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Abstract

The goal of this project is to explore the application of the Fourier-cosine expansion (COS)
method within the framework of the Normal Inverse Gaussian (NIG) distribution for pric-
ing European options, the COS-NIG model. The COS method, recognized as a highly e�-
cient numerical tool, plays a pivotal role in the accurate pricing of European options. Our
key insight lies in the close relationship between the characteristic function and the series
coe�cients derived from the Fourier-cosine expansion of the density function. Leveraging
the known characteristic function of the NIG distribution, we develop a COS-NIG model
for pricing of European options. The choice of the NIG distribution for modeling stock
options is motivated by its ability to capture skewness and kurtosis, given the existence
of higher moments, in contrast to the Gaussian distribution. Notably, the chosen distri-
bution allows for a more accurate representation of the empirical density of log-returns.
In our investigation, the COS-NIG model consistently surpasses the performance of the
Black Scholes Model (BSM) especially for In the Money call options.
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1 Introduction

1.1 Background

In the current complex economic world where prices fluctuate according to investor per-
ception and there is numerous money exchange, trading of financial markets has become
very uncertain. Derivative contracts have established themselves as the most popular
method for investors to control risk while safeguarding their assets in the face of mar-
ket volatility and uncertainty around future occurrences. These derivative contracts give
investors the ability to diversify their holdings and use their money more e�ectively.
Derivatives trading dates to early 1900’s though these markets were then informal and
unregulated. In the recent past, derivative markets have experienced tremendous growth
across the globe. In fact, the government of Kenya through the Nairobi Stock Exchange
approved the introduction of derivatives market in 2015 marking the beginning of a new
market in the country. In June 2019, Nairobi Securities Exchange received the first license
to trade derivatives from Kenya’s capital markets regulator, CMA.

The value of financial derivatives depends on the value of another asset that they are
based on. Some of the categories of financial derivatives includes futures, forwards,
swaps, and options, which serve various purposes in speculating and managing risks
within investments. When an individual purchases a financial asset with the expectation
that its value will increase, they are said to have taken a long position. On the other
hand, someone who sells a stock they do not yet own, hoping its value will decrease, is
referred to as having taken a short position. Those who assume short positions typically
borrow assets from significant financial institutions, selling them and later repurchasing
the assets. An option is a type of financial contract that gives its owners the right, but
not the obligation, to buy or sell another asset at a fixed price and within a certain period
of time. The contract that allows the owner to buy the asset is called a call option, while
the contract that allows the owner to sell the asset is called a put option. A stock option
is a type of an option that derive its value from stocks.

Financial markets inherently carry risks, and inaccuracies in calculating option prices
pose a considerable threat in option trading, potentially resulting in significant financial
setbacks for investors. The primary objective of trading is to optimize anticipated returns
while mitigating uncertainty. Investors instinctively gravitate towards companies poised
to deliver substantial expected returns with commensurately low risks. The prosperity of
an investor relies on adeptly navigating existing risks and making judicious investment
choices.
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Historically, Brownian motion, implying the normality of log returns, has been a funda-
mental concept in the field of option pricing. However, this model falls short in capturing
extreme values in stock returns, as the distribution of stock returns exhibits higher kur-
tosis compared to a normal distribution. Moreover, the assumption of constant market
volatility over time is o�en unrealistic. Recent studies have a�empted to design mod-
els that be�er reflect market realities. GARCH models in (Aguilar, 2021) and (Madan
& Seneta, 1990) for example, have been employed to account for conditional normal-
ity in stock returns, explaining phenomena like volatility clustering and ARCH e�ects.
Nonetheless, these models struggle to capture the excess kurtosis and skewness present
in real-world data. Exponential levy models have been proposed as the most suitable
processes to incorporate this stylized facts of stock returns as well as maintaining their
independence and stationarity. See for instance, (Barndor�-Nielsen, 1997), (Boyarchenko
& Levendorskii, 2002), (Boyarchenko & Levendorski, 2002) and (Boyarchenko & Leven-
dorski, 2022).

Levy processes do not have a convenient analytic tractability as the Geometric Brownian
motion assumed in the Black Scholes model.The classic PDE techniques have been ex-
tended to the Partial Di�erential Integro Equations (PIDE) by (Matache, Von Petersdor�,
& Schwab, 2004) and (Cont & Voltchkova, 2005). Montecarlo simulation techniques have
proven viable also for the Variance Gamma(VG) and the NIG model as seen in (Avramidis
& L’Ecuyer, 2006). Fourier based transform approach including the DFT, FFT and FrFFT
have utilized the availability of a closed form characteristic function to obtain the option
prices. In recent years, the Fourier-Based Cosine Method has emerged as a promising al-
ternative for option pricing due to its computational e�iciency and accuracy in handling
complex market scenarios. Unlike other numerical methods, the Cosine Method operates
in the frequency domain, providing analytic solutions to the option pricing equation. This
approach allows for faster computation and improved performance compared to the for-
mer numerical techniques.

In this thesis, we aim to build upon (Fang & Oosterlee, 2009) and (Junike, 2023) work
by exploring an alternative distribution for the log-returns of the underlying security,
namely the Normal Inverse Gaussian (NIG) distribution. The motivation behind this re-
search is rooted in the recognition of the deficiencies of option pricing models in deal-
ing with complex market dynamics. Financial assets o�en exhibit jumps in prices and
non-normal return distributions, particularly during periods of market turbulence and
economic events. Therefore, it is essential to develop option pricing models that can ef-
fectively capture these features and provide more reliable valuation results.

The comparison of the Cosine Method’s functionality with the classical Black-Scholes
model will shed light on the trade-o�s between accuracy and computational e�iciency.
This comparative analysis will provide valuable insights into the suitability of the Cosine
Method for di�erent market conditions and the potential advantages of incorporating
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more sophisticated return distributions. This research strives to improve the precision
and applicability of option pricing in real-world financial markets by delving into the
Normal Inverse Gaussian (NIG) distribution as a more fi�ing model for log-returns. The
research endeavor is driven by the aspiration to advance option pricing methodologies,
leading to more robust and realistic financial modeling approaches.

1.2 Statement of the problem

The Generalized Hyperbolic models, particularly the specialized subclass known as the
NIG model of (Barndor�-Nielsen, 1997) is suggested as potential solutions to address
the excess kurtosis and skewness in stock returns. The NIG model’s ability to capture
skewness and kurtosis makes it a promising candidate for describing the heavy-tailed
return distributions observed in real-market scenarios.

The convenient analytic tractability observed in option pricing under the Geometric Brow-
nian process assumption of the Black-Scholes-Merton model however, does not seam-
lessly extend to pricing models that incorporate stochastic volatility and Levy processes in
modeling asset returns. These factors introduces complexities that challenge the straight-
forward analytic solutions characteristic of the Black-Scholes-Merton framework. This
departure from the simplicity of geometric Brownian motion highlights the inherent chal-
lenges and increased computational demands associated with modeling more realistic
market dynamics.Furthermore, the need for speed and accuracy in pricing European op-
tions, especially for a variety of strike prices at a single spot price, is essential for calibra-
tion at financial institutions. While existing integration methods are e�icient for plain
vanilla options, there is a constant pursuit in computational finance to improve the per-
formance of the pricing methods. �adrature rule-based techniques, however, are less
e�icient when solving Fourier transformed integrals, which o�en require a fine grid for
accuracy. In this thesis, we will focus on Fourier-cosine expansions introduced by (Fang
& Oosterlee, 2009) for numerical integration as an alternative approach to address these
challenges and enhance the precision of option pricing methods.

1.3 Objectives

1.3.1 General objectives

The primary goal of my project is to create pricing formulas for European options using
the Fourier-based cosine method, with a specific focus on incorporating the distribution
of log-returns of the underlying security as a normal inverse Gaussian distribution.

1.3.2 Specific objectives
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1. To model the log returns of stock prices using the Normal Inverse Gaussian Distribu-
tion

2. To develop a European Option pricing model based on the COS method when the log
returns follow a NIG distribution

3. Compare the performance of the developed NIG Option pricing model with the Black
Scholes model and the prevailing market option prices.

1.4 Significance of the study

The e�icient pricing of financial options has been a central focus in the field of quantita-
tive finance. Conventional option pricing models, like the Black-Scholes model, operate
on the assumption of constant volatility and log-normal distributions for the returns of
the underlying asset. However, these models o�en fall short in accurately capturing the
dynamics of real-world financial markets, particularly when dealing with assets that ex-
hibit jumps and non-normal return distributions.

The main objective of this thesis is to formulate pricing formulae for European options by
employing the Fourier-Based Cosine Method, particularly when the distribution of log-
returns of the underlying security adheres to a Normal Inverse Gaussian (NIG) model.
The NIG model is recognized for its capacity to represent skewness and kurtosis, ren-
dering it a more appropriate choice for characterizing financial return distributions with
heavy tails

The Fourier-Based Cosine Method is known for its high computational e�iciency. It typi-
cally requires a significantly smaller number of terms in the series expansion compared to
other numerical methods, such as finite di�erence or Monte Carlo simulation, to achieve
accurate results. This results in faster computation times, making it suitable for pricing
options in real-time and large-scale applications. Moreover, the method is highly flexible
and can be adapted to handle various types of options, including European, American,
and exotic options, as long as their payo�s can be expressed analytically. It is particu-
larly powerful when dealing with options on assets with non-normal return distributions,
jumps, or stochastic volatility.

In recent literature, (Junike, 2023) employed the Cosine method to e�ectively price Euro-
pean options when the underlying return distribution followed a Variance Gamma (VG)
model. Although this approach displayed potential, it was observed that the necessary
bound for the number of terms, denoted as (N) in the Cosine method, was excessively
large to be practically applicable. In this thesis, our objective is to expand upon Junike’s
work by substituting the VG model with the Normal Inverse Gaussian (NIG) model to
address this limitation. The NIG distribution o�ers more flexibility and a broader range
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of possible return distributions, and it has the potential to overcome the limitations ob-
served with the VG model. By using the NIG model, we seek to enhance the accuracy of
option pricing and be�er reflect the complexities of real-world market dynamics.

The significance of this research lies in its potential contributions to the field of option
pricing and quantitative finance. By incorporating the Fourier-Based Cosine Method
with the NIG distribution, we expect to achieve more accurate pricing results for Eu-
ropean options, particularly for assets with non-normal return distributions and jumps.
This research can o�er valuable insights for traders, investors, and risk managers, aiding
them in making informed decisions and developing more e�ective hedging strategies in
real-market scenarios.

Additionally, the comparison of the Cosine Method’s functionality with the Black-Scholes
model, known for its simplicity and widespread use, will shed light on the trade-o�s be-
tween accuracy and computational e�iciency. By showcasing the benefits of incorporat-
ing the NIG distribution in the option pricing framework, this research can potentially
lead to advancements in the understanding and application of option pricing models with
non-normal return distributions, paving the way for more realistic and robust financial
modeling approaches. This thesis endeavors to contribute to the advancement of option
pricing models in the literature by integrating the Fourier-Based Cosine Method with the
NIG distribution. The research aims to provide a deeper understanding of option pricing
with non-normal return distributions and jumps in asset prices, ultimately enhancing the
accuracy and practicality of option valuation methods in real-world financial markets.
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2 Literature Review

The widely recognized Black-Scholes Option Pricing models, introduced by Black and Sc-
holes in 1973, are based on several crucial assumptions that have been demonstrated to
be unrealistic in real-world financial markets. In response to this advancements in option
pricing theory, a new category of models has emerged in the literature to be�er address
the stylized features of actual markets. These novel models, belonging to the Lévy pro-
cess family, are primarily distinguished by their probabilistic property of having infinitely
divisible distributions(Kyprianou, 2014). Examples of these models which consider excess
kurtosis and skewness are the Variance Gamma (VG), the Generalized Hyperbolic (GH)
model and the Normal Inverse Gaussian (NIG). To estimate the degree of uncertainty in
the return on the underlying asset, (Madan & Seneta, 1990) created the Variance Gamma
(VG) model, a continuous-time stochastic process. This model served as a valuable and
practical alternative to Brownian motion as the martingale component for modeling the
dynamics of log prices. (Adeosun, Edeki, & Ugbebor, 2016) conducted an extensive anal-
ysis of the VG process, which is represented as a di�erence of two gamma processes.
As a result of this analysis, (Adeosun et al., 2016) proposed a modified European call
option VG model that incorporates the di�erence of two gamma processes, providing
an improved framework for option pricing. (Harrison & Pliska, 1983) pointed out the
significance of introducing a stochastic process for applications in European option pric-
ing that do not require the separate computation of risk-neutral expectations. Instead,
such processes take into consideration risk aversion through the identification of an ex-
act change of measure. This approach provides a more comprehensive and integrated
perspective on pricing options in the presence of risk aversion.(Eberlein & Keller, 1995)
introduced the use of Generalized Hyperbolic(GH) distributions as a modeling approach
to capture the peaked and skewed distribution characteristics o�en observed in equity
returns. (Barndor�-Nielsen, 1997) used a normal variance-mean mixture where the mix-
ing density is the inverse Gaussian distribution and proposed a normal-inverse Gaussian
distribution (NIG) process.(YILMAZ & Hekimoglu, 2022) applied two pure jump models,
the Variance Gamma (VG) and Normal-Inverse Gaussian (NIG) models, to fit the BIST30
index, which represents an emerging market. Their research confirmed that these mod-
els outperformed the classical Black-Scholes (BS) model in the context of option pricing,
demonstrating their e�ectiveness in capturing the unique features of emerging market
data.

The mathematical analysis of the jump models has been proved to be di�icult. Monte
Carlo simulations, Partial (integro) di�erential equations (PIDE) and the Fourier meth-
ods (Eberlein, 2013) are some of the commonly known methods for numerical evaluation.
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(Ano & Ivanov, 2012) utilized the NIG process in modeling and optimizing investment
strategies. Some specific option valuation methods also have been proposed which in-
clude the numerical quadrature method (Fusai & Meucci, 2008) for Asian options and
Wilkinson Approximation for exotic options (Albrecher & Predota, 2004). (Ivanov, 2013)
introduced analytical formulas for closed form pricing of European options for a family
of NIG processes. These formulas were derived based on the values of the degenerate
Appell hypergeometric function.Recent studies in the field of option pricing have contin-
ued to advance the methodology and expand the range of models that can be e�iciently
used to price options. For example, (Kirkby & Nguyen, 2020) developed an innovative and
e�icient transform approach for pricing Asian options for general asset dynamics, such
as Regime Switching Levy processes and stochastic volatility algorithms with jumps, us-
ing duality and FFT-based density projection implementation. The use of Mellin Trans-
form and residue calculus to obtain closed-form solutions for vanillas (European), digitals,
power, and log options was introduced by (Aguilar & Kirkby, 2022). Under Lévy-driven
models, Fourier transform-based strategies for option pricing are among the most pop-
ular and generally e�ective methods. Since the first use of Fast Fourier Transform (FFT
method) by (Carr & Madan, 1999), several extensions have been made including (Lewis,
2001), (Jackson, Jaimungal, & Surkov, 2008) and (Lord, Fang, Bervoets, & Oosterlee, 2008).

In February 2008,(Fang & Oosterlee, 2009) proposed a fast and e�icient way to compute
the prices of European-style options. Their method hinged on a crucial insight, empha-
sizing the close correlation between the characteristic function and the series coe�icients
derived from the Fourier-Cosine expansion of the density function. This insight paved the
way for a more e�icient valuation of European options.Furthermore, (Fang & Oosterlee,
2009) extended their approach to pricing early-exercise and discretely monitored barrier
options. They also devised an e�ective numerical method based on Fourier analysis for
pricing Bermudan options and discretely monitored barrier options under the Heston
Stochastic Volatility model. This extended technique employed the Fourier-Cosine series
expansion in conjunction with high-order quadrature rules in the other dimension. This
research, presented by (Fang & Oosterlee, 2011), significantly contributed to the field of
quantitative finance by enhancing the precision and computational e�iciency of option
pricing models. (Alexander & Venkatramanan, 2012) extended the Cos method to higher
dimensions with a multidimensional asset price process allowing the algorithm to be ap-
plied to rainbow options and basket options. In addition, (B. Zhang & Oosterlee, 2013)
introduced an e�ective pricing algorithm for swing options using the Cos method. Their
work specifically addressed the pricing of discretely monitored geometric and arithmetic
Asian options that incorporated early exercise features. This algorithm was aptly named
ASCOS. It employed Richardson extrapolation to determine the prices of continuously
monitored options. In 2018,(Leitao, Oosterlee, Ortiz-Gracia, & Bohte, 2018) introduced
the data-driven cosine (ddCOS) method, which stands as a model-independent approach,
obviating the need for an analytically known characteristic function. In lieu of this re-
quirement, the method relies on the estimation of coe�icients that represent the distribu-
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tion of the terminal stock price. These coe�icients are determined through the analysis
of historical data values.
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3 Fundamentals of derivative pricing

In this chapter, we delve into the core principles of derivatives pricing. One of the main
concepts in derivative pricing is the understanding that the behavior of underlying as-
sets, such as stocks, commodities, interest rates, and exchange rates, is best described by
stochastic processes. We explore the intricacies of the Geometric Brownian Motion first
introduced by (Black & Scholes, 1973) in 1973 and the Normal Inverse Gaussian Model of
(Barndor�-Nielsen, 1997) used in modeling the underlying assets and how these models
facilitate the valuation of derivative contracts. Additionally, we describe the computa-
tional techniques employed to price derivatives under various assumptions about the
underlying stochastic processes.

3.1 Geometric Brownian Motion

3.1.1 Stochastic Di�erential Equation

Instantaneous price movements are characterized as:

dSt = µStdt +σStdWt (1)

St is the current stock price, µ is the dri� of the expected return of the asset, σ is the
volatility of the asset and dW is a wiener process (Brownian motion) increment.

The solution to this SDE is

ST = S0 exp
(
(µ− σ2

2
)(T −0)+σ(WT −W0)

)
(2)

The mean and variance of ST are:

E(ST ) = S0.exp(µT )

Var(ST ) = S2
0. [exp(2µT )]

[
exp(σ2T )−1

]
and

loge St ∼ N
(

loge S0 +(µ− σ2

2
)t,σWt

)
(3)

3.1.2 Black Scholes Model
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The fundamental concept of the BSM model is the assumption that price movements
follow a Geometric Brownian Motion. Other key assumptions in the model are:

1. Assumption of Constant Volatility: It is assumed that the volatility of returns for
the underlying asset remains stable throughout the analysis.

2. Constant and Known Risk-Free Interest Rate: The presence of a constant and
well-defined risk-free interest rate is considered as part of the modeling assumptions.

3. No Dividend Payments by the Underlying Stock: During the lifespan of the op-
tion under consideration, it is presumed that the underlying stock does not issue any
dividend payments.

4. E�icient Market and Absence of Transaction Costs: The market is regarded as
e�icient, and it is assumed that no transaction costs, taxes, or short-selling restrictions
exist.

Black Scholes Equation

Let S be an Ito process that has the SDE given in equation 1 and let f be a twice di�er-
entiable scalar function and a derivative dependent on S then f is an Ito process and

d f =
(

µS
∂ f
∂ s

+
∂ f
∂ t

+
1
2

σ
2S2 ∂ 2 f

∂ s2

)
dt +σS

∂ f
∂ s

dW (4)

where,

(dt)2 = 0

dt.dW = 0

(dW )2 = 0

Consider a risk free portfolio that replicates the payo�s of the option. The portfolio con-
sists of the option itself and a certain amount of the underlying asset say a. Adjusting
the proportion of the option and the underlying asset continuously can eliminate risk and
achieve the same payo� as the option. This leads to the concept of risk neutral pricing.
From equation 4,

d( f +aS) =
(

µS
∂ f
∂ s

+
∂ f
∂ t

+
1
2

σ
2S2 ∂ 2 f

∂ s2 +aµS
)

dt +σS
(

∂ f
∂ s

+a
)

dW (5)

To hedge away all risk in our portfolio, we let a =−∂ f
∂ s

d( f +aS) =
(

∂ f
∂ t

+
1
2

σ
2S2 ∂ 2 f

∂ s2

)
dt (6)



11

The portfolio is now risk free and it must therefore grow at a risk free interest rate r.

d
dt
( f +aS) = r( f +aS) = r

(
f −S

∂ f
∂S

)
(7)

r
(

f −S
∂ f
∂S

)
=

∂ f
∂ t

+
1
2

σ
2S2 ∂ 2 f

∂ s2 (8)

If we rearrange equation 8, we get the Black Scholes Equation.

Black Scholes Equation. Given a stock price S that follow an Ito process, then the value
of an option f of S is evaluated from the following equation:

∂ f
∂ t

+ rS
∂ f
∂S

+
1
2

σ
2S2 ∂ 2 f

∂ s2 − r f = 0 (9)

Inorder to obtain a unique solution to the Black Scholes Equation 9, we must specify the
boundary conditions.

European Call and Put option prices

The price of a European call option at time t, C(t), under the risk neutral probability
measure can be easily obtained from equation 9. A step by step derivation of the price is
given in (Nielsen, 1992). If we have K as the strike price of an option and St as the current
price of the underlying stock, then:

C(t) = StN(d1)−K e−rτN(d2) (10)

Where:

d1 =
ln
(

St
K

)
+(r−0.5σ2)τ

σ
√

τ
+σ
√

τ (11)

d2 = d1−σ
√

τ (12)

N(d) =
1√
2π

d∫
−∞

e
1
2 s2

ds (13)

For a European put option valued as P(t) with the same strike price K and current price
of the underlying asset St as the call option C(t), the following relation holds:

P(t)−C(t) = Ke−rτ −St (14)
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This relation must hold otherwise arbitrage opportunities will exist. From this equation
14, P(t) is given by;

P(t) =C(t)+Ke−rτ −St

= K e−rτN(−d2)−StN(−d1)
(15)

The BSM has been widely used since its inception. It has however not been without
critique. Studies have shown that it cannot e�ectively accommodate the inherent char-
acteristics of financial assets, such as non-normality and jumps in asset prices.The Gen-
eralized hyperbolic models have been suggested as one of the approaches that could deal
with the excess kurtosis and skewness of stock returns.In this study we propose the use of
a specialized subclass of the Generalized Hyperbolic model known as the Normal Inverse
Gaussian (NIG)model as an alternative.

3.2 Normal Inverse Gaussian (NIG) distribution

3.2.1 Inverse Gaussian Distribution

The inverse Gaussian distribution is a continuous probability distribution parameterized
by two parameters mean µ and shape λ . Its pdf is given by:

fIG(y) =

√
λ

2πy3 e
− 1

2µ2y
λ (y−µ)2

(16)

The IG distribution is the distribution of the first passage time of a Brownian motion with
dri� γ > 0 for a barrier δ > 0. If we let the barrier to be a linear function of the time t ,
we obtain the IG process which is defined as:

dZt = γdt +dWt

gt = in f {s > 0,Zs = δ t}
(17)

where {Zs;s > 0} is a Brownian motion with dri� γ > 0. The distribution of the IG process
at time t is given as

gt ∼ IG
(

δ t
γ
,δ 2t2

)
with mean(µ) and variance (κ). The variance of the IG distribution is given by µ3

λ
. By

changing variables, we get the variance of the IG process at time t as δ t
γ3 . We can then

have κ = δ

γ3 . Consider a Brownian motion with dri�

St = θ t +σWt

If we substitute the time variable with an inverse Gaussian r.v

gt ∼ Γ(t,κt)
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we get the Normal Inverse Gaussian process,

St = θgt +σWgt (18)

We choose

gt ∼ IG
(

µ = t,λ =
t2

κ

)
with δ = γ and κ = 1

γ2

3.2.2 NIG density

A random variable x is said to be NIG distributed if it has the pdf given as:

fNIG(x) =

(
α2−β 2) λ

2

√
2παλ− 1

2 δ 2Kλ

(
δ
√

α2−β 2
) · ((x−µ)2 +δ

2) λ

2−
1
4

×K
λ− 1

2

(
α

√
(x−µ)2 +δ 2

)
e(x−µ)β

(19)

with parameters

β =
θ

σ2

α =

√
β 2 +

1
κσ2

δ =
T σ√

κ

µ = cT

(20)

A four-dimensional parameter vector determines the geometry of the NIG-density. Given
the flexibility of this parameterization, it is possible to model a wide range of geometries
and tail decay rate.

3.2.3 Properties of the NIG distribution

Moment Generating Function

Using (Barndor�-Nielsen, 1997) we derive the moment generating function of the NIG
distribution and extend the result to determine its characteristic function.
The Moment Generating Function (MGF) of a random variable is defined as:

Mx(t) = E[e(tx)] (21)
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where t is a real number and E[ ] denotes the expectation (mean) operator.
From equation 21, the MGF of the NIG distribution can be derived as follows:

Mx(t) = E[e(tx)]

=

∞∫
−∞

e(tx) fNIG(x)dx

=

∞∫
−∞

e(tx)
(
α2−β 2) λ

2

√
2παλ− 1

2 δ 2kλ

(
δ
√

α2−β 2
) . ((x−µ)2 +δ

2) λ

2−
1
4 .

K
λ− 1

2

(
α

√
(x−µ)2 +δ 2

)
e(x−µ)β dx

=
exp
{

δ
√

α2−β 2−β µ

}
exp
{

δ
√

α2− (β + t)2− (β + t)µ
}

= exp{µt} exp
{

δ

(√
α2−β 2−

√
α2− (β + t)2

)}
, |β + t|< α

(22)

Characteristic function

The characteristic function of a NIG random variable x is given by

ϕ(v) = Mx(iv)

where i =
√
−1. Thus we have that:

ϕNIG(v) = MNIG(iv)

= exp{δ
√

α2−β 2}.exp{−δ

√
α2− (β + iv)2}.exp{iµv}

(23)

and the characteristic exponent will be:

φ(v) = δ

{√
α2−β 2−

√
α2− (β + iv)2

}
(24)

Cumulants

The cumulant generating function is given by:

Kx(v) = ln(ϕx(v))

= δ

[√
α2−β 2−

√
α2− (β + iv)2

]
+ iµv.
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The nth cumulant is thus given by:

K(n)
x = (−i)n dnϕ(v = 0)

dvn

K(1)
x = µ +

βδ√
α2−β 2

K(2)
x =

α2δ

(α2−β 2)
3
2

K(3)
x =

3βδα2

(α2−β 2)
5
2

K(4)
x =

3δα2(α2 +4β 2)

(α2−β 2)
7
2

(25)

Central moments

E[X ] = K(1)
x = µ +

βδ√
α2−β 2

Var[X ] = K(2)
x =

α2δ

(α2−β 2)
3
2

Skew[X ] = K(3)
x =

3βδα2

(α2−β 2)
5
2

Kurt[X ] = K(4)
x =

3δα2(α2 +4β 2)

(α2−β 2)
7
2

Convolution Property

If X and Y are two independent random variables with x∼ NIG(α,β ,δx,µx) and Y ∼
NIG(α,β ,δy,µy), then we have;

MX+Y (t) = MX(t).MY (t)

= exp{µxt} exp
{

δx

(√
α2−β 2−

√
α2− (β + t)2

)}
. exp

{
µyt
}

exp
{

δy

(√
α2−β 2−

√
α2− (β + t)2

)}
= exp

{
(µx +µy)t

}
exp
{
(δx +δy)

(√
α2−β 2−

√
α2− (β + t)2

)}
, |β + t|< α

∼ NIG(α,β ,µx +µy,δx +δy)
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Semi-heavy tails

The Bessel function exhibits the following behavior asymptotically;

K1(x)∼
1√
2

e−x
√

π

x
as |x|> ∞.

It then follows that

fNIG(x)∼
1
√

x3 e−α|x|eβx as x >±∞ and α−|β |> 1

3.2.4 Estimating NIG parameters

The four parameters of the NIG distribution are;
Location Parameter (µ): This parameter represents the location or central value of the
distribution. It corresponds to the mean of the distribution.
Scale Parameter (α):This parameter controls the scale or spread of the distribution. It is
similar to the standard deviation in a normal distribution but can also be negative, which
allows for asymmetry.
Shape Parameter (β ):This parameter controls the shape of the distribution, particu-
larly its tail behavior. It can take positive or negative values. Positive values indicate a
right-skewed distribution with heavier tails, while negative values indicate a le�-skewed
distribution with lighter tails.
Dispersion Parameter (δ ): This parameter controls the dispersion of the distribution.
It is related to the precision of the distribution and influences the kurtosis. It can take
positive values.
These parameters are estimated using the maximum likelihood method.
If we have x1,x2, · · · ,xn I.I.D random variables.Then,

logL(Ω) =
n

∑
j=1

log( f (x j;Ω)

Ω represents the set of model parameters.
The log-likelihood function of x∼ NIG(α,β ,δ ,µ) is:

logL(Ω) = n logα +n logδ +n
[

δ

√
α2−β 2−β µ

]
+β

n

∑
j=1

x j−
1
2

n

∑
j=1

log
[
δ

2 +(x j−µ)2]
+

n

∑
j=1

logk1

[
α

√
δ 2 +(x j−µ)2

]
(26)
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The parameter estimation can be easily achieved using the SciPy package in python,
particularly the scipy.optimize module. See Appendix A.1.2
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4 The COS Method

4.1 Fourier-Cosine Expansion

In risk neutral pricing, the valuation of a derivative involves determining its cost by con-
sidering the anticipated value of its future payments when discounted under the risk-
neutral measure. Specifically, for a derivative with a payo� function represented by h(ST ),
the calculation is done as follows:

V (t) = e−rτEQ [h(yT |Ft)]

= e−rτ

∫
R

h(y) p(y,T |Ft)dy
(27)

In this case:
EQ[ ] represents the expectation under the risk-neutral measure, r is the risk-free interest
rate, τ the time of expiration for the derivative T − t , h(yT ) the payo� of the derivative
at time T , Ft the information available at time t and p(y,T |Ft) is the risk-neutral pdf of
the asset price S(T) at time T, given the information available at time t.

In equation 27, evaluating the integral is straightforward when you have a known pdf
in closed form. However, this isn’t always the case in exponential Levy models. In such
situations, you can instead work with the characteristic function, which is the continu-
ous Fourier transform of the density function. To recover the density, you then need to
apply the inverse continuous Fourier transform. The advantage here is that the charac-
teristic function is o�en readily available in closed form, making it easier to work with.
Once you have the continuous Fourier integral, you can discretize it and e�iciently com-
pute it using the Fast Fourier Transform (FFT) algorithm. In (Carr & Madan, 1999) and
(Reiner, 2000), Fourier transforms and damping techniques are used to handle the non-
integrability nature of call options with respect to the logarithm of the strike price. While
numerical integration methods combined with the FFT algorithm provide e�icient ways
to compute Fourier integrals, they come with trade-o�s in terms of error convergence,
grid size requirements, and limitations on grid coarseness (Fang, 2010).In this thesis, we
explore an alternative approach for solving equation 28 proposed by (Fang, 2010). Using
the findings by (Boyd, 2001) that Fourier-cosine series expansions usually give an optimal
approximation of functions with a finite support, (Fang, 2010) restructured equation 28
as a function of cosines.
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The Fourier relationship between the characteristic function ϕx(v) and the pdf fx(y) is as
follows:

ϕx(v) =
∫
R

eiyv fx(y)dy

fx(y) =
1

2π

∫
R

e−iyv
ϕx(v)dv

(28)

For the Fourier Transform to exist, the following conditions must be met:

1. Integrability:
∫

∞

−∞

| f (t)|dt < ∞

2. Finite Energy:
∫

∞

−∞

| f (t)|2 dt < ∞

3. Piecewise Continuity: The function should have bounded variation.

(29)

The Fourier expansion of a function g(θ) on the interval [−1,1] is a representation of
g(θ) as an infinite sum of trigonometric functions, specifically sines and cosines. Math-
ematically, it can be expressed as:

g(θ) =
∞

∑
n=0

an cos(nπθ)+
∞

∑
n=1

bn sin(nπθ) (30)

an =

1∫
−1

g(θ)cos(nπθ)dθ

and

bn =

1∫
−1

g(θ)sin(nπθ)dθ

Given a function g : [0,π]→ R defined on the interval [0,π], we can extend it to interval
[−π,π] while preserving its symmetry around θ = 0 as follows:

g(θ) =

{
g(θ), if θ ≥ 0

g(−∞), if θ < 0

Here, g(θ) takes the value of g(θ) for θ in the original interval [0,π] and mirrors it for θ

in the interval [−π,0] to ensure that the function is even around θ = 0. Se�ing bn = 0 in
30, we have:

g(θ) =
∞

∑
′

n=0
ān cos(nθ)
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with

ān =
1
π

π∫
−π

ḡ(θ)cos(nθ)dθ =
2
π

π∫
0

ḡ(θ)cos(nθ)dθ

where the ∑
′ symbol means that the first term is multiplied by half.

By performing a change of variables, on the function g(θ) in any finite interval, say
[α,β ] ∈ R we obtain the Fourier cosine expansion. Let

y =
β −α

π
θ +α

θ =
y−α

β −α
π

it then reads

g(y) =
∞

∑
n=0

ān.cos
(

nπ
y−α

β −α

)
(31)

with

ān =
2

β −α

β∫
α

g(y).cos
(

nπ
y−α

β −α

)
dy (32)

De�nition 4.1.1. A truncated probability density function (pdf) is a probability distribution
characterized by a �nite support, where the density function is approximated by a �nite
number of terms in a cosine expansion (Fang & Oosterlee, 2009)

To satisfy the conditions in equation 29, the integrands in equation 28 must approach zero
as the integration limits extend to±∞. This property allows us to truncate the integration
range without sacrificing significant accuracy. Let’s assume that we select the interval
[α,β ] ∈ R in such a way that the truncated integral as described in 4.1.1 provides a very
close approximation to the infinite counterpart.

ϕ̂x(v) =

β∫
α

eivy fx(y)dy≈
∫
R

eivy fx(y)dy = ϕx(v) (33)

By Euler Formula,
eiv = cos(v)+ isin(v)

Which simplifies to,
R(eiv) = cos(v)
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with R{∗} the real part.
For a random variable x and α ∈ R

ϕx(v)eiα = E
[
eivx+iα]= ∞∫

−∞

ei(vy+α) fX(y)dy

By taking the real parts,

R
{

ϕx(v)eiα}= R


∞∫
−∞

ei(vy+α) fx(y)dy

 (34)

=

∞∫
−∞

cos(vy+α) fx(y)dy (35)

substitute
v =

nπ

β −α

and multiply 33 by

exp
(
−i

nαπ

β −α

)
that is,

ϕ̂x

(
nπ

β −α

)
exp
(
−i

nαπ

β −α

)
=

β∫
α

exp
(

iy
nπ

β −α
− i

nαπ

β −α

)
fx(y)dy (36)

Taking the real parts we have ,

R
{

ϕ̂x

(
nπ

β −α

)
exp
(
−i

nαπ

β −α

)}
=

β∫
α

fx(y)cos
(

nπ
y−α

β −α

)
dy (37)

It follows that ān ≈ f̄n from equation 32 with,

f̄n =
2

β −α
R
{

ϕx

(
nπ

β −α

)
exp
(
−i

nαπ

β −α

)}
(38)

Replace ān by f̄n in equation 31.

fx(y)≈
∞

∑
′

n=0
f̄n cos

(
nπ

y−α

β −α

)
(39)

and truncate the series summation so that

f̂x(y)≈
N−1

∑
′

n=0
f̄n cos

(
nπ

y−α

β −α

)
(40)
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Therefore the COS method can be summarized as

fx(y) =
∞

∑
′

n=0
fn cos

(
nπ

y−α

β −α

)
(41)

with x ∈ [β ,α]⊂ R and the coe�icient fn is defined as

fn =
2

β −α

β∫
α

f (x)cos(nπ
x−α

β −α
)dx (42)

fn has direct relation to the characteristic function ϕ(v) =
∫
R

f (x)eivx dx

since

 ∫
R;[α,β ]

f (x)dx≈ 0



an ≈ fn =
2

β −α

∫
R

f (x)cos(nπ
x−α

β −α
)dx =

2
β −α

R
[

ϕ

(
nπ

β −α

)
exp
(
−i

nαπ

β −α

)]
(43)

4.2 Density Recovery with the COS method

The COS method is a valuable tool employed to approximate the pdf of random vari-
ables. This approach harnesses the power of characteristic functions, establishing a ro-
bust framework that finds extensive utility in the field of finance such as in calibration,
the computation of forward starting options and static hedging. In Figures 4 and 5, we
visually explore the random variables of normal and NIG distributions approximated us-
ing the COS method at di�erent values of N. These figures vividly illustrate the prowess
of the COS method in e�ectively modeling and comparing these distinct distributions.
From the plo�ed figures we can see that the densities are very well approximated for
large values of N.

4.3 Risk Neutral pricing

4.3.1 COS method Option under the risk Neutral measure

In equation 27, we defined the value of a derivative under the risk neutral measure as:

V (t) = e−rτEQ [h(yT |Ft)]

= e−rτ

∫
R

h(y) p(y,T |Ft)dy
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Since the density p(y,T |Ft) rapidly decays to zero as y→ ±∞ in 27, we truncate the
infinite integration range to [α,β ] ∈ R, without losing significant accuracy. That is:

V̂ (t) = e−rτ

β∫
α

h(y) p(y,T |Ft)dy (44)

The density p(y,T |Ft) is usually not known but its characteristic function can be found.
We therefore replace the density by its cosine expansion as shown in equation 41.

V̂ (t) = e−rτ

β∫
α

h(y)
∞

∑
′

n=o
an cos(nπ

y−α

β −α
)dy

= e−r∆τ
∞

∑
n=o

an

β∫
α

h(y)cos(nπ
y−α

β −α
)dy

(45)

We can define

In =
2

β −α

β∫
α

h(y)cos(nπ
y−α

β −α
)dy (46)

We shall then have

V̂ (t) =
β −α

2
e−rτ

∞

∑
′

n=0
an In (47)

Since the coe�icients in this case decay rapidly, the sum can be further truncated to
obtain:

V̂ (t) =
β −α

2
e−rτ

N−1

∑
′

n=0
an In (48)

Now, an ≈ fn implying that:

fn =
2

β −α
R
{

ϕ

(
nπ

β −α

)
e−inπ

(
α

β−α

)}

V (t) = e−rτ

N−1

∑
′

n=0
R
{

ϕ

(
nπ

β −α
;x
)

e−inπ
α

β−α

}
In (49)

Equation 49 is the summarized COS formula for pricing options. fn has the information
on the underlying Asset and can be applied to several models where the characteris-
tic function is known in closed form. The key factor for achieving convergence is the
convergence of the density function’s cosine series, as the cosine series of the payo� is
introduced due to the interchange of summation and integration.In has the information
on the payo� function and this is pre�y simple for plain vanilla options which we focus
on in this study.



24

4.3.2 European Call Option

The payo� of a European call option is given by

h(y(T )) = max(ST −K,0)

where ST is the spot price of the underlying asset at the expiration (maturity) time T and
K the Strike Price
If we have x = ln(S0

K ) and y = ln(ST
K ), then the the payo� function can be expressed as

h(y) = K(ey−1)+

With the assumption that the characteristic function of the log asset price is known, the
payo� function In for a European call option in equation 49 is given by:

In =
2

β −α

β∫
α

K(ey−1)+ cos
(

nπ
y−α

β −α

)
dy

=
2

β −α

β∫
α

K ey cos
(

nπ
y−α

β −α

)
dy−

β∫
α

K cos
(

nπ
y−α

β −α

)
dy

(50)

for some intervals (υ ,ν) ∈ (α,β ) the integrals can be solved explicitly.
Lets begin with the first integral

ν∫
υ

ey cos
(

nπ
y−α

β −α

)
dy.

To solve this integral, we use integration by parts. The formula for integration by parts
is given by: ∫

udv = uv−
∫

vdu

Lets choose

u = ey and dv = cos
(

nπ
y−α

β −α

)
dy

From this we get

du = eydy and v =
β −α

nπ
sin
(

nπ
y−α

β −α

)
then

ν∫
υ

ey cos
(

nπ
y−α

β −α

)
dy = ey.

β −α

nπ
sin
(

nπ
y−α

β −α

)
−
∫

β −α

nπ
sin
(

nπ
y−α

β −α

)
.eydy
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We’ll apply integration by parts again to solve the remaining integral, choosing:

u = ey and dv =
β −α

nπ
.sin

(
nπ

y−α

β −α

)
dy

We find du and v as:

du = eydy and v =−β −α

nπ
.
β −α

nπ
cos
(

nπ
y−α

β −α

)

∫
β −α

nπ
‘ sin

(
nπ

y−α

β −α

)
.eydy = ey.−

(
β −α

nπ

)2

cos
(

nπ
y−α

β −α

)
+
∫ (

β −α

nπ

)2

cos
(

nπ
y−α

β −α

)
eydy

Now, we substitute this result back into the original integration by parts formula:

ν∫
υ

ey cos
(

nπ
y−α

β −α

)
dy = ey.

β −α

nπ
sin
(

nπ
y−α

β −α

)

+ ey.

(
β −α

nπ

)2

cos
(

nπ
y−α

β −α

)
−
∫ (

β −α

nπ

)2

cos
(

nπ
y−α

β −α

)
eydy

Notice that the term on the right side is the same as the original integral, so we can collect
like terms and solve for the original integral:(

1+
(

β −α

nπ

)2
) ν∫

υ

ey cos
(

nπ
y−α

β −α

)
dy = ey.

β −α

nπ
sin
(

nπ
y−α

β −α

)

+ ey.

(
β −α

nπ

)2

cos
(

nπ
y−α

β −α

)
This equates to:

ν∫
υ

ey cos
(

nπ
y−α

β −α

)
dy =

1

1+
(

nπ

β−α

)2 cos
(

nπ
y−α

β −α

)
ey +

nπ

β −α
sin
(

nπ
y−α

β −α

)
ey

=
1

1+
(

nπ

β−α

)2

[
cos
(

nπ
ν−α

β −α

)
enu− cos

(
nπ

υ−α

β −α

)
eυ

]

+
nπ

β −α

[
sin
(

nπ
ν−α

β −α

)
eν − sin

(
nπ

υ−α

β −α

)
eυ

]
= ξn(υ ,ν)

(51)
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and

ν∫
υ

cos
(

nπ
y−α

β −α

)
dy =

β −α

nπ
sin
(

nπ
y−α

β −α

)

=


β−α

nπ

[
sin
(

nπ
ν−α

β−α

)
− sin

(
nπ

υ−α

β−α

)]
for n 6= 0

(ν−υ) for n = 0

= ζn(υ ,ν)

(52)

Equation 50 is summarized as:

In =
2

β −α
K (ξn(0,β )−ζn(0,β )) (53)

Combining equation 49 and equation 53 the price of a European call option is given as:

C(t) = e−rτ

N−1

∑
′

n=0
Re
{

ϕ

(
nπ

β −α
;x
)

e−inπ
α

β−α

}
K (ξn(0,β )−ζn(0,β )) (54)

4.3.3 European Put option

The payo� of a European call option is given by

h(y(T )) = max(K−ST ,0)

where ST is the spot price of the underlying asset at the expiration (maturity) time T and
K the Strike Price
If we have x = ln(S0

K ) and y = ln(ST
K ), then the payo� function can be expressed as

h(y) =−K(ey−1)+

. In for a European Put option is then given by:

In =
2

β −α

β∫
α

K(1− ey)+ cos
(

nπ
y−α

β −α

)
dy

=
2

β −α

β∫
α

K cos
(

nπ
y−α

β −α

)
dy−

β∫
α

K ey cos
(

nπ
y−α

β −α

)
dy

(55)
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The integrals shall be solved similarly as that for a call option in equation 51 and equation
52. and

In =
2

β −α
K (ζn(α,0)−ξn(α,0)) (56)

The price of a European Put option will then be:

P(t) = e−rτ

N−1

∑
′

n=0
Re
{

ϕ

(
nπ

β −α
;x
)

e−inπ
α

β−α

}
K (ζn(α,0)−ξn(α,0)) (57)

4.4 The COS method Option Prices with Levy process

Equation 49 can be applied generally to several underlying processes including the expo-
nential levy processes.

De�nition 4.4.1. A process X(t) in a probability space (Ω,F,P) with X(0) = 0 is called a
levy process if:

i) It has stationery increments

ii) It has independent Increments

iii) lims→t P(|X(t)−X(s)|> ε) = 0 for s≤ t and ε > 0.

The Lévy-Khintchine theorem by (Sato, 2001) is a powerful result that provides a charac-
terization of Lévy processes in terms of their underlying properties.

Theorem 4.4.2 (Lévy-Khintchine theorem). For a levy process X(t) with characteristic
function ϕ(v) = E[e(ivX(t))], ϕ(v) has the following form:

ϕ(v) = exp
{

ivµ− 1
2

σ
2v2 +

∫
[e(ivx)−1− ivx1[|x|<1]ν (dx)

}
(58)

where: µ is the drift or location parameter, σ2 is the variance of the process and ν(dx) is a
Lévy measure, which is a measure that describes the jump characteristics of the Lévy process.

For proof see (Ng, 2008).
In derivatives pricing, especially when dealing with options and other financial deriva-
tives for exponential levy models, the asset price St can be expressed generally as:

St = S0 exp(X(t)) (59)

Xt is the stochastic process of the underlying asset return.
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Theorem 4.4.3 (Martingale Theorem). Under the risk neutral pricing, we assume that if
S(t) is the price of an asset at time t , and r is the risk-free interest rate, then the process
M(t) = e(−rt)S(t) is a Q martingale.

Proof. We use the de�nition of martingale given in De�nition 4.4.4. The expected
value of M(t) under the risk neutral measure Q is given by:

EQ[M(t)] = EQ[e(−rt)S(t)]

∀ s≤ t ,

EQ[M(t)|F(s)] = EQ[e(−rt)S(t)|F(s)]

The key property of conditional expectation is that EQ[X |F(s)] is the best predictor of X
based on the information available at time s. Therefore, we can write:

EQ[M(t)|F(s)] = e(−rs)EQ[S(t)|F(s)]

Since,M(t) = e(−rt)S(t), then
EQ[S(t)|F(s)] = S(s)

We shall then have:

EQ[M(t)|F(s)] = e(−rs)S(s)

Similarly,

M(s) = e(−rs)S(s)

De�nition 4.4.4. Amartingale is a stochastic process where, on average, the expected future
value is equal to the current value that is, A stochastic process M(t), t ≥ 0 is a Q martingale
if ∀ t ≥ 0:

• EQ[M(t)]< ∞

• ∀ s≤ t, EQ[M(t)|F(s)] = M(s) where F(s) is the information available at time s.

To ensure that the condition of a martingale is met under the risk neutral measure, then
the characteristic function ϕ(v) evaluated at −i must be given by:

ϕ(−i) = E(eX(t)) = ert
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This condition is satisfied if we choose:

v = r− 1
2

σ
2−

∫
[ex−1− x1[|x|<1]ν (dx) (60)

Asset returns are o�en modeled using the log transformation. Let Φ(v) be the character-
istic function of the log of the underlying Asset process St .

Φ(v) = E
[
eiv lnSt

]
= E

[
eiv(lnS0+rt+wt+Xt)

]
= eiv(lnS0+rt+wt).E

[
eivXt

]
= eiv(lnS0+rt+wt).ϕ(v)

If we evaluate ϕ(v) at −i, we shall have

E[St ] = e(lnS0+rt+wt).ϕ(−i) (61)

The expected value of St under the risk neutral measure is

E[St ] = e(lnS0+rt). (62)

Comparing equation 61 and 62, it can be seen that:

ewt .ϕ(−i) = 1

and w =−1
t

ln(ϕ(−i))

This summarizes the characteristic function of the log of the asset price as:

Φ(v) = E
[
eiv lnSt

]
= eiv(lnS0+rt+wt).ϕ(v)

= eiv(lnS0+rt).
ϕ(v)

ϕ(−i)

(63)

We review the performance of two processes which fall under the class of exponential
levy models, that is, the GBM and the NIG process. The characteristic functions of these
processes can be presented in the form:

ϕ(v;x) = Φ(v)exp(ivx) (64)

with
Φ(v) = ϕ(v;0)

Inserting this representation to equation 49, we shall have

V (t) = e−rτ

N−1

∑
′

n=0
R
{

Φ

(
nπ

β −α

)
e−inπ

x−α

β−α

}
In (65)
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4.4.1 GBM Process

The instantaneous price movements under the GBM process are given in equation 1. Let
Φ(v) be the characteristic function of the log of the underlying Asset process St and

y = ln
(

St

K

)
. The log of a GBM follows a normal distribution, and its characteristic function can be
derived as follows:

ΦGBM(v) = E [exp(ivy)]

= E
[

exp
{

iv
(

lnS0 +(r− σ2

2
)t +σWT

)}]
= exp

{
iv
(

lnS0 +

(
r− σ2

2

)
T
)}

.exp
(
−v2σ2

2
T
)

= exp(iv lnS0).exp
{

ivT
(

r− σ2

2

)
− v2σ2

2
T
}

(66)

Since the characteristic function of the GBM process takes the form presented in equation
64, then equation 65 can be combined with equations 54 and 57 to obtain the call and put
call option prices respectively under this process as follows:

C(t) = e−rτ

N−1

∑
′

n=0
R
{

ΦGBM

(
nπ

β −α

)
e−inπ

x−α

β−α

}
K (ξn(0,β )−ζn(0,β )) (67)

P(t) = e−rτ

N−1

∑
′

n=0
R
{

ΦGBM

(
nπ

β −α

)
e−inπ

x−α

β−α

}
K (ζn(α,0)−ξn(α,0)) (68)

4.4.2 NIG Process

The characteristic function of a NIG pdf is given in equation 23 and its nth cumulants
in equation 25. Choosing the correct martingale measure as presented in equation 60
is key for the utilization of this process. Several useful measures have been suggested
including(Gerber & Shiu, 1996) and (Ellio�, Chan, & Siu, 2005). In (Hirsa, 2012), an un-
derlying process St can be presented as:

St = S0 exp(rt +wt + xt)
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Assuming that the characteristic function of the process is known that is ϕ(v) = E(eivxt ),
then w is chosen such that the expected value of the asset price process is a martingale
as defined in theorem 4.4.3.

Let

y = ln
(

St

K

)
where St is the price of an underlying asset at time t , and K is the strike price, the NIG
model has a closed form characteristic function given by

Φ(v) = exp [ivy+ iv(r+w)τ−φ(v)] (69)

φ(v) is the characteristic exponent given in equation 24 and ω is risk neutral compensator
that ensures that the discounted stock price follows a martingale.

w = δ

(√
α2− (β +1)2−

√
α2−β 2

)
(70)

To solve for w , we set ϕ(v =−1) = exp(xt + rτ)

The call and put option prices under this process from equation 54 and equation 57 can
be combined with equation 65 to obtain;

C(t) = e−rτ

N−1

∑
′

n=0
R
{

ΦNIG

(
nπ

β −α

)
e−inπ

x−α

β−α

}
K (ξn(0,β )−ζn(0,β )) (71)

P(t) = e−rτ

N−1

∑
′

n=0
R
{

ΦNIG

(
nπ

β −α

)
e−inπ

x−α

β−α

}
K (ζn(α,0)−ξn(α,0)) (72)

4.5 Truncation range

(Fang & Oosterlee, 2009) Proposed a formula for determining the intervals of integration
[α,β ] in the COS method. That is:

α = (x+K1)−L
√

K2 +
√

K4 and β = (x+K1)+L
√

K2 +
√

K4 (73)

x is ln
(

ST
K

)
Kn is the nth cumulant of the of x
L is deliberately selected from the range [6,12], with the choice contingent upon the ac-
ceptable variation or error specific to each case. For exponential Levy processes, (Oosterlee



32

& Grzelak, 2019) recommends a value of L = 8, determined through meticulous numeri-
cal experiments assessing performance when N is chosen large enough upto N = 214.
Formula 73 is however not very convenient when pricing of options with multiple strikes
due to the complexity introduced in the dependence of x on K. (Oosterlee & Grzelak,
2019) determined an alternative approach that does not depend on x but works equally
likely.

α =−L
√

τ and β = L
√

τ (74)

We want to price options for multiple range of strikes at once in our research and therefore
we use formula 74 to get the intervals of integration [α,β ].
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5 Data Analysis

5.1 Data source and summary

The data set utilized for this analysis comprises daily closing prices of the two stocks Ama-
zon.com and Apple Inc classified as among the most active stocks on Nov 2, 2023. The
daily closing stock prices were obtained for the period 02/11/2018 to 02/11/2023. These
data were sourced from Yahoo Finance, a reputable financial data platform, providing re-
liable and up-to-date information on stock market performance. To ensure data integrity
and suitability for analysis, certain preprocessing steps were applied. This included han-
dling missing values and calculating daily log-returns, which are commonly used in fi-
nancial analyses for their ability to transform non-stationary price data into a more sta-
ble format. The corresponding option data(call and put option prices) were obtained from
SPX Options section on MarketWatch. Data cleaning was carried out; outliers and option
pairs with zero bid and ask prices were excluded from the study. It was assumed that the
“true” market prices of calls and puts were obtained by averaging their respective bid and
ask prices. The options expiring in 30 days were classified as short dated options whereas
those expiring in 90 days were classified as long dated options according to (Singh, 2013).

5.2 Descriptive statistics

The basic summary statistics for the Amazon Inc and AAPL daily closing stock prices are
shown in Table 1 and plots of the data in 1. Both stocks have positive means and have
asymmetric distributions as shown by the skewness. The AAPL stocks are le�-skewed
while the Amazon Inc stocks are right-skewed.

No. Mean standard Deviation Skewness Kurtosis

AAPL 1257 118.4456106 46.81040687 -0.3490124 -1.2734562

AMZN 1257 125.5498735 32.08939419 0.1349467 -1.4597373
Table 1. Summary statistics for AAPL and Amazon Inc daily stock prices
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(a) AAPL stock prices

(b) Amazon stock prices

Figure 1. Plot of the stock prices for the period from Nov 2018 to Nov 2023

Similarly, the basic summary statistics for the log-returns are presented in Table 2. The
means of the log returns is positive while the skewness is negative for both stocks. This
implies that the daily log returns for both AAPL and AMAZON stocks are is asymmetric
and skewed to the le�. The log returns for both stocks also have positive kurtosis which
is greater than 3 indicating heavy tails and more peaked distributions (leptokurtic). This
means that the data have more extreme values than a normal distribution.
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No. Mean Standard Dev. Skewness Kurtosis

AAPL 1256 0.0009635 0.002376514 -0.2353210 4.8637848

AMZN 1256 0.001090046 0.02289795 -0.0628474 3.9082357
Table 2. Summary statistics for AAPL and Amazon Inc daily log returns

5.3 Goodness of fit test

A Shapiro-Wilk test performed on the log-returns gives a p-value which is significantly
less than the common significance level of 0.05 for both data. This confirms our assump-
tion that the data significantly deviates from the normal distribution. see Table 3.

K statistic P-value(KS) P-value (Shapiro-Wilk test)

AAPL 0.0133922 0.9757089 5.42E-21

AMZN 0.0124373 0.9888023 2.98E-18
Table 3. Goodness of fit test for the log returns

The Kolmogorov-Smirnov (KS) test for the fit of the data to the Normal Inverse Gaussian
distribution was performed. The p-value for both stocks is high (closer to 1) and it shows
that the log-returns data is not significantly di�erent from the NIG distribution.
The stock data is further described by plo�ing qq plots on the normal distribution and
the empirical density versus the normal and NIG distributions. The plots show that the
empirical densities for both stocks are di�erent from the normal distribution and seem
to follow the NIG distribution. The results in figure 3 are confirmed by the Shapiro wilk
test and the KS tests shown in Table 3.
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(a) AAPL empirical versus fi�ed densities

(b) Amazon empirical versus fi�ed densities

Figure 2. Empirical versus NIG and Normal densities for the log returns
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(a) AAPL Q-Q plot

(b) Amazon Q-Q plot

Figure 3. Q-Q plots against the normal distribution

Assuming that the log returns are I.I.D, we approximate the parameters using the MLE
estimator as described in equation 26. The parameterizations used in the Scipy.optimize
package in python are as described in equation 20. The parameters are presented in Table
4.

µ δ α β

AAPL 0.0009635 0.018082 42.89208 -3.329876

Amazon 0.001090046 0.02005154 38.26604 -1.321365
Table 4. Estimated NIG parameters
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5.4 Density recovery

In section 4.2, we noted that the Cos method is very useful in density recovery. In this sec-
tion we show how the density recovered from the COS method di�ers from the random
densities using our data.

Figure 4. Normal density recovered from the COS method

Figure 5. NIG density recovered from the COS method

The plo�ed figures 4 and 5, shows the prowess of the COS method in e�iciently approx-
imating densities at di�erent values of N. It can be noted that the plots are much closer
to their distributions at larger values of N. It is then important to note that the value of
N should be chosen such that it is large enough to approximate the densities nicely.
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5.5 Option prices

Black-Scholes model parameters were obtained as follows: the current stock price (as
at 2nd November, 2023) was $138.07 for the Amazon data and $177.97 for AAPL; r was
assumed to be 5.38% p.a.(This is the current value of a 3 month U.S treasury bill), σ was
obtained from the historical stock data; the strike prices,K, and the time to maturity were
obtained from the market option data.

5.5.1 GBM model

Call and put option prices were calculated from equation 67 and 68 for the GBM model
with the COS method. They were compared with the BSM - 73 model prices in equations
10 and 15 and the prevailing market prices. A plot of the graphs are shown in figures 6, 7
8 and 9.
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(a) call prices for options with 30 days expiry

(b) call prices for options with 90 days expiry

Figure 6. AAPL call Price Model Comparison: COS-GBM, BSM, MKT
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(a) call prices for options with 30 days expiry

(b) call prices for options with 90 days expiry

Figure 7. Amazon Inc call Price Model Comparison: COS-GBM, BSM, MKT
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(a) Put prices for options with 30 days expiry

(b) Put prices for options with 90 days expiry

Figure 8. AAPL Put Price Model Comparison: COS-GBM, BSM, MKT
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(a) Put prices for options with 30 days expiry

(b) Put prices for options with 90 days expiry

Figure 9. Amazon Inc Put Price Model Comparison: COS-GBM, BSM, MKT

5.5.2 NIG model

Similarly, Call and put option prices for the NIG model with the COS method were calcu-
lated from equation 71 and 72 and compared with the BSM - 73 model prices in equations
10 and 15 and the prevailing market prices. Results are presented in figure
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(a) call prices for options with 30 days expiry

(b) call prices for options with 90 days expiry

Figure 10. AAPL call Price Model Comparison: COS-NIG, BSM, MKT
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(a) call prices for options with 30 days expiry

(b) call prices for options with 90 days expiry

Figure 11. Amazon Inc call Price Model Comparison: COS-NIG, BSM, MKT
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(a) Put prices for options with 30 days expiry

(b) Put prices for options with 90 days expiry

Figure 12. AAPL Put Price Model Comparison: COS-NIG, BSM, MKT
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(a) Put prices for options with 30 days expiry

(b) Put prices for options with 90 days expiry

Figure 13. Amazon Inc Put Price Model Comparison: COS-NIG, BSM, MKT

5.6 Results and Discussion

To further analyze the performance of our model, the results were compared with the pre-
vailing market prices(AAPL) using the RMSE(Root Mean Square Error) and ARPE(Absolute
Relative Percentage Error) metrics. The formulas in (H. Zhang et al., 2016) were used as
follows:

RMSE =

√√√√ n

∑
j=1

(Cmkt
j −Cmdl

j )2

n
(75)
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ARPE =
1
n

n

∑
j=1

|Cmkt
j −Cmdl

j |
Cmkt

j
∗100 (76)

The RMSE and ARPE values for the call and put prices are presented in the table 5 and 7.

Table 5. RMSE and ARPE values for AAPL call option prices

30 day expiry 90 day expiry

RMSE ARPE RMSE ARPE

BSM 0.9759665 44.8621748 1.7054365 51.2452230

COS GBM 0.9759658 44.8621775 1.7054158 51.2451604

COS NIG 0.8876795 44.1444565 1.5746820 50.71490517

Table 6. RMSE and ARPE values for Amazon call option prices

30 day expiry 90 day expiry

RMSE ARPE RMSE ARPE

BSM 1.0073523 44.3416605 1.6677955 60.9309833

COS GBM 1.0066088 44.3354124 1.6656613 60.9207284

COS NIG 0.9140173 43.2807972 1.6204024 60.7258384

Table 7. RMSE and ARPE values for AAPL put option prices

30 day expiry 90 day expiry

RMSE ARPE RMSE ARPE

BSM 1.3076478 60.7950897 2.9047063 57.7306935

COS GBM 1.3076666 60.7951603 2.9047770 57.7308533

COS NIG 1.1344210 59.8618154 2.8338572 57.2922026
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Table 8. RMSE and ARPE values for Amazon put option prices

30 day expiry 90 day expiry

RMSE ARPE RMSE ARPE

BSM 1.0907780 63.1197414 2.6161520 47.3433311

COS GBM 1.0919698 63.1277813 2.6218729 47.356694

COS NIG 0.9680107 61.9969443 2.5488699 47.0365657

The superior performance of the NIG COS method can be seen from the analysis of the
pricing errors.It has the best overall performance for both the put and call options. For
both the long term and short term maturity date options, the NIG model still performs
be�er than the rest of the models. The BSM model and the COS GBM model have very
close RMSE values indicating a similar performance. This is based on the fact that their
underlying asset price process follow a GBM process.
The options data was then classified based on the moneyness of the underlying asset
in relation to the options’ strike prices.The moneyness is calculated as the ratio of the
current asset price S0 to the option’s strike price K, that is

M = S0/K

The following three categories were obtained, In the Money (ITM),At the Money (ATM)
and Out of the Money (OTM);

• If M < 1 then a put option is ITM and a call option is OTM.

• If M = 1 an option is ATM

• If M > 1 then a put option is ATM and a call option is ITM

In tables 9 and 10 we see that for options with short maturity dates, using the COS
method with the NIG model gives be�er perfomance compared to the BSM model for
ITM options in both calls and put options. However, the BSM model is the best choice
when pricing OTM call options. For long dated options, the NIG model is the best choice
for OTM call options.
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Table 9. RMSE for ITM, ATM and OTM call options

BSM COS GBM COS NIG

30 day expiry ITM 0.3818145 0.3818363 0.3221362

ATM 2.7060797 2.7060640 2.4751220

OTM 0.1107249 0.1107249 0.1097956

90 day expiry ITM 0.7178890 0.7178932 0.7177176

ATM 4.9219719 4.9219020 4.4944945

OTM 0.4600584 0.4600584 0.4586550

Table 10. RMSE for ITM, ATM and OTM Put options

BSM COS GBM COS NIG

30 day expiry ITM 1.1105865 1.1106277 0.9157909

ATM 3.1160274 3.1160496 2.7110326

OTM 0.4655605 0.4655605 0.4632732

90 day expiry ITM 3.3129074 3.3130306 3.3321299

ATM 5.6711569 5.6712096 5.2761748

OTM 0.8590891 0.8590891 0.8579360
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6 Conclusion and Recommendations

6.1 Conclusion

In conclusion, this thesis has explored the e�ectiveness of the COS-NIG option pricing
model for European options, leveraging the unique characteristics of the NIG distribution
and Fourier cosine expansions to derive analytic solutions to the risk-neutral integral
equation. The goodness-of-fit tests revealed that the log returns of stock prices exhibit
a superior fit to the NIG distribution in comparison to the Gaussian distribution. This
foundational insight underscores the relevance of the NIG distribution in capturing the
underlying dynamics of financial stock markets.

Furthermore,a model comparison of the COS-NIG model with the BSM model shows that
the COS-NIG model generally performs be�er than the BSM model. This finding empha-
sizes the importance of considering alternative models, such as the COS-NIG, which not
only align with empirical data but also provide more accurate pricing predictions for Eu-
ropean options. It is however worth noting that for In the Money (ITM) put options, the
BSM model performs be�er than the COS-NIG model.

In essence, the integration of the COS-NIG model into option pricing frameworks o�ers
a more robust and reliable tool for financial practitioners and researchers. The analyti-
cal solutions derived from this model, coupled with its demonstrated superiority over the
BSM model in empirical tests, contribute significantly to the advancement of option pric-
ing theory. As financial markets continue to evolve, the insights from this research pro-
vide a valuable foundation for refining and enhancing option pricing models, ultimately
aiding in be�er risk management and decision-making processes in financial markets.

6.2 Future Research

This research has mainly focused on the European Option pricing. Its performance can
be extended in pricing exotic options such as Asian, barrier, and compound options. As-
sessing its adaptability to non-standard features can broaden its applicability in diverse
financial scenarios.

Comparing the speed and accuracy of the COS-NIG model with other computational
methods, such as the fast Fourier transform, and other existing techniques, should be a
good venture.
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Appendix A: Python Codes

A.1 Data description

A.1.1 Descriptive statistics

Listing A.1. Stock Prices
import m a t p l o t l i b . p y p l o t as p l t
import m a t p l o t l i b . d a t e s as mdates
import numpy as np
from s c i p y . s t a t s import norm , norminvgauss , k s t e s t , nc t
from s c i p y . s t a t s import s h a p i r o
import pandas as pd
from s c i p y . s t a t s import skew , k u r t o s i s
from s t a t s m o d e l s . g r a p h i c s . g o f p l o t s import q q p l o t

data = pd . r e a d _ c s v ( "C : \ \ Users \ \ u s e r \ \ Documents \ \AMZN. c s v " )
x = data [ ’ Date ’ ]
x = pd . t o _ d a t e t i m e ( x , format= ’%d−%b−%y ’ )
y = data [ ’ P r i c e ’ ]
p l t . p l o t ( x , y , l i n e s t y l e = ’ − ’ , c o l o r = ’ b ’ , l a b e l = ’ S t o c k P r i c e s ’ )
p l t . gca ( ) . x a x i s . s e t _ m a j o r _ l o c a t o r ( mdates . Y e a r L o c a t o r ( ) )
p l t . gca ( ) . x a x i s . s e t _ m a j o r _ f o r m a t t e r ( mdates . DateFormat te r ( ’%Y ’ ) )
p l t . x l a b e l ( ’ Date ’ )
p l t . y l a b e l ( ’ S t o c k P r i c e ’ )
p l t . t i t l e ( ’ Amazon ␣ I n c ␣ S tock ␣ P r i c e s ’ )
p l t . show ( )

s t o c k _ d a t a = np . a r r a y ( y )
# C a l c u l a t e mean and v a r i a n c e u s i n g NumPy
num_data_points = len ( s t o c k _ d a t a )
mean = np . mean ( s t o c k _ d a t a )
v a r i a n c e = np . va r ( s t o c k _ d a t a )

# C a l c u l a t e s k e w n e s s and k u r t o s i s u s i n g S c i P y
skewness = skew ( s t o c k _ d a t a )
k u r t = k u r t o s i s ( s t o c k _ d a t a )

print ( f " Number ␣ o f ␣ data ␣ p o i n t s : ␣ { num_data_points } " )
print ( f " Mean : ␣ { mean } " )
print ( f " V a r i a n c e : ␣ { v a r i a n c e } " )
print ( f " Skewness : ␣ { skewness } " )
print ( f " K u r t o s i s : ␣ { k u r t } " )

# C a l c u l a t e log − r e t u r n s
l o g _ r e t u r n s = np . l o g ( s t o c k _ d a t a [ 1 : ] / s t o c k _ d a t a [ : − 1 ] )
# C a l c u l a t e mean and v a r i a n c e u s i n g NumPy
num_data = len ( l o g _ r e t u r n s )
mean_returns = np . mean ( l o g _ r e t u r n s )
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v a r i a n c e _ r e t u r n s = np . v a r ( l o g _ r e t u r n s )

# C a l c u l a t e s k e w n e s s and k u r t o s i s u s i n g S c i P y
s k e w n e s s _ r e t u r n s = skew ( l o g _ r e t u r n s )
k u r t _ r e t u r n s = k u r t o s i s ( l o g _ r e t u r n s )

print ( f " Number ␣ o f ␣ data ␣ p o i n t s : ␣ { num_data } " )
print ( f " Mean_L : ␣ { mean_returns } " )
print ( f " Var i ance_L : ␣ { v a r i a n c e _ r e t u r n s } " )
print ( f " Skewness_L : ␣ { s k e w n e s s _ r e t u r n s } " )
print ( f " K u r t o s i s _ L : ␣ { k u r t _ r e t u r n s } " )

# Pe r fo rm t h e Shap i ro −Wilk t e s t
s t a t i s t i c , p_ v a lu e = s h a p i r o ( l o g _ r e t u r n s )

print ( " Shapi ro −Wilk ␣ T e s t : " )
print ( " S t a t i s t i c : " , s t a t i s t i c )
print ( " p− v a l u e : " , p _ va l u e )

i f p _ va l u e > 0 . 0 5 :
print ( " The ␣ data ␣ appear s ␣ to ␣ be ␣ no rma l ly ␣ d i s t r i b u t e d . " )

e l s e :
print ( " The ␣ data ␣ does ␣ not ␣ appear ␣ to ␣ be ␣ no rma l ly ␣ d i s t r i b u t e d . " )

#KS t e s t
# E s t i m a t e NIG d i s t r i b u t i o n p a r a m e t e r s from log − r e t u r n s
params = norminvgauss . f i t ( l o g _ r e t u r n s )
a lpha , beta , mu , d e l t a = params
print ( params )
# params = [ 3 8 . 2 6 6 0 4 , ]
# G e n e r a t e random s a m p l e s from t h e e s t i m a t e d NIG d i s t r i b u t i o n
n = len ( l o g _ r e t u r n s )
n ig _ sa m p l e s = norminvgauss . r v s ( ∗ params , s i z e =n )
# Pe r fo rm t h e KS t e s t
k s _ s t a t i s t i c , p _ va l u e = k s t e s t ( l o g _ r e t u r n s , ’ norminvgauss ’ , params )

print ( " KS ␣ S t a t i s t i c : " , k s _ s t a t i s t i c )
print ( " P−Value : " , p _ va l u e )
# H i s t og ra m
h i s t , b i n _ e d g e s = np . h i s togram ( l o g _ r e t u r n s , d e n s i t y = True )

mu , s t d = norm . f i t ( l o g _ r e t u r n s )
params = nc t . f i t ( l o g _ r e t u r n s )
x = np . l i n s p a c e ( min ( l o g _ r e t u r n s ) , max ( l o g _ r e t u r n s ) , 1 0 0 0 )
pdf_normal = norm . pdf ( x , mu , s t d )
p d f _ n i g = nc t . pdf ( x , ∗ params )
#Q−Q p l o t s
q q p l o t ( l o g _ r e t u r n s , l i n e = " s " )
p l t . t i t l e ( ’ Amazon ␣ Q−Q␣ P l o t ␣ a g a i n s t ␣ Normal ␣ D i s t r i b u t i o n ’ )
p l t . show ( )

p l t . f i g u r e ( f i g s i z e = ( 1 0 , 6 ) )
p l t . h i s t ( l o g _ r e t u r n s , b i n s =25 , d e n s i t y =True , a lpha = 0 . 5 , l a b e l = ’ E m p i r i c a l ␣ Dens i ty ’ )
p l t . p l o t ( x , pdf_normal , ’ r − ’ , lw =2 , l a b e l = ’ F i t t e d ␣ Normal ’ )
p l t . p l o t ( x , pdf_n ig , ’ g− ’ , lw =2 , l a b e l = ’ F i t t e d ␣ NIG ’ )
p l t . l egend ( )
p l t . t i t l e ( ’ Amazon ␣ I n c ␣ E m p i r i c a l ␣ Dens i ty ␣ vs . ␣ F i t t e d ␣ D i s t r i b u t i o n s ␣ ( NIG ␣ and ␣ Normal ) ’ )
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p l t . x l a b e l ( ’ Value ’ )
p l t . y l a b e l ( ’ Dens i ty ’ )
p l t . show ( )

A.1.2 NIG Parameters

Listing A.2. Estimated NIG Parameters
import numpy as np
from s c i p y . o p t i m i z e import minimize
from s c i p y . s t a t s import norminvgauss

# G e n e r a t e some example d a t a
data = np . random . normal ( 0 , 1 , 1 0 0 0 )

# D e f i n e t h e log − l i k e l i h o o d f u n c t i o n f o r t h e NIG d i s t r i b u t i o n
def n e g _ l o g _ l i k e l i h o o d ( params , data ) :

a lpha , beta , mu , d e l t a = params
return −np . sum ( norminvgauss . l o g p d f ( data , a lpha , beta , mu , d e l t a ) )

# I n i t i a l p a r a m e t e r g u e s s e s
i n i t i a l _ g u e s s = [ 1 , 1 , 0 , 1 ]

# Pe r fo rm Maximum L i k e l i h o o d E s t i m a t i o n
r e s u l t = minimize ( n e g _ l o g _ l i k e l i h o o d , i n i t i a l _ g u e s s , a r g s = ( data , ) ,
method= ’ Nelder −Mead ’ )
es t imated_params = r e s u l t . x

a lpha , beta , mu , d e l t a = es t imated_params

print ( " E s t i ma te d ␣ Parameter s : " )
print ( " Alpha : " , a lpha )
print ( " Beta : " , be ta )
print ( "Mu: " , mu)
print ( " D e l t a : " , d e l t a )

A.1.3 Density Recovery

Normal Density recovery

Listing A.3. Normal Density
# %%
" " "
Normal d e n s i t y r e c o v e r y u s i n g t h e COS method
" " "
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
import s c i p y . s t a t s as s t

def COSDensity ( c f , x , N , a , b ) :
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i = complex ( 0 . 0 , 1 . 0 ) # a s s i g n i n g i = s q r t ( − 1 )
k = np . l i n s p a c e ( 0 , N − 1 , N)
u = np . z e r o s ( [ 1 , N] )
u = k ∗ np . p i / ( b − a )

# F_k c o e f f i c i e n t s
F_k = 2 . 0 / ( b − a ) ∗ np . r e a l ( c f ( u ) ∗ np . exp ( − i ∗ u ∗ a ) ) ;
F_k [ 0 ] = F_k [ 0 ] ∗ 0 . 5 ; # a d j u s t m e n t f o r t h e f i r s t t e rm

# F i n a l c a l c u l a t i o n
f_X = np . matmul ( F_k , np . cos ( np . o u t e r ( u , x − a ) ) )

# we o u t p u t o n l y t h e f i r s t row
return f_X

def m a i n C a l c u l a t i o n ( ) :
i = complex ( 0 . 0 , 1 . 0 ) # a s s i g n i n g i = s q r t ( − 1 )

# s e t t i n g f o r t h e COS method
a = −10 . 0
b = 1 0 . 0

# d e f i n e t h e r a n g e f o r t h e e x p a n s i o n p o i n t s
N = [2 ∗ ∗ x for x in range ( 2 , 7 , 1 ) ]

# s e t t i n g f o r normal d i s t r i b u t i o n
mu = 0 . 0
sigma = 1 . 0

# D e f i n e c h a r a c t e r i s t i c f u n c t i o n f o r t h e normal d i s t r i b u t i o n
cF = lambda u : np . exp ( i ∗ mu ∗ u − 0 . 5 ∗ np . power ( sigma , 2 . 0 ) ∗ np . power ( u , 2 . 0 ) ) ;

# d e f i n e domain f o r d e n s i t y
x = np . l i n s p a c e ( − 1 0 . 0 , 1 0 , 1 0 0 0 )
f _ X E x a c t = s t . norm . pdf ( x , mu , sigma )

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 8 , 6 ) )
for n in N :

f_X = COSDensity ( cF , x , n , a , b )
e r r o r = np . max ( np . abs ( f_X − f _ X E x a c t ) )
print ( " For ␣ { 0 } ␣ expanans ion ␣ terms ␣ the ␣ e r r o r ␣ i s ␣ { 1 } " . format ( n , e r r o r ) )

# Add t h e c u r r e n t c u r v e t o t h e same s u b p l o t
ax . p l o t ( x , f_X , l a b e l = f ’ n = { n } ’ )

# S e t l a b e l s , t i t l e , and l e g e n d
ax . s e t _ x l a b e l ( ’ x ’ )
ax . s e t _ y l a b e l ( ’ y ’ )
ax . s e t _ t i t l e ( ’ Recovered ␣ Normal ␣ Dens i ty ␣ a t ␣ d i f f e r e n t ␣ v a l u e s ␣ o f ␣N ’ )
ax . l egend ( )

# Show t h e combined p l o t w i t h a l l c u r v e s
p l t . show ( )
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m a i n C a l c u l a t i o n ( )

NIG Density Recovery

Listing A.4. NIG Density
# %%
" " "
NIG d e n s i t y r e c o v e r y u s i n g t h e COS method
" " "
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
from s c i p y . s t a t s import norminvgauss

def COSDensity ( cF , x , N , a , b ) :
i = complex ( 0 . 0 , 1 . 0 ) # a s s i g n i n g i = s q r t ( − 1 )
k = np . l i n s p a c e ( 0 , N − 1 , N)
u = np . z e r o s ( [ 1 , N] )
u = k ∗ np . p i / ( b − a )

# F_k c o e f f i c i e n t s
F_k = 2 . 0 / ( b − a ) ∗ np . r e a l ( cF ( u ) ∗ np . exp ( − i ∗ u ∗ a ) ) ;
F_k [ 0 ] = F_k [ 0 ] ∗ 0 . 5 ; # a d j u s t m e n t f o r t h e f i r s t t e rm

# F i n a l c a l c u l a t i o n
f_X = np . matmul ( F_k , np . cos ( np . o u t e r ( u , x − a ) ) )

# we o u t p u t o n l y t h e f i r s t row
return f_X

def m a i n C a l c u l a t i o n ( ) :
i = complex ( 0 . 0 , 1 . 0 ) # a s s i g n i n g i = s q r t ( − 1 )

# s e t t i n g f o r t h e COS method
a = −10 . 0
b = 1 0 . 0

# d e f i n e t h e r a n g e f o r t h e e x p a n s i o n p o i n t s
N = [ 1 6 , 3 2 , 6 4 , 1 2 8 ]

# s e t t i n g f o r NIG d i s t r i b u t i o n
a lpha = 1 6 . 2 9
be ta = 0 . 7 6
mu = −0 .19
d e l t a = 3 . 9 9

# D e f i n e c h a r a c t e r i s t i c f u n c t i o n f o r t h e NIG d i s t r i b u t i o n
cF = lambda u : np . exp ( i ∗ mu ∗ u − d e l t a ∗ np . s q r t ( a lpha ∗ ∗ 2
− ( be ta + i ∗ u ) ∗ ∗ 2 ) + d e l t a ∗ np . s q r t ( a lpha ∗ ∗ 2 − be ta ∗ ∗ 2 ) ) ;

# d e f i n e domain f o r d e n s i t y
x = np . l i n s p a c e ( −1 0 , 1 0 , 1 0 0 0 )
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f _ X E x a c t = norminvgauss . pdf ( x , a lpha , beta , mu , d e l t a )

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 8 , 6 ) )
for n in N :

f_X = COSDensity ( cF , x , n , a , b )
e r r o r = np . max ( np . abs ( f_X − f _ X E x a c t ) )
print ( " For ␣ { 0 } ␣ e xp ans io n ␣ terms ␣ the ␣ e r r o r ␣ i s ␣ { 1 } " . format ( n , e r r o r ) )

# Add t h e c u r r e n t c u r v e t o t h e same s u b p l o t
ax . p l o t ( x , f_X , l a b e l = f ’ n = { n } ’ )

# S e t l a b e l s , t i t l e , and l e g e n d
ax . s e t _ x l a b e l ( ’ x ’ )
ax . s e t _ y l a b e l ( ’ y ’ )
ax . s e t _ t i t l e ( ’ Recovered ␣ NIG ␣ Dens i ty ␣ a t ␣ d i f f e r e n t ␣ v a l u e s ␣ o f ␣N ’ )
ax . l egend ( )

# Show t h e combined p l o t w i t h a l l c u r v e s
p l t . show ( )

m a i n C a l c u l a t i o n ( )

A.2 Option pricing

A.2.1 GBM model

Listing A.5. Option pricing with GBM model
# %%
" " "
COS GBM model
" " "
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
import s c i p y . s t a t s as s t
import t ime
import pandas as pd

def cosnigmethod ( chf , CP , S0 , d e l t a , aa lpha , sigma , beeta , r , tau , K , N, L ) :
# c h f − c h a r a c t e r i s t i c f u n c t i o n
# CP − C f o r c a l l and P f o r pu t
# S0 − I n i t i a l s t o c k p r i c e
# r − i n t e r e s t r a t e
# t a u − t i m e t o m a t u r i t y
# K − S t r i k e s
# N − Number o f e x p a n s i o n t e r m s
# L − s i z e o f t r u n c a t i o n domain

# r e s h a p e K t o a column v e c t o r
K = np . a r r a y ( K ) . r e shape ( [ len ( K ) , 1 ] )

# a s s i g n i n g i = s q r t ( − 1 )
i = complex ( 0 . 0 , 1 . 0 )
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x0 = np . l o g ( S0 / K )

# t r u n c a t i o n domain
aa lpha = 0 − L ∗ np . s q r t ( tau )
b e e t a = 0 + L ∗ np . s q r t ( tau )

# su ma t i on from n = 0 t o n=N−1
n = np . l i n s p a c e ( 0 , N−1 , N ) . r e shape ( [ N, 1 ] )
v = n ∗ np . p i / ( b e e t a − aa lpha )

# D e t e r m i n e c o e f f i c i e n t s f o r Put P r i c e s
I _n = c a l l p u t c o e f f i c i e n t s ( CP , aalpha , beeta , n )

mat = np . exp ( i ∗ np . o u t e r ( ( x0 − aa lpha ) , v ) )

temp = c h f ( v ) ∗ I_n
temp [ 0 ] = 0 . 5 ∗ temp [ 0 ]

v a l u e = np . exp ( − r ∗ tau ) ∗ K ∗ np . r e a l ( mat . dot ( temp ) )

return v a l u e

" " "
D e t e r m i n e c o e f f i c i e n t s f o r Put P r i c e s
" " "
def c a l l p u t c o e f f i c i e n t s ( CP , aalpha , beeta , n ) :

i f s t r ( CP ) . l ower ( ) == " c " or s t r ( CP ) . l ower ( ) == " 1 " :
u p s i l o n = 0
nu = b e e t a
c o e f = x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n )
x i _ n = c o e f [ " x i " ]
z e t a _ n = c o e f [ " z e t a " ]
i f aa lpha < b e e t a < 0 . 0 :

I _n = np . z e r o s ( [ len ( n ) , 1 ] )
e l s e :

I _n = 2 . 0 / ( b e e t a − aa lpha ) ∗ ( x i _ n − z e t a _ n )

e l i f s t r ( CP ) . l ower ( ) == " p " or s t r ( CP ) . l ower ( ) == " −1 " :
u p s i l o n = aa lpha
nu = 0
c o e f = x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n )
x i _ n = c o e f [ " x i " ]
z e t a _ n = c o e f [ " z e t a " ]
I_n = 2 . 0 / ( b e e t a − aa lpha ) ∗ ( − x i _ n + z e t a _ n )

return I _n

def x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n ) :
z e t a = ( np . s i n ( n ∗ np . p i ∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) )

− np . s i n ( n ∗ np . p i ∗ ( u p s i l o n − aa lpha ) / ( b e e t a − aa lpha ) ) )
z e t a [ 1 : ] = z e t a [ 1 : ] ∗ ( b e e t a − aa lpha ) / ( n [ 1 : ] ∗ np . p i )
z e t a [ 0 ] = nu − u p s i l o n

x i = 1 . 0 / ( 1 . 0 + np . power ( ( n ∗ np . p i / ( b e e t a − aa lpha ) ) , 2 . 0 ) )
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expr1 = ( np . cos ( n ∗ np . p i ∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) )
∗ np . exp ( nu ) − np . cos ( n ∗ np . p i ∗ ( u p s i l o n − aa lpha )

/ ( b e e t a − aa lpha ) ) ∗ np . exp ( u p s i l o n ) )
exp r2 = ( n ∗ np . p i / ( b e e t a − aa lpha )
∗ np . s i n ( n ∗ np . p i ∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) )

− n ∗ np . p i / ( b e e t a − aa lpha )
∗ np . s i n ( n ∗ np . p i ∗ ( u p s i l o n − aa lpha ) / ( b e e t a − aa lpha ) )
∗ np . exp ( u p s i l o n ) )

x i = x i ∗ ( expr1 + expr2 )

v a l u e = { " x i " : x i , " z e t a " : z e t a }

return v a l u e

def bsmmethod ( CP , S_0 , K , sigma , tau , r ) :
# Black − S c h o l e s C a l l o p t i o n p r i c e
cp = s t r ( CP ) . l ower ( )
K = np . a r r a y ( K ) . r e shape ( [ len ( K ) , 1 ] )
d1 = ( np . l o g ( S_0 / K )
+ ( r + 0 . 5 ∗ np . power ( sigma , 2 . 0 ) ) ∗ tau ) / f l o a t ( s igma ∗ np . s q r t ( tau ) )
d2 = d1 − sigma ∗ np . s q r t ( tau )
i f cp == " c " or cp == " 1 " :

v a l u e = s t . norm . c d f ( d1 ) ∗ S_0 − s t . norm . c d f ( d2 ) ∗ K ∗ np . exp ( − r ∗ tau )
e l i f cp == " p " or cp == " −1 " :

v a l u e = s t . norm . c d f ( − d2 ) ∗ K ∗ np . exp ( − r ∗ tau ) − s t . norm . c d f ( − d1 ) ∗ S_0
return v a l u e

def m a i n c a l c u l a t i o n ( ) :
i = complex ( 0 . 0 , 1 . 0 )

CP = " p "
S0 = 1 7 7 . 7 9
r = 0 . 0 5 3
tau = 9 0 / 3 6 5
sigma = 0 . 0 0 2 3 7 6 5 1 4
K = l i s t ( range ( 5 0 , 2 9 1 , 5 ) )
N = 2 ∗ ∗ 1 4
L = 8

c h f = lambda v : np . exp ( ( r − 0 . 5 ∗ np . power ( sigma , 2 . 0 ) ) ∗ i ∗ v ∗ tau − 0 . 5
∗ np . power ( sigma , 2 . 0 ) ∗ np . power ( v , 2 . 0 ) ∗ tau )

# T iming r e s u l t s
N o O f I t e r a t i o n s = 100
t i m e _ s t a r t = t ime . t ime ( )
for k in range ( 0 , N o O f I t e r a t i o n s , 1 ) :

val_COS = cosnigmethod ( chf , CP , S0 , d e l t a , a lpha , sigma , beta , r , tau , K , N, L )
t i m e _ s t o p = t ime . t ime ( )
print ( " I t ␣ took ␣ { 0 } ␣ seconds ␣ to ␣ p r i c e . "
. format ( ( t ime_s top − t i m e _ s t a r t ) / f l o a t ( N o O f I t e r a t i o n s ) ) )
# e v a l u a t e a n a l y t i c a l B l a c k S c h o l e s e q u a t i o n
val_BSM = bsmmethod ( CP , S0 , K , sigma , tau , r )
# i m p o r t marke t o p t i o n p r i c e s f o r c o m p a r i s o n
m a r k e t _ o p t i o n _ p r i c e s =
pd . r e a d _ e x c e l ( "C : \ \ Users \ \ u s e r \ \ Desktop \ \ Msc ␣ T h e s i s \ \ My␣ T h e s i s \ \ P u t _ P r i c e s _ 9 0 . x l s x " )
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mkt_pr i ce = m a r k e t _ o p t i o n _ p r i c e s [ ’ Market ␣ P r i c e ’ ]

p l t . p l o t ( K , val_COS , ’ −− ’ , l a b e l = ’COS ’ )
p l t . p l o t ( K , val_BSM , l a b e l = ’BSM ’ )
p l t . p l o t ( K , mkt_pr ice , l a b e l = ’ Market ␣ P r i c e ’ )

p l t . x l a b e l ( " s t r i k e , ␣ K" )
p l t . y l a b e l ( " Option ␣ P r i c e " )
p l t . l egend ( [ "COS ␣ P r i c e " , " BS ␣ model " , " Market ␣ P r i c e " ] )
p l t . g r i d ( )
p l t . show ( )

# Data
data = { ’ S t r i k e ␣ P r i c e ’ : K ,

’COS ␣ Value ’ : [ val_COS [ i ] [ 0 ] for i in range ( len ( K ) ) ] ,
’ E x a c t ␣ Value ’ : [ val_BSM [ i ] [ 0 ] for i in range ( len ( K ) ) ] }

r e s u l t _ d f = pd . DataFrame ( data )

# Save t h e r e s u l t s t o an E x c e l f i l e
r e s u l t _ d f . t o _ e x c e l ( ’ Put_Price_GBMAAPL_90 . x l s x ’ , i n d e x = F a l s e )

m a i n c a l c u l a t i o n ( )

A.2.2 NIG model

Listing A.6. Option pricing with NIG model
# %%
" " "
COS NIG model
" " "
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
import s c i p y . s t a t s as s t
import t ime
import pandas as pd

def cosnigmethod ( chf , CP , S0 , d e l t a , aa lpha , sigma , beeta , r , tau , K , N, L ) :
# c h f − c h a r a c t e r i s t i c f u n c t i o n
# CP − C f o r c a l l and P f o r pu t
# S0 − I n i t i a l s t o c k p r i c e
# r − i n t e r e s t r a t e
# t a u − t i m e t o m a t u r i t y
# K − S t r i k e s
# N − Number o f e x p a n s i o n t e r m s
# L − s i z e o f t r u n c a t i o n domain

# r e s h a p e K t o a column v e c t o r
K = np . a r r a y ( K ) . r e shape ( [ len ( K ) , 1 ] )

# a s s i g n i n g i = s q r t ( − 1 )
i = complex ( 0 . 0 , 1 . 0 )

x0 = np . l o g ( S0 / K )
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# t r u n c a t i o n domain
aa lpha = 0 − L ∗ np . s q r t ( tau )
b e e t a = 0 + L ∗ np . s q r t ( tau )

# su ma t i on from n = 0 t o n=N−1
n = np . l i n s p a c e ( 0 , N−1 , N ) . r e shape ( [ N, 1 ] )
v = n ∗ np . p i / ( b e e t a − aa lpha )

# D e t e r m i n e c o e f f i c i e n t s f o r Put P r i c e s
I _n = c a l l p u t c o e f f i c i e n t s ( CP , aalpha , beeta , n )

mat = np . exp ( i ∗ np . o u t e r ( ( x0 − aa lpha ) , v ) )

temp = c h f ( v ) ∗ I_n
temp [ 0 ] = 0 . 5 ∗ temp [ 0 ]

v a l u e = np . exp ( − r ∗ tau ) ∗ K ∗ np . r e a l ( mat . dot ( temp ) )

return v a l u e

" " "
D e t e r m i n e c o e f f i c i e n t s f o r Put P r i c e s
" " "
def c a l l p u t c o e f f i c i e n t s ( CP , aalpha , beeta , n ) :

i f s t r ( CP ) . l ower ( ) == " c " or s t r ( CP ) . l ower ( ) == " 1 " :
u p s i l o n = 0
nu = b e e t a
c o e f = x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n )
x i _ n = c o e f [ " x i " ]
z e t a _ n = c o e f [ " z e t a " ]
i f aa lpha < b e e t a < 0 . 0 :

I _n = np . z e r o s ( [ len ( n ) , 1 ] )
e l s e :

I _n = 2 . 0 / ( b e e t a − aa lpha ) ∗ ( x i _ n − z e t a _ n )

e l i f s t r ( CP ) . l ower ( ) == " p " or s t r ( CP ) . l ower ( ) == " −1 " :
u p s i l o n = aa lpha
nu = 0
c o e f = x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n )
x i _ n = c o e f [ " x i " ]
z e t a _ n = c o e f [ " z e t a " ]
I_n = 2 . 0 / ( b e e t a − aa lpha ) ∗ ( − x i _ n + z e t a _ n )

return I _n

def x i _ z e t a ( aalpha , beeta , u p s i l o n , nu , n ) :
z e t a = ( np . s i n ( n ∗ np . p i ∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) )

− np . s i n ( n ∗ np . p i ∗ ( u p s i l o n − aa lpha ) / ( b e e t a − aa lpha ) ) )
z e t a [ 1 : ] = z e t a [ 1 : ] ∗ ( b e e t a − aa lpha ) / ( n [ 1 : ] ∗ np . p i )
z e t a [ 0 ] = nu − u p s i l o n

x i = 1 . 0 / ( 1 . 0 + np . power ( ( n ∗ np . p i / ( b e e t a − aa lpha ) ) , 2 . 0 ) )
exp r1 = ( np . cos ( n ∗ np . p i ∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) ) ∗ np . exp ( nu )

− np . cos ( n ∗ np . p i ∗ ( u p s i l o n − aa lpha ) / ( b e e t a − aa lpha ) )
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∗ np . exp ( u p s i l o n ) )
exp r2 = ( n ∗ np . p i / ( b e e t a − aa lpha ) ∗ np . s i n ( n ∗ np . p i
∗ ( nu − aa lpha ) / ( b e e t a − aa lpha ) )
− n ∗ np . p i / ( b e e t a − aa lpha ) ∗ np . s i n ( n ∗ np . p i

∗ ( u p s i l o n − aa lpha ) / ( b e e t a − aa lpha ) )
∗ np . exp ( u p s i l o n ) )

x i = x i ∗ ( exp r1 + expr2 )

v a l u e = { " x i " : x i , " z e t a " : z e t a }

return v a l u e

def bsmmethod ( CP , S_0 , K , sigma , tau , r ) :
# Black − S c h o l e s C a l l o p t i o n p r i c e
cp = s t r ( CP ) . l ower ( )
K = np . a r r a y ( K ) . r e shape ( [ len ( K ) , 1 ] )
d1 = ( np . l o g ( S_0 / K ) + ( r + 0 . 5 ∗ np . power ( sigma , 2 . 0 ) ) ∗ tau )
/ f l o a t ( s igma ∗ np . s q r t ( tau ) )
d2 = d1 − sigma ∗ np . s q r t ( tau )
i f cp == " c " or cp == " 1 " :

v a l u e = s t . norm . c d f ( d1 ) ∗ S_0 − s t . norm . c d f ( d2 ) ∗ K ∗ np . exp ( − r ∗ tau )
e l i f cp == " p " or cp == " −1 " :

v a l u e = s t . norm . c d f ( − d2 ) ∗ K ∗ np . exp ( − r ∗ tau ) − s t . norm . c d f ( − d1 ) ∗ S_0
return v a l u e

def m a i n c a l c u l a t i o n ( ) :
i = complex ( 0 . 0 , 1 . 0 )

CP = " p "
a lpha = 4 2 . 8 9 2 0 8
be ta = −3 . 3 2 9 8 7 6
d e l t a = 0 . 0 1 8 0 8 2
S0 = 1 7 7 . 7 9
r = 0 . 0 5 3
tau = 9 0 / 3 6 5
sigma = 0 . 0 0 2 3 7 6 5 1 4
K = l i s t ( range ( 5 0 , 2 9 1 , 5 ) )
N = 2 ∗ ∗ 1 4
L = 8
w = d e l t a ∗ ( np . s q r t ( a lpha ∗ ∗ 2
− ( be ta + 1 ) ∗ ∗ 2 ) − np . s q r t ( a lpha ∗ ∗ 2 − be ta ∗ ∗ 2 ) )

c h f = lambda v : ( np . exp ( r ∗ i ∗ v ∗ tau + i ∗ v ∗ tau ∗ w)
∗ np . exp ( d e l t a ∗ ( np . s q r t ( a lpha ∗ ∗ 2 − be ta ∗ ∗ 2 )
− np . s q r t ( a lpha ∗ ∗ 2 − ( be ta + i ∗ v ) ∗ ∗ 2 ) ) ) )

# T iming r e s u l t s
N o O f I t e r a t i o n s = 100
t i m e _ s t a r t = t ime . t ime ( )
for k in range ( 0 , N o O f I t e r a t i o n s , 1 ) :

val_COS = cosnigmethod ( chf , CP , S0 , d e l t a ,
aa lpha , sigma , beeta , r , tau , K , N, L )

t i m e _ s t o p = t ime . t ime ( )
print ( " I t ␣ took ␣ { 0 } ␣ seconds ␣ to ␣ p r i c e . "
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. format ( ( t ime_s top − t i m e _ s t a r t ) / f l o a t ( N o O f I t e r a t i o n s ) ) )
# e v a l u a t e a n a l y t i c a l B l a c k S c h o l e s e q u a t i o n
val_BSM = bsmmethod ( CP , S0 , K , sigma , tau , r )
# i m p o r t marke t o p t i o n p r i c e s f o r c o m p a r i s o n
m a r k e t _ o p t i o n _ p r i c e s =

pd . r e a d _ e x c e l ( "C : \ \ Users \ \ u s e r \ \ Desktop
␣ ␣ ␣ ␣ ␣ \ \ Msc ␣ T h e s i s \ \ My␣ T h e s i s \ \ P u t _ P r i c e s _ 9 0 . x l s x " )

mkt_pr i ce = m a r k e t _ o p t i o n _ p r i c e s [ ’ Market ␣ P r i c e ’ ]

p l t . p l o t ( K , val_COS , ’ −− ’ , l a b e l = ’COS ’ )
p l t . p l o t ( K , val_BSM , l a b e l = ’BSM ’ )
p l t . p l o t ( K , mkt_pr ice , l a b e l = ’ Market ␣ P r i c e ’ )

p l t . x l a b e l ( " s t r i k e , ␣ K" )
p l t . y l a b e l ( " Option ␣ P r i c e " )
p l t . l egend ( [ "COS ␣ P r i c e " , " BS ␣ model " , " Market ␣ P r i c e " ] )
p l t . g r i d ( )
p l t . show ( )

# d a t a
data = { ’ S t r i k e ␣ P r i c e ’ : K ,

’COS ␣ Value ’ : [ val_COS [ i ] [ 0 ] for i in range ( len ( K ) ) ] ,
’ E x a c t ␣ Value ’ : [ val_BSM [ i ] [ 0 ] for i in range ( len ( K ) ) ] }

r e s u l t _ d f = pd . DataFrame ( data )

# Save t h e r e s u l t s t o an E x c e l f i l e
r e s u l t _ d f . t o _ e x c e l ( ’ Put_Price_NIGAAPL_90 . x l s x ’ , i n d e x = F a l s e )

m a i n c a l c u l a t i o n ( )
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