

UNIVERSITY OF NAIROBI

IMPLEMENTATION OF QUANTUM KEY DISTRIBUTION

WITH MULTIPLE EAVESDROPPERS

BY

MUTIA MUEKE LILIAN

I56/40597/2021

A Project Thesis Submitted in Partial Fulfillment of the Requirements for Award of the Degree

of Master of Science in Physics

DEPARTMENT OF PHYSICS

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF NAIROBI

July, 2023

UNIVERSITY OF NAIROBI

Declaration of Originality Form

This form must be completed and signed for all works submitted to the University for
Examination.

Name of student: __

Registration Number: ___

Faculty/School/Institute: __

Department: __

Course Name: ___

Title of the work

DECLARATION

1. I understand what Plagiarism is and I am aware of the University’s policy in this regard.
2. I declare that this ___________________ (Thesis, project, essay, assignment, paper,

report etc) is my original work and has not been submitted elsewhere for examination,
award of a degree or publication. Where other people’s work, or my own work has been
used, this has properly been acknowledged and referenced in accordance with the
University of Nairobi’s requirements.

3. I have not sought or used the services of any professional agencies to produce this work
4. I have not allowed, and shall not allow anyone to copy my work with the intention of

passing it off as his/her own work
5. I understand that any false claim in respect of this work shall result in disciplinary action

in accordance with University Plagiarism Policy.

Signature: ___________________________________

Date: _______________________________________

31/07/2023

Mutia Mueke Lilian

I56/40597/2021

Faculty of Science and Technology

Physics

IMPLEMENTATION OF QUANTUM KEY DISTRIBUTION WITH MULTIPLE EAVESDROPPERS

Thesis

SPH 6207: Project

ii

DECLARATION

I declare that this project thesis is my own original work and has not been submitted elsewhere

for purposes of examination, publication, or award of a degree. Where other people’s work or

my own work has been used, this has properly been acknowledged and referenced in

accordance with the University of Nairobi’s requirements.

Signature ……………………………… Date ………………………………….

Mutia Mueke Lilian

I56/40597/2022

Department of Physics

Faculty of Science and Technology

University of Nairobi

This proposal is submitted for registration with our approval as research supervisors:

Dr. Geoffrey O. Okeng’o

Signature Date

…01…/08…/2…02…3 ……..

Department of Physics, University of Nairobi

P. O Box 30197-00100

Nairobi, Kenya

gokengo@uonbi.ac.ke

Signature Date

Prof. Andrew. M. Kahonge ……………………… …04…-A…ug…-20…23……..

Department of Computer Science & Informatics, University of Nairobi

P. O Box 30197-00100

Nairobi, Kenya

andrew.mwaura@uonbi.ac.ke

…………………….

27/07/2023

mailto:gokengo@uonbi.ac.ke
mailto:andrew.mwaura@uonbi.ac.ke

iii

Signature Date

Dr. John B. Awuor ………………………… …………………

Department of Physics, University of Nairobi

P. O Box 30197-00100

Nairobi, Kenya

buers@uonbi.ac.ke

August 3, 2023

mailto:buers@uonbi.ac.ke

iv

DEDICATION

This work is dedicated to my parents Boniface and Burnice Mutia, my siblings Dennis Kitili

and Davies Mutua, and my friends and colleagues for their support and encouragement

during my studies.

v

ACKNOWLEDGEMENT

I wish to express my heartfelt appreciation to the University of Nairobi's entire administration

as well as the Department of Physics for their assistance and availability of the resources

required to complete this project. I would also like to thank IBM for the provision of the

Qiskit software that was used to generate data for this research. to my supervisors, thank you

for continuously encouraging, guiding, and advising me. Finally, I am grateful to God

Almighty for keeping me in perfect health throughout the course of this research.

vi

ABSTRACT

Quantum Key Distribution (QKD), a type of quantum cryptography in which two parties

generate and share a highly secure secret key, is a novel computational technique that can

ensure high data security in modern quantum computers. It is based on the laws of quantum

mechanics such as superposition, the Heisenberg Uncertainty Principle (HUP), and the No-

Cloning theorem, as opposed to integer factorization and discrete logarithmic problems used

in conventional classic computers. Although proposed in the 1970’s by Stephen Wiesner at

Columbia University via introduction of the idea of quantum conjugate coding, and further

improved on by Charles H. Bennett through his concept of secure communication, the very

first successful attempt to implement this technique was in the 1980’s when Charles H. Bennett

proposed the first quantum cryptography protocol – the BB84 based on nonorthogonal states.

At around the same time Artur Ekert proposed a QKD method based on the idea of quantum

entanglement. Since then, there has been remarkable progress in research aimed at the adoption

of technologies to ensure highly secure quantum computers with the most notable work being

the 2021 study by Hamish Johnston on implementation of the Beijing-Shanghai QKD network

over 4600 km. However, despite the wide ongoing adoption of QKD technologies in

commercial applications, research on new technologies to ensure high data rates and data

security is still at its infancy. This research work is an effort in that direction. Data obtained

through simulations implemented using the publicly available IBM’s Qiskit (see

https://www.ibm.com/quantum) is used to study, test and implement a BB84-based QKD

protocol for the case of multiple eavesdroppers, using the Intercept-Resend (IR) attack on a

secure QKD system. Associated Quantum Bit Error Rates (QBERs) for the cases of (i) no

eavesdropper, (ii) single eavesdropper and (iii) multiple eavesdroppers are computed and

presented. Our results show that the QBERs are independent of the number of eavesdroppers,

hence providing evidence that our QKD system remains secure even with an increased number

of eavesdroppers.

https://www.ibm.com/quantum

vii

TABLE OF CONTENTS

DECLARATION ii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF ABBREVIATIONS ix

LIST OF FIGURES x

LIST OF TABLES xi

CHAPTER ONE 1

INTRODUCTION 1

1.1 Research background 1

1.2 Statement of the problem 4

1.3 Research objectives 4

1.3.1 Main objective 4

1.4 Justification and significance of the study 5

CHAPTER 2 6

LITERATURE REVIEW 6

2.1 Quantum Key Distribution 6

2.2 Simulation of QKD Protocols 7

2. 3 Simulation of QKD protocols with multiple eavesdroppers 9

CHAPTER 3 11

THEORETICAL INPUT 11

3.1 The BB84 protocol 11

3.2 Quantum Bits 12

3.3 Measurement Bases 13

3.4 Creating Superposition 14

3.5 Channels 15

3.6 Detection of Eavesdropping in the BB84 Protocol 15

CHAPTER 4 17

RESEARCH METHODOLOGY 17

4.1 Introduction 17

4.2 Research Design 17

4.3 Research and Implementation Approach 18

viii

4.3.1 Research Approach 18

4.3.2 Implementation Approach 18

4.3.2.1 Implementation without an eavesdropper 18

4.3.2.2 Implementation with eavesdroppers 19

CHAPTER 5 20

RESULTS AND DISCUSSIONS 20

5.1 Introduction 20

5.2 Implementation without an eavesdropper 20

5.3 Implementation with an eavesdropper 22

5.3 Implementation with multiple eavesdroppers 23

CHAPTER 6 26

CONCLUSIONS AND RECOMMENDATIONS 26

6.1 Conclusions 26

6.2 Recommendations 26

REFERENCES 27

ix

LIST OF ABBREVIATIONS

QC Quantum Cryptography

QKD Quantum Key Distribution

H gate Hadamard gate

NS-3 Network Simulator-3

IBM International Business Machines

HUP Heisenberg Uncertainty Principle

QBER Quantum Error Bit Rate

FPR False Positive Ratio

FNR False Negative Ratio

IR Intercept-Resend

RSA Rivest-Shamir-Adleman

QB Quantum Block

BER Bit Error Ratio

x

LIST OF FIGURES

Figure 1: The BB84 protocol ... 11

Figure 2: Polarization bases and polarization states ... 13

Figure 3a: Creating superposition from the |0⟩ state. This shows the equal probability of

obtain either basis state. ... 14

Figure 3b: Creating superposition from the |1⟩ state. This shows the equal probability of

obtaining either basis state. .. 15

Figure 4: Simulation results for the BB84 protocol without an eavesdropper 20

Figure 5: Circuit diagrams for qubits 3, 7 and 13 (indexing starts at 0) 21

Figure 6: Randomness of Alice’s and Bob’s measurement bases .. 21

Fig. 7: Data obtained from the simulation of the BB84 protocol with an eavesdropper 22

Fig. 8: Circuit diagrams for bits at indices 0, 1, and 2. ... 22

Fig. 9: Comparison of the measurement bases of Alice, Eve and Bob. 23

Fig. 10: Alice’s and Bob’s sifted keys, and samples of the sifted keys used to calculate the

QBER. .. 23

Fig. 11: The BB84 protocol with ten eavesdroppers ... 24

Fig. 12: A graph of the number of eavesdroppers vs. the average QBER. 25

xi

LIST OF TABLES

Table 1: An illustration of the BB84 protocol... 11

Table 2: QBERs obtained for different numbers of eavesdroppers. 25

1

CHAPTER ONE

INTRODUCTION

1.1 Research background

The inability of classical computers to efficiently simulate some effects of quantum physics

was identified by the American theoretical physicist Richard Feynman in 1982 (Feynman,

1982). It was then speculated that computers which employed these effects could be built to

enhance computation (Rieffel & Polak, 2000). This led to the invention of quantum computers.

They solve issues that are complex substantially quicker than conventional computers by

employing quantum physics principles like superposition and entanglement (Rietsche et al.,

2022). A common misconception is that quantum computers are a better version of classical

computers. However, they do have an advantage in problems that require too much searching

or testing for regular computers to do, problems that require secure encryption, as well as

problems that involve simulating quantum mechanical systems. An example is quantum

communication.

Quantum communication involves transmitting quantum states between two parties (Gisin &

Thew, 2007). One fundamental justification is the fact that quantum states encode quantum

information, allowing one to conduct operations that are nearly impossible to carry out using

classical information (Gisin & Thew, 2007). Quantum communication guarantees

unconditional security of quantum information, theoretically (Chen, 2021). This is because it

employs Quantum Key Distribution, a major aspect of quantum cryptography, to distribute

cryptographic symmetric keys between two distant parties (Mehic et al., 2021).

Cryptography is the technique of protecting information against a third party (Pooja & Renuka,

2016). Classical cryptography is divided into two types: symmetric and asymmetric

(Elboukhari et al., 2010). Symmetric cryptography, commonly referred to as secret key

cryptography, encrypts and decrypts data using a single secret key (Elboukhari et al., 2010).

Although this encryption scheme is faster and uses less resources, it is old and less secure than

asymmetric cryptography as multiple people possess the same key. Additionally, it is shared

via an insecure classical channel.

A public key and a secret key, related by a mathematical function, are used in asymmetric

cryptography, commonly referred to as public key cryptography. Encryption is performed using

2

the public key, while decryption is performed using the private key (Elboukhari et al., 2010).

The security of these schemes is based on mathematical complexity (Elboukhari et al., 2010).

The RSA algorithm, which relies on the factorization of a semiprime (product of two prime

numbers), is an example of this scheme. However, because of the creation of the Shor algorithm

which enables faster factorization using a quantum computer by Peter Shor in 1994, the security

of this algorithm is compromised (Elampari & Ramakrishnan, 2016).

Quantum cryptography (QC) is possibly the fastest-growing field in quantum information

science (Pirandola et al., 2020). A well-known example of QC is QKD. It involves the creation

and distribution of a secure secret key between two parties against an eavesdropper’s presence,

which is then used to encrypt and decrypt data (Lee et al., 2022). To secure tamper-proof shared

keys, remote parties agree on secret shared keys that alert the original parties if an adversary

tampers with them during transmission (Adu-Kyere et al., 2022). It manipulates photons using

the laws of quantum physics such as superposition, the no-cloning theorem, which states that

a polarized photon cannot be duplicated since its quantum state is unknown, quantum

indeterminacy and quantum entanglement to create a secure key for safe end-to-end

communication (Adu-Kyere et al., 2022; Sidhu et al., 2021; Wootters & Zurek, 1982). There

are three approaches to QKD: discrete variable coding, continuous variable coding, and

distributed phase difference coding, with the former being the most applied. Additionally, QKD

protocols are grouped depending on the principles of quantum mechanics employed. These are

the Entanglement-Based protocol and the Prepare-and-Measure protocol (Gyongyosi et al.,

2019; Haitjema, 2007).

The Entanglement-Based protocol relies on quantum entanglement. Within a quantum system,

entangled particles correlatively spin in one direction (Adu-Kyere et al., 2022). Measuring one

part of an entangled pair affects the other. Therefore, interfering with an entangled system

affects the overall system, making eavesdropping easily detectable. To generate a secret shared

key, the sender and receiver receive photons from an entangled pair (Ekert, 1991). Published

in 1991 by Artur Ekert, the E91 protocol is an example of the Entanglement-Based protocol. It

relies heavily on correlation – Alice and Bob should get the same result after measuring photons

from an entangled pair. According to Gisin and Thew, this protocol takes place as follows; laser

light converted using a crystal is used to produce entangled photon pairs (Gisin & Thew, 2007).

Alice and Bob receive a photon from each pair. Upon measurement of these photons, Alice and

Bob should get the same result for each pair if they use the same measurement basis. They

3

discard photons where different measurement bases were used and retain the rest. The

remaining photons are then used to produce a shared secret key.

In 1969, Stephen Wiesner asserted that the uncertainty principle could be used in cryptography

(Wiesner, 1983). In collaboration with Gilles Brassard and Charles Bennett, they founded the

first QKD protocol, the BB84 protocol, in 1984 (C. Bennett & Brassard, 1984). It relies on the

HUP which states that one cannot know both states of a conjugate pair in a quantum system

with absolute certainty, and quantum indeterminacy, which is the inability to completely

describe a physical system (Elboukhari et al., 2010; Haitjema, 2007). In this protocol, two

channels are used to connect the sender and the receiver: a unidirectional quantum channel and

a bidirectional classical channel (Elboukhari et al., 2010; Gyongyosi et al., 2019; Ruiz-Alba et

al., 2010). Alice randomly chooses the bits she wants to transmit to Bob. To encode these bits

into qubits, she uses a randomly selected measurement basis – it could be rectilinear or diagonal

(Lee et al., 2022). A pre-agreed encoding rule is used to encode the bits. For example, 0 and 1

can be encoded by a qubit with horizontal and vertical polarization in the rectangular basis

respectively, and 450 and 1350 polarizations in the diagonal basis can represent 0 and 1

respectively (Lee et al., 2022). The polarization state of the photon is prepared by taking into

consideration the bit value and the measurement basis chosen. Alice proceeds to send these

photons one at a time through the quantum channel to Bob, keeping record of the state, basis,

and time that each photon is transmitted. She keeps her measurement bases a secret (Lee et al.,

2022). Upon receiving these photons, Bob randomly picks one of the two measurement bases

for each photon, and measures the polarization state. He too, keeps record of the time each

photon is received, the basis he chooses, and the measurement result. He communicates with

Alice over the bidirectional classical channel about the choice of basis for each photon,

producing a raw key (Ruiz-Alba et al., 2010). If the measurement bases for a particular qubit

are the same, Bob decodes the original binary bit (Lee et al., 2022). Alice and Bob retain bits

where the same basis was used and discard the rest. The retained bits form the sifted key (Ruiz-

Alba et al., 2010). An IR attack from an eavesdropper introduces quantum bit errors which

announce her presence (Lee et al., 2022). To reduce the probability that an eavesdropper, Eve,

has gained information from the system, additional calculations and error-correcting techniques

are performed on the classical bit string obtained.

4

1.2 Statement of the problem

Classical encryption schemes rely on the complexity of mathematical problems to safeguard

information. However, with the development of quantum computers, these encryption schemes

are becoming easier to break. Additionally, detection of an eavesdropper’s presence is

challenging. QKD, on the other hand, allows easier detection of an eavesdropper since the

eavesdropper must measure the quantum state to get information, which is equivalent to her

announcing her presence. Although it is considered the most secure means of safeguarding

information, some of its aspects remain unstudied, such as the effect of multiple eavesdroppers

on a QKD protocol. Implementing one of QKD’s protocols for the case of multiple

eavesdroppers with limited literature to date is important in providing useful insights into the

associated QBERs and hence the security of the BB84-based QKD protocol.

1.3 Research question

What is the effect of multiple eavesdroppers on a QKD system?

1.4 Research objectives

1.4.1 Main objective

To implement and study a BB84-based QKD protocol for the case of multiple eavesdroppers

using the Python3 in IBM’s Qiskit.

1.4.2 Specific objectives

The specific objectives are:

i. To model and simulate the a BB84-based QKD protocol without the presence of an

eavesdropper.

ii. To model and simulate the BB84-based protocol with the presence of a single eaves-

dropper.

iii. To simulate and model the BB84 protocol with the presence of multiple eavesdrop-

pers.

5

1.5 Justification and significance of the study

QKD-based protocols form a major important component in ongoing research aimed at

designed highly secure quantum communication systems. Not only shall this guarantee

increased data speeds and security but shall also drive the future of ongoing efforts to fully

realize the benefits of quantum communication. With knowledge in this field being still at its

nascent stage, there remains more work to be done towards the implementation, testing and

applications of highly secure quantum communication systems. Therefore, this research work

is geared towards simulation and implementation of a BB84-based protocol with multiple

eavesdroppers and analysing the results obtained. As a sidelobe, this work shall also contribute

towards creating awareness on QKD as an alternative to traditional encryption schemes due to

its guaranteed higher security, enabling the science community, and the public in general, to

gain broader knowledge in the interesting area.

6

CHAPTER 2

LITERATURE REVIEW

Despite being a relatively new discipline, there has been significant advancement in QKD

during the past few years. Simulations of some of the protocols have shown that it is easy to

detect an eavesdropper, although that might not be the case during implementation on the

ground. These simulations have also proven theory to be true, in terms of the number of times

Bob is able to obtain the correct result, and an eavesdropper’s effect on the information being

transmitted.

2.1 Quantum Key Distribution

Quantum cryptography provides a cryptographic solution that is impenetrable by means of

quantum mechanics. Unlike classical cryptography where information is encoded in bits, qubits

such as photons are used in quantum cryptography. This has resulted in the development of

various QKD protocols, with some being implemented. These include BB84, B92, six-state

(SSP), and SARG04. The B92 is a modified version of BB84. Instead of four states, it has two

states, 00 and 450. SSP uses three diagonal bases to encode the bits. Instead of announcing Alice

announcing her bases, she announces a pair of nonorthogonal states in SARG04. Some QKD

networks that have been developed and are still in use include DARPA (Massachusetts, USA),

Tokyo QKD network, and Hub and Spoke network (Padamvathi et al., 2016).

Lee et al. (2022) analyse the False Positive Ratio (FPR) and False Negative Ratio (FNR) upper

bounds utilizing Hoeffding's inequality to ascertain the correlation of quantum resources and

the accuracy of eavesdropping detection. They also propose a new version of the BB84

protocol, group-BB84, a new iteration of the BB84 protocol that addresses the issue of quickly

changing quantum channel conditions. An optimal combinatory algorithm used in the group-

BB84 shows higher accuracy in detecting an eavesdropper compared to the algorithm applied

to the classical BB84 protocol. Through several simulations, they show that enough quantum

resources are required to improve the accuracy of detection of an eavesdropper.

Elboukhari et al. (2010) compare classical cryptography and quantum cryptography and state

that security problems arising in classical cryptography can be solved through quantum

cryptography. The authors discuss at length some QKD protocols such as the BB84, the B92

7

and the EPR protocols. Their advantages and disadvantages are mentioned in addition to their

applicability.

V & V (2021) describe a new protocol, the Enhanced BB84 Quantum Cryptography Protocol

(EBB84QCP), which is beneficial for data encryption in wireless body sensor networks for

medical applications. It is similar to the classical BB84 protocol except it performs a bitwise

operation between the matched bits of Alice and Bob and the unmatched bits of Alice to

produce a secure secret key, making it attack-proof.

Shor and Preskill (2000) suggest an elementary proof of the BB84 QKD protocol's security.

This proof relates the security of BB84 to quantum error correction codes and entanglement

purification. Demonstration that a key distribution mechanism whose basis is entanglement

purification is secure implies the security of the BB84 protocol. Recent proofs of security of

QKD protocols are also discussed mentioning their advantages and disadvantages. (C. Bennett

& Brassard, 1984) proof is easy to understand but requires the use of a quantum computer while

(Lo & Chau, 1999) and (Mayers, 2001) prove the security of a BB84 based protocol but are

complicated.

Ruiz-Alba et al. (2010) propose a new scheme based on subcarrier multiplexing which enables

parallel QKD and discuss an experimental demonstration of the same. Parallel QKD increases

the bit rate, which is a major challenge of QKD. To show the theoretical ability of this technique

to increase the key rate, the subcarrier multiplexing QKD systems which use N subcarriers to

encode N parallel keys independently has been discussed. The aim is to make use of available

optical communication resources and multiplexing techniques to implement practical QKD

systems. A major challenge faced in this proposed protocol is the filtering of radio frequency

sidebands in the optical domain at the output of Bob’s modulation. However, the system allows

Alice to send different bits using two or more independently encoded different radio-frequency

tones. The theoretical predictions agree with the experimental results.

2.2 Simulation of QKD Protocols

Sharifi et al. (2007) explain how cryptography can benefit from quantum mechanics, examine

a BB84 variation that is allegedly more effective., and simulate BB84 and its improved version

to validate the above claim. In the improved version, the two parties choose the measurement

bases with different probabilities, and estimate two error rates, as opposed to the classical

BB84. Through the simulation, it is evident that any eavesdropping that can be detected in the

8

BB84 can also be detected in the improved version, and the efficiency of BB84 can also be

doubled without affecting its security.

Kohnle & Rizzoli (2017) came up with engaging simulations to demonstrate QKD and its

operating principles and support the learning and teaching of QKD. They made assumptions

such as true single-photon sources and perfect detectors, and that only the IR attack was used

by the eavesdropper.

Chatterjee et al. (2019) designed a QKD simulation toolkit, qkdSim, that considered the

imperfections that could be found experimentally. They were able to accurately simulate the

B92 protocol using a prototype of qkdSim. However, this toolkit is not applicable to

Entanglement-Based protocols. They hope to develop it in a way that can be used with any

other QKD protocol.

Shajahan & Nair (2020) explained how to ensure a flawless and secure transfer of data by

exploiting physics laws that could be simulated in a classical communication channel. They

also implemented the BB84 protocol and provided a hybrid approach, which combined

traditional key generation, encryption-decryption and the BB84 protocol.

Jasim et al. (2015) describe how quantum mechanics principles are used to aid in the encryption

and decryption process. Furthermore, they simulate the BB84 protocol, and implement it using

two modes: with and without interference. Through this, they show that QKD can be paired

with different applications and generate a key for said applications. Additionally, they establish

that QKD is adversely affected by the higher rate of authentication cost.

Mina & Simion (2021) published a paper entitled where they simulated the BB84 protocol

using IBM’s Qiskit, both with and without eavesdropping. They were able to prove that Bob’s

probability of choosing the correct measurement basis is 50% without the presence of an

eavesdropper. Therefore, only about half of the original bits produced by Alice are discarded.

Additionally, they were able to show with absolute certainty that if enough bits are used, the

presence of an eavesdropper can be discovered. However, they assumed perfect sources and

channels during the simulation.

Praveen Kumar et al. (2022) analysed the efficiency of QKD by simulating it using NS-3

(Network Simulator-3), which has an inbuilt module for creating the quantum channel.

Through this, they were able to show the overall data loss among network nodes. Their research

encompasses challenges and important attributes of QKD protocols, and their implementation.

9

Adu-Kyere et al. (2022) implemented the BB84 protocol without and with an eavesdropper

using the IR attack. They used Python3 to conduct their research and were able to determine

that an eavesdropper is detectable if the error rate introduced is higher than the error threshold,

0.11. They also designed a communication architecture model that uses QC to ensure

communication is secure. This architecture model consists of three quantum blocks (QB),

where quantum processes such as base generation, encoding/ decoding, and key generation

take place. Alice’s and Bob’s QBs contain a photon base generator, a photon-based encoder/

decoder, and a key generator. Data filtration and rectification takes place in the key generator.

Through the results obtained, they were able to show the randomness of Alice’s, Bob’s, and

Eve’s polarization states. They were also able to detect an eavesdropper’s presence through

comparison of the parameters obtained with and without the presence of an eavesdropper. They

recorded an error rate of 0.04296875 in the absence of an eavesdropper. Since it was lower than

the error threshold, it was because of system errors. On the other hand, an error rate of 0.125

was obtained in the presence of an eavesdropper, which is greater than the threshold, indicating

the presence of an eavesdropper.

2. 3 Simulation of QKD protocols with multiple eavesdroppers

Dehmani et al., (2012) simulates the BB84 protocol with many IR attacks through a

depolarizing channel, a model for quantum noise in quantum systems. Through this research,

they establish that with an increase in the depolarizing parameter, the QBER decreases. A

decrease in the depolarizing parameter is because of an increase in the number of attacks. If

the depolarizing parameter is less than 0.165, there exists a threshold below which the

information is secure, else it is insecure. If the depolarizing parameter is greater than or equal

to 0.165, regardless of the number of attacks, the information is not secure. Additionally, the

authors prove that the QBER decreases when the number of attacks and/ or the depolarizing

parameter is increased.

Elampari & Ramakrishnan, (2016) use the quantum package for Mathematica to analyze the

bit error ratio (BER) of a QKD system with two eavesdroppers. They highlight challenges faced

during QKD implementation, putting an emphasis on the lack of a true single photon source.

During the simulation, they assume that the attack used is opaque eavesdropping, an example

of which is the Trojan horse attack. According to their research, if Alice’s source does not

10

produce single photons, the state that altered by one eavesdropper may be modified back by

the second eavesdropper, without Bob’s knowledge. Simulation results produce a lower BER

in the presence of multiple eavesdroppers as compared to a single eavesdropper, or no

eavesdropper. Therefore, a lower BER indicates the possibility of multiple eavesdroppers. The

BER is the total number of mismatched bits over by the number of bits transmitted during that

time. This research is contradictory as the BER generated in the absence of an eavesdropper

should be the lowest.

11

CHAPTER 3

THEORETICAL INPUT

3.1 The BB84 protocol

Figure 1: The BB84 protocol.

Information security in the BB84 protocol is ensured via HUP and the no-cloning theorem.

(Elboukhari et al., 2010; Haitjema, 2007). The parties agree on how the classical bits will be

encoded using qubits beforehand. In the protocol, Alice randomly generates a string of

classical bits and picks measurement bases. The measurement bases used in this protocol are

the rectilinear and diagonal bases. She encodes the classical bits using this polarization bases

into qubits and transmits them to the receiver through the quantum channel. Upon receiving

the qubits, Bob picks his own measurement bases at random, with no knowledge of Alice’s

encoding bases, and performs measurement on the qubits. Alice and Bob keep record of the

bits they encode and decode, the measurement basis chosen for each bit, and the time the bit

is send and received (Mina & Simion, 2021).

Alice Bob

sends the state to bob via the
quantum channel.

receives the state.

Alice and Bob compare their bits.

Bits with different bases are discarded.

A secure key is obtained.

picks a random measurement
basis.

prepares a state depending on
both the bit value and basis.

decodes the state.
randomly selects a basis to

transmit the bit in.

records the result.

creates a random bit.

12

In the reconciliation stage, the parties liase over the classical channel the bases chosen for the

raw key. They discard bits encoded and decoded using different bases and retain the rest to

form the sifted key (Mina & Simion, 2021). Table 1 shows an illustration of the protocol.

Alice’s bit string 1 1 1 1 0 0 1 0 1

Alice’s bases + x x x + x x x +

Alice’s polarization states 𝗍 ↖ ↖ ↖ → ↗ ↖ ↗ 𝗍

Bob’s bases X x x x + + x + x

Bob’s polarization states ↖ ↖ ↖ ↖ → 𝗍 ↖ → 𝗍

Raw key 1 1 1 1 0 1 1 0 1

Comparison of bases N Y Y Y Y N Y N N

Sifted key 1 1 1 0 1

Table 1: An illustration of the BB84 protocol.

In the illustration, Alice and Bob chose the same measurement bases five times.

3.2 Quantum Bits

In QKD, information is encoded in the quantum bit, which is the physical state of a particle.

(Lee et al., 2022). A quantum bit, also referred to as a qubit, is the quantum equivalent of a

classical bit. It is thefundamental unit of QC (Padamvathi et al., 2016). Unlike a classical bit

whose bit value is either 0 or 1, a qubit can exist in a state of superposition. The basis states for

qubits are |0⟩ and |1⟩. A superposition is a linear combination of |0⟩ and |1⟩ (Padamvathi et

al., 2016) and is expressed as

𝑎|0⟩ + 𝑏|1⟩

where a and b are amplitudes, which are complex numbers. The modulus squared of a and b

gives the probability of getting the |0⟩ and |1⟩ states, respectively. That is, the probability of getting

|0⟩ is |𝑎2|, and the probability of getting state |1⟩ is |𝑏2| , upon measurement (Padamvathi et al., 2016).

The sum of the square of these magnitudes should be equal to 1. Although qubits exist in a

superposition of states, each qubit only contains a classical bit’s worth of information. This is

because after measurement, the qubit collapses to classical bit.

13

During practical implementations of QKD systems, a qubit may experience errors such as

generation of multiple photons in a pulse, attenuation in a fibre, and dark counts at a photon

detector (Inoue, 2006; Pirandola et al., 2020).

3.3 Measurement Bases

Generally, there are three measurement bases – the rectilinear basis (00 and 900), the diagonal

basis (450 and 1350), and the circular basis (left and right-handedness) (C. H. Bennett &

Brassard, 2014; Wiesner, 1983). In the BB84 protocol, the bases used are the rectilinear and

diagonal bases. The two bases are conjugate to each other, meaning that if a state is measured

in a basis different from the basis it was encoded in, the result of the measurement could return

either state equally (Mina & Simion, 2021). The two states within each basis are orthogonal.

Figure 2: Polarization bases and polarization states.

In the implementation of this protocol using Qiskit, a Hadamard gate is applied to random

qubits to create superposition. This implies that some qubits will be in a state of superposition

(|+⟩, |−⟩) (diagonal basis) with (Elboukhari et al., 2010),

|+⟩ =
1

(|0⟩ + |1⟩) (1)
√2

|−⟩ =
1

(|0⟩ − |1⟩) (2)
√2

The rest of the qubits will be in states of the standard measurement basis (|0⟩, |1⟩) (rectilinear

basis). If Bob applies a Hadamard gate to a qubit that was prepared in a superposition state, he

takes it out of superposition and upon measurement gets the correct result. Otherwise, he will

get either state with a fifty percent probability.

14

3.4 Creating Superposition

As per Qiskit’s settings, the qubits are always in state |0⟩. To create superposition in the |+⟩

state, the Hadamard gate (H gate) is applied to the |0⟩ state. In matrix notation,

 1

(
1 1

)(
1

)= 1 (
1

) = |+⟩ (3)

√2 1 −1 0 √2 1

For state |1⟩, application of the H-gate creates superposition in the |−⟩ state.

To create superposition in the |– ⟩ state, an X gate is applied followed by an H gate, to convert

the qubit from the |0⟩ state to the |1⟩ state and finally to the |−⟩. In matrix notation (Padamvathi

et al., 2016),

 1
(
1 1

)(
0

)= 1 (
1

) = |−⟩ (4)

√2 1 −1 1 √2 −1

where H-gate = 1 (
1 1

), | ⟩ 1
, and | ⟩ 0

.

√2 1 −1

0 = ()
0

1 = ()
1

Upon measurement, the outcome is as shown in Figure 3. The outcome being either |0⟩ or |1⟩

is almost equal showing that superposition has been created.

.

Figure 3a: Creating superposition from the |0⟩ state. This shows the equal probability of

obtain either basis state.

15

Figure 3b: Creating superposition from the |1⟩ state. This shows the equal probability of

obtaining either basis state.

3.5 Channels

The BB84 protocol makes use of two channels - a quantum channel and a public classical

channel (Elboukhari et al., 2010; Lee et al., 2022; Ruiz-Alba et al., 2010). Qubits are shared

using the quantum channel, which is susceptible to manipulation by a third party (Ruiz-Alba

et al., 2010). The classical channel is used after the transmission process by the sender and

receiver to compare the measurement bases chosen (Lee et al., 2022). The classical channel

needs to be authenticated. That is, the message should not be modified during transit and the

receiver needs to verify the message. Broadcast radio or the internet are examples of classical

communication channels (Elboukhari et al., 2010). A quantum channel could either be an

optical fibre or free space. Both optical fibres and free space have their advantages and

disadvantages. Optical fibres are used mostly because their cost of implementation is low

compared to free space. However, they are not scalable and have a high photon loss rate. Nine

out of ten photons are lost for every fifty kilometres. On the other hand, although free space as

a channel is scalable and offers a longer communication distance, its implementation is

expensive. In the implementation through Qiskit, an ideal quantum channel where the only

source of error is eavesdropping is assumed.

3.6 Detection of Eavesdropping in the BB84 Protocol

To detect eavesdropping, we need to calculate the QBER. If it is greater than a given threshold

(0.11), eavesdropping has occurred (Lee et al., 2022). Under an ideal quantum channel where

eavesdropping does not occur, the QBER must be measured as 0 (C. H. Bennett & Brassard,

2014; Elboukhari et al., 2010). To calculate the QBER, a sample of a specific length from the

16

3

sifted key is selected. As an example, let’s assume Alice encoded N binary bits and sent them

to Bob and upon comparison of the measurement bases and discarding bits with mismatched

bases, the number of bits remaining is M. From these M bits, Bob shares the results of K bits.

After comparing these bits with her own, Alice realizes that some bits do not match. The QBER

is calculated as follows:

𝑄𝐵𝐸𝑅 =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑏𝑖𝑡𝑠 𝑖𝑛 𝐾

𝐾

(5)

Even though the errors could be due to transmission processes or eavesdropping, they are all

attributed to eavesdropping because it is impossible to distinguish between the two (Lee et al.,

2022). An average QBER of 25% is measured under eavesdropping (Elboukhari et al., 2010;

Lee et al., 2022), because errors occur when Bob and Eve’s measurement bases differ. This

implies that the probability of successful eavesdropping is 75% (Sharifi et al., 2007). Half the

time, she chooses the wrong basis, and measuring the qubit with the wrong basis causes it to

collapse to the wrong state half the time (Lee et al., 2022). The probability of detecting an

eavesdropper after comparing K of their bits is:

𝐾
1 − ()

4

(6)

To guarantee a 99% accuracy of detecting an eavesdropper, equation (3) is used to determine

the length of the sample, K to be chosen (Mina & Simion, 2021).

𝐾 =
|𝑀|

≈
𝑁

(7)

3 6

17

4.1 Introduction

CHAPTER 4

RESEARCH METHODOLOGY

The procedure and methodology used in this research work are presented in this chapter. The

chapter is divided into two sections: research design, and research and implementation

approach, which is further divided into two subsections; implementation without an

eavesdropper, and implementation with eavesdroppers.

4.2 Research Design

The experimental research design was used in this research project. This helped establish a

cause-and-effect relationship between the number of eavesdroppers and the QBER, which was

used to determine the effect of multiple eavesdroppers on a QKD system.

Step 1: Defining variables.

The variables in this project are the number of eavesdroppers and the key produced. The

number of eavesdroppers is the independent variable, while the QBER is the dependent

variable.

Step 2: Hypothesis.

Null hypothesis: The QBER of an even number of eavesdroppers is lower as compared to that

of an odd number of eavesdroppers.

Alternate hypothesis: An increase in the number of eavesdroppers has no effect on the QBER.

Step 3: Designing experimental treatments.

The maximum number of eavesdroppers used was 10. The control group consisted of only a

single eavesdropper.

Step 4: Assigning independent variables to treatment groups.

After obtaining the QBER from the control group, we gradually increased the number of

eavesdroppers. We then compared the QBER obtained from an even number of

eavesdroppers and that from an odd number of eavesdroppers.

Step 5: Measuring the dependent variable.

18

The dependent variable is the QBER calculated from the raw key produced. To measure the

effects of the eavesdroppers, we compared the QBER of the keys produced in each

experimental group.

Since this is a controlled experiment, we were able to manipulate the independent variable

(number of eavesdroppers) and measure the dependent variable (QBER).

4.3 Research and Implementation Approach

Although there exists other means of simulation and implementation of QKD protocols such

as NS-3, implementation took place through IBM’s Qiskit. It is a great avenue for making

quantum simulations and the results are easily interpreted.

4.3.1 Research Approach

The simulation and implementation of the protocol both with and without the presence of an

eavesdropper was done on IBM’s Qiskit platform by using the QASM simulator, an IBM high-

performance cloud simulator. The implementation made use of quasi-randomly generated bits

instead of true random bits. However, the implementation showed that the generation of the

key was practically the same and was able to prove that the key obtained in the absence of an

eavesdropper was about half the number of original bits, which is the case theoretically.

Furthermore, we tested the key’s security and detect the presence of an eavesdropper.

4.3.2 Implementation Approach

To simulate the BB84 protocol in Qiskit, some of the classical bits were put into a state of

superposition through the application of the Hadamard gate, or a combination of the X gate

and the Hadamard gate, depending on the initial value of the bit.

4.3.2.1 Implementation without an eavesdropper

Implementation in the absence of an eavesdropper took place as follows:

Step 1: Alice generated a random string of classical bits.

Using the random module, Alice generated classical bits randomly and stored them in the

variable alice_bits. Since bits are preset to |0⟩ in IBM’s Qiskit, she applied the X gate to bits

with a bit value of ‘1’ to convert them to state |1⟩.

Step 2: Alice picked a random measurement basis for each bit.

19

To encode the qubits, Alice chose to either leave some of them in the standard basis or create

superposition randomly by using the random module. To create superposition, she applied an

H gate to the qubit. The measurement bases chosen were stored in the alice_choices string.

Alice then sent the qubits to Bob keeping the measurement basis chosen for each qubit secret.

Step 3: Bob picked a measurement basis for each qubit.

With no knowledge of Alice’s measurement basis, Bob picked a measurement basis for each

qubit randomly using the random module and stored them in the bob_choices string.

Step 4: Bob measured the qubits.

To decode the qubits, Bob measured them using the measure(q, c) method where the qubit’s

measurement result q, was stored in a classical bit c. In cases where Bob used a different

measurement basis to Alice for a particular bit, he had a 50% probability of decoding the

correct bit value. He stored the measured values in the string bob_bits.

Step 5: Alice and Bob generate a key.

Alice and Bob compared their measurement bases. To generate a key, they discarded bits with

different measurement bases. The sifted key, which is usually around half the number of bits

in the original bitstring, is formed by the remaining bits.

To determine whether the key was secure, the QBER was calculated using a sample of the

sifted key. In the absence of an eavesdropper and assuming perfect sources and channel,

𝑄𝐵𝐸𝑅 = 0.

4.3.2.2 Implementation with eavesdroppers

Herein, Alice followed the first two steps as in the implementation without an eavesdropper:

generating a string of classical bits randomly and picking a random measurement basis for

each. If an eavesdropper intercepted the qubits, she measured each qubit using a randomly

chosen measurement basis, stored in the variable eve_choices. Thereafter, she sent the

measured bits, eve_bits, to the intended receiver, Bob, who then proceeded with steps 3-5

above.

In the presence of multiple eavesdroppers, the above procedure was repeated. In this study, the

assumptions that the attacks occurred sequentially and that only the IR attack was used, are

made.

20

5.1 Introduction

CHAPTER 5

RESULTS AND DISCUSSIONS

This chapter entails the results and discussions of this study. It is divided into three sections:

(i) implementation of the QKD system without eavesdropping, (ii) implementation with one

eavesdropper, and (iii) implementation with multiple eavesdroppers.

5.2 Implementation without an eavesdropper

The results for one of the simulations without an eavesdropper are shown in Fig. 4.

Figure 4: Simulation results for the BB84 protocol without an eavesdropper.

The output Alice’s bits shows the randomness with which Alice generates the bits, which is

required for the protocol. Alice’s choices and Bob’s choices show the bases chosen for each bit.

“+” was used to represent the rectilinear basis while “x” was used to represent the diagonal

basis. Bob’s bits shows the measurement results obtained for the above protocol.

To determine the authenticity of the protocol, we compared Alice and Bob’s measurement

bases. According to theory, Alice and Bob’s measurement bases match about half the time. In

this simulation, Alice and Bob chose the same basis 48 times for 100 bits, shown in Figure 1

as Basis match.

21

Additionally, circuit diagrams were drawn for randomly chosen bits. This is shown in Figure

5.

(a) (b) (c)

Figure 5: Circuit diagrams for qubits 3, 7 and 13 (indexing starts at 0).

In Fig. 5(a), the classical bit 1 is converted to a qubit by applying the X gate. Since Alice and

Bob chose the diagonal basis, an H gate is applied in both instances. Upon measurement, Bob

gets bit 1, which is the same as Alice’s bit. This is as expected since he chose the same

measurement basis as Alice. In Fig. 5(b), Alice and Bob chose different measurement basis.

Therefore, the probability of Bob’s measurement result being similar to Alice’s is 50%, as per

the Heisenberg’s uncertainty principle.

To better understand the randomness of Alice’s and Bob’s choice of measurement bases, graphs

were plotted as shown in Fig. 6. Polarization states (00, 900) are as a result of the rectilinear

basis (+) while polarization states (450, 1350) are as a result of the diagonal basis (x).

(a) (b)

Figure 6: Randomness of Alice’s and Bob’s measurement bases.

After comparison of measurement basis and discarding bits where different basis were used,

the sifted keys, represented by Alice’s key and Bob’s key in Fig. 1, were generated. A comparison

22

of the two keys showed a perfect match. The QBER, calculated using equation (5), was equal

to 0. This is below the QBER threshold which is usually 11%, meaning that there was no

eavesdropping activity. Therefore, the key generated was secure.

5.3 Implementation with an eavesdropper

The BB84 protocol was implemented in the presence of an eavesdropper. The results obtained

are shown in Fig. 7.

Figure 7: Data obtained from the simulation of the BB84 protocol with an eavesdropper.

To confirm that the system was effective, circuit diagrams were drawn for bits 0, 1, 2(bits are

indexed from zero). The results are shown in Fig. 8. Two circuits are drawn for each bit. Alice

and Eve’s circuit, and Eve and Bob’s circuit. This is because a qubit cannot be measured twice

without collapsing it to a classical bit. Therefore, after Eve performs her measurement, she

encodes it again before sending it to Bob.

a(i) (ii) b(i) (ii) c(i) (ii)

Figure 8: Circuit diagrams for bits at indices 0, 1, and 2.

A comparison was made between Alice’s and Eve’s bases, Eve’ and Bob’s bases, and Alice and

Bob’s bases to show that the probability of one party picking the same measurement basis with

respect to the second party is ≈ 0.5. This is shown in Fig. 9. A-E bases represents the

comparison of Alice and Eve’s bases, E-B bases is the comparison of Eve and Bob’s bases, and

A-B bases is the comparison of Alice and Bob’s bases. Alice and Eve’s measurement bases

matched a total of 42 times, Eve and Bob’s 47 times, and Alice and Bob’s 51 times.

23

Figure 9: Comparison of the measurement bases of Alice, Eve and Bob.

To identify an eavesdropper, a sample was selected from the sifted keys to calculate the

QBER. A sample size of 17 bits was selected based on equation (6). Using this sample size,

the probability for detecting an eavesdropper was calculated using equation (7). The QBER

for this simulation was 29.41%. This indicates the presence of an eavesdropper since it is

greater than the QBER threshold.

Fig. 10: Alice’s and Bob’s sifted keys, and samples of the sifted keys used to calculate the

QBER.

5.3 Implementation with multiple eavesdroppers

This simulation involved a total of ten eavesdroppers attacking sequentially. The results

obtained are shown in Fig. 11. The simulation was implemented for one eavesdropper, then

24

two, up to ten eavesdroppers with the QBER calculated after every increase in the number of

eavesdroppers. After every simulation, Eve and Bob’s circuit was overwritten to accommodate

the new eavesdropper.

Fig. 11: The BB84 protocol with ten eavesdroppers.

Bob choosing the same measurement basis as an eavesdropper guarantees that he will get a

result similar to that of the eavesdropper. However, this statement only applies to when the

protocol is implemented with a single eavesdropper. In the case of multiple eavesdroppers, the

probability that Bo’s result is the same as the eavesdropper’s is 0.5, despite choosing the same

basis. When the first eavesdropper measures the qubits, she sends them to the second

eavesdropper in the polarization state that she measured them. She does not choose a new

measurement basis to encode the bits. Upon receiving the qubits, the second eavesdropper

chooses new measurement bases to measure the qubits. The results obtained are irrespective of

the previous eavesdropper’s measurement basis. This procedure follows up to the receiver,

Bob.

The following QBERs were obtained. QBER1 refers to the QBER obtained with one

eavesdropper, QBER2 is the QBER obtained in the presence of two eavesdroppers, etc.

QBER1 50.0%

25

QBER2 43.75%

QBER3 37.5%

QBER4 37.5%

QBER5 18.75%

QBER6 43.75%

QBER7 50.0%

QBER8 56.25%

QBER9 56.25%

QBER10 50.0%

Table 2: QBERs obtained for different numbers of eavesdroppers.

From the data obtained, it was concluded that the QBER is independent of the number of

eavesdroppers, due to the independence of each eavesdropper’s measurement basis. Ten

simulations were a run and a graph of the number of eavesdroppers against the average QBER

plotted.

Figure 12: A graph of the number of eavesdroppers vs. the average QBER.

26

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this research project, IBM’s Qiskit was used to generate data to study the effect of

eavesdroppers on a QKD system, by calculating the QBER. We determined that assuming the

absence of source, channel, and detector side errors, the QBER was equal to zero when the

BB84 protocol was simulated without an eavesdropper. Since the QBER < 0.11, the system is

secure. We were also able to show the randomness with which Alice and Bob choose their

measurement bases.

In the presence of a single eavesdropper, the QBER obtained was 29.41%, which is greater

than the QBER threshold, indicating tan eavesdropper’s presence. In practical

implementations, the key would be discarded and a new one generated.

Analysis of the data obtained showed that in the case of multiple eavesdroppers, there was no

correlation between the QBER and the number of eavesdroppers. This implies that an increase

in the number of eavesdroppers does not affect the QKD system, proving the security of the

system. This contrasts with previous research where an increase in the number of eavesdroppers

and/ or the depolarizing parameter led to a decrease in the QBER. This previous work took into

consideration the presence of a depolarizing channel, which introduces quantum noise in a

quantum system. In a different research work, opaque eavesdropping was used to determine

the effect of multiple eavesdroppers on a QKD system. Analysis of the BER showed that an

increase in the number of eavesdroppers led to a reduced BER. However, a high BER was

produced in the absence of eavesdroppers, contradicting theory.

6.2 Recommendations

We recommend that future research focus on implementing the QKD protocol with multiple

eavesdroppers over a noisy quantum system. Additionally, research on mitigating technological

limitations to the implementation of QKD systems, such as the development of true single

photon sources should be considered.

27

REFERENCES

Adu-Kyere, A., Nigussie, E., & Isoaho, J. (2022). Quantum Key Distribution: Modeling and

Simulation through BB84 Protocol Using Python3. Sensors, 22(16), Article 16.

https://doi.org/10.3390/s22166284

Bennett, C., & Brassard, G. (1984). WITHDRAWN: Quantum cryptography: Public key

distribution and coin tossing. 560, 175–179. https://doi.org/10.1016/j.tcs.2011.08.039

Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and

coin tossing. Theoretical Computer Science, 560, 7–11.

https://doi.org/10.1016/j.tcs.2014.05.025

Chatterjee, R., Joarder, K., Chatterjee, S., Sanders, B. C., & Sinha, U. (2019). qkdSim: An

experimenter’s simulation toolkit for QKD with imperfections, and its performance analysis

with a demonstration of the B92 protocol using heralded photon.

https://doi.org/10.1103/PhysRevApplied.14.024036

Chen, J. (2021). Review on Quantum Communication and Quantum Computation. Journal of

Physics: Conference Series, 1865(2), 022008. https://doi.org/10.1088/1742-

6596/1865/2/022008

Dehmani, M., Errahmani, M., Ez-Zahraouy, H., & Benyoussef, A. (2012). Quantum key

distribution with several intercept–resend attacks via a depolarizing channel. Physica Scripta,

86(1), 015803. https://doi.org/10.1088/0031-8949/86/01/015803

Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review

Letters, 67(6), 661–663. https://doi.org/10.1103/PhysRevLett.67.661

Elampari, K., & Ramakrishnan, B. (n.d.). BIT ERROR RATIO ANALYSIS OF A QKD

SYSTEM HAVING MULTIPLE EAVESDROPPERS – REALIZATION USING QUANTUM

PACKAGE FOR MATHEMATICA.

Elboukhari, M., Azizi, M., & Azizi, A. (2010). Quantum Key Distribution Protocols: A

Survey.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of

Theoretical Physics, 21(6), 467–488. https://doi.org/10.1007/BF02650179

Gisin, N., & Thew, R. (2007). Quantum communication. Nature Photonics, 1(3), Article 3.

https://doi.org/10.1038/nphoton.2007.22

Gyongyosi, L., Bacsardi, L., & Imre, S. (2019). A Survey on Quantum Key Distribution.

Infocommunications Journal, 14–21. https://doi.org/10.36244/ICJ.2019.2.2

Haitjema, M. (n.d.). Quantum Key Distribution—QKD.

Inoue, K. (2006). Quantum key distribution technologies. IEEE Journal of Selected Topics in

Quantum Electronics, 12(4), 888–896. https://doi.org/10.1109/JSTQE.2006.876606

28

Jasim, O. K., Abbas, S., El-Horbarty, E.-S., & M.Salem, A.-B. (2015). Quantum Key

Distribution: Simulation and Characterizations. Procedia Computer Science, 65, 701–710.

https://doi.org/10.1016/j.procs.2015.09.014

Kohnle, A., & Rizzoli, A. (2017). Interactive simulations for quantum key distribution.

European Journal of Physics, 38(3), 035403. https://doi.org/10.1088/1361-6404/aa62c8

Lee, C., Sohn, I., & Lee, W. (2022). Eavesdropping Detection in BB84 Quantum Key

Distribution Protocols. IEEE Transactions on Network and Service Management, 19(3), 2689–

2701. https://doi.org/10.1109/TNSM.2022.3165202

Lo, H.-K., & Chau, H. F. (1999). Unconditional Security Of Quantum Key Distribution Over

Arbitrarily Long Distances. Science, 283(5410), 2050–2056.

https://doi.org/10.1126/science.283.5410.2050

Mayers, D. (2001). Unconditional security in quantum cryptography. Journal of the ACM,

48(3), 351–406. https://doi.org/10.1145/382780.382781

Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M., Aguado, A., Martin, V., Schauer, S.,

Poppe, A., Pacher, C., & Voznak, M. (2021). Quantum Key Distribution: A Networking

Perspective. ACM Computing Surveys, 53(5), 1–41. https://doi.org/10.1145/3402192

Mina, M.-Z., & Simion, E. (2021). A Scalable Simulation of the BB84 Protocol Involving

Eavesdropping. In D. Maimut, A.-G. Oprina, & D. Sauveron (Eds.), Innovative Security

Solutions for Information Technology and Communications (pp. 91–109). Springer

International Publishing. https://doi.org/10.1007/978-3-030-69255-1_7

Padamvathi, V., Vardhan, B. V., & Krishna, A. V. N. (2016). Quantum Cryptography and

Quantum Key Distribution Protocols: A Survey. 2016 IEEE 6th International Conference on

Advanced Computing (IACC), 556–562. https://doi.org/10.1109/IACC.2016.109

Pirandola, S., Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck,

R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J. L., Razavi, M., Shaari, J. S.,

Shaari, J. S., Tomamichel, M., Tomamichel, M., Usenko, V. C., Vallone, G., … Wallden, P.

(2020). Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012–

1236. https://doi.org/10.1364/AOP.361502

Praveen Kumar, S., Jaya, T., & Rajalingam, P. (2022). Implementation of Quantum Key

Distribution network simulation in Quantum Channel. 2335, 012056.

https://doi.org/10.1088/1742-6596/2335/1/012056

Rieffel, E., & Polak, W. (2000). An introduction to quantum computing for non-physicists.

ACM Computing Surveys, 32(3), 300–335. https://doi.org/10.1145/367701.367709

Rietsche, R., Dremel, C., Bosch, S., Steinacker, L., Meckel, M., & Leimeister, J.-M. (2022).

Quantum computing. Springer Berlin Heidelberg.

https://dspace.mit.edu/handle/1721.1/144261

Ruiz-Alba, A., Calvo, D., Garcia-Muñoz, V., Martinez, A., Amaya, W., Rozo, J. G., Mora, J.,

& Capmany, J. (2010). Practical Quantum Key Distribution based on the BB84 protocol.

29

Shajahan, R., & Nair, S. S. (2020). Simulation of BB84 Protocol over Classical Cryptography

Channel for File Transfer. 07(09).

Shor, P. W., & Preskill, J. (2000). Simple Proof of Security of the BB84 Quantum Key

Distribution Protocol. Physical Review Letters, 85(2), 441–444.

https://doi.org/10.1103/PhysRevLett.85.441

Sidhu, J. S., Joshi, S. K., Gündoğan, M., Brougham, T., Lowndes, D., Mazzarella, L.,

Krutzik, M., Mohapatra, S., Dequal, D., Vallone, G., Villoresi, P., Ling, A., Jennewein, T.,

Mohageg, M., Rarity, J. G., Fuentes, I., Pirandola, S., & Oi, D. K. L. (2021). Advances in

space quantum communications. IET Quantum Communication, 2(4), 182–217.

https://doi.org/10.1049/qtc2.12015

V, A. D., & V, K. (2021). Enhanced BB84 quantum cryptography protocol for secure

communication in wireless body sensor networks for medical applications. Personal and

Ubiquitous Computing, 1–11. https://doi.org/10.1007/s00779-021-01546-z

Wiesner, S. (1983). Conjugate coding. ACM SIGACT News, 15(1), 78–88.

https://doi.org/10.1145/1008908.1008920

Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature,

299(5886), Article 5886. https://doi.org/10.1038/299802a0

30

Appendix 1: Simulation in the absence of an eavesdropper

Importing standard Qiskit libraries

from qiskit import QuantumCircuit, transpile, IBMQ, assemble, Aer,

execute

from qiskit.tools.jupyter import *

from qiskit.visualization import *

from ibm_quantum_widgets import *

from qiskit_aer import AerSimulator

#from qiskit.visualizatiom import plot_histogram

import numpy as np

import random

import math

import warnings

#import.filterwarnings('ignore')

qiskit-imbq-provider has been deprecated.

Please the migration guidelines in

https://ibm.biz/provider_migration_guide for more detail.

from qiskit_ibm_runtime import QiskitRuntimeService, Sampler,

Estimator, Session, Options

Loading your IBM Quantum account(s)

service = QiskitRuntimeService(channel="ibm_quantum")

Invoke a primitive inside a session. For more details see

https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutoria

ls.html

with Session(backend=service.backend("ibm_qasm_smulator")):

result = Sampler().run(circuits).result()

#=============

STEP 1

#=============

Alice generates a random string of bits

n= 100

alice_bits = []

for i in range(n):

#bits = [0, 1]

alice_bit = random.randint(0, 1)

alice_bits.append(alice_bit)

print("Alice's bits: ", *alice_bits, sep='')

print("")

#=============

31

STEP 2

#=============

Alice chooses her measurement bases.

She sends the qubits to Bob.

Bob picks his measurement bases. He has no idea of Alice's

choices.

alice_choices = []

bob_choices = []

circuits = []

for i in range(n):

alice_choice = random.choice(['x', '+'])

bob_choice = random.choice(['x', '+'])

circuit = QuantumCircuit(1, 1)

if alice_bits[i] == 1:

circuit.x(0)

if alice_choice == 'x':

circuit.h(0)

if bob_choice == 'x':

circuit.h(0)

alice_choices.append(alice_choice)

bob_choices.append(bob_choice)

circuits.append(circuit)

print("Alice's choices: ", *alice_choices, sep='')

print("")

print("Bob's choices: ", *bob_choices, sep='')

print("")

#=============

COMPARISON OF ALICE AND BOB'S MEASUREMENT BASES

#=============

same_basis = []

basis_match = 0

for i in range(len(alice_choices)):

if alice_choices[i] == bob_choices[i]:

same_basis.append("Y")

basis_match += 1

else:

same_basis.append("-")

print("A-B bases: ", *same_basis, sep='')

print("")

32

#=============

STEP 3

#=============

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(len(circuits)):

circuits[i].measure(0, 0)

job = execute(circuits[i], backend = backend, shots = 1, memory

= True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("Bob's bits: ", *bob_bits, sep='')

print("")

#=============

STEP 4

#=============

Alice and Bob compare their measurement bases.

They discard bits with different bases.

The remaining bits form the key.

alice_key = []

bob_key = []

for i in range(len(circuits)):

if alice_choices[i] == bob_choices[i]:

alice_key.append(alice_bits[i])

bob_key.append(bob_bits[i])

if alice_key == bob_key:

key = alice_key

key_len = len(key)

#=============

COMPARISON OF ALICE AND BOB'S KEY

#=============

key_match = []

for i in range(len(alice_key)):

if alice_key[i] == bob_key[i]:

key_match.append("Y")

else:

key_match.append("!")

33

print("Alice's key: ", *alice_key)

print("")

print("Key match:

print("")

print("Bob's key:

print("")

", *key_match)

", *bob_key)

print("Key: ", *key)

print("")

print("Key length: ", key_len)

print("")

print("Basis match: ", basis_match)

print("")

#=======

#STEP 7

#=======

#Calculating the QBER

k = random.sample(key, 17)

mismatched_bits = []

for i in range(len(key)):

if alice_key[i] != bob_key[i]:

mismatched_bits.append(alice_key[i])

qber = round((len(mismatched_bits) / len(k) * 100), 2)

print("QBER = ", qber, "%")

34

Appendix 2: Simulation with a single eavesdropper

Importing standard Qiskit libraries

from qiskit import QuantumCircuit, transpile, IBMQ, assemble, Aer,

execute

from qiskit.tools.jupyter import *

from qiskit.visualization import *

from ibm_quantum_widgets import *

from qiskit_aer import AerSimulator

#from qiskit.visualizatiom import plot_histogram

import numpy as np

import random

import math

import warnings

#import.filterwarnings('ignore')

qiskit-imbq-provider has been deprecated.

Please the migration guidelines in

https://ibm.biz/provider_migration_guide for more detail.

from qiskit_ibm_runtime import QiskitRuntimeService, Sampler,

Estimator, Session, Options

Loading your IBM Quantum account(s)

service = QiskitRuntimeService(channel="ibm_quantum")

Invoke a primitive inside a session. For more details see

https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutoria

ls.html

with Session(backend=service.backend("ibm_qasm_smulator")):

result = Sampler().run(circuits).result()

STEP 1

Alice prepares a random bitstring.

n = 100

alice_bits = []

for i in range(n):

alice_bit = random.randint(0, 1)

alice_bits.append(alice_bit)

STEP 2

Alice chooses measurement bases.

She creates circuits.

Eve intercepts.

35

She chooses her measurement bases.

alice_choices = []

eve_choices = []

circuits = []

for i in range(n):

alice_choice = random.choice(['x', '+'])

eve_choice = random.choice(['x', '+'])

circuit = QuantumCircuit(1, 1)

if alice_bits[i] == 1:

circuit.x(0)

if alice_choice == 'x':

circuit.h(0)

if eve_choice == 'x':

circuit.h(0)

alice_choices.append(alice_choice)

eve_choices.append(eve_choice)

circuits.append(circuit)

#print("Alice's choices: ", *alice_choices)

#print("Eve's choices: ", *eve_choices)

Eve measures the qubits.

backend = Aer.get_backend('qasm_simulator')

eve_bits = []

for i in range(n):

circuits[i].measure(0, 0)

job = execute(circuits[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve_bit = int(result.get_memory()[0])

eve_bits.append(eve_bit)

Eve prepares her bits to send to Bob.

STEP 4

Bob chooses his measurement bases.

new_circuits = []

bob_choices = []

36

for i in range(n):

new_circuit = QuantumCircuit(1, 1)

bob_choice = random.choice(['x', '+'])

if eve_bits[i] == 1:

new_circuit.x(0)

if bob_choice == 'x':

new_circuit.h(0)

bob_choices.append(bob_choice)

new_circuits.append(new_circuit)

#print("Bob's choices: ", *bob_choices)

Bob measures the bits.

backend = Aer.get_backend('qasm_simulator')

bob_bits = []

for i in range(n):

new_circuits[i].measure(0, 0)

job = execute(new_circuits[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

ae_choices = []

ae_counts = 0

eb_choices = []

eb_counts = 0

ab_choices = []

ab_counts = 0

alice_key = []

bob_key = []

for i in range(n):

if alice_choices[i] == eve_choices[i]:

ae_choices.append('Y')

else:

ae_choices.append('-')

if ae_choices[i] == 'Y':

37

ae_counts += 1

if eve_choices[i] == bob_choices[i]:

eb_choices.append('Y')

else:

eb_choices.append('-')

if eb_choices[i] == 'Y':

eb_counts += 1

if alice_choices[i] == bob_choices[i]:

ab_choices.append('Y')

else:

ab_choices.append('-')

if ab_choices[i] == 'Y':

ab_counts += 1

if alice_choices[i] == bob_choices[i]:

alice_key.append(alice_bits[i])

bob_key.append(bob_bits[i])

err = []

num_err = 0

for i in range(len(alice_key)):

if alice_key[i] != bob_key[i]:

err.append('!')

num_err += 1

else:

err.append('Y')

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_size = 17

Select a random starting index.

start_index = random.randint(0, len(alice_key) - sample_size)

Select a consecutive sample of corresponding bits from both lists.

sample_alice_key = alice_key[start_index:start_index + sample_size]

sample_bob_key = bob_key[start_index:start_index + sample_size]

mis_bits = []

num_mis_bits = 0

38

for i in range(len(sample_alice_key)):

if sample_alice_key[i] != sample_bob_key[i]:

mis_bits.append('!')

num_mis_bits += 1

else:

mis_bits.append('Y')

qber = round((num_mis_bits / len(sample_alice_key)) * 100, 2)

print("Alice's bits: ", *alice_bits, sep='')

print("")

print("Alice's bases: ", *alice_choices, sep='')

print("")

print("Eve's bases: ", *eve_choices, sep='')

print("")

print("Eve's bits: ", *eve_bits, sep='')

print("")

print("Bob's bases: ", *bob_choices, sep='')

print("")

print("Bob's bits: ", *bob_bits, sep='')

print("")

print("")

print("")

print("Alice's bases: ", *alice_choices, sep='')

print("")

print("A-E bases: ", *ae_choices, sep='')

print("")

print("Eve's bases: ", *eve_choices, sep='')

print("")

print("A-E basis match: ", ae_counts)

print("")

print("Eve's bases: ", *eve_choices, sep='')

print("")

print("E-B bases: ", *eb_choices, sep='')

print("")

print("Bob's bases: ", *bob_choices, sep='')

print("")

print("E-B basis match: ", eb_counts)

print("")

print("Alice's bases: ", *alice_choices, sep='')

print("")

print("A-B bases: ", *ab_choices, sep='')

print("")

print("Bob's bases: ", *bob_choices, sep='')

print("")

print("A-B basis match: ", ab_counts)

print("")

print("")

print("")

39

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the sifted key: ", len(alice_key))

#print("Errors occur at: ", *err)

#print("")

#print("Number of errors: ", num_err)

print("")

print("")

print("")

print("Alice's key sample: ", *sample_alice_key)

print("")

print("Mismatched bits:

print("")

print("Bob's key sample:

print("")

", *mis_bits)

", *sample_bob_key)

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER = ", qber, "%")

40

Appendix 3: Simulation with multiple eavesdroppers

Import standard Qiskit libraries

from qiskit import QuantumCircuit, transpile, IBMQ, assemble, Aer,

execute

from qiskit.tools.jupyter import *

from qiskit.visualization import *

from ibm_quantum_widgets import *

from qiskit_aer import AerSimulator

import numpy as np

import random

import math

import warnings

qiskit-imbq-provider has been deprecated.

Please the migration guidelines in

https://ibm.biz/provider_migration_guide for more detail.

from qiskit_ibm_runtime import QiskitRuntimeService, Sampler,

Estimator, Session, Options

Loading your IBM Quantum account(s)

service = QiskitRuntimeService(channel="ibm_quantum")

Invoke a primitive inside a session. For more details see

https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutoria

ls.html

with Session(backend=service.backend("ibm_qasm_smulator")):

result = Sampler().run(circuits).result()

#==

DEFINING FUNCTIONS

#==

Generating the sifted key.

def generate_key(alice_choices, bob_choices, alice_bits, bob_bits):

alice_key = []

bob_key = []

for i in range(len(alice_choices)):

if alice_choices[i] == bob_choices[i]:

alice_key.append(alice_bits[i])

bob_key.append(bob_bits[i])

return alice_key, bob_key

Calculating the QBER

def calculate_qber(alice_key, bob_key, sample_size):

start_index = random.randint(0, len(alice_key) - sample_size)

sample_alice_key = alice_key[start_index:start_index +

41

sample_size]

sample_bob_key = bob_key[start_index:start_index + sample_size]

mis_bits = []

num_mis_bits = 0

for i in range(len(sample_alice_key)):

if sample_alice_key[i] != sample_bob_key[i]:

mis_bits.append('!')

num_mis_bits += 1

else:

mis_bits.append('Y')

qber = round((num_mis_bits / len(sample_alice_key)) * 100, 2)

return sample_alice_key, mis_bits, sample_bob_key, num_mis_bits,

qber

#==

STEP 1

#==

Alice prepares a random bitstring.

n = 100

alice_bits = []

for i in range(n):

alice_bit = random.randint(0, 1)

alice_bits.append(alice_bit)

print("Alice's bits: ", *alice_bits, sep='')

#==

STEP 2

#==

Alice chooses measurement bases.

She creates circuits.

Eve1 intercepts.

She chooses her measurement bases.

alice_choices = []

eve1_choices = []

circuits = []

for i in range(n):

alice_choice = random.choice(['x', '+'])

eve1_choice = random.choice(['x', '+'])

circuit = QuantumCircuit(1, 1)

42

if alice_bits[i] == 1:

circuit.x(0)

if alice_choice == 'x':

circuit.h(0)

if eve1_choice == 'x':

circuit.h(0)

alice_choices.append(alice_choice)

eve1_choices.append(eve1_choice)

circuits.append(circuit)

print("")

print("Alice's bases: ", *alice_choices, sep='')

print("")

print("Eve1's bases: ", *eve1_choices, sep='')

#==

EAVESDROPPING!

#==

Eve1 measures the qubits.

backend = Aer.get_backend('qasm_simulator')

eve1_bits = []

for i in range(n):

circuits[i].measure(0, 0)

job = execute(circuits[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve1_bit = int(result.get_memory()[0])

eve1_bits.append(eve1_bit)

print("")

print("Eve1's bits: ", *eve1_bits, sep='')

Eve1 prepares her bits to send to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits1 = []

bob_choices = []

43

for i in range(n):

new_circuit1 = QuantumCircuit(1, 1)

bob_choice = random.choice(['x', '+'])

if eve1_bits[i] == 1:

new_circuit1.x(0)

if bob_choice == 'x':

new_circuit1.h(0)

bob_choices.append(bob_choice)

new_circuits1.append(new_circuit1)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

backend = Aer.get_backend('qasm_simulator')

bob_bits = []

for i in range(n):

new_circuits1[i].measure(0, 0)

job = execute(new_circuits1[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

44

print("")

print("Length of the key:", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 1 = ", qber, "%")

#==

EAVESDROPPER 2

#==

Eve2 intercepts.

new_circuits1 = []

eve2_choices = []

for i in range(n):

new_circuit1 = QuantumCircuit(1, 1)

eve2_choice = random.choice(['x', '+'])

if eve1_bits[i] == 1:

new_circuit1.x(0)

if eve2_choice == 'x':

new_circuit1.h(0)

eve2_choices.append(eve2_choice)

new_circuits1.append(new_circuit1)

print("")

print("Eve2's bases: ", *eve2_choices, sep='')

Eve2 measures the qubits.

backend = Aer.get_backend('qasm_simulator')

eve2_bits = []

for i in range(n):

45

new_circuits1[i].measure(0, 0)

job = execute(new_circuits1[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve2_bit = int(result.get_memory()[0])

eve2_bits.append(eve2_bit)

print("")

print("Eve2's bits: ", *eve2_bits, sep='')

Eve2 prepares the bits to send them to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits2 = []

for i in range(n):

new_circuit2 = QuantumCircuit(1, 1)

if eve2_bits[i] == 1:

new_circuit2.x(0)

if bob_choices[i] == 'x':

new_circuit2.h(0)

new_circuits2.append(new_circuit2)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits

backend = Aer.get_backend('qasm_simulator')

bob_bits = []

for i in range(n):

new_circuits2[i].measure(0, 0)

job = execute(new_circuits2[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

46

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 2 = ", qber, "%")

print("")

#==

EAVESDROPPER 3!

#==

Eve3 intercepts

She chooses her measurement bases

new_circuits2 = []

eve3_choices = []

for i in range(n):

new_circuit2 = QuantumCircuit(1, 1)

eve3_choice = random.choice(['x', '+'])

if eve2_bits[i] == 1:

47

new_circuit2.x(0)

if eve3_choice == 'x':

new_circuit2.h(0)

eve3_choices.append(eve3_choice)

new_circuits2.append(new_circuit2)

print("Eve3's bases: ", *eve3_choices, sep='')

Eve3 measures the qubits

eve3_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits2[i].measure(0, 0)

job = execute(new_circuits2[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve3_bit = int(result.get_memory()[0])

eve3_bits.append(eve3_bit)

print("")

print("Eve3's bits: ", *eve3_bits, sep='')

Eve sends the bits to Bob.

#==

STEP 3

#==

Bob picks his measurement bases.

new_circuits3 = []

for i in range(n):

new_circuit3 = QuantumCircuit(1, 1)

if eve3_bits[i] == 1:

new_circuit3.x(0)

if bob_choices[i] == 'x':

new_circuit3.h(0)

new_circuits3.append(new_circuit3)

print("")

print("Bob's bases: ", *bob_choices, sep='')

48

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits3[i].measure(0, 0)

job = execute(new_circuits3[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 3 = ", qber, "%")

49

print("")

#==

EAVESDROPPER 4!

#==

Eve4 intercepts

new_circuits3 = []

eve4_choices = []

for i in range(n):

new_circuit3 = QuantumCircuit(1, 1)

eve4_choice = random.choice(['x', '+'])

if eve3_bits[i] == 1:

new_circuit3.x(0)

if eve4_choice == 'x':

new_circuit3.h(0)

new_circuits3.append(new_circuit3)

eve4_choices.append(eve4_choice)

print("Eve4's bases: ", *eve4_choices, sep='')

Eve4 measures the qubits.

eve4_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits3[i].measure(0, 0)

job = execute(new_circuits3[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve4_bit = int(result.get_memory()[0])

eve4_bits.append(eve4_bit)

print("")

print("Eve4's bits: ", *eve4_bits, sep='')

Eve4 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits4 = []

50

for i in range(n):

new_circuit4 = QuantumCircuit(1, 1)

if eve4_bits[i] == 1:

new_circuit4.x(0)

if bob_choice == 'x':

new_circuit4.h(0)

new_circuits4.append(new_circuit4)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits4[i].measure(0, 0)

job = execute(new_circuits4[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

51

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 4 = ", qber, "%")

print("")

#==

EAVESDROPPER 5!

#==

Eve5 intercepts

new_circuits4 = []

eve5_choices = []

for i in range(n):

new_circuit4 = QuantumCircuit(1, 1)

eve5_choice = random.choice(['x', '+'])

if eve4_bits[i] == 1:

new_circuit4.x(0)

if eve5_choice == 'x':

new_circuit4.h(0)

new_circuits4.append(new_circuit4)

eve5_choices.append(eve5_choice)

print("Eve5's bases: ", *eve5_choices, sep='')

Eve5 measures the qubits.

eve5_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits4[i].measure(0, 0)

job = execute(new_circuits4[i], backend=backend, shots=1,

memory=True)

52

result = job.result()

eve5_bit = int(result.get_memory()[0])

eve5_bits.append(eve5_bit)

print("")

print("Eve5's bits: ", *eve5_bits, sep='')

Eve5 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits5 = []

for i in range(n):

new_circuit5 = QuantumCircuit(1, 1)

if eve5_bits[i] == 1:

new_circuit5.x(0)

if bob_choice == 'x':

new_circuit5.h(0)

new_circuits5.append(new_circuit5)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits5[i].measure(0, 0)

job = execute(new_circuits5[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

53

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 5 = ", qber, "%")

print("")

#==

EAVESDROPPER 6!

#==

Eve6 intercepts

new_circuits5 = []

eve6_choices = []

for i in range(n):

new_circuit5 = QuantumCircuit(1, 1)

eve6_choice = random.choice(['x', '+'])

if eve5_bits[i] == 1:

new_circuit5.x(0)

if eve6_choice == 'x':

new_circuit5.h(0)

new_circuits5.append(new_circuit5)

54

eve6_choices.append(eve6_choice)

print("Eve6's bases: ", *eve6_choices, sep='')

Eve6 measures the qubits.

eve6_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits5[i].measure(0, 0)

job = execute(new_circuits5[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve6_bit = int(result.get_memory()[0])

eve6_bits.append(eve6_bit)

print("")

print("Eve6's bits: ", *eve6_bits, sep='')

Eve6 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits6 = []

for i in range(n):

new_circuit6 = QuantumCircuit(1, 1)

if eve6_bits[i] == 1:

new_circuit6.x(0)

if bob_choice == 'x':

new_circuit6.h(0)

new_circuits6.append(new_circuit6)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

55

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits6[i].measure(0, 0)

job = execute(new_circuits6[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 6 = ", qber, "%")

print("")

#==

EAVESDROPPER 7!

#==

Eve7 intercepts

56

new_circuits6 = []

eve7_choices = []

for i in range(n):

new_circuit6 = QuantumCircuit(1, 1)

eve7_choice = random.choice(['x', '+'])

if eve6_bits[i] == 1:

new_circuit6.x(0)

if eve7_choice == 'x':

new_circuit6.h(0)

new_circuits6.append(new_circuit6)

eve7_choices.append(eve7_choice)

print("Eve7's bases: ", *eve7_choices, sep='')

Eve7 measures the qubits.

eve7_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits6[i].measure(0, 0)

job = execute(new_circuits6[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve7_bit = int(result.get_memory()[0])

eve7_bits.append(eve7_bit)

print("")

print("Eve7's bits: ", *eve7_bits, sep='')

Eve7 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits7 = []

for i in range(n):

new_circuit7 = QuantumCircuit(1, 1)

if eve7_bits[i] == 1:

new_circuit7.x(0)

57

if bob_choice == 'x':

new_circuit7.h(0)

new_circuits7.append(new_circuit7)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits7[i].measure(0, 0)

job = execute(new_circuits7[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

58

calculate_qber(alice_key, bob_key, sample_size)

print("Alice key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 7 = ", qber, "%")

print("")

#==

EAVESDROPPER 8!

#==

Eve8 intercepts

new_circuits7 = []

eve8_choices = []

for i in range(n):

new_circuit7 = QuantumCircuit(1, 1)

eve8_choice = random.choice(['x', '+'])

if eve7_bits[i] == 1:

new_circuit7.x(0)

if eve8_choice == 'x':

new_circuit7.h(0)

new_circuits7.append(new_circuit7)

eve8_choices.append(eve8_choice)

print("Eve8's bases: ", *eve8_choices, sep='')

Eve8 measures the qubits.

eve8_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits7[i].measure(0, 0)

job = execute(new_circuits7[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve8_bit = int(result.get_memory()[0])

eve8_bits.append(eve8_bit)

print("")

59

print("Eve8's bits: ", *eve8_bits, sep='')

Eve8 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits8 = []

for i in range(n):

new_circuit8 = QuantumCircuit(1, 1)

if eve8_bits[i] == 1:

new_circuit8.x(0)

if bob_choice == 'x':

new_circuit8.h(0)

new_circuits8.append(new_circuit8)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits8[i].measure(0, 0)

job = execute(new_circuits8[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

60

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 8 = ", qber, "%")

print("")

#==

EAVESDROPPER 9

#==

Eve9 intercepts

new_circuits8 = []

eve9_choices = []

for i in range(n):

new_circuit8 = QuantumCircuit(1, 1)

eve9_choice = random.choice(['x', '+'])

if eve8_bits[i] == 1:

new_circuit8.x(0)

if eve9_choice == 'x':

new_circuit8.h(0)

new_circuits8.append(new_circuit8)

eve9_choices.append(eve9_choice)

print("Eve9's bases: ", *eve9_choices, sep='')

Eve9 measures the qubits.

61

eve9_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits8[i].measure(0, 0)

job = execute(new_circuits8[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve9_bit = int(result.get_memory()[0])

eve9_bits.append(eve9_bit)

print("")

print("Eve9's bits: ", *eve9_bits, sep='')

Eve9 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits9 = []

for i in range(n):

new_circuit9 = QuantumCircuit(1, 1)

if eve9_bits[i] == 1:

new_circuit9.x(0)

if bob_choice == 'x':

new_circuit9.h(0)

new_circuits9.append(new_circuit9)

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits9[i].measure(0, 0)

62

job = execute(new_circuits9[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

print("")

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

print("")

print("QBER 9 = ", qber, "%")

print("")

#==

EAVESDROPPER 10!

#==

Eve10 intercepts

new_circuits9 = []

eve10_choices = []

for i in range(n):

new_circuit9 = QuantumCircuit(1, 1)

63

eve10_choice = random.choice(['x', '+'])

if eve9_bits[i] == 1:

new_circuit9.x(0)

if eve10_choice == 'x':

new_circuit9.h(0)

new_circuits9.append(new_circuit9)

eve10_choices.append(eve10_choice)

print("Eve10's bases: ", *eve10_choices, sep='')

Eve10 measures the qubits.

eve10_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits9[i].measure(0, 0)

job = execute(new_circuits9[i], backend=backend, shots=1,

memory=True)

result = job.result()

eve10_bit = int(result.get_memory()[0])

eve10_bits.append(eve10_bit)

print("")

print("Eve10's bits: ", *eve10_bits, sep='')

Eve10 prepares and sends the bits to Bob.

#==

STEP 3

#==

Bob chooses measurement bases.

new_circuits10 = []

for i in range(n):

new_circuit10 = QuantumCircuit(1, 1)

if eve10_bits[i] == 1:

new_circuit10.x(0)

if bob_choice == 'x':

new_circuit10.h(0)

new_circuits10.append(new_circuit10)

64

print("")

print("Bob's bases: ", *bob_choices, sep='')

#==

STEP 4

#==

Bob measures the qubits.

bob_bits = []

backend = Aer.get_backend('qasm_simulator')

for i in range(n):

new_circuits10[i].measure(0, 0)

job = execute(new_circuits10[i], backend=backend, shots=1,

memory=True)

result = job.result()

bob_bit = int(result.get_memory()[0])

bob_bits.append(bob_bit)

print("")

print("Bob's bits: ", *bob_bits, sep='')

#==

STEP 5

#==

Generating the sifted key

alice_key, bob_key = generate_key(alice_choices, bob_choices,

alice_bits, bob_bits)

print("")

print("Alice key: ", *alice_key)

print("")

print("Bob key: ", *bob_key)

print("")

print("Length of the key: ", len(alice_key))

#==

SELECTING RANDOM SAMPLES FOR POST-PROCESSING

#==

sample_alice_key, mis_bits, sample_bob_key, num_mis_bits, qber =

calculate_qber(alice_key, bob_key, sample_size)

print("Alice's key sample: ", *sample_alice_key)

print("Mismatched bits: ", *mis_bits)

print("Bob's key sample: ", *sample_bob_key)

print("")

print("Number of mismatched bits: ", num_mis_bits)

65

print("")

print("QBER 10 = ", qber, "%")

5

Final Msc project thesis

ORIGINALITY REPORT

%

SIMILARITY INDEX

3%
INTERNET SOURCES

4%
PUBLICATIONS

1%
STUDENT PAPERS

PRIMARY SOURCES

 1
Anusuya Devi V, Kalaivani V. "Enhanced BB84

quantum cryptography protocol for secure

communication in wireless body sensor

networks for medical applications", Personal

and Ubiquitous Computing, 2021
Publication

Submitted to De Montfort University
Student Paper

en.wikipedia.org
Internet Source

 4
Hong-xia Zhao, Li Huang. "Effects of Noise on

Joint Remote State Preparation of an Arbitrary

Equatorial Two-Qubit State", International

Journal of Theoretical Physics, 2016
Publication

 5
"Innovative Security Solutions for Information

Technology and Communications", Springer

Science and Business Media LLC, 2021
Publication

www.dtic.mil
Internet Source

<1%

<1%

<1%

<1%

<1%

<1%

 2

 3

 6

Mutia M. Lilian

http://www.dtic.mil/

 7

 8

 9

 10

 11

 12

 13

Trent Graham, Christopher Zeitler, Joseph

Chapman, Paul Kwiat, Hamid Javadi, Herbert

Bernstein. "Superdense teleportation and

quantum key distribution for space

applications", 2015 IEEE International

Conference on Space Optical Systems and

Applications (ICSOS), 2015
Publication

Submitted to University of Wales Institute,

Cardiff
Student Paper

Zeng. "Quantum Key Distribution", Quantum

Private Communication, 2010
Publication

Lecture Notes in Computer Science, 2010.
Publication

digitalcommons.lsu.edu
Internet Source

Ch. Seshu. "Quantum Key Distribution",

Communications in Computer and

Information Science, 2008
Publication

Takang William Ako, Dobgima Walter Pisoh,

Nguemaim Flore, Kwangfis Richard Nemline

et al. "The Prevalence Outcome and

Associated Factors of Teenage Pregnancy in

<1%

<1%

<1%

<1%

<1%

<1%

<1%

 14

 15

 16

 17

 18

 19

 20

 21

the Bamenda Health District", Open Journal of

Obstetrics and Gynecology, 2023
Publication

Yong-Min Li, Xu-Yang Wang, Zeng-Liang Bai,

Wen-Yuan Liu, Shen-Shen Yang, Kun-Chi Peng.

"Continuous variable quantum key

distribution", Chinese Physics B, 2017
Publication

core.ac.uk
Internet Source

repository.up.ac.za
Internet Source

udsspace.uds.edu.gh
Internet Source

publish.illinois.edu
Internet Source

www.biorxiv.org
Internet Source

"Next Generation Intelligent Optical

Networks", Springer Science and Business

Media LLC, 2008
Publication

Magdalena Krzyszkowska-Pytel. "Quantum

Cryptography - The Issue of Security in

Selected Quantum Protocols and the Issue of

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.biorxiv.org/

 22

 23

 24

 25

 26

 27

 28

Data Credibility", Theoretical and Applied

Informatics, 01/01/2010
Publication

RENATO RENNER. "SECURITY OF QUANTUM

KEY DISTRIBUTION", International Journal of

Quantum Information, 2011
Publication

Rupesh Kumar, Marco Lucamarini, Giovanni

Di Giuseppe, Riccardo Natali, Giorgio Mancini,

Paolo Tombesi. "Two-way quantum key

distribution at telecommunication

wavelength", Physical Review A, 2008
Publication

www.accenture.com
Internet Source

Hitoshi Inamori. Journal of Physics A

Mathematical and General, 09/07/2001
Publication

Submitted to Trident University International
Student Paper

Yeong Cherng Liang, Dagomir Kaszlikowski,

Berthold-Georg Englert, Leong Chuan Kwek,

C. H. Oh. "Tomographic quantum

cryptography", Physical Review A, 2003
Publication

link.springer.com
Internet Source

<1%

<1%

<1%

<1%

<1%

<1%

<1%

http://www.accenture.com/

 29

 30

ntv.ifmo.ru
Internet Source

www.grin.com
Internet Source

<1%

<1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 5 words

http://www.grin.com/

	UNIVERSITY OF NAIROBI
	DEPARTMENT OF PHYSICS FACULTY OF SCIENCE AND TECHNOLOGY

	UNIVERSITY OF NAIROBI (1)
	DECLARATION
	Mutia Mueke Lilian I56/40597/2022

	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1.1 Research background
	1.2 Statement of the problem
	1.3 Research question
	1.4 Research objectives
	1.4.1 Main objective
	1.4.2 Specific objectives

	1.5 Justification and significance of the study

	CHAPTER 2 LITERATURE REVIEW
	2.1 Quantum Key Distribution
	2.2 Simulation of QKD Protocols
	2. 3 Simulation of QKD protocols with multiple eavesdroppers

	CHAPTER 3 THEORETICAL INPUT
	3.1 The BB84 protocol
	3.2 Quantum Bits
	3.3 Measurement Bases
	3.4 Creating Superposition
	3.5 Channels
	3.6 Detection of Eavesdropping in the BB84 Protocol

	CHAPTER 4 RESEARCH METHODOLOGY
	4.2 Research Design
	4.3 Research and Implementation Approach
	4.3.1 Research Approach
	4.3.2 Implementation Approach
	Step 1: Alice generated a random string of classical bits.
	Step 2: Alice picked a random measurement basis for each bit.
	Step 3: Bob picked a measurement basis for each qubit.
	Step 4: Bob measured the qubits.
	Step 5: Alice and Bob generate a key.

	5.1 Introduction

	CHAPTER 5 RESULTS AND DISCUSSIONS
	5.2 Implementation without an eavesdropper
	5.3 Implementation with an eavesdropper
	5.3 Implementation with multiple eavesdroppers

	CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS
	6.1 Conclusions
	6.2 Recommendations

	REFERENCES
	Appendix 1: Simulation in the absence of an eavesdropper
	Appendix 2: Simulation with a single eavesdropper
	Appendix 3: Simulation with multiple eavesdroppers

	%

	1 Anusuya Devi V, Kalaivani V. "Enhanced BB84 quantum cryptography protocol for secure communication in wireless body sensor networks for medical applications", Personal and Ubiquitous Computing, 2021
	Submitted to De Montfort University
	en.wikipedia.org
	4 Hong-xia Zhao, Li Huang. "Eﬀects of Noise on Joint Remote State Preparation of an Arbitrary Equatorial Two-Qubit State", International Journal of Theoretical Physics, 2016
	5 "Innovative Security Solutions for Information Technology and Communications", Springer Science and Business Media LLC, 2021
	www.dtic.mil
	Trent Graham, Christopher Zeitler, Joseph Chapman, Paul Kwiat, Hamid Javadi, Herbert Bernstein. "Superdense teleportation and quantum key distribution for space applications", 2015 IEEE International Conference on Space Optical Systems and Applicatio...
	Submitted to University of Wales Institute, Cardiﬀ
	Zeng. "Quantum Key Distribution", Quantum Private Communication, 2010
	Lecture Notes in Computer Science, 2010.
	digitalcommons.lsu.edu
	Ch. Seshu. "Quantum Key Distribution", Communications in Computer and Information Science, 2008
	Takang William Ako, Dobgima Walter Pisoh, Nguemaim Flore, Kwangﬁs Richard Nemline et al. "The Prevalence Outcome and Associated Factors of Teenage Pregnancy in
	the Bamenda Health District", Open Journal of Obstetrics and Gynecology, 2023
	Yong-Min Li, Xu-Yang Wang, Zeng-Liang Bai, Wen-Yuan Liu, Shen-Shen Yang, Kun-Chi Peng. "Continuous variable quantum key distribution", Chinese Physics B, 2017
	core.ac.uk
	repository.up.ac.za
	udsspace.uds.edu.gh
	publish.illinois.edu
	www.biorxiv.org
	"Next Generation Intelligent Optical Networks", Springer Science and Business Media LLC, 2008
	Magdalena Krzyszkowska-Pytel. "Quantum Cryptography - The Issue of Security in Selected Quantum Protocols and the Issue of
	Data Credibility", Theoretical and Applied Informatics, 01/01/2010
	RENATO RENNER. "SECURITY OF QUANTUM
	Rupesh Kumar, Marco Lucamarini, Giovanni Di Giuseppe, Riccardo Natali, Giorgio Mancini, Paolo Tombesi. "Two-way quantum key distribution at telecommunication wavelength", Physical Review A, 2008
	www.accenture.com
	Hitoshi Inamori. Journal of Physics A Mathematical and General, 09/07/2001
	Submitted to Trident University International
	Yeong Cherng Liang, Dagomir Kaszlikowski, Berthold-Georg Englert, Leong Chuan Kwek,
	cryptography", Physical Review A, 2003
	link.springer.com
	ntv.ifmo.ru
	www.grin.com

