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ABSTRACT 

 

Scab is a fungal disease of common beans caused by the pathogen Elsinoë phaseoli. The 

disease results in major economic losses on common bean, and there are efforts to develop 

integrated pest management strategies to control the disease. In this study, modern 

computational biology and bioinformatics tools were deployed to identify resistance genes 

for scab disease in common bean. A diverse set of 182 common beans accessions were 

evaluated for phenotypic variation to scab disease in two sites in Western Kenya. The 

phenotypic variations observed was a pre-requisite for genomic analysis to identify the 

resistant genes associated with scab disease resistance. The diverse accessions were 

analyzed for genetic association with scab disease resistance using a Genome-Wide 

Association Study (GWAS) design of infected plants and non-infected plants (controls).  A 

fixed and random model circulating probability unification (FarmCPU) model of these two 

covariates that considers a minor allele frequency threshold value of 0.03 and population 

structure analysis guided by a 7 components principal component analysis were deployed 

during the analysis. Annotation of genes proteins with significant association values was 

conducted using a machine learning algorithm of support vector machine on prPred using 

python3 on Linux Ubuntu 18.04 computing platform with an accuracy of 0.935. 

Subsequently, molecular markers associated with resistance to scab disease were identified. 

Common bean accessions tested showed varying phenotypes of susceptibility to scab 

disease. There were significant differences within the various genotypes at p=5.551e-15 for 

the treatments. A total of 16 and 163 accessions were observed to be resistant and 

susceptible, respectively, to scab disease caused by Elsinoë phaseoli. The dataset generated 

was further preprocessed and tested for normality using the Shapiro-Wilk’s normality test, 

and no significant difference from normal distribution was observed (W = 0.98901, P = 

0.1812). On genomic analysis, a significant association was detected on chromosome one 

SNP position 6571566 and within the same locus a SNP on position 6231746 was also 

identified. The protein-coding sequence on position 6571566 had a resistant possibility of 

55% and annotated to the Enhancer of Poly-comp like (EPL1) protein while position 

6231746 with a resistant possibility of 64% was annotated to Adenosine triphosphate 

Binding Cassette (ABC) transporter protein. Nine primer pairs were designed for validation 

targeting the EPL1, ABC transporter, and the PHD finger genes in the common bean. 

Differences were observed for the EPL1 on the second primer pair of reverse outer and 

forward inner primer targeting the alternate SNP. The Third primer pair with forward-outer 

and reverse-inner primer was able to distinguish the resistant accessions. The significant 

difference in the phenotypic variability for scab disease indicates wide genetic variability 

among the common bean accessions.  The resistant gene associated with scab disease was 

successfully identified by GWAS analysis and confirmed by designed EPL1 primers which 

showed amplification only in the resistant common bean accessions. The identified 

common bean accessions resistant to scab disease can be adopted into breeding programs 

as sources of resistance. The primer can be used in marker assisted selection targeting the 

identified scab resistant genes.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background to the study 

Economically important diseases of the common bean are a major problem causing crop 

production losses of up to 100% (Mahuku et al., 2002). Recently, scab disease has been 

observed to cause common bean yield losses in Western Kenya (Masheti, 2019). Little 

scientific research has been done to improve understanding of the causative 

pathogen Elsinoë phaseoli and the pathogenicity impact on common bean and the 

underlying genetics associated with resistance. Although control and preventive measures 

toward the disease have been seen to be good agronomic practices adopted from standard 

agronomic guidelines for the control of other diseases breeding for resistant varieties would 

be an even more sustainable approach (Otsyula et al,. 2020). The identification of resistant 

varieties to the disease would be good news to farmers and a great improvement to the 

germ-plasm in Kenya since there are no known locally adapted commercial varieties with 

resistance. Thus the identification of breeding tools is an essential strategy and a key part of 

achieving an improved variety with resistance to scab disease. 

Common bean is subjected to numerous biotic stresses that include scab disease, which is a 

common disease among many other plant species, and significantly reduces yield (Fan et 

al., 2017). In common bean this particular disease is caused by the fungal pathogen Elsinoë 

phaseoli of the genus Elsinoë, family Elsinoaceae and has historically been recorded to 

have a devastating impact, leading to gross economic damage due to complete plant losses 

in farmers’ fields (Otsyula et al., 2018; Phillips, 1994). Many forms of the fungal pathogen 

have been described as Elsinoë (the sexual form) or Sphaceloma (the asexual form), which 

affects a wide array of crops ranging from avocado scab caused by E. persease, citrus 

scab E. Fawcettii and E. australis, bean scab caused by E. canavaliae and E. phaseoli, 

grape spot anthracnose caused by E. ampelina, causing important diseases (Fan et al., 

2017).  In the plant family Leguminosae, the Phaseolus genus has not fallen out of scope 

with reports of scab in Lima bean (Phaseolus lunatus). Cowpea (Vigna unguiculata), 

Runner bean (Phaseolus coccineus), and Common beans (Phaseolus vulgaris) are known 
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to be hosts of the scab disease (Mutitu, 1979; Phillips, 1994; S. Singh & Allen, 1979). Scab 

disease is virulent and can result in total yield losses. In an attempt to control the pathogen 

in common bean there has been indiscriminate use of repurposed fungicides such as 

Rodazim with active the compound Metalaxyl-M 40g/Kg to reduce crop damage, 

sometimes frequently spraying the crops to mitigate the effects of the disease. Conversely, 

most farmers are smallholders and with limited resources to frequently spray their crops, 

thus they require disease management strategies that are cost-effective and sustainable. A 

sustainable mitigation strategy for the economic losses associated with the scab disease 

would be identification and breeding for resistant common bean varieties that are adapted 

to local environments. Common beans have shown variable phenotypic reactions to the 

scab disease with some showing degrees of resistance to the disease and the majority 

showing susceptibility. This was observed under a field experiment to study the different 

disease reactions of common bean in Western Kenya where two varieties were observed to 

have differential phenotype expression under extreme scab disease pressure at KALRO 

Kakamega (Otsyula et al., 2018). 

A Genome-Wide Association Study (GWAS) for the disease resistance and identification 

of the genes responsible for scab disease-resistant or susceptible common bean varieties in 

Western Kenya can be used to study the genetics of crops' reactions to these diseases. Thus 

identifying candidate genes associated with scab disease resistance amongst locally adapted 

varieties would be a pre-requisite for breeding for resistance. Genome-wide association 

study is a bioinformatics comparative genomic method that has been used in agricultural 

research to identify differential genes by their single nucleotide polymorphism. The genetic 

variation within a species and the observed different phenotypes among individuals are of 

fundamental biological interest (Korte & Farlow, 2013). Genome-Wide Association 

Studies (GWAS) is used to link and correlate this trait back to its underlying associated 

SNPs. Identifying genetic variation in a population is a tool that is essential for determining 

the genetic diversity between the plants under study, and provides biological insight into 

understanding resistance mechanisms, for example, scab disease resistance of common 

bean (Negro et al., 2019). Comparative genomics helps to link these phenotypic variations 

to particular SNPs using statistical and bioinformatics tools to indicate potential novel 

candidate genes associated with disease tolerance or resistance. 
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1.2 Problem statement 

Scab is a fungal disease caused by the pathogen Elsinoë phaseoli, which is ravaging 

common bean crops in Western Kenya resulting in gross economic damages in farmers’ 

fields with yield losses of approximately 100% (Masheti, 2019). Integrated pest 

management strategies used mainly rely on chemical control, which poses danger to the 

environment and could be harmful to humans. A different approach would be to identify 

the genes that have co-evolved to confer resistance to the scab disease. There is little 

information known about the genetics of resistance to the disease in common bean, nor is 

there a known source of resistance as there is no genetic research done focusing on scab 

disease in common bean. Mapping and identification of genetic markers of resistance to 

scab disease in common beans may take a long time using conventional bi-parental 

methods such as QTL mapping for plant breeding. Modern computational biology and 

bioinformatics methods can hasten the discovery of genetic markers that confer the 

resistance to scab disease in the common bean. 

 

1.3 Justification 

Genes conferring disease resistance have co-evolved with pathogenic agents resulting in 

variations in phenotypic expression among accessions. Phenotyping is a valuable tool in 

identifying potential genes linked to scab resistance in common beans. By analyzing 

variations in accessions, we can determine whether genes are expressed in response to 

scab. The SNPs observed through phenotypic variations in accessions can be closely linked 

to phenotypes, underscoring the importance of phenotyping in pinpointing scab resistance-

associated genes. Computational biology methods such as GWAS have been used in 

agriculture to map locus for agronomic important traits (Perseguini et al., 2016). This 

hastens the identification process compared to classical QTL mapping. The putative genes 

identified using GWAS are important for bean breeding programs as they help track 

resistance. The development of markers that facilitate efficient targeting of these identified 

genes during the breeding exercise is thus a crucial aspect of this study. It contributes to the 
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global sustainable development goals by bringing forth improved food security, alleviating 

hunger and poverty, and promoting biodiversity conservation through the elimination of the 

need for farmers to use fungicides. There is, therefore, the need to screen, sequence, map, 

and design primers associated with novel resistance genes. This research seeks to facilitate 

common bean improvements for food security using modern biotechnology tools to 

identify gene locus associated with scab disease resistance. 

 

1.4 Objectives 

1.4.1 Main objective 

The general objective of this study was to identify novel candidate genes associated with 

scab disease resistance in common bean germplasm. 

1.4.1 Specific objectives 

The specific objectives of the study were: 

i To determine the phenotypic variation among common bean accessions for scab 

resistance.  

ii To identify genetic variants and genes associated with scab resistance using a 

diverse set of common bean accessions by Genome-wide Association Study 

(GWAS) analysis approach. 

iii To develop high-throughput PCR-based markers for marker-assisted selection 

(MAS) targeting scab resistance in common bean. 

 

1.5 Research Hypothesis 

i. Common bean accessions show phenotypic variability for scab resistance in the 

field. 

ii. GWAS approach can be used to identify SNPs and putative genes associated 

with scab resistance using a diverse set of common bean accessions. 

iii. It is not possible to develop high-throughput PCR-based markers for MAS 

targeting scab resistance in common bean. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Common bean production 

Common bean (Phaseolus vulgaris), serves as a staple food in Kenya and is commonly 

inter-cropped with maize in farmers’ fields. It is a major source of plant protein in many 

communities in Kenya. Deficits resulting from increasing domestic demand can be 

attributed to demographic growth, which has overwhelmed the supply while the production 

is limited by yield-limiting factors such as insect pest diseases. This has resulted in the 

importation of common beans from other countries such as Tanzania and Uganda to satisfy 

the demand. Recent efforts to improve the food security of the country have fueled efforts 

to improve the production of common beans as a major staple food in Kenya. The focus is 

geared towards increasing the yield potential through the development of integrated pest 

and disease management practices and other cultural practices that would increase and 

improve the yield prospects from the current 0.6MT/ha. Improvement efforts are geared 

towards overcoming abiotic and biotic factors that hamper the production of common bean 

in common bean growing regions in Kenya ranging from Eastern, Nyanza, Central, 

Western, and Rift Valley (Duku et al., 2020). 

Common bean faces several yield-limiting factors, among which are fungal disease caused 

by Elsinoë phaseoli, causes up to 95% yield reduction in (Otsyula et al., 2018). It was first 

identified in 1900 by J.R Johnson and later by Jenkins on lima beans on trade routes from 

Cuba and New York, and was observed to have a huge economic impact as opposed to the 

other diseases (McCubbin, 1946). Elsinoë phaseoli have been reported in Kenya to cause 

scab disease in the common bean (Masheti, 2019; Mutitu, 1979; Otsyula et al., 2018). Scab 

disease, which is endemic to East, Central, and Southern Africa is a major constraint in 

common bean production for many farmers, causing yield losses of up to 95%. In Kenya, 

the prevalence of scab in common bean growing regions have been depicted as being 

endemic and affecting most of the common bean (Otsyula et al., 2020). If uncontrolled and 

unmanaged, this disease can causing major yield reduction in farmers’ fields in Kenya. 

Common beans are susceptible to a variety of pathogens, including viruses, bacteria, and 

fungi, which causes various diseases. Among these, scab disease has emerged as a major 
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threat, causing significant damage to the crops. Unfortunately, control and management 

strategies for this disease are still lacking, with current methods relying solely on chemical 

control management techniques. Despite such efforts, scab disease is highly virulent and 

poses a significant challenge to common beans.  

 

2.2 Effects of scab on common bean  

Despite there being little information on how scab infection relates to yield and yield 

components of common bean. Empirically, severe scab infection has been seen to have a 

major impact on some yield components such as the number of pods per plant affected by 

the scab disease which in turn exhibits a negative direct effect on yield. The observation 

from the infection in South Africa was that many of the infected pods were distorted and 

failed to form seeds (Phillips, 1994).  In Kenya, similar observations are seen in farmers’ 

fields with curly pods that are heavily infected. The scab disease has a similar etiology to 

anthracnose disease of beans caused by the pathogen Colletotrichum lindemuthianum and 

thus can easily confuse just as plant inspectors from Cuba and other lima bean growing 

regions in Puerto Rico easily confused and recorded scab as anthracnose in the early 1900s 

(Jenkins, 1931). The etiology of scab is similar to that of anthracnose only with a distinct 

characteristic of ash-like circular lesions on pods and leaves and deformed leaves. An 

attack on the common bean causes damage to the crop, which is visible as cork-like warts 

and lesions on the stems leaves and pods and folding of the leaves starting at the midrib.  

 

2.3 Scab disease phenotype on common bean 

Plant’s disease phenotypes play an important role in determining particular disease 

expression characteristics in a plant. Disease phenotypes express a range of characteristics 

that deviate from a typical healthy plant, some of which are: under-development of tissues 

or organs, overdevelopment of tissues or organs, necrosis, lesions development and 

alteration of normal appearance (Riley et al., 2002). These characteristics are unique for 

different plant-pathogen classes from fungal, viral, and bacterial pathogens. Although some 

disease symptoms may overlap for different pathogens, the symptoms that define a specific 
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disease are unique. The correct identification of disease symptoms heavily relies on the 

observation of the disease signs such as mycelia growth in the case of fungi and 

subsequently on the disease symptoms manifestation. The causal pathogen is identified 

through isolation and infection of the non-infected plant and observation of symptoms. 

Scab disease manifests as cork-like white lesions on the stems and pods of the common 

bean, and leaves fold at the midrib and stems twists. These symptoms are the plant’s 

reaction to the pathogenic effect of Elsinoë phaseoli.  

In some Elsinoë species such as Elsinoë arachis, this pathogenic effect is caused by the 

pathogen’s release of a phytotoxin, elsinochrome, which causes excessive electrolytes 

leakage in the plant cells and apoptosis (Jiao et al., 2019; Liao & Chung, 2008). This 

reaction is elicited by light-activated and non-host selective phytotoxin, produced by the 

pathogenic Elsinoë, which reacts with oxygen molecules after light activation to produce 

highly reactive oxygen species (Jiao et al., 2019; Liao & Chung, 2008). The phytotoxic 

elsinochrome release causes electrolyte leakage on the plant cells would explain the folding 

of the leaves at the midrib. This effect varies across the vast and diverse genotypes of the 

common bean, which is expressed by the different phenotypes of scab resistance and 

susceptibility as observed in an infection study conducted in South Africa, where the 

majority of the infected pods were distorted and failed to form seeds (Phillips, 1994). In 

Kenya, similar observations are seen in farmers’ fields with curly pods that are heavily 

infected with the distinct characteristic of ash-like circular lesions on pods and leaves, 

folded leaves, and twisted stems.  

 

2.4 Evaluation and measurement of bean scab disease 

Measurement of these differences in reactions to disease implores the use of a scale to 

quantify the extent of severity. Different scoring scales have been developed for specific 

plant diseases to quantify the severity of the disease being measured (Saharan & Mehta, 

2008). However, the choice of these methods has largely been informed by the size of the 

experiment and available time, since for large experiments it would be challenging to score 

on a wider scale compared to a smaller quantifiable scale that would be more time-efficient 

and less laborious. Smaller quantifiable scales have been used before in large experiments 
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(Mbugua, 2016). Plants react differently to the same pathogen indicating that there are 

different factors at play in the expression of these phenotypes, which includes the 

environment within which the expression was induced and the genetic make-up of the 

plants under observation. A genetic study design that accounts for the different random and 

fixed parameters that would impact the phenotype observed would suffice (Robertson, 

1959). Genetic experiments in fields are designed to address factors whereby experiment 

layout is majorly informed by the design choices and the factors being measured. The alpha 

lattice design is used in plant breeding and agronomy experiment designs due to its 

distribution of replicates into incomplete blocks that contain a fraction of the total number 

of entries and the large numbers that the design can accommodate (Akinwale et al., 2021).  

Scab disease infection under natural conditions has been well documented, which occurs 

perennially across planting seasons (Masheti, 2019). Some of the control measures 

implemented include crop rotation since pathogen inoculum builds up and incubates in 

fields from the previous season. Thus, in natural inoculation experiments, late planting 

would be advised to benefit from inoculum build-up from nearby fields. As the disease 

inoculates on the plant, the infection begins as the pathogens elicitor and plant receptors 

interact to induce a signal pathway that triggers the plant's defense mechanisms against the 

said pathogen. The differences in the genetic make-up of individual genotypes guide the 

signaling pathways triggered, and the defense mechanism elicited. The continuous nature 

of these reactions as the disease pressure increases would sometimes result in different 

levels of severities between genotypes. The progressive nature of infection can be 

measured in a progressive scale, where the scores are progressive at every instance of 

observation (Mbugua, 2016). The wealth of information in plant phenotypic data requires a 

phenotype dataset development strategy that would entail careful selection of the 

parameters to be measured and the data points to ensure correct interpretation, replicability, 

comparability, and interoperability in a tabular form (Ćwiek-Kupczyńska et al., 2016). In a 

genotype by the environment, the sensitivity of the phenotypic observation would require a 

balanced distribution of the effect of the disease on the plant in the field.  

 



9 
 

2.5 Management of scab disease 

The management of scab disease in common bean has mainly been through the 

implementation of an integrated pest management strategy similar to anthracnose and other 

fungal diseases of common bean. Owing to the similar etiology of scab to anthracnose of 

common bean, the management of scab has entirely been through cultural practices of 

intercropping with maize, crop rotation, and the use of chemicals such as (radozim and 

ridomil) with active compounds Metalaxyl-M 40g/Kg and Mancozeb 640g/Kg respectively. 

As the majority of farmers face common bean scab disease challenges, the majority opt to 

use chemical control, while only a handful use cultural disease management practices such 

as planting a variety mixture and intercropping with maize (Otsyula et al., 2020). The 

chemical approach has only reduced the incidence of the disease in the field as the 

virulence overcomes the effects of the fungicides. Other Elsinoë species affecting 

economically important plants, such as apple and citrus have been observed to develop 

fungicide resistance after prolonged use of fungicides (Chung, 2011). However, the use of 

fungicides for the pathogen could result in impacts that degrade the environment and 

sometimes even cause the pathogen to adapt to chemical environments and develop 

resistance. Other management practices have been used by farmers and are encouraged, 

which include crop rotation, intercropping, and the use of clean certified seed. Frequent 

spraying with fungicides has a gross economic impact as most such chemical controls are 

expensive to the farmer.  However, farmers have managed to adopt some cultural methods 

to control the disease on their farms such as planting mixtures of common bean varieties to 

increase the chances of compounding resistance.  

 

2.6 Genomics methods of plant disease gene identification 

Disease gene identification is a process by which scientists identify the single nucleotide 

polymorphism (SNPs) and insertion-deletion (INDELs) markers responsible for a crop’s 

disease susceptibility and resistance (Bhattarai et al., 2020; Gilissen et al., 2012; 

Jamaloddin et al., 2021). In plants, quantitative trait loci (QTL) were mapped using bi-

parental crosses, whereby limitations of little allelic diversity with limited genomic 
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resolutions were seen (Brachi et al., 2011). QTL mapping is the mapping methodology that 

has been used by breeders for decades to map agricultural traits of interest to a specific 

location in the plant's genome. This entails a labor-intensive process of crossing between 

two plants with varying traits. Obtaining the F2 population and using markers 

recombination frequencies to determine the linkage disequilibrium, from where a map unit 

is obtained. QTL mapping gives low resolution but gives you high statistical power for 

detecting a QTL. Ideally, a mapping population ought to be 100 or 120 to have statistical 

significance. The disadvantage is that it is limited to the genetic diversity present in the 

parents of the segregating population. Besides these, there are advanced intercrosses for 

increasing the resolution such as MAGIC lines which are labor-intensive and costly in 

developing. 

Bi-parental mapping is not amenable to high-throughput analysis. The genetics of 

qualitative traits or quantitative genetics based on statistics could not provide a general 

description of the genetic properties of these traits except with heavy hypotheses. These 

hypotheses include the approximate number of genes, the relative weight of additive 

variance, dominance, and epistasis in total variance, as well as prediction of results of 

selection from the resemblance between relatives. Even though this science had achieved 

great success in the genetic improvement of common bean (Andersen & Torp, 2002; 

Choudhary et al., 2018; Kamfwa et al., 2018), it remained unable to estimate the individual 

effect of QTL, their intra-locus (dominance) and inter-locus (epistasis) interactions, and 

their position in the genome, and it could not provide any means for their molecular 

identification. Asides from these classical methods, and in the advent of the genomics era, 

advances in molecular and bioinformatics methods saw the integration of genomics and 

phenomics to speed the development of superior improved common bean (Varshney et al., 

2018). The modern molecular approach of quantitative genetics focuses on the use of 

molecular genetics tools of genomics, bioinformatics, and computational biology to reveal 

links between genes and complex phenotypes (quantitative traits). A paradigm shift from 

classical QTL mapping to the molecular GWAS approach has impacted crop improvement 

by streamlining gene identification of agricultural importance (Bohra et al., 2020). 

Computational methods for identifying important genes in genomes have been an active 

field of research, in the bioinformatics arena. Consequently, algorithms and tools have been 
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developed for the bioinformatics pipeline in the analysis of genomic data to identify and 

annotate regions of the genome with complex disease traits (Pereira et al., 2020). As a 

consequence the use of bioinformatics tools and methods in gene finding has attracted a lot 

more attention recently. 

Genome-wide association studies (GWAS), has had numerous application in studying 

complex traits and the genomic regions on chromosomes that harbor their genetic 

determinants. This has resulted in the discovery of the causal variants and their 

mechanisms of action, such as genes for resistance to various plant diseases such as 

anthracnose, and angular leaf spot by mapping the QTL responsible for their resistance in 

common beans using a GWAS method (Perseguini et al., 2016). Currently, genome-wide 

association studies (GWASs) constitute the most advanced strategy for mapping regions of 

the genome of a species that are associated with a phenotype or a set of traits of interest in 

plants. Compared to bi-parental QTL analyses, it takes advantage of the high diversity and 

multiple recombination history that is available in natural populations to narrow down QTL 

resolution to the nucleotide level. GWAS analysis is an intricate and complex process that 

encompasses various combinations of statistical methods and approaches illustrated using 

various statistical approaches to data analysis (Gondro et al., 2013). GWAS offers a very 

fine resolution, almost to the base-pair resolution. However, the power for detecting a QTL 

is dependent on allelic frequency, and for instance, one may lose power for detecting rare 

alleles. Another disadvantage of GWAS is that it is sensitive to the population structure, 

which may lead to many false positives. Here, adjustments can be made to account for 

population structure. 

The advent of the post-genomic era has brought about innovation in crop improvement 

research. New technologies in comparative genomics such as the microarray technology 

have been used to identify genes and their expression levels vis a vis phenotype and 

genotype. Technology such as microarray which uses genes in a chip technology concept 

has been used in identifying several agricultural important traits and has been key in 

general gene identification in agriculture in the past (Pérez-de-Castro et al., 2012). 

However, the bottleneck for lack of novel identification poses a constraint in identifying 

new genes and important mutations that could have agricultural importance, whereby it is 
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only limited to certain genes and there is no room for identification and discovery of novel 

genes controlling specific traits. Alternatively, another technique used in gene 

identification is the RNA-seq which supplements the limitations in microarray studies to 

quantify gene expression (Gedil et al., 2016; Ozsolak & Milos, 2011). The transcription 

analysis has impacted agriculture in its use in identifying novel genes (Pereira et al., 2020; 

Zhang et al., 2020) and determining their functions and relations. This has been an ideal 

technology and methodology but has been a labor-intensive process and resource 

constraint. However, deviation from expected expression calls for cautious interpretation of 

RNAseq data for certain genes (Hirsch et al., 2015). Overall comparative genomics tools 

have come in handy in agriculture disease trait identification (Zuiderveen et al., 2016). 

Plant disease genes can have pleiotropy and have multiple phenotypes with high 

similarities as in the case of scab, which is caused by species of Elsinoë anamorph 

state Sphaceloma   (Fan et al., 2017; Horst, 2013; Peng et al., 2018). Owing to this, 

classical mapping techniques would classify the scab with anthracnose thus the disease-

resistant loci for scab would ideally be among the many loci that are said to confer 

anthracnose resistance in common bean. Efforts to map the disease genes associated with 

scab pathogen in common bean Phaseolus Vulgaris have not been reported even though 

there are efforts to identify resistance genes in other crops such as 

apple Malus × Domestica Borkh  by McClure et al (2018) where a GWAS was used as a 

tool to identify QTL with statistically significant association to scab disease resistance and 

firmness in apples. Computational biology tools in GWAS analysis have been used in the 

identification of disease resistance loci for bean diseases such as anthracnose and angular 

leaf spot (Perseguini et al., 2016; Zuiderveen et al., 2016). Thus GWAS analysis has 

proven to be a valid tool in SNP and gene identification in association with the observed 

disease phenotype. 

 

2.7 Host – pathogen interaction in scab disease  

Plants are sessile organisms and have various ways to defend themselves against biotic 

stresses and abiotic stresses (Chamovits, 2012). These are in the form of secondary defense 
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or primary defenses. These defense mechanisms are rooted in the cells and the biological 

mechanisms deployed to counter biotic attacks on the plant. For decades plant breeders and 

enthusiasts have studied the mechanisms with which plants defend themselves against 

pathogenic infection. The resistant genes in plants are directly involved in the innate plant 

defense mechanism against pathogens such as fungi, bacteria and viruses. To do this the 

resistant genes depend on microbe-associated molecular patterns MAMP that are specific 

to the pathogen. These patterns are different between the different strains and races of 

pathogen thus giving rise to the race-specific molecular recognition of the resistant genes 

(Hammond‐ Kosack & Kanyuka, 2007). Every pathogen has its way of colonizing the 

plant and causing disease, for Elsinoë pathogens, a group of pathogens that produce a class 

of toxins called perylenequinone as in the case of elsinochrome (Jiao et al., 2019). This is a 

photosensitive phytotoxin, which produces superoxide or reactive oxygen species that are 

bio-active and light-induced compounds as the initiation of elsinochrome biosynthesis in 

Elsinoë depends on light. The phytotoxin is a vital virulent factor for Elsinoë to cause 

severe disease and thus acts as an effector molecule. Plant resistance likewise is dependent 

on certain molecular receptors or proteins with specific domain motifs such as neucleotide 

binding site leusin rich repeat NBS-LRR, The TIR Toll-like interleukin receptors domain, 

WRKY domain (Hammond‐ Kosack & Kanyuka, 2007). Disease resistance is observed 

when the dominant virulent factor is present in the pathogen and a dominant resistant gene 

is present in the plant cell. However recessive resistance has been observed with plant 

potyviruses whereby the eukaryotic translation factor 4 is mutated to interrupt the viral 

replication and disrupt the hijacking of the cell (Hammond‐ Kosack & Kanyuka, 2007). 

Elsinoë produces phytotoxin absorbs light and converts to a more toxic state that generates 

reactive oxygen species called photosensitizer which cause electrolyte leakage from cells 

and toxicity on plant cells as is with citrus E. faucetti (Chung, 2011). These phenomena 

could result in the folding of the leaves at the midrib as observed with diseased plants. 
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2.8 Resistant genes predictions using computational biology approaches  

Bioinformatics is cast to have tremendous evolutions and transformation in terms of the 

model, style, and approaches used since there are cutting-edge technological advances in 

the various fields that culminate in bioinformatics. In the field of computer science and 

mathematics, there has been a breakthrough in the development of new technologies such 

as machine learning, neuro-networks, and deep learning technologies that have 

revolutionized computational biology. Machine learning models have in recent years 

become an important tool in biological research and specifically in proteomics where it has 

been used to predict the localization of the protein in the cell and also in the prediction of 

the structure of the protein (Jumper et al., 2021; Liao et al., 2021; Wan & Mak, 2015). 

These machine learning technologies' approaches to predicting biological features and 

phenomena have become increasingly popular due to large increases in available genomics 

data and the advancement in computational power. Key to these is the protein functions as 

proteins support many cellular functions and are essential to life. The resistant protein 

functions are largely dependent on the structure of the proteins with their surface localized 

motifs. The receptor-like kinase of extracellular domain motifs, such as lysin motif 

(LysM), leucine-rich repeat (LRR), and lectin domains are known to be associated with 

pathogen recognition and inducing resistance to disease caused by the pathogens (Zhou & 

Yang, 2016). Domain motifs such as the intracellular resistance receptors nucleotide-

binding site leucine rich repeats (NBS-LRRs) recognize effector molecules delivered by 

pathogens into the plant cell. Identification of these motifs has led to the classification of 

protein functions in terms of resistant proteins and non-resistant proteins. Computational 

approaches have been devised to identify these motifs in protein sequence, thus 

subsequently classification into resistant and non-resistant proteins (Restrepo-Montoya et 

al., 2020, 2021). Among the computational tools is the NLR-Parser to rapidly annotate the 

nucleotide-binding site leucine rich repeats from sequenced plant genomes. The NLR-

Parser refines the output of Motif alignment and search tool (MAST) and reliably annotates 

disease resistance genes encoding for nucleotide-binding leucine-rich repeat (NLR) 

proteins (Jupe et al., 2012; Steuernagel et al., 2015). The RGAugury, which is an 

efficiently integrative bioinformatics tool for large scale genome-wide identification of 

resistance gene analogs (RGA), identification tool  also recognizes nucleotide binding sites 
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encoding genes, receptor like proteins and receptor like protein kinases to determine 

resistant proteins (Li et al., 2016). Machine learning algorithms of support vector machine 

in tools such as disease resistance protein prediction program (DRPPP) and NBSpred were 

designed to predict plant resistant proteins (Kushwaha et al., 2021; Pal et al., 2016). 

However several mishaps arises as the use of the above tools are prone to low sensitivity 

and unavailability of the SVM-based tools (Wang et al., 2021). The SVM is a large-margin 

classifier, which is a vector-space-based machine learning method where the goal is to find 

a decision boundary between two classes that is maximally far from any point in the 

training data  (Klampanos, 2009). It was used to classify plant disease resistant and non-

resistant proteins. The k-spaced amino acid pair encoding scheme was incorporated into a 

support vector machine to classify plant disease resistant proteins (Wang et al., 2021). It 

computes the frequency of all amino acid pairs with k spaces separated by k of other amino 

acids within the peptide sequence by k number of residues, k = (1, 2, 3) such as CK, CxK, 

CxxK and CxxxK, where x is the k residues (Hasan et al., 2015; Huang et al., 2021). This 

tool has been used to predict plant resistant protein effectively. 

2.9 Molecular Markers in plant genetics 

Plant breeding has evolved throughout the years from classical breeding to modern 

molecular breeding since the introduction of genomic era (Bohra et al., 2020). Genetic 

markers are developed and used as PCR markers in plant breeding. Classical and traditional 

plant breeding involves making crosses between individuals within the same species to 

produce new cultivars with desirable traits (Breseghello & Coelho, 2013). Due to 

limitations in the morphological markers used, it would take a very long time to breed and 

thus a limiting factor in addressing global food security and meeting the increasing 

requirements of food demands (Lenaerts et al., 2019). Since the dawn of the genomics era 

and Mendelian genetics in the 20th century, forward genetics that involves the study of 

phenotypes and their subsequent associated gene have culminated in methods such as 

expression and GWAS studies. This has helped us to understand the underlying biology of 

the traits that modern breeders select including high yield, nutritional quality, and disease 

resistance. These modern bioinformatics tools have revolutionized plant breeding as they 

facilitate the study of the genotype and its relationship with the phenotype (Edwards, 2007; 
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Khalid Rehman Hakeem et al., 2017; P  B  Kavi Kishor et al., 2014). The data generated 

from the omics technology is enormous and require bioinformatics methods that facilitate 

the discovery of knowledge such as new genes, regulatory motifs, and their positions for 

the creation and development of molecular markers (Pérez-de-Castro et al., 2012; Zou et 

al., 2016). Currently, plant breeders use molecular marker-assisted selection as a 

technology for the selection of desired traits. The markers used are DNA segments that are 

used as a flag to track genes. These markers are used for marker-assisted selection to 

identify desired genotypes among hundreds of crosses developed. This is a breeding 

selection tool that utilizes the use of molecular markers to target genes or genomic regions 

in a breeding line and to track the desired gene across the breeding generations (H Lörz et 

al., 2005; Henry, 2012; José Miguel Soriano, 2021). The use of molecular markers hastens 

the breeding process in such a way that it reduced the breeding time by almost two-thirds 

(Guimaraes & Food And Agriculture Organization Of The United Nations, 2007). Marker-

assisted selection includes the use of DNA molecular markers such as SCAR markers and 

microsatellite markers to aid in breeding and tracking desired genes at an early stage so the 

breeder can make an informative decision early. However, gene identification for marker 

development and design is a pre-requisite and important step. Conventionally this was done 

through bi-parental mapping and other breeding techniques.  

The application of classical and modern breeding methodologies has resulted in the 

development of new plant varieties that satisfy the market need while ensuring food 

security through an abundance and diversity in varieties developed that appeal to market 

needs. In this respect, the phenotypic evaluation and identification of genetic variants of 

interest as well as the development of selection methodologies greatly impact the outcomes 

of a breeding program by reducing the time used in traditional breeding through the 

markers-assisted selection. 

Several markers have been developed targeting traits of interest in agriculture and it is their 

use in a marker-assisted selection that uniquely aids in speeding up the breeding process. 

The use of simple sequence repeat markers has been used in agriculture but rarely do they 

target any biologically important sequence. These are mainly used in the characterization 

of genotypes in a population due to their high polymorphism within the genome. Sequence 
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characterized amplified regions (SCAR) markers have been used in marker-assisted 

selection targeting regions or flanking particular genes of interest. Most SSR and SNPs 

have little if any biological effects but there are SNPs that have a direct linkage to a disease 

resistance gene. Though there is no breeding intervention against scab disease resistance in 

common beans, molecular markers targeting disease resistance genes are quite common in 

common beans. The use of SCAR markers have been developed targeting both fungal and 

bacterial pathogens in common bean (S. P. Singh, 2013). As SNPs are extremely difficult 

to genotype with PCR, different methods were developed including Kompetitive Allele-

Specific (KASP) PCR markers, Amplification Refractory Mutation System ARMS PCR 

that relies on the modification of primers to amplify a specific allele normally the mutant 

allele, and with the microarray genotyping being the dominant where sample DNA is 

hybridized to a surface containing millions of spots each capable of genotyping a single 

SNP. However, the efficacy of these methods in MAS vouches for the use of PCR based 

genotyping method that is PCR friendly. Primer design is influenced by the applicability of 

the markers designed and the tools and equipment in place for its utilization in agricultural 

Marker-Assisted Selection in a breeding program. The choice of PCR technique approach 

is mainly based on the tools and equipment at the researcher’s disposal. The inception of 

SNP genotyping technology has come as a breakthrough in agriculture research plant and 

animal breeding. However, this comes as the visualization technology shifts from the old 

gel-based systems to the new Fluorescence Resonance Emission Technology FRET which 

is used to visualize KASP PCR product results. 

2.10 Molecular marker and primer validation 

Markers are identified from specific experimental populations with specific genetic 

backgrounds. The purpose of marker validation is to ascertain the reliability and efficacy of 

a putative marker in detecting the target phenotype or trait in different genetics and 

populations independent of the one in which it was discovered (de et al., 2007; Lopez-

Pardo et al., 2013; Sanjoli Mobar & Dr. Hardik Pathak, 2011). Some markers are 

polymorphic only in certain genetic backgrounds. If a marker is not stable and reliable in 

predicting a phenotype it is supposed to be associated with, it is of no use as a tool in a 

breeding program to aid in selection. Without validation, a false association between 
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markers and the trait of interest can arise, with an adverse consequence on a breeding 

program. Population stratification may be a source of false associations (Acquaah, 2009). 

The precision and accuracy of a marker in targeting desired genomic regions are of 

absolute importance in defining the efficacy of that particular marker for plant breeding. 

Arbitrary distances of markers to a specific target gene have been used to determine and 

approximate the accuracy of particular markers, such as the Kosambi distance and Haldane 

distance (Kivikoski et al., 2023; Kosambi, 1943). 

As the demography of the country increases and consequentially the need for food security 

increases curbing the constraints to bean production in the country is inevitable. Little is 

known about the genetics of resistance to scab disease in common beans and there is no 

known source of resistance. To elucidate the phenotypic reaction of common bean to scab 

disease across a wide array of common bean genotypes and subsequent gnome-wide 

association analysis, an experiment was conducted under natural disease inoculation to 

determine the resistance and susceptibility of a set common bean to scab. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Phenotypic evaluation of common beans accessions for scab disease 

 

3.1.1 Plant germ-plasm 

A total of 182 common bean accessions were evaluated for scab disease resistance. These 

consisted of 174 of the Andean Diversity Panel and 8 local accessions in the set that 

consisted of some that had previously shown tolerance to scab in the field trials. Of the 174 

Andean diversity panel set, 167 were obtained from CIAT Kawanda in Uganda while 7 

were obtained from KALRO Kakamega. The eight local accessions included in the 

experiment consisted of three improved varieties and two with known resistance to other 

diseases, one commercial variety, and two varieties that had previously shown variable 

phenotypic reactions to scab in previous field experiments. Detailed tables of these 

accessions are provided in appendix I and appendix VIII. 

 

3.1.2 Field locations, experimental design and field management 

The common bean accessions were planted in disease hots spots on fields in Western 

Kenya which profiles as a highly humid climate with a high prevalence of scab disease. 

These locations were selected based on the high disease pathogens prevalence and the 

different agro-ecological zones they represent UM: Upper Midland Zone and LM: Lower 

Midland zone which was Kakamega Conty in Kakamega Central and Butonge in Sirisia 

sub-county of Bungoma County respectively (Table 3.1). To account for the effect of 

environment on genotype the study was conducted under natural field conditions in the two 

distinct agro-ecological zones. The effect of the environment on the genotypes was 

accounted for by the genetic by environment research model. 
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Table 3.1: Characteristics of the different agro-ecological zones in Western Kenya 

during the 2021 long rains season 

Agro- 

ecological 

zone 

Area Name Altitude 
Annual Mean 

temperature 

Annual Mean 

rainfall 

UM 1 Kakamega 1550m 27-13 °C  2019-1820mm 

LM 2 Butonge 1350 - 1550m 22-20.9 °C 1400-1650mm 

UM= Upper Midland Zone (Location = 7QH8+WVV), LM= Lower Midland zone 

(Location = PF78+ 35); m = Meters above sea level; mm =milliliters; C=Degrees Celsius. 

The field experiments were conducted in an alpha lattice experiment design which was 

randomized in an R programming software version 4.0 using agricolae package (de 

Mendiburu, 2020). The experiment design had 14 incomplete blocks, 13 plots per block, 

and three replications per site. Sowing was delayed to allow for scab inoculum build-up in 

the nearby adjacent fields and was done in a two-row per plot at 10cm within the row and 

50cm between the rows. Crop management practices were spraying against bean flies using 

diazon pesticide after emergence of the hypocotyl and during primary leaf formation stage. 

A single application of di-ammonium phosphate fertilizer was administered at the rate of 

200 kg ha
-1

 immediately during planting, and weeding was done twice during the growing 

period. 

 

3.1.3 Inoculation of Elsinoë phaseoli and evaluation of scab disease resistance on 

common bean 

Scab infection occurred naturally whereby, spacer rows of highly susceptible accessions 

were used to increase disease pressure and ensure homogenous distribution of the disease 

in the fields. The disease severity scoring was done using a scale of 0 to 3 (Mbugua, 2016). 

A score of 0 = no disease in the case where disease fails to occur in the environment, 1 = a 

healthy plant (resistant), 2 = scab lesions beginning to coalesce into dead tissue zones on 

leaves, the leaves also start to curl inwards due to midrib infection and the stem starts to 

twist (tolerant), and 3 = disease has progressed to over 50% of the plants and plot. It is 
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characterized by stem twisting and complete defoliation and plant death (susceptible). 

Flowering and pod filling data were taken concurrently with the scoring for the plant's 

reaction to scab in the field. The data was taken at the vegetative, flowering, and pod filling 

stages during the plant's growth. 

 

3.1.4 Confirmation of Elsinoë phaseoli in infected plant tissues by microscopy 

Pods, stem, and leaf tissues of scab-infected common bean plants were obtained from the 

fields in Butonge, Sirisia sub-county of Bungoma, and in Kakamega field experiments 

from accession Loc-0004. The specimens were packed in khaki bags and taken to the 

laboratory in KALRO Kakamega for extraction of fungal toxins and microscopy analysis 

of the symptomatic tissues. The stems, leaves, and pods were washed with running tap 

water and left to dry on a sterile paper towel, and then cleaned with a sterile absorbent dry 

wipe soaked in 70% alcohol. The infected tissues of the pods, stem and leaves were 

dissected cross sectionals in the laboratory and viewed in a glass slide under a light 

microscope at X400 magnification. Methylene blue die was used to stain the specimens in 

the slides and mounted with Glycerol. Separate 5 mm disks of infected tissues were cut out 

of the plant leaves, pods and stem and extracted for fungal toxins.  

Infected and a healthy plant tissues were macerated in a mortar and pestle and toxins within 

the plant cells extracted with a serial extraction in a solvent mix of ether and acetone (1:1 

v/v) while macerating (Banu & Cathrine, 2015). Ether was used as a solvent to dissolve the 

lipid layers of the plant cells and expose the cell contents including the toxins present 

which was subsequently dissolved in the solvents. The extract was then centrifuged at 

13300 rpm in a (micro-centrifuge model 41985371 from VWR MicroStar17) for 5 minutes. 

Centrifugation separated the polar solute and the non-polar solute so that the analyte which 

in these case was the elsinochrome fungal toxin was contained in the organic solute layer 

after separation by centrifugation at 13300 rpm. Supernatant (dark green layer) was 

discarded and the middle layer (pale green layer) transferred to a new tube. Additional 1 ml 

of acetone was added to the extract and transferred to a quartz cuvette for spectroscopy 

(Model: UV-61PCS from mrc lab). Spectroscopic absorbance was measured at between 

400 nm and 600 nm for the infected tissues extract and the healthy plant tissues extract. 
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Infected tissue samples of approximately 3 mm in size were scraped from pods, stems, and 

leaves, placed in 2 ml micro centrifuge tubes containing Phosphate Buffered Saline (PBS), 

vortexed, and then streaked on potato dextrose agar (PDA) media doped with 

chloramphenicol antibiotic (50 mg/l) in 150mm diameter petri dishes. After ten days of 

growth under warm fluorescent light, distinct colonies were sub cultured on fresh PDA 

media with chloramphenicol antibiotic (50 mg/l). These isolates were then left to grow for 

another 30 days, due to the slow growth of Elsinoë phaseoli. 

3.1.5 Analysis of disease phenotype data for scab disease 

The data was computed and cleaned by structuring into a data frame with columns for the 

genotypes, number of plants per plot, the sites, the replications, dates of data collection, 

and the corresponding disease scores on those dates. Yield data was also collected my 

weighing the harvested grain per plot in grams. Yield was thus calculated using the 

formulae. 

((
𝒀𝒊𝒆𝒍𝒅 (𝒈)

𝑷𝒍𝒐𝒕 𝒔𝒊𝒛𝒆
)∗𝟏𝟎𝟎𝟎𝟎)

𝟏𝟎𝟎𝟎𝟎𝟎𝟎
 ………………………………Equation 3.1 

Yield per hectare = Yield in tons / Area in hectares 

To reflect a balanced distribution of the effect of scab disease on the plants in the field, a 

geometric mean of the progressive disease scores at the three disease severity stages was 

calculated using an R-programming language. The geometric means were then used as 

variables to perform the analysis of variance statistics (Sokal & Rohlf, 2012). To compute 

the geometric mean, Log(x) was first calculated, before the arithmetic means and its 

confidence interval are computed by the row mean (Andri et mult, 2021). This was 

restricted to positive inputs since from our scoring scale zero was for no disease in the 

environment.  Thus the geometric mean is defined as:- 

(𝒙𝟏 ∗ 𝒙𝟐 ∗ … ∗ 𝒙𝒏)
𝟏
𝒏⁄  ……………………….….. Equation 3.2 

In R programming suite (version 4.0) this is given by exp(rowMean(log(x))). 

Descriptive statistics were done on the phenotypic data to facilitate the exploration of the 

structure and infer data characteristics such as the phenotypic variants in the dataset 
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generated from the field experiment. This included measures of centrality and dispersion, 

which are: the mean, mode, and median together with the standard deviation and the range 

respectively. The Phenotype was adjusted for environmental effects using an ANOVA of 

the data. Assuming the mixed effect model: 

                                              

                                                                 …………………....Equation 3.3 

Response = Mean + Mixed Effects + Residual/Error Component 

Where yij is the response variable of the jth experimental unit on the ith explanatory 

variable. βi is the effect of the ith treatment and eij is the random error ~(0,Iσ
2
).  

The residual, which is the component of the phenotype that is influenced by the genetic 

makeup of the experimental unit (genotype), was further extracted and analyzed. The 

disease data were then tested for normality using the Shapiro-Wilk's normality test. The 

area under disease progression curve (AUDPC) value was calculated in R programming 

software by summing the severity values at each time point and multiplying the sum by the 

time interval between observations. A dataset was generated consisting of the LSD means 

for the combined sites. This was used for cluster analysis using a Minkowski distance 

matrix to cluster the dataset into specific clades. 

                                                                (∑ |𝒙𝒊 − 𝒚𝒊|
𝒑𝒏

𝒊=𝟏 )
𝟏

𝒑…………………..Equation 3.4 

Where the Minkowski distance between two points X = (xi, x2, …, xn) and Y = (y1, y2, …, yn) 

was a generalization of the Euclidean (p = 2) and Manhattan (p = 1) distances (Thompson 

& C, 1996; Voitsekhovskii & Hazewinkel, 1997). 

 

3.2 Identification of genetic variants using Genome-wide Association Studies 

3.2.1 Selection of the resistant and susceptible genotypes 

The criteria used to select resistant plants to scab disease were by identification of the clade 

with the resistant phenotype in the dendrogram. A Welch two-sample t-test was conducted 
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on the two groups to determine if there are any similarities and clear differences between 

the resistant group and the susceptible group. 

 

3.2.2 Heritability and power of GWAS 

The broad-sense heritability  (Schmidt, et al., 2019a; Schmidt, et al., 2019b) of the scab 

resistance and the susceptible trait was calculated in the R-programming package for 

agricultural analysis (Wright, 2021). The GWAS power was then calculated using the 

heritability values obtained from the heritability study above. R package ldDesign version 

2.0-1 Ball. (2012) was used on R version 4.1.0 (R Core Team, 2021). The genomic 

prediction was performed with the method based on the best linear unbiased prediction 

BLUPs for the phenotypic values using R-programming software package agridat (Wright, 

2021). 

 

3.2.3 Genome-wide association analysis 

SNP data were obtained from an online database sharing information on common 

bean http://arsftfbean.uprm.edu/bean/ where the SNP genotyping was previously done on 

the 548 genotypes using illumine BARCBean6K_3 BeadChip with 5398 SNPs on the 

genotypes under study (Song et al., 2015). The genotype file was then loaded to the R-

programming environment and visualized as a HapMap, and subsequently filtered for the 

SNP data of the common beans in the study of which the phenotypic data was used to 

generate BLUPs for scab scores and subsequently evaluated for normality using Anderson-

Darling normality test. 

 

3.2.4 GWAS analysis model  

A linear model approach implemented in R-programming software version 4.1.0 

environment using GAPIT version 3  Wang & Zhang (2020) was done using the FarmCPU 

model (Liu et al., 2016). Since the population was small and rather to solve the problem of 

false-positive control and confounding between testing markers and factors simultaneously, 

http://arsftfbean.uprm.edu/bean/
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the FarmCPU (Fixed and Random Model Circulating Probability Unification) was used in 

this case.                                                               

               

                                                                             ……………..………..Equation 3.5  

Using both fixed effect model and the random effect model iteratively in a forward and 

backward stepwise regression, the FarmCPU used a fixed effect model without a kinship to 

remove confounding and the ambiguity of determining associated markers in LD with a 

testing marker. While kinship derived from the associated markers was used to select the 

associated markers using maximum likelihood method (Liu et al., 2016). Seven principal 

components were used to infer features of the study population (Zhao et al., 2018). A 

GWAS was performed in GAPIT version three using a FarmCPU model which iterated 

through the Fixed Environment Model (FEM) and the Random Environment Model (REM) 

while including the kinship in the REM in order to obtain minimum false positive while 

predicting the SNPs associated with scab disease resistance in common beans. 

 

3.2.5 Quality control for the GWAS 

Quality control procedures were carried out to remove SNPs with minor allele frequencies 

less than 0.03. Moreover, individuals with more than 10% missing SNP genotypes data 

were removed from the analysis, and finally, 29677 SNPs and 165 individuals remained for 

the association analyses. Seven principal components analysis were used in the analysis to 

infer the population features of the study population. The BLUPs values were grouped with 

the covariates in the phenotypic data. A case of 12 genotypes, which had the lowest BLUPs 

values was selected based on the resistant varieties as a cutoff point and the remaining were 

considered as the control susceptible. The remaining were considered susceptible and were 

the highest-scoring based on the BLUPs scores of the scab geometric mean for the 

progressive score of 1 to 3. 
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3.2.6 Resistant gene prediction 

All the candidate genes linked to the observed SNPs were extracted using Artemis release 

18.1.0 where a range of an upstream cutoff of  0.5 Kbps and a downstream cutoff of 0.5 

Kbps to map SNP to a gene for the significantly associated SNPs in the Phaseolus 

vulgaris reference genome 1.0 (Schmutz et al., 2014). A subsequent BLAST alignment was 

performed on NCBI BLAST website for the coding sequences obtained (Altschul et al., 

1990; Lobo, 2008). The non-annotated protein sequence of the candidate genes was 

obtained from the BLAST results and subsequently run on a support vector machine to 

determine the probabilities of a protein being a resistant protein based on the k-spaced 

amino acid sequences of the protein whereby distance between two similar amino acids is 

separated by any k number of amino acids and a feature selection based on known resistant 

motifs in the protein sequences. 

 

3.2.7 Machine Learning Support Vector Machine R-protein predictor 

A support Vector Machine-learning algorithm prPred was used to predict the resistance of 

the non-annotated protein sequences of the candidate genes. The model training dataset 

incorporated R protein and non-R proteins from 35 different species. A set of 152 R 

proteins and 304 non-R proteins were split into training and test datasets at an 8:2 (Wang et 

al., 2021). The predictor integrated K spaced amino acid numerical representation schemes 

of protein sequences. This integrated the results generated from several computational 

biology programs HMMscan 3.3.2 search tool and Phobius 101 Kall et al. (2004) to predict 

signal peptide and trans-membrane topology protein for domain families to differentiate 

subclasses of the R proteins. Extraction of various features from input protein sequences 

considered the composition of k-spaced amino acid pairs (CKSAAPs) and k-spaced amino 

acid group pairs (CKSAAGPs). Feature extraction was done using the python-based toolkit 

iFeature from github https://github.com/Superzchen/iFeature/ Chen et al. (2018) where 

various numerical feature representation from the non-annotated protein sequences was 

generated using 18 major sequence encoding schemes with 53 different types of feature 

descriptors such as amino acid composition, grouped amino acid composition, quasi-

sequence-order, compos tion/transition/distribution (C/T/D), autocorrelation, conjoint triad 
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and pseudo-amino acid composition (PseAAC). The numerical features were used as 

factors to determine the k- spaced amino acid pair (Wang et al., 2021). The non-annotated 

proteins were predicted in the test set for the ML algorithm SVM by substituting one 

protein sequence in the test set with the query protein and running the analysis on 

linux/Ubuntu 18.04 with python version 3.8. The use of machine learning algorithms to 

decipher the protein function and the classification of plant resistant protein can be 

achieved as depicted by (Wang et al., 2021).  

 

3.3 Development of PCR markers targeting genes associated with scab disease 

resistant 

3.3.1 Primer design targeting scab disease-resistant genes 

Primers were designed for the candidate genes associated with scab disease resistance. 

Their annotated coding sequence were obtained and a web-based bioinformatics Primer 

Blast software Ye et al., (2012) was used to designed three ARMs PCR primer pairs 

combinations. Two primer sets were designed, namely outer and inner primers each of 20-

25 nucleotides long targeting the EPL1, ABC transporter, and PHD finger genes. The genes 

had the following locus identifiers: XM_007161206, XM_007161185.1, and 

XM_007131504.1, respectively. These gene loci were extracted from the Phaseolus 

vulgaris reference genome (Schmutz et al., 2014) using Artemis release 18.1.0 software. 

The outer primers pairs were designed to flank the SNP region and amplify a product that 

spans both alleles. The respective inner primers were designed to have a nucleotide 

mismatch at the 3' end where the mismatch tagged the alternate allele. This mismatch 

ensured that the primer would only anneal to the target allele, and not the non-target allele. 

This is because the 3' end of primers needs to match the target nucleotide for successful 

amplification to occur. A mismatch would result in no amplification. 

3.3.2 Primer validation 

PCR Primer validation was conducted on the local accessions that were previously reported 

to have tolerance to scab in the fields. Validation was done by testing the un-genotyped 
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accessions that had shown different reactions to scab disease in the field by checking for 

marker polymorphism between resistant and susceptible accessions and determining 

whether the identified gene is in sync with the observed phenotype.  

 

3.3.3 Genomic DNA extraction from plant material 

Plant materials used for primer validation were 12 scab-resistant accessions. Genomic 

DNA was extracted from the young trifoliate leaf of the different genotypes grown in the 

screen house at KALRO Kakamega using a modified hexadecyltrimethyl ammonium 

bromide (CTAB) extraction protocol (Porebski et al., 1997). The DNA concentrations were 

qualified on an agarose gel electrophoresis where the genomic DNA was viewed as a single 

heavy band at around 10 kbp. 

 

3.3.4 PCR amplification and electrophoresis 

PCR amplification targeted both the forward and reverse strands of the specific allele using 

a combination of outer and inner primer sets. Three PCR reactions were conducted, starting 

with the outer primer set targeting the original version of the gene, followed by the forward 

outer and reverse inner primer set combination to target the other alternate version on the 

reverse strand. The third combination consisted of a forward inner and reverse outer primer 

to target the alternate version on the forward strand. PCR reaction was achieved using 

OneTaq PCR premix containing 1U/µl of Taq polymerace enzyme, 0.2 mM dNTPs, 

reaction buffer and 2 mM MgCl2, 0.5 µM of each reverse and forward primers, 5 ηg/μl of 

genomic DNA was used in the reaction. PCR program was set at one cycle at 94˚C for 3 

minutes followed by 34 cycles at 94˚C for 10 seconds, annealing temperatures for 30 

seconds at 64˚C (Outer Primer), 60˚C (Reverse Outer plus Forward inner), 61˚C (Forward 

Outer plus Reverse Inner) and the extension at 72˚C for 2 minutes. A final extension for 5 

minutes at 72˚C and stored at 4˚C. Electrophoresis was done to separate the fragments 

using a 1.4% agarose gel pre-stained with ethidium bromide and run under 60 volts and 

100 Amps for a duration of 3hrs.
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CHAPTER 4: RESULTS 

 

4.1 Phenotypic evaluation of common beans accessions for scab disease 

4.1.1 Symptomatology and disease progression in the fields 

The disease symptoms occurred progressively on common bean plants of different 

accessions under natural infection throughout the growing period. Detailed data for each 

accession are shown in appendix VI. One hundred and nineteen (65%) and one hundred 

and forty two (78%) out of the 182 common bean accession showed no scab symptoms on 

the leaves after three weeks of sowing in Butonge and Kakamega fields, respectively. The 

first observed disease symptoms after three weeks were the greying white corky wart-like 

lesions on the leaves (Figure 4.1Aα and Aβ). 

At five weeks after sowing, Thirty eight (20%) and sixty two (34%) out of the 182 

common bean accession showed no scab symptoms on the leaves in Butonge and 

Kakamega fields, respectively. The symptoms observed were twisting of the stem and 

leaves, scab lesions beginning to coalesce into dead tissue zones on leaves, the leaves also 

start to curl inwards due to midrib infection and the stem starts to twist (Figures 4.1Bα and 

Bβ). 

At eight weeks after sowing, twenty three (12.6%) and twenty eight (15%) out of the 182 

common bean accession showed no scab symptoms on the leaves after three weeks of 

sowing in Butonge and Kakamega fields, respectively. The symptoms observed were, cork 

like lesions on the pod and stem of a common bean plant, mummified pods due to scab 

infection, the stem twists and complete defoliation and plant death (Figure 4.1C, Cα and 

Cβ). The common bean accessions which did not show symptoms throughout the growing 

period in both fields were ADP-526, Loc-0003, ADP-739, ADP-0030, ADP-0551, ADP-

0719, ADP-0739, ADP-0020, ADP-0214, ADP-0540, ADP-0555, ADP-0529, ADP-354, 

ADP-211, ADP-537, ADP-0717, and ADP-636.  

The disease manifested on common beans accessions progressively throughout the growing 

period under natural conditions. The disease symptoms appeared three weeks after sowing 
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on highly susceptible accessions Loc-0004, Loc-0001, ADP-0569, ADP-0580, ADP-0573, 

and ADP-0310.   
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Figure 4.1: Scab disease symptom progression in common bean. (A): Healthy common 

bean plant. (Aα and Aβ): Scab infected plant after three weeks with symptom of corky 

wart-like white lesions on leaves and stem. (B): Scab infected common bean at five weeks 

after sowing. (Bα and Bβ): Folding leaf at the midrib, twisting of the stem. (C): Dead 

infected common bean plant. (Cα and Cβ): Plant’s death after lesions coalesce to entire 

common bean plant after eight weeks, corky wart-like lesions on the pod and stem of a 

common bean plant and mummified pods due to scab infection.  
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Scab Disease severely affects the growth and yield of infected plants. The onset of the 

disease was characterized by lesions on the leaves, followed by inward curling of the 

leaves and dry midrib veins with hard protrusions (Figure 4.2A). At the flowering stage, 

infected plants display poor budding and flowering. Late disease onset was characterized 

by greyish-white corky spots and lesions on the pods, which can cause pod distortion or 

mummified pods. The entire plant loses its leaves and dies off, resulting in poor or no pod 

formation (Figure 4.2C). The disease's progression was sequential and progressive, with 

different onsets observed in the field under natural conditions. Early onset of scab severely 

affects the plant's vegetative state and reduces its photosynthetic ability. These observations 

highlight the significant impact of scab disease on plant growth and yield 

 

Figure 4.2: Scab disease symptom that distinctively identifies the infection on common 

bean plants. (A): Curling of the leave at the midrib and (B) infected pods on common 

bean plant. (C): Defoliated common bean plant with infected twisted stem.  

 

4.1.2 Confirmation of the infection by Elsinoë phaseoli in the plant tissues 

The cross-section of the infected plant tissue revealed the presence of mycelia that 

penetrated the plant cells and a dense canker tissue that contained acervuli rising from the 

pseudoparenchymatic layer and the prosenchymatic stroma. The pseudoparenchyma layer 

formed most of the scab lesions and contained the sexual structures for the Elsinoé 
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pathogen. These included asci formed inside the lesions and the ascospores contained 

inside the asci. The asci were observed at x400 magnification under the light microscope 

from infected plant cells of the moist pod lesions from the field sample (Figure 4.3A, B and 

C). The slow-growing pathogen was cultured on potato dextrose agar (PDA) media, where 

the colonies were dark red, irregular, wrinkle-shaped, and caused the underlying media to 

crack. The conidia were also observed under a light microscope at x400 magnification. The 

conidia were hyaline and elliptical-oblong in shape (Figure 4.3D, E and F). The cross 

section of the infected plant tissue revealed presence of mycelia penetrating the plant cell 

and the asci containing ascospore on the scab lesions on the plant. The ascospore appeared 

to be globose and arranged in a locule and co-localized. 

 

 

 

 

Figure 4.3: Microscopy images of cross-sections of plant tissues infected with Elsinoë 

phaseoli (A): A dense canker caused by dead stem tissues. (B): The cankers merge with 
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pseudoparenchymatic tissues, where the acervuli arise from dead plant cells colonized by 

Elsinoë phaseoli. (C): Elsinoë phaseoli asci containing ascospores within the scab lesion on 

infected tissue. (D): The Elsinoë phaseoli pathogen on PDA media after thirty days of 

growth. (F): The Ellipsoid microconidia of Elsinoë phaseoli at x400 magnification. 

 

4.1.3 Confirmation of the fungal toxin in infected susceptible common bean accessions 

The spectroscopic analysis revealed a distinct absorbance of 1.3 at 470 nm in the infected 

tissue of common bean accession Loc-0004, while the healthy tissue of the same accession 

exhibited an absorbance of 1.1 at the same wavelength. Thus, the infected tissue of Loc-

0004 had a unique spectral signature at 470 nm (Figure 4.4).

 

Figure 4.4: Spectral image of samples peak for infected plant compared with a 

healthy plant with absorbance of within range of 400nm to 600nm for infected tissues 

crude extract and healthy tissues crude extract. 1. Infected plant tissues crude extract 

with elsinochrome absorbance at 470nm. 2. Healthy plant tissue with normal absorbance at 

470nm wavelength. 

4.1.4 Analysis of severity scores for scab disease phenotypes 

The descriptive statistical analysis indicated that the disease scores varied significantly 

across the three stages. In Kakamega, the disease score was the lowest at the vegetative 

stage with a mean value of 1.1386, followed by an intermediate value of 1.7663 at the 

flowering stage, and the highest score was recorded at the pod filling stage with a mean 
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value of 2.2373. Similarly, at the second site, the disease score was the lowest at the 

vegetative stage with a mean value of 1.2946, followed by an intermediate value of 1.6026 

at the flowering stage, and the highest score was recorded at the pod filling stage with a 

mean value of 2.1486 (Figure 4.5). The combined scores for the two sites exhibited a 

highly positive skewness (M = 1.8023, SD = 0.3043, skewness = 3.874), indicating a 

significant deviation from a symmetrical distribution. Specifically, the data were skewed to 

the right, with the median value of 1.6845 lower than the mean. 

 

Figure 4.5: Distribution of the severity scores across the growth stages and across the 

two sites (Butonge and Kakamega).  

 

The mean severity score was calculated as the geometric mean for the progressive disease 

scores at the vegetative, flowering, and pod filling stages and input data used for 

performing an analysis of variance (ANOVA). There were significant differences 
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(p<0.001) among the different common bean accessions following scab disease inoculation 

in the two sites (Table 4.1).   

 

Table 4.1: Analysis of variance for scab disease score severity 

 Df Sum sq Mean sq F value Pr(>F)     

Treatments 178 73.626 0.41363 2.296 5.551e-15 

Residuals 809 145.745 0.18015   

Mean CV Efficiency    

1.567716 27.1 90.3    

 

 

Based on the analysis of 1031 plots across both Butonge and Kakamega, the distribution of 

scab disease was found to be positively skewed. The disease reaction was measured as the 

pattern of change for each accession’s reaction to the disease and was captured as a 

geometric mean. The minimum disease geometric mean was 1, while the maximum was 

2.6207 across all the 1030 plots. The mean severity for each genotype in the replications 

was calculated, with the lowest mean severity being 1 and the highest being 2.2352. The 

accessions ADP0580, ADP0310, ADP0585, and ADP0573 had a higher disease reaction, 

with mean severity of 2.2352, 2.1432, 2.1289, and 2.1048, respectively. Accessions 

ADP0739, loc0003, and ADP0030 had a lower disease reaction, with mean severity 

ranging from 1.0546 to 1.0874. The accessions were grouped based on their disease 

reaction and yield, with ADP0739, loc0003, and ADP0030 falling under group st and t, 

while the other accessions fell under group a, abc, and abcd respectively (Table 4.2). 

Detailed data for the groupings of each accession are shown in appendix VIII. The study 

also measured the yield in tons per hectare, with the highest yield being 1.476 tons per 

hectare for loc0003 and the lowest being 0.6455 tons per hectare for ADP0580. The yield 

did not follow a clear pattern based on disease reaction or group. 
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Table 4.2: Mean severity scores of scab disease across different locations and the 

significance of comparisons between these locations. 

ACCESSIONS 

COMBINED 

SITES MEAN 

DISEASE SEVERITY 

SITES 
YIELD 

(T/Ha) 

  KAKAMEGA UM-1 BUTONGE LM-2  

ADP0580 2.2353
a
 2.4573

a
 1.9777

abcdefghijklmn
 0.6455 

ADP0569 2.1602
ab

 2.0995
abcde

 2.2269
abcd

 ** 

ADP0310 2.1433
abc

 1.9948
abcdefghijklm

 2.2502
abc

 1.2455 

ADP0585 2.1289
abc

 2.2297
ab

 2.0955
abcdefghi

 1.1835 

ADP0573 2.1049
abcd

 2.0675
abcdefghi

 2.0556
abcdefghijk

 1.092 

ADP0049 2.0697
abcde

 1.8627
abcdefghijklmnop

 2.2636
abc

 ** 

ADP0271 2.0555
abcdef

 2.0357
abcdefghij

 ** 0.015 

ADP0168 2.0517
abcdef

 1.9946
abcdefghijklm

 2.1029
abcdefg

 0.016 

ADP0563 2.0363
abcdef

 1.8455
abcdefghijklmnopqr

 2.2321
abcd

 0.836 

ADP0582 1.8522
abcdefghijk

 1.6672
bcdefghijklmnopqrstuvw

 1.9575
abcdefghijklmno

 ** 

ADP0560 1.8342
abcdefghijkl

 1.9337
abcdefghijklm

 1.7731
abcdefghijklmnopqrst

 1.029 

loc0001 1.8257
abcdefghijklm

 1.7298
bcdefghijklmnopqrstu

 1.8986
abcdefghijklmnopqr

 ** 

ADP0519 1.7885
abcdefghijklmnopq

 1.7902
bcdefghijklmnopqrstu

 1.7648
abcdefghijklmnopqrst

 ** 

loc0006 1.7875
abcdefghijklmnopqr

 ** 1.7874
abcdefghijklmnopqrst

 0.711 

ADP0288 1.7703
abcdefghijklmnopqr

 1.4379
ijklmnopqrstuvwx

 2.1619
abcdef

 0.695 

loc0004 1.6683
cdefghijklmnopqrs

 1.7025
bcdefghijklmnopqrstuv

 1.594
cdefghijklmnopqrstuvwx

 0.530 

ADP0522 1.66
cdefghijklmnopqrs

 2.0258
abcdefghijk

 1.2363
rstuvwxyzab

 ** 

ADP0098 1.6566
cdefghijklmnopqrs

 1.2374
pqrstuvwx

 2.0422
abcdefghijkl

 0.518 

loc0002 1.3248
pqrst

 1.067
vwx

 1.5415
efghijklmnopqrstuvwxyz

 0.56 

ADP0729 1.3205
pqrst

 1.4835
efghijklmnopqrstuvwx

 1.167
tuvwxyzAB

 1.36 

ADP0020 1.2032
rst

 1.197
tuvwx

 1.3007
nopqrstuvwxyzAB

 0.39 

ADP0508 1.2013
rst

 1.1078
uvwx

 1.2683
qrstuvwxyzAB

 0.42 

ADP0717 1.1939
st

 1.0286
wx

 1.3255
nopqrstuvwxyzAB

 ** 

ADP0555 1.1829
st

 1.3143
mnopqrstuvwx

 1.0782
uvwxyzAB

 1.645 

ADP0089 1.1747
st

 1.0218
wx

 1.2463
rstuvwxyzAB

 1.578 

ADP0537 1.1517
st

 1.3694
lmnopqrstuvwx

 0.9894
xyzAB

 ** 

ADP0214 1.1497
st

 1.1995
stuvwx

 1.124
tuvwxyzAB

 0.563 

ADP0529 1.1365
st

 1.0657
vwx

 1.1079
uvwxyzAB

 1.670 

ADP0211 1.1359
st

 1.4073
klmnopqrstuvwx

 0.9829
xyzAB

 ** 

ADP0636 1.1146
st

 1.4923
efghijklmnopqrstuvwx

 0.7414
B

 1.001 

loc0003 1.0887
st

 1.041
wx

 1.1727
tuvwxyzAB

 1.476 

ADP0739 1.0874
st

 1.1098
uvwx

 0.9944
wxyzAB

 1.2065 

ADP0719 1.0854
st

 1.1531
uvwx

 1.0022
wxyzAB

 ** 

ADP0354 1.0753
st

 1.4543
fhijklmnopqrstuvwx

 0.8855
zAB

 0.689 

ADP0551 1.0623
t
 1.0451

wx
 1.1137

uvwxyzAB
 0.667 

ADP0030 1.0546
t
 1.0203

wx
 1.0907uvwxyzAB 1.4435 

ADP0526 1.0095
t
 0.8646

x
 1.1915tuvwxyzAB ** 
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Note: MS = Mean Severity, T/Ha = Tons per Hectare, ** = No yield data. Treatments with 

the same letter are not significantly different. Letters applies per column. 

The Shapiro Wilk’s normality test (Figure 4.6) was conducted to determine the normality of 

the means obtained in the study. A frequency distribution table (Figure 4.6) showed the 

mean distribution for the mean severity which implied that the data did not differ 

significantly from a normal distribution (W = 0.98901, P = 0.1812).  

 

Figure 4.6: Shapiro-Wilk normality test results for mean severity data. 

 

4.1.5 Quantification of disease progression and severity 

The resulting value indicates the overall disease severity over the entire growing period. 

The AUDPC value of 26400 suggests that the disease severity was relatively high (Figure 

4.7). The plot also shows that the intensity of the disease increased continuously over time, 

as indicated by the upward slope of the curve. 
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Figure 4.7: Quantitative Assessment of Scab Disease Progression in Common Bean 

Accessions using AUDPC. 

 

4.2 Identification of genetic variants using Genome-wide Association Studies 

4.2.1 Selection of resistant and susceptible genotypes 

A hierarchical clustering analysis was performed using the Minowski distance metric in R 

programming software (Version 4.1.0) on the scab disease mean severity data. The 

dendrogram in (Figure 4.8) displays the hierarchical relationship between the observations 

in the dataset based on their similarity. The horizontal axis represents the Minkowski 

distance metric used to calculate the similarity between observations, while the vertical 

axis represents the individual common bean accessions. Two distinct clusters can be 

observed in the dendrogram, indicated by the branching structure of the dendrogram. 

Several other sub-clusters can be observed in the dendrogram among which the resistant 
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accessions were observed to be clustered together (Figure 4.8). These results may have 

implications for on the clusters of scab disease resistant and susceptible common bean 

accessions  

 

Figure 4.8: Unweighted pair group method with arithmetic mean (UPGMA) 

clustering by Minkowski distance dendrogram representing different clusters of 

common beans reaction to scab disease. Note: Genotypes deemed to be resistant were 

clustered together in the same clade while the local accession Loc0003 was also clustered 

with resistant genotypes.  
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The results of the cluster analysis (Figure 4.9) revealed that the resistant accessions 

observed in the study were grouped together with 14 other genotypes that also exhibited 

resistance to scab disease. In contrast, the remaining 165 genotypes were found to be 

susceptible to the disease. A welch t test (Table 4.3) was performed in R to determine the 

significant difference between the two groups of resistant and susceptible. 

Table 4.3: A Welch Two Sample t test for the cases and the control groups 

Data: Means 

Resistant 1.121232   

Susceptible 1.611874 

                                 Note: t = -20.227, df = 64.904, p-value < 2.2e-16 

A Welch t test was conducted to compare the mean severity scores of the resistant and 

susceptible groups. The results indicated that the mean severity score of the resistant group 

(M = 1.121) was significantly lower than the mean severity score of the susceptible group 

(M = 1.612) and p < .001, two-tailed. There was significant difference in scab scores for 

the resistant cluster of common bean and the rest of the population which were considered 

to be susceptible (Figure 4.9).   

 

Figure 4.9: A welch two-sample t-test showing the boxplot of the distributions.  
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The resistant phenotypes had a range of between 1.0 and 1.2 and a mean of 1.1 while the 

rest were considered susceptible with a range of between 1,2 to 2.2 and a mean of 1.6. 

 

4.2.2 Heritability 

Heritability is the proportion of the phenotype that can be explained by the genotype. There 

are two types, the broad sense heritability and the narrow sense heritability. Broad-sense 

heritability h2 is defined as the proportion of phenotypic variance that is attributable to an 

overall genetic variance for the genotype while on the other hand narrow sense heritability 

is the proportion of phenotypic variance that is attributed to additive effect of the 

genotypes. The heritability was calculated to be 0.45642 for the broad sense heritability 

generated in R version 4.1 using agridat version 1.18. h2.s indicates the broad sense 

heritability of the scab traits (Table 4.4). 

 

Table 4.4: Variance Components Analysis and Heritability for Genetic-Environment 

Interactions 

Var Geno mean std min max V.g V.e h2.s h2.c h2.p 

Scab 179 1.58 0.28 1.015 2.258 0.046 0.165 0.45642 0.60272 0.61512 

The heritability values under standard (h2.s), cullis (h2.c) and Piepho (h2.p) approach were 

calculated as 0.45642, 0.60272 and 0.61512 and a genetic variance (V.g) and variance due 

to environment (V.e) values of 0.046 and 0.165 respectively. 

 

4.2.3 Statistical power calculations 

In order to determine the power of the Genome-Wide Association Study (GWAS), a Bayes 

Factor of 19 was calculated. The broad sense heritability of the trait was also calculated to 

be 0.456. This resulted in a power of 0.965 to detect an association effect on the GWAS 

study. The (Table 4.5) shows the power calculation results, including the population size 
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(n), frequency of the dominant allele, frequency of the recessive allele, and disequilibrium 

(D) for the experimental design. Additionally, the table includes the broad sense heritability 

(h2), Bayes Factor (Bf), Phi, misclassification rate, and power. The results demonstrate that 

the experimental design has a power of 0.965 to detect an association effect in the GWAS 

study. The Bayes Factor of 19 suggests strong evidence in favor of the alternative 

hypothesis. 

 

Table 4.5: Power calculations results 

Attributes Values 

Population (n) 179 

Frequency of dominant allele (p) 0.5 

Frequency of recessive (q) 0.5 

Disequilibrium (D) 0.14 

Broad Sense Heritability (h2) 0.456 

Bayes Factor (Bf) 19 

Phi 0 

Misclassification Rate 0 

Power 0.965 

 

4.2.4 Best Linear Unbiased Predictor 

The best linear unbiased predictor values (Table 4.6) for the genotypes that estimate 

random effect in the mixed model for the phenotypes are also used to categorize the 

genotype into the two district grouping of resistant (case) and the susceptible (control) 
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Table 4.6: Best Linear Unbiased Predictor values for phenotypes of selected genotypes 

and the categories for the case vs control study. 

Taxa BLUPs Phenotype Group 

ADP-0580 2.044456 0 Control 

ADP-0569 2.009209 0 Control 

ADP-0585 1.993776 0 Control 

ADP-0663 1.98337 0 Control 

ADP-0168 1.979934 0 Control 

ADP-0310 1.975816 0 Control 

ADP-0573 1.965381 0 control** 

ADP-0662 1.935305 0 Control 

ADP-0208 1.86236 0 Control 

ADP-0271 1.860269 0 Control 

ADP-0037 1.853815 0 Control 

ADP-0107 1.851383 0 Control 

ADP-0017 1.839022 0 Control 

ADP-0211 1.395586 1 Case 

ADP-0214 1.393982 1 Case 

ADP-0717 1.389777 1 Case 

ADP-0529 1.37337 1 Case 

ADP-0354 1.366505 1 Case 

ADP-0537 1.365736 1 Case 

ADP-0636 1.347554 1 Case 

Loc-0003 1.344745 1 case** 

ADP-0719 1.34438 1 Case 

ADP-0030 1.341137 1 Case 

ADP-0739 1.340122 1 Case 

ADP-0526 1.300781 1 Case 

ADP-0551 1.242162 1 Case 

Control** (un-genotyped accession) and case** (un-genotyped accession) 
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4.2.5 Genome-wide association analysis results 

BLUPs generated were tested for normality (Figure 4.10) using the Anderson-Darling 

normality test at A = 0.35945, p-value = 0.446 and subsequently adjusted for normality to  

A = 0.0075046, p-value = 1  using the Nordtest R statistical package by (Juergen & Uwe, 

2015). 

 

 

Figure 4.10: Best linear Unbiased Predictor for the scab disease resistance scores 

adjusted for normality. (1) Non-adjusted histogram distribution for scab disease 

phenotype BLUPs.  (2) Adjusted histogram of scab disease phenotype BLUPs. 

 

The quantiles-quantiles plot (Figure 4.11) assessed how well the GWAS model accounted 

for the population structure and familial relatedness. The negative logarithms of the P-

values from the models fitted in GWAS were plotted against their expected value under the 

null hypothesis of no association with the trait. The GWAS analysis using FarmCPU to 

identify genetic loci associated with scab disease resistance in a panel of 179 common bean 

accessions. After controlling for population structure and relatedness, we detected 1 

significant quantitative trait loci (QTL) associated with scab disease resistance across 

1 2 
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different environments, with p-values of 1.8e-08. These QTL spanned region on 

chromosomes 1 and explained up to 45.6% of the phenotypic variation in scab disease 

resistance. Our results suggest that the identified QTL could be promising targets for 

marker-assisted breeding to common bean improvement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Quantile-quantile (QQ) –plot of P-values. The Y-axis is the observed 

negative base 10 logarithm of the P-values, and the X-axis is the expected observed 

negative base 10 logarithm of the P-values under the assumption that the P-values follow a 

uniform [0,1] distribution. One outlier which is farthest from the hypothesis line of no 

association between the SNP and the trait. 
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The Genome-wide association study (GWAS) analysis yielded several notable results 

through Manhattan plot (Figure 4.12). Firstly, a significant single nucleotide polymorphism 

(SNP) was identified on chromosome 1 at position 6571566, with another SNP at position 

6231746, located within the same locus. This suggests a potential association with scab 

disease resistance. 

Secondly, the GWAS analysis revealed a second locus of interest on chromosome 11 at 

SNP position 1967229. Additional SNPs were also identified on chromosome 5 at SNP 

position 40017016, chromosome 1 at SNP position 5502835 and chromosome 3 at SNP 

position 116319, providing further targets for future investigations on the genetic basis of 

scab disease resistance. Associations between phenotype and genetic markers are displayed 

as Manhattan plots (Fig. 4.12) 

 

Figure 4.12: Manhattan plot for genome wide association studies of common bean for 

scab disease resistance. The X-axis is the genomic position of the SNPs in the genome, 

and the Y-axis is the negative log base 10 of the P-values. The significant SNP is above the 

threshold line on chromosome one. A second suggestive line was plotted at −    (𝟏𝒆 −  )  

to highlight the potential minor QTLs in the association. 
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Among the SNPs tested (Table 4.7), S1_6571566 had the lowest p-value (1.81E-06) and 

the highest minor allele frequency 0.084848. This SNP was also associated with a 

relatively high effect size of 0.455757, suggesting that it may be an important genetic 

variant underlying scab disease resistance in common beans. Several other SNPs had p-

values below the threshold for genome-wide significance (5.0×10
−8

), including 

S3_1163619, S5_40017016, S11_1967229, S11_9666528, S11_38448497, S1_5502835, 

S11_1197707, S11_1949249, S11_1968309, S8_56783493, S8_56783506, S11_7225343, 

S11_1967299, S4_564961, S11_7240334, S1_6197061, S11_7239975, S11_7239986, 

S4_3739129, and S4_3739177. However, these SNPs had relatively low effect sizes, 

ranging from -0.3059 to 0.382909. 
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Table 4.7: GWAS results for scab disease resistance in common beans using a 

FarmCPU model  

SNP Chromosome Position  P.value maf nobs FDR_Adjusted 

P-values 

      effect 

S1_6571566 1 6571566 1.81E-06 0.084848 165 0.053767 0.455757 

S3_1163619 3 1163619 8.18E-05 0.239394 165 0.764975 0.103413 

S5_40017016 5 40017016 8.21E-05 0.118182 165 0.764975 -0.15242 

S11_1967229 11 1967229 0.000114 0.109091 165 0.764975 -0.19997 

S11_9666528 11 9666528 0.00017 0.093939 165 0.764975 0.255627 

S11_38448497 11 38448497 0.000188 0.030303 165 0.764975 0.24817 

S1_5502835 1 5502835 0.0002 0.081818 165 0.764975 0.382909 

S11_1197707 11 1197707 0.000267 0.039394 165 0.764975 -0.16957 

S11_1949249 11 1949249 0.00034 0.112121 165 0.764975 0.176347 

S11_1968309 11 1968309 0.00034 0.112121 165 0.764975 0.176347 

S8_56783493 8 56783493 0.000359 0.084848 165 0.764975 -0.3059 

S8_56783506 8 56783506 0.000359 0.084848 165 0.764975 -0.3059 

S11_7225343 11 7225343 0.000362 0.109091 165 0.764975 -0.17096 

S11_1967299 11 1967299 0.00037 0.109091 165 0.764975 0.179289 

S4_564961 4 564961 0.00042 0.048485 165 0.764975 0.180115 

S11_7240334 11 7240334 0.000474 0.106061 165 0.764975 0.173539 

S6_28477838 6 28477838 0.000552 0.042424 165 0.764975 -0.15435 

S1_6197061 1 6197061 0.000563 0.084848 165 0.764975 -0.3005 

S11_7239975 11 7239975 0.000649 0.139394 165 0.764975 0.146525 

S11_7239986 11 7239986 0.000649 0.139394 165 0.764975 -0.14653 

S4_3739129 4 3739129 0.000656 0.112121 165 0.764975 0.14351 

S4_3739177 4 3739177 0.000656 0.112121 165 0.764975 0.14351 

Note: The association table above includes information on the SNP (SNP), its chromosome 

(Chromosome), position (Position), p-value (P.value), minor allele frequency (maf), 

number of observations (nobs), and false discovery rate (FDR) adjusted p-values. The table 

also provides the effect of each SNP on scab disease resistance in common beans. The rows 

display the results for each SNP above the minor allele frequency threshold. The SNPs 

sorted by their P values from smallest to largest. 
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4.2.6 Associated SNP gene extraction  

The SNP-associated genes were extracted on Artemis release 18.1.0. The coding sequence 

for chromosome 11 SNP position 1967229 and chromosome 1 SNP position 6571566 and 

6231746 were obtained. Chromosome 3 SNP position 116319 did not have any coding 

sequence within the specified range of 0.5kbp upstream and 0.5kbp downstream. 

 

4.2.7 Resistant genes predictions 

The Support Vector Machine predictor prPred predicted the significant protein on (Table 

4.8) linked to the SNP associated with scab disease resistance in the common bean to be a 

resistant protein called enhancer of polycomp-like 1 (EPL1) protein family with an 

accuracy of 0.547104 locus XM_007161206 followed by ATP binding cassette 2 

transporters (ABC2 transporter) protein within a nearby locus, XM_007161185.1, with an 

accuracy of 0.640101. On chromosome 11 the Plant Homeodomain protein on locus 

XM_007131504.1 had the highest accuracy score of 0.705983. Adaptin protein on locus 

XM_007132180, chromosome 11 was predicted with an accuracy of 0.573563. The other 

proteins are classified as non-R protein at a low percentage prediction of below 50% on the 

prPred (Table 4.8). 
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Table 4.8: Resistant genes prediction for the candidate genes associated with scab resistance  

Chromosome SNP 

Position 

R-Protein 

Possibility 

TM SP Domain   

Pv_11_1967299 0.705983 0 0 DDT (PF02791.19) PHD (PF00628.31)  

Pv_11_1968309 0.69377 0 0 DDT (PF02791.19) PHD (PF00628.31) PHD (PF00628.31) 

Pv_1_6231746 0.640101 1 3 ABC2_membrane 

(PF01061.26) 

ABC2_membrane 

(PF01061.26) 

ABC2_membrane (PF01061.26) 

Pv_11_7240334 0.573563 0 0 Adaptin_N (PF01602.22) Cnd1 (PF12717.9) Cnd1 (PF12717.9) 

Pv_1_6571566 0.547104 2 0 EPL1 (PF10513.11) EPL1 (PF10513.11) EPL1 (PF10513.11) 

Pv_11_1197707 0.421165 0 0 GRAS (PF03514.16)   

Pv_5_40017384 0.366947 0 0 PLD_C (PF12357.10) PLDc (PF00614.24) PLDc (PF00614.24) 

Pv_4_564961 0.202008 8 0 Gaa1 (PF04114.16) Gaa1 (PF04114.16)  

Pv_1_6197061 0.125481 0 0 DAO (PF01266.26) DAO (PF01266.26)  

Pv_11_9666528Prot2 0.100785 2 Y Glyco_hydro_17 

(PF00332.20) 

  

Pv_6_28477838 0.085159 1 0 RINGv (PF12906.9) RINGv (PF12906.9)  

Pv_1_6197061 0.071279 0 0    

Pv_11_1179184 0.064535 0 Y fn3_PAP (PF17808.3) fn3_PAP (PF17808.3) Metallophos (PF00149.30) 

Pv_8_56783506 0.060554 0 0 SSXT (PF05030.14) SSXT (PF05030.14)  

Pv_11_7225343 0.055728 0 0 TPR_1 (PF00515.30) TPR_1 (PF00515.30) TPR_1 (PF00515.30) 

Pv_8_55709318 0.049473 1 0 LEA_2 (PF03168.15)   

Pv_2_48278775 0.021726 0 0 PLATZ (PF04640.16) PLATZ (PF04640.16)  

Pv_11_1069217 0.019245 0 0 RRM_1 (PF00076.24) RRM_1 (PF00076.24)  

Note: Chromosome SNP position highlights the position of open reading frame (ORF) for the gene in the prediction ± 50bp. The 

proteins were classified into domains based on their domain motifs which also defines their functionality. Highest attained resistant 

possibility on chromosome 11 SNP position 1967299 at 71% (0.705983). EPL1 and ABC transporter on chromosome 1 SNP position 

6231746 and 6571566 were TM (trans-membrane protein domain) and SP (Surface Protein) among the highest resistance possibilities. 
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The EPL1 protein sequence had a mutation at position 662, where a methionine was 

mutated to a valine. These corresponded to the SNP whereby the alternate allele is a G as 

opposed to a wildtype A. The Resistant possibility increased from 0.547104 to 0.54732196 

after replacing the methionine with a valine by a margin of 0.021796% during prediction. 

The proteins linked to S5_40017384 and S11_1197707 also scored a moderate score of 

0.366947 and 0.421165 and linked to PLD_C and GRAS protein domains respectively. 
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4.3 Development of PCR markers targeting genes associated with scab disease 

resistance 

 
4.3.1 Primer design 

Six primer pairs were successfully designed (Table 4.9, 4.10 and 4.11) and synthesized for 

each of the targeted genes EPL1, ABC transporter and the PHD-finger genes, respectively. 

An outer primer pair for each target was designed based on the wild type gene sequence 

from the Phaseolus vulgaris reference genome (Schmutz et al., 2014). A 25 nucleotide 

forward primer and 23 nucleotide reverse primer for the EPL1 gene was designed with a 44 

and 52% GC content, respectively (Table 4.9). The melting temperature for the primers 

was 59.18 and 64.03˚C respectively while the gene product length was 111bp. 

Subsequently a combination of forward-inner primer and reverse-outer primer was 

designed whereby the forward-inner primer targeted the alternate allele in the EPL1 gene 

sequence. These constituted a 23 nucleotides for both forward and reverse strands and a 

GC content of 30.43 and 52.17%, respectively. The melting temperature for these primer 

pair was 53.14 and 64.03 ˚C while it’s gene product length was 71bp. Lastly a third primer 

pair constituting a forward-outer and reverse-inner strands that were 25 and 22 nucleotides 

long were designed whereby the reverse-inner primer’s 3’ end terminated at the alternate 

allele’s site where the allele was substituted with the reverse complement of the alternate 

allele. The forward-outer primer and the reverse-inner primer’s melting temperature was 

59.18 and 55.32˚C respectively. They contained a percent GC content of 44 and 36.36%, 

respectively while the gene product length was 85bp long. 
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Table 4.9: ARMS PCR Scab primer for EPL1 gene. A combination of outer and inner 

primer where inner primer targets the alternate allele A/G 

Primer pair 1(Outer Primers) Sequence (5'->3') Length 

Forward primer GGTATGGTACAGTTATGACCAAGTG 25 

Reverse primer CAGCCATGTTCAAGCAGCCTTCA 23 

  

 

  

Primer pair 2 Forward Inner + Reverse 

Outer Sequence (5'->3') Length 

Forward primer GGAGATGCTTTTTGTTGATAATA 23 

Reverse primer CAGCCATGTTCAAGCAGCCTTCA 23 

  

 

  

Primer pair 3   Forward Outer + Reverse 

Inner Sequence (5'->3') Length 

Forward primer GGTATGGTACAGTTATGACCAAGTG 25 

Reverse primer AATAGAAATCTCAACCCAACCAc 23 

 

The ABC transporter primers (Table 4.10) was designed whereby an outer primer pair was 

designed based on the wild type gene sequence for the ABC transporter on Phaseolus 

vulgaris reference genome (Schmutz et al., 2014). A 23mer forward primer and 24 

nucleotides reverse primer for the ABC transporter gene was designed with a 60.87 and 

33.33 % GC content, respectively. The melting temperature for the primers were and 65.56 

and 54.54 ˚C respectively while the gene product length was 132bp. Subsequently a 

combination of forward-inner primer and reverse-outer primer were designed whereby the 

forward-inner targeted the alternate allele in the gene sequence. These constituted a 24 

nucleotides for both forward and reverse strands and a GC content of 45.83 and 33.33%, 

respectively. The melting temperature for the primer pair was 62.4 and 54.54 ˚C while the 

gene product length was 98bp. Lastly a primer pair constituting a forward-outer and 

reverse-inner strands that were 23 and 24 nucleotides long was designed whereby the 

reverse-inner primer’s 3’ end terminated at the alternate allele’s site and the allele was 

substituted with the reverse complement of the alternate allele. The forward-outer primer 

and the reverse-inner primer’s melting temperature was 27 and 63˚C respectively. They 

contained a percent GC content of 65.56 and 61.54% respectively while the gene product 

length was 81bp long. 
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Table 4.10: ARMS PCR Scab primer for ABC transporter gene. A combination of 

outer and inner primer where inner primer targets the alternate allele T/A 

Primer pair 1(Outer Primers) Sequence (5'->3') Length 

Forward primer CATGGATGAGCCAACCTCAGGGC 23 

Reverse primer GCATCAAATATATCAATACTTGGC 24 

  

 

  

Primer pair 2 Forward-Inner + Reverse-

Outer Sequence (5'->3') Length 

Forward primer GCAGCTGCAATTGTGATGAGAACT 24 

Reverse primer GCATCAAATATATCAATACTTGGC 24 

  

 

  

Primer pair 3   Forward-Outer + 

Reverse-Inner Sequence (5'->3') Length 

Forward primer CATGGATGAGCCAACCTCAGGGC 23 

Reverse primer CCTGTGTTCACAGTGTTCCTCACt 24 

 

The PHD finger primers was designed (Table 4.11) whereby an outer primer pair was 

designed based on the wild type gene sequence for the PHD finger. A 22 nucleotides 

forward and reverse primer for the PHD finger gene was designed with a 50 and 45.45 % 

GC content, respectively. The melting temperature for the primers were and 59.78 and 

58.44˚C respectively while the gene product length was 223bp. Subsequently a 

combination of forward inner primer and reverse outer primer were designed whereby the 

forward inner targeted the alternate allele in the gene target. These constituted a 19 

nucleotides forward-inner and 22 nucleotides reverse-outer strands and a GC content of 

52.63 and 45.45% respectively. The melting temperature for the primer pair was 57.12 and 

58.44 ˚C while the gene product length was 188bp. Lastly a primer pair constituting a 

forward-outer and reverse-inner strands that were 22 and 23 nucleotides long was designed 

whereby the reverse-inner primer’s 3’ end terminated at the alternate allele’s site and the 

allele was substituted with the reverse complement of the alternate allele. The forward-

outer primer and the reverse-inner primer’s melting temperature was 59.78 and 60.61 ˚C, 

respectively. They contained a percent GC content of 50 and 47.83% respectively while the 

gene product length was 77bp long. 
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Table 4.11: ARMS PCR Scab primer for PHD finger gene. A combination of outer and 

inner primer where inner primer targets the alternate allele G/A 

Primer pair 1(Outer Primers) Sequence (5'->3') Length 

Forward primer GTTCAAGAACAGGAACGTCGTC 22 

Reverse primer CAGGTTTCAAGCATCGTTGAAG 22 

  

 

  

Primer pair 2 Forward Inner + Reverse 

Outer Sequence (5'->3') Length 

Forward primer GTAGAAGACGGGGGCAATT 19 

Reverse primer CAGGTTTCAAGCATCGTTGAAG 22 

  

 

  

Primer pair 3 Forward Outer + Reverse 

Inner Sequence (5'->3') Length 

Forward primer GTTCAAGAACAGGAACGTCGTC 22 

Reverse primer CAACAATCCTCTTCCAAAGCTGCt 24 
 

 

4.3.2 Primer Validation 

The validation of primers targeting the EPL1 gene in common bean, shown to have an 

association with scab disease resistance, revealed important findings. The outer primer pair 

showed no variation among all the common beans used in the test (Figure 4.13). However, 

the second primer pair (with a reverse outer and forward inner primer) showed variation in 

the form of a single nucleotide polymorphism (SNP) associated with scab disease 

resistance. Furthermore, the third primer pair (with a forward outer and reverse inner 

primer) revealed variation specifically in the resistant accession loc0003, with a 

distinguishable dominant band among all accessions (Figure 4.13). Overall, these results 

suggest that the EPL1 gene and its associated SNP may serve as promising targets for 

developing scab disease-resistant common bean accessions. 
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PCR Amplicon Electrophoresis 

Amplification was achieved with all the three primer pair for EPL1 with annealing 

temperatures of 65˚C, 61˚C and 60˚C

 

Figure 4.13: EPL1 gene PCR amplification with ARMS PCR primers pair. Primer Pair 

1 identifying the presence of the EPL gene irrespective of any alternate allele. EPL primer 

pair 2 identifying the alternate type by terminating the primer sequence on the SNP causing 

a mismatch on the forward strand. EPL primer pair 3 identifying the alternate type by 

terminating the primer sequence on the SNP causing a mismatch on the reverse strand 

forward strand. The resistant accessions loc-003. ADP-030, ADP-214, ADP-739, ADP-

354, ADP-551, ADP-717.  
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The ABC transporter gene targeted by the ABC primer pairs showed no distinguishing 

bands between the resistant and susceptible accessions tested. Amplification was achieved 

at annealing temperatures of 65 ˚C 63 ˚C 

 

 

Figure 4.14: ABC transporter PCR amplification with ARMS PCR primers pair. Two 

of forward outer and re-verse inner (alternate) pair three of forward inner (alternate) and 

reverse outer. Gel photo shows the monomorphic nature on the accessions tested. The 

resistant accessions loc-003. ADP-030, ADP-214, ADP-739, ADP-354, ADP-551, ADP-

717. 
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CHAPTER 5: DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

5.1 Phenotyping scab disease on common bean 

Scab and other fungal diseases are responsible for significant losses to common bean grain 

yield and quality worldwide. The recent outbreak of scab disease in Kenya is a threat to 

food security (Masheti, 2019; Otsyula et al., 2020). The most sustainable and effective way 

to tackle scab disease is through identification and development of common bean scab 

resistant accessions. In addition, pursuing resistant breeding, identifying scab-resistant 

germplasm is important for the breeding of resistant varieties. Currently, many common 

bean accessions are available for exploration of genetic and phenotypic variation with 

respect to scab resistance (Otsyula et al., 2018). In this study, the 179 common bean 

accessions evaluated for resistance to scab disease showed significant differences among 

common bean genotypes in the two locations, indicating variability for resistance to the 

disease. The study revealed that the evaluated genotypes showed considerable resistance to 

scab, with 8.9% of the genotypes showing resistance. Majority of the genotypes in the two 

agro-ecological zones in western Kenya showed symptoms that were expressed 

progressively as folding leaves, twisting stems and cork-like white lesions on stem, cork-

like lesions on the pods and stems as well as death of the entire plant and mummified pod. 

The symptoms observed in this study are similar to those reported by (Phillips, 1994). The 

folding of the leaf could be as a result of electrolyte leakage on the plant cells caused by the 

phytotoxic elsinochrome that’s produced by Elsinoë species as described by (Jiao et al., 

2019). Fungal infections on plant can be deduced from observed symptoms caused by the 

fungus through electrolyte imbalance and toxicity are usually as a result of fungus feeding 

on the cells nutrients and causing damage to the plant through destruction of cell wall.  

The diseased common bean plant tissues were investigated in the laboratory through a 

cross-section microscopy for identification of the pathogen. Methylene blue stain was used 

to distinguish the dead plant cells from the live plant cells since it is positively charged and 

gets neutralized by the negatively charged cell components changing the color from blue to 

clear (Stadelmann & Kinzel, 1972). The dead and live cells appear blue and opaque, 

respectively. Morphological features which are synonymous with Elsinoe of the 

Elsinoeceae family where observed in form asci containing ascospore in locules 
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(Jayawardena et al., 2014). These sexual reproductive part of the of the fungus were 

globose and were found localized within the plant cell indicating intercellular existence of 

the fungus through cellular colonization to obtain food from host cells after causing the 

cell's death. These morphologies of the pathogen observed on infected plant tissue were 

synonymous with the Elsinoë spp (Fan et al, 2017; Jayawardena et al, 2014). The majority 

of Elsinoe spp produce elsinochrome, which is a class of secondary metabolites called 

perylenoquinone which are aromatic polyketide characterized by a highly conjugated 

pentacyclic core, that confers them with potent light-induced bioactivities and unique photo 

physical properties producing a singlet oxygen that is reactive causing cell damage and 

electrolyte leakage in the plant cells thus making the food available for the fungus (Hu et 

al., 2019; Jiao et al., 2019). Spectroscopic analysis of fungal toxin extracted from infected 

plant tissue revealed traces of elsinochrome at an absorbance of 470 nm while the healthy 

plants had no significant absorbance at these wavelengths (Jiao et al., 2019; Kuyama & 

Tamura, 1957; Liao & Chung, 2008). This suggest that the disease symptoms were due to 

Elsinoë Phaseoli pathogen causing disease through its virulence factor elsinochrome. To 

detect the presence of elsinochrome in the plant tissue, a serial extraction using ether and 

acetone was adopted and subsequently detected by spectrophotometric method (Banu & 

Cathrine, 2015; Jiao et al., 2019; Kuyama & Tamura, 1957). Comparing the absorbance 

pattern for the crude extract to other perylenequinones such as elsinochrome, cercosporin 

and hypocrelin (Daub et al., 2013), the extract on the infected tissue had absorbance similar 

to the perylenequinone core derivatives indicated the presence of the light activated 

elsinochrome (Hu et al., 2019; Jiao et al., 2019; Kuyama & Tamura, 1957; Liao & Chung, 

2008). The detection of elsinochrome at 470 nm is evidence that the symptoms scored 

against the common bean plants in the field experiment were due to an elsinochrome 

producing pathogen Elsinoë phaseoli. 

A cluster analysis with a Minkowski distance which is Euclidean distance weighted with 

Manhattan distance of the severity means for the two sites revealed a clade containing only 

the resistant accessions. This clustering confirmed the phenotypic observations performed 

in the sites by scouting the field and recording the accessions that had no scab disease 

symptoms and were resistant to scab disease. Common bean accessions grouped in this 

cluster were considered as resistant and the remaining accessions were considered as 
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susceptible. The resistant accessions Loc0003 (MCM 2001) which is locally known to have 

the resistance gene for bean common mosaic virus and bean common mosaic necrotic virus 

which are the Bc3 gene and the I gene was among the most resistant accessions (Ali, 1950; 

Mukeshimana et al., 2005). This reaction was also observed on accessions ADP-551 (AFR 

612), ADP0555 (BRB191) and ADP0211 (G 4780) which was resistant to scab disease. 

Two black seeded accessions ADP0030 (Rh.No 6), and ADP0214 (G 5087) were observed 

to show resistance to scab disease and were clustered within the resistant cluster along with 

ADP0526 (Cal 143), ADP0020 (KIGOMA), ADP0717 (VTTT924/4-4), ADP0540 (AFR 

708), ADP0529 (LYAMUNGO 90), ADP0354 (G 22502), ADP0537 (AFR 619), ADP0636 

(Montcalm), ADP0739 (UYOLE 03), and ADP0719 (NUA 59).  

 

5.2 Scab disease-resistant gene identification 

Fourteen common bean varieties were considered to be resistant while the remaining 165 

were considered to be susceptible from the phenotyping field experiment. .In order to 

capture the uniform distribution of the progression of the scab disease on common bean 

under natural infection a scale of 1 to 3 was used where the geometric mean across the 

three stage scores reflected a balanced non-biased distribution of how the common beans 

were reacting to the scab disease throughout the growing period (Sokal & Rohlf, 2012). A 

genomic prediction based on a Best Linear Unbiased Prediction (BLUPs) elucidated the 

severity scores based on a fixed genetic effect and the random environment effect on the 

genotypes in these study. The BLUPs values predicted were used as covariates in a case vs 

control GWAS study against their genotyping by sequencing SNP data (Song et al., 2015). 

On synching the phenotypic with the genotypic SNP data, the un-genotyped common beans 

were filtered off. A population of 165 SNP genotyped common bean varieties were used to 

measure the resistance trait of scab disease resistance in common beans. The study was 

able to identify some potentially important genetic variants associated with this complex 

trait in common beans. The SNP S1_6571566 was found to have a significant association 

with scab disease resistance with a p-value (1.81E-06) and a minor allele frequency of 

(0.084848) with an effect size of 0.455757. The S1_5502835 also had a high effect size of 
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0.382909 within chromosome 1 along with SNPs on chromosome 11 S11_19677299 with 

an effect size of 0.179289. These SNPs are considered to have a large impact on the 

phenotype based on their moderately high effect size from the GWAS analysis. A larger 

effect size is more desirable as it provides stronger evidence for the association between the 

genetic variant and the scab disease resistance trait (Bukszár & van den Oord, 2010; 

Holland et al., 2016; Stringer et al., 2011). However, the effect size of genetic variants 

associated with complex traits such as disease resistance is usually small (Ingvarsson & 

Street, 2010; X. Zhang et al., 2022). A common approach is to focus on variants with small 

effect sizes but high statistical significance, which was achieved with a large sample size 

and rigorous statistical analysis. Whereby, the significance threshold for genome-wide 

association is often set at p < 5.0×10
−8

, which corresponds to a false discovery rate (FDR) 

of approximately 0.05. 

The quantiles-quantiles results for the GWAS was normal whereby there were no 

deviations from the hypothesis line suggesting the absence of spurious associations due to 

population structure and familial relatedness with one outlier which is the significant SNP 

of the GWAS. Majority of the SNPs were within the hypothesis line for the GWAS. The 

Manhattan plot for the GWAS showed a significant SNP associated with scab disease 

resistance on locus XM_007161206 on chromosome 1. This was a single SNP which 

scored a p-value of (p = 1.81E-06) suggesting the significant association with the trait of 

scab disease resistance being tested. The next nearest SNP to these locus was in 

chromosome 1 SNP position 6231746, locus XM_007161185.1. This was of interest in 

finding the scab disease resistant gene in the study since the two SNPs were separated by 

340kbp in the genome. The locus XM_007131504.1 of interest on chromosome 11 tagged 

by SNP position 1967299 was also investigated as a potential candidate which would 

enhance the gene finding study.  

The fixed and random model circulating probability unification (FarmCPU) model, which 

controls both the false negative and false positive at multiple loci Kaler et al. (2020) was 

able to control false positives. The model incorporated a Fixed Effect Model (FEM) and a 

Random Effect Model (REM) and used them iteratively in 2 out of a possible 10 iterations. 

Kinship was defined by estimating associated markers in a (REM) to avoid over-fitting 
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problem in (FEM) (Liu et al., 2016). The FarmCPU model thus reduced the chances of 

having false positives and false negatives by iterating through the FEM by testing markers, 

one at a time, and multiple associated markers as covariates to control false positives and 

the REM while defining a kinship. Alternative methods employed otherwise in various 

other studies (Yoosefzadeh-Najafabadi et al., 2022; W. Zhou et al., 2019) is the use of 

machine learning algorithms and the integration into GWAS studies to detect and specify 

causative SNPs in a less significant detection to specify functional roles within the minor 

QTLs such as the common bean’s chromosome 11 plant homeo-domain and the adaptin N 

protein families from this study. Here the machine learning algorithm was used to predict 

the function of specific proteins linked to the discovered SNPs.  The choice of the machine 

learning model influences the prediction accuracy that can be achieved in this 

endeavor. Wang et al (2021) developed a machine-learning algorithm based on a Support 

Vector Machine to achieve an overall best prediction accuracy of 93%. Prediction 

algorithms was based on feature selection and the features used in the algorithm, other 

prediction algorithms have been in existence and were based on the resistance motif 

features of the NBS LRR motif and the TIR motif the lectin domain motifs. This approach 

would rather seem to limit terms of the discovery of novel scab disease-resistant proteins 

thus a more generalized method that involved the use of the K-spaced amino acid sequence 

feature was a better approach. The support vector machine learning algorithm of prPred 

predicted the R-proteins for the proteins linked to the significant SNP on chromosome 1 

and other SNPs of interest with a prediction accuracy of 93% between its training and test 

dataset. The best prediction which came at 0.7 in chromosome 11 however the SNP was 

not above the significant threshold and with a small effect of 0.179289 on the phenotype, 

followed by 0.57 on chromosome 11 position 7240334. The significant SNP was tagged 

with a 0.55 R protein prediction on chromosome 1 position 6571566 with an effect size of 

0.455757. An increase in sample size would scale the significance Uffelmann et al. (2021) 

of the SNPs in the study and thus a close look into the role of these genes linked to the 

SNPs informed on the role of the SNP locus as disease resistant locus. 

The EPL1 gene which was associated with the significant SNP on chromosome 1 is 

thought to be a close relative of the NuA4 histone acetyltransferase complex which is 

involved in transcriptional activation of selected genes. In plants these complex remains an 
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open question. The complex has not been purified yet in plants and the function of the gene 

has only barely determined (Espinosa-Cores et al., 2020) and the role in disease resistance 

which is anchored to the resistant gene predictions of 55% suggesting the role in plant 

disease resistance and the presence of resistance motifs in the domain. Although the 

complex has been recently shown to be involved in the regulation of a variety of plant 

biological processes (Bu et al., 2014; Larese et al., 2012; Peng et al., 2018; Umezawa et 

al., 2013). In plants, enhancers of polycomb-like genes play an important role in disease 

resistance by regulating the expression of genes involved in the plant's defense mechanisms 

(Kleinmanns & Schubert, 2014). These genes are often associated with the immune 

response of the plant and help to protect it from pathogens. Some other examples of 

polycomb-like genes that have been shown to play a role in disease resistance in plants 

include CURLY LEAF and MEDEA (Goodrich et al., 1997; Roy et al., 2018). Mutation 

caused by the SNP on EPL1, changing a methionine to a valine at position 662 of its 

protein sequence can have a significant impact on gene regulation and expression. This 

mutation resulted in a change in the amino acid sequence which in turn affected the 

resistance possibility by a small significant margin of 0.00021796 at the protein sequence. 

Enhancer genes play a crucial role in controlling the expression of other genes by binding 

to specific DNA sequences and modulating the activity of transcription factors (Spitz & 

Furlong, 2012). Mutations in enhancer genes can alter the DNA sequence and affect the 

binding of enhancer proteins to their target sequences, leading to changes in the expression 

of nearby genes (Jores et al., 2020). In some cases, a mutation in an enhancer gene can 

cause it to lose its function and result in the suppression of gene expression (Matsui et al., 

2017). In other cases, the mutation can create a new binding site for enhancer proteins and 

result in an increase in gene expression. The effect of a mutation in an enhancer gene 

depends on the specific mutation and the gene it is regulating. 

It is possible that the enhancer is regulating the expression of the ABC transporter gene 

since they are in close proximity to one another. The ATP-binding cassette transporter cell 

membrane pump was found to have resistance mechanism in Trichoderma spp as it was 

involved in shielding against xenobiotic  stresses associated with mycotoxins where its 

upregulated in the presence of mycotoxins (Ruocco et al., 2009). The ABC2 transporter 

gene in the nearest locus to the significant SNP on chromosome 1 is a large protein domain 
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in plants which is originally known for detoxification processes of microbe toxin in plant 

cells (Kang et al., 2011; Martinoia et al., 1993). The DDT and PHD finger protein domain 

on chromosome 11 locus XM_007131504.1  are shown to be directly involved with plant 

stress tolerance and have been shown to play a role in plant disease resistance (Waziri et 

al., 2020). They help regulate plant immune responses by controlling the expression of 

defense-related genes, and activating plant immunity pathways in response to pathogen 

attack. The expression of certain PHD genes can also be induced by pathogen-associated 

molecular patterns (PAMPs), which are recognized by the plant and trigger an immune 

response (Lai et al., 2020; Pang et al., 2022). Additionally, PHD genes can act as 

transcriptional regulators, modulating the expression of other genes that are involved in 

disease resistance (Guk et al., 2022; Wei et al., 2009). AP2/ERF domain-containing 

transcription factor AP2-1 (ADAPTIN N) tagged to SNP on chromosome 11 position 

7240334, plays a crucial role in the regulation of various developmental processes and 

stress responses in plants. Studies by  Jisha et al (2015) have shown that the expression of 

AP2-1 is upregulated in response to various environmental stress conditions, suggesting 

that it plays an important role in the plant's ability to adapt to biotic and abiotic stress 

conditions. Additionally, genetic analysis has demonstrated that AP2-1 is involved in the 

regulation of stress-responsive genes, including those involved in drought tolerance and 

salt tolerance (Gu et al., 2017; Xie et al., 2022). 

The genes associated with the significant SNP, the EPL1 and the ABC transporter genes are 

found in the  same neighborhood as other resistant genes such as the RPP4 gene encoding 

resistance to rust disease (Meyer et al., 2009).  The identification of the EPL1 gene PHD 

finger, AP2-1 and the ABC transporter as genes associated with scab disease resistance is 

an indication that the association for resistance to scab as earlier studies reveal the nature 

by which scab causes disease is by the production of phytotoxin elsinochrome (Chung, 

2011; Liao & Chung, 2008). The target of an enhancer is typically determined by 

performing functional assays such as ChIP-seq or chromatin conformation capture 

experiments, or by using predictive bioinformatics algorithms (Furey, 2012; F. Schmidt et 

al., 2020) thus at these stage it cannot be definitively stated that the enhancer is specifically 

targeting the ABC transporter gene. Thus the role of the EPL1 and ABC transporter genes 
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identified to have association with scab disease resistance in common bean can be defined 

by further bioinformatics investigations.  

 

5.2 Development of PCR markers 

The use of SNP markers visualization for Allele-specific ARMS PCR has shown promise 

in the genotyping of plants for disease resistance and is a novel approach in plant breeding 

and genetic research in barley (Chiapparino et al., 2004). This technique has also been 

effective in the detection and identification of Xanthomonads associated with Pistachio 

Dieback in Australia (Marefat et al., 2006). Additionally, the Tetra-primer ARMS PCR 

method has been used for rapid detection and characterization of Plasmopara viticola 

phenotypes resistant to carboxylic acid amide fungicides (Zhang et al., 2017). These 

studies demonstrate the versatility and applicability of the ARMS PCR method in the 

development of an effective marker for scab disease resistance genes. While the KASP 

PCR method is considered superior in terms of cost and time savings, its implementation 

can be hindered by the lack of appropriate tools and equipment in many laboratories. 

Therefore, an adaptable technology such as ARMS PCR provides a feasible alternative for 

researchers. 

In this study, six allele-specific primer pairs were designed to target markers for the gene 

associated with scab disease resistance and markers in the locus of interest for scab disease 

resistance. The ARMS primers were designed using several criteria to ensure their 

specificity and avoid unwanted binding which targeted the wild-type allele primers (outer 

primers) to act as a housekeeping marker for the overall open reading frame for the genes. 

The inner primer was designed to target the alternate SNP on the allele in a mismatch 

design. The primer length of 20-25bp was optimized to ensure specificity and avoid 

unwanted binding. The GC content was also optimized to avoid high melting temperature 

for the primers. Repeat sequences were minimized to eliminate the problem of self-

dimerization, and secondary structure complementary was avoided in the sequence selected 

for primer design to avoid hairpin loops. 
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The EPL1 gene, which was found to be associated with scab disease resistance, was 

validated against the designed primer targeting these genes on common beans selected as 

the most resistant and susceptible accessions. The polymorphism observed indicated that 

the primer targeted the gene mutation on the resistant accession, which showed clear 

polymorphism against the other accessions used. The non-polymorphic outer primer pair 

was an indicator of the housekeeping for the EPL1 gene with or without alternate allele, 

while the reverse inner primer pair was the most distinguishing primer that identified the 

resistant phenotype through the genetic marker of the EPL1 gene in common bean. 

The use of Allele-specific ARMS PCR can provide an effective and adaptable alternative 

to KASP PCR for genotyping common beans for scab resistance and the development of an 

effective marker for scab disease resistance genes. The designed ARMS primers showed 

promising results in targeting the EPL1 gene associated with scab disease resistance in 

common beans, and further studies can be conducted to validate its use in marker-assisted 

selection for breeding research. 

 

5.3 Conclusion 

The results from this study indicated that there were significant phenotypic variability for 

scab disease reaction on common bean accessions grown under natural infection of Elsinoë 

phaseoli in western Kenya. This led to the identification of scab disease resistant common 

bean accessions that could serve as a potential source of resistant genes for breeding better 

beans.  

Novel genes associated with scab disease resistance were successfully identified on 

chromosome 1 of common bean (Phaseolus vulgaris) where the ABC2 and EPL1 genes 

that are involved in microbial toxins detoxification in plant cells and systemic resistance of 

common bean against scab caused by Elsinoë phaseoli, respectively. These genes identified 

could have significant impact in aiding the breeding and crop improvement effort of 

common bean for resistance to scab disease and the discovery of more resistant genes. 

Thus GWAS approach was successfully used to identify SNPs and putative genes 

associated with scab resistance using diverse set of common bean accessions 
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The EPL1 primer designed successfully distinguished the resistant accessions of common 

bean via PCR amplification analysis. The primer designed thus can be used in a breeding 

program for marker assisted selection targeting scab disease resistance in common bean. A 

high-throughput PCR-based markers for MAS targeting scab resistance in common bean 

was develop successfully. 

5.4 Recommendations  

The common bean accessions identified to be resistant should be adopted as potential 

sources of resistance in common bean improvement against scab disease resistance. The 

molecular nature of the phenotypic reactions of the common bean to Elsinoë phaseoli 

needs to be investigated as the role of elsinchrome in causing electrolyte imbalance and the 

folding and twisting of the plant leaf and stem.  

We recommend further studies to determine the function of the EPL1 gene role in plant 

defense against fungal pathogen Elsinoë phaseoli. Studies on the function and role of EPL1 

in relation to other nearby disease resistance gene that could potentially be involved in scab 

disease resistance should be studied. Further studies to determine the applicability of the 

EPL1 gene in tracking the scab disease resistance in crop improvement programs.  

The other locus of interest that did not have a direct significant association with scab 

disease resistance in common bean such as the locus on Pv11 should be investigated in the 

role the play in the resistance of scab disease in common bean since the associated genes 

were predicted to be R genes using the prPred machine learning algorithms.
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APPENDICES 

Appendix I: Scab disease resistant common bean genotypes 

ADP ID Genotype Type Habit Disease Resistance  

ADP-0030 RH No. 6 black Bush    

ADP-0020 KIGOMA yellow Bush    

ADP-0526 CAL  143 red mottled Bush HBB 

resistant 

Rust 

resistant 

ALS 

resistant 

ADP-0551 AFR  612 d. red 

mottled 

Bush ALS resistant  

ADP-0719 NUA 59 PUR MOTT Vine Rust resistant  

ADP-0717 VTTT 924/4-4 CRAN Vine    

ADP-0739 UYOLE 03 TAN/PUR Bush HBB resistant  

ADP-0214 G 5087 black Vine    

ADP-0555 BRB191 red mottled Bush    

ADP-0540 AFR  708 red mottled Bush ALS resistant  

ADP-0529 LYAMUNGO 

90 

d red mottled   Bush    

ADP-0354 G 22502 purp spec Vine     

ADP-0537 AFR  619 red mottled Bush HBB resistant  

ADP-0211 G 4780 red mottled Bush    

ADP-0636 Montcalm Dark Red 

Kidney 

Bush    

Loc-0003 MCM 2001 red Bush BCMV/BCMNV  
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Appendix II: DDT - PHD finger resistant gene on Pv11_1967299 predicted on prPred 

Query:       chromosome11_1967299  [L=1758] 

Description: |LOCUS  XM_007131504| 

Scores for complete sequence (score includes all domains): 

   --- full sequence ---   --- best 1 domain ---    -#dom- 

    E-value  score  bias    E-value  score  bias    exp  N  Model      Description 

    ------- ------ -----    ------- ------ -----   ---- --  --------   ----------- 

      1e-11   45.0   0.9    2.3e-11   43.9   0.9    1.6  1  PF02791.19  DDT domain 

    2.4e-11   43.4  41.7    3.2e-08   33.4  11.7    4.1  3  PF00628.31  PHD-finger 

 

Appendix III: Adaptin a resistant protein predicted on Pv11_7240289 predicted on 

prPred 

 

Query:       chromosome11_7240289  [L=897] 

Description: |LOCUS  XM_007132180| 

Scores for complete sequence (score includes all domains): 

   --- full sequence ---   --- best 1 domain ---    -#dom- 

    E-value  score  bias    E-value  score  bias    exp  N  Model      Description 

    ------- ------ -----    ------- ------ -----   ---- --  --------   ----------- 

   9.1e-161  536.1  15.3   1.1e-160  535.8  15.3    1.1  1  PF01602.22  Adaptin N terminal region 

      2e-65  219.8   6.3    6.4e-65  218.2   2.1    2.6  2  PF12717.9   non-SMC mitotic condensation complex subunit 1 

    2.2e-28   98.6   0.0      5e-28   97.5   0.0    1.7  1  PF09066.12  Beta2-adaptin appendage, C-terminal sub-domain 

    1.8e-15   57.2   7.2    4.7e-09   36.6   0.1    6.2  7  PF13646.8   HEAT repeats 

    5.9e-11   41.7   2.7     0.0015   18.7   0.1    5.1  4  PF02985.24  HEAT repeat 

    3.3e-09   37.1   2.7    3.3e-09   37.1   2.7    1.9  2  PF02883.22  Adaptin C-terminal domain 
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Appendix IV: ABC2 transporter protein domain predicted on Pv01_6231746 

predicted on prPred. 

Query:       chromosome1_6231746  [L=1446] 

Scores for complete sequence (score includes all domains): 

   --- full sequence ---   --- best 1 domain ---    -#dom- 

    E-value  score  bias    E-value  score  bias    exp  N  Model      Description 

    ------- ------ -----    ------- ------ -----   ---- --  --------   ----------- 

    5.4e-94  313.6  49.5    2.9e-58  196.8  27.8    3.2  3  PF01061.26  ABC-2 type transporter 

    6.3e-35  120.8   0.0    2.4e-18   67.1   0.0    2.4  2  PF00005.29  ABC transporter 

    8.7e-29   99.2   2.4    8.7e-29   99.2   2.4    3.3  2  PF08370.13  Plant PDR ABC transporter associated 

    6.5e-17   61.6   9.8    9.6e-08   31.4   0.0    3.2  3  PF19055.2   ABC-2 type transporter 

    4.4e-09   36.6   0.0       0.03   14.2   0.0    3.8  4  PF13304.8   AAA domain, putative AbiEii toxin, Type IV TA sys 

    4.1e-08   33.8   0.0      9e-08   32.7   0.0    1.6  1  PF14510.8   ABC-transporter N-terminal 

    5.2e-07   30.3   0.1     0.0035   17.8   0.0    2.6  2  PF13191.8   AAA ATPase domain 

    1.5e-06   27.9   2.4      0.019   14.8   0.1    2.5  2  PF13555.8   P-loop containing region of AAA domain 

    3.1e-06   27.8   2.5     0.0058   17.1   0.2    4.0  2  PF00004.31  ATPase family associated with various cellular ac 

    3.5e-06   26.8   1.4      0.011   15.4   0.0    2.4  2  PF13481.8   AAA domain 

    9.9e-06   26.2   0.1       0.03   15.0   0.0    2.5  2  PF13238.8   AAA domain 

Note: ABC transporter gene is classified as R-protein with a score of 0.6401010651029105 

which is involved in cell detoxification. 
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Appendix V: Template sequence of the putative genes for scab disease resistance in common bean.  

Pv Pos. Template Description Open Reading Frame 

Pv01_6571566 

Wild 

Type   

GGTATGGTACAGTTATGACCAAGTGGCCCAGAGTTTGTTTGGAGATGCTTTTTGTTGATAATATGGTTGGGTTGAGATTTCTATTATTT 

GAAGGCTGCTTGAACATGGCTG 

Mutant   

GGTATGGTACAGTTATGACCAAGTGGCCCAGAGTTTGTTTGGAGATGCTTTTTGTTGATAATGTGGTTGGGTTGAGATTTCTATTA 

TTTGAAGGCTGCTTGAACATGGCTG 

Pv01_6231746 

Wild 

Type   

TTTTCATGGATGAGCCAACCTCAGGGCTTGATGCTAGAGCAGCTGCAATTGTGATGAGAACTGTGAGGAACACTGTGAACACAGG 

GCGAACTGTGGTTTGCACCATCCACCAGCCAAGTATTGATATATTTGATGCATTTGATGAGG 

Mutant 

Mutation of T 

to A at amino 

acid RTV site 

TTTTCATGGATGAGCCAACCTCAGGGCTTGATGCTAGAGCAGCTGCAATTGTGATGAGAACAGTGAGGAACACTGTGAACACA 

GGGCGAACTGTGGTTTGCACCATCCACCAGCCAAGTATTGATATATTTGATGCATTTGATGAGG 

Pv11_1967299 

Wild 

Type A/G 

ATGTTGAACACAAAGTCACACCCATTTCCAATAGAAGAATTTTATGTCACTTATAAAAGAATGTTTAGCAAGCTACGGATAGAA 

AACAAGTGCCGGACACACTAACAGGTATAACTACACTTACACTAACAGGTAACCGCAGCTGTTGAAATAGACACTGCCATCC 

ATATCCATCCC 

Mutant 

Type 

TSA substitute 

S for N Asn  

ATGTTGAACACAAAGTCACACCCATTTCCAATAGAAGAATTTTATGTCACTTATAAAGAATGTTTAGCAAGCTACGGATAGAAAA 

CAAATGCCGGACACACTAACAGGTATAACTACACTTACACTAACAGGTAACCGCAGCTGTTGAAATAGACACTGCCATCCATATCCA 

TCCC 

Note: The wild type sequence refers to the gene sequence on the reference genome of Phaseolus vulgaris. The alternate sequence if of the target SNP on the putative scab disease. 
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Appendix VI: Sample data for the field evaluation of scab resistance in common bean 

ACCESSION STAND COUNT  SITES REPS VEGETATIVE FLOWERING POD FILLING PLOTS 

loc0005 30 1 1 1 1 1 1 

ADP0038 26 1 1 1 1 1 1 

ADP0049 23 1 1 1 2 3 1 

ADP0584 28 1 1 1 2 3 2 

ADP0064 22 1 1 1 2 2 2 

ADP0551 23 1 1 1 1 1 2 

ADP0064 30 1 2 2 2 3 14 

ADP0584 32 1 2 1 1 2 1 

ADP0038 27 1 2 1 2 3 1 

ADP0049 32 1 2 1 2 3 14 

loc0005 31 1 2 1 2 1 1 

ADP0551 32 1 2 1 1 1 14 

ADP0049 30 1 3 1 3 3 4 

ADP0551 26 1 3 1 2 1 4 

loc0005 32 1 3 1 2 2 3 

ADP0064 21 1 3 1 2 3 9 

ADP0584 30 1 3 2 3 3 2 

ADP0038 23 1 3 1 2 3 7 

ADP0049 25 2 1 2 3 3 14 

ADP0064 26 2 1 1 1 1 8 

ADP0551 21 2 1 1 1 1 7 

loc0005 31 2 1 1 1 1 9 

ADP0038 14 2 1 1 1 3 4 

ADP0584 26 2 1 1 1 2 4 

ADP0049 18 2 2 2 2 3 7 

ADP0064 17 2 2 2 2 3 10 

ADP0551 23 2 2 1 1 1 11 

loc0005 26 2 2 2 2 3 3 

ADP0038 18 2 2 2 2 3 1 

ADP0584 29 2 2 2 3 3 15 
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ADP0064 19 2 3 1 2 1 9 

ADP0551 23 2 3 1 3 1 2 

ADP0038 21 2 3 1 1 2 5 

loc0005 30 2 3 1 1 2 4 

ADP0584 30 2 3 1 2 3 6 

ADP0049 20 2 3 1 2 3 10 
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Appendix VII: Field Experiment Layout used across the two agro-ecological zones LM and UM 

 

 

Block 1 PLOT 1 PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 PLOT 7 PLOT 8 PLOT 9 PLOT 10 PLOT 11 PLOT 12 PLOT 13 1.5 meters

Walk way = 0.5m

Block 2 PLOT 14 PLOT 15 PLOT 16 PLOT 17 PLOT 18 PLOT 19 PLOT 20 PLOT 21 PLOT 22 PLOT 23 PLOT 24 PLOT 25 PLOT 26 1.5 meters

Walk way = 0.5m

Block 3 PLOT 27 PLOT 28 PLOT 29 PLOT 30 PLOT 31 PLOT 32 PLOT 33 PLOT 34 PLOT 35 PLOT 36 PLOT 37 PLOT 38 PLOT 39 1.5 meters

Walk way = 0.5m

Block 4 PLOT 40 PLOT 41 PLOT 42 PLOT 43 PLOT 44 PLOT 45 PLOT 46 PLOT 47 PLOT 48 PLOT 49 PLOT 50 PLOT 51 PLOT 52 1.5 meters

Walk way = 0.5m

Block 5 PLOT 53 PLOT 54 PLOT 55 PLOT 56 PLOT 57 PLOT 58 PLOT 59 PLOT 60 PLOT 61 PLOT 62 PLOT 63 PLOT 64 PLOT 65 1.5 meters

Walk way = 0.5m

Block 6 PLOT 66 PLOT 67 PLOT 68 PLOT 69 PLOT 70 PLOT 71 PLOT 72 PLOT 73 PLOT 74 PLOT 75 PLOT 76 PLOT 77 PLOT 78 1.5 meters

Walk way = 0.5m

Block 7 PLOT 79 PLOT 80 PLOT 81 PLOT 82 PLOT 83 PLOT 84 PLOT 85 PLOT 86 PLOT 87 PLOT 88 PLOT 89 PLOT 90 PLOT 91 1.5 meters

Walk way = 0.5m

Block 8 PLOT 92 PLOT 93 PLOT 94 PLOT 95 PLOT 96 PLOT 97 PLOT 98 PLOT 99 PLOT 100 PLOT 101 PLOT 102 PLOT 103 PLOT 104 1.5 meters

Walk way = 0.5m

Block 9 PLOT 105 PLOT 106 PLOT 107 PLOT 108 PLOT 109 PLOT 110 PLOT 111 PLOT 112 PLOT 113 PLOT 114 PLOT 115 PLOT 116 PLOT 117 1.5 meters

Walk way = 0.5m

Block 10 PLOT 118 PLOT 119 PLOT 120 PLOT 121 PLOT 122 PLOT 123 PLOT 124 PLOT 125 PLOT 126 PLOT 127 PLOT 128 PLOT 129 PLOT 130 1.5 meters

Walk way = 0.5m

Block 11 PLOT 131 PLOT 132 PLOT 133 PLOT 134 PLOT 135 PLOT 136 PLOT 137 PLOT 138 PLOT 139 PLOT 140 PLOT 141 PLOT 142 PLOT 143 1.5 meters

Walk way = 0.5m

Block 12 PLOT 144 PLOT 145 PLOT 146 PLOT 147 PLOT 148 PLOT 149 PLOT 150 PLOT 151 PLOT 152 PLOT 153 PLOT 154 PLOT 155 PLOT 156 1.5 meters

Walk way = 0.5m

Block 13 PLOT 157 PLOT 158 PLOT 159 PLOT 160 PLOT 161 PLOT 162 PLOT 163 PLOT 164 PLOT 165 PLOT 166 PLOT 167 PLOT 168 PLOT 169 1.5 meters

Walk way = 0.5m

Block 14 PLOT 170 PLOT 171 PLOT 172 PLOT 173 PLOT 174 PLOT 175 PLOT 176 PLOT 177 PLOT 178 PLOT 179 PLOT 180 PLOT 181 PLOT 182 1.5 meters

Walk way = 0.75m

Block 1 PLOT 1 PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 PLOT 7 PLOT 8 PLOT 9 PLOT 10 PLOT 11 PLOT 12 PLOT 13 1.5 meters

Walk way = 0.5m

Block 2 PLOT 14 PLOT 15 PLOT 16 PLOT 17 PLOT 18 PLOT 19 PLOT 20 PLOT 21 PLOT 22 PLOT 23 PLOT 24 PLOT 25 PLOT 26 1.5 meters

Walk way = 0.5m

Block 3 PLOT 27 PLOT 28 PLOT 29 PLOT 30 PLOT 31 PLOT 32 PLOT 33 PLOT 34 PLOT 35 PLOT 36 PLOT 37 PLOT 38 PLOT 39 1.5 meters

Walk way = 0.5m

Block 4 PLOT 40 PLOT 41 PLOT 42 PLOT 43 PLOT 44 PLOT 45 PLOT 46 PLOT 47 PLOT 48 PLOT 49 PLOT 50 PLOT 51 PLOT 52 1.5 meters

Walk way = 0.5m

Block 5 PLOT 53 PLOT 54 PLOT 55 PLOT 56 PLOT 57 PLOT 58 PLOT 59 PLOT 60 PLOT 61 PLOT 62 PLOT 63 PLOT 64 PLOT 65 1.5 meters

Walk way = 0.5m

Block 6 PLOT 66 PLOT 67 PLOT 68 PLOT 69 PLOT 70 PLOT 71 PLOT 72 PLOT 73 PLOT 74 PLOT 75 PLOT 76 PLOT 77 PLOT 78 1.5 meters

Walk way = 0.5m

Block 7 PLOT 79 PLOT 80 PLOT 81 PLOT 82 PLOT 83 PLOT 84 PLOT 85 PLOT 86 PLOT 87 PLOT 88 PLOT 89 PLOT 90 PLOT 91 1.5 meters

Walk way = 0.5m

Block 8 PLOT 92 PLOT 93 PLOT 94 PLOT 95 PLOT 96 PLOT 97 PLOT 98 PLOT 99 PLOT 100 PLOT 101 PLOT 102 PLOT 103 PLOT 104 1.5 meters

Walk way = 0.5m

Block 9 PLOT 105 PLOT 106 PLOT 107 PLOT 108 PLOT 109 PLOT 110 PLOT 111 PLOT 112 PLOT 113 PLOT 114 PLOT 115 PLOT 116 PLOT 117 1.5 meters

Walk way = 0.5m

Block 10 PLOT 118 PLOT 119 PLOT 120 PLOT 121 PLOT 122 PLOT 123 PLOT 124 PLOT 125 PLOT 126 PLOT 127 PLOT 128 PLOT 129 PLOT 130 1.5 meters

Walk way = 0.5m

Block 11 PLOT 131 PLOT 132 PLOT 133 PLOT 134 PLOT 135 PLOT 136 PLOT 137 PLOT 138 PLOT 139 PLOT 140 PLOT 141 PLOT 142 PLOT 143 1.5 meters

Walk way = 0.5m

Block 12 PLOT 144 PLOT 145 PLOT 146 PLOT 147 PLOT 148 PLOT 149 PLOT 150 PLOT 151 PLOT 152 PLOT 153 PLOT 154 PLOT 155 PLOT 156 1.5 meters

Walk way = 0.5m

Block 13 PLOT 157 PLOT 158 PLOT 159 PLOT 160 PLOT 161 PLOT 162 PLOT 163 PLOT 164 PLOT 165 PLOT 166 PLOT 167 PLOT 168 PLOT 169 1.5 meters

Walk way = 0.5m

Block 14 PLOT 170 PLOT 171 PLOT 172 PLOT 173 PLOT 174 PLOT 175 PLOT 176 PLOT 177 PLOT 178 PLOT 179 PLOT 180 PLOT 181 PLOT 182 1.5 meters

Block 1 PLOT 1 PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 PLOT 7 PLOT 8 PLOT 9 PLOT 10 PLOT 11 PLOT 12 PLOT 13 1.5 meters

Walk way = 0.5m

Block 2 PLOT 14 PLOT 15 PLOT 16 PLOT 17 PLOT 18 PLOT 19 PLOT 20 PLOT 21 PLOT 22 PLOT 23 PLOT 24 PLOT 25 PLOT 26 1.5 meters

Walk way = 0.5m

Block 3 PLOT 27 PLOT 28 PLOT 29 PLOT 30 PLOT 31 PLOT 32 PLOT 33 PLOT 34 PLOT 35 PLOT 36 PLOT 37 PLOT 38 PLOT 39 1.5 meters

Walk way = 0.5m

Block 4 PLOT 40 PLOT 41 PLOT 42 PLOT 43 PLOT 44 PLOT 45 PLOT 46 PLOT 47 PLOT 48 PLOT 49 PLOT 50 PLOT 51 PLOT 52 1.5 meters

Walk way = 0.5m

Block 5 PLOT 53 PLOT 54 PLOT 55 PLOT 56 PLOT 57 PLOT 58 PLOT 59 PLOT 60 PLOT 61 PLOT 62 PLOT 63 PLOT 64 PLOT 65 1.5 meters

Walk way = 0.5m

Block 6 PLOT 66 PLOT 67 PLOT 68 PLOT 69 PLOT 70 PLOT 71 PLOT 72 PLOT 73 PLOT 74 PLOT 75 PLOT 76 PLOT 77 PLOT 78 1.5 meters

Walk way = 0.5m

Block 7 PLOT 79 PLOT 80 PLOT 81 PLOT 82 PLOT 83 PLOT 84 PLOT 85 PLOT 86 PLOT 87 PLOT 88 PLOT 89 PLOT 90 PLOT 91 1.5 meters

Walk way = 0.5m

Block 8 PLOT 92 PLOT 93 PLOT 94 PLOT 95 PLOT 96 PLOT 97 PLOT 98 PLOT 99 PLOT 100 PLOT 101 PLOT 102 PLOT 103 PLOT 104 1.5 meters

Walk way = 0.5m

Block 9 PLOT 105 PLOT 106 PLOT 107 PLOT 108 PLOT 109 PLOT 110 PLOT 111 PLOT 112 PLOT 113 PLOT 114 PLOT 115 PLOT 116 PLOT 117 1.5 meters

Walk way = 0.5m

Block 10 PLOT 118 PLOT 119 PLOT 120 PLOT 121 PLOT 122 PLOT 123 PLOT 124 PLOT 125 PLOT 126 PLOT 127 PLOT 128 PLOT 129 PLOT 130 1.5 meters

Walk way = 0.5m

Block 11 PLOT 131 PLOT 132 PLOT 133 PLOT 134 PLOT 135 PLOT 136 PLOT 137 PLOT 138 PLOT 139 PLOT 140 PLOT 141 PLOT 142 PLOT 143 1.5 meters

Walk way = 0.5m

Block 12 PLOT 144 PLOT 145 PLOT 146 PLOT 147 PLOT 148 PLOT 149 PLOT 150 PLOT 151 PLOT 152 PLOT 153 PLOT 154 PLOT 155 PLOT 156 1.5 meters

Walk way = 0.5m

Block 13 PLOT 157 PLOT 158 PLOT 159 PLOT 160 PLOT 161 PLOT 162 PLOT 163 PLOT 164 PLOT 165 PLOT 166 PLOT 167 PLOT 168 PLOT 169 1.5 meters

Walk way = 0.5m

Block 14 PLOT 170 PLOT 171 PLOT 172 PLOT 173 PLOT 174 PLOT 175 PLOT 176 PLOT 177 PLOT 178 PLOT 179 PLOT 180 PLOT 181 PLOT 182 1.5 meters
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Field_No ADP ID Field_No ADP ID Field_No ADP ID Field_No ADP ID

1 ADP-0005 145 ADP-0103 105 ADP-0513 155 LOC-0001

102 ADP-0006 44 ADP-0105 128 ADP-0516 71 LOC-0002

117 ADP-0008 135 ADP-0106 46 ADP-0517 93 DIFF-0001

110 ADP-0009 90 ADP-0111 12 ADP-0518 124 LOC-0003

179 ADP-0011 66 ADP-0112 10 ADP-0519 21 LOC-0004

167 ADP-0012 154 ADP-0115 92 ADP-0520 57 LOC-0005

18 ADP-0013 62 ADP-0117 19 ADP-0521 162 LOC-0006

174 ADP-0014 30 ADP-0118 61 ADP-0522 108 LOC-0007

27 ADP-0015 180 ADP-0121 119 ADP-0523

52 ADP-0016 168 ADP-0122 133 ADP-0526

82 ADP-0017 29 ADP-0126 34 ADP-0528

13 ADP-0018 170 ADP-0166 28 ADP-0529

147 ADP-0019 114 ADP-0167 129 ADP-0530

49 ADP-0020 5 ADP-0168 152 ADP-0531

40 ADP-0021 9 ADP-0186 123 ADP-0532

51 ADP-0022 50 ADP-0188 161 ADP-0537

95 ADP-0025 20 ADP-0199 157 ADP-0539

172 ADP-0027 70 ADP-0205 74 ADP-0540

122 ADP-0028 132 ADP-0207 116 ADP-0546

178 ADP-0029 115 ADP-0208 144 ADP-0551

15 ADP-0030 64 ADP-0211 138 ADP-0554

75 ADP-0031 100 ADP-0213 139 ADP-0555

58 ADP-0035 73 ADP-0214 85 ADP-0560

118 ADP-0037 86 ADP-0224 166 ADP-0561

59 ADP-0038 177 ADP-0247 111 ADP-0562

77 ADP-0040 84 ADP-0255 141 ADP-0563

26 ADP-0041 150 ADP-0267 104 ADP-0566

23 ADP-0042 25 ADP-0271 158 ADP-0568

43 ADP-0043 97 ADP-0272 143 ADP-0569

142 ADP-0045 99 ADP-0276 113 ADP-0570

120 ADP-0046 78 ADP-0277 41 ADP-0571

55 ADP-0047 153 ADP-0288 159 ADP-0573

91 ADP-0048 68 ADP-0303 96 ADP-0580

60 ADP-0049 6 ADP-0310 149 ADP-0581

94 ADP-0051 22 ADP-0345 4 ADP-0582

101 ADP-0052 8 ADP-0346 125 ADP-0584

67 ADP-0053 136 ADP-0353 36 ADP-0585

87 ADP-0054 56 ADP-0354 7 ADP-0587

72 ADP-0055 109 ADP-0379 17 ADP-0636

2 ADP-0056 131 ADP-0383 3 ADP-0648

24 ADP-0059 146 ADP-0392 156 ADP-0650

80 ADP-0061 103 ADP-0395 173 ADP-0651

79 ADP-0062 126 ADP-0413 151 ADP-0654

47 ADP-0064 182 ADP-0459 160 ADP-0659

83 ADP-0065 89 ADP-0461 137 ADP-0661

81 ADP-0070 175 ADP-0462 134 ADP-0662

16 ADP-0075 32 ADP-0465 106 ADP-0663

169 ADP-0077 39 ADP-0466 88 ADP-0666

148 ADP-0078 140 ADP-0467 164 ADP-0717

76 ADP-0083 107 ADP-0468 98 ADP-0719

121 ADP-0084 11 ADP-0471 127 ADP-0729

31 ADP-0086 54 ADP-0472 45 ADP-0739

48 ADP-0089 181 ADP-0475 171 ADP-0536

65 ADP-0090 37 ADP-0478 63 ADP-0524

53 ADP-0098 38 ADP-0479 33 ADP-0525

165 ADP-0099 163 ADP-0483 69 ADP-0127

35 ADP-0100 42 ADP-0508 130 ADP-0107

14 ADP-0102 176 ADP-0510 112 ADP-0543
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Appendix VIII: Mean severity for scab disease for all the accessions used in this study  

ACCESSION

S 

MEAN COMBINED 

SITES 

MEAN SEVERITY 

KAKAMEGA 

MEAN SEVERITY 

BUTONGE 

YIEL

D 

(T/Ha) 

ADP0580 2.2353a 2.4573a 1.9777abcdefghijklmn 0.6455 

ADP0569 2.1602ab 2.0995abcde 2.2269abcd  

ADP0310 2.1433abc 1.9948abcdefghijklm 2.2502abc 1.2455 

ADP0585 2.1289abc 2.2297ab 2.0955abcdefghi 1.1835 

ADP0573 2.1049abcd 2.0675abcdefghi 2.0556abcdefghijk 1.092 

ADP0049 2.0697abcde 1.8627abcdefghijklmnop 2.2636abc  

ADP0271 2.0555abcdef 2.0357abcdefghij  0.015 

ADP0168 2.0517abcdef 1.9946abcdefghijklm 2.1029abcdefg 0.016 

ADP0563 2.0363abcdef 1.8455abcdefghijklmnopqr 2.2321abcd 0.836 

ADP0662 2.0163abcdef 1.8721abcdefghijklmno 2.3874ab  

ADP0303 1.9997abcdef 1.8559abcdefghijklmnopq 2.183abcde 1.247 

ADP0006 1.9915abcdef 1.9646abcdefghijklm 1.9926abcdefghijklmn 0.657 

ADP0413 1.9844abcdef 2.0182abcdefghijk 1.9727abcdefghijklmn 1.016 

ADP0277 1.9664abcdef 1.781bcdefghijklmnopqrstu 2.1152abcdefg  

ADP0208 1.9461abcdef 1.988abcdefghijklm 1.8885abcdefghijklmnopqr 0.398 

ADP0031 1.9457abcdefg 1.7119bcdefghijklmnopqrstuv 2.0729abcdefghij 0.424 

ADP0054 1.9352abcdefg 2.0518abcdefghij 1.8388abcdefghijklmnopqrst 1.315 

ADP0037 1.907abcdefgh 2.0787abcdefg 1.7118bcdefghijklmnopqrstu  

ADP0107 1.9029abcdefgh 1.6601bcdefghijklmnopqrstuvw 2.1abcdefgh 1.071 

ADP0062 1.8973abcdefgh 2.0723abcdefgh 1.7761abcdefghijklmnopqrst 0.303 

ADP0584 1.8878abcdefghi 1.9203abcdefghijklm 1.8966abcdefghijklmnopqr  

ADP0224 1.8873abcdefghi 1.7473bcdefghijklmnopqrstu 1.9863abcdefghijklmn 1.071 

ADP0017 1.8755abcdefghij 1.9167abcdefghijklm 1.8744abcdefghijklmnopqrs  

ADP0587 1.8745abcdefghij 1.7442bcdefghijklmnopqrstu 2.0064abcdefghijklm 0.925 

ADP0117 1.8563abcdefghij 1.7595bcdefghijklmnopqrstu 1.911abcdefghijklmnopq  

ADP0462 1.8541abcdefghijk 1.8872abcdefghijklmn 1.7363bcdefghijklmnopqrstu 0.758 

ADP0582 1.8522abcdefghijk 1.6672bcdefghijklmnopqrstuvw 1.9575abcdefghijklmno  

ADP0560 1.8342abcdefghijkl 1.9337abcdefghijklm 1.7731abcdefghijklmnopqrst 1.029 

loc0001 1.8257abcdefghijklm 1.7298bcdefghijklmnopqrstu 1.8986abcdefghijklmnopqr  

ADP0021 1.8236abcdefghijklm 2.0889abcdef 1.57defghijklmnopqrstuvwxy 0.197 
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ADP0392 1.8217abcdefghijklmn 1.7951bcdefghijklmnopqrstu 1.8204abcdefghijklmnopqrst  

ADP0546 1.8112abcdefghijklmno 1.6598bcdefghijklmnopqrstuvw 1.9393abcdefghijklmnopq 0.048 

ADP0070 1.8095abcdefghijklmno 1.6192bcdefghijklmnopqrstuvw 1.9083abcdefghijklmnopqr 1.293 

ADP0276 1.8063abcdefghijklmnop 2.1467abcd 1.5708defghijklmnopqrstuvwxy  

ADP0663 1.8032abcdefghijklmnopq 1.3054mnopqrstuvwx 2.5144a 0.486 

ADP0186 1.8005abcdefghijklmnopq 1.8623abcdefghijklmnop 1.7129bcdefghijklmnopqrstu  

ADP0029 1.7907abcdefghijklmnopq 1.7985bcdefghijklmnopqrst 1.7982abcdefghijklmnopqrst 1.201 

ADP0099 1.7888abcdefghijklmnopq 1.7594bcdefghijklmnopqrstu 1.7785abcdefghijklmnopqrst 0.921 

ADP0519 1.7885abcdefghijklmnopq 1.7902bcdefghijklmnopqrstu 1.7648abcdefghijklmnopqrst  

loc0006 1.7875abcdefghijklmnopqr  1.7874abcdefghijklmnopqrst 0.711 

ADP0288 1.7703abcdefghijklmnopqr 1.4379ijklmnopqrstuvwx 2.1619abcdef 0.695 

ADP0247 1.7662abcdefghijklmnopqr 1.8286abcdefghijklmnopqrs 1.7786abcdefghijklmnopqrst 0.86 

ADP0539 1.764abcdefghijklmnopqr 1.5989cdefghijklmnopqrstuvw 1.9abcdefghijklmnopqr  

ADP0472 1.7627abcdefghijklmnopqr 2.1847abc 1.3732lmnopqrstuvwxyzab 0.354 

ADP0047 1.7614abcdefghijklmnopqr 1.6369bcdefghijklmnopqrstuvw 1.8506abcdefghijklmnopqrst  

ADP0531 1.7582abcdefghijklmnopqr 1.9535abcdefghijklm 1.611cdefghijklmnopqrstuvwx  

ADP0053 1.7542abcdefghijklmnopqr 1.5519defghijklmnopqrstuvw 1.9434abcdefghijklmnop 1.451 

ADP0118 1.7537abcdefghijklmnopqr 1.6267bcdefghijklmnopqrstuvw 1.8553abcdefghijklmnopqrst  

ADP0011 1.7529abcdefghijklmnopqr 1.669bcdefghijklmnopqrstuvw 1.8158abcdefghijklmnopqrst 0.415 

ADP0353 1.7375bcdefghijklmnopqr 1.611bcdefghijklmnopqrstuvw 1.8176abcdefghijklmnopqrst  

ADP0510 1.7349bcdefghijklmnopqr 1.6104bcdefghijklmnopqrstuvw 1.8514abcdefghijklmnopqrst 0.73 

ADP0115 1.7345bcdefghijklmnopqr 1.5232defghijklmnopqrstuvwx 1.9803abcdefghijklmn  

ADP0272 1.7279bcdefghijklmnopqr 1.7307bcdefghijklmnopqrstu 1.7162bcdefghijklmnopqrstu 0.301 

ADP0096 1.7274bcdefghijklmnopqrs ** 1.7624abcdefghijklmnopqrstu  

ADP0046 1.7236bcdefghijklmnopqrs 1.7445bcdefghijklmnopqrstu 1.7077bcdefghijklmnopqrstu 1.109 

ADP0102 1.7196bcdefghijklmnopqrs 1.6841bcdefghijklmnopqrstuv 1.7913abcdefghijklmnopqrst  

ADP0064 1.7174bcdefghijklmnopqrs 1.997abcdefghijkl 1.5446efghijklmnopqrstuvwxyz 0.28 

ADP0043 1.7166bcdefghijklmnopqrs 1.8295abcdefghijklmnopqrs 1.6047cdefghijklmnopqrstuvwx  

ADP0562 1.715bcdefghijklmnopqrs 1.5681cdefghijklmnopqrstuvw 1.873abcdefghijklmnopqrs 0.436 

ADP0055 1.7078bcdefghijklmnopqrs 1.8424abcdefghijklmnopqr 1.6267cdefghijklmnopqrstuvwx 0.788 

ADP0213 1.7061bcdefghijklmnopqrs 1.5307defghijklmnopqrstuvw 1.8204abcdefghijklmnopqrst 0.45 

ADP0461 1.7051bcdefghijklmnopqrs 1.4095klmnopqrstuvwx 1.8959abcdefghijklmnopqr 1.344 

ADP0379 1.705bcdefghijklmnopqrs 1.8302abcdefghijklmnopqr 1.6376bcdefghijklmnopqrstuvwx  
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ADP0651 1.6967bcdefghijklmnopqrs 1.5247defghijklmnopqrstuvwx 1.8111abcdefghijklmnopqrst 0.606 

ADP0122 1.6966bcdefghijklmnopqrs 1.6705bcdefghijklmnopqrstuvw 1.7172bcdefghijklmnopqrstu 0.76 

ADP0078 1.6779bcdefghijklmnopqrs 1.8561abcdefghijklmnopq 1.5671defghijklmnopqrstuvwxyz  

ADP0465 1.6765cdefghijklmnopqrs 1.9426abcdefghijklm 1.3894klmnopqrstuvwxyzab 0.256 

loc0004 1.6683cdefghijklmnopqrs 1.7025bcdefghijklmnopqrstuv 1.594cdefghijklmnopqrstuvwx 0.530 

ADP0522 1.66cdefghijklmnopqrs 2.0258abcdefghijk 1.2363rstuvwxyzab  

ADP0098 1.6566cdefghijklmnopqrs 1.2374pqrstuvwx 2.0422abcdefghijkl 0.518 

ADP0025 1.6565cdefghijklmnopqrs 1.7879bcdefghijklmnopqrstu 1.5687defghijklmnopqrstuvwxyz 0.152 

ADP0517 1.6538cdefghijklmnopqrs 2.0327abcdefghijk 1.3446mnopqrstuvwxyzab 0.165 

ADP0084 1.6504cdefghijklmnopqrs 1.741bcdefghijklmnopqrstu 1.5749defghijklmnopqrstuvwxy 0.157 

ADP0561 1.6472cdefghijklmnopqrs 1.4559fhijklmnopqrstuvwx 1.8209abcdefghijklmnopqrst  

ADP0666 1.6425cdefghijklmnopqrst 1.6825bcdefghijklmnopqrstuv **  

ADP0345 1.6373cdefghijklmnopqrst 1.492efghijklmnopqrstuvwx 1.7991abcdefghijklmnopqrst 1.118 

ADP0012 1.6338defghijklmnopqrst 1.633bcdefghijklmnopqrstuvw 1.605cdefghijklmnopqrstuvwx 0.02 

ADP0570 1.6288defghijklmnopqrst 1.5361defghijklmnopqrstuvw 1.6857bcdefghijklmnopqrstu  

ADP0103 1.6152defghijklmnopqrst 1.7965bcdefghijklmnopqrstu 1.5359efghijklmnopqrstuvwxyz 0.60 

ADP0121 1.6119defghijklmnopqrst 1.6325bcdefghijklmnopqrstuvw 1.5668defghijklmnopqrstuvwxyz 1.324 

ADP0038 1.6044efghijklmnopqrst 1.6578bcdefghijklmnopqrstuvw 1.6634bcdefghijklmnopqrstuvw  

ADP0475 1.5996efghijklmnopqrst 1.319mnopqrstuvwx 1.7539bcdefghijklmnopqrstu 1.73 

ADP0015 1.5985efghijklmnopqrst 1.6167bcdefghijklmnopqrstuvw 1.7236bcdefghijklmnopqrstu 1.104 

ADP0127 1.5965efghijklmnopqrst 1.578cdefghijklmnopqrstuvw 1.5961cdefghijklmnopqrstuvwx  

ADP0654 1.5911efghijklmnopqrst 1.7337bcdefghijklmnopqrstu 1.3826klmnopqrstuvwxyzab  

ADP0648 1.5857fghijklmnopqrst 1.5905cdefghijklmnopqrstuvw 1.6185cdefghijklmnopqrstuvwx 0.901 

ADP0077 1.5736fghijklmnopqrst 1.3662mnopqrstuvwx 1.791abcdefghijklmnopqrst 0.163 

ADP0041 1.5706fghijklmnopqrst 1.5009efghijklmnopqrstuvwx 1.6559bcdefghijklmnopqrstuvwx 0.197 

ADP0459 1.5696fghijklmnopqrst 1.4696efghijklmnopqrstuvwx 1.6136cdefghijklmnopqrstuvwx  

ADP0111 1.5632fghijklmnopqrst 1.7376bcdefghijklmnopqrstu 1.4167jklmnopqrstuvwxyzAB 0.41 

ADP0035 1.5611fghijklmnopqrst 1.4369ijklmnopqrstuvwx 1.6266cdefghijklmnopqrstuvwx 0.153 

ADP0040 1.5546fghijklmnopqrst 1.738bcdefghijklmnopqrstu 1.372mnopqrstuvwxyzab 0.601 

ADP0019 1.5418fghijklmnopqrst 1.4901efghijklmnopqrstuvwx 1.5009fghijklmnopqrstuvwxyz  

ADP0267 1.5362fghijklmnopqrst 1.5478defghijklmnopqrstuvw 1.5355efghijklmnopqrstuvwxyz 0.133 

ADP0516 1.533fghijklmnopqrst 1.2775nopqrstuvwx 1.7879abcdefghijklmnopqrst  

ADP0255 1.5318fghijklmnopqrst 1.6462bcdefghijklmnopqrstuvw 1.4222ijklmnopqrstuvwxyzab 0.350 
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ADP0199 1.527fghijklmnopqrst 1.4656fghijklmnopqrstuvwx 1.5118efghijklmnopqrstuvwxyz 0.168 

ADP0188 1.5217fghijklmnopqrst 1.2546nopqrstuvwx 1.6085cdefghijklmnopqrstuvwx  

ADP0056 1.5207fghijklmnopqrst 1.5017defghijklmnopqrstuvwx 1.4704ghijklmnopqrstuvwxyzA 1.017 

ADP0027 1.5111fghijklmnopqrst 1.4579fhijklmnopqrstuvwx 1.6062cdefghijklmnopqrstuvwx  

ADP0383 1.5096fghijklmnopqrst 1.2803nopqrstuvwx 1.7267bcdefghijklmnopqrstu 1.142 

ADP0518 1.4994fghijklmnopqrst 1.6531bcdefghijklmnopqrstuvw 1.3312nopqrstuvwxyzAB 0.141 

ADP0065 1.4975fghijklmnopqrst 1.4601fhijklmnopqrstuvwx 1.5075fghijklmnopqrstuvwxyz  

ADP0650 1.4965fghijklmnopqrst 1.6485bcdefghijklmnopqrstuvw 1.3895klmnopqrstuvwxyzAB 0.511 

ADP0126 1.4958fghijklmnopqrst 1.5956cdefghijklmnopqrstuvw 1.5102efghijklmnopqrstuvwxyz 1.63 

ADP0016 1.4944fghijklmnopqrst 1.471efghijklmnopqrstuvwx 1.5093fghijklmnopqrstuvwxyz 1.381 

ADP0105 1.493fghijklmnopqrst 1.1869tuvwx 1.6771bcdefghijklmnopqrstuv  

ADP0008 1.4855fghijklmnopqrst 1.6472bcdefghijklmnopqrstuvw 1.283pqrstuvwxyzAB 1.34 

ADP0061 1.4846fghijklmnopqrst 1.4539ghijklmnopqrstuvwx 1.4147jklmnopqrstuvwxyzAB 0.711 

ADP0086 1.4825fghijklmnopqrst 1.552defghijklmnopqrstuvw 1.4161jklmnopqrstuvwxyzAB 0.341 

ADP0014 1.4809fghijklmnopqrst 1.5802cdefghijklmnopqrstuvw 1.3997jklmnopqrstuvwxyzAB  

ADP0661 1.4806fghijklmnopqrst 1.68bcdefghijklmnopqrstuv 1.4008jklmnopqrstuvwxyzAB 1.17 

ADP0075 1.4784fghijklmnopqrst 1.4722efghijklmnopqrstuvwx 1.5662defghijklmnopqrstuvwxyz 1.67 

ADP0090 1.4784fghijklmnopqrst 1.1658tuvwx 1.6529bcdefghijklmnopqrstuvwx 1.011 

ADP0112 1.477fghijklmnopqrst 1.4636fghijklmnopqrstuvwx 1.5231efghijklmnopqrstuvwxyz  

ADP0581 1.4726fghijklmnopqrst 0.9867wx 2.0052abcdefghijklm  

ADP0478 1.4698fghijklmnopqrst 1.3826klmnopqrstuvwx 1.5346efghijklmnopqrstuvwxyz  

ADP0481 1.4585ghijklmnopqrst 1.6404bcdefghijklmnopqrstuvw 1.2752pqrstuvwxyzAB 0.63 

ADP0042 1.441ghijklmnopqrst 1.3018mnopqrstuvwx 1.5173efghijklmnopqrstuvwxyz 0.76 

ADP0525 1.4367ghijklmnopqrst 1.4448hijklmnopqrstuvwx 1.4272hijklmnopqrstuvwxyzAB  

ADP0536 1.4365hijklmnopqrst 1.0316wx 1.7972abcdefghijklmnopqrst  

ADP0568 1.4277hijklmnopqrst 1.6707bcdefghijklmnopqrstuvw 1.2837pqrstuvwxyzAB  

ADP0532 1.4047ijklmnopqrst 1.2273qrstuvwx 1.6946bcdefghijklmnopqrstu 1.79 

ADP0048 1.4011jklmnopqrst 1.704bcdefghijklmnopqrstuv 1.0678uvwxyzAB 1.53 

loc0005 1.3991jklmnopqrst 1.3734lmnopqrstuvwx 1.5043fghijklmnopqrstuvwxyz 1.77 

ADP0467 1.397jklmnopqrst 2.0857abcdef 0.8065AB  

ADP0059 1.3923jklmnopqrst 1.3449mnopqrstuvwx 1.4286hijklmnopqrstuvwxyzAB  

ADP0530 1.3905klmnopqrst 1.2612nopqrstuvwx 1.5221efghijklmnopqrstuvwxyz  

ADP0395 1.3765klmnopqrst 1.2526opqrstuvwx 1.5205efghijklmnopqrstuvwxyz 1.591 
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ADP0106 1.3679lmnopqrst 1.3724lmnopqrstuvwx 1.3885klmnopqrstuvwxyzAB 1.10 

ADP0554 1.363lmnopqrst 1.4446hijklmnopqrstuvwx 1.2841pqrstuvwxyzAB 1.01 

ADP0346 1.3595lmnopqrst 1.4878efghijklmnopqrstuvwx 1.1544tuvwxyzAB  

ADP0479 1.3588lmnopqrst 1.1763tuvwx 1.4518ghijklmnopqrstuvwxyzA 0.82 

ADP0009 1.3576lmnopqrst 1.3846klmnopqrstuvwx 1.3541mnopqrstuvwxyzAB 1.523 

ADP0045 1.3524lmnopqrst 1.1584uvwx 1.5145efghijklmnopqrstuvwxyz  

ADP0052 1.3466mnopqrst 1.3006mnopqrstuvwx 1.3916klmnopqrstuvwxyzAB 0.70 

ADP0524 1.3449mnopqrst 1.6342bcdefghijklmnopqrstuvw 1.0904uvwxyzAB 1.18 

ADP0005 1.3399nopqrst 1.6172bcdefghijklmnopqrstuvw 0.9993wxyzAB  

ADP0022 1.3349opqrst 1.5335defghijklmnopqrstuvw 1.2124stuvwxyzAB 1.16 

ADP0528 1.3306opqrst 1.1068uvwx 1.5738defghijklmnopqrstuvwxy 0.519 

ADP0207 1.3289opqrst 1.6612bcdefghijklmnopqrstuvw 1.0068vwxyzAB  

loc0002 1.3248pqrst 1.067vwx 1.5415efghijklmnopqrstuvwxyz 0.56 

ADP0729 1.3205pqrst 1.4835efghijklmnopqrstuvwx 1.167tuvwxyzAB 1.36 

ADP0543 1.3176qrst 1.28nopqrstuvwx 1.3462mnopqrstuvwxyzAB  

ADP0205 1.3152qrst 1.1283uvwx 1.3964klmnopqrstuvwxyzAB  

ADP0166 1.3148qrst 1.2217rstuvwx 1.4832ghijklmnopqrstuvwxyz  

ADP0100 1.3123qrst 1.0187wx 1.5979cdefghijklmnopqrstuvwx 1.21 

ADP0468 1.2889rst 1.0981uvwx 1.5117efghijklmnopqrstuvwxyz 1.05 

ADP0471 1.2847rst 1.4356ijklmnopqrstuvwx 1.1799tuvwxyzAB 0.95 

ADP0571 1.2846rst 1.3393mnopqrstuvwx 1.1987tuvwxyzAB  

ADP0659 1.2825rst 1.1568uvwx 1.4391ghijklmnopqrstuvwxyzAB  

ADP0566 1.2808rst 1.5459defghijklmnopqrstuvw 1.0627uvwxyzAB  

ADP0520 1.2784rst 1.0219wx 1.4515ghijklmnopqrstuvwxyzA 1.21 

ADP0013 1.2718rst 1.0771vwx 1.4111jklmnopqrstuvwxyzAB 1.00 

ADP0028 1.2672rst 1.4255jklmnopqrstuvwx 1.0994uvwxyzAB 0.71 

ADP0083 1.2609rst 1.3096mnopqrstuvwx 1.0711uvwxyzAB  

ADP0466 1.2604rst 1.1032uvwx 1.3331mnopqrstuvwxyzAB  

ADP0167 1.2511rst 1.1292uvwx 1.2944opqrstuvwxyzAB 1.24 

ADP0018 1.2321rst 1.6028bcdefghijklmnopqrstuvw 0.8935zAB 0.65 

ADP0051 1.2229rst 1.2691nopqrstuvwx 1.2863opqrstuvwxyzAB  

ADP0540 1.2129rst 1.2842nopqrstuvwx 1.0921uvwxyzAB 1.74 

ADP0020 1.2032rst 1.197tuvwx 1.3007nopqrstuvwxyzAB 0.39 
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ADP0508 1.2013rst 1.1078uvwx 1.2683qrstuvwxyzAB 0.42 

ADP0717 1.1939st 1.0286wx 1.3255nopqrstuvwxyzAB  

ADP0555 1.1829st 1.3143mnopqrstuvwx 1.0782uvwxyzAB 1.645 

ADP0523 1.1821st 1.528defghijklmnopqrstuvwx 0.9184yzAB  

ADP0089 1.1747st 1.0218wx 1.2463rstuvwxyzAB 1.578 

ADP0537 1.1517st 1.3694lmnopqrstuvwx 0.9894xyzAB  

ADP0214 1.1497st 1.1995stuvwx 1.124tuvwxyzAB 0.563 

ADP0529 1.1365st 1.0657vwx 1.1079uvwxyzAB 1.670 

ADP0211 1.1359st 1.4073klmnopqrstuvwx 0.9829xyzAB  

ADP0636 1.1146st 1.4923efghijklmnopqrstuvwx 0.7414B 1.001 

loc0003 1.0887st 1.041wx 1.1727tuvwxyzAB 1.476 

ADP0739 1.0874st 1.1098uvwx 0.9944wxyzAB 1.2065 

ADP0719 1.0854st 1.1531uvwx 1.0022wxyzAB  

ADP0354 1.0753st 1.4543fhijklmnopqrstuvwx 0.8855zAB 0.689 

ADP0551 1.0623t 1.0451wx 1.1137uvwxyzAB 0.667 

ADP0030 1.0546t 1.0203wx 1.0907uvwxyzAB 1.4435 

ADP0526 1.0095t 0.8646x 1.1915tuvwxyzAB  
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Appendix IX: Image depicting the devastation caused by scab disease in the 

experimental fields. 
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Appendix X: UV Spectroscopy absorbance of elsinochrome extracted from Elsinoé 

phaseoli agar plugs  

 

UV spectroscopic image of elsinochrome extracted from 10 cm agar plug of Elsinoé 

phaseoli and extracted using acetone for 16 hrs. elsinochrome absorbs at 470 nm 

wavelength. 
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Appendix XI: Severity score and disease reaction progression for different common 

bean accessions across two AEZs with high scab prevalence. 

Accession Site Rep VG FL PF GM MS Yield T/Ha Group 

ADP0580 

Kakamega 

1 2 3 3 2.6207 

2.2352 0.6455 a 

2 2 2 3 2.2894 

3 2 3 3 2.6207 

Butonge 

1 2 1 3 1.8171 

2 2 3 3 2.6207 

3 1 1 3 1.4423 

ADP0310 

Kakamega 

1 2 2 3 2.2894 

2.1432 1.2455 abc 

2 1 2 3 1.8171 

3 * * * * 

Butonge 

1 1 2 3 1.8171 

2 2 2 3 2.2894 

3 2 3 3 2.6207 

ADP0585 

Kakamega 

1 2 2 3 2.2894 

2.1289 1.1835 abc 

2 2 3 3 2.6207 

3 1 2 2 1.5874 

Butonge 

1 2 2 2 2 

2 2 3 3 2.6207 

3 1 2 2 1.5874 

ADP0573 

Kakamega 

1 2 2 3 2.2894 

2.1048 1.092 abcd 

2 1 2 2 1.5874 

3 2 3 3 2.6207 

Butonge 

1 1 3 3 2.0801 

2 2 3 3 2.6207 

3 1 1 3 1.4422 

ADP0739 

Kakamega 

1 1 1 2 1.2599 

1.0874 1.2065 st 

2 1 1 1 1 

3 1 1 2 1.2599 

Butonge 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

loc0003 

Kakamega 

1 1 1 1 1 

1.0887 1.476 st 

2 1 1 1 1 

3 1 1 1 1 

Butonge 

1 1 1 1 1 

2 1 1 2 1.2599 

3 1 1 2 1.2599 

ADP0030 

Kakamega 

1 1 1 1 1 

1.0546 1.4435 t 

2 1 1 1 1 

3 1 1 1 1 

Butonge 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 2 1.2599 

Note: VG = Vegetative, FL = Flowering, PF = Pod Filling, GM = Geometric Mean, MS = 

Mean Severity, T/Ha = Tons per Hectare. 



102 
 

Appendix XII: R - code snippet used in the Analysis and the outputs 

> scabdata <- read.csv("combinedimputed03.csv", header = TRUE) 
> View(scabdata) 
> library(agricolae) 
> summary(scabdata) 
    ADP.ID           STAND_COUNT        SITES           REPS       
 Length:1031        Min.   : 2.00   Min.   :1.00   Min.   :1.000   
 Class :character   1st Qu.:20.00   1st Qu.:1.00   1st Qu.:1.000   
 Mode  :character   Median :24.00   Median :2.00   Median :2.000   
                    Mean   :23.03   Mean   :1.51   Mean   :1.969   
                    3rd Qu.:28.00   3rd Qu.:2.00   3rd Qu.:3.000   
                    Max.   :33.00   Max.   :2.00   Max.   :3.000   
 DISEASE.SCORE.3rd.JUNE DISEASE_SCORE.9TH.JUNE DISEASE_SCORE19THJUNE 
 Min.   :1.000          Min.   :1.000          Min.   :0.000         
 1st Qu.:1.000          1st Qu.:1.000          1st Qu.:1.000         
 Median :1.000          Median :2.000          Median :2.000         
 Mean   :1.218          Mean   :1.683          Mean   :2.149         
 3rd Qu.:1.000          3rd Qu.:2.000          3rd Qu.:3.000         
 Max.   :2.000          Max.   :3.000          Max.   :3.000         
     BLOCKS       
 Min.   : 1.000   
 1st Qu.: 4.000   
 Median : 8.000   
 Mean   : 7.634   
 3rd Qu.:11.000   
 Max.   :15.000   
> dim(scabdata) 
[1] 1031    8 
> scabscore <- scabdata[,5:7] 
> dim(scabscore) 
[1] 1031    3 
> #######GEOMETRIC MEAN CALCULATIONS AND PARTIALLY INCOMPLETE BLOCK DESIGN DATA ANALY
SIS 
> scabgeomeanscombined <- exp(rowMeans(log(scabscore))) 
> as.numeric(scabgeomeanscombined) 
   [1] 1.000000 1.000000 1.817121 1.259921 1.817121 2.289428 1.442250 1.817121 
   [9] 1.442250 1.817121 1.587401 2.289428 1.000000 1.000000 1.817121 1.587401 
  [17] 1.000000 1.587401 1.817121 1.000000 1.259921 1.587401 1.587401 1.817121 
[977] 1.000000 1.817121 1.259921 1.817121 1.259921 1.000000 1.000000 1.000000 
 [985] 1.817121 1.000000 1.259921 1.259921 1.259921 1.259921 1.587401 1.259921 
 [993] 1.817121 2.080084 2.080084 1.259921 1.259921 1.000000 1.000000 1.587401 
 [ reached getOption("max.print") -- omitted 31 entries ] 
> trtc <- scabdata[,1] 
> as.factor(trtc) 
   [1] loc0005 ADP0038 ADP0049 ADP0059 ADP0062 ADP0467 ADP0395 ADP0247 ADP0524 
  [10] ADP0115 ADP0563 ADP0585 ADP0112 ADP0051 ADP0584 ADP0064 ADP0551 ADP0052 
  [19] ADP0413 ADP0571 ADP0166 ADP0025 ADP0126 ADP0517 ADP0379 ADP0211 ADP0468 
  [28] ADP0562 ADP0075 ADP0276 ADP0077 ADP0099 ADP0017 ADP0354 ADP0551 ADP0084 
  [37] ADP0267 ADP0471 ADP0666 ADP0045 ADP0520 ADP0383 ADP0048 ADP0636 ADP0056 
[973] ADP0049 ADP0207 ADP0061 ADP0065 ADP0083 ADP0562 ADP0030 ADP0379 ADP0555 
 [982] ADP0537 ADP0540 ADP0532 ADP0029 ADP0019 ADP0519 ADP0481 loc0004 ADP0543 
 [991] ADP0472 ADP0111 ADP0461 ADP0510 ADP0303 ADP0028 ADP0090 ADP0530 ADP0466 
[1000] ADP0520 
 [ reached getOption("max.print") -- omitted 31 entries ] 
179 Levels: ADP0005 ADP0006 ADP0008 ADP0009 ADP0011 ADP0012 ADP0013 ... loc0006 
> repsc <- scabdata[,4] 
> as.factor(repsc) 
   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  [39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
[951] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
 [989] 3 3 3 3 3 3 3 3 3 3 3 3 
 [ reached getOption("max.print") -- omitted 31 entries ] 
Levels: 1 2 3 
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> sitec <- scabdata[,3] 
> as.factor(sitec) 
   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
[913] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
 [951] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
 [989] 2 2 2 2 2 2 2 2 2 2 2 2 
 [ reached getOption("max.print") -- omitted 31 entries ] 
Levels: 1 2 
> blockc <- scabdata[,8] 
> as.factor(blockc) 
   [1] 1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2  
  [26] 2  3  3  3  3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4  4  4  
[976] 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 
 [ reached getOption("max.print") -- omitted 31 entries ] 
Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
> stand_count <- scabdata[,2] 
> datac <- cbind(trtc, sitec, repsc, blockc, scabgeomeanscombined, stand_count) 
> as.data.frame(datac) 
       trtc sitec repsc blockc scabgeomeanscombined stand_count 
1   loc0005     1     1      1                    1          30 
2   ADP0038     1     1      1                    1          26 
3   ADP0049     1     1      1     1.81712059283214          23 
4   ADP0059     1     1      1     1.25992104989487          30 
5   ADP0062     1     1      1     1.81712059283214          26 
6   ADP0467     1     1      1     2.28942848510666          29 
7   ADP0395     1     1      1     1.44224957030741          26 
8   ADP0247     1     1      1     1.81712059283214          24 
9   ADP0524     1     1      1     1.44224957030741          10 
10  ADP0115     1     1      1     1.81712059283214          26 
11  ADP0563     1     1      1      1.5874010519682          28 
12  ADP0585     1     1      1     2.28942848510666          29 
13  ADP0112     1     1      1                    1          26 
14  ADP0051     1     1      2                    1          20 
15  ADP0584     1     1      2     1.81712059283214          28 
16  ADP0064     1     1      2      1.5874010519682          22 
17  ADP0551     1     1      2                    1          23 
164 ADP0016     1     1     13      1.5874010519682          27 
165 ADP0012     1     1     13     2.28942848510666          21 
166 ADP0560     1     1     14      1.5874010519682          33 
 [ reached 'max' / getOption("max.print") -- omitted 865 rows ] 
> str(datac) 
 chr [1:1031, 1:6] "loc0005" "ADP0038" "ADP0049" "ADP0059" "ADP0062" ... 
 - attr(*, "dimnames")=List of 2 
  ..$ : NULL 
  ..$ : chr [1:6] "trtc" "sitec" "repsc" "blockc" ... 
> anal <- PBIB.test(blockc,trtc,repsc,scabgeomeanscombined,13, method=c("REML"),  
+                   test = c("lsd"), alpha=0.05, console=TRUE, group=TRUE) 
 
ANALYSIS PBIB:  scabgeomeanscombined  
 
Class level information 
blockc : 41.30769  
trtc : 179 
 
Number of observations:  1031  
 
Estimation Method:  Residual (restricted) maximum likelihood  
 
Parameter Estimates 
                Variance 
blockc:repsc 0.001902876 
repsc        0.032657845 
Residual     0.180154219 
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                      Fit Statistics 
AIC                        1648.9598 
BIC                        2513.0206 
-2 Res Log Likelihood      -642.4799 
 
Analysis of Variance Table 
 
Response: scabgeomeanscombined 
           Df  Sum Sq Mean Sq F value    Pr(>F)     
trtc      178  73.626 0.41363   2.296 5.551e-15 *** 
Residuals 809 145.745 0.18015                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Coefficient of variation: 27.1 % 
scabgeomeanscombined Means: 1.567716  
 
Parameters PBIB 
                     . 
trtc         179.00000 
blockc size   13.00000 
blockc/repsc  13.76923 
repsc          3.00000 
 
Efficiency factor 0.9028482  
 
Comparison test lsd  
 
Treatments with the same letter are not significantly different. 
 
        scabgeomeanscombined.adj             groups 
ADP0580                 2.235258                  a 
ADP0569                 2.160190                 ab 
ADP0310                 2.143279                abc 
ADP0585                 2.128917                abc 
ADP0573                 2.104874               abcd 
ADP0049                 2.069729              abcde 
ADP0271                 2.055459             abcdef 
ADP0168                 2.051665             abcdef 
ADP0288                 1.770257 abcdefghijklmnopqr 
ADP0247                 1.766168 abcdefghijklmnopqr 
ADP0211                 1.135886                 st 
ADP0636                 1.114625                 st 
loc0003                 1.088739                 st 
ADP0739                 1.087400                 st 
ADP0719                 1.085371                 st 
ADP0354                 1.075345                 st 
ADP0551                 1.062260                  t 
ADP0030                 1.054640                  t 
ADP0526                 1.009522                  t 
 
<<< to see the objects: means, comparison and groups. >>> 
 
 

>  
 

> ################################################# 
> ######CLUSTER ANALYSIS 
> ################################################# 
> library('agricolae') 
> library('dendextend') 
> library('circlize') 
> data <- read.csv("kakbut.csv", header = TRUE,) 
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> for(i in 1:ncol(data)){ 
+   data[is.na(data[,i]), i] <- mean(data[,i], na.rm = TRUE) 
+ } 
Warning message: 
In mean.default(data[, i], na.rm = TRUE) : 
  argument is not numeric or logical: returning NA 
> summary(data) 
   genotype             kakbut           kak              but         
 Length:179         Min.   :1.007   Min.   :0.8399   Min.   :0.7533   
 Class :character   1st Qu.:1.356   1st Qu.:1.3688   1st Qu.:1.3639   
 Mode  :character   Median :1.566   Median :1.5696   Median :1.5674   
                    Mean   :1.571   Mean   :1.5696   Mean   :1.5710   
                    3rd Qu.:1.757   3rd Qu.:1.7405   3rd Qu.:1.7893   
                    Max.   :2.235   Max.   :2.5103   Max.   :2.4551   
> head(data) 
  genotype   kakbut      kak      but 
1  ADP0580 2.235170 2.510304 1.960037 
6  ADP0049 2.073603 1.904775 2.242430 
> as.data.frame(data) 
    genotype   kakbut       kak       but 
1    ADP0580 2.235170 2.5103038 1.9600372 
179  ADP0526 1.006614 0.8399474 1.1732807 
> data <- na.omit(data) 
> data.stand <- scale(data[-1]) 
> d <- dist(data.stand, method = "minkowski")# distance matrix 
> library(lsa) 
> blended_fit <- as.dendrogram(hclust(d, method = "ward.D2")) 
> rownames(data) <- labels 
> dend_labels <- labels[order.dendrogram(blended_fit)] 
> labels(blended_fit) <- dend_labels 
> # Color the branches 
> dend_col <- c("red", "blue", "green", "purple", "orange", "pink")  # De
fine colors for branches 
> branch_colors <- dend_col[order.dendrogram(blended_fit)]  # Assign colo
rs to branches 
> ResLabel <- c("ADP0526","ADP0030", 
+               "ADP0551","loc0003", 
+               "ADP0719","ADP0739", 
+               "ADP0020","ADP0214", 
+               "ADP0540","ADP0555", 
+               "ADP0529","ADP0354", 
+               "ADP0211","ADP0537") 
> blended_fit <- blended_fit %>% 
+   color_branches(k=6) %>% 
+   color_labels(k=6, labels = ResLabel, col = "red") 
> par(cex = 0.4) 
> circlize_dendrogram(blended_fit, 
+                     dend_track_height = 0.8, 
+                     labels_track_height = 0.09, 
+                     labels = TRUE, 
+                     rotation = 90, 
+                     main = "SCAB DISEASE PHENOTYPE CLUSTER") 
> legend("topright", 
+        legend = c("Resistant", "Susceptible"), 
+        col = c("red","black"), bty = "n", pt.cex = 1.5, cex = 1.5, 
+        text.col = c("red","black"), horiz = FALSE, inset = c(0,0.1), 
+        title = "LEGEND", 
+        "UPGMA Clustering by minkowski Distance") 
> par(cex = 1) 

 


