4.5 Simulation

This part simulates the generation of random variables from the NBL3 (r, theta, al pha, beta).
The created sample is then used to determine the MLE of the parameters. To de-
termine the consistency of the estimates, the Bias and mean squared error (MSE)
of the MLE of the parameters are determined. The algorithm for the requested
simulation research is shown below.
1. Making a randon sample with NBL3 r, alpha, beta, and theta
step(i)The U(0,1) distribution is used to create a random variable.
step (ii)If the x;,i >= 0, are arranged in the following order: XX X;.. and if

we lex

r+s-1\|[ s 1 g+l o8
Px(")=§f‘(")=§ . ,z=:o f (—1)16+1((6+r+j)"+(6+r+j)ﬂ)
define the distribution function of X.
If F(x; — 1),= uF(x),i =0,1,2,..., then X = X;.
As many times as the desired sample size is, steps (i) and (ii) are performed.
The discrete inverse transform method for generating X is what the aforemen-
tioned technique is called.
2. Getting the parameters’ MLE
For the produced sample collected in the preceding phase, the maximum like-
lihood equations (MLE) of r, 6, a, andp are solved.
3_Bias and MSE of the MLEs are calculated. Assume that the MLE is thetax
and that the parameter theta’s true value is theta,. When predicting thetay, the

bias of theta* is thus given by
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Bias(6*) = E(8" — 6,)

Regarding the NBL3 mass function, the expectation is (r, 6, 8, «). Similar to

this,

MSE(6%) = E[(6 * —6,)2

is used to calculate the MSE of 6.
Average values of bias and variance for r*9*,a*and 3* for NBL3

] =3 a=4 =2 =S
Sample Size ey T Var@) | Bias () | Var (@) | Bias (3) | Var (8) | Bias (1) | Var(r)
50 064619 | 0.51673 | 1.87777 | 3.52602 | 1.20045 | 1.46335 | 1.27721 | 1.56335
100 0.58056 | 037721 | 1.60015 | 2.65715 | 1.19996 | 1.44537 | 1.15996 | 1.44557
300 | 023850 | 006977 | 1.03593 | 1.23732 | 0.69749 | 0.50399 | 0.65745 | 0.50399
300 031250 | 0.05419 | 000122 | 0.82120 | 0.49964 | 0.25864 | 0.45964 | 0.25564

The Monte Carlo approximation method, using T=1000 repetitions, approx-
imates the Bias and MSE of the MLE of 6. The Bias and MSE of the MLE of 1, @,

and B are determined in a similar way. If the Bias lowers (gets closer to zero) with

an increase in sample size and the MSE also decreases, the MLE is considered to

be consistent. The values of the Bias and MSE of the MLE of r, 8, a, and6 for the

various sample sizes are displayed in Table 1. Table 1 shows that as the sample

size is increased, the bias and MSE of , beta, alpha, and theta decrease and even-

tually reach zero.
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Average values for VAR and Bias for ji* for Poisson

) 73
Sample Size | BEeTY T Var (D
50 0.66519 | 0.71673
100 0.59779 | 0.39721
200 0.26850 | 0.09977
300 023732 | 0.05419
Average values of bias and Var for 8*,a*and r* for NBL2
) a=3 B=4 =12
Sample Size —giacia) | Var@) | Bias(8) | var(9) | Bias (1) | var (1)
50 0.69693 | 0.61673 | 1.87777 | 3.52603 | 1.20045 1.66335
100 0.58956 | 0.37793 | 1.66015 | 2.65715 | 1.19996 | 1.44537
200 041850 | 0.41977 | 1.03593 | 1.41732 | 0.69749 | 0.41399
300 023732 | 0.05419 | 090122 | 0.92120 | 0.49964 | 023732

Although MSE and bias generated by poisson and negative binomial weighted

lindley distributions decrease with increase sample size, their values are slightly

higher than those frpm NBL3 .

The MLE estimations are therefore consistent and accurate in determining
the true value of the parameters, it can be said. R software, version 3.4.4, is used
to do calculations related to the study with the aid of self-programmed codes.
The parameters from NBL3 (r, 8, «, and6) are estimated using the maximum like-

lihood method using the R software’s maxLik package (Henningsen, Arne and

Toomet, Ott, 2011).
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4.6 Application to real data

This is to show the importance of NBL3 for count data analysisWe consider a
real data set. Distributions such the Poisson, NB, L3, NBL, NB-NWL, and NBL3
distributions are utilized to fit this data set. To determine the significance of the K-
S statistics, we utilized the ks test function in the dgof package of R (Marsaglia et
al., 2003: R Core Team, 2018). The lesser statistic result of the KS test corresponds
to the best distribution.

The dataset consists of the total claims made under the third responsibility
auto insurance policy taken into account in Wang's (2011) study.

We contrast the NBL3 distribution’s fit with that of the following distribu-

tions:
The Negative Binomial
x+r—1
fGer,p)= p'(1-pydx,x=0,1..,r>0,0< p<1
> 3
The poisson distribution
—A x
fix;A) = %;x =0,1,2,.. and 1> 0.

The Three parameter Lindley (L3) distribution

f(xa,B,60)= (a+ pA)e

92
Ba+p

x, B, a6 > 0,a6 + > 0 as introduced by R. Shanker et al(2017)
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The Negative Binomial - Two parameter Lindley distribution

r+x—-1\X [ x

2

X Jj=0\ j

fG;r,6,a) = cy -6 —a+r+j+1)

E—a+1)6—a+r+jP

x=012,..

where 6 > 0and 6 >

The MLE and nlm functions in R are used to retrieve the estimated parameters
for each distribution. We take into account the £, which is the maximal value
of the log-likelihood function under the studied distributions, to compare the
parameter estimate of each distribution.

The dataset is overdispersed, as evidenced by the ratio of variance to mean,

which indicates the dispersion of the data, which is 1.78.

Table 4. Observed values. expected values. and statistics of each distnibution for Insurance claims data
Number of Observed Observed values of fitting with distnbutions
claums values Poisson NB NBL NBL2 L3 NBL3
0 7840 763527 784664  7.76354 779623 781155 7.83740
1 1317 163700 128858 1,356.39 1,361.03 134635 1,326.20
2 239 175.49 25664 24198 205 80 244 61 226.34
3 12 12.54 54.10 4429 30.25 1667 4874
4 14 0.67 11712 831 445 9.32 14.03
5 4 0.03 258 1.60 0.66 194 497
6 4 0.00 057 031 010 042 195
7 1 0.00 0.13 0.06 0.02 0.10 0.79
F=217015 f=21.7876 s
Estimated value of . 7=21 =21. & =18355
parameters j=onu ? ::‘.::f: ;.ﬁ;g a=14737  @=14131 5 _,, ;g
e #=162372 @#=1623712 .
6=481251
i 550078 539631 539629 543177 534897 534193
KS test 00216 0.0022 0.0081 0.0031 0.0066 0.0007
(p-value) (0.0003)  (0.9999)  (0.5669) (0.8039)  (0.9999) (0.9999)
AIC 85749 §57.41 85732 85731 857.01 855.06
BIC 86578 86571 86467 86415 864 14 85920

Futhermore, to check the appropriate distribution,we use Akaike Information
Criterion ( AIC) and Baysian Information Criteria( BIC).
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(i) AIC:The Akaike Information Criterion (AIC) is used to compare vari-
ous semi-parametric and parametric models. Akaike makes the AIC suggestion
(Akaike, 1974). It evaluates how well a predicted statistical distribution fits the
data. This study’s distribution’s AIC is calculated using the following formula.

AIC= 2k — 2log(L)

where L is the value of the likelihood function calculated using the parameter
estimations and k is the number of estimated parameters.

(ii) BIC: The Baysian Information Criteria (BIC) is given by Schwarz (Schwarz,
1978). It is computed as follows

BIC=klog(n) — 2log(L)

where L is the value of the likelihood function calculated at the parameter
estimates, k is the number of estimated parameters, and n is the number of ob-
servations.

We offer the values of the Kolmogorov-Smirnov (KS) statistic for further dis-
cussion.

The distribution with the lowest —2log(L), AIC, BIC, and KS is regarded as
the best model for fitting a particular data set when comparing lifespan distri-
butions. The likelihood of choosing a distribution with a small number of para-
meters as the best model will, however, improve in terms of —2log(L), AIC, and
BIC. We use goodness of fit test statistic such as Komolgorov- Smirnov test stat-
istics to validate the superiority of NBL3 distribution for the number of claims of
the third liability vehicle insurance dataset. Consequently, Table 3 show that the
NBL3 has the least value of —2log(L), AIC, BIC, AD and KS , which indicates that
the NBL3 demonstrates superiority over the poisson, NB,NBL, L3 and NBWL in
modeling the the number of claims of the third liability vehicle insurance data.
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Rased on the results from the table, the NBL3 distribution is the best model
in describing the number of claims of the third liability vehicle insurance as the
model gives the smallest AIC, BIC and KSvalues, and thus is selected as the best

model with fitted function given as

x+4r-1\ 6 <[~ a@+r+i)+B
PrX =Xx\r.a. ,8)= -1 : =0,1,.
s ( ; \)aew;,( )( Noerre P | x=0a

j

where f = 48261, 8 = 12.1718,8 = 48.1251 and & = 1.8355
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Chapter 5

Summary, Conclusion and Reccomendations

5.1 Introduction

in this Chapter, a summary of what was discussed is given. This will be followed
by the conclusion on the findings and lastly reccomendation for future research
work will be given.

5.2 Summary

In chapter one, a background of studying mixture distributions was discussed. A
brief description of the research problem is given, followed by the objectives of
the study.In the second chapter, we looked at various work that has been done
in the literature on mixtures of Negative Binomial and Lindley distributions.This
chapter provided related literature useful in undertaking our research. In chapter
3, a review of distributions used to fit count data was discussed and finally in the
4th chapter, the NBL3 distribution was constructed .Some of the properties of the
new compound distribution were studies. A simulation study was conducted to
determine the consistency of the parameter estimates of the new distribution and

finally data analysis was done to compare the perfomance of the new distribution
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over all other related distributions.

5.3 Conclusion

The proposed distribution which is named NBL3 distribution, is a generalization
for two and three-parameter negative binomial-Lindley distributions. The pro-
posed distribution is quite general where its special cases resulted in several types
of mixed negative binomial distributions such as negative binomial-generalized
exponential distributions. Some statistical properties for the proposed distribu-
tion has been studied to understand the NBL3 distribution. The properties stud-
ied include the kth factorial moment and the dispersion index. Based on these
statistical properties, one can easily obtain the measures of skewness, kurtosis
and higher order moments for NBL3: From the dispersion index, it can be con-
cluded that the data generated from the NBL3 distribution can have the proper-
ties of overdispersion. The derivation of maximum likelihood estimators of the
parameters of NBL3 distribution is also presented. The adequacy of the model
for NBL3 is significantly improved compared to those for Poisson , negative bino-
mial,three parameter lindley distribution and Negative binomial new weighted
lindley distribution suggesting that the NBL3 can be considered in fitting overd-

ispersed count data.

5.4 Reccomendation

A higher parameter mixture of Negative Binomial and Lindley distribution can

be explored.
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