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ABSTRACT 

The skill of seasonal climate predictions from global forecasting models varies considerably across 

different regions and seasons. Evaluating the skill of these models in forecasting temperature and 

rainfall for various seasons is crucial for enhancing forecast accuracy and ensuring the efficient 

utilization of forecast information. This study analyzed the performance of the North American 

Multi-Model Ensemble (NNME) and Copernicus Climate Change Service (C3S) seasonal forecast 

models in predicting the June-September (JJAS) and February-May (FMAM) seasonal rainfall and 

temperature over Ethiopia. The seasonal forecast models were evaluated for the hindcast period of 

1994–2016 using the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data 

as a reference for rainfall and the Climatic Research Unit (CRU) for temperature. The skill 

assessment is conducted using the recently developed Python-based Climate Predictability Tool 

(PyCPT). The model predictor domains used were tropical ocean, the Western Indian Ocean, 

Ethiopia itself, the Atlantic and Indian Oceans at forecast time leads of 2-months, 1-month and 0-

month. The models’ skill assessment was performed using various skill scores such as Pearson 

correlation, Relative Operating Characteristics (ROC) and Ranked Probability Skill Score (RPSS). 

 

The results show that the NMME and C3S models show varying levels of the skill of forecasted 

seasonal rainfall. The better performing models with the Pearson correlation greater than 0.5,  ROC 

below score exceeding 0.7, ROC above score exceeding 0.6 and RPSS greater than 20% are 

CanSIPS-IC3, ECMWF-SEAS5, DWD-GCFS2P1, CMCC-SPS3P5 and METEOFRANCE8. 

These models show higher ability in forecasting rainfall in the JJAS season over the Central, 

Northeastern, Northern, Northwestern and pocket areas in the Eastern portion of Ethiopia 

compared to other models like, GFDL-SPEAR, RSMAS-CCSM4, NASA- GEOSS2S and NCEP-

CFSv2. However, most models have low skill (Pearson correlation <0, ROC<0.5 and RPSS <0) to 

predict the rainfall in the JJAS season over the Southern, Southeastern, Southwestern and Western 

half of Ethiopia. It has been indicated that May and June initialized forecasts show better skill 

compared to the April initialized forecasts during the JJAS season. For effective agricultural and 

water management planning, the preferred choice is the May-initialized forecast. During the 
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FMAM season, the CanSIPS-IC3, ECMWF-SEAS5, DWD-GCFS2P1, CMCC-SPS3P5 and 

METEOFRANCE8 models  show higher skill (Pearson correlation between 0.5 & 0.7, ROC below 

between 0.6 & 0.8, ROC above between 0.6 & 0.7 and RPSS between 20 & 40%) in forecasting 

the seasonal rainfall in the Southeastern, Southern, Central, and Eastern Ethiopia compared to 

other models like, RSMAS-CCSM4, NASA-GEOSS2S and NCEP-CFSv2. But their skill is lower 

in the Western half of Ethiopia. The 1-month lead forecast (initialized in January) exhibits a better 

skill compared to the 2-month and 0-month lead time forecast. The evaluation of various predictor 

domains' effect on forecast skill shows that the tropical domain (180°W to 180°E, 30°S to 30°N) 

exhibit higher skill in the JJAS and FMAM seasonal rainfall forecasts for Ethiopia when compared 

to other domains. It has been noted that the skill of models in forecasting the below normal rainfall 

are higher than the above normal rainfall for both JJAS and FMAM rainfall seasons.  

 

The findings indicate that the models perform better in predicting temperature compared to their 

performance in predicting rainfall. During the JJAS season, the SPEAR, CCSM4, CFSv2, 

GEOSS2S, GCFS2P1, and SPS3P5 models exhibit better skill (Pearson correlation >0.6, ROC>0.8 

and RPSS>40%) in predicting the seasonal temperature across much of the country, with the 

exceptions being in the Southeastern and Northwestern parts of the country, when compared to 

other models like CanSIPS-IC3, ECMWF-SEAS5, and METEOFRANCE8. During the FMAM 

season, the SPEAR, CanSIPS-IC3, SEAS5, CFSv2, GEOSS2S, GCFS2P1, and SPSv3P5 models 

display higher ability (Pearson correlation between 0.5 & 0.8, ROC below between  0.6 & 0.8, 

ROC above>0.7 and RPSS between 20 & 40%) in forecasting the seasonal temperature across 

most portions of Ethiopia, with the highest ability demonstrates in the Western half of Ethiopia. 

However, CCSM4 and METEOFRANCE8 models show low spatial skill in their temperature 

predictions. Overall, the findings of this study help to inform how a set of models could be chosen 

to create an objectively consolidated MME of seasonal forecast and improve the accuracy of 

forecasting for Ethiopia, as recommended by the WMO. 
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CHAPTER ONE 

1. Introduction 

1.1 Background 

Ethiopia is one of the states more susceptible to the climate crisis and variability, with significant 

consequences for rural livelihoods and agricultural productivity (Kassie et al., 2013). The country 

is often exposed to numerous natural hazards including droughts, floods, volcanoes, and 

earthquakes. Floods and droughts were all severely hinder to the control of water supplies, 

agroeconomic growth, farming practices, and supply of food. The incidence and strength of 

climate changes, especially lack of rain and storms, has also increased in the country in recent 

decades (Zegeye, 2018). In order for information to be used in activities which reduce the adverse 

impacts of climate on various socio-economic sectors, accurate and trustworthy climate and 

weather reporting is essential. 

 

The rainfall climatology in Ethiopia is predominantly determined by seasonal fluctuations in large-

scale movement, with a component involves the latitudinal motion of the intertropical convergence 

zone (ITCZ). This phenomenon occurs across the broader Sahel area, extending from Sudan to 

Senegal (Nicholson, 1989). Seasons in Ethiopia are distinct and mostly categorized depends on 

the distribution and volume of rainfall. They divided in to three rainfall seasons, such as October 

to January (Bega), February to May (Belg) and June to September Kiremt) defined by Diro et al., 

2011a, 2011b; Gissila et al., 2004; Segele & Lamb,2005; Korecha & Sorteberg, 2013. These 

seasonal categories are used by National Meteorological Agency (NMA) for regular seasonal 

climate forecasting and climatic feature monitoring. 

 

The strength of monsoon systems and position within Ethiopia proximity, and also the convection 

of moisture, are the main determinants of rainfall variation. A common monsoon element for the 

Eastern African region, which includes Ethiopia, is the westward spread of meteorological 

disturbances occurring in the Arabian Sea, Indian Ocean, and southerly moisture movement  

(Selato & Nicholson, 2000; Lamb & Segele 2005). 
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The NMA seasonal forecast is generated through the analysis of past evolution and present 

conditions of atmospheric, oceanic, synoptic scale, and climate factors. This crucial component of 

seasonal forecasting techniques is defined by Diro et al., (2011c); Korecha & Barnston, (2007b). 

The Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), El Nino and La Nina 

prediction obtained from climate prediction center, and sea surface temperatures (SSTs) indices 

throughout the tropical Pacific Ocean are all used as NMA seasonal climate predictors (Wolter & 

Timlin, 1998). 

 

The Ethiopian National Meteorological Agency seasonal forecasting which was first employed in 

1987 and the technique of forecasting are based on analogue methods (using El Nino Southern 

Oscillation index), SST trends, numerical evaluation, and teleconnections of meteorological 

systems (Bekele, 1997). The analogue forecasting method is a way of predicting the climate for 

the forthcoming season based on similar patterns of sea surface temperature, upper-air heights of 

the geopotential and sea surface pressure of the past, and therefore has an influence on the skill of 

the forecast due to low extent of available historical data. Further, the forecast product from the 

consensus-based approach (analogue method) is not available in digital format, hence, it is difficult 

to verify it.   

 

The NMA seasonal rainfall prediction are prepared as probabilities for regional seasonal rainfall 

categorized as above normal, normal, and below normal compared to the climatological normal. 

This is done for the country divided in to eight homogeneous rainfall regions. Its categorization 

depends on the usual monsoon process in each zone as well as how each region reacts spatially 

and temporally to important oceanic and atmospheric flow patterns (Diro et al., 2008a, 2011c; 

Tsidu, 2012, Gissila et al., 2004). 

 

Farmers can choose crop varieties and seeding periods, as well as take into account the hazard of 

unusual occurrences in the period and reduce their effect, with the aid of accurate seasonal 

prediction during lead periods of numerous months. But it has been exposed that the efficacy of a 

certain rainfall prediction of a season is subpar due to unreliable beginning situations and model 

flaws both at the regional and global levels (Lavers et al., 2009; Teshome et al., 2022). 
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Recently, WMO designated several advanced climate centers worldwide as Global Producing 

Centers providing seasonal and long-range prediction (Otieno et al., 2014; Stockdale et al., 2010). 

At several seasonal forecast conferences, WMO encouraged for Hydrological and Meteorological 

offices to use objective forecasting methods (WMO, 2020). The consensus prediction technique 

did not provide sufficient evidence to demonstrate its applicability across various industries. 

 

International Research Institute for climate and society developed the Climate Predictability Tool 

(CPT) which is basically a software for making seasonal forecasts over various global areas and 

validating those forecasts (Mason, 2011). Following WMO's advice, the next generation sub 

seasonal and seasonal prediction method has currently been established and deployed for 

numerous nations across the globe (Acharya et al., 2021, 2022; Munoz et al., 2019). NMA is able 

to produce and provide tailored weather and climate numerical results that are pertinent for 

appropriate government judgment on various stages by using python next generation seasonal 

prediction methods. 

1.2 Statement of the Problem 

Ethiopia is one of the most vulnerable nations to the consequences of climate change and 

fluctuation (Bezu, 2020). Weather and climate linked natural disasters such as floods and droughts 

are becoming increasing enormously also with greater intensity, and impacting on the community 

and means of subsistence for society in Ethiopia. Accurate and reliable climate knowledge is vital 

information to enable people in the country to cope with spatial and temporal differences of climate 

and reduce the effect of weather and climate related disasters.  

 

Climate models are an important tool for predicting future climate conditions, but their accuracy 

varies depending on the region and season due to the intricate interplay of various elements of 

earth climate pattern and the way individual models are designed. Different regions have unique 

weather patterns that can be impacted through numerous aspects, including ocean currents, terrain 

as well as atmospheric circulation. Similarly, different seasons have distinct weather patterns that 

can be influenced by factors such as pressure and wind patterns. Evaluating the performance of 

prediction models for various areas and seasons is vital to identify skillful models for specific 

regions and seasons. This helps advance forecast skill and improve the effective acceptance of 

forecast information.  
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Despite significant advancements in computer models and observational technologies in recent 

years, there remain significant challenges in accurately forecasting weather and climate variables 

at national and local levels. Factors such as model biases, incomplete data, and the inherent 

complexity and unpredictability of climatic and weather patterns all participate to uncertainty and 

errors in these predictions.  

 

The primary emphasis of this research investigation was to evaluate how effectively global 

prediction models can be used to predict the key climate variables in Ethiopia. Specifically, the 

problem is to evaluate the accuracy and consistency of these systems in forecasting rainfall and 

temperature as well as to identify the best predictor domain for the different rainfall seasons over 

the country. This problem is important because accurate weather and climate predictions are 

essential for just a variety of uses from agriculture and energy management to disaster 

preparedness and public safety. 

 

Overall, this research will improve our knowledge of the strengths and limitations of present global 

models in predicting rainfall and temperature over Ethiopia, and provide insights into the 

best/skillful models, forecast lead times and predictor domains for the different rainfall seasons. 

1.3 Research Questions 

1. How well do the global prediction models predict rainfall and temperature over Ethiopia in 

different rainfall seasons? 

2. Which predictor domain has the greatest influence on the seasonal rainfall variability in 

Ethiopia? 

3. What is the influence of lead time on the forecast accuracy? 

1.4 Objectives  

The goal of this research is to evaluate the skill of global prediction models over Ethiopia in 

predicting rainfall and temperature for the different seasons using different predictor domains and 

forecast lead-times.  

To achieve the above overall objective, the following particular objectives were pursued:  

i. Analyze the skill of the global forecast models in predicting rainfall and 

temperature in Ethiopia for two rainfall seasons and identify the skill of models. 
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ii. Analyze the sensitivity of the forecast skill to the different predictor domains to 

identify the most preferred predictor domain for the different rainfall seasons over 

Ethiopia. 

iii. To evaluate the influence of lead time on the forecast accuracy. 

 

1.5 Justification for the Research 

Agriculture, the major contributor to Ethiopia's economy, is heavily dependent on rainfall. 

However, the seasonal variation in rainfall linked to climate events impacts farming products. 

Hence, understanding the skill of seasonal prediction would provide information for emergency 

alert advice to consumers of climatic products for readiness to reduce the disruptive effects caused 

by climate events (Jolliffe & Stephenson, 2012a). The use of dynamical models in forecasting has 

made it possible to provide early warning information. The single model may not adequately 

provide sufficient skill for the forecasts; hence, ensemble model approaches are better suited to 

improve the skill and accuracy of seasonal forecast (Palmer et al., 2004). 

 

Evaluating the accuracy of Global Climate Model (GCM) within Ethiopia will improve the 

National Climate Outlook Form (NCOF) processes by minimizing any prejudice in the prediction 

method; it should ultimately lead to advances in the prediction technique. Accurate prediction 

would be helpful to policy makers, stakeholders and rain dependent sector. Application of a 

forecasting system that benefits from the best available multi-model forecasts and generates 

skillful forecasts over Ethiopia would provide a useful contribution to the climate monitoring and 

early warning sectors. Creating consensus seasonal climate outlooks at the regional level using the 

output of the GCMs, has strengthened the ongoing regional efforts aimed at mitigating the adverse 

impacts of climate extremes. As a result, this has led to an enhancement in the accuracy and 

reliability of the predictions. 
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CHAPTER TWO 

2. Literature Review 
 
This segment contains a review of  past studies, briefly discussing climate modeling , global 

climate forecast, seasonal climate forecasts over Ethiopia, forecasting skill and calibration, and  

Next Generation (NextGen) regional forecasting system.  

2.1 Climate Modelling   

A climate model is a computer program that uses climate model governing equations and 

quantitative techniques to predict climate and weather of the earth, which includes snow, air and 

ocean. The models applicable for forecasting the upcoming weather and climate, also simulate 

historical situations. Climate modeling and seasonal forecasting are widely used as a tool to predict 

and understand the extremes of the climate conditions. To address the challenges common with 

GCMs the uses of climate modeling and downscaling of climate information to users have been 

employed. Downscaling is done through the use of climate models using statistical, dynamical or 

combination of both models (Eastwick et al., 2008; Landman et al., 2009).  Currently, a product 

of GCMs from world meteorological organization GPCs as well as other dynamical modeling 

Centers are being downscaled using regression-based models. Nevertheless, models based on sea 

surface temperature are typically afforded more credence in producing the subjective forecast 

(Mason & Chidzambwa, 2009).  Palmer et al., (2000) introduced and tested the concept of MME 

forecast as a means to address the challenges posed by sensitivity and ambiguity to 

parameterization and primary situations commonly observed at many General Circulation Models 

(GCMs). The purpose of this approach is to advance forecasting accuracy.  

 

Enhancing the precision of seasonal forecasting models' predictions relies on their capacity to 

accurately simulate essential elements of the climate system, such as convection, atmospheric 

boundary layers, ocean mixing, and land surface mechanisms. Properly handling these parameters, 

along with various other processes, is essential to enhance the forecast skill of dynamic models, as 

discussed by Latif et al., (2001). 
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The method of multiple linear regression is used to predict the result of a parameter by considering 

the values of two or more additional factors. Sometimes, this is simply known as multiple 

regression, which is an expansion of linear regression. The factors used to anticipate the value of 

a dependent variable are referred to as independent variables, while the variable being forecasted 

is called the dependent variable. Mathematical calculation of multiple linear regression formulas 

is refer to Equation (1).  

𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥௜,ଵ + 𝛽ଶ𝑥௜,ଶ+. . . +𝛽௣𝑥௜,௣ + 𝜖 … … … … … … … … … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

Where, i = n, observations.  𝑦௜, is the dependent variable, 𝛽଴ is constant value (y, intercept), a 

numerical value of y if 𝑥௜ and 𝑥ଶ are zero (0).  𝛽ଵ and 𝛽ଶ are the coefficients associated with the 

independent variables  𝑥௜,ଵ and𝑥௜,ଶ, respectively. For individually independent variable’s slope 

coefficient is represented by 𝛽௣, while the random error term is represented by ϵ.  

2.2 Global Climate Forecast 

Weather and climate forecast is a probabilistic or deterministic expression about the upcoming 

spatial and chronological weather and climate situations. It relies on the scientific comprehension 

of the dynamical and physical mechanisms that control future developments. Climatic prediction 

involves forecasts on different timescales and is utilized for long-term strategy, emergency alert 

of possible risks, and response to climatic fluctuations and changes (Hewitt et al., 2015). The 

system for functional seasonal predictions has improved with approval of WMO global producing 

center-long range forecast (LRF) in 2006 and LC-LRFMME (Lead Center for Long-Range 

Forecast Multi-Model Ensemble) in 2009. Currently, 13 approved global producing centers for 

long-range forecasts produce seasonal predictions on a monthly basis. Data from these forecasts is 

collected by LC-LRFMME (WMO-chosen center), which generate a consolidated seasonal 

prediction using multi-model techniques (Graham et al., 2011). 

 

Predictability is more consistent across various climate elements compared to the reported skill, 

implying that there is potential for enhancing model predictions, despite encountering regional and 

seasonal differences. The estimation of potential predictability remains fairly stable, regardless of 

the model chosen. Generally, models with higher predictability across different areas tend to 

exhibit superior forecast skill (Becker et al., 2014). 
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The employment of seasonal ensemble prediction, which involves multiple models, consistently 

yields superior outcomes compared to the conventional deterministic forecasting method. Utilizing 

statistical analysis with data from Global Climate Models (GCM), the model output statistics 

approach effectively rectifies systematic errors present in GCM fields, including spatial shifts. 

Additionally, the scales down climatic information when simulations and observations differ in 

spatial resolution (Beraki, 2015). 

 

The ensemble multi-model forecasting method generates more accurate predictions of rainfall and 

temperature in contrast to singular models. It has been demonstrated to be particularly effective in 

quantifying prediction uncertainty resulting from ambiguity in model design and initialization 

(WMO, 2017). Numerous worldwide joint research projects, including functional European and 

North American methods, are developed on the multimodel techniques. The NMME is a functional 

multimodel sub seasonal and seasonal prediction methods contains coupled models from United 

States modelling institutions, such NOAA/NCEPs, NOAA/GFDL, IRI’s, NCAR, NASA and MSC 

(Kirtman, Min, Infanti, Kinter, Paolino, Zhang, Van Den Dool, Saha, Mendez, Becker, et al., 

2014). Currently, this method transmits seasonal to interannual forecasts in real time according to 

the NOAA-CPC functional timeline. Data on hindcast and observed predictions are easily 

accessible as well as presented graphically by CPC. Also, operational forecasters are currently 

using NMME forecasts as advice, this data can be found at 

(http://www.cpc.ncep.noaa.gov/products/NMME/). 

 

The Korea Meteorological Administration MME is a functional multimodel seasonal prediction 

method, which is made up of models obtained from 12 GPCs. Hindcast and actual time forecast 

data is easily accessible online on (http://www.wmolc.org). Since 1982, climatic research unit at 

University of East Anglia has made accessible gridded datasets of surface temperature data for 

areas of land, as well as mean for both the Northern and Southern Hemispheres and the entire 

world. 

 

Numerous research studies have investigated the forecast capabilities of models over Ethiopia. 

Previous investigations were based on NMME models and an earlier version of the data. For 

instance, Teshome et al., (2022) study assessed the predictive proficiency of the NMME in 



9 | P a g e  
 

Ethiopia for the JJAS season. Employing CCA and RMSE, the study revealed that NMME models 

adeptly forecast JJAS seasonal rainfall in northern, northeastern, and central parts of Ethiopia, but 

displaying very low ability in Southwestern and western regions.  In a similar vein, Acharya et al., 

(2021) study introduces the Next Generation seasonal forecast method to improve climate services 

in Ethiopia through NMME. Utilizing a CMME method with advanced GCM from the NMME 

project, NextGen demonstrates superior probabilistic and deterministic performance in forecasting 

Bega rainfall in comparison to JJAS and FMAM rainy areas. 

2.3 Seasonal Climate Forecast over Ethiopia 

Seasonal forecasting is a process of predicting climate for upcoming seasons, then specifically, 

how much, anticipated climate will vary from past years. It provides climate information from one 

to four months and the prediction include rainfall and temperature outlooks, its information is 

important to the users and judgements. WMO implemented the Global Framework for Climate 

Services (GFCS) in 2009, gives climate information that endorses private and public users 

worldwide, provincial and sectoral levels (WMO, 2020). 

 

In meteorology, season is a time of year, because airmass that influences a region exhibits 

consistency in weather and climate variables (Désalmand, 1998). Since 1987, the NMA has been 

issuing operational seasonal predictions through an analogue approach for three seasons: Kiremt, 

Belg, and Bega (Diro et al., 2011; Korecha & Barnston, 2007a).  The analogue technique and the 

evaluation of NMA operational seasonal rainfall prediction for Kiremt and Belg from 1999–2011 

are recorded in Korecha & Sorteberg, (2013). NMA has categorized Ethiopia into eight 

homogenous precipitation zones. This categorization depends on each region's characteristic 

monsoon systems and their influence on the main atmospheric and oceanic circulation systems in 

terms of both space and time (Diro et al., 2008a, 2009; Gissila et al., 2004).   

 

The NMA generates seasonal rainfall forecasts by assessing the likelihood of the seasonal rainfall 

being categorized as above, near, and below the average across 8 consistent rainfall areas (as 

shown in Figure 1). This categorization is determined by considering the precipitation generating 

mechanisms that impact each region and how they respond to main oceanic and atmospheric 

circulation systems, taking into account spatial and temporal patterns. 
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

Figure 1: Rainfall regimes over Ethiopia 
 Source (https://cgspace.cgiar.org/handle/10568/107813)  
 

There are a number of examples of oceans, such as Pacific, Indian and Atlantic Oceans are 

associated with various teleconnection patterns, which result in different climate anomalies in 

different regions of Ethiopia Diro et al., (2011c); Segele & Lamb, (2005).  ENSO indices have 

been correctly recognized as effective pre-season predictors, and as a result, they have served as 

the foundation for Ethiopia's analogue forecasting methods (Korecha & Barnston, 2007b). 

Ethiopian rainfall is influenced by changes in La Nina, El Nino, location of African easterly jet 

and Indian monsoon (Diro et al., 2008b). The Teleconnection with extensive global systems like 

ENSO) and the Indian Ocean Dipole, along with regional systems, has been identified as a 

significant factor in shaping climate patterns across Greater Horn of Africa, including Ethiopia 

(MacLeod et al., 2021) . 

  

The regional influences on the seasonal to inter seasonal climate trends over Ethiopian have been 

identified by NMA. These include the surface pressure systems across the Southern and Eastern 

Atlantic Oceans, the Mediterranean Sea, south and north Indian Oceans, Red Sea, southwest and 

north Indian Oceans, and the positive or negative phases of the IOD (Gissila et al., 2004; Gonfa, 

1996; NMSA, 1996; Shanko & Camberlin, 1998). Korecha & Barnston, (2007b), studied 

climatological elements affecting rainfall over Ethiopia, including the meridional movement of the 
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ITCZ; the creation of warm lows in the Sahara and Arabian landmass; the development of sub-

tropical high pressure over the Azores; the circulation of cross equatorial humidity from the 

Central , Southern, and equatorial parts of the tropical Africa, Indian Ocean, and the Atlantic 

Ocean, respectively; the low-level Somali jet and circulation of upper level  tropical easterly jet 

over Ethiopia. 

 

(Diro et al., (2011a), Studied the EALLJ, TEJ, Azores high, African easterly jet (AEJ), moisture 

anomalous in the Red Sea too Gulf of Guinea, ITCZ, ENSO and low-level wind abnormality from 

Atlantic and Indian ocean are the large-scale attributes linked to anomalous rain during Kiremt 

rainy season over Ethiopia. Likewise, during the Belg rain season large scale attributes connected 

to rainfall anomalies, such as STWJ, ENSO, Arabian High, ITCZ, low level wind abnormality 

from Indian and Atlantic Ocean and moisture anomaly over Eastern Africa 

2.4 Assessment of Forecasting Skill 

The common method for examining the forecasting ability of prediction systems is by comparing 

the hindcast with observations for the historical period. The accuracy of several seasonal 

forecasting systems has been evaluated through hindcast analysis (Bunzel et al., 2016; Bushuk et 

al., 2017; Krikken et al., 2016). Abnormal correlation coefficients of non-stationary time sequence 

for every targeting month of year at the initialized time are the main metrics used to measure the 

prediction performance. Additionally, they are compared to the effectiveness of considerably basic 

anomalous endurance prediction techniques. The ability in forecasting precipitation was at its 

highest during the one month initialized forecast and declined quickly afterward. Meanwhile, the 

skill in predicting temperature was notably higher overall and demonstrated better retention in 

extended lead times, indicating a more robust form of temporal persistence (Roy et al., 2020).  

(Shukla et al., 2019) examined the forecasts for temperature and rainfall made by 8 NMME models 

concerning East Africa. Their results revealed that temperature predictions showed greater 

effectiveness compared to precipitation forecasts. The latter exhibited a certain level of accuracy, 

but only within a limited area of the domain. 

2.4.1 Forecast calibration 

Calibration depends on the statistical coherence observed when comparing observed data with the 

distributional forecast. It might be a difficult issue in a detrended climate, if the hindcast method 



12 | P a g e  
 

does not accurately capture important dynamics. CCA is a multivariate statistical method used to 

examine the relationships between two sets of variables. CCA used to identify the linear 

combinations within each set of variables that have the highest correlation with each other across 

the sets. Which is a trend based multidimensional linear regression technique within observed 

actual anomalies and domain of the model for calibration of rainfall forecast from general 

circulation models. The Trend-Based Multiple Linear Regression (MLR) technique is employed 

across model domains and actual anomalies to calibrate rainfall forecasts derived from GCMs. 

This approach allows the projection of genuine spatial and temporal trends expected within the 

general circulation models (Barnston & Tippett, 2017; Tippett et al., 2003).  By keeping small 

selection of empirical orthogonal function modes (EOFs), minimizes the enormous dimension of 

the actual datasets and supports in the prevention of prediction error (Yu et al., 1997). 

2.5 Next Generation (NextGen) regional forecasting system 

The World Meteorological Organization's latest seasonal forecast guideline prefers and advises 

using an objective seasonal prediction technique. This approach is characterized by a clear, 

replicable, and meticulously defined set of procedures that enable the quantitative assessment of 

prediction reliability (WMO, 2020). NextGen seasonal rainfall and temperature prediction 

methods is a scientific and objective technique. This allows validation, synthesis and verifying the 

objective weather and climate predictions made by global climate models such as NMME, C3S, 

and S2S. It is a multimodel strategy that uses systematic methods for scheming, applying, 

establishing also validating objective seasonal climate predictions. This method involves 

determining the significant decision factors by users and examining their fundamental causes, 

drivers of predictability, and potential predictors for the main appropriate factors. If prediction 

ability is sufficient, Next generation aids in choice of the best dynamic models for the selected 

area through evaluation methods and helps the production of multimodel, empirically validated 

forecasts at sub seasonal and seasonal periods (Acharya et al., 2021, 2022; Munoz et al., 2019). 
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CHAPTER THREE 

3. Data and Methodology 
 
This segment contains an overview of study area, climatology, data, applied model, and the diverse 

methods employed to accomplish both the overall and specific objectives of the research. 

3.1 Description of the Study Area 

This subsection presents on the description of study area based on the location and climate 

characteristics of Ethiopia.  

3.1.1 Location  

Ethiopia is a country in the Horn of Africa that is bordered by Somalia to the south and east, Eritrea 

to the north, Djibouti to the east, Kenya to the south, and Sudan to the west. Its geographic 

coordinates are 3-15° N and 33-48° E. It encompasses an area of approximately 1.14 million 𝑘𝑚ଶ 

and is characterized by a landscape associated by high, rocky flat plains and rim lowland areas. 

The country's land elevation spans from 160 meters below sea level (at the Northern end of the 

Rift Valley) to 4600 meters above sea level (in the Northern mountainous area), with a population 

of over 85 million inhabitants (Korecha and Sorteberg, 2013). Figure 2 depicts the study region 

together with the distribution of meteorological stations. 
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Figure 2: Location, Topography and Distribution of Meteorological stations in Ethiopia 
 

 3.1.2 Climate of the study area 

The climate in Ethiopia is normally warm in the south and Northeastern lowland areas, although 

significantly colder in its massive middle highland areas.  In these high-altitude locations, average 

temperature from 15 to 20 °C, while the lowland areas experience temperatures of 25 to 30 °C 

(Gashaw & Mahari, 2014). The movement of the ITCZ is mostly responsible for Ethiopia's 

seasonal precipitation. When the ITCZ is mostly in the Northern location, the majority of the 

country experiences one primary rainy season lasting from June to September. Additionally, some 

areas over the Central and Northern Ethiopia experience a second rainy period from February to 

May that is erratic and significantly less rainy. The Southern parts of the country experience two 

rainy seasons, which occur due to the movement of the ITCZ over the southern regions. In these 

regions, the months from March to May constitute the major rainy period which produces a rainfall 

range of 100 to 200 mm in each month. Conversely, a less rainy period occurs from October to 

January (Fazzini et al., 2015; Legesse Gebre, 2015). Ethiopian rainfall seasons are:- 
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Bega, which extends from October through January, is characterized by cold and dry conditions. 

While tropical depressions rarely form over the Arabian Sea, there are instances when they move 

towards the Horn of Africa, leading to occasional unexpected rainfall in various regions. During 

this season, several prominent weather patterns emerge, including the dry and cool northeasterly 

monsoon, the seasonal Siberian High, and the northern hemispheric subtropical anticyclones. 

These arid air currents originate from multiple sources, such as the Saharan anticyclone, a ridge of 

high pressure extending from the Arabian region towards Ethiopia, and extensive surface pressure 

in Siberia and central Asia. Through this time the weather is sunny, muggy and cool in the morning 

and nights (Gonfa, 1996; NMSA, 1996). 

 

Belg signifies the short rainy season, spanning from February to May. It is marked by a 

combination of dry and rainy days. The weather system during the Belg over the region is 

determined by the interplay of mid-latitude and tropical weather systems. The primary monsoon 

pattern is manifested through the intrusion of a substantial and deep trough into the easterly 

circulation towards lower latitudes, along with the southward shift of the westerly jet at higher 

altitudes. In these seasons the major systems include the heat low in South Sudan, creation and 

spreading of perturbations in the Mediterranean Sea, easterly tides, high pressure in Arabian Sea, 

connection of mid latitude depressions and tropical systems, which is sometimes preceded by 

troughs and subtropical jet, as well as sporadic evolution of Red Sea convergence Zone (RSCZ) 

(Gonfa, 1996; NMSA, 1996). From February to May the secondary rainy season over the 

northeastern, central and highlands of the southern and eastern parts of the country shown in Figure 

3. This is the main rainy season across the lowlands of Southern and Southeastern parts of the 

country. 

 

Kiremt is a primarily wet season that lasts from June to September. The dominant weather systems 

throughout this season are the ITCZ and the humid southwest monsoon circulation from Southern 

hemisphere. The commencement of rainfall and its spatial distribution are linked to the ITCZ cycle 

and strength of Southern hemispheric anticyclones (Fekadu, 2015; Segele & Lamb, 2005; Tadesse, 

1994).  Figure 3 presents the distribution of seasonal mean rainfall over Ethiopia depicted by 

Climate Hazards Group InfraRed Precipitation with Station (CHIRPs) data. In Ethiopia, the 

primary rainfall season happens JJAS when a country experiences higher rainfall levels in most 
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regions, specifically, the Northwestern, Western, and Central parts of Ethiopia. This period of 

rainfall significantly contributes to sustaining agricultural operations and the management of water 

resources. 

 

 

Figure 3: Climatology of June-September rainfall in mm (left panel) and February to May (right 

panel) taken from CHIRPS data 1994-2016. 

 

In the Kiremt (JJAS) season the climatology of mean temperatures over Ethiopia (presented in 

Figure 4) experiences a significant increase in precipitation, and temperatures tend to be cooler 

compared to other seasons. The temperature in Ethiopia during the Kiremt season varies depends 

on the areas and altitude. The diverse topography of the country, including both highlands and 

lowlands, leads to variations in climate and temperature across the entire nation. Over the 

highlands, which include areas like Addis Ababa and the Northern part of the country, 

temperatures are milder due to the higher elevations. In the lowlands of Eastern and Southeastern 

Ethiopia, temperatures can be significantly higher during the JJAS season. 

 

Figure 4 illustrates the climatology of Belg temperatures in Ethiopia, which cover from February 

to May. Temperatures vary across a country, with cooler conditions in the highland regions and 

hotter temperatures in lowland areas, reaching above 30 °C in some places.  
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Figure 4: Climatology of Mean temperature (°C) of June-September (left panel) and during 

February-May (right panel) using CHIRPS data 1994-2016. 

 

3.2 Data  

3.2.1 Observed data 

To address the proposed research questions, this study utilized gridded precipitation data from 

CHIRPS version 2.0 datasets.  CHIRPS is a blend of 0.05º satellite data and the actual observed 

data was used to generate gridded rainfall data (Funk et al., 2015) . CHIRPS dataset spans from 

1981 to the current date and has undergone validation across various regions of East Africa. The 

CHIRPS validation was based on comparisons with observed and satellite rainfall data from 

sources such as Tropical Applications of Meteorology using Satellite and Ground-Based 

Observations (TAMSAT) and African Rainfall Climatology version 2 (ARC2)(Dinku et al., 2018). 

The validation outcomes display that CHIRPS outperformed ARC2 and TAMSAT in terms of 

greater accuracy and lower biases, especially at monthly and ten days timelines. Therefore, 

CHIRPS is deemed appropriate for use as the baseline precipitation database. 

 

In this research, gridded temperature data from the Climate Research Unit (CRU) datasets at the 

University of East Anglia (UEA) were utilized. Since 1982, the UEA has provided gridded datasets 
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of observed mean temperature data over all land areas of the world except Antarctica. The CRU   

gridded Time Series is a commonly utilized climate dataset organized on a grid with a resolution 

of 0.5° latitude by 0.5° longitude. These datasets, the most recent of which is CRUTEM3, were 

created using information/data collected from meteorological stations located all over the globe, 

most of which are managed by NMHSs. NMHSs share this data over the CLIMAT network, which 

is a member of the WMO Global Telecommunications System (GTS). The study utilized monthly 

observed data for rainfall and mean temperature from 1994 up to 2016.  

3.2.2 Model data  

For the intent of this study, the data were acquired from the IRI data library 

(https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and Copernicus climate change 

services (C3S) data store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-monthly-

single-levels?tab=form). The IRI data library contains hindcast and real time forecasts from the 

NMME including National Aeronautics and Space Administration-Goddard Earth Observing 

System sub seasonal to Seasonal prediction system (NASA-GEOSS2S), Canadian Seasonal to 

Interannual Prediction System v2.1 (CanSIPS-IC3), Geophysical Fluid Dynamics Laboratory-

Seamless system for Prediction and Earth System Research (GFDL-SPEAR), National Oceanic 

and Atmospheric Administration (NOAA) centers for environmental prediction, National centers 

for environmental prediction climate forecast system version 2 (NCEP-CFSv2) and Community 

Climate System Model Version 4 (CCSM4). The Copernicus climate change services (C3S) data 

store consists of hindcast and real-time forecast data from European models such as European 

Center for Medium Range Weather Forecasts system 5 (ECMWF-SEAS5), Euro-Mediterranean 

Center on Climate Change- seasonal prediction system 3.5 (CMCC-SPS3P5), Deutscher 

Wetterdienst-German Climate Forecast System 2.1 (DWD- GCFS2P1) and Meteo-France-

system8. Hindcast data is generated through the process of running a model using historical inputs 

and comparing the model's outputs to actual observations from the past. 

 

 This study was utilized both NMME and C3S models to assess the skill of seasonal temperature 

and rainfall prediction over Ethiopia. The study utilized monthly hindcast data for rainfall and 

temperature from 1994 up to 2016. This selection of training period was constrained by data 

availability from both the observations and the models.  The predictor factors are rainfall and two-

meter temperature T2m. Table 1 illustrates the models incorporated within C3S and NMME. The 
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initial column contains details regarding the producing institution and the specific model’s name. 

These models encompass diverse ensemble sizes of hindcast, spanning from 4 members to 40 and 

all models used  1° 𝑥1° resolution of data.  

 

Table 1: List of selected nine models, accessible data period, reference information and number 
of hindcast ensemble members.  
 
No Model Type Accessible hindcast 

data period 

Reference information Hindcast 

Ensemble size 

1 CanSIPS-IC3 1980-2021 (Lin et al., 2020) 20 

2 COLA-RSMAS-

CCSM4 

1982-2023 (Kirtman et al, 2014) 10 

3 NCEP-CFSv2 1982-2021 (Saha et al., 2014) 24 

4 NASA- GEOSS2S 1981-2017 (Borovikovetal, 2018) 4 

5 GFDL-SPEAR 
 

1991-2020 (Delworth et al., 2020) 15 

6 ECMWF-SEAS5 1981-2016 (Johnson et al., 2019) 25 

7 METEO-FRANCE-

SYSTEM8 

1993- 2016  25 

8 DWD-GCFS2P1 1993-2016 (Fröhlich et al., 2021) 30 

9 CMCC-SPS3P5 1993-2016  40 

 
 

The examination of relevant literature suggests a correlation between Ethiopia's seasonal climate 

and the influence of SST in the Atlantic and Indian Oceans, as well as the equatorial Pacific, in 

conjunction with linked atmospheric motion. The primary (JJAS) season's weather is notably 

impacted by teleconnections with SST anomalies and the ENSO in the Nino-3.4 region of the 

equatorial Pacific. In contrast, the IOD exhibits a comparatively more pronounced impact on the 

climates of the Bega season (ONDJ) and the FMAM. Based on this, we have selected the examined 

predictor domains for this study in Table 2. 
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Table 2 : List of predictor domains examined in this study. 
 

No: Names of predictors  Predictor domain 

1 Global tropics  180°W to 180°E,  30°S to 30°N 

2 Western Indian Ocean 20°W to 70°E,   17°S to 30°N 

3 Ethiopia 33°W to 48°E,   3°S to 15°N 

4 Atlantic and Indian ocean 60°W to 160°E,    45°S to 45°N 

 

3.3 Methods  

In this section discuss the methods employed in the evaluation of the skill of GCMs, the analysis 

of the effect of the predictor domain, the effect of lead time on the forecast accuracy, and the 

general description of PyCPT.  

 

This study used a Python-based statistical tool (PyCPT) used to produce the objective seasonal 

climate forecast (i.e., NextGen) and evaluate the  accuracy of individual and MME forecasting 

techniques in forecasting temperature and precipitation across Ethiopia for various predictor 

domains and lead-times. The Python script in PyCPT calls the existing Climate Predictability Tool 

(CPT) to run statistical analyses of the output of one or multiple climate models relative to an 

observational dataset of the user’s choosing (Mason, 2011). As with CPT, the user may examine 

the raw model output with no model output statistics correction, or make a Model Output Statistics 

(MOS) based forecast using Principal Component Regression (PCR) or CCA. The ability of the 

seasonal forecasting models was evaluated using numerous, statistical proven methods, in 

alignment with the skill assessment verification techniques established by the World 

Meteorological Organization (WMO) for seasonal prediction (WMO, 2018). The specific 

approaches used to address each research objective are described as follow: - 

3.3.1 Evaluation of the skill of GCMs 

The skill of rainfall and temperature prediction from global prediction models depends on the 

season and areas. Evaluating the performance of seasonal forecasting models across various areas 

and time frames is crucial for enhance prediction accuracy and improve the effective utilization of 

forecast information. For the two rainy seasons in Ethiopia, the performance of various worldwide 

forecasting models to predict rainfall and temperature were examined and compared during the 
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FMAM and JJAS seasons. The prediction accuracy of C3S and NMME models are evaluated 

through the utilization of various deterministic and probabilistic skill metrics are Pearson 

correlation, ROC and Ranked Probability Skill Score (RPSS). 

 

3.3.1.1 Pearson Correlation metrics  

Pearson correlation is a statistical measure that quantifies the linear relationship between two 

continuous variables. It is named after Karl Pearson, who developed the method. The formula for 

calculating the Pearson correlation coefficient (r) between observed (x) and modeled (y) with n 

data points formula is refer to equation (2)  

𝑟 =
∑ (௫೔ି௫̅)(௬೔ି௬ത)೙

೔సభ

ට∑ (௫೔ି௫̅)మ ∑ (௬೔ି௬ത)మ೙
೔సభ

೙
೔సభ

 ………………………………………………..Equation (2) 

Where: 

𝑥௜ and 𝑦௜ are the individual data points for variables x and y data, respectively 

𝑥̅ and 𝑦ത are the means of the variable x and y data, respectively.  

 

 Its value lies within the range of -1 and +1, where -1 signifies a perfect negative correlation 

(perfect negative linear relationship) , +1 signifies a perfect positive correlation (perfect positive 

linear relationship), and 0 signifies no linear relationship between the variables(Mason, 1982).   

 

 3.3.1.2 Relative Operating Characteristic (ROC) 

ROC analysis can be adapted to assess the performance of a seasonal climate prediction model. 

The primary aim is to evaluate the ability of the model to correctly predict different categories of 

outcomes, typically related to specific climate conditions or events. The ROC score, determined 

by calculating area under the ROC curve, is considered a valuable concise metric for assessing 

prediction proficiency. ROC metrics the skill of a prediction to discriminate between occurrences 

and non-occurrences, and quantifies the degree of prediction discrimination (Mason, 1982). ROC 

evaluates the balance between the sensitivity (true positive rate) and the complement of specificity 

(false positive rate) across various classification thresholds.   
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For each category, calculate the True Positive Rate (TPR) and False Positive Rate (FPR) based on 

the model's predictions and actual observations. This mathematical formula is refer to Equation 

(3) and Equation (4). 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
… … … … … … … … … … … … … . . … . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 

 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
… … … … … … … … … … … . … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) 

 

Calculate the Area under the ROC Curve (AUC-ROC) to quantify the overall performance of the 

seasonal climate forecast model in predicting conditions above normal. A higher AUC-ROC 

indicates better discrimination between the above normal, normal, and below normal categories. 

The ROC curve and AUC-ROC in the seasonal forecasting goals. A curve consistently above the 

diagonal line and a higher AUC-ROC suggest better performance in predicting conditions below 

normal and above normal.  

 

A ROC value of 0.5 signifies unskillful forecast that means the forecast is no more accurate than 

climatology. A value exceeding 0.5 indicates a positive discriminatory skill and a value is 1.0 

indicating a flawless prediction. Zero value signifies no improvement when compared to a 

prediction derived from the climatological event frequency (Jolliffe & Stephenson, 2012b). The 

ROC curve will be positioned above the 45◦ line from the origin when the forecast system is skillful 

(when the hit rate greater than the false-alarm rate) and the total area under the curve will surpass 

0.5 (Mason & Graham, 1999).   

 

3.3.1.3 Ranked Probability Skill Score (RPSS) 

The ranked probability score serves as an indicator of the predictive accuracy of probabilistic 

prediction made for classified events, specifically those derived from terciles. This is calculated 

by the summing the squared difference between cumulative prediction probabilities and 

cumulative observed probabilities (Murphy, 1969, 1971).   

 

Rank probability score is an alternative way of skill evaluation, this mathematical formula is refer 

to equation (5).  
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𝑅𝑃𝑆 =
1

𝑘 − 1
൥෍൫𝐶𝐷𝐹௙௢௥௖,   ௜ − 𝐶𝐷𝐹௢௕௦,   ௜൯

ଶ
௞

௜ୀଵ

൩ … … … … … … … … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) 

𝐶𝐷𝐹௢௕௦,   ௜ = ൜
0      𝑖 <  𝑖௢௕௦

1     𝑖 >= 𝑖௢௕௦
ൠ   and 𝐶𝐷𝐹௙௢௥௖,   ௜ =  ∑ 𝑃௝ … … … … … … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)௜

௝ୀଵ  

From Equation (1) and (2) the term k represents the total number of groups, k = 3 is tercile 

forecasts, k = 5 is quintile forecasts, and i and j represent indices of the forecast group. 𝑃௝   represent 

a probability of group j.  RPSS is a comparison between RPS forecast and RPS reference forecast. 

For this situation, reference forecast is climatology, it gives a chance of 0.33 terciles and 0.2 

quintiles to each of groups. 

 

The RPSS is a performance score derived from RPS, computed as the percentage improvement 

compared to s climatological value. This mathematical formula is refer to equation (7).  

 

𝑅𝑃𝑆𝑆 = ൬1 −
𝑅𝑃𝑆௙௢௥௖

𝑅𝑃𝑆௖௟௜௠
൰ ∗ 100 … … … … … … … … … … … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7) 

  𝑅𝑃𝑆௙௢௥௖  represent ranked probability score for the actual forecast and 𝑅𝑃𝑆௖௟௜௠ represents ranked 

probability score for climatological forecast. 

 

The RPSS values between negative infinity and 1. The value of RPSS less than 0 represent that 

the prediction is lower skill compared to climatological prediction. RPSS is greater than 0 indicates 

that prediction is higher performance and 1 indicates a prefect prediction.  The score equal to 0 is 

the forecast ability is similar to the climatology.   

 

The Percent of RPSS is a normalized version of the RPSS and is often used to express the 

performance of a probabilistic forecast as a percentage. The Percent RPSS is calculated by dividing 

the RPSS of the forecast by the RPSS of the reference forecast and then multiplying the result by 

100 to express the skill as a percentage. The formula for calculating the Percent RPSS is refer to 

Equation (8) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑃𝑆𝑆 =
ோ௉ௌௌ

ோ௉ௌௌ೎೗೔೘೚
∗ 100 ………………………………………….…Equation (8) 

Where: 

RPSS, is the Ranked probability skill score  
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𝑅𝑃𝑆𝑆௖௟௜௠௢ , is the RPSS of climatological forecast  

 

A Percent RPSS of 0% shows no skill. A Percent RPSS of 100% signifies flawless proficiency, 

meaning the forecast is perfect relative to the reference forecast. The value of percent of RPSS less 

than 0 % represent that the forecast is less skill than the climatology. 

3.3.2 Analysis of the effect of the predictor domain  

The rainfall over Ethiopia is impacted by various large-scale circulation features in various parts 

of the Ocean. For this analysis the forecasting methodology was Canonical Correlation Analysis 

(CCA), which uses EOF analysis conducted independently on both the model hindcasts (referred 

to as the X or predictor) and the observations (referred to as the Y or predictand). Subsequently, a 

portion of the time series derived from the principal components of these EOFs is employed as 

input for the CCA. While CCA has long been recognized for its ability to identify spatial patterns 

that account for the highest variance, it is crucial to restrict the number of Principal component 

Analysis (PCA) and EOF used to prevent the occurrence of spurious or artificial predictions 

(Barnett & Preisendorfer, 1987). When performing canonical correlation analysis using PyCPT, 

the input data used are the hindcast data for predictors and the CHIRPS data for predictand.  The 

predictor domain is typically set to be larger than the predictand domain to enable the utilization 

of pertinent characteristics from the predictand domain, thereby improving the model’s calibration.   

Extensive research has been conducted on the oceanic factors influencing Ethiopia’s seasonal 

rainfall. Notably, the JJAS season exhibits a significant correlation with the ENSO events 

occurring in the tropical Pacific Ocean (Palmer et al., 2023). 

 

 For this study, different Ocean basins that have strong relationship with Ethiopia’s seasonal 

rainfall have been investigated. The analysis of the forecast skill across various predictor domains 

was assessed using the multimodel ensemble (MME) approach, which is a widely acknowledged 

method for enhancing forecast ability compared to that of individual GCMs. The predictor 

domains analyzed for this study include Tropics (180°W to 180°E,  30°S to 30°N), Western Indian 

Ocean (20°W to 70°E,  17°S to 30°N), Ethiopia (33°W to 48°E,  3°S to 15°N) and Atlantic and 

Indian Ocean (60°W to 160°E,  45°S to 45°N) predictor domains which have been tested for the 

two rainfall seasons. These predictor domains are indicated in Figure 5. The predictand domain 
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for the analysis is Ethiopia. Eventually, the study identifies the best predictor domains for the 

different rainfall seasons.  

 

 

 
Figure 5:  Predictor domains (Tropics, Western Indian Ocean, Ethiopia itself, and Atlantic and 
Indian Ocean) used to examine the skill of the prediction for the different rainfall seasons.  
 

3.3.3 Analysis of the effect of lead time on the forecast accuracy 

It is crucial to note that the lead time has an effect on the skill of the prediction (particularly in 

weather timescale). This study analyzed and compared the prediction skill of a one month, two-

month and zero-month lead reforecasts from global forecasting models over the two rainfall 

seasons (FMAM and JJAS). For example, for the June-September season, the forecasts initialized 

in April, May and June were analyzed and compared. Similarly, for the February-May (FMAM) 

season, the forecast lead time in December, January and February were analyzed and compared. 

3.4 Description of Python Climate Predictability Tools Interface  

Python climate predictability (PyCPT) tool is a package that offers an application and additional 

operations to CPT, a popular study and implementation model output forecast toolbox. It is 

specially made for the massive-production of seasonal and sub-seasonal forecasts, skill evaluation 

Tropics Ethiopia 

Western Indian Ocean Atlantic and Indian Ocean 
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maps, and probabilistic flexible forecasts.  It is intended to provide sub seasonal to seasonal climate 

prediction utilizing MOS adjustments to climate forecast from GCM.  

 

Figure 6, presents a flowchart that depicts the four steps involved in the NextGen seasonal forecast 

process. NextGen seasonal forecasting system is a systematic approach that facilitates the creation 

of objective forecasts by utilizing multiple dynamical model output predictors. The first step 

involves users selecting various models in advance, along with their corresponding hindcast and 

observational data. In the second step, a statistical calibration method is applied. In this process, 

the ensemble mean of individual model in the NMME pool is used to rectify biases in the positions 

and amplitudes of predicted rainfall compared to observations, employing the CCA calibration. 

Previous performing CCA, standardization is applied to both the predictor and the predictand, 

followed by orthogonalization through standard EOF analysis. The EOF analysis reduces the 

dimensionality of the initial data matrices by preserving a restricted number of EOF modes, 

thereby aiding in the prevention of overfitting. Thirdly, the skill assessment provides forecast skill 

metrics (ROC, Pearson correlation, RPSS) for both individual models and the MME. Finally, the 

NextGen forecasting system generates both deterministic and probabilistic forecasts. 

.  

 
 

Figure 6: Flow chart illustrating that various steps involved in generating seasonal forecasts 

using the NextGen approach.  

Source (https://www.authorea.com/doi/full/10.1002/essoar.10504989.1) 



27 | P a g e  
 

In Figure 7, the interface of PyCPT is presented in four main steps. The initial step involves 

configuring the specific case through the name list section. This interface allows users to choose 

in advance various models along with their corresponding observational data. Users can also 

specify the predictor variables they are interested in, as well as the domains for both predictor and 

predictand. Additionally, the interface allows customization of parameters such as the training 

window period and forecast timing details, including the target season and year, as well as the 

forecast lead time. The download and CPT execution step involves preparing the necessary input 

datasets and PyCPT allows users to generate calibrated and bias-corrected forecasts on a per-model 

basis. The forecasts produced by each individual model are then amalgamated to create a multi-

model ensemble forecast. The skill assessment interface provides the forecast skill metrics for both 

individual models and the MME. The performance measures by Pearson correlation, ROC and 

RPSS. Lastly, the forecast section focuses on ensemble generation and the production of forecast 

maps. The resulting forecasts are presented in an objective forecasting format, including the 

complete probability distribution for each location within the predictand domain.  

 

 

 

 

 

Figure 7: Flow chart illustrating steps of PyCPT forecasting methodology: 
 Source (https://www.authorea.com/doi/full/10.1002/essoar.10504989.1) 
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CHAPTER FOUR 

4. Results and Discussion  

This chapter explores the outcomes achieved through various approaches detailed in Chapter three, 

which were designed to address the research objectives. These outcomes are the result of the 

performance of global forecasting models in forecasting rainfall and temperature, analysis of the 

effect of predictor domains on the skill of forecasts, and the influence of lead time on forecast skill.  

 

These goals encompass evaluating the skill of GCM seasonal forecast models (NMME and C3S) 

in predicting JJAS and FMAM rainfall and temperature over Ethiopia. For this study we have used 

Pearson correlation, ROC, and RPSS evaluation metrics. To evaluate the performance of a single 

and MME forecast skill are used to PyCPT NextGen seasonal forecasting tool. The method used 

to forecasting is CCA technique. The skill of the models was assessed with different predictor 

domains and lead times, using precipitation as a predictor and CHIRPS as a predictand on rainfall 

forecast. For the temperature forecast T2m as a predictor and Tmean as a predictand.  

4.1 Analysis of the Accuracy of Global Forecasting Models in Predicting Rainfall and 

Temperature in Ethiopia 

In this subsection, we showcase the outcomes derived from evaluating the effectiveness of 

seasonal forecast models using tropics as predictor domain in predicting temperature and rainfall 

during JJAS and FMAM over Ethiopia. The ENSO and IOD has play a key role in modulating 

climate pattern over GHA including Ethiopia. This indicates that tropical region is high influence 

eastern African rainfall including Ethiopia.  

4.1.1 Skill of global prediction models in predicting rainfall during JJAS  

The skill of nine models has been assessed using the tropical region (180°W to 180°E,  30°S to 

30°N) predictors domain for June-September rainy seasons using observed data from CHIRPs as 

the predictand , rainfall as the predictor and initialized one month lead (May) forecast.  These are 

currently being used by operational climate-producing centers such as ICPAC and NMA. The 

results of this skill evaluation based on Pearson correlation, ROC area below normal, ROC area 

above normal, and the RPSS are shown in Figure 8. 
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Figure 8: Pearson correlation, ROC area below normal, ROC area above normal and RPSS skill 

of the CCA forecast for JJAS season, initialized in May. The red colors characterize higher skill 

in predicting JJAS rainfall, while blue areas indicate the opposite. 

 
From Figure (8) first column, the result of Pearson correlation maps indicates that the 

CANSIPSIC3, CFSV2, SEAS5, GCFS2P1, SPSV3P5, and METEOFRANCE8 models exhibit 

high skill in the Central, North Western, Northern and Northeastern Ethiopia with the value of 

Pearson correlation is between 0.5 and 0.8. In addition, the SPEAR, CCSM4, and GEOSS2S 

models exhibit high skill (Pearson correlation values  between 0.5 and 0.8) in the Northern parts 

of the country, but lower skill (values between 0.0 and 0.4) in the Central parts of the country 

compared to the other models. The Pearson correlation skill indicates a negative value (less than 

0) in the western, southwestern, southern, and southeastern Ethiopia. This indicates that models 

exhibit very low performance in forecasting the JJAS seasonal rainfall in this region. 

 

To assess the effectiveness of the seasonal forecast systems in terms of other metrics, we have 

used ROC metrics, Figure 8, the second column, shows the ROC area below normal. The 

CANSIPSIC3, CFSV2, SEAS5, GCFS2P1, SPSV3P5, METEOFRANCE8 and GEOSS2S models 

demonstrate high skill (ROC below scores greater than 0.7) in the Northern, Central, Northwestern, 

and Northeastern areas of the country.  In comparison, the SPEAR and CCSM4 models show low 

performance (values between 0.4 and 0.5) in forecasting JJAS rainfall season over Central parts 

compared to the other models. The areas where models show higher ROC scores indicating good 

seasonal prediction skills are consistent with the Pearson correlation map present in the first 

column of Figure 8. The models present a forecast worse than the climatology in the southern, 

Western, Southeastern areas of the country, with the ROC area below normal is less than 0.5. 

 

A similar analysis for the ROC area above normal indicates, the CANSIPSIC3, CFSV2, SEAS5, 

GCFS2P1, GEOSS2S, and METEOFRANCE8 models exhibit high skill (ROC area above normal 

value between 0.6 and 0.8) across Northern and Northeastern Ethiopia present in the third column 

of Figure 8. On the other hand, the SPEAR and CCSM4 models show low skill (ROC area above 

values between 0.4 and 0.5) over Northwestern and Central Ethiopia compared to the other models. 

However all models exhibit ROC area above normal value of less than 0.5 over southern, 
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Southeastern and Western Ethiopia. This means the prediction skill is worse than the climatology 

prediction in this areas. 

 

To further elucidate the forecast skill of seasonal forecast systems, we have applied RPSS. The 

fourth column of Figure 8 displays RPSS maps, and the CANSIPSIC3, CFSV2, GEOSS2S, 

SEAS5, GCFS2P1, SPSV3P5, and METEOFRANCE8 models exhibit high skill over the 

Northern, Central and Northeastern Ethiopia with the value of RPSS is between 20 and 40 %. This 

means the skill of forecast is better than the climatology values.  The CCSM4 and SPEAR models 

show low skill (RPSS values between 0 and 20%) over the central and northern Ethiopia compared 

to the other examined models. However all models RPSS values less than 0 % over southern, 

Southeastern and Southwestern areas. This shows the prediction skill is worse than the climatology 

prediction in this areas. 

 

Overall, in the JJAS season, based on ROC score the ability of the models in forecasting the below 

normal rainfall are higher than the above normal rainfall. The performance of the models present  

in Figure 8, the models are  low skill in predicting JJAS rainfall season across Southern, 

Southwestern, Western, Southeastern, and some Central parts of Ethiopia with the Pearson 

correlation  shows negative values, ROC values less the 0.5 and RPSS values less than  0 %. This 

indicates that the forecast skill is worse than the climatological. The reason for the low skill of the 

model is that JJAS is not the primary rainy season, especially in the southeastern and southern 

parts of the country; instead, it is a dry period. The CanSIPS-IC3, SEAS5, GCFS2P1, SPS3P5 and 

METEOFRANCE8 models show higher skill in predicting JJAS rainfall season across Central, 

Northwestern, Northeastern, Northern, and pocket areas in the Eastern part of Ethiopia  with the 

values of Pearson correlation > 0.5,  ROC area below normal >0.7, ROC area above normal > 0.6 

and RPSS >20 %  compared to other models. This is because the other models are low skill over 

the central parts.   Additionally, in the Western, West of the Central, and Northwestern parts of 

Ethiopia, models show very low skill in predicting the JJAS rainy season. This could be due to the 

low resolution of GCM forecast, that are not able to resolve the effect of topography in these high 

topography areas. The GCMs lack the ability to resolve well the small-scale processes that are 

crucial for the local climate.  
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4.1.2 Skill of global prediction models in predicting rainfall during FMAM  

The skill of models initialized in January was examined to predict February to May (FMAM) 

rainfall using the tropics (180°W to 180°E,  30°S to 30°N) as a predictor domain. Similar to the 

JJAS season the observed data from CHIRPS served as the basis for predictions, with the hindcast 

rainfall data from NMME and EU-C3S models. Figure 9 depicts the result of skill analysis metrics, 

Pearson correlation, ROC area below normal, ROC area above normal, and Rank Probability Skill 

Score (RPSS).  

 

The result presented in the first column of Figure 9, the Pearson correlation map indicates that the 

CANSIPSIC3, SEAS5, GCFS2P1, SPSV3P5, and METEOFRANCE8 models have a high spatial 

skill (values between 0.5 and 0.7) in predicting FMAM rainfall seasons over the Central, Southern, 

Southeastern, and Eastern portion of Ethiopia. The SPEAR, CCSM4, GEOSS2S and CFSV2 

models show high skill (values between 0.5 and 0.7) in the Southern, Central, and Eastern Ethiopia. 

This models are low skill (Pearson correlation values less than 0) over Southeastern Ethiopia 

compared to the other models. However, all models over the Western half of Ethiopia have low 

skill to predicting FMAM rainfall season with the Pearson correlation values less than 0.  This 

means that the forecast skill is worse than the climatological forecast over this region.  

 

To further scrutinize the forecasting skill of the FMAM season, we have used the ROC area below 

normal, as shown in the second column of Figure 9. The CANSIPSIC3, SEAS5, GCFS2P1, 

SPSV3P5, and METEOFRANCE8 models show high skill (ROC below value between 0.6 and 

0.8) in forecasting FMAM rainfall seasons across Southern, Central, South eastern, Eastern, and 

Northeastern Ethiopia. Additionally, the SPEAR, CCSM4, CFSV2, and GEOSS2S models exhibit 

high skill (ROC below score between 0.6 and 0.8) in the Central, Southern, and Northeastern 

Ethiopia, but they show lower skill (ROC below score between 0.2 and 0.4) over Southeastern and 

Eastern parts of Ethiopia compared to other models. 

 

The ROC area above normal in  the third column of Figure 9, indicates that the CANSIPSIC3, 

SEAS5, GCFS2P1, SPSV3P5, and METEOFRANCE8 models show high skill (values between 

0.6 and 0.7) over the  Central, Southern, Southeastern, and Eastern parts. Similarly, the SPEAR, 

CCSM4, GEOSS2S, and CFSV2 models have a high skill (values between 0.6 and 0.7) in the 
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Southern, Central, and Northeastern portions of the country but the skill is low ( values between 

0.2 and 0.4) over the Southeastern and Eastern parts of the country compared to the other models. 

However, all models over Western half, Southeastern and Northwestern of the country have low 

ability (values less than 0.5) to predicting FMAM rainfall season. This indicates that the forecast 

skill is worse than the climatology.  

   

The fourth column of Figure 9 displays the RPSS maps. The result presents the SPEAR, CCSM4, 

CFSV2, and SEAS5 models exhibit high predictive skill (RPSS values between 20 and 40 %) for 

the FMAM rainy season within the Central and Eastern regions of Ethiopia. The CANSIPSIC3, 

GEOSS2S, GCFS2P1, SPSV3P5, and METEOFRANCE8 models show low performance (values 

between 0 and 20 %) in forecasting FMAM rainfall season over Central and Eastern parts 

compared to other models. However, all models exhibit very low skill over western half of the 

country with the RPSS values less than 0% (i.e., the skill of the prediction is worse than the 

climatological prediction).   

   

Overall, in FMAM season, the result shows all models have very low skill (Pearson correlation 

<0, ROC < 0.5 and RPSS <0) in predicting FMAM rainfall season over the Western half of 

Ethiopia (i.e., the performance of the forecast is worse than the climatological forecast). The reason 

for the low performance of the model in this region is FMAM is not the main rainy season, 

particularly in the Western Ethiopia, FMAM is a dry season. The models exhibit a higher ability 

to forecast below-normal rainfall than above-normal rainfall. The CANSIPSIC3, SEAS5, 

GCFS2P1, SPSV3P5, and METEOFRANCE8 models show higher skill (Pearson correlation 

between 0.5 and 0.7, ROC area below normal between 0.6 and 0.8, ROC above between 0.6 and 

0.7 and RPSS between 20 and 40 %) in forecasting FMAM seasonal rainfall in Southern, Central, 

Southeastern and Eastern portion of Ethiopia compared to other models (i.e., the prediction 

performance is better than the climatological skill).  During the FMAM season, models 

demonstrate greater accuracy in forecasting the rainy season in the Southern and Southeastern 

Ethiopia compared to the Northern and Western regions. This higher skill in prediction can be 

attributed, in part, to the fact that the Southern parts of the region lack complex topography, which 

may contribute to the models' improved performance in those areas when compared to the Western 

parts. 
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Figure 9: Pearson correlation, ROC area below normal, ROC area above normal and RPSS of 

the CCA forecast for FMAM season, initialized in January. The Red colour indicate higher skill, 

while blue parts represent the lower skill.  

4.1.3 Skill of global prediction models in predicting temperature during JJAS  

The skill of the models has been assessed using the tropics (180°W to 180°E,  30°S to 30°N) 

predictor domain for the temperature season spanning June to September. The predictions were 

built upon the observed data obtained from CRU, as well as the hindcast temperature data from 

both NMME and C3S models. The results, illustrated in Figure (10), show the  skill evaluation 

metrics of  Pearson correlation, ROC area below normal, ROC area above normal, and Rank 

Probability Skill Score (RPSS) and using initialized in one month lead (May) with in a predictor 

is two-meter temperature.  

 

The Pearson correlation in the first column of Figure 10, indicates that the SPEAR, CCSM4, 

CFSV2, GEOSS2S, GCFS2P1, and SPSV3P5 models show a higher spatial skill (values between 

0.6 and 1.0) in predicting the JJAS seasonal mean temperature across the entire country, except 

for certain localized areas in the Northwestern and Southern regions. This shows that the skill of 

the forecast is better than the climatological forecast over the region. Nevertheless, the 

CANSIPSIC3, SEAS5, and METEOFRANCE8 models show low spatial skill (Pearson correlation 

values between 0 and 0.2) specifically in the Southwestern and North Western Ethiopia.  

 

The ROC area below and ROC area above normal metrics shown in the second and third column 

of Figure 10, indicates that the SPEAR, CCSM4, CFSV2, GEOSS2S, GCFS2P1, and SPSV3P5 

models show a higher spatial skill (ROC values between 0.8 and 1.0) in predicting and capturing 

the JJAS seasonal mean temperature across the entire country, except for some pocket areas in the 

Northwestern and Southern Ethiopia. However, the CANSIPSIC3, SEAS5, and 

METEOFRANCE8 models show a low spatial skill (ROC values between 0.2 and 0.4) specifically 

in the Southern and Western half of the country.  

 

The RPSS shown in the fourth column of Figure 10, indicates that the SPEAR, CCSM4, 

CANSIPSIC3, CFSV2, GEOSS2S, SEAS5, GCFS2P1, and SPSV3P5 models show higher spatial 
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positive skill (RPSS values between 40 and 100 %) in predicting and capturing the JJAS seasonal 

mean temperature across the entire country, except for some pocket areas in the Northwestern and 

Southern Ethiopia. However, the METEOFRANCE8 models depicts a lower spatial skill (values 

between 0 and 20 %) specifically in the Southern and Western half of the country compared to 

other models.  

 

In general during the JJAS season, most models display low performance (Pearson correlation < 

0, ROC values < 0.4 and RPSS values < 0 %) in forecasting the seasonal temperature in the pocket 

areas of Southern and Northwestern parts of Ethiopia. However, the SPEAR, CCSM4, CFSV2, 

GEOSS2S, GCFS2P1, and SPSV3P5 models demonstrate higher spatial skill (Pearson correlation 

values between 0.6 and 1.0, ROC values between 0.8 and 1.0 and RPSS values between 40 and 

100 %) in predicting the JJAS seasonal temperature across the entire country, except for certain 

localized areas in the Northwestern and Southern Ethiopia.  
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Figure 10: Pearson correlation, ROC area below normal, ROC area above normal and RPSS of 

the CCA forecast for JJAS temperature season, initialized in May. The red regions indicate higher 

skill, whereas blue areas indicate the opposite. 

4.1.4 Skill of global prediction models in predicting temperature during FMAM  

The skill of individual models was investigated using tropics predictor domains for the temperature 

season spanning from February to May, using the observed data for two- meter temperature as the 

predictor and the mean temperature as a predictand. The forecast is initialized with a one-month 

lead time (January). The results, illustrated in Figure (11), used skill evaluation metrics are Pearson 

correlation, ROC area below normal, ROC area above normal and RPSS.  

 
The Pearson correlation shown in the first column of Figure11, indicates that the SPEAR, CCSM4, 

CANSIPSIC3, CFSV2, GEOSS2S, SEAS5, GCFS2P1, and SPSV3P5 models show a high spatial 

skill (values between 0.5 and 0.8) in predicting and capturing the FMAM seasonal mean 

temperature across the entire country, except for Southwestern, Eastern and Northeastern parts of 

Ethiopia. The METEOFRANCE8 model show lower spatial skill (values between 0 and 0.2) in 

forecasting the seasonal mean temperature in the Western half, Southeastern and Northern Ethiopia 

compared to other models. However, all models exhibit lower spatial skill in predicting the FMAM 

seasonal mean temperature over the eastern half of the country (Pearson correlation values between 

0 and 0.2).  

 

The ROC area below normal metrics shown in the second column of Figure 11, indicates that the 

SPEAR, SEAS5, GCFS2P1, and SPSV3P5 models show high spatial skill (ROC area below 

normal values between 0.6 and 0.8) in predicting and capturing the FMAM seasonal mean 

temperature over Southern, Central and Northern portion of Ethiopia. In this case, the SPEAR 

model has shown a higher spatial skill (ROC area below normal values between 0.8 and 1.0) over 

southern, central and Northern parts compared to the other examined model.  However, all models 

have shown a low skill (ROC below normal values between 0.2 and 0.4) in the Western half and 

Eastern parts except SPEAR model.   

 

The ROC area above normal skill metrics shown in the third column of Figure 11, indicates that 

the SPEAR, CANSIPSIC3, CCSM4, CFSV2, GEOSS2S, SEAS5, GCFS2P1, and SPSV3P5 
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models shows high spatial skill (ROC area above normal values between 0.7 and 1.0) in predicting 

and capturing the FMAM seasonal mean temperature across the entire country, except for 

Southeastern and Eastern parts of Ethiopia.  

 
The RPSS shown in the fourth column of Figure 11, indicates that the SPEAR, SEAS5, GCFS2P1, 

and SPSV3P5 models show high spatial skill (RPSS values between 20 and 40 %) in predicting 

the FMAM seasonal mean temperature over Southern, Central and Northern portion of Ethiopia. 

In this case, the SPEAR model has displayed a higher spatial skill (RPSS values between 40 and 

100 %) in predicting seasonal mean temperature over Central, Southern, and Northern parts 

compared to the other examined models.  However, all models have shown low skill (RPSS values 

between 0.0 and 20%) in forecasting the FMAM seasonal temperature in the Western half and 

Eastern parts except SPEAR model.   

 

Overall, during the FMAM season, all models shown lower skill (Pearson correlation values 

between 0 and 0.2,   ROC values between 0.2 and 0.4 and RPSS values between 0 and 20%) in 

forecasting and capturing FMAM seasonal mean temperature in the Southeastern and Eastern parts 

of Ethiopia. However, the SPEAR, CANSIPSIC3, CFSV2, GEOSS2S, SEAS5, GCFS2P1, and 

SPSV3P5 models exhibit high spatial skill (Pearson correlation between 0.5 and 0.8, ROC below 

normal value between 0.6 and 0.8, ROC above normal values 0.7 and 1.0 and RPSS values between 

20 and 40 %) in predicting the FMAM seasonal mean temperature over the entire country, except 

for Southeastern and Eastern Ethiopia.  The SPEAR model is higher spatial skill compared to the 

other models.  
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Figure 10: Pearson correlation, ROC area below normal, ROC area above normal and RPSS 

skill of the CCA forecast for FMAM temperature season, initialized in January. 

 

4.2. Analysis of the Effect of Different Predictor Domains on the Skill of Forecasts 
 
In this subsection discussed the results of the effects of the examined predictor domains in the skill 

of prediction during JJAS and FMAM seasons.  

 

The analysis of the forecast skill across various predictor domains was assessed using the 

multimodel ensemble (MME) approach, which is a widely acknowledged method for enhancing 

forecast ability compared to that of individual GCMs. For seasonal forecasting, such an approach 

could involve using historical climate data and Canonical Correlation Analysis (CCA) to identify 

patterns that are relevant to the JJAS season. Consequently, several predictor domains that are 

linked to the rainfall over Ethiopia have been examined for the JJAS and FMAM rainfall seasons. 

The examined predictor domains are Tropics, Western Indian Ocean, Ethiopia, Atlantic and Indian 

Oceans.  

4.2.1 Analysis of forecast skill for different predictor domains during JJAS 

The skill of the forecast has been evaluated across various predictor domains using the MME of 

nine models. A one-month lead forecast initialized in May has been employed for the evaluation 

during the JJAS season. The skill evaluation metrics Pearson correlation, ROC below normal, 

ROC above normal, and RPSS have been utilized in the analysis. 

 
4.2.1.1 Tropical predictor domain (180°W to 180°E, 30°S to 30°N) 
 
Figure 11 shows the multimodel ensemble forecast skill during JJAS rainfall season. The result 

presents the MME forecast exhibit higher skill (Pearson correlation values between 0.6 and 0.8, 

ROC below values between 0.7 and 1.0, Roc above values between 0.6 and 0.9 and RPSS values 

between 30 and 100 %) in predicting and capturing JJAS seasonal rainfall forecast in the Northern, 

Central, Northwestern, and Northeastern and Eastern portions of the country. This indicates that, 

when using the tropics predictor domain, the forecast skill in this region is better than that of 

climatology. However, the result of MME forecast shows very low skill (Pearson correlation 

values < 0, ROC values between 0 and 0.5 and RPSS values between 0 and 10 %) in the predicting 
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JJAS seasonal rainfall in the Southern, Southeastern, Western and Southwestern portions. It is 

worth noting that these parts of the areas except the Western part are dry during JJAS season.  

 

 
Figure 11: CCA multimodel ensemble forecast skill during JJAS season using tropical predictor 

domain and May initialized 1-month lead forecast. 

 
4.2.1.2 Western Indian Ocean predictor domain (20°W to70°E and 17°S to 30°N) 

In Figure 12, the evaluation of the multimodel ensemble seasonal forecast skill results show, the 

higher skill (Pearson correlation values between 0.6 and 0.8, ROC below values between 0.7 and 

1.0, Roc above values between 0.6 and 0.9 and RPSS values between 30 and 100 %) for predicting 

the JJAS seasonal rainfall forecast in the Northern, Northeastern, Northwestern and Eastern 

portion. However, the Western Indian Ocean predictor domains are low skill (Pearson correlation 

values between 0.3 and 0.5, ROC below values between 0.5 and 0.6, Roc above values between 

0.4 and 0.5 and RPSS values between 0 and 20 %) over the central parts of the country compared 

to tropical region. This indicates that when using the western Indian Ocean predictor domain, the 

forecast performance over central Ethiopia is lower than that of climatology compared to the 

tropics. 
 

 
Figure 12: CCA multimodel ensemble forecast skill during JJAS season using Western Indian 

Ocean predictor domain and May initialized 1-month lead forecast. 
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4.2.1.3 Ethiopia predictor domain (33°W to 48°E and 3°S to 15°N) 

Used to the predictor domain was Ethiopia itself the skill of the ensemble models showcased in 

Figure 13. The result reveals a higher skill (Pearson correlation values between 0.6 and 0.8, ROC 

below values between 0.7 and 1.0, Roc above values between 0.6 and 0.9 and RPSS values 

between 30 and 100 %) in predicting and capturing JJAS rainfall forecast over the Northern, 

Northeastern and Northwestern parts of Ethiopia. However, the multimodel ensemble forecast, 

utilizing the Ethiopian predictor domain, shows lower skill (Pearson correlation values between 

0.3 and 0.5, ROC below values between 0.5 and 0.6, ROC above values between 0.4 and 0.5, and 

RPSS values between 0 and 20%) in forecasting the JJAS season in the central and eastern parts 

of the country compared to the tropical predictor domain.  

 

 
Figure 13:  CCA multimodel ensemble forecast skill during JJAS season using Ethiopia 

predictor domain and May initialized 1-month lead forecast. 

 
4.2.1.4 Atlantic and Indian Ocean predictor domain (60°W-160°E & 45°S-45°N) 

The multimodel ensemble forecast skill was assessed using the Atlantic and Indian Ocean predictor 

domain, as shown in Figure 14. The multimodel ensemble forecast, utilizing the Atlantic and 

Indian Ocean predictor domain, shows similar predicting skill to the Ethiopian predictor domain 

in forecasting the JJAS season. However, the multimodel ensemble forecast, utilizing the Atlantic 

and Indian Ocean predictor domain, demonstrates lower performance in forecasting JJAS rainfall 

seasons in the central and eastern part compared to the tropical predictor domain.   
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Figure 14: CCA multimodel ensemble forecast skill during JJAS season using Atlantic and 

Indian Ocean predictor domain and May initialized 1-month lead forecast.  

 

In general, the evaluation of the effects of various predictor domains on forecast skill shows that 

the global tropics (180°W to 180°E, 30°S to 30°N) exhibit superior performance in the JJAS 

seasonal rainfall forecast for Ethiopia when compared to other examined domains. This is due to 

the tropical ocean particularly the Pacific has high association with rainfall over the central parts 

of Ethiopia, which outperforms the predictions of other domains. This indicates that the ENSO has 

a significant impact on the JJAS (June to September) rainfall season over Ethiopia. Furthermore, 

assessment based on ROC indicated that the multimodel ensemble exhibits stronger predictive 

skill for below-normal rainfall compared to above-normal rainfall during the JJAS rainy seasons. 

This suggests that the multimodel ensemble forecast demonstrates greater skill in forecasting dry 

conditions rather than wet conditions over Ethiopia.  

4.2.2 Analysis of forecast skill at different predictor domains during FMAM 

This section discusses the CCA ensemble model forecasting skill from February to May (FMAM) 

rainfall forecasts using similar methods as for the June to September season. During FMAM, a one 

month initialized prediction is utilized (January). 

 

4.2.2.1 Tropics predictor domain (180°W to 180°E,  30°S to 30°N) 

Regarding the Tropics predictor domain, the Pearson, ROC below, ROC above, and RPSS skill 

metrics for the ensemble models are depicted in Figure 15. The outcome shows a spatially high 

ability (Pearson correlation values between 0.6 and 0.7, ROC below values between 0.7 and 0.9, 

Roc above values between 0.6 and 0.8 and RPSS values between 20 and 30 %) in forecasting the 

FMAM rainfall season in the Southern, Central, Southeastern, some areas of Northeastern, and 

Eastern Ethiopia. However, the results show very low accuracy (Pearson < 0.0, ROC < 0.4, and 
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RPSS < 0%) in forecasting the FMAM (February to May) rainfall season in the western half of the 

country. This indicates that the prediction skill is worse than the climatological forecast over this 

region. Climatologically, this region experiences low rainfall during the Belg season. 

 

 
 
Figure 15: CCA multimodel ensemble forecast skill during FMAM season using tropical 
predictor domain and January initialized 1-month lead forecast 
 
4.2.2.2 Western Indian Ocean predictor domain (20°W-70°E to -17°S-30°N) 
 
Used to the Western Indian Ocean predictor domain for the ensemble models forecast during 

FMAM are depicted in Figure 16. The result shows high  skill (Pearson correlation values between 

0.4 and 0.6, ROC below values between 0.6 and 0.8, Roc above values between 0.6 and 0.7 and 

RPSS values between 10 and 30 %) in predicting the FMAM rainfall season in the Southern, 

Central, and Eastern parts of the country. Nevertheless, the result show very low skill (Pearson <0, 

ROC< 0.5 and RPSS values between o and 10 %) in forecasting the FMAM seasonal rainfall in 

the Southeastern, Northern and Western half of Ethiopia. Utilized the Western Indian Ocean 

predictor domain is low skill predicting FMAM rainfall seasons over Southeastern, and some areas 

of Northeastern parts of the country compared to Tropical predictor domain.   

 
Figure 16: CCA multimodel ensemble forecast skill during FMAM season using Western Indian 

Ocean predictor domain and January initialized 1-month lead forecast 
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4.2.2.3 Ethiopia predictor domain (33°W to 48°E and 3°S to 15°N) 

The ensemble models shown in Figure 17 demonstrate skill when Ethiopia itself is used as the 

predictor domain. The results, as depicted, exhibit a high skill (Pearson correlation values between 

0.4 and 0.5, ROC below values between 0.6 and 0.7, Roc above values between 0.5 and 0.7 and 

RPSS values between 10 and 20 %) in forecasting the FMAM seasonal rainfall over Central, and 

Eastern portion of Ethiopia. However, the outcomes show lower in forecasting the FMAM 

seasonal rainfall compared to tropics and Western Indian Ocean predictor domain. Utilized the 

Ethiopian predictor domain is very low skill in predicting FMAM rainfall seasons over western 

half of the country.  

 

 
Figure 17:  CCA multimodel ensemble forecast skill during FMAM season using Ethiopia 

predictor domain and January initialized 1-month lead forecast 

 
4.2.2.4 Atlantic and Indian Ocean predictor domain (60°W-160°E & 45°S -45°N) 
 
Figure 18 illustrates the spatial skill of the ensemble models using the Atlantic and Indian Ocean 

predictor domain.  The result indicates that the Atlantic and Indian Ocean predictor domain has 

similar predicting skills for the tropics predictor domain, but lower skills (Pearson correlation 

values between 0 and 0.4, ROC values between 0.4 and 0.5, and RPSS values between 0 and 20%) 

over the southeastern and some areas of northeastern parts of the country compared to the tropical 

predictor domain.   
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Figure 18:  CCA multimodel ensemble forecast skill during FMAM season using Atlantic and 

Indian Ocean predictor domain and January initialized 1-month lead forecast 

 

Furthermore, when comparing the tested predictor domains, the forecast exhibits higher skill levels 

when utilizing the tropical ocean domain (-180W-180E, -30S-30N) compared to others examined 

predictor domains. This is due to the tropics predictor domain high ability to predict the 

Northeastern, Southwestern and Southeastern parts of Ethiopia, which compared to other 

examined predictor domains.  It has been noted that the performance of the models in forecasting 

the below normal rainfall are higher than the above normal rainfall for FMAM rainfall seasons. 

The performance of the multimodal ensemble (MME) is relatively weaker during the Belg season 

over Western parts of Ethiopia due to its weaker association with ENSO.  

 

4.3 Examination of the Influence of Lead Time on the Forecast Skill 

In this subsection discussed the results of the influence of lead time for both JJAS and FMAM 

seasons during 0-month, 1-month, and 2-month initialized forecast. The skill of the prediction is 

based on MME forecast. We used the Tropics region (180W to 180E and 30S to 30N) as the 

predictor domains for this analysis as it is the domain currently used by operational centers in the 

region and is supported by its demonstrated superior skill, as highlighted in Section 4.2.  

4.3.1 Examination of the influence of lead time on the forecast accuracy during JJAS  

During April initialized two-month lead forecast, the skill of the ensemble model as depicted in 

Figure 19. The outcomes indicate that MME shown substantial skill (Pearson correlation values 

between 0.5 and 0.8, ROC below values between 0.7 and 0.9, Roc above values between 0.6 and 

0.8 and RPSS values between 30 and 40 %) in effectively predicting and capturing JJAS seasonal 
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rainfall forecasts across the Northern, Northeastern, and Northwestern regions of Ethiopia. 

Utilized the two-month initialized forecast is lower skill (Pearson correlation values between 0.4 

and 0.5, ROC below values between 0.5 and 0.6, Roc above values between 0.4 and 0.6 and RPSS 

values between 10 and 20 %) in forecasting JJAS rainfall seasons in the Central parts compared to 

one month and zero month initialized time forecast.   

 

 
Figure 19:  April initialized 2-month lead JJAS CCA multimodel ensemble forecast skill using 

tropical predictor domain.  

 
During the 1-month lead forecast initialized on May illustrate in Figure 20. The outcomes reveal 

that the MME forecast demonstrates remarkable proficiency in effectively predicting JJAS rainfall 

season (Pearson correlation values between 0.6 and 0.9, ROC below values between 0.8 and 1.0, 

Roc above values between 0.6 and 0.8 and RPSS values between 30 and 100 %) over the Central, 

Northern, Northeastern, and Northwestern regions. Utilized the one-month initialized forecast is 

higher skill for predicting JJAS rainfall seasons over Central parts of the country compared to two 

month initialized forecast.   

 

 
Figure 20: May initialized 1-month lead JJAS CCA multimodel ensemble forecast skill using 

tropical predictor domain.  
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Likewise, Figure 21 illustrates the June-initialized forecast skill. The results indicate that the skill 

of the MME forecast is similar to the 1-month lead time (May) forecast skill. The zero-initialized 

forecast does not provide sufficient planning time due to its proximity to the target season, 

hindering effective agricultural and water management planning.   

 

 
Figure 21: June initialized 0-month lead JJAS CCA multimodel ensemble forecast skill using 

tropical predictor domain.   

 

Generally, it has been observed in the MME forecast that models demonstrate greater proficiency 

in predicting below-normal rainfall compared to above-normal rainfall during the JJAS season. It 

has also been indicated that one-month lead time (May) and zero-month lead time (June) forecasts 

show a better skill compared to April initialed forecast during JJAS season particularly over 

Central, Northern, Northeastern, Northwestern, and Eastern portion of Ethiopia. The one-month 

and zero-month initialized forecast are higher skill to predict the Central parts of Ethiopia 

compared to 2-month initialized forecast. The zero-lead time forecast does not provide sufficient 

planning time due to its proximity to the target season. For effective agricultural and water 

management planning, the preferred choice is the May-initialized forecast. However, MME 

forecast is low skill (Pearson correlation value <0, ROC values < 0.4 and RPSS values between 0 

and 10 %) over Southern, Southeastern, Southwestern and Western parts of the country (i.e., the 

skill of the forecast is worse than the climatological forecast).  

4.3.2 Examination of the influence of lead time on the forecast accuracy during FMAM  

During FMAM season, the influence of lead time on the forecast skill evaluation using similar 

method used in JJAS season.  
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During FMAM the December initialized MME forecast is presented in Figure 22. The outcomes  

indicate that substantial skill (Pearson correlation values between 0.5 and 0.7, ROC below values 

between 0.6 and 0.8, Roc above values between 0.6 and 0.7 and RPSS values between 10 and 30 

% ) in effectively predicting and capturing FMAM seasonal rainfall forecasts across the Southern, 

Central, and Eastern regions of Ethiopia. The two-month lead time forecast skill is relatively  low 

skill predicting FMAM rainfall seasons over Northeastern parts of the country compared to one 

month and zero-month lead time forecast.   
 

 

Figure 22: December initialized 2-month lead FMAM CCA multimodel ensemble forecast skill 

using tropical predictor domain.  

 

In the 1-month lead forecast initialized in January, presented in Figure 23. The outcomes reveal 

that the MME forecast demonstrates remarkable proficiency (Pearson correlation values between 

0.5 and 0.7, ROC below values between 0.7 and 0.9, Roc above values between 0.6 and 0.8 and 

RPSS values between 20 and 30%) in effectively predicting JJAS rainfall season over the 

Southern, Central, Northeastern, and Eastern portions of Ethiopia. The one-month initialized 

forecast is higher skill in predicting FMAM rainfall seasons over Northeastern parts of the country 

compared to two month and zero month initialized forecast.   

 
Figure 23: January initialized 1-month lead FMAM CCA multimodel ensemble forecast skill 

using tropical predictor domain.   
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Similarly, Figure 24 illustrates the zero-month (February) initialized forecast.  The results indicate 

that similar skill with one- month (January) initialized forecast but zero lead time forecast is lower 

skill for predicting FMAM rainfall seasons over Northeastern parts of the country compared to 

one month lead time forecast.  
 

 
Figure 24:  February initialized 0-month lead FMAM CCA multimodel ensemble forecast skill 

using tropical predictor domain.   

 

Overall, one-month lead time forecast demonstrates higher predictive skill (Pearson correlation 

values between 0.5 and 0.7, ROC below values between 0.7 and 0.9, Roc above values between 

0.6 and 0.8 and RPSS values between 20 and 30%) in forecasting the FMAM seasonal rainfall 

over the Northeastern parts of Ethiopia compared to a two-month and zero-month initialized 

forecast. This is because the two-month and zero-month initialized forecasts show low 

performance in the Northern parts of the country. However, the MME shows low performance 

(Pearson correlation <0, ROC values < 0.4 and RPSS values between 0 and 10 %) on predicting 

FMAM season over the Western half of Ethiopia. Multimodal ensemble (MME) Forecast has been 

noted that the performance of the models in predicting the below normal rainfall are higher than 

the above normal rainfall during FMAM seasons.  
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CHAPTER FIVE 

5. Summary, Conclusion and Recommendation 

This chapter summarizes the findings derived from various analyses, outlines the key conclusions 

drawn from these findings, and offers recommendations are also given future extensions of this 

research. 

5.1 Summary  

This research evaluated the performance of nine operational global seasonal prediction models 

over Ethiopia focusing on their ability to predict seasonal rainfall and temperature during the JJAS 

and FMAM seasons. Additionally, the study evaluated the effect of lead time and predictor domain 

on the forecast accuracy. The performance of NMME and C3S models was evaluated using 

hindcast data by employing the prediction at initialized of two-month, one-month, and zero month 

in the period from 1994 to 2016.  The CHIRPS data has been used as a reference for rainfall, while 

the Climatic Research Unit (CRU) used as reference for temperature. These evaluations were 

conducted for the tropics, the Western Indian Ocean, Ethiopia, and the Atlantic Ocean and the 

Indian Ocean predictor domains.  

 

The evaluation of seasonal forecast performance utilized a Python-based statistical tool called 

PyCPT to generate objective seasonal climate forecast (i.e., NextGen) and evaluate the accuracy 

of individual forecasting techniques in predicting temperature and precipitation over Ethiopia.  

This evaluation was conducted across various predictor domains and forecast lead times. The 

effectiveness of the models was measured by employing various skill evaluation metrics such as 

Pearson correlation, ROC, and RPSS.  

 

During the JJAS and FMAM season, the models exhibit various levels of skill in predicting 

seasonal rainfall and temperature. The CanSIPS-IC3, ECMWF-SEAS5, DWD-GCFS2P1, CMCC-

SPS3P5, and METEOFRANCE8 models shown higher  skill (Pearson correlation between 0.5 and 

0.7, ROC area below normal between 0.7 and 1.0, ROC area above normal between 0.6 and 0.8 

and RPSS between 30 and 100 %) in predicting JJAS rainfall season over Central, Northwestern, 

Northeastern, Northern, and pocket areas in the Eastern part of Ethiopia compared to other models 

like GFDL-SPEAR, CCSM4, NASA-GEOSS2S, and NCEP-CFSv2.  However, all models show 
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robust low performance in predict JJAS rainfall season over the Southern, southeastern, 

Southwestern, and Western half of Ethiopia (i.e., the forecast skill is worse than climatological 

forecast). During FMAM season, the CanSIPS-IC3, ECMWF-SEAS5, DWD-GCFS2P1, CMCC-

SPS3P5 and METEOFRANCE8 models shown higher spatial skill (Pearson correlation between 

0.5 and 0.7, ROC area below normal between 0.6 and 0.8, ROC above between 0.6 and 0.7 and 

RPSS between 20 and 40 %) in forecasting the seasonal rainfall in the Southern, Southeastern, 

Central, and Eastern parts compared to other models.  However, all models have very low skill 

(Pearson correlation <0, ROC < 0.5 and RPSS <0) in predicting FMAM rainfall season over 

Western half of Ethiopia.  

 

The models SPEAR, CCSM4, CFSV2, GEOSS2S, GCFS2P1, and SPSV3P5 exhibit higher spatial 

skill (Pearson correlation values between 0.6 and 1.0, ROC values between 0.8 and 1.0 and RPSS 

values between 40 and 100 %) in predicting the JJAS seasonal mean temperature across entire 

regions of the country, with the exceptions being pocket areas in the Southern and Northwestern 

Ethiopia (i.e., the skill of the forecast is better than the climatological forecast). The SPEAR, 

CANSIPSIC3, SEAS5, CFSV2, GEOSS2S, GCFS2P1, and SPSV3P5 models exhibit higher 

spatial skill (Pearson correlation between 0.5 and 0.8, ROC below normal value between 0.6 and 

0.8, ROC above normal values 0.7 and 1.0 and RPSS values between 20 and 40 %) in predicting 

the FMAM seasonal mean temperature over the Central and Western half of the country. The 

SPEAR model is higher spatial performance compared to the other models.  However, the CCSM4 

and METEOFRANCE8 models shown a low spatial skill over the Western half of Ethiopia.  

 

The evaluation of the effect of various predictor domains on the forecast performance the tropics 

region (180W to 180E and 30S to 30N) exhibit superior performance during JJAS and FMAM 

seasons for Ethiopia when compared to other examined domains. This indicates that the ENSO 

has a significant impact on the JJAS (June to September) rainfall season over Ethiopia.  During 

the FMAM season, the tropics predictor domain higher ability to predict the Northeastern, 

Southwestern and Southeastern parts of Ethiopia, which compared to other examined predictor 

domains. 
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The influence of lead time on the forecast accuracy for JJAS season, the one-month initialized 

(May) and zero-month initialized (June) forecasts showed a better skill compared to the forecast 

initialized in April. The June-initialized forecast does not provide sufficient planning time due to 

its proximity to the target season. For effective agricultural and water management planning, the 

preferred choice is the May-initialized forecast. During the FMAM season, the January initialized 

forecast is better skill for predicting FMAM rainfall season compared to the  two month and zero 

month initialized forecast.  This is due to the fact that a one-month lead forecast leads to higher 

predictive skill over the northeastern parts of Ethiopia. 

 

5.2 Conclusion  

Among the 9 prediction models, CanSIPS-IC3, ECMWF-SEAS5, DWD-GCFS2P1, CMCC-

SPS3P5, and METEOFRANCE8 demonstrate noticeably better performance in predicting JJAS 

and FMAM rainfall than the other models, like GFDL-SPEAR, CCSM4, NASA-GEOSS2S, and 

NCEP-CFSv2. However, the skill of rainfall forecasts from the C3S and NMME models is very 

low over the southern, southeastern, southwestern, and western half of Ethiopia (i.e., the forecast 

skill is worse than climatology) during JJAS. Additionally, during FMAM, the forecast skill is 

particularly low over the western half of Ethiopia. This finding is consistent with other published 

literature and a significant portion of our skill assessment outcomes closely align with pertinent 

previous studies (Acharya et al., 2021; Teshome et al., 2022) .The performance of the models in 

predicting temperature is higher than that in predicting rainfall.  The performance of the models in 

forecasting the below normal rainfall are higher than the above normal rainfall during JJAS and 

FMAM season. This indicates that the models demonstrates greater skill in forecasting dry 

conditions rather than wet conditions over Ethiopia. The MME forecast skill is better than the 

individual model forecasting skill. The Tropical region exhibit higher skill in the JJAS and FMAM 

seasonal rainfall forecasts for Ethiopia when compared to other examined domains.  The influence 

of lead time on the forecast accuracy for JJAS and FMAM season, the 1-month lead forecast 

exhibits a better skill compared to the 2-month and 0-month lead time forecast. The findings of 

this study help to inform how a set of models could be chosen to generate an objectively 

consolidated MME of seasonal prediction, with the aim of producing operational objective 

seasonal forecasts and improving the accuracy of forecasting for Ethiopia, as recommended by the 

WMO. 
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5.3 Recommendations  

The study's recommendations cover various stakeholders, including climate research scientists, the 

seasonal forecasting community, policymakers, service providers, infrastructure stakeholders in 

need of precise forecast information, and the overall public relying on seasonal rainfall outlook.  

5.3.1 Recommendations to scientists 

The evaluation of the ability of the model in forecasting rainfall in this research used precipitation 

as the predictand and predictor variable. For temperature, the two-meter temperature (T2m) serves 

as a predictor, and mean temperature (Tmean) is the predictand. We advise further studies could 

explore the inclusion of SST as a predictor variable for rainfall forecasting. The models 

consistently exhibit very limited skill in predicting rainfall over the Western half of Ethiopia. We 

recommend pursuing further research and implementations aimed at enhancing accuracy and skill 

in these challenging regions. In addition, further diagnostic examination of alternative potential 

drivers is necessary to gain a deeper comprehension of the sources of seasonal predictability and 

the connection between the accuracy of rainfall forecasts and the depiction of crucial mechanisms. 

We only examined the precipitation and temperature prediction, whereas many of the models 

showcased here generate several additional variables that may exhibit variations in performance. 

It should be noted that assessing some of these variables on a global scale is challenging because 

of the absence of climatological observations. Hence, forthcoming researchers could explore 

diverse components of the forecast variables.  

5.3.2 Recommendations to users of climate prediction products  

It is important to consider these findings when developing and refining seasonal rainfall 

forecasting models for Ethiopia, as they can contribute to improved decision-making in various 

sectors such as agriculture, water resource management, and disaster preparedness. The models 

consistently demonstrate better performance in forecasting JJAS and FMAM rainfall season at 1-

month lead times compared to other lead times. Therefore, it is advisable to prioritize and rely on 

forecasts generated closer to the target period for more accurate predictions. Instead of relying on 

a single model, consider using an ensemble or combination of models to improve prediction 

accuracy. Identify the models that demonstrate promising skill in different regions or lead times 

and integrate their forecasts to leverage their strengths and compensate for their weaknesses. The 

performance of the models varies across different predictor domains. While some models show 
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promising skill in certain regions, they may have limited ability to predict rainfall patterns in other 

areas. Consider the specific predictor domain relevant to the target region in Ethiopia when 

selecting models for prediction. Effective partnership between end-users and climate researchers 

is vital in appraising the economic importance of the particular forecasts provided by Ethiopian 

Meteorology Institutes and diverse climate centers. 

 

The results obtained would be useful for various socioeconomic sectors. Farmers optimize yields 

and mitigate losses through crop and irrigation planning. Energy industries ensure efficient 

operations by predicting demand and managing resources. Tourism based on forecasts, enhancing 

customer experiences. Construction minimizes delays and costs by scheduling work and designing 

climate-resilient structures. Water management, disaster preparedness, public health, insurance, 

and trade decisions all benefit. 

5.3.3 Recommendations to policy makers 

Policy formulation and decision-making greatly benefit from accurate and actionable climate 

information. Initialization stands as a crucial aspect of numerical weather prediction, hinging on 

the quality of observational data. Given the region's challenging topography, the current station 

network across the country remains insufficient. Thus, a plan must be devised to augment the 

number of stations and also expand automatic weather stations strategically. Policymakers should 

actively collaborate to expand and strategically position these stations, encourage the collection 

and sharing of high-quality observational data to validate and improve climate models. Robust 

data from various regions and time frames are essential for model evaluation and verification.  

Policymakers should allocate resources to support research and development of climate models. 

This includes refining existing models, integrating new data and scientific understanding, and 

exploring novel modeling approaches. The results obtained would be useful for formulating 

actionable insights that can guide policy decisions across various sectors, helping to enhance 

resilience to climate variability, mitigate risks, and promote sustainable development. 
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