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ABSTRACT 

Kenya’s vulnerability to climate variability and change has been compounded by dependence on 

rain-fed agriculture with constrained capacity to adapt and a rapidly growing population. Changes 

in Agro-Ecological Zones (AEZ) is a notable response to climate change, and it alters and influences 

cropping patterns. This research implements a replicable and scalable workflow for mapping past, 

present and future agro-ecologies to demonstrate a forward future-based thinking for climate 

adaptation and investments. Google Earth Engine and R Statistics were used for satellite and station 

data analysis. Fuzzy logic was used in normalizing the layers and in computing the AEZ. Change 

was evaluated at two checkpoints (1990-2005, 2006-2020). 2020 was used as the baseline year to 

evaluate change in the “near future” 2040 through two Representative Concentration Pathways 4.5 

and 8.5. Interesting results emerge from the study, validating the hypothesis that the seasons and 

production potential is shifting. Lowland drylands (Kitui, Machakos, Makueni) experienced an 

increase in the Length of the Growing Period (LGP) ranging from 1 to 20 days in the short rains, but 

no change in the long rains. However, in future, the lowlands drylands experience an increasing 

LGP, surface runoff, creating potential for diversifying production systems with the capacity to grow 

more drought resistant crops and harvest water. Midland highland areas (Embu, Tharaka-Nithi, 

Meru) experienced a loss in LGP ranging from 1 to 10 days in most areas in both seasons and a 

reduction in agro-ecological potential. This change is already evident with the negative trend 

continuing. In these areas, resilience mechanisms will need to consider the expected future reduction 

in rain-fed agricultural potential and drought resilience focused diversification. The research 

proposes policy focusing on use of digital technologies, cloud computing and future projections. 

Keywords: Climate change, AEZ, Kenya, hotspots, geospatial, IPCC, agriculture, predictions. 



 

2 

 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................. 1 

TABLE OF CONTENTS ....................................................................... 2 

LIST OF FIGURES ............................................................................... 6 

LIST OF TABLES ................................................................................ 8 

LIST OF EQUATIONS ............................................................................. 9 

LIST OF ABBREVIATIONS ........................................................................ 10 

1 INTRODUCTION ....................................................................... 12 

1.1 THE INTENSIFYING EFFECT OF A CHANGING CLIMATE ON RAIN-FED SYSTEMS ......................... 12 

1.2 PROBLEM STATEMENT ................................................................... 14 

1.3 OBJECTIVES ........................................................................... 15 

1.3.1 Overall objective .................................................................... 15 

1.3.2 Specific objectives ................................................................... 15 

1.4 RESEARCH QUESTIONS. .................................................................. 15 

1.5 JUSTIFICATION OF THE STUDY ............................................................. 15 

1.6 SCOPE AND LIMITATIONS OF THE WORK...................................................... 17 

1.7 ORGANIZATION OF THE REPORT............................................................ 18 

2 LITERATURE REVIEW ................................................................. 20 

2.1 BACKGROUND ......................................................................... 20 

2.2 DRIVERS OF CLIMATE CHANGE IN KENYA .................................................... 20 

2.3 THE EFFECT OF A CHANGING AND VARYING CLIMATE ON AGRICULTURE ............................. 22 

2.4 EFFORTS IN ADDRESSING CLIMATE CHANGE IN KENYA .......................................... 24 

2.5 GENDERED AND INDIGENOUS ADAPTATION EFFORTS ............................................ 24 



 

3 

 

 

2.6 ASSESSING CLIMATE CHANGE PROJECTIONS FOR KENYA......................................... 25 

2.7 AEZ AND THEIR ROLE IN ADAPTING AGRICULTURE TO CLIMATE CHANGE ............................ 26 

2.8 THE CASE FOR A TECHNOLOGY-DRIVEN APPROACH FOR REPLICABLE, SCALABLE, AND SUSTAINABLE MAPPING

 27 

2.9 TECHNOLOGY AS A KEY ENABLER TO FOOD SECURITY POLICIES AND INVESTMENTS .................... 27 

2.10 RETHINKING ADAPTATION BASED ON FUTURE CLIMATE PROJECTIONS. .............................. 28 

2.11 DEFINING FUTURE EMISSION-BASED TRAJECTORIES ............................................ 29 

2.12 FUTURE PROOFING ADAPTATION THROUGH LEVERAGING EMERGING TECHNOLOGIES ................... 30 

2.13 SUMMARY ............................................................................ 31 

3 DATA AND METHODS .................................................................. 32 

3.1 CONCEPTUAL FRAMEWORK ............................................................... 32 

3.2 AREA OF STUDY ........................................................................ 33 

3.3 SELECTION OF METHODOLOGY ............................................................ 35 

3.4 DATA SELECTION ....................................................................... 37 

3.5 BASELINE ASSESSMENT DATA ............................................................. 37 

3.6 FUTURE PROJECTIONS ASSESSMENTS DATA ................................................... 38 

4 METHODOLOGY ...................................................................... 39 

4.1 MAPPING THE PAST AND PRESENT AGRO-ECOLOGICAL ZONES .................................... 40 

4.2 MAPPING FUTURE AGRO-ECOLOGIES ....................................................... 41 

4.2.1 Determining seasonality .............................................................. 42 

4.2.2 Identifying distinct zones .............................................................. 43 

4.3 DATA COLLECTION ..................................................................... 44 

4.3.1 Strategy for sampling and definition of sample size ......................................... 44 

4.3.2 Data collection tools ................................................................. 46 

4.4 DATA PROCESSING ..................................................................... 47 

4.4.1 Tools ............................................................................. 47 



 

4 

 

 

4.5 DEVELOPING HISTORICAL BASELINES ....................................................... 48 

4.5.1 Rainfall ........................................................................... 48 

4.5.2 Temperature ........................................................................ 49 

4.5.3 Uncertainty management in precipitation and temperature data ............................... 51 

4.5.4 Potential Evapotranspiration (PET) ..................................................... 53 

4.5.5 Length of the Growing Period (LGP) .................................................... 53 

4.5.6 Moisture Index ...................................................................... 54 

4.5.7 Slope and drainage constraints ......................................................... 54 

4.5.8 NDVI Dry Matter (DM) as a proxy for productivity ......................................... 54 

4.5.9 Soil suitability for agricultural production ................................................ 55 

4.5.10 Predicting the future ............................................................... 55 

5 RESULTS AND DISCUSSIONS ........................................................... 57 

5.1 INSIGHTS FROM TRACKING 30 YEARS OF CHANGE IN AEZ IN KENYA’S LOWER EASTERN REGION ......... 57 

5.1.1 Interpreting the maps ................................................................. 57 

5.1.2 Understanding the legends............................................................. 57 

5.1.3 The Climate inventory ................................................................ 57 

5.1.4 Land inventory ...................................................................... 62 

5.1.5 Deriving AEZ ....................................................................... 64 

5.2 OPPORTUNITIES FOR OPTIMIZING AGRICULTURE AND CLIMATE ADAPTATION IN THE LOWER EASTERN REGION 

IN KENYA.................................................................................... 67 

5.2.1 Changing Agro-Ecological potential in a changing climate ................................... 67 

5.2.2 Defining the scope for field data collection ................................................ 73 

5.2.3 Confirming changes in length of growing period ........................................... 74 

5.2.4 Opportunities for adapting and transitioning adaptation strategies ............................. 76 

5.3 DISCUSSION ........................................................................... 80 

6 CONCLUSIONS, RECOMMENDATIONS AND CONTRIBUTION TO KNOWLEDGE ............. 83 



 

5 

 

 

6.1 CONCLUSIONS ......................................................................... 83 

6.2 RECOMMENDATIONS .................................................................... 84 

6.2.1 Future proof agriculture investments and adaptation priorities ................................ 84 

6.2.2 Digitize and localize the farm management handbook ....................................... 86 

6.2.3 Localize advisories to be location specific, crop specific, and appropriate to regions and agro-climatic 

conditions. ................................................................................ 86 

6.2.4 Localize adaptation mechanisms to suit gendered, socio-economic and indigenous preferences ....... 88 

6.2.5 Utilize digital technologies to bridge the gap in government and private sector led farmer facing services.

 90 

6.3 CONTRIBUTION TO KNOWLEDGE ........................................................... 92 

7 REFERENCES ......................................................................... 94 

8 APPENDICES ......................................................................... 103 

8.1 APPENDIX 1A -DATA COLLECTION TOOLS ............................................ 103 

8.1.1 The data collection form on kobo toolbox ................................................ 103 

8.2 APPENDIX 2A - STATISTICAL ANALYSES CODES ....................................... 112 

8.2.1 Statistical analysis .................................................................. 112 

8.2.2 GEE Code (Baseline Mapping) ........................................................... 141 

8.2.3 GEE Code (Future Mapping) ......................................................... 153 

9 APPENDIX 3 – SIGNED TURNITIN REPORT .............................................. 156 

 

 

  



 

6 

 

 

List of figures 

Figure 3.1 The study area and the agro-ecological zones as previously mapped by FAO. ................. 34 

Figure 3.2 Seasonal and annual rainfall variation in the study area .................................................... 35 

Figure 4.1 Implementation workflow for mapping Agro-Ecological Zones ....................................... 41 

Figure 4.2  Methodology for mapping future Agro-Ecological Zones ................................................ 42 

Figure 4.3 Implementation of Fuzzy logic ........................................................................................... 44 

Figure 4.4 Sampling site selection based on climate homogeneity and variability. ............................ 45 

Figure 4.5  Google maps for navigation for Igamba-Ngombe ward in Tharaka Nithi county ............ 46 

Figure 4.6 Valid questionnaires by county .......................................................................................... 47 

Figure 4.7  Assessing Precipitation correlation between Station and Sensor (CHIRPS) blended data 

across MAM and OND ........................................................................................................................ 49 

Figure 4.8 Assessing Temperature correlation between Station and Sensor (ERA) blended data across 

MAM and OND ................................................................................................................................... 50 

Figure 4.9 Demonstrating Pearson’s correlation between ERA satellite and station temperature data 

and rainfall for Machakos County using box plots. ............................................................................. 51 

Figure 4.10 Station-Sensor graphs across weather stations in Machakos for Temperature and 

Precipitation ......................................................................................................................................... 52 

Figure 4.11 The Representative Concentration Pathways ................................................................... 56 

Figure 5.1 Trends in precipitation change for MAM and OND in 1990-2005 and 2006-2020 ........... 58 

Figure 5.2 Potential Evapotranspiration and change for MAM and OND in 1990-2005 and 2006-2020

.............................................................................................................................................................. 59 

Figure 5.3 LGP for MAM and OND in 1990-2005 and 2006-2010 .................................................... 60 

Figure 5.4 Moisture regimes for MAM and OND in 1990-2005 and 2006-2010 ............................... 60 

Figure 5.5 Thermal Regimes for MAM and OND in 1990-2005 and 2006-2010 ............................... 61 

Figure 5.6 Climate Regimes for MAM and OND in 1990-2005 and 2006-2010 ................................ 61 



 

7 

 

 

Figure 5.7 Aridity Index and change ................................................................................................... 62 

Figure 5.8 Fuzzified and reclassified slope and soil drainage maps .................................................... 63 

Figure 5.9 Dry matter productivity representing vegetation productivity. .......................................... 63 

Figure 5.10 Soil suitability and soil drainage for agriculture production ............................................ 64 

Figure 5.11 Agro-ecological zones for MAM and OND for 1990-2005 and 2005-2020 .................... 65 

Figure 5.12 Changes in Agro Ecological Zones and corresponding change in the LGP ..................... 66 

Figure 5.13 Precipitation range across MAM and OND for 2040 RCP’s 4.5 and 8.5 ........................ 67 

Figure 5.14 Thermal Regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5................................... 68 

Figure 5.15 Changes in temperature and Aridity Index during MAM, OND in 2040 RCPs 4.5 and 8.5

.............................................................................................................................................................. 68 

Figure 5.16. Potential Evapotranspiration and change across the seasons and Epochs. ...................... 69 

Figure 5.17 Changes in the LGP days during MAM, OND in 2040 RCPs 4.5 and 8.5 ...................... 70 

Figure 5.18 Changes in Moisture Index during MAM, OND in 2040 RCPs 4.5 and 8.5.................... 71 

Figure 5.19  Climate Regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5 .................................. 71 

Figure 5.20  Soil suitability for agricultural production and drainage ................................................. 72 

Figure 5.21 Agro-Ecological Zones and change maps from a 2020 baseline and RCP 4.5 2040 ....... 73 

Figure 5.22 Validating changing seasons length and production ........................................................ 74 

Figure 5.23 Relationship between land size and food security and demographics ............................. 75 

Figure 5.24 Farmers adaptation strategies for farming, soil, and water management ......................... 75 

Figure 5.25 Adaptation Barriers .......................................................................................................... 76 

Figure 5.26 Gender based adaptation................................................................................................... 77 

Figure 5.27Perceptions of Vulnerability .............................................................................................. 78 

Figure 5.28 Access to information and forecasts ................................................................................. 79 

 

  



 

8 

 

 

List of tables 

 

Table 3.1 The FAO definition of Kenya’s agro-ecological zones (Source: Jaetzold, et al. 1983) ...... 35 

Table 3.2 Baseline data sources and their properties (1990-2020) ...................................................... 37 

Table 3.3 Projected data sources and their properties (2020-2040) .................................................... 38 

Table 4.1  Outline of Methodology...................................................................................................... 39 

Table 5.1 Definition of the AEZ Zones ............................................................................................... 65 

 

  



 

9 

 

 

List of equations 

 

Equation 4.1 Calculating the representative sample. ........................................................................... 45 

Equation 4.2 Computing Potential Evapotranspiration using Thornthwaite equation. ....................... 53 

Equation 4.3 Computing the length of growing period. ...................................................................... 54 

Equation 4.4 Calculating Moisture Regimes ....................................................................................... 54 

Equation 4.5  Computing Dry Matter as a proxy for seasonal biomass. ............................................. 55 



 

10 

 

 

List of abbreviations 

Abbreviation Meaning 

ACZ  Agro Climatic Zones   

AEZ Agro- Ecological Zones 

AI  Aridity Index 

ASAL’s  Arid and Semi-Arid Areas   

CABI Centre for Agriculture and Bioscience International 

NCCAP National Climate Change Action Plan 

CHIRPS Climate Hazards Infra-Red Precipitation with Stations data 

CHIRTS Climate Hazards Infra-Red Temperature with Stations data 

CIMP5  Coupled Model Intercomparison Project 

CV  Coefficient of Variation   

DM  Dry Matter   

DMP  Dry Matter Productivity   

ECMWF ERA  European Centre for Medium Range Weather Forecasts Reanalysis   

EO  Earth Observation 

EOS  End of the Season   

FAO Food and Agriculture Organization 

GCM  Global Climate Models 

GDP  Gross Domestic Product 

GEE  Google Earth Engine 

GHG  Green House Gas 

GIS  Geographic Information Systems   

GIZ German Gesellschaft für Internationale Zusammenarbeit GmbH 

GoK Government of Kenya 

HadGEM-ESM  Hadley Centre Earth System Models 

ICIPE International Centre of Insect Physiology and Ecology 

ICPAC IGAD Climate Prediction and Application Centre 

IPCC  Inter-governmental Panel on Climate Change  

IPCC AR5  

Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change  

ISRIC  International Soil Reference and Information Centre 

KCSAP  Kenya Climate Smart Agriculture Programme 



 

11 

 

 

KENSOTER  Kenya Soil and Terrain database   

KMC Kenya Meat Commission 

KMD  Kenya Meteorological Department 

KSS Kenya Soil Survey 

LGP  Length of the Growing Period 

LR  Long Rains 

MAM  March April May 

MCDM  Multi Criteria Decision Making 

MI  Moisture Index   

MOALFC  Ministry of Agriculture Livestock Fisheries and Cooperatives   

MR  Moisture regimes 

NAP Kenya National Adaptation Plan 

NCCAP  National Climate Change Adaptation Plan 

NDVI  Normalized Difference Vegetation Index 

NPP  Net Primary Productivity 

OND  October November December 

PCA  Principal Component Analysis 

PET  Potential Evapotranspiration 

QGIS  Quantum GIS 

RCP Representative Concentration Pathways 

RS  Remote Sensing  

SDG Sustainable Development Goals 

SOS  Start of Season 

SPEI  Standardized Precipitation Evapotranspiration Index  

SR  Short Rains 

SRTM Shuttle Radar Topography Mission 

SSA Sub-Saharan Africa 

 



 

12 

 

 

1 INTRODUCTION 

1.1 The intensifying effect of a changing climate on rain-fed systems 

A changing and varying climate is one of the extremely notable causes influencing agricultural 

production and food security because it negatively impacts on crop suitability due to shifting weather 

patterns (Gleixner et al., 2020; Lin et al., 2013). Smallholder rainfall dependent farming systems, 

which are highly gendered, are likely to be highly impacted, as their capacities to cope with the shifting 

climate is already constrained by low incomes, small parcels of land and soil fertility challenges(Lane 

& Jarvis, 2007). A change in the viability or feasibility of production systems due to climate change 

affects agricultural productivity. (Mulinge et al., 2015). For instance, a rise in temperature shortens the 

growing season, requiring agricultural systems to be adjusted to maintain productivity (Lane et al., 

2007; Lin et al., 2013). 

Climate projections show that the suitable area for growing major food crops will reduce as the climate 

changes. In some African countries, including Kenya, the change in climate was projected to halve 

yields from rain-fed production systems by 2020, with net revenues projected to drop by 90% by 2100 

(FAO, 2010; IPCC, 2007). Kenya is already experienced the predicted chaotic variations in its crop 

growth season, low productivity, as well as sudden occurrences of diseases and vectors (IPCC, 2007). 

Kenya's agricultural sector faces heightened vulnerability to climate change due to its reliance on rain-

fed crops, a growing population requiring more food, limited use of machinery, and resource-

constrained small farms with deteriorating soil quality (Boitt et al., 2016; EroHerr et al., 2010; 

Obwocha et al., 2022; Ojwang et al., 2010).  

The increasing frequency of extreme events, like droughts and floods, with shorter recovery periods, 

weakens the resilience of ecosystems. This can lead to a cascade of problems, including crop failures, 

the spread of invasive species, and the emergence of new diseases in agricultural systems (Manzi et 

al., 2020). Intensifying production in already-degraded ecosystems has been one of the response 
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mechanisms (FAO, 2010; Liu, 2015) which calls for striking a careful balance between managing 

degradation and optimizing food supply and returns on agricultural investments. 

This is crucial in nations like Kenya where agriculture significantly contributes to the GDP of the 

nation. Agriculture contributes 33% of the GDP and employs more than 40% of the workforce that 

represents 70% of the rural population. Evidence is overwhelming that the shorter recovery period 

between extreme events will worsen poverty, trapping smallholder farmers, in a cycle of vulnerability 

(Eichsteller et al., 2022). The ability to produce enough food has already been impacted by frequent 

droughts, increasing floods, and unexpected deviations to regular weather patterns, which result in 

high rates of human and cattle mortality and decreased productivity (FAO, 2010; C. Nakalembe et al., 

2021). 

After a third straight below-average rainy season that was brought on by the effects of poor crop and 

livestock output, resource-based violence, livestock sickness and mortality, and the COVID-19 

pandemic; over 3.1 million Kenyans experienced severe food shortages in 2022(FEWSNET, 2022). 

Further, the capacity to optimize production is affected by land fragmentation and land ownership 

issues. In the high production areas, land fragmentation hampers the capacity to leverage economies 

of scale and mechanization. In the rangelands, land ownership and shift from purely pastoral to agro-

pastoral systems has also led to an increase in conflicts as livestock and wildlife migration routes 

become closed.  

The global financial and economic crisis' disruption of agricultural supply networks and marketplaces 

has made it more difficult for the nation to sustainably manage the issue of food security (Breisinger 

et al., 2022; Manzi et.al., 2020). The Russia-Ukraine war occurred when the country was already 

grappling with the effects of the COVID-19 pandemic and the desert locust invasion, resulting in 

record high food prices due to shortages, pushing millions more people into severe poverty and hunger. 

Food prices reached record highs due to the crisis in Ukraine, supply chain interruptions, and the 
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persisting negative economic consequences of the COVID-19 pandemic, undoing years of 

development progress (Breisinger et al., 2022).  

Adaptation strategies, decisions and priorities are based on historical baselines, to define Agro-

ecological potential, and sometimes combined with short term forecasts. But the past, and especially 

the last fifteen years when the clarion call on approaches to responding to a changing climate was 

amplified, means that the current adaptation decisions have not achieved the desired effect of 

stabilizing the increasing constraints posed by climate change.  

Climate projections are pointing to major region-specific shifts in rainfall and temperature and 

specifically, probabilities of long-term wetting, which will manifest through an increase in annual 

mean precipitation (RCMRD, 2018). At the same time, higher risks of drought are also anticipated, 

along with decreases in rainfall especially in the long rains, since much of the stability is expected in 

the short rains (Schlenker et al., 2010). 

1.2 Problem statement 

To optimize the efficacy of resilience investments, there is a pressing need to reevaluate our strategies 

for mitigating and adapting to the declining agricultural productivity in Kenya (Antony, 2017; Ochieng 

et al., 2016). The classification of geographical regions into Agro-Ecological Zones (AEZs) based on 

their meteorological, edaphic, and biophysical similarities is fundamental in determining their capacity 

for rain-fed agriculture. However, the shifting seasonality and climate patterns lead to changes in 

AEZs, significantly impacting agricultural practices (Lin et al., 2013).  

The accuracy of AEZ mapping relies heavily on data availability, affecting the precision of adaptation 

recommendations, particularly in regions with similar temperature and precipitation patterns but 

varying soil properties within microclimates (Herrick et al., 2016). It is imperative to conduct thorough 

assessments to account for these microclimate differences, especially for smallholder farmers 

dependent on agriculture for sustenance, employment, and income. The existing AEZ dataset and 

maps, primarily developed by the Food and Agricultural Organization (FAO) in 1983 with partial 
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updates in 1993 and 1996, lack recent and comprehensive profiling that incorporates microclimate 

variations (Jaetzold et al. 1983, Boitt et al., 2016). The resource-intensive nature of earlier mapping 

approaches hinders regular updates, compromising the quality of decisions regarding agricultural 

interventions and adaptation to shifting climate.  

1.3 Objectives 

1.3.1 Overall objective 

The study assessed how climate variability and change will affect AEZ and impact agriculture 

Lower Eastern Region. 

1.3.2 Specific objectives 

1. The study assessed past and present AEZ based on biophysical and climatic factors and 

evaluated hotspots of significant change.  

2. The study interpreted the observed changes in predicted future climate and AEZ and their 

anticipated influence on agriculture in the lower eastern region and recommended opportunities for 

adaptation. 

1.4 Research questions. 

How did climate variability and change affect AEZ in the lower Eastern Region? 

2. What was the interpretation of these changes on agriculture? 

3. What opportunities did these changes present in improving adaptation in the region’s 

agricultural production systems? 

1.5 Justification of the study 

The continued reliance on the rain-fed production systems emphasizes the need for a closer 

examination of adaptation and mitigation strategies and their effectiveness in boosting agricultural 

production and food security (Manzi et al., 2020). This is possible if decisions are made using timely, 

accurate and appropriate data, because climate adaptation recommendations are often expensive and 

have long-term consequences. In this situation, precise climate data is essential for building a system 
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that is climate-resilient and for developing responses and methods that lessen the country’s 

vulnerability to the various climatic risks (Boitt et al., 2016).  Yet, relying solely on climate-driven 

assessments proves insufficient in capturing the complexities of both climate and human-induced 

vulnerabilities. This study recognizes the need to bridge this gap by incorporating a comprehensive 

understanding of the potential of the land in the Lower Eastern Region and its susceptibility to climatic 

and anthropogenic factors.  

Despite extensive research on variations in inter-annual and inter-seasonal changes in climatic 

conditions, and their effect on agricultural production cycles in Kenya, significant gaps remain. 

The central focus of this research is to address these gaps, particularly the challenges in consistently 

providing current and accurate information essential for supporting agricultural decisions and 

maximizing adaptation objectives. The Ministry of Agriculture, vital in this regard, relies on Agro-

Ecological Zone (AEZ) definitions from the farm management handbook for crucial decisions on crop 

insurance, adaptation recommendations, and resilience strengthening. 

 Aligned with the Kenya Climate Smart Agriculture Program, which aims to enhance climate 

adaptation mechanisms, this research employs technological innovations to deliver practical 

applications. Through the integration of satellite data and earth observation (EO) datasets, this study 

brings forth timely and actionable insights, transforming adaptation priorities. For instance, the 

prediction of increased rainfall and surface runoff in certain Arid and Semi-Arid Areas (ASALS) 

during short rains presents opportunities for mixed agro-pastoral systems and water harvesting 

(Muthoni et al., 2019; RCMRD, 2018). Furthermore, the research challenges the status quo by 

highlighting that farming systems in transition zones no longer align with recommendations in the 

farm management handbook. The proposed technologies offer a proactive and pre-emptive 

understanding of past, current, and anticipated future changes, charting a new data-driven trajectory 

for enhancing adaptation recommendations. 



 

17 

 

 

The increasing availability of high-quality, high-resolution remote sensing and model-based datasets, 

combined with ground data, provides a cost-effective means to evaluate past, present, and future trends 

at micro-scales. As decision-making trends towards forecast-based assessments, the research 

advocates for leveraging these resources to de-risk agriculture. The study builds upon the findings of 

RCMRD (2018), which projected a reduction in rainfall and runoff in Western Kenya and other high 

production areas. Simultaneously, it anticipates increased rainfall in Eastern Kenya, emphasizing the 

need to evaluate the agricultural potential and identify opportunities for improving adaptation and 

resilience mechanisms considering these anticipated shifts. 

This research offers a pioneering approach to transforming adaptation strategies in Kenya’s Lower 

Eastern Region, integrating technological advancements and innovative methodologies to address the 

challenges posed by climate change. The proposed methodologies, grounded in robust data and 

forecasts, aim to guide proactive decision-making for sustainable agricultural development and 

resilience in the face of evolving climatic patterns. 

1.6 Scope and limitations of the work 

The research was conducted in the Lower Eastern Region in Kenya, covering Meru, Embu, Tharaka 

Nithi, Makueni, Machakos and Kitui Counties. The region was selected since the counties represent 

diverse AEZ from arid to high potential zones. Leveraging satellite datasets, the study aimed to provide 

scalable methods for mapping agro potential across Kenya.  

Following FAO guidelines for AEZ, the research utilized both climatic and biophysical parameters to 

define AEZs. Rainfall, temperature, potential evapotranspiration (PET), length of growing period 

(LGP), and aridity index were some key climatic variables analysed. Freely available datasets meeting 

spatial and temporal requirements were selected, including daily data from 1990 to 2020 with a 

resolution of 5km or less for the baseline assessments. Weather station data from the Kenya 

Meteorological Department and satellite precipitation and temperature were utilized and 

improvements made.  
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Downscaling techniques were applied to Climate Model Intercomparison Project Phase 5 (CMIP5) 

data, with a focus on Representative Concentration Pathways (RCP) 4.5 and 8.5 for future projections 

from 2020 to 2040 representing the near future. The study evaluated and adopted the General 

Circulation Models (GCMs) due to research showing they performed better over Eastern Kenya, which 

was crucial for accurate climate projections. 

Biophysical characteristics like soil profiles, soil constraints, slope and land productivity (biomass) 

were included in the research. The study focused on shifts in agricultural potential which are known 

to affect productivity, food security, and livelihoods in the region. 

The study acknowledges a limitation in capturing land management practices and in this case an 

assumption that proper land management practices increase productivity and biomass are used to 

identify the proxy dataset for land management. At the same time, lack of localized solar radiation data 

also influenced the calculation methods for the potential evapotranspiration instead resulting in the use 

of the Thornthwaite’s calculations instead of penman monteith equations as adopted by FAO. Trade-

offs were  made on data selection in order to meet the requirements for workflow scalability and 

replicability. 

1.7 Organization of the report 

Chapter 1 is the background section that provides an overview of the impact of climate change on 

rain-fed agricultural systems in Kenya, particularly in the Lower Eastern Region. It highlights the 

vulnerability of smallholder farmers, who face challenges such as low incomes, limited land, and soil 

fertility issues. The section also discusses the recent disruptions, including resource-based violence, 

the COVID-19 epidemic, and the Russia-Ukraine war, which have amplified food security issues. The 

subsequent problem statement emphasizes the need to reassess mitigation and adaptation strategies 

given the decline in agricultural production.  

Chapter two focuses on a literature review introducing and further elaborating on concepts and tools 

that have been applied in this study. It demonstrates the urgency to think outside the box to respond to 
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the climate change crisis. Further, showing the opportunities that emerging technologies provide in 

transforming business-as-usual ways of deriving information for decision making. 

Chapter three explains in detail the methodology adopted for the study, the study area, the data type 

used and data sourcing techniques, the analysis performed on the data and the integrated visualization. 

This chapter forms the core of the project and as such a lot of emphasis has been put on the systematic 

approach taken. It proposes a new and sustainable methodology approach for mapping agro-ecological 

zones to maintain recency in data available for decision making. It utilizes freely available satellite 

imagery with the best spatial coverage, and cloud computing to map past, present, and future agro-

ecological zones. 

Chapter Four presents the deliverables from chapter three such as maps showing the shifts past, 

present and future climatic conditions and agro-ecological zones. Followed by textual descriptions and 

discussions providing more information about the data displayed on the maps and the interpretations 

and implications of the same.  

Chapter Five concludes the project report by providing policy and decision support conclusions and 

recommendations.  
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2 LITERATURE REVIEW 

2.1 Background 

Globally, the increased frequency and intensity of precipitation changes, heat waves, droughts, and 

floods have all contributed to an increased focus on adapting to and minimizing responses to climate 

change (Kotir, 2011; Ochieng et al., 2016). Globally, the growing focus on optimizing responses to 

climate change and adaptation has been catalysed by the increasing climate extreme events that have 

been manifest through frequent and more intense variations in precipitation, heat waves, drought, and 

floods (Kotir, 2011; Ochieng et al., 2016).  

By the end of the 21st century, climate change is predicted to raise the average temperature by 1.4 to 

5.5°C and the average amount of precipitation by 2% to 20%. (Adhikari et al., 2015). Despite varying 

forecasts for rainfall, the general view is that whether a rise or reduction in temperature is evident, it 

will primarily hurt agricultural production because of increased evapotranspiration (Adhikari et al., 

2015; Kotir, 2011; Ochieng et al., 2016). 

The largest contribution to Green House Gas emissions, according to a report from the 

Intergovernmental Panel on Climate Change (IPCC, 2014), came from agricultural production and its 

effects on land use. Future predictions offer a bleak picture, with the demand to create more; fuelling 

the anticipated rise in population and resource consumption, creating a vicious cycle wherein growing 

competition for finite resources will result in further degradation. Global and national goals have been 

established to encourage change with the purpose of mitigating these changes through Sustainable 

Development Goals (SDG) targets due to the growing need to combat climate change and global 

warming while lowering carbon dioxide emissions (Holzkämper, 2017). 

2.2 Drivers of climate change in Kenya 

 In Kenya, the drivers of climate change encompass a multifaceted array of natural and anthropogenic 

factors that interact to shape the country's climate system. One of the primary drivers is anthropogenic 
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greenhouse gas emissions, primarily stemming from the burning of fossil fuels for energy production, 

industrial activities, transportation, and deforestation(Vermeulen et al., 2014).  

Rapid population growth and urbanization aggravate these emissions, increasing the carbon footprint 

of human activities. Changes in the use of land, such as deforestation for agriculture, infrastructure 

development, and urban expansion, further contribute to carbon dioxide levels while disrupting local 

weather patterns and ecosystems. Additionally, agricultural practices, including livestock rearing and 

land degradation, emit methane and nitrous oxide, potent greenhouse gases that amplify climate change 

(Ngigi & Muange, 2022).  

Moreover, Kenya's vulnerability to climate change is compounded by natural factors such as its 

geographical location near the equator, which exposes it to intense solar radiation and influences 

seasonal rainfall patterns. Variability in sea surface temperatures, particularly in the Indian Ocean, also 

influences rainfall distribution through phenomena like the El Niño-Southern Oscillation (ENSO) and 

the Indian Ocean Dipole (IOD), exacerbating droughts or floods (Indeje et al., 2005). 

The geographic suitability of crops in Kenya is expected to undergo significant modifications due to 

climate change, with these changes becoming more pronounced in the near future, particularly by 

2040(RCMRD, 2018). Climate projections indicate alterations in temperature and precipitation 

patterns, which will directly impact the agro-ecological zones and suitability of different crops across 

the country(Lane, Annie; Jarvis, 2007).  

Rising temperatures are projected to shift the boundaries of suitable growing areas, with higher 

elevations becoming more conducive to certain crops while lowland areas may experience decreased 

suitability. Additionally, changes in precipitation patterns, including shifts in the timing and intensity 

of rainfall, will affect water availability and soil moisture, further influencing crop suitability (EroHerr 

et al., 2010; IPCC, 2007).  

For instance, areas currently suitable for rainfed agriculture may face increased water stress, 

necessitating shifts to drought-resistant crops or alternative irrigation methods. Conversely, regions 



 

22 

 

 

experiencing increased rainfall may see expanded opportunities for crop cultivation, albeit with 

potential challenges related to soil erosion and waterlogging. These modifications in crop suitability 

pose significant challenges to Kenya's agricultural sector, requiring proactive adaptation strategies 

such as crop diversification, improved water management practices, and the development of climate-

resilient varieties (Cairns et al., 2013; Silvestri et al., 2012). Understanding these projected changes is 

crucial for policymakers, farmers, and other stakeholders to effectively plan and implement measures 

to sustain food production and enhance agricultural resilience in the face of a changing climate 

(Musafiri et al., 2022; Rios, 2015). 

2.3 The effect of a changing and varying climate on agriculture 

Because so many people depend on agriculture and are at threat of food insecurity in low-income 

countries, effects of climatic fluctuations are anticipated to be the most severe there (Liu, 2015). In 

Africa, where agriculture is highly reliant on weather and climate factors including temperature, 

precipitation, and light and extreme events, these effects are anticipated to be more pronounced and to 

have higher ramifications (Cairns et al., 2013; Knox et al., 2012; Liu, 2015).  

In all the agro-systems which are predominantly rain-fed, climate variability and change has resulted 

in losses in livestock and livelihoods and human lives (Ojwang et al., 2010). Further, these impacts are 

expected to worsen with projections anticipating an increase in temperatures and unpredictability of 

rainfall (Kotir, 2011; Ochieng et al., 2016). 

The adaptive capacity is also negatively affected by the growing population and agricultural production 

systems that are characterized by smallholder subsistence, labour intensive low input and poorly 

mechanized farming(FAO, 2010; Liu, 2015).Adaptation strategies demonstrated in the changing 

cropping patterns such as increase in area under agricultural production and deserting unproductive 

land is only exacerbating the situation.  
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To meet the needs of the population, which is projected to continue expanding, this trend is predicted 

to continue, requiring not less than one hundred million hectares of new land globally for agricultural 

use in 2050 (FAO, 2010; Liu, 2015). 

With a changing climate, new patterns in crop and livestock diseases are emerging. Changes in 

biodiversity due to shifts in the use of land and cover, coupled with new moisture and temperature 

patterns has resulted in new hotspots due to modified pest and disease propagation dynamics. Global 

warming has also resulted in emergence of new strains of pest and diseases in new environments with 

the frequency of these outbreaks expected to increase (Kabubo-Mariara et al. 2015; Liu, 2015). 

While quantifying climate change requires large time and scale specific datasets, the gradual shifts in 

seasonality and especially through a fluctuation in the frequency and intensity of both rainfall and 

temperature; has had the considerable impact on agricultural production. Delays in onset and cessation 

of rainfall means farmers cannot rely on the crop calendars to plant. Sustaining required production 

then becomes a game of chance. Where every option undertaken by the farmer represents a set of risks. 

For example, early planting means delays in onset of rainfall will result in losses of seed. Intermittent 

rainfall also results in wilting and crop failure.  

The delays in onset of the rainfall, result in a reduction in planted area, and in effect seasonal 

production. Early cessation of rainfall during the flowering stages will lower yields, while an increase 

of rainfall during the end of season results on post-harvest losses. As the seasonality changes, so does 

the viability for production of domain crops (Kazembe & Kenya, 2014). With farmers growing the 

domain crops due to distinct reasons, switching to more viable crops takes time. For example, with 

ugali as a staple food, farmers continue to grow maize even in areas where it has ceased to be viable. 

Advisories to adjust the crops planted then requires a cultural shift over time, within which farmers 

might continue to experience considerable losses in their production systems (Gebre et al., 2023; 

Musafiri et al., 2022). 
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2.4 Efforts in addressing climate change in Kenya 

Food security in Kenya remains a key challenge despite increased investments in agricultural 

production assistance (FAO, 2010; Kotir, 2011), with Kenya importing over 50% of its food supply 

(EroHerr et al., 2010). To effectively manage the effects being felt, it is important to reassess our 

mitigation and adaptation measures considering the country's clearly dropping agricultural 

productivity (FAO, 2010; Muok et al., 2012). Particularly given that forecasted the variations in 

climatic conditions are expected to result in decreased food production in "food basket areas," while 

population growth will increase competition for already depleting natural resources. 

Many programs have been initiated focused on adaptation with the goal of decreasing the effects of a 

changing and erratic climate on the country's agricultural production systems. The government has led 

the research and development of adaptive plants and animals that thrive even in drought prone areas. 

Other measures include diversification of the sources of livelihoods and water management (Ochieng 

et al., 2016; Ojwang et al., 2010).  

National initiatives including Vision 2030, the NCCAP-2013-2017(National Climate Change Action 

Plan), and NAP-2015-2030 (Kenya National Adaptation Plan) were created to set goals for managing 

the implications of a fluctuating climate (Ochieng et al., 2016). These plans emphasized putting 

important initiatives into action, including stepping up irrigation to increase food security, putting 

safety nets in place to lessen livestock losses during drought in ASALs, reviving the Kenya Meat 

Commission (KMC), and putting government crop and livestock insurance programs into action. 

2.5 Gendered and indigenous adaptation efforts 

Local communities in Kenya possess valuable traditional knowledge and practices that have enabled 

them to adapt to environmental changes for generations. However, these communities are often overly 

affected by the ravages of a frequently changing climate due to their reliance on natural resources and 

their marginalization from mainstream society.  
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Indigenous climate adaptation efforts involve community-based approaches that draw on local 

knowledge and cultural practices. For instance, traditional ecological knowledge is used to monitor 

the weather patterns, enhance agricultural practices, water management systems, and natural resource 

conservation (Gebre et al., 2023; Musafiri et al., 2022). 

Due to cultural divisions of labour, women often till the land and look for water, making them 

particularly susceptible to changes in rainfall patterns and agricultural productivity. Recognizing the 

distinct experiences and knowledge of different genders and Indigenous communities is essential for 

developing effective and inclusive strategies to cope with climate-related challenges(Ngigi & Muange, 

2022).  

2.6 Assessing climate change projections for Kenya 

Research shows various projections for various regions of the nation. Nevertheless, despite divergent 

climatic predictions in the East Africa Region, there is consensus on the anticipated increase in rainfall 

in some parts of Kenya (Adhikari et al., 2015; EroHerr et al., 2010; Knox et al., 2012; Kotir, 2011; 

Ochieng et al., 2016) (see Table 2.1). A second indication of this is the stabilizing trend in the brief 

rains (important in the ASALs), which is in line with projections for an increase in rainfall there 

(RCMRD, 2018). 

Table 2.1 An analysis of climate projections and general impacts on agriculture in different periods leading to 2100. 

Author Temperature Rainfall Impacts on agriculture 

EroHerr et al. 

2010 

Increase Increase 

 

Increases might cancel out due to increased potential 

evapotranspiration, but opportunities for water 

harvesting and diversification of livelihoods 

Adhikari et al. 

2015  

Increase Increase Although a rise in temperature may result in an 

increase in crop productivity, it will also raise the risk 

of water stress in lowland areas. Climate change-

related precipitation variability increases the need for 

irrigation water. 
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Knox et al. 

2012 

Increase Decrease Expected to be a significant decrease in the yields of 

wheat, sorghum, millet, and corn. 

Kotir, 2011 Increase Increase Despite advances, it is anticipated that the length of 

growing seasons will decrease by more than 20%. 

Kabubo-

Mariara et al. 

2015 

Increase Increase Erratic weather is anticipated to have an impact on 

crop revenue, with higher crop revenue being related 

with higher winter temperatures (June to August) and 

lower crop revenue being connected with higher 

summer temperatures (March to May). 

 

Further, the projected increase in temperature might improve suitability for agricultural production in 

Kenyan highlands, potentially leading to higher yields (EroHerr et al., 2010). In the Kenya ASAL’s, 

projected increase in frequency of droughts, is expected to negatively impact livestock production 

compromising food security (Silvestri et al., 2012). However, projected increase in precipitation in the 

ASAL’s, coupled by an understanding of soils and crop suitability would provide invaluable insights 

on where diversification of incomes through crop production would be viable.  

Increasing capacity to downscale predictions is yielding more interesting results that align with trends 

observed in baselines. These downscaled predictions, provide a localized understanding and improve 

the quality of information available to inform the proposed forward-thinking approach to climate 

adaptation, where decisions are based on past and present trends, as well as in future trends.  

The recent downscaling of Coupled Model Intercomparison Project (CIMP5) projections by RCMRD 

is an example, which provides country wide insights on the changes expected in climate and the near 

future in Kenya. The research by RCMRD predicts a reduction in rainfall and runoff in Western Kenya 

and other high production areas (RCMRD, 2018). At the same time, stability in the short rains which 

is already evident, and projected increase in rainfall is expected in Eastern Kenya (RCMRD, 2018).  

2.7 AEZ and their role in adapting agriculture to climate change 

Considerable research has been done on how climate change is affecting Kenyan agriculture. Still, 

there are gaps. For example, the FAO recommended using agro ecological zones to do more thorough 
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evaluations of the influences of climate variations on agriculture, including changes in temperature, 

rainfall, humidity, as well as other variables under various climate scenarios (Liu, 2015). 

This is crucial since maintaining and sustaining food security presents unique problems for each AEZ 

(Ojwang et al., 2010). Furthermore, altering AEZ, which affects and influences cropping patterns, has 

been identified as one of the main responses of production systems to climatic changes and variations 

(Lin et al., 2013). Therefore, looking at the variations in AEZ through time is necessary to assess the 

effects that a changing climate has on agriculture. 

2.8 The case for a technology-driven approach for replicable, scalable, and 

sustainable mapping 

Over the last 20 years, there has been an increasing availability of free medium resolution datasets at 

different spatial and temporal scales from satellites and other earth observation instruments. EO creates 

limitless opportunities to provide precise, dependable, and timely information to decision-makers 

across various agricultural systems and for resource-constrained organizations due to the emerging 

improvements in technologies and methodologies for archiving and processing EO data using cloud 

services (C. Nakalembe et al., 2021; Shukla et al., 2021) . 

Cloud computing provides opportunities to create scalable and replicable processes that utilize the 

available data and computing systems. Locally, many studies have demonstrated the value of EO-

derived information in improving the understanding of the agricultural productivity and variability 

within micro-climates, improving the quality of agricultural decisions (Kenduiywo et al., 2020; Miller 

et al., 2019; Ndungu et al., 2019). EO data and methods are increasing being used in agriculture 

systems, especially by governments, with their demand being driven by the growing availability of 

decision-support information and tools (Nakalembe et al., 2019). 

2.9 Technology as a key enabler to food security policies and investments 

The government has set up several policy-driven investments to inform adaptation and mitigate the 

consequences of climatic changes on the nation's agricultural production systems. These include 
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initiatives supported by the government and donors that encourage livelihood diversification, the 

approval and implementation of national irrigation plans, the promotion of drought-tolerant plants and 

animal breeds, among others (Ochieng et al., 2016; Ojwang et al., 2010).  

Governments are already investing in technology-driven tools because they have realized that to 

maximize agriculture's potential for mitigating climate change, investments will be needed in both 

technological advancements and agricultural intensification linked to increased input efficiency, as 

well as the development of inducements and observatory systems that focus on smallholder farmers 

(Vermeulen et al., 2014). This research therefore seeks to assess past and present agro-ecological 

zones, providing insights into the drivers of observable changes. Furthermore, the study seeks to 

develop an automated, scalable workflow using cloud computing to demonstrate the value of 

technology driven AEZ mapping. The mapping process endeavors to identify and evaluate hotspots of 

change in AEZ in the lower eastern region.  

2.10 Rethinking adaptation based on future climate projections. 

While numerous efforts have been made to increase Kenyan communities' ability to adapt to climate 

change, commensurate success on investments to climate adaptation and resilience have not been 

realized. The growing climate change-related issues continue to have a greater impact on smallholder 

farmers. Even if long-term climate predictions have some uncertainty, it is crucial to look at how 

vulnerable to climate change social and environmental systems and economically significant assets are 

affected (Macharia et al., 2020; Silvestri et al., 2012).  

Adaptation strategies, decisions and priorities are either based on historical baselines, which are 

sometimes combined with short-term forecasts. But the past, and especially the last fifteen years when 

the clarion call on addressing a changing climate was amplified, means that the current adaptation 

decisions have not achieved the desired effect of stabilizing the increasing constraints posed by climate 

change.  
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The increasing availability of satellite and earth observation (EO) datasets and systems for future 

predictions; provides opportunities for evaluating past, present and future trends at micro-scales. 

Superior and also high-resolution remote sensing and predictive-derived datasets that are blended and 

unbiased using station and ground data, are now easily available and provide an opportunity to improve 

the quality of information available for decision making (RCMRD, 2018; Shukla et al., 2021). 

The future of decision making, and indeed the current direction is a move from past baselines-based 

decision systems to future based anticipatory and early action driven decision making and investments. 

Already, de-risking of agriculture is being driven by forecast-based assessments. In Kenya, study by 

RCMRD (2018) developed downscaled EO based climate projections that found a reduction in rainfall 

and runoff in western Kenya and other high production areas. These climate projections are pointing 

to major region-specific shifts in rainfall and temperature (RCMRD, 2018) . 

2.11 Defining future emission-based trajectories  

The primary tools for predicting climate change are global climate models (GCMs), which are 

compiled with scenarios of the evolution of greenhouse gas (GHG) and aerosol concentrations. They 

work well at replicating both global and continental climate characteristics, such as global and 

continental temperature and precipitation patterns, and are intended to assess the behavior of the global 

climate system (Indeje et al., 2005). The most recent GCMs from the Coupled Model Intercomparing 

Project's (5th Phase) employed the Hadley Center Earth System Models from the UK Met Office 

(HadGEM-ESM), and they contributed to the IPCC's fifth Assessment Report (IPCC AR5) (Jones et 

al., 2011). 

Since implementation can involve subjective decisions and may differ between modeling groups 

conducting the same experiment, it is crucial to have a clear understanding of how the GCM/ESM has 

been derived to diagnose the simulated climate response and compare responses across different 

models (Jones et al., 2011). 



 

30 

 

 

The outputs from CIMP5 correspond to the three distinct scenarios that constitute the RCPs, which are 

designated as 2.6, 4.5, and 8.5, respectively. In the moderate emission scenario represented by RCP4.5, 

greenhouse gas concentrations progressively increase until around 2040 before dropping subsequently. 

This scenario assumes that linked reference situations will be changed by the employment of climate 

policy. The most pessimistic scenario, known as RCP8.5, envisions a future in which greenhouse gas 

concentrations rise continuously (Jones et al., 2011).  

2.12 Future proofing adaptation through leveraging emerging technologies 

The complexity of updating AEZs demands substantial resources, time, and data, necessitating a robust 

methodology (Jatzold & Kutsch, 1982). Climate variability and change implicitly affect agriculture 

potential and productivity (Adhikari et al., 2015; Antony, 2017; EroHerr et al., 2010; Holzkämper, 

2017; Knox et al., 2012; Kotir, 2011; Kurukulasuriya & Mendelsohn, 2008; Stige et al., 2006).The 

proposed solution, leveraging on cloud computing and satellite imagery, transcends these challenges 

by harnessing 50 years of data to construct workflows spanning past, present, and future scenarios. 

This approach ensures real-time access to spatial data, facilitating seamless integration with additional 

data sources for deeper insights and automated processes tailored to users with limited modelling skills 

as has already been demonstrated in several research in different parts of Kenya (Boitt et al., 2016; 

Manzi & Gweyi-onyango, 2020; Sagero et al., 2021). This approach, and especially downscaling 

models to predict the near future has been successfully done in several studies in east Africa and in 

Kenya ((Endris et al., 2013; RCMRD, 2018) . 

Embracing gender-sensitive adaptation and capitalizing on emerging opportunities in a changing 

climate, this approach optimizes investments and production (Ngigi & Muange, 2022; Ratcheva et al., 

2022). While not entirely novel, the transition towards forecast-based decision-making, as opposed to 

past baseline-driven methods, is gaining traction. Recent studies, such as the one conducted by the 

Regional Centre for Mapping of Resources for Development (RCMRD) in 2018, underscore the 

necessity of adapting to projected climate shifts. Leveraging open-source satellite data and cloud 
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computing, the scalable and replicable workflow presented here offers an efficient means to map 

AEZs, paving the way for enhanced adaptation strategies and resilient agricultural practices in Kenya. 

2.13 Summary 

Climate is changing and will continue to change into the future. The government and local 

communities are responding to these changes using different measures to adapt. AEZ are a good 

indicator of the effect of the changing climate on the production potential. This means that as climate 

changes, viability to grow domain crops change, but the new agro-potential represent opportunities to 

grow new crops.  

Information driving adaptation, like the farm management handbook, is often outdated, and based on 

historical information. This is due to the resource’s intensity required to update the maps over large 

areas. Emerging technologies provide opportunities to improve AEZ mapping, and with increasing 

accuracy such as the capacity to downscale climate projections, the capacity to map future AEZ 

changes. These innovations represent an opportunity to provide more accurate and updated information 

to support structuring of climate adaptation mechanisms. Further, these technologies can support 

frequent updating of the maps to ensure information remains relevant, even as climate continues to 

change. It also provides the opportunity to base current adaptation mechanisms with an understanding 

of future changes in climate and agro-potential, allowing for a more informed transition to more 

suitable adaptation options. 

By understanding how climate change will impact different Agro-Ecosystems in Kenya and 

specifically in the Lower Eastern region, this study seeks to leverage technologies to identify measures 

that can be implemented to modify agricultural methods to lessen the negative implications of climatic 

variations; and leverage new developing prospects. 
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3 DATA AND METHODS 

3.1 Conceptual framework 

This part highlights relationships between climate change, adaptation mechanisms, agro potential, 

methodology development, and the implications for agricultural prioritization and adaptation 

approaches in Kenya. The goal is to validate the hypothesis that climate is changing and will continue 

changing into the future in Kenya. These changes and variability will continue to have varying impacts 

on production systems even in the future. In a highly varying environment consisting of smallholder 

farming systems, the difference in success of adaptation recommendations will rely on accurately 

capturing the micro-variations in agro potential.  

While there has been increasing investments in adapting our production systems to the changing 

climate, these changes are not bearing commensurate gains since production keeps dropping. Further, 

future predictions continue to paint a grim picture of the future where the currently observed trends 

and changes continue. Adaptation mechanisms have at most used historical baselines as the point of 

learning to inform design and recommendation of adaptation mechanisms. Effecting any change in a 

system takes time. There is time lost between recommendations on adaptation to effecting the cultural 

change that is required to drive adoption of these new recommendations. Farmers who plant maize and 

depend on maize for food and trade will not be quick to switch to other more viable drought resistance 

crops immediately.  

The study proposes a new line of thought, where current adaptation recommendations learn not only 

from the past and present changes, but account for anticipated future changes. This would create a 

convergence in adaptation mechanisms that account and respond to these future changes, potentially 

creating the tipping point in successful adaptation and contribute to strengthening agriculture 

production.  
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Further, while climate may be homogenous over relatively large areas, biophysical characteristics vary 

over small areas such as soil. Soil characteristics can vary even within the same unit area of land. 

Therefore, climate predictions alone might not fully represent the changing agro potential.  

This research proposes the use of agro-ecological zonation changes as a better predictor to the impact 

of the evolving and varying climate on agricultural potential and a change in production potential. 

Existing methods for mapping agro-ecological zones are often time consuming and requiring 

considerable resources and investments. But the same time, technology, methods, computing 

resources, algorithms are emerging and opening a new world of opportunities that overcome the 

existing limitations of updating information required for adaptation. These resources remove the 

barrier of accessibility of data, reducing the need for personal computing resources to manipulate 

enormous amounts of data. Development of libraries reduce the amount of coding required to develop 

outputs, reducing computation time for large volumes of spatial temporal data. This research leverages 

on this advance in technology and in remote sensing to develop a scalable and replicable methodology 

for assessing agro potential.  

With the government of Kenya relying on Agro-Ecological Zonation as defined in the farm 

management handbook to inform agricultural prioritization, advisory and investments, the FAO 

methodology used in developing the AEZ for Kenya is adopted. However, it is refined to allow 

incorporation of the datasets that allow for improvement of spatial and temporal qualities of data to 

improve and localize the mapping outputs. Improved mapping outputs can inform agricultural advisory 

and investments. Finally, while climate change has been seen as all doom and groom, this research 

evaluates emerging opportunities and consolidates the case for rethinking adaptation approaches. 

 

3.2 Area of study 

The area of research comprises of six counties that were selected since they represent diversity in 

Agro-Ecological and agroclimatic zones. Agroclimatic zones (ACZ) are characterized by moisture 
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regimes defined by precipitation, potential evapotranspiration, and temperature. The agroclimatic 

zones in the region range from humid to arid areas. The Agro-Ecological zones (AEZ), as seen in 

Figure 3.1, include medium potential to low potential zones. AEZ combine Agroclimatic zones with 

other factors such as soils, landforms, land use to evaluate potential for agricultural production.  

 

Figure 3.1 The study area and the agro-ecological zones as previously mapped by FAO.  

The area of study is represented by humid to arid agroclimatic zones which translate to zone I to zone 

VI. Possible crop and cropping systems viable in the area include agriculture and livestock production 

as described in Figure 3.1.  

The counties in study area, are represented by humid to arid agroclimatic zones which translate to zone 

I to zone VI (Table 3.1); where the category of farmers is dependent on rainfed agriculture for 

livelihood, with diversity in cropping and livestock production. The crops grown in these areas are 

food crops such as maize, beans, green grams, pigeon peas, sorghum, millet; cash crops such miraa 

cotton, and tobacco; and fruit trees such as bananas, avocadoes, oranges, mangoes, macadamia, 
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papaws. The farm management handbook describes the cropping patterns as ranging from uncertain, 

noticeably short and short cropping seasons (Jaetzold et al. 1983) 

Table 3.1 The FAO definition of Kenya’s agro-ecological zones (Source: Jaetzold, et al. 1983) 

AEZ 

no. 

Ratio of Rainfall to 

PET 

Agro-

Ecological 

Zone 

Crops and cropping systems 

0 > 1.20 Per humid Forest zone 

i 0.80-1.20 Humid Tea-dairy 

ii 0.65-0.79 Sub humid Wheat, maize, beans, Irish potatoes 

iii 0.50-0.64 Semi 

humid 

Beans and other pulses, maize, wheat, cotton, 

cassava 

Iv 0.40-0.49 Transitional Barley, cotton, maize, groundnut, sorghum 

V 0.24-0.39 Semi-arid Livestock, beans, pigeon peas, sweet potatoes, 

sorghum, millet 

Vi 0.10-0.24 Arid Ranching and cropping only under irrigation 

vii < 0.10 Per arid rangeland 

 

The typical precipitation as well as temperature in Tharaka Nithi, Meru, Makueni, Kitui, and Machakos 

lowland midland areas spans between 0 to 1400mm with definite variations in the length of the rainfall 

during the short and long rains as shown in Figure 3.2.  

 

Figure 3.2 Seasonal and annual rainfall variation in the study area  

3.3 Selection of methodology 

The selection of methodology in this research was carefully considered, with a focus on enhancing the 

existing FAO framework for defining Agro-Ecological Zones (AEZs) in Kenya. Given the critical role 
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of AEZ definitions in informing governmental decisions related to agriculture, such as crop insurance 

and adaptation recommendations, adherence to established guidelines was paramount. The reliance of 

the Government of Kenya, particularly the Ministry of Agriculture, Livestock, Fisheries, and 

Cooperatives (MOALFC), on AEZ definitions from the farm management handbook underscores the 

significance of this research's methodology. 

By adhering to the FAO methodology, this research ensures comparability with past data, maintaining 

consistency in AEZ definitions over time. However, recognizing the need for improvement in the 

quality and scale of mapped outputs, adjustments were made to incorporate more spatially and 

temporally detailed datasets. This refinement allows for the integration of satellite-derived data and 

cloud computing techniques, enabling the utilization of more continuous and comprehensive spatial 

information. 

The value addition from using satellites and cloud computing is substantial. Satellite imagery provides 

a wealth of information on land cover, vegetation health, and climatic variables, allowing for a more 

nuanced understanding of agricultural landscapes. Cloud computing facilitates the processing and 

analysis of large volumes of satellite data, enabling the generation of high-resolution maps and models. 

By leveraging these technologies, this research produced more localized and accurate AEZ maps. 

These refined maps hold immense potential in informing agricultural advisories and investments, 

thereby benefiting Kenyan farmers and decision-makers. The incorporation of spatially continuous 

datasets enhanced the precision of AEZ delineations, enabling more targeted interventions and 

resilience-building measures. Moreover, the research aligns with broader initiatives such as the Kenya 

Climate Smart Agriculture Program, which seeks to strengthen capacities for adopting effective 

climate adaptation mechanisms 
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3.4 Data selection 

3.5 Baseline assessment data 

The research leveraged on existing earth observation data which allowed for assessment of spatial 

variation in the parameters. While station data is usually ideal, especially for climate parameters, the 

distance between stations introduces challenges especially when interpolating. For replicability and 

scalability, freely available datasets matching the required spatial temporal scales for localizing the 

assessments were selected. The selection criteria required daily data, covering the evaluation period of 

1990-2020, and with a resolution of 5km or less. Weather station data for precipitation and temperature 

was acquired from the Kenya Meteorological Department (KMD). The datasets used in the baseline 

assessment are listed in Table 3.2. 

Table 3.2 Baseline data sources and their properties (1990-2020) 

Category Dataset  Freq

uenc

y  

Source Sca

le 

Time  

Climatology Rainfall 

(Precipitation) - 

PPT 

Daily Climate Hazards 

Infrared Precipitation 

with stations 

(CHIRPS) 

5k

m 
1990 -

2020 

  Temperature - 

TMP 
Daily European Center for 

Medium-Range 

Weather Forecasts 

(ECMWF) Re-

Analysis (ERA) 

2k

m 
1990 -

2020 

  Potential 

Evapotranspirati

on (PET) 

Daily Computed 5k

m 
1990 -

2020 

  Moisture Index Daily Computed 5k

m 
1990 -

2020 
  Aridity Index Daily Computed 5k

m 
1990 -

2020 
Station 

Data 

Rainfall, Temp, 

PET 
Daily KMD Stat

ions 
1990 -

2020  
Biophysical Soil   KENSOTER 

database ver. 2.0 
 Static 

layer  
  Slope   SRTM (Shuttle Radar 

Topography Mission) 
90

m 
2020  

  Land 

Productivity 
8-day MOD13A2 NDVI 

(Normalized 

Difference 

Vegetation Index) 

  1990 -

2020 
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3.6 Future projections assessments data 

The Climatic Research Unit (CRU) station derived gridded data (CRU time series 3.24.01), is available 

at 0.5 degrees from 1901-2015, was used to downscale the CIMP5 data that was gotten from RCMRD. 

For this study, RCP 4.5 and RCP 8.5 were used. From the downscaling, it was noted that the GCM 

performs better over Eastern Kenya as compared to Western Kenya hence making it a suitable choice 

for this research. Kenya’s rainfall is bimodal, with two distinct wet seasons that support most of the 

rainfed agriculture production (Antony, 2017; RCMRD, 2018; Vrieling et al., 2013). Table 3.3 

provides a list of all datasets used or derived for the future projections . 

Table 3.3  Projected data sources and their properties (2020-2040) 

Category  Dataset  Frequency  Source  Scale  Temporal resolution 

used  

Downscaled 

Climate 

Projections  

  

Precipitation  Daily  RCMRD improved 

CIMP5   

5km  2040- RCP 4.5 & 8.5 

Temperature- 

TMP  

Daily   RCMRD improved 

CIMP5   

5km  2040- RCP 4.5 & 8.5 

Climate 

Parameters 

Potential 

Evapotranspiration 

(PET)  

Daily   Computed   5Km  2040- RCP 4.5 & 8.5 

Moisture Index  Daily  Computed  1km  2040- RCP 4.5 & 8.5 

Aridity Index  Daily  Computed  1km  2040- RCP 4.5 & 8.5 

Biophysical  

Parameters 

  

Soil     KENSOTER 

database ver. 2.0  

  Static layer  

Slope    SRTM (Shuttle 

Radar Topography 

Mission)  

90m  2020  

 



 

39 

 

 

4 METHODOLOGY 

This study employed a stock taking approach that seeks to develop an agro-specific climatic baseline, 

investigated the implications of continuing trends and linked this to future projected climate trends 

under different mitigation strategies (Table 4.1). This was in  in response to identified climate and 

agriculture adaptation gaps. 

Table 4.1  Outline of Methodology 

Objectives Research 

question 

Methods Output 

Assessed past and 

present AEZ 

based on 

biophysical and 

climatic factors 

and evaluate 

hotspots (of 

significant 

change)  

 

 

 

How  climate 

variability and 

change affected 

AEZ in the lower 

Eastern Region? 

Adjusted FAO 

methodology for mapping 

baseline time Agro-

Ecological zones, but 

utilizing scalable satellite 

datasets 

Maps and graphs that 

show the variations in 

climate, length of growing 

period and agro-ecological 

zones and the hotspots is 

the study area 

What was the 

interpretation of 

these changes on 

agriculture? 

 

 An analysis of the results 

and interpretation of 

impact of observed 

changes on agriculture 

A description of the visible 

impacts in the identified 

hotspots 

Evaluated 

implications of 

observed changes 

in predicted future 

climate and AEZ 

on agriculture in 

the lower eastern 

region and 

identified 

opportunities for 

adaptation. 

What 

opportunities did 

these changes 

present in 

improving 

adaptation in the 

region’s 

agricultural 

production 

systems? 

 Adjusted FAO 

methodology utilizing 

climate predictions in 

2040 and other scalable 

satellite datasets, to map 

the change in agro-

ecological zones and 

length of growing period. 

Maps and graphs showing 

change from baseline to 

the future climate and 

agro-ecological zones in 

the study area. 
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4.1 Mapping the past and present Agro-Ecological Zones 

An adjusted methodology for Agro-Ecological Zones mapping was adopted from the FAO (Food and 

Agriculture Organization) farm management handbook development guidelines (Jaetzold et.al. 1983). 

The FAO methodology was used to define the inputs to the AEZ mapping, with adjustments focusing 

on including satellite indices as proxies for parameters that were unavailable. For example, Dry Matter 

Productivity (DMP) was used to define land productivity. 

Climate parameters were all derived by blending daily satellite estimates with station data to improve 

spatial quality in the region. Further, indicators such as Aridity index were used to define climatic 

constraints. With research demonstrating that AI is a better indicator for monitoring increasing aridity 

than direct climate assessments such as those relying on rainfall, in at least half of the total land area 

with considerable change, aridity index (AI) provides a good depiction of the multifaceted nature of 

estimated aridity changes (Greve et al., 2019) .  

Potential Evapotranspiration was also derived using Thornthwaite’s equation due to unavailability of 

a continuous PET dataset for the assessment period. FAO uses the Penman Monteith equation which 

required inputs such as solar radiation which even when available, are too coarse to provide daily input 

for estimating PET for the assessment area.  

Statistical assessment was conducted on inputs such as rainfall and temperature. Evaluation of change 

was done using statistical tests such as regression, correlation tests, coefficient of variation and pair 

plots. Coefficient of variation (CV) was used to explain the change between the two evaluation periods. 

CV provides an understanding of the intensity of the change in variables. The greater the coefficient 

of variation, the greater the degree of dispersion around the mean. It is generally expressed as a 

percentage. The full implementation of the adjusted methodology is shown in Figure 4.1. 
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Figure 4.1 Implementation workflow for mapping Agro-Ecological Zones 

4.2 Mapping future Agro-Ecologies 

A similar adaptation of the FAO methodology was used to map future Agro-Ecologies (see Figure 

4.2). However, Climate projections were adopted, and baseline biophysical characteristics layers 

adopted, under the assumption that change in landforms happens slowly over time. 
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Figure 4.2  Methodology for mapping future Agro-Ecological Zones 

4.2.1 Determining seasonality 

Kenya’s rainfall is bimodal, with two distinct wet seasons that support most of the rainfed agriculture 

production (Antony, 2017; RCMRD, 2018). The Long Rains (LR), which occur in March, April, and 

May (MAM), and the Short Rains (SR), which occur in October, November, and December (OND), 

are used to define the seasons. The seasons are defined as the Long Rains(LR) that are experienced 

from March, April and May (MAM) and the Short Rains (SR) that come from October November and 

December (OND)(Kazembe & Kenya, 2014). The defined seasonality has been adopted for this 

research. To capture the microvariations, all layers were acquired at a scale of 1km or less where 

possible and resampled to the same scale, but the use of satellite derived information provides more 

variation in information per pixel. Further the use of the most recent data provided value addition in 

recency of the outputs. Resampling data to a uniform resolution is a common practice in research, 

particularly when working with mixed datasets containing continuous and non-continuous data . While 
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it doesn't inherently improve data quality, it facilitates smoother computations and enables direct 

comparisons across different data layers. This is because analyses often rely on spatial alignment and 

overlapping regions, and a consistent resolution ensures all data points contribute equally, simplifying 

calculations and interpretation of results (Manzi & Gweyi-onyango, 2020). 

4.2.2 Identifying distinct zones 

The greatest challenge in identifying distinct AEZs, is the uncertainty in delineating the boundaries 

between two consecutive zones, especially when continuous and categorical variables are used. 

Researchers have employed different approaches when using satellite data such as wavelet analysis, 

geographic clustering, fuzzy theory, and multivariate clustering, although there is no single method 

that has been deemed best (Boitt et al., 2016; Ojwang et al., 2010; Praseyto et al., 2013; Quiroz et al., 

2000; Sharma et al., 2007). Fuzzy logic is a process of grouping the analysed indicator established in 

form of membership function. The membership function is a curve demonstrating the mapping of data 

input points into the membership value.  

Fuzzy logic was used in normalizing both continuous and categorical variables with direct and inverse 

relationships applied to inform the derivation of the AEZs. Linear normal relationship fuzzification 

process transforms the data normally with a normal scale, where the large values have high 

prominence, and they are transformed to approximate value of 1. Small membership function gives 

the small value prominence so that their contribution is accounted for in the AEZ generation.  Fuzzy 

logic was chosen due to its ability to handle data uncertainties and remove excessive "noise" in the 

final maps as seen in Figure 4.3. 
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Figure 4.3 Implementation of Fuzzy logic 

 

4.3 Data collection 

4.3.1 Strategy for sampling and definition of sample size 

A multistage sampling process that blended stratified random sampling with purposeful sampling was 

used. In the preliminary stage, consideration of research gaps informed the choice of the subject area. 

There was emphasis on extending agricultural production and research beyond the main food basket 

areas, as well as the need to select a representative area with the diversity in agro ecologies led to the 

selection of the six eastern counties (Embu, Meru, Tharaka Nithi, Machakos, Kitui and Makueni). The 

counties represent the seven agro-ecological zones in Kenya.  

The next step in sampling involved an assessment of the micro-climatic variations and homogeneity. 

Using Multi-Criteria Dimension Analysis (MCDA) function in R, the rainfall and temperature data 

and derivatives were used to generate a climate homogeneity map as shown in Figure 4.4. MCDA was 

selected due to its capacity to map relationships through proximity analysis and derive homogenous 

zones. From the map, areas representing unique and mixed micro-climates were identified and used to 

select 17 wards (Meru county - Antubetwe-Kiongo, Akachiu and Nyaki east; Embu county - Nthawa 

and Muminji wards; Tharaka Nithi county - Mwimbi and Igambangombe; Makueni - Kiimakiu-
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Kalanzoni, Kiteta-Kisau and Muvau-Kikumini; Machakos - Matungulu North and Upper Kaewa-Iveti; 

Kitui - Tseikuru, Mumoni, Mutongoni, Mulango and Mutha). Within these selected wards, further 

stratification was done by overlaying agricultural areas. From the agricultural areas, sampling points 

were derived.  

 

Figure 4.4 Sampling site selection based on climate homogeneity and variability.  

A limited population (p) was used to generate the representative sample, which was then calculated 

using a 99% confidence level and a 5% degree of variability in Equation 4.1 below. 

𝑛′ =
𝑛

1 +
𝑧2 × 𝑝(1 − 𝑝)

𝜀2𝑁

 

Equation 4.1 Calculating the representative sample. 

Calculations based on a finite population sample n, where z defines the z score, 𝜀  defines the error 

margin, N represents the size of the population and p the proportion of the population. The population 
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proportion was represented by the total farming households in the lower eastern region identified from 

the Kenya National Bureau of Statistics 2019 Census ((KNBS, 2019)). Using N = 1,042,046, 𝜀 = 5%, 

confidence level = 99% and p = 50%  and the standard z-score for the selected confidence level = 2.58 

the study arrived at a 666 representative farming households sample size.  

To assist data collectors in navigating to the nearest farming household based on the sampling location, 

maps were generated using google maps overlays with landmarks added and each sub-location split 

into detailed maps associated with the landmarks as shown in Figure 4.5.  

 

Figure 4.5  Google maps for navigation for Igamba-Ngombe ward in Tharaka Nithi county 

 

4.3.2 Data collection tools 

The questionnaire for data collection (see Appendix A1) was designed to collect data on the population, 

their demographics, as well as perceptions and understanding of climate change, access to information 

and resources, their coping and adaptation mechanisms, sensitivities that negatively impact their 

capacity to produce, gendered capacities to decision making, and their priorities. The questionnaire 

was created and coded into Kobo toolbox with functionality for data collection on web and mobile 

developed. All automation and hard coding in the fields was done to optimize the quality of data 
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collected. Once the tool was evaluated, accounts for data collectors were created ahead of the field 

training. The kobo toolbox mobile application called Kobo Collect was used during the training of 17 

data collectors, identified through the county extension officers and KCSAP county offices. After the 

training and testing of the tool, the questionnaire and form were improved, and the final version was 

used to collect the data. Slight variations in locations of data collection were made due to accessibility 

issues and all collected data points are indicated in Figure 4.6. 

 

Figure 4.6 Valid questionnaires by county 

After data cleaning, a total of 860 samples were used in the analysis spread across the area of study as 

shown in Figure 4.5. The full questionnaire as used on Kobo Toolbox is available as Appendix A1.  

4.4 Data processing 

4.4.1 Tools 

With its free cloud-based computing capabilities for geospatial data analysis and access to most of the 

publicly accessible, multi-temporal Remote Sensing (RS) data, Google Earth Engine (GEE) offers a 
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scalable, cloud-based geospatial retrieval and processing platform. Artificial intelligence is a 

significant enabler for automating RS imagery interpretation, especially with object-based domains, 

hence integrating AI techniques into GEE is one way to operationalize automated RS-based monitoring 

systems (Yang et al., 2022).Other tools such as R-Statistics provide open-source, freely available 

libraries that ease spatial and statistical data exploration and visualization, with a recent increase in 

geospatial data manipulation tools (Minegishi et al., 2020). The codes are available under Appendix 

2A. 

4.5 Developing historical baselines 

4.5.1 Rainfall 

The CHIRPS dataset has been widely calibrated in Africa with demonstrated skill for estimating 

rainfall with higher temporal and spatial accuracies especially over East Africa(Gleixner et al., 2020; 

Muthoni et al., 2019; Shukla et al., 2021). To assess the quality of the sensor (satellite) data, pair plots 

in R statistics using a combined sensor-station stack, were derived across the epochs and seasons 

(MAM and OND). Pair plots helps to visualize the distribution of single variables and relationships 

between two variables.  

Pearson’s correlation was used to give an indication of the measure of the relationship between sensor 

and station data, with values closer to one representing strong positive correlation. CHIRPS and station 

rainfall data showed good correlation across MAM and OND in the two epochs (1990-2005, and 2006-

2020) at **0.87, except during the 2006-2020 OND where the correlation was **0.55. However, across 

the two epochs, station data was used to unbias the sensor (satellite) estimates to improve the quality 

of input as shown in Figure 4.7.  
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Figure 4.7  Assessing Precipitation correlation between Station and Sensor (CHIRPS) blended data across MAM and OND 

4.5.2 Temperature 

Despite the increasing availability of stations improved satellites dataset, there is a gap in daily 

temperature datasets that overlooks their role in land surface interactions. Reanalysis products provide 

complete and coherent climate datasets to get over these data limits, generating the best estimates of 

climate data without geographical or temporal gaps. This is done by combining forecast model 

estimates with observations through data assimilation. However, there are significant regional, 

variable, and terrain-specific variations in the reanalysis data's accuracy (Gleixner et al., 2020). The 

European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) component 

provides continuous daily 2m land surface temperature. The land surface temperature from ECMWF-

ERA, was regressed against weather station temperature data. In preparing the data for regression, the 

two datasets were merged into an equal length data frame, and ERA data transformed from Kelvin to 
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Celsius. Station and sensor data compared well with a positive correlation of approx. **0.87 across 

the epochs and seasons. Station data was used to unbias the sensor data (see Figure 4.8).  

   

Figure 4.8 Assessing Temperature correlation between Station and Sensor (ERA) blended data across MAM and OND 

Given the quality of temperature data and the localized study area size, a further test was done using 

Pearson’s coefficient to derive line of best fit and a heatmap was produced across temporal scales. The 

NumPy python library’s statistics package np.corrcoef, that return a matrix of Pearson correlation 

coefficients was used. The satellite and sensor data had an r value of **0.78 in sampled stations 

demonstrating a strong relationship in the estimates and providing value in the use of the ERA 

temperature data for this research. Sample outputs from Machakos are depicted (Figure 4.9).  



 

51 

 

 

  

Figure 4.9 Demonstrating Pearson’s correlation between ERA satellite and station temperature data and rainfall for Machakos County 

using box plots. 

4.5.3 Uncertainty management in precipitation and temperature data 

To unbias station versus sensor (satellite) temperature and precipitation data, we employed several 

techniques. Firstly, we utilized calibration to address systematic biases originating from consistent 

errors within instruments or data processing. This involved comparing station data with reliable 

satellite data or well-maintained reference stations, allowing us to adjust the station data to a known 

standard and reduce systematic offsets, thus ensuring a more accurate representation of climatic 

conditions. Additionally, data homogenization was employed to account for non-climatic factors 

affecting station data, such as instrument changes or land-use modifications. Through statistical 

analysis, historical data was adjusted to reconcile these changes and maintain consistency with current 

data, effectively isolating the true climatic signal. 

In terms of outlier removal, we implemented thresholding with historical averages and the interquartile 

range (IQR) method. Thresholding with historical averages involved setting thresholds based on 

deviations from historical averages to identify potential outliers, while the IQR method identified 

outliers based on deviations from the median within the interquartile range. This method offers a more 

robust approach to outlier identification. The IQR represents the spread of data between the 25th and 

75th percentiles, capturing the central portion of the data distribution. Points falling outside 1.5 times 

the IQR from the median are considered potential outliers. This method is less sensitive to the influence 
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of extreme values within the data compared to simple thresholding. The IQR was sufficient since the 

data was already thresholded with historical averages hence the data wasn’t skewed as also 

demonstrated in (Liu et al., 2018). 

Outlier removal was prioritized before unbiasing to ensure that the unbiasing process did not 

inadvertently introduce further uncertainties by adjusting for biases based on potentially erroneous 

outliers. By removing outliers first, we created a cleaner dataset for subsequent unbiasing steps, 

improving the quality of the final temperature and precipitation data. By combining these techniques, 

we effectively addressed both bias and outliers in station and satellite data, resulting in a more accurate 

and reliable representation of climatic conditions for our analysis. Plots of station and sensor data after 

removal of outliers visible in previous assessments and unbiasing, are shown in Figure 4.10.  

 

Figure 4.10 Station-Sensor graphs across weather stations in Machakos for Temperature and Precipitation 
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4.5.4 Potential Evapotranspiration (PET) 

PET was computed from the improved rainfall and precipitation. While the Penman-Monteith equation 

is mostly used to compute PET, it requires many inputs including solar radiation which was not 

available. A popular empirical technique for calculating potential evapotranspiration is the 

Thornthwaite (1948) equation (PET). The only quantities required are the average monthly air 

temperature and the average daily daylight hours for each month, which can both be calculated from 

latitude (Patel, 2007). PET is normally expressed millimetres (mm) per unit time (see Equation 4.2). 

 

𝑃𝐸𝑇 = 16(
𝐿

𝑁
)(

𝑁

30
)(

10𝑇𝑑

𝑁
)∝ 

 

Equation 4.2 Computing Potential Evapotranspiration using Thornthwaite equation. 

 

The potential Evapotranspiration, PET is estimated in mm/month, with the daily average represented 

by Td, days in the month represented by N, L length of day average and ∝= (6.75𝑥10−7)𝐼3 −

(7.71 − 10−5)𝐼2 + (1.792𝑥10−2)𝐼 +  0.49239  is the heat index which depends on Tmi which 

represents the 12 monthly average temperatures. 

4.5.5 Length of the Growing Period (LGP)  

LGP is a crucial statistic in determining the agricultural potential and subsequent zonation since it 

shows days with the right precipitation, temperature, and soil moisture for growing crops (Kabubo-

Mariara et al., 2015; Seo, 2014; Vrieling et al., 2013). LGP is defined as the time of year when 

precipitation + soil moisture exceeds 50% of the PET and average temperatures are greater than or 

equal to 5oC. (Refer to Equation 4.3). A normal growth phase that satisfies the complete 

evapotranspiration needs of crops and refills the moisture requirements of the soil characteristics is 

defined by an excess of precipitation over PET. Utilizing historical rainfall data to assess LGP for 
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specific years allows for estimation of risk and potential output under average climatic circumstances 

while also accounting for inter-annual changes and the resulting adaptability of land (FAO, 1996) .  

 

𝐿𝐺𝑃 = (𝑃 > 0.5𝑃𝐸𝑇) 

Equation 4.3 Computing the length of growing period.  

4.5.6 Moisture Index 

The moisture regimes are particularly helpful in recording the cyclical oscillations of effective 

moisture and are used to denote moist or dry climates (Patel, 2007).The improved moisture index of 

Thornwaite and Mather's (1955) methodology, was derived using annual rainfall and potential 

evapotranspiration, using the previously computed PET and unbiased rainfall as inputs. (See Equation 

4.4).  

𝑀𝐼 = [( 𝑃 –  𝑃𝐸𝑇)/𝑃𝐸𝑇]  ∗  100 

 

Equation 4.4 Calculating Moisture Regimes              

Where MI defines the Moisture Index  

P is the Rainfall (mm)  

PET represents the Potential Evapotranspiration in mm. 

4.5.7 Slope and drainage constraints 

The Shuttle Radar Mission Topography elevation (SRTM) corrected to remove voids was used to 

derive slopes which were used and classified into the following categories. 0–2%, 2–5%, 5–8%, 8–

16%, 16–30%, 30–45% and >45%. Constraints for agricultural production due to slope were defined 

as follows: <8% no constraint, 9-15% slight constraint,16-30% moderately constrained, >30% severely 

constrained according to the Agro-Ecological zonation guidelines (FAO, 1996). 

4.5.8 NDVI Dry Matter (DM) as a proxy for productivity 

Standing green biomass can be accurately estimated using the NDVI (Normalized Difference 

Vegetation Index), which is a good indication of biomass and vegetation production (Miller et al., 
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2019; Ndungu et al., 2019). The National Oceanic and Atmospheric Administration's Advanced Very 

High-Resolution Radiometer (NOAA-AVHRR) MOD13A2 NDVI is the continuity index to the 

current NDVI data for the full assessment period. The 16-day imagery of the maximum seasonal 

MOD13A2 NDVI was used to calculate plant dry matter (DM), or biomass (Aravind, 2006; Patel, 

2007). Dry Matter Productivity is also known as Net Primary Productivity and it is used as an indicator 

of both crops and pasture productivity (Rodigheri et al., 2020). DMP was computed from max NDVI 

(Equation 4.5) by season for the two epochs. 

𝐷𝑀 = (1.615 ∗ 𝑁𝐷𝑉𝐼𝑚𝑎𝑥)1.318 

 

Equation 4.5  Computing Dry Matter as a proxy for seasonal biomass. 

4.5.9 Soil suitability for agricultural production 

The soil maps were downloaded using the Soil and Terrain database for Kenya (KENSOTER) (at a 

scale of 1:1,000,000), version 2.0, from the International Soil Reference and Information Centre 

(ISRIC) geo-data hub. According to the FAO criteria on soil suitability in creating AEZ, the soil 

parameters were evaluated and recoded into eight groups, defining soil suitability from extremely 

appropriate to unsuitable (Batjes & Gicheru, 2004). 

4.5.10 Predicting the future 

The future predictions applied similar computations as the baseline but utilizing the downscaled 

climate projections and identified baseline biophysical characteristics.  

The acquired daily rainfall (precipitation) and average temperature data was processed for the 2040 

climate predictions for the RCP’s 4.5 and 8.5 representing the intermediate scenario and the dire 

scenarios of climate change, respectively. While climate projections are available up to year 2100, the 

goal of this thesis was to understand the near future changes in climate that are important to inform 

structuring of climate adaptation and mitigation priorities and investments. RCP 4.5 represents future 

scenarios where climate policies have reducing effect on the severity of climate change, while 8.5 

represents the worst or dire scenarios as seen in Fig. 4.11.  
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Figure 4.11 The Representative Concentration Pathways 

Projected MAM, OND potential evapotranspirations for 2040 RCP 4.5 and 8.5 were derived using the 

Thornthwaite (1948) equation in R. LGP was derived from the predicted temperature and rainfall for 

RCPs 4.5 and 8.5 across the two seasons. Moisture Regimes were computed using the predicted rainfall 

and PET for both RCPS and seasons. Predicted Aridity index was derived from the Terra-Climate 

database in GEE.  

Baseline period biophysical parameters including soil suitability and drainage were used and assumed 

to remain constant. Soil suitability for agricultural production was categorized from the Kenya Soil 

Survey (KSS) map and account for soil characteristics including texture and their relationship to 

supporting agricultural production. The baseline drainage map, which was produced using elevation 

data from the SRTM (Shuttle Radar Topography Mission), was used to build the soil suitability map 

(FAO, 1996; Jaetzold et.al.,1983).    
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5 RESULTS AND DISCUSSIONS 

5.1 Insights from tracking 30 years of change in AEZ in Kenya’s Lower Eastern 

Region 

In this section we focus on responding to the first and second research questions. To provide insights 

on how climate variability and change affected AEZ in the lower Eastern Region and the interpretation 

of the changes on agriculture. 

5.1.1 Interpreting the maps 

The methodology utilized both continuous and categorical variables, requiring fuzzification to create 

a normalized unit where direction and contribution of values accounts for its influence in the final 

Agro-Ecological zonation.  

5.1.2 Understanding the legends 

The fuzzified layers were stretched to a range of 0-1 representing a move from low to higher intensity 

in the variables.  

5.1.3 The Climate inventory 

The research evaluated historical change in 30 years at two checkpoints 1990-2005 and 2006-2020 

and across the two distinct wet seasons. Kenya’s rainfall is bimodal, with rain-fed production 

supported by the Long Rains (LR) and the Short Rains (SR) (Antony, 2017; RCMRD, 2018). This 

defined seasonality aligns with the Kenya Meteorology Department (KMD) definitions of growing 

seasons in Kenya and was adopted for this research since it captures the inter-annual variability in 

rainfall (Ericksen et al., 2018). To improve the quality of data and capacity to capture micro climatic 

variations, both station and sensor (satellite) datasets were used to create blended improved seasonal 

climatologies. The climate inventory was computed by combining normalized rainfall, temperature, 

PET, LGP and the Moisture index using AND logic and were assigned similar weights. Rainfall was 

unbiased using stations and the trends across the epochs and by seasons were evaluated using 

Coefficient of Variation (CV), allowing highlighting of significant change. 
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While research across East Africa presents diverse climatic projections for various regions (e.g., 

Adhikari et al., 2015; EroHerr et al., 2010; Knox et al., 2012; Kotir, 2011; Ochieng et al., 2016), a 

notable consensus emerges for specific areas within Kenya. Several studies  consistently predict an 

increase in rainfall for certain regions. This finding aligns with the observed stabilization of short rains 

in the ASAL (Arid and Semi-Arid Lands) region (RCMRD, 2018), which often coincides with 

projections for increased precipitation in these areas. This convergence of evidence from both future 

projections and observed trends strengthens the likelihood of increased rainfall in specific parts of 

Kenya. 

 

Figure 5.1 Trends in precipitation change for MAM and OND in 1990-2005 and 2006-2020 

The maps shown in Figure 5.1 represent the precipitation zones that have been normalized using fuzzy 

logic with the highest rainfall experienced towards the mountainous regions in Embu, Meru and 

Tharaka Nithi, and more rainfall received during OND than MAM. The lower eastern regions of 

Machakos, Kitui and Makueni received the least rainfall during MAM, but with higher amounts during 

OND which is the main planting season. Some meaningful change was observed during the MAM 

season, more predominantly across Machakos, Kitui and Makueni . This agrees with most projections 

that have predicted continued stability in OND and instability in the MAM season with greater gains 

anticipated in ASALS with the anticipated increase in precipitation (Adhikari et al., 2015; EroHerr et 
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al., 2010). The Standardized Precipitation-Evapotranspiration Index (SPEI) package, which contains 

the set of functions necessary for computing potential evapotranspiration and other drought indices, 

was used to implement the Thornthwaite-based PET computation in R statistics (Equation 2). 

Considerable change in PET was observed during both seasons with the arid areas in Kitui and north 

of Meru (Antubetwe Kiongo) and Tharaka Nithi, parts of Machakos and Makueni demonstrating the 

most change as shown in Figure 5.2.  

 

Figure 5.2 Potential Evapotranspiration and change for MAM and OND in 1990-2005 and 2006-2020 

However, increases in PET can override potential gains in precipitation as more water is lost through 

evaporative processes (Adhikari et al., 2015; Antony, 2017; EroHerr et al., 2010; Lane, Annie; Jarvis, 

2007) . LGP was computed in R with demonstrable shifts represented as change in number of days 

and through coefficient of variation. The lowland dryland areas of Kitui, Machakos and Makueni 

experienced a deterioration in the LGP during the short rains (OND) which represents the primary 

growing season with a loss ranging from -1 to -20 days. The highland regions of Embu, Tharaka Nithi 

and northern dryland parts of Meru experienced a slight loss ranging from -1to -10 days in most areas 

during both seasons. The lowlands drylands did not experience notable change during the long rains 

(MAM) season (see Figure 5.3).  
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Figure 5.3 LGP for MAM and OND in 1990-2005 and 2006-2010 

These changes in LGP impacts the range of crops that can be grown in these areas. With food security 

of  subsistence farmers and farming systems highly depending on crop selection in each season due to 

changes and variability in LGP across the seasons and years as well as due to longer term 

trends(Vrieling et al., 2013). Moisture regimes were derived and used to represent the zones in 

moisture availability. Distinct changes were observed during MAM and OND seasons across the entire 

region in terms of seasonal variability as shown in Figure 5.4. 

 

Figure 5.4 Moisture regimes for MAM and OND in 1990-2005 and 2006-2010  

A threshold was applied on unbiased temperature data to remove values that fall below the minimum 

needed for crop growth (FAO, 1996). This was represented as thermal regimes computed by applying 
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a >5degrees Celsius threshold on daily unbiased temperature data (Figure 5.5).  Most of the change in 

thermal regimes was observed in Machakos and from the highland’s areas of Tharaka Nithi and Meru 

with the change pronounced in both MAM and OND.  

 

Figure 5.5 Thermal Regimes for MAM and OND in 1990-2005 and 2006-2010 

To compute the climate regimes, all the inputs were first normalized using fuzzy logic before being 

combined to produce the climate regimes. The climate regimes consider the land surface water 

balances derived from moisture availability and evapotranspiration. Most of the change was observed 

from Machakos and in the highland’s areas of Tharaka Nithi and Meru with the change pronounced in 

both MAM and OND as shown in Figure 5.6. 

 

Figure 5.6 Climate Regimes for MAM and OND in 1990-2005 and 2006-2010 
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An aridity index was created to show how the climate affects agricultural productivity. Aridity index 

is a measurement of how dry the climate is and is based on rainfall and potential evapotranspiration 

(Greve et al., 2019). Utilized was Terra Climate's aridity index. The aridity index was calculated by 

dividing the average annual precipitation by the average annual PET. The values of the aridity index 

were divided into the following categories: hyper arid (0.05), arid (0.05-0.20), semi-arid (0.20-0.50), 

and dry sub-humid (0.50-0.65). The aridity index was then fuzzified and the variation from the seasonal 

average in the two epochs computed. Considerable change was observed in the aridity index especially 

in the central and eastern belts representing notable change between the two epochs during the MAM 

season. Aridity index is defined as a constraint to agriculture production and the observed change 

corresponds to the disturbances observed during the MAM season (see Figure 5.7). 

 

Figure 5.7 Aridity Index and change  

5.1.4 Land inventory 

The land inventory was derived from biophysical characteristics of the land which are static layers. 

These include slope, soil drainage, soil suitability for agricultural production and land productivity 

(FAO, 1996). Higher slopes represent access and use constraints, while soil drainage influences soil 

productivity as shown in Figure 5.8.  
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Figure 5.8 Fuzzified and reclassified slope and soil drainage maps  

The land productivity was defined by the Dry Matter Productivity layers which detected slight changes 

in vegetation productivity around in the Meru areas close to Mt. Kenya, on the western parts of Tharaka 

Nithi and lower Kitui (see Figure 5.9). 

 

Figure 5.9 Dry matter productivity representing vegetation productivity.  

The soil type, drainage capacity, elevation, depth, consistency was used in defining suitability for 

agricultural production (FAO, 1996; Jaetzold, et al.,1983). The soil and drainage suitability layers were 

represented without fuzzification (see Figure 5.10). 
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Figure 5.10 Soil suitability and soil drainage for agriculture production 

The land inventory was derived by using the outlined biophysical or agro-edaphic parameters including 

slope constraints, dry matter productivity, soil suitability and drainage which were taken through an 

addition overlay of each other, after which the layers were smoothened by majority filter method in 

Quantum GIS (QGIS) to attain the desired output since they are categorical variables. The addition 

logic was a suppressing model, where agro-edaphic layers would give prominence to the climatic 

layers, but still contribute to generation of AEZ. 

5.1.5 Deriving AEZ 

The climate and land inventories were subjected to the fuzzy logic with inverse and direct relationships 

applied to produce the final agro-ecological zones. However, the fuzzification process, as with other 

methods such as the Principal Component Analysis (PCA), or the Multi-Criteria Decision Making 

(MCDM) work well with continuous data. When continuous and categorical data are used, additional 

weighting is required to ensure that the influence of each layer in the overall assessment was 

considered. Additional re-assignment and weighting was therefore done in QGIS as illustrated in 

Figure 5.11. 
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Figure 5.11 Agro-ecological zones for MAM and OND for 1990-2005 and 2005-2020 

The resulting AEZ from the fuzzy classifier identified seven distinct agro-ecological zones 

representing different land potential, providing a better understanding of the micro-agro-ecology than 

has been previously defined as described in table 5.1.  

Table 5.1 Definition of the AEZ Zones 
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To understand the change in the Agro ecologies, a difference image was derived for MAM and OND 

across the two evaluation time periods (1990-2005 and 2006-2020) (see Figure 5.13).  

 

Figure 5.12 Changes in Agro Ecological Zones and corresponding change in the LGP 

To understand the direction of change, a sampling of the variables across the agro-ecological zones 

was done and the change in AEZ represented together with the change in the LGP. The positive change 

means that category has moved to the next class, representing a worsening situation. For example, 

change from arid (6) to Per-arid (7) is negative. These negative changes in the AEZ, representing a 

decreasing potential for agricultural production, also correlate with the variations in the length of the 

growth season. However, some areas experienced an improvement in their agro ecologies. While these 

improvements are not significant as evidenced in the Coefficient of variation map, they however 

provide an insight on the possibilities in the diverging shifts in seasons and trends in both the Long 

and the Short rains. Specifically, there is an improvement in the Lower Midlands agro-ecology with a 

large part shifting from per-arid to Arid during the Long Rains (MAM) representing improving 

potential in the previously per-arid areas. Slight improvements in the AEZ and LGP were also observed 

the Mountain areas of Meru. 
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5.2 Opportunities for Optimizing Agriculture and Climate Adaptation in the 

Lower Eastern region in Kenya 

5.2.1 Changing Agro-Ecological potential in a changing climate 

To capture the microvariations, all layers were acquired at a scale of 1km or less where possible and 

resampled to the same scale. Fuzzy logic was used to normalize the outputs. Change was derived from 

the 2020 baseline assessments. From the assessment, the expected climate shifts and increase in 

precipitation was observed, with higher gains observed during OND than MAM. RCMRD (2018) 

assessed and found that future seasonal precipitation is possibly going to increase during MAM under 

all scenarios, with higher increase over eastern parts of Kenya as shown in Figure 5.13. 

 

Figure 5.13 Precipitation range across MAM and OND for 2040 RCP’s 4.5 and 8.5 

Increasing temperature was observed across the region, with the higher increase observed in lower 

eastern part, but more pronounced in MAM than in OND (see Figure 5.14). This is consistent with 

estimates of increases in temperature that indicate a warmer future for practically all of Kenya.  
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Figure 5.14 Thermal Regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5 

Similar trends in aridity index and temperature were observed. The addition of aridity index helped 

overcome data quality in assessment of change in temperature in RCP 4.5 MAM season. In the near 

future, the annual surface temperature is predicted to climb between 1.0 °C and 2.0 °C under the 

RCP4.5 scenario, whereas the RCP8.5 scenario predicts a rise between 1.5 °C and 2.5 °C (RCMRD, 

2018).  

 

 

Figure 5.15 Changes in temperature and Aridity Index during MAM, OND in 2040 RCPs 4.5 and 8.5 

Reductions in the aridity index of approx. 0.1 were notable in the Lower drylands of Makueni and 

Kitui. This correlates with the expected improvements in precipitation in the lowlands which would 
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reduce the aridity levels. Increasing aridity levels of approximately 0.1 to 0.4 were observed across 

Machakos, Embu, Tharaka Nithi and Meru (see Figure 5.15). 

The temperature and precipitation data were used as an input to derive the Potential Evapotranspiration 

(PET), the LGP as well as the Moisture and aridity indexes. The projected climate outputs were 

compared with the baseline seasonal temperature, derived using the same methods.  Agriculture is 

negatively impacted by an increase in PET because more water is wasted through evaporation and 

transpiration (Kogo et al., 2021). 

 

Figure 5.16. Potential Evapotranspiration and change across the seasons and Epochs. 

Results show an increase in PET, with RCP 8.5 showing a more dramatic rise than RCP 4.5 (see Figure 

5.16). The highest increases were observed in already constrained areas, such as Embu, Tharaka Nithi, 

North Meru and lower sides of Kitui. This increase agrees with other studies where the increase in 

PET offsets the increase in rainfall in ASALs especially (Adhikari et al., 2015; EroHerr et al., 2010). 

LGP was computed using baseline and future daily inputs and the seasonal change computed. 
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Figure 5.17 Changes in the LGP days during MAM, OND in 2040 RCPs 4.5 and 8.5 

Highlands experience a significant decrease in LGP (-20-80) in RCP 4.5 in MAM while lowland 

drylands remain stable. Areas like Meru and Tharaka Nithi experience a negative change in LGP, this 

means that crops like tea/coffee might not be viable in future. Lowland drylands experience an increase 

of +20 in OND in all scenarios. LGP improve in lowlands drylands in future compared to bleak 

baselines (see Figure 5.17). Parts of the north arid areas of Meru also showed an increase in LGP. 

However, the main growing areas in Meru showed a reduction in the LGP of 1-10 days in MAM for 

RCP 4.5 and 8.5. OND projections for RCP 4.5 and 8.5 exhibited negative trends for the main growing 

areas in Meru. Higher increase in LGP OND over lower eastern areas of Kitui and Machakos, and in 

the upper parts of Machakos and Embu where a 1–20-day increase was observed in RCP 4.5. However, 

the highland areas experienced a reduction in LGP. Similar but more pronounced trends were observed 

in the RCP 8.5. These changes are anticipated to change the suitability of crops and similar changes in 

baseline LGP were observed in other studies (Vrieling et al., 2013). 

Higher increases in effective moisture were observed in the eastern dryland regions, with the losses 

more pronounced in Machakos, Embu, Tharaka Nithi and Meru in OND (see Figure 5.18).  
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Figure 5.18 Changes in Moisture Index during MAM, OND in 2040 RCPs 4.5 and 8.5 

Climate regimes were computed from PET, thermal regimes, moisture index and the LGP computed 

by season. The inputs were first normalized using fuzzy logic before being combined to produce the 

climate regimes (see Figure 5.19).  

 

Figure 5.19  Climate Regimes for MAM, OND in 2040 for RCPs 4.5 and 8.5 

Soil suitability and soil drainage derived from the soil and elevation data portray the biophysical 

suitability for agricultural production (Figure 5.20). 
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Figure 5.20  Soil suitability for agricultural production and drainage 

Climate regimes and biophysical parameters were normalized using fuzzy logic and used as inputs to 

the definition of the AEZ. Linear and inverse relationships were applied based on the variable’s 

contribution to agriculture potential. An inverse relationship applies in the interpretation of AEZ 

change maps. For example, a change from 7 (per-arid) to 6 (arid) represents improved potential. 

Around Machakos, Embu, Meru, and Tharaka Nithi, the agroecological potential suffered the greatest 

losses, which were more pronounced in RCP 4.5 MAM than in RCP 8.5 MAM (see Figure 5.21). 

Improvements in AEZ were more notable during the OND for both RCPs in the Lower Eastern Region, 

corresponding with the noted increase in precipitation and LGP.  
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Figure 5.21 Agro-Ecological Zones and change maps from a 2020 baseline and RCP 4.5 2040  

5.2.2 Defining the scope for field data collection 

The data collection process encompassed a comprehensive scope of demographic, agricultural, and 

climate-related factors. Demographic information included gender, incomes, decision-making 

dynamics, farm size, and prevailing farm systems. The present cropping system was analyzed in terms 

of rainfed versus irrigated systems, as well as mixed systems categorized by land size, with attention 

to income diversity and production systems.  

Understanding the drivers of vulnerability involved identifying groups most susceptible to food 

insecurity, considering factors such as land size, production trends, and coping strategies. Perceptions 

of climate change, including perceived positive and negative responses, were assessed alongside 

sources of information on climate forecasts and extension services. Participants' insights on 

investments to mitigate climate change impacts on their livelihoods are gathered, including barriers 

and opportunities. The intensity of the vulnerability was assessed ranging from low to remarkably high 

for several indicators such as season change, production change, increased prevalence of pests and 
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diseases, increased vulnerability to floods and droughts. Adaptation measures are explored in soil, 

water, and farming methods to inform strategies for building resilience in agricultural practices.  

5.2.3 Confirming changes in length of growing period 

In a survey conducted through consultations with 860 farmers representing the agro-ecologies and 

agroclimatic zones in the region, we sought to validate if the seasons are changing especially through 

a change in the length of the growing period and its impact on food production. From the data collected 

across all the microclimates, we confirmed that the length of the growing period is changing and 

becoming more erratic and is directly impacting food production . All counties experienced varying 

shifts in the length of the growing season with the highest shift being reported in Kitui, presumably 

due to user feedback bias as to the level of intensity as it was qualitative.  

We sought to assess the changes in a more granular level by looking at the changes in each of the 

wards representing a microclimate where data was collected. All wards experienced a decrease in 

production as seen in the figure 5.22  below. 

 

Figure 5.22 Validating changing seasons length and production 
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Further, food security was noted to be still a major concern in most of the households, despite 

diversification in farming systems and despite larger land holdings as shown in Figure 5.23. 

 

Figure 5.23 Relationship between land size and food security and demographics 

Different adaptation measures were being adopted (see Figure 5.24). Most farmers adjusted their 

farming by adopting drought resistant crops, adjusting planting dates and diversifying livelihoods to 

include livestock keeping. Soil management focused on use of manure, retaining residue and zero 

tillage. Water harvesting and conservation methods were also used to manage water availability.  

 

Figure 5.24 Farmers adaptation strategies for farming, soil, and water management 
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These adaptation mechanisms were enabled through farmers initiatives as well as government and 

donor investments in the region. Lack of capital, lack of storage facilities and challenges accessing 

extension and education were identified as key barriers (see Figure 5.25).  

 

Figure 5.25 Adaptation Barriers 

5.2.4 Opportunities for adapting and transitioning adaptation strategies 

This section responds to the 3rd research question on opportunities that observed changes presented in 

improving adaptation in the region’s agricultural production systems. 

5.2.4.1 Gender focused adaptation mechanisms 

Gender influences the success of adaptation mechanisms. For example, the survey found that female 

headed households adapted by diversifying food crops, while male headed households adapted by 

diversifying cash crops with reported higher incomes (see Figure 5.26). Female headed households 

would be more interested in improving their food security first. 
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Figure 5.26 Gender based adaptation. 

Future adaptation mechanisms will need to be structured with the sensitivities of gender and population 

groups considered. For example, high yielding, drought resistant and early maturing food crops would 

be more appropriate for female headed households. 

5.2.4.2 Agricultural zoning 

From the survey, reported food insecurity in large (>5acres) points to challenges in land utilization and 

optimization of farming activities to increase return on investments. Agricultural zonation, where 

farmers, collectively plant specific suitable crops for their agro ecologies has been used to optimize 

production and accessibility to markets, improving the resilience of farmers.  

5.2.4.3 Focused diversification of farming systems 

The projected increase in rainfall and length of growing period in the lowland drylands (from per 

arid/arid to arid/semi-arid) presents an opportunity to shift purely rangeland areas to agro-pastoral 

production. RCMRD (2018) confirmed that higher runoff in OND was observed in lower dryland 

areas. This represents an opportunity for water harvesting for increasing agro-pastoral systems. In the 

midland areas of Embu, Tharaka Nithi and Meru, adaptation mechanisms would need to focus on the 

projected loss in agricultural potential to introduce production systems matching with the reduced 

potential.  

5.2.4.4 Customizing adaptation based on vulnerabilities 

An understanding of perceptions of drivers to vulnerability was found to be different between food 

secure and food insecure respondents. An assessment of the education levels of the respondents did 

not seem to affect their perceptions on their sensitivity to climate change. However, there were distinct 

variations in the definitions of the responses from food secure and insecure households (see Figure 

5.27). For example, food secure households responded that they were more affected by farm 

destruction caused by floods and post-harvest losses than drought, poverty, and inflation. This would 
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mean that in food secure areas, management of post-harvest losses was more important as well as 

mitigation of flood related destruction. 

Food Security  Secure Insecure Farmers perception on vulnerability drivers 

Food crops Diversity 

                     

3.19  

                      

3.13  Food insecure persons have less food crops diversity by about 2% 

Cash Crops Diversity 

                     

1.58  

                      

1.41  

Food insecure persons have less Cash crops diversity by about 

13% 

No Positive Climate 

Change Outcome 

                     

0.40  

                      

0.46  

Food insecure people find negative climate change to blame for 

their food insecurity 

Impact on Production 

Trend 

                     

0.97  

                      

0.95  

Food secure people are more impacted by climate change on their 

production. 

Impact on Food Security 

                     

3.22  

                      

3.66  Food insecure people are more impacted by climate change 

Season Change 

                     

4.90  

                      

4.88  Food secure people are more impacted by season change 

Rain Time Change 

                     

5.12  

                      

5.12  

Rain time change is insignificant to food security among 

respondents 

Drought Crop Fail 

                     

4.83  

                      

4.87  Food insecure people are more susceptible to drought crop failure 

Flood Farm Destruction 

                     

3.61  

                      

2.28  Food secure people were more affected by farm flood destruction 

Post Harvest Loss 

                     

4.56  

                      

3.69  Food secure were more affected by post-harvest losses 

Pests 

                     

4.68  

                      

4.76  Food insecure people were more affected by pests 

Diseases 

                     

4.50  

                      

3.59  Food secure people were more affected by diseases 

Poverty food shortage 

                     

4.57  

                      

4.95  Food insecure people are susceptible to poverty food shortages 

Lack of Water 

                     

4.78  

                      

4.29  

Food secure people identified lack of water as a significant climate 

change issue on their production 

Soil Fertility Degradation 

                     

4.82  

                      

3.46  

Food security people identified soil fertility degradation as an 

issue. *Probably food insecure people do not know how to assess 

soil degradation 

Crop Viability 

                     

4.66  

                      

3.74  

Food secure people identified climate change as a significant driver 

to reduced crop viability 

Livestock Death 

                     

4.11  

                      

2.81  

Food secure people are livelier diversified to livestock given the 

high impact they noted on livestock due to climate change 

Inflation on Costs of 

Inputs 

                     

5.53  

                      

5.72  

Food insecure people are highly vulnerable to inflation on cost of 

inputs 

Figure 5.27Perceptions of Vulnerability 

5.2.4.5 Converging technology and indigenous knowledge for adaptation  

Most respondents accessed forecasts and using them to inform their farming activities. It is important 

to note that 27% of the farmers use indigenous knowledge of forecasts and seasons change to adapt 

their farming. The convergence of technological advances and indigenous knowledge can be harnessed 
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to increase access to information for optimizing adaptation. Further, education did not emerge as a 

considerable barrier to access to forecasts since TV and radios provided vernacular translations (see 

Figure 5.28). 

 

Figure 5.28 Access to information and forecasts 

5.2.4.6 Innovations for de-risking agriculture and use of technologies   

There is an increasing investment in de-risking agriculture in Kenya, with the government subsidized 

crop insurance extended to 33 counties covering high, medium and marginal production areas. 

Lowland drylands have especially benefited from higher subsidies from the government. The top 

barrier was cited as lack to capital and extension/education, as well as mechanization.  

Opportunities for innovative financing of farmers is required, as well as education to ensure that there 

is a return on investment for the farmer. The increasing mobile and internet connectivity has made 

farmers more accessible. The African Union, through its digital Agriculture strategy has emphasized 

on the need for countries to register their farmers and develop agricultural data hubs that harness 

technological advances to deliver customized information, resources, and opportunities for farmers 

(African Union, 2020). 
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5.3 Discussion 

30 years of data on Kenya's Lower Eastern Region's AEZs reveal a clear connection between climate 

shifts and agricultural challenges. This groundbreaking study employed a powerful approach, 

integrating various climate data points to paint a detailed picture. It analysed historical climate records 

(1990-2020) alongside future projections (2040) to understand how temperature, rainfall, potential 

evapotranspiration, growing season length, and aridity are changing. This data, along with land 

biophysical characteristics such as soil viability for agriculture production,  was then used to create a 

map of AEZs. 

What makes this study unique is its use of scalable cloud computing. Unlike traditional desktop 

processing with limited power, this approach harnessed the vast resources of cloud computing, 

allowing for a more robust and replicable analysis. This innovative method overcomes processing 

limitations and paves the way for future studies of this nature (Amani et al., 2020; Twagiramungu, 

2022). 

By delving into historical climate data for Kenya's Lower Eastern Region, the research pinpointed how 

key variables have shifted over two distinct wet seasons. Focusing on rainfall, temperature, potential 

evapotranspiration (PET), length of growing period (LGP), moisture index, aridity index, and thermal 

regimes, the study revealed significant trends. Notably, precipitation patterns changed, PET levels 

fluctuated, and LGP varied across different regions and seasons with a confluence in evidence from 

other research and projections (RCMRD, 2018). 

These findings resonate with existing research that projects increased rainfall in specific areas of 

Kenya. This highlights the importance of a two-pronged approach in climate assessments, considering 

both observed trends and future projections to create a more complete picture. The observed changes 

in climate variables directly impact agricultural potential and productivity (Knox et al., 2012). For 

instance, increases in PET can lead to water loss through evaporation, potentially offsetting gains from 

increased precipitation. Changes in LGP affect the timing and suitability of crop cultivation, 
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particularly in regions experiencing shifts in growing seasons(Vrieling et al., 2013). Moreover, 

alterations in moisture availability and thermal regimes further influence agricultural practices and 

crop viability (Ochieng et al., 2016). These findings underscore the need for adaptive strategies to 

mitigate risks and optimize agricultural production in response to changing climate conditions. 

The study's approach also integrated biophysical factors such as slope, soil drainage, soil suitability, 

and land productivity to assess agricultural suitability and land use constraints(FAO, 1996). By 

combining climate and land inventories using fuzzy logic which has been proved applicable to 

agricultural studies and use of disparate data formats, the study derived AEZs that provide valuable 

insights into micro-agroecological variations (Cassel-Gintz et al., 1997; Praseyto et al., 2013; Sharma 

et al., 2007) 

The findings highlight opportunities for optimizing agriculture and climate adaptation in the Lower 

Eastern region of Kenya. These include recognizing gender-specific vulnerabilities and adapting 

strategies accordingly to enhance resilience and food security among different demographic groups, 

responding to the need for gendered resilience information delivery and adaptation mechanisms (Ngigi 

& Muange, 2022). Implementing agricultural zoning strategies based on AEZs can optimize crop 

selection and land use practices, improving resilience to climate variability(Kurukulasuriya & 

Mendelsohn, 2008; Ojwang et al., 2010). 

 Leveraging projected changes in rainfall and growing periods to diversify farming systems, including 

agro-pastoral production in lowland drylands, can enhance resilience and livelihoods (Silvestri et al., 

2012).  

Tailoring adaptation measures to address specific vulnerabilities and perceptions of different 

population groups can ensure effectiveness and inclusivity in climate resilience efforts (Obwocha et 

al., 2022). Integrating technological advancements with indigenous knowledge systems can enhance 

access to climate information and adaptation strategies, fostering community resilience. Investing in 

innovative financing mechanisms, digital agriculture platforms, and climate-smart technologies can 
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help de-risk agriculture and enhance adaptive capacity among farmers(Digital Economy for Africa 

Initiative, 2023). 

While climate change occurs gradually, changes in seasonality can provide a good indication of the 

intensity of the variations and their influence on production systems. Combining continuous variables 

such as climate and categorical variables such as land biophysical parameters; adds significant value 

to understanding the agro-ecology as evidenced by the detail in the definition of the agro-ecological 

zones (Musafiri et al., 2022).  

The study provides a use case for the value of blended data inputs into micro-assessments in terms of 

improving the quality of observations and detection of change.  While in some cases, the intensity of 

the change was not clearly manifested, the outputs point to identification of hotspots that require further 

evaluation at localized scales to understand the climate-human interactions and structure appropriate 

responses and adaptation strategies.  

Furthermore, even in “well-known” hotspots, such as parts of Northern Meru, Machakos, Kitui and 

Makueni, the varying degrees and intensities of change can inform a restructuring and review of 

priorities and the efficacy of existing adaptation structures. From the assessments, distinct losses and 

gains are being observed as both seasons change, presenting a changing potential that needs to be 

factored in, in the design and investments in climate adaptation and mitigation potentially responding 

more effectively to the diverse needs of farmers (Gebre et al., 2023; Manzi & Gweyi-onyango, 2020). 
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6 CONCLUSIONS, RECOMMENDATIONS AND CONTRIBUTION 

TO KNOWLEDGE 

6.1 Conclusions 

This research has successfully unveiled the dynamic landscape of changing and variable climate, as 

well as shedding light on the inversely shifting Agro-Ecological Zones (AEZ) in Kenya's Lower 

Eastern Region. The confirmed hypothesis underscores a pivotal moment for rethinking the 

conventional "business as usual" approach to climate investments and adaptation strategies. As COP27 

sounded the alarm for transformative action, it is evident that the historical trajectory has not yielded 

commensurate gains in emission reduction, necessitating a change in basic assumptions in our 

approach. 

The identified trend of decreasing agro-potential in traditionally labelled "food basket areas" and a 

simultaneous increase in low agro-potential regions, particularly in Arid and Semi-Arid Areas, calls 

for urgent action. The research proposes a groundbreaking method of prioritizing agriculture 

investments and adaptation strategies. By aligning these strategies with climate projections, we 

advocate for a forward-thinking workflow that can enhance the effectiveness of climate adaptation 

efforts and optimize Return on Investment (ROI). 

Recognizing the pivotal role of Agro-Ecological zonation in the Farm Management Handbook, this 

study emphasizes the transformative potential of emerging technologies, data, and techniques. We 

envision a game-changing scenario where adaptation priorities and investments are redefined in terms 

of scale, timeliness, and customization, ensuring a more precise alignment with the evolving climate 

dynamics. 

A key revelation from COP27 underscores the pressing need to rethink our trajectory in climate 

adaptation and investments. The African continent is increasingly turning towards farmer-centric 

digital systems, a strategic move to strengthen policy decisions and tailor services, investments, and 

interventions for farmers. Updated AEZ maps emerge as a critical input in this digital transition, yet 



 

84 

 

 

their true value lies in their adjustment based on future climate predictions and the anticipated changes 

in agro potential. 

6.2 Recommendations 

Considering the research findings, which provide compelling evidence of ongoing and future climate 

changes, the study proposes five key recommendations to elevate the country's responses and 

maximize returns on adaptation and resilience investments. 

6.2.1  Future proof agriculture investments and adaptation priorities 

 Emerging tech innovations are allowing predicting the future with greater accuracy, with large 

volumes of historical data learning from past patterns to give a clearer picture of future climate and 

agriculture risks. Decisions are increasingly depending on early warning information. Adaptation and 

considerable shifts require time. In the face of climate change and other uncertainties, it is crucial for 

agricultural and resilience strategies to be forward-thinking and adaptable. This recommendation 

emphasizes the need to prioritize and allocate investments in agriculture and resilience based on future 

risk assessments. By considering future potential risks and vulnerabilities, policymakers can make 

informed decisions and ensure that resources are directed towards building a resilient and sustainable 

agricultural sector.  

Specifically, by conducting comprehensive risk assessments and scenario planning, we can identify 

potential future risks and vulnerabilities in the agricultural sector. This includes not only analyzing 

climate variation projections but include other variables of production such as water availability, 

market dynamics, pest and disease outbreaks, an understanding of the broad range of potential risks to 

agriculture, policymakers can develop strategies and investments that address both current challenges 

and emerging threats.  

IF the correct future risk adjusted investments are made, farmers are also aware of the anticipated 

future risks and opportunities, giving them adequate time to adjust or transform their practices resulting 

in greater gains in investments made, as well is greater resilience and capacities of farmers to cope 
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with a changing climate, as well as opportunities to cash in on emerging opportunities to utilize the 

changing climate to make better economic and farming decisions and investments. 

Prioritizing investments in climate-smart agriculture is also crucial for future risk-adjusted planning. 

Climate-smart agricultural practices emphasize the integration of adaptation and mitigation strategies 

to enhance resilience and reduce greenhouse gas emissions. Such investments can strengthen the 

capacity of the agricultural sector to prevail against future climate uncertainties and ensure long-term 

food security. 

Further, where farm size allows, promoting diversification of agricultural activities and supporting 

value addition can help reduce risks associated with market fluctuations and climate variability. 

Farmers can be advised to plant drought resistant crops, livestock breeds, and engage in other income 

generating activities. Additionally, the government should continue to invest in value addition 

infrastructure, such as processing facilities and storage systems, which can help farmers capture higher 

market value for their products, provide off-farm employment and reduce post-harvest losses. 

Resilience-building should occur also at multiple scales, including farm-level, community-level, and 

national-level. Investments should be directed towards building resilient infrastructure, such as 

irrigation systems, early warning systems, and climate-resilient storage facilities. Additionally, 

supporting community-based organizations, cooperatives, and farmer networks can strengthen social 

capital and facilitate knowledge sharing and collective action in response to risks immediate and 

anticipated risks.  

Additional investments should also be made in research and innovation. This includes funding 

scientific research on climate change impacts, emerging pests and diseases, and innovative farming 

technologies. By supporting innovation, policymakers can facilitate the development and adoption of 

innovative solutions that enhance agricultural resilience and productivity. Additionally, partnerships 

between research institutions, private sector entities, and farmers can promote the co-creation of 

knowledge and the translation of research findings into practical and context-specific interventions. 
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By prioritizing and investing in agriculture and resilience strategies that are future risk-adjusted, 

policymakers can proactively address emerging challenges and safeguard the livelihoods of farmers 

and rural communities both now and into the future.  

6.2.2 Digitize and localize the farm management handbook 

Cloud computing, automation methods, freely available medium resolution satellites provide an 

opportunity to develop and automate scalable and replicable methods for creating updated and detailed 

information to support decision making. The Farm management handbook needs to be digitized to 

ensure that agriculture and resilience priorities are based on the wealth of past, present and future “best 

available information.”  

 By harnessing emerging technologies, such as artificial intelligence (AI) and machine learning, the 

farm management handbook can be continuously updated based on real-time data and insights. 

Additional information can be generated to add value from other automated systems that collect and 

analyze agricultural data, including climate patterns, soil conditions, pest and disease outbreaks, and 

market trends. This data-driven approach allows for more accurate and targeted updates to the 

handbook, ensuring that the information and recommendations provided are based on the most recent 

and relevant data available. 

Digitizing the farm management handbook allows for real-time updates and revisions. With 

agricultural knowledge continually evolving, new research findings, innovative techniques, and 

changing climatic conditions can be incorporated to revise and update the handbook. This would 

ensure that farmers receive accurate and timely guidance that aligns with current updated analyses and 

the corresponding agricultural practices and adaptation strategies. 

6.2.3 Localize advisories to be location specific, crop specific, and appropriate to regions and 

agro-climatic conditions.   

By incorporating data on local agricultural practices, soil types, and weather patterns, the digital 

handbook can provide more targeted, localized and context-specific recommendations. Tailored 
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guidance enhances the effectiveness of the handbook and increases its relevance for farmers, enabling 

them to make informed decisions that suit their specific circumstances.Recommendation 3: Agro 

potential is changing inversely, reducing in high potential areas, and improving in low potential areas 

in Kenya 

By understanding that viability for agriculture systems will shift, Kenya needs to adjust, and change 

the direction and trajectory of investments, and especially updating of e-extension and support to 

farmers to adjust accordingly. But also, develop mechanisms to match national recommendations to 

farmers existing adaptation mechanisms to create the right “fit.” This recommendation highlights the 

need to recognize and respond to the changing agro potential by implementing targeted strategies to 

address the reduction in high potential areas and harness the improving potential in low potential areas 

in Kenya. 

With the reduction in agro potential in high potential areas, it will be necessary to diversify agricultural 

practices to adapt to the changing conditions. Farmers and agricultural stakeholders should be 

encouraged explore alternative crops, farming systems, and agroecological approaches that are better 

suited to the emerging agro-climatic conditions. This may involve promoting climate-resilient crop 

varieties, agroforestry, conservation agriculture, and sustainable soil and water management practices. 

With such adjustments, farmers can mitigate risks, optimize resource use, and maintain productivity 

even in the face of reduced agro potential. 

Technological advancements can contribute greatly to optimizing agricultural production in both low 

and high agro-potential areas. In high potential areas, precision agriculture technologies, such as 

remote sensing, geoinformation systems and data analytics, can construct advisories that help farmers 

make informed decisions regarding irrigation, fertilization, and pest management. In low potential 

areas, innovative approaches like hydroponics, vertical farming, and greenhouse farming can be 

explored to improve productivity and optimize resource use. Embracing digital technologies and 
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promoting innovation in agriculture can enhance the resilience and productivity of farming systems 

across diverse agro potential areas. 

Water availability is a critical factor in agricultural production, particularly in areas experiencing agro 

potential changes. In high potential areas facing reduced agro potential, farmers and policymakers 

should focus on improving water resource management through efficient irrigation systems, water 

harvesting, and conservation practices. In low potential areas experiencing improving agro potential, 

efforts should be made to enhance water availability and accessibility through small-scale irrigation 

schemes, water storage facilities, and watershed management programs. Effective water resource 

management is critical in ensuring sustainable agricultural production in both high and low potential 

areas. 

Enhancing the capacity and knowledge of farmers and agricultural stakeholders is essential to adapt to 

the changing agro potential. Training programs, extension services, and farmer-to-farmer knowledge 

sharing initiatives should be prioritized. Farmers need to be equipped with climate-smart agricultural 

practices, modern techniques, and information on market opportunities. Special attention should be 

given to empowering smallholder farmers, women, and youth in low potential areas, enabling them to 

harness the improving agro potential and contribute to local food production and livelihoods. 

6.2.4 Localize adaptation mechanisms to suit gendered, socio-economic and indigenous 

preferences 

Farmers always find ways to adopt. From this research, male and female headed households adapted 

differently. With male headed households prioritizing on cash crops with greater incomes realized, 

while female headed households prioritized food crops with relatively lower incomes realised. This is 

because, women, due to their nurturing nature, will focus on strengthening the household food security 

first. As we strive to promote sustainable agriculture and climate resilience, it is crucial to recognize 

and address the varying adaptation needs of different farming communities. This recommendation 



 

89 

 

 

emphasizes the importance of sensitivity to gender and indigenous adaptation in agricultural 

development strategies, policies, and programs. 

Women play a significant role in agriculture, yet they often face distinct challenges as their immediate 

goal is always to feed their families first. Gender disparities in access to resources, autonomy in 

decision making, land ownership and information negatively impacts women's ability to adapt to 

changing environmental conditions. To address this, agricultural policies and programs should be 

gender-sensitive and promote gender equity in access to resources, technology, extension services, and 

market opportunities. Additionally, capacity-building initiatives should focus on empowering women 

farmers by enhancing their skills, knowledge, and leadership capabilities in climate-smart agriculture 

practices. 

Indigenous communities possess a wealth of traditional knowledge and adaptation strategies that have 

been passed down through generations. This knowledge is significant in strengthening resilience and 

should be recognized and integrated into agricultural policies and practices. Governments and 

development organizations should engage with indigenous communities as partners, respecting their 

rights, traditional knowledge systems, and cultural practices. By collaborating with indigenous 

communities, we can develop context-specific adaptation strategies that preserve traditional 

agricultural practices while incorporating modern technologies and scientific insights. 

Effective adaptation strategies require the active involvement of farmers themselves. Implementing 

participatory approaches that include farmers in decision-making processes, planning, and program 

design is essential. This ensures that their unique perspectives, needs, and priorities are considered. By 

engaging farmers in the design and implementation of adaptation programs, we can foster ownership, 

increase effectiveness, and promote sustainable agricultural practices that align with local contexts and 

realities. 

Further, adequate data collection and research efforts will be needed to understand the specific 

challenges and adaptation needs of different farming communities. Governments, research institutions, 
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and development organizations should prioritize gender-disaggregated data collection and analysis to 

identify gender-specific vulnerabilities and opportunities for adaptation. Similarly, research should 

incorporate indigenous knowledge systems and collaborate with indigenous communities to develop 

robust and context-specific adaptation approaches. 

By recognizing and addressing the varying adaptation needs of different farming communities, we can 

promote inclusivity, gender equity, and account for indigenous knowledge in agricultural adaption 

strategies. Sensitivity to gender and indigenous adaptation ensures that no farmer is left behind and 

paves the way for sustainable, resilient, and socially just agricultural systems. Embracing the diversity 

of farmers' experiences and empowering all stakeholders in adaptation efforts will contribute to more 

effective and impactful agricultural interventions in the face of climate change. 

6.2.5 Utilize digital technologies to bridge the gap in government and private sector led farmer 

facing services. 

Farmers were able to access digital information such as weather forecasts irrespective of their 

education background. Digital and broadband connectivity will play a key role in increasing access to 

information and services by farmers. In today's interconnected world, digital technologies have 

emerged as powerful tools that can revolutionize various sectors, including agriculture. Farmers, who 

form the backbone of our food production system, stand to benefit significantly from the integration 

of digital technologies into their daily practices. By leveraging these tools, governments and private 

sector entities can bridge the gap in delivering farmer-facing services, thereby empowering farmers 

with crucial information, resources, and support.  

This recommendation emphasizes the importance of harnessing digital technologies to enhance 

agricultural services and create a more inclusive and efficient farming ecosystem. 

Digital technologies enable the dissemination of timely and accurate information to farmers, which is 

crucial for making informed decisions. Governments and private sector organizations should 

collaborate to develop user-friendly mobile applications and SMS-based services that provide farmers 
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with real-time weather updates, market prices, pest, and disease alerts, farming best practices, and 

government schemes. This information empowers farmers to optimize their agricultural practices, 

improve productivity, and make informed choices based on market trends. Digital technologies can 

also enhance extension services, especially given the limitations facing extension officers who often 

are allocated large areas. By incorporating digital technologies into extension services, governments 

and private sector entities can overcome the limitations of traditional outreach methods. Digital 

technologies can also bridge the gap between farmers and markets, thereby improving access to better 

prices and reducing intermediaries. Digital applications can cut middlemen and connect farmers 

directly with buyers, agribusinesses, and value chain stakeholders resulting in better profits and 

returns. These platforms can provide information on demand, supply, price trends, and facilitate 

transparent transactions. Additionally, digital payment systems and logistics support can streamline 

the flow of agricultural produce, reducing post-harvest losses and improving overall profitability for 

farmers. 

Further, digital technologies can enhance access to finance which is a significant challenge for many 

small-scale farmers. Digital technologies can facilitate customized financial services tailored to the 

specific needs of farmers, making credit, insurance, and savings products more accessible. 

Governments and financial institutions should collaborate to develop digital platforms that leverage 

data analytics, remote sensing, and machine learning algorithms to assess creditworthiness, provide 

weather-based insurance, and enable efficient disbursement of subsidies and financial support to 

farmers. 

But, to fully harness the potential of digital technologies, it is essential to ensure that farmers have the 

necessary digital literacy skills. Governments, in collaboration with private sector entities, should 

launch training programs and capacity-building initiatives to enhance farmers' digital literacy. 

Furthermore, efforts should be made to bridge the digital divide by providing access to affordable 
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internet connectivity and devices in rural areas, ensuring that no farmer is left behind in benefiting 

from digital farmer-facing services. 

In conclusion, digital technologies present immense opportunities for bridging the gap in delivering 

farmer-facing services. By embracing these technologies, governments and private sector entities can 

enhance information access, extension services, market linkages, financial services, and digital literacy 

among farmers. This transformation will empower farmers, improve agricultural productivity, foster 

sustainable practices, and ultimately contribute to strengthening rural households’ incomes and their 

capacity to produce enough food.  

6.3 Contribution to Knowledge 

This section articulates the transformative contributions made by this research to the existing body of 

knowledge, particularly within the domain of technologies for climate and agriculture adaptation in 

Kenya's Lower Eastern Region. The study introduces innovative methodologies and forward-thinking 

paradigms, transcending conventional approaches and significantly enriching our perspectives on 

transforming climate adaptation. Three pivotal contributions are highlighted, each distinct yet 

collectively shaping a comprehensive advancement in the field. 

Firstly, the research introduces a revised methodology that strategically harnesses satellite 

estimates. Departing from traditional approaches, this method enables the utilization of freely 

available satellite data, overcoming historical challenges of prohibitive costs, time intensiveness, and 

data limitations. By doing so, the study not only presents an efficient solution but also establishes a 

foundation for more frequent and cost-effective updates. This ensures the perpetual accuracy and 

relevance of Agro-Ecological Zone (AEZ) maps, thereby creating a sustainable framework for climate 

adaptation efforts. 

Secondly, the research pioneers a scalable, reproducible cloud-based satellite-derived workflow 

specifically designed for mapping AEZ at a high granularity within Kenya's Lower Eastern Region. 

This workflow transcends regional boundaries, representing all of Kenya's AEZ. The innovation lies 
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in its ability to synthesize satellite data with ground information from field questionnaires, offering a 

nuanced understanding of the region's agro-ecological dynamics. The resultant micro-scale mapping 

enhances precision, providing a robust foundation for gender-sensitive adaptation mechanisms and 

investments. 

Thirdly, the research introduces a novel approach that embraces a future risk-adjusted 

perspective in assessing agro-potential. This departure from historical baseline-driven methods 

underscores the study's commitment to a forward-thinking prioritization of resilience investments and 

interventions. Recognizing the dynamic nature of climate patterns, the research advocates for strategies 

informed by future projections rather than past conditions, especially crucial in areas with limited prior 

research, such as the Lower Eastern Region. Furthermore, the study explores innovative methods to 

adjust existing methodologies at the finest scale possible, ensuring their adaptability in the face of 

evolving climatic conditions. By assessing changes in AEZ due to climate change, the research 

contributes to the broader discourse on improving the accuracy of climate change impact assessments. 

In a notable departure from existing research, the study shifts the narrative from focusing on 

negative consequences to emphasizing emerging opportunities for adaptation. By identifying 

shifts in seasons and production potential, particularly in lowland drylands and midland highland areas, 

the research outlines potential strategies for diversifying production systems and enhancing resilience. 

This positive perspective on opportunities provides a fresh outlook on how current and future 

adaptation and mitigation policies can be shaped. 

In summation, this research marks a significant advancement in the field by seamlessly combining 

technological innovation, methodological exploration, and a forward-thinking paradigm. It 

offers a holistic and impactful contribution to the understanding and management of climate change 

impacts on agriculture in Kenya's Lower Eastern Region. The findings not only inform local policies 

and interventions but also provide valuable insights applicable to broader climate adaptation strategies 

in similar agro-ecological contexts. 
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8 APPENDICES 

8.1 APPENDIX 1A -DATA COLLECTION TOOLS 

8.1.1 The data collection form on kobo toolbox 
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8.2 APPENDIX 2A - STATISTICAL ANALYSES CODES 

8.2.1 Statistical analysis  

Loading... 

Final_AEZ_Analytics.ipynb_ 

CodeTextConnect 

 
Making the necessary library installation including pandas, plotly, plotly express, seaborn 

They are used for reading data as dataframe, for data visualisation and neat visualisation respective 

 
Double-click (or enter) to edit 

CodeText 

 
[ ] 

!pip install pandas 

!pip install seaborn  
!pip install plotly.express 

!pip install numpy 

sny

 

 
Importing the imported libraries for use 

 
[ ] 
import pandas as pd 

import plotly.express as px 

import numpy as np 
import plotly.express as px 

import seaborn as sns 

import matplotlib.pyplot as plt 

 
[ ] 

from google.colab import drive 
drive.mount('/content/drive') 

root_dir = "/content/drive/MyDrive" 

 
Reading the CSV data as a dataframe using pandas library in python 

 
[ ] 
Rainfall_Sensor_1990_2020 = pd.read_csv('/content/drive/MyDrive/csv/DailyPPT_csv_exports_ALL_1990-

2021_REGIONAL_COL_DATA.csv') 
Rainfall_Station_1990_2020 = pd.read_csv('/content/drive/MyDrive/csv/Rainfall_Station_Regional_1991_2020_Transposed.csv') 

Temperature_Sensor_1990_2020 = pd.read_csv('/content/drive/MyDrive/csv/DailyTemp_csv_exports_ALL_1990-

2021_REGIONAL_COL_DATA.csv') 
Temperature_Station_1990_2020 = pd.read_csv('/content/drive/MyDrive/csv/Temperature_Station_Regional_1991_2020_Transposed.csv') 

# Temperature_Sensor_1990_2020.head() 

# Temperature_Station_1990_2020.head() 
# Rainfall_Sensor_1990_2020 

Rainfall_Sensor_1990_2020.tail() 

Rainfall_Station_1990_2020 
# Temperature_Sensor_1990_2020.head() 

 

 

 
[ ] 

Temperature_Station_1990_2020.head() 

 
date_temp = Temperature_Station_1990_2020[['ID']].astype(str) 
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date_temp.head() 

 

 

# type(Temperature_Station_1990_2020) 

 
[ ] 

rain_date = Rainfall_Station_1990_2020[['ID']].astype(str) 
rain_date 

 

from datetime import datetime 
 

regional_date3 = pd.DataFrame(columns=['Year','Month','Day']) 

 
for data in range(len(rain_date)): 

  # print(ppt_llpg_fitered.iloc[data,0]) 

  date_coverted = datetime.strptime((rain_date.iloc[data,0]),'%Y%m%d') 
  Year = date_coverted.date().year 

  Month = date_coverted.date().month 

  Day = date_coverted.date().day 
  

  # print(date_coverted) 

 
  regional_date3 = regional_date3.append({'Year':Year,'Month':Month,'Day':Day}, ignore_index=True) 

 

 
regional_date3 

 

regional_date3['ID2']=rain_date['ID'] 
regional_date3 

 
[ ] 
regional_date3 

Rainfall_Station_1990_2020.head() 

Rainfall_Station_1990_2020['ID2']=regional_date3['ID2'] 
 

concat_rain_station = pd.merge(Rainfall_Station_1990_2020,regional_date3,on='ID2') 

concat_rain_station.head() 

 
[ ] 

from datetime import datetime 

regional_date2 = pd.DataFrame(columns=['Year','Month','Day']) 

for data in range(len(date_temp)): 

  # print(ppt_llpg_fitered.iloc[data,0]) 
  date_coverted = datetime.strptime((date_temp.iloc[data,0]),'%Y%m%d') 

  Year = date_coverted.date().year 

  Month = date_coverted.date().month 
  Day = date_coverted.date().day 

  

  # print(date_coverted) 
  regional_date2 = regional_date2.append({'Year':Year,'Month':Month,'Day':Day}, ignore_index=True) 

regional_date2['ID2']=date_temp['ID'] 
regional_date2 

 

 
[ ] 

# regional_date2['ID'].astype(int) 

 
[ ] 

regional_date2 

Temperature_Station_1990_2020.head() 
Temperature_Station_1990_2020['ID2']=regional_date2['ID2'] 

 

concat_temp_station = pd.merge(Temperature_Station_1990_2020,regional_date2,on='ID2') 
concat_temp_station.head() 

 
[ ] 
concat_rain_station 

# concat_temp_station 

 



 

114 

 

 

# concat_rain_station[(concat_rain_station['Year'] >= 1991) & (concat_rain_station['Year'] <= 2005) & (concat_rain_station['Month'] >= 3) 

& (concat_rain_station['Month'] <= 5) ] 

 
[ ] 
""" 

Filtering by years and months to identify the MAM and OND LGP values 

 
""" 

 

""" 
Filtering by seasons including OND and MAM for both epochs and findingh their LPG  per season in each location. 

 

""" 
 

""" 

Finding the LPG (MAM & OND) 1991 - 2005 
""" 

SELECTED1990_2005_MAM = concat_temp_station[(concat_temp_station['Year'] >= 1991) & (concat_temp_station['Year'] <= 2005) & (c

oncat_temp_station['Month'] >= 3) & (concat_temp_station['Month'] <= 5) ] 
SELECTED1990_2005_MAM 

SELECTED1990_2005_OND = concat_temp_station[(concat_temp_station['Year'] >= 1991) & (concat_temp_station['Year'] <= 2005) & (co

ncat_temp_station['Month'] >= 10) & (concat_temp_station['Month'] <= 12) ] 
SELECTED1990_2005_OND 

 

""" 
Finding the LPG (MAM & OND) 2006 - 2021 

""" 

 
SELECTED2006_2020_OND = concat_temp_station[(concat_temp_station['Year'] >= 2006) & (concat_temp_station['Year'] <= 2020) & (co

ncat_temp_station['Month'] >= 10) & (concat_temp_station['Month'] <= 12) ] 

 
SELECTED2006_2020_MAM = concat_temp_station[(concat_temp_station['Year'] >= 2006) & (concat_temp_station['Year'] <= 2020) & (c

oncat_temp_station['Month'] >= 3) & (concat_temp_station['Month'] <= 5) ] 

SELECTED2006_2020_MAM.head() 
 

""" 

Rearranging the LPGs to plottabel both spatially and as charts and maps and getting the sum of OND days per season 
""" 

 

SELECTED_2006_2020_MAM_T_temp = SELECTED2006_2020_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rena

me(columns = {0:'Sum'}).reset_index() 

 

SELECTED_2006_2020_OND_T_temp = SELECTED2006_2020_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename
(columns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_OND_T_temp = SELECTED1990_2005_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename
(columns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_MAM_T_temp = SELECTED1990_2005_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rena
me(columns = {0:'Sum'}).reset_index() 

 
 

SELECTED_1990_2005_MAM_T_temp.tail() 

 
 

SELECTED_2006_2020_MAM_T_temp.to_csv('SELECTED_2006_2020_MAM_T_temp.csv', index=True, encoding='utf-8') 

SELECTED_2006_2020_OND_T_temp.to_csv('SELECTED_2006_2020_OND_T_temp.csv', index=True, encoding='utf-8') 
SELECTED_1990_2005_OND_T_temp.to_csv('SELECTED_1990_2005_OND_T_temp.csv', index=True, encoding='utf-8') 

SELECTED_1990_2005_MAM_T_temp.to_csv('SELECTED_1990_2005_MAM_T_temp.csv', index=True, encoding='utf-8') 

 
[ ] 

""" 

Filtering by years and months to identify the MAM and OND LGP values 
 

""" 

""" 
Filtering by seasons including OND and MAM for both epochs and findingh their LPG  per season in each location. 

 

""" 
 

""" 

Finding the LPG (MAM & OND) 1991 - 2005 
""" 

SELECTED1990_2005_MAM = concat_rain_station[(concat_rain_station['Year'] >= 1991) & (concat_rain_station['Year'] <= 2005) & (conc

at_rain_station['Month'] >= 3) & (concat_rain_station['Month'] <= 5) ] 
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SELECTED1990_2005_MAM 

SELECTED1990_2005_OND = concat_rain_station[(concat_rain_station['Year'] >= 1991) & (concat_rain_station['Year'] <= 2005) & (conca

t_rain_station['Month'] >= 10) & (concat_rain_station['Month'] <= 12) ] 

SELECTED1990_2005_OND 
 

""" 

Finding the LPG (MAM & OND) 2006 - 2021 
""" 

 

SELECTED2006_2020_OND = concat_rain_station[(concat_rain_station['Year'] >= 2006) & (concat_rain_station['Year'] <= 2020) & (conca
t_rain_station['Month'] >= 10) & (concat_rain_station['Month'] <= 12) ] 

 

SELECTED2006_2020_MAM = concat_rain_station[(concat_rain_station['Year'] >= 2006) & (concat_rain_station['Year'] <= 2020) & (conc
at_rain_station['Month'] >= 3) & (concat_rain_station['Month'] <= 5) ] 

SELECTED2006_2020_MAM.head() 

 
""" 

Rearranging the LPGs to plottabel both spatially and as charts and maps and getting the sum of OND days per season 

""" 
 

SELECTED_2006_2020_MAM_T_rain = SELECTED2006_2020_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().renam

e(columns = {0:'Sum'}).reset_index() 
 

SELECTED_2006_2020_OND_T_rain = SELECTED2006_2020_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename(

columns = {0:'Sum'}).reset_index() 
 

SELECTED_1990_2005_OND_T_rain = SELECTED1990_2005_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename(

columns = {0:'Sum'}).reset_index() 
 

SELECTED_1990_2005_MAM_T_rain = SELECTED1990_2005_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().renam

e(columns = {0:'Sum'}).reset_index() 
 

 

SELECTED_1990_2005_MAM_T_rain.tail() 
 

 

SELECTED_2006_2020_MAM_T_rain.to_csv('SELECTED_2006_2020_MAM_T_rain.csv', index=True, encoding='utf-8') 
SELECTED_2006_2020_OND_T_rain.to_csv('SELECTED_2006_2020_OND_T_rain.csv', index=True, encoding='utf-8') 

SELECTED_1990_2005_OND_T_rain.to_csv('SELECTED_1990_2005_OND_T_rain.csv', index=True, encoding='utf-8') 

SELECTED_1990_2005_MAM_T_rain.to_csv('SELECTED_1990_2005_MAM_T_rain.csv', index=True, encoding='utf-8') 

 

 
Transpose the sensor dataset (temperature and rainfall), to be in the same format with station datasets. using a function for the two 

dataframes. This will nessesitate plotting of the data in line graph, as seen in the next section. 

 
[ ] 
# Rainfall_Sensor_1990_2020.head() 

Temperature_Sensor_1990_2020 

 
[ ] 

 
def transpose(df): 

  df2=df.T 

  header=df2.iloc[0] 
  df2=df2[1:] 

  df2.columns=header 

  df2.head() 
  return df2 

 

Rainfall_Sensor_1990_2020_T = Rainfall_Sensor_1990_2020.set_index('ID').T 

 

Temperature_Sensor_1990_2020_T = Temperature_Sensor_1990_2020.set_index('Place').T 

 
Rainfall_Sensor_1990_2020_T  

Temperature_Sensor_1990_2020_T 

 

 
Code that finds outlier in the datasets, however, we have to plot them first using box plots 

 
[ ] 

def find_outliers_IQR(df): 

 
   q1=df.quantile(0.25) 

 

   q3=df.quantile(0.75) 
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   IQR=q3-q1 

 

   outliers = df[((df<(q1-1.5*IQR)) | (df>(q3+1.5*IQR)))] 
 

   return outliers 

 
outliers = find_outliers_IQR(Rainfall_Station_1990_2020['AthiRiver']) 

print(outliers) 

0         7.678 
25        4.429 

49        8.771 

82       19.547 
83       30.033 

          ...   

10925     3.337 
10933    13.746 

10935     6.865 

10943     3.579 
10956    11.411 

Name: AthiRiver, Length: 1857, dtype: float64 

 
[ ] 

Rainfall_Station_1990_2020.head() 

Rainfall_Sensor_1990_2020_T.tail() 
# Merged_Rainfall = pd.merge(Rainfall_Station_1990_2020, Rainfall_Sensor_1990_2020_T, how='outer') 

# Merged_Rainfall.head() 

 
Plotting Rainfall(sensor data) against Rainfall(Station data) , first you cast all the column inputs as integers in order for them to plot 

as numbers 

 
[ ] 

Rainfall_Sensor_1990_2020_T  

Temperature_Sensor_1990_2020_T 
 

 

# Rainfall_Station_1990_2020 = Rainfall_Station_1990_2020.astype({col:int for col in Rainfall_Station_1990_2020}) 
# Rainfall_Sensor_1990_2020_T = Rainfall_Sensor_1990_2020_T.astype({col:int for col in Rainfall_Sensor_1990_2020_T}) 

# for col in Rainfall_Sensor_1990_2020_T.columns: 

#     print(col) 

 
[ ] 

""" 
MACHAKOS COUNTY 

 

""" 
 

 

# px.scatter(x=Rainfall_Station_1990_2020['Mutituni'], y=Rainfall_Sensor_1990_2020_T['Mutituni'], trendline="ols", title='Athi River') 
from scipy import stats 

def r2(x, y): 
    return stats.pearsonr(x, y)[0] ** 2 

 

 
 

fig, axes = plt.subplots(10, 4, figsize=(40, 70)) 

  
# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

  
sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['AthiRiver'], y=Rainfall_Sensor_1990_2020_T['AthiRiver'], color='r') 

sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['Ekalakala'], y=Rainfall_Sensor_1990_2020_T['Ekalakala'], color='b') 

sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Ikombe'], y=Rainfall_Sensor_1990_2020_T['Ikombe'], color='r') 
sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['Kalama'], y=Rainfall_Sensor_1990_2020_T['Kalama'], color='b') 

sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['KangundoCentral'], y=Rainfall_Sensor_1990_2020_T['KangundoCentral'], color=

'r') 
sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['KangundoEast'], y=Rainfall_Sensor_1990_2020_T['KangundoEast'], color='b') 

sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['KangundoNorth'], y=Rainfall_Sensor_1990_2020_T['KangundoNorth'],color='r') 

sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['KangundoWest'], y=Rainfall_Sensor_1990_2020_T['KangundoWest'], color='b') 
 

 

sns.regplot(ax=axes[2, 0], x=Rainfall_Station_1990_2020['Katangi'], y=Rainfall_Sensor_1990_2020_T['Katangi'], color='r') 
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sns.regplot(ax=axes[2, 1], x=Rainfall_Station_1990_2020['KathianiCentral'], y=Rainfall_Sensor_1990_2020_T['KathianiCentral'], color='b') 

sns.regplot(ax=axes[2, 2], x=Rainfall_Station_1990_2020['Kibauni'], y=Rainfall_Sensor_1990_2020_T['Kibauni'], color='r') 

sns.regplot(ax=axes[2, 3], x=Rainfall_Station_1990_2020['Kinanie'], y=Rainfall_Sensor_1990_2020_T['Kinanie'], color='b') 

 
sns.regplot(ax=axes[3, 0], x=Rainfall_Station_1990_2020['Kithimani'], y=Rainfall_Sensor_1990_2020_T['Kithimani'], color='r') 

sns.regplot(ax=axes[3, 1], x=Rainfall_Station_1990_2020['Kivaa'], y=Rainfall_Sensor_1990_2020_T['Kivaa'], color='b') 

sns.regplot(ax=axes[3, 2], x=Rainfall_Station_1990_2020['Kola'], y=Rainfall_Sensor_1990_2020_T['Kola'], color='r') 
sns.regplot(ax=axes[3, 3], x=Rainfall_Station_1990_2020['Kyeleni'], y=Rainfall_Sensor_1990_2020_T['Kyeleni'], color='b') 

 

sns.regplot(ax=axes[4, 0], x=Rainfall_Station_1990_2020['LowerKaewaKaani'], y=Rainfall_Sensor_1990_2020_T['LowerKaewaKaani'], col
or='r') 

sns.regplot(ax=axes[4, 1], x=Rainfall_Station_1990_2020['MachakosCentral'], y=Rainfall_Sensor_1990_2020_T['MachakosCentral'], color=

'b') 
sns.regplot(ax=axes[4, 2], x=Rainfall_Station_1990_2020['MakutanoMwala'], y=Rainfall_Sensor_1990_2020_T['MakutanoMwala'], color='r

') 

sns.regplot(ax=axes[4, 3], x=Rainfall_Station_1990_2020['Masii'], y=Rainfall_Sensor_1990_2020_T['Masii'], color='b') 
 

sns.regplot(ax=axes[5, 0], x=Rainfall_Station_1990_2020['MasingaCentral'], y=Rainfall_Sensor_1990_2020_T['MasingaCentral'],color='r') 

sns.regplot(ax=axes[5, 1], x=Rainfall_Station_1990_2020['MatunguluEast'], y=Rainfall_Sensor_1990_2020_T['MatunguluNorth'], color='b') 
sns.regplot(ax=axes[5, 2], x=Rainfall_Station_1990_2020['MatunguluWest'], y=Rainfall_Sensor_1990_2020_T['MatunguluWest'], color='r') 

sns.regplot(ax=axes[5, 3], x=Rainfall_Station_1990_2020['Matuu'], y=Rainfall_Sensor_1990_2020_T['Matuu'], color='b') 

 
sns.regplot(ax=axes[6, 0], x=Rainfall_Station_1990_2020['Mbiuni'], y=Rainfall_Sensor_1990_2020_T['Mbiuni'], color='r') 

sns.regplot(ax=axes[6, 1], x=Rainfall_Station_1990_2020['Mitaboni'], y=Rainfall_Sensor_1990_2020_T['Mitaboni'], color='b') 

sns.regplot(ax=axes[6, 2], x=Rainfall_Station_1990_2020['Mua'], y=Rainfall_Sensor_1990_2020_T['Mua'], color='r') 
sns.regplot(ax=axes[6, 3], x=Rainfall_Station_1990_2020['MumbuniNorth'], y=Rainfall_Sensor_1990_2020_T['MumbuniNorth'], color='b') 

 

sns.regplot(ax=axes[7, 0], x=Rainfall_Station_1990_2020['Muthesya'], y=Rainfall_Sensor_1990_2020_T['Muthesya'], color='r') 
sns.regplot(ax=axes[7, 1], x=Rainfall_Station_1990_2020['Muthetheni'], y=Rainfall_Sensor_1990_2020_T['Muthetheni'], color='b') 

sns.regplot(ax=axes[7, 2], x=Rainfall_Station_1990_2020['Muthwani'], y=Rainfall_Sensor_1990_2020_T['Muthwani'], color='r') 

sns.regplot(ax=axes[7, 3], x=Rainfall_Station_1990_2020['Mutituni'], y=Rainfall_Sensor_1990_2020_T['Mutituni'], color='b') 
 

sns.regplot(ax=axes[8, 0], x=Rainfall_Station_1990_2020['MuvutiKiimaKimwe'], y=Rainfall_Sensor_1990_2020_T['MuvutiKiimaKimwe'], 

color='r') 
sns.regplot(ax=axes[8, 1], x=Rainfall_Station_1990_2020['Ndalani'], y=Rainfall_Sensor_1990_2020_T['Ndalani'], color='b') 

sns.regplot(ax=axes[8, 2], x=Rainfall_Station_1990_2020['Ndithini'], y=Rainfall_Sensor_1990_2020_T['Ndithini'], color='r') 

sns.regplot(ax=axes[8, 3], x=Rainfall_Station_1990_2020['SyokimauMulolongo'], y=Rainfall_Sensor_1990_2020_T['SyokimauMulolongo'],
 color='b') 

 

sns.regplot(ax=axes[9, 0], x=Rainfall_Station_1990_2020['Tala'], y=Rainfall_Sensor_1990_2020_T['Tala'], color='r') 

sns.regplot(ax=axes[9, 1], x=Rainfall_Station_1990_2020['UpperKaewaIveti'], y=Rainfall_Sensor_1990_2020_T['UpperKaewaIveti'], color=

'b') 

sns.regplot(ax=axes[9, 2], x=Rainfall_Station_1990_2020['Wamunyu'], y=Rainfall_Sensor_1990_2020_T['Wamunyu'], color='r') 
sns.regplot(ax=axes[9, 3], x=Rainfall_Station_1990_2020['Wamunyu'], y=Rainfall_Sensor_1990_2020_T['Wamunyu'], color='b') 

 

""" 
rainfall plots for all the stations in Machakos County. The plots are Station data against sensor data""" 

 
[ ] 
""" 

Plots of other counties  
Embu Plots 

 

Makima 
Mwea 

Mavuria 

Kiambere 
MbetiSouth 

Muminji 

Nthawa 

MbetiNorth 

Kithimu 

Kirimari 
Evurore 

KagaariSouth 

GaturiSouth 
KyeniSouth 

CentralWard 

GaturiNorth 
RuguruNgandori 

Nginda 

KagaariNorth 
""" 
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fig, axes = plt.subplots(3,4, figsize=(35, 20)) 

  

# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 
plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 
  

sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['KagaariNorth'], y=Rainfall_Sensor_1990_2020_T['KagaariNorth'], color='r') 

sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['Nginda'], y=Rainfall_Sensor_1990_2020_T['Nginda'], color='b') 
sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['RuguruNgandori'], y=Rainfall_Sensor_1990_2020_T['RuguruNgandori'], color='r'

) 

sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['GaturiNorth'], y=Rainfall_Sensor_1990_2020_T['GaturiNorth'], color='b') 
sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['CentralWard'], y=Rainfall_Sensor_1990_2020_T['CentralWard'], color='r') 

sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['KyeniSouth'], y=Rainfall_Sensor_1990_2020_T['KyeniSouth'], color='b') 

sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['GaturiSouth'], y=Rainfall_Sensor_1990_2020_T['GaturiSouth'],color='r') 
sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['KagaariSouth'], y=Rainfall_Sensor_1990_2020_T['KagaariSouth'], color='b') 

 

 
sns.regplot(ax=axes[2, 0], x=Rainfall_Station_1990_2020['Evurore'], y=Rainfall_Sensor_1990_2020_T['Evurore'], color='r') 

sns.regplot(ax=axes[2, 1], x=Rainfall_Station_1990_2020['Kirimari'], y=Rainfall_Sensor_1990_2020_T['Kirimari'], color='b') 

sns.regplot(ax=axes[2, 2], x=Rainfall_Station_1990_2020['Nthawa'], y=Rainfall_Sensor_1990_2020_T['Nthawa'], color='r') 
sns.regplot(ax=axes[2, 3], x=Rainfall_Station_1990_2020['MbetiNorth'], y=Rainfall_Sensor_1990_2020_T['MbetiNorth'], color='b') 

 
[ ] 
""" 

Kitui Plots 

 
Athi 

Ikutha 

Kanziko 
Mutha 

Mutomo 

Kanyangi 
IkangaKyatune 

VooKyamatu 

Kisasi 
Mbitini 

Mulango 

Chuluni 

ZombeMwitika 

Nzambani 

KyangwithyaWest 
Township 

KwavonzaYatta 

KyangwithyaEast 
Matinyani 

KwaMutongaKithumula 

EndauMalalani 
MutitoKaliku 

Miambani 
Kauwi 

Mutonguni 

Nguutani 
Migwani 

Nuu 

Mui 
Central 

KyomeThaana 

Kivou 

KiomoKyethani 

Nguni 

Waita 
Mumoni 

Ngomeni 

Kyuso 
Tharaka 

Tseikuru 

""" 
 

fig, axes = plt.subplots(3,4, figsize=(35, 20)) 

  
# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 
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fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['Tseikuru'], y=Rainfall_Sensor_1990_2020_T['Tseikuru'], color='r') 

sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['Tharaka'], y=Rainfall_Sensor_1990_2020_T['Tharaka'], color='b') 
sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Kyuso'], y=Rainfall_Sensor_1990_2020_T['Kyuso'], color='r') 

sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['Ngomeni'], y=Rainfall_Sensor_1990_2020_T['Ngomeni'], color='b') 

sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['Mumoni'], y=Rainfall_Sensor_1990_2020_T['Mumoni'], color='r') 
sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['Waita'], y=Rainfall_Sensor_1990_2020_T['Waita'], color='b') 

sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['Nguni'], y=Rainfall_Sensor_1990_2020_T['Nguni'],color='r') 

sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['KiomoKyethani'], y=Rainfall_Sensor_1990_2020_T['KiomoKyethani'], color='b') 
 

 

sns.regplot(ax=axes[2, 0], x=Rainfall_Station_1990_2020['Kivou'], y=Rainfall_Sensor_1990_2020_T['Kivou'], color='r') 
sns.regplot(ax=axes[2, 1], x=Rainfall_Station_1990_2020['KyomeThaana'], y=Rainfall_Sensor_1990_2020_T['KyomeThaana'], color='b') 

sns.regplot(ax=axes[2, 2], x=Rainfall_Station_1990_2020['Central'], y=Rainfall_Sensor_1990_2020_T['Central'], color='r') 

sns.regplot(ax=axes[2, 3], x=Rainfall_Station_1990_2020['Migwani'], y=Rainfall_Sensor_1990_2020_T['Migwani'], color='b') 

 
[ ] 

""" 
MAKUENI 

 

Thange 
Masongaleni 

Nguumo 

KikumbulyuSouth 
KikumbulyuNorth 

Makindu 

NguuMasumba 
EmaliMulala 

KitiseKithuki 

Kathonzweni 
Mbitini 

Kasikeu 

NzauiKililiKalamba 
MuvauKikuumini 

Mavindini 

Mukaa 
Ilima 

Wote 

Kilungu 

KiimaKiuKalanzoni 

Ukia 

Kee 
KithungoKitundu 

Kalawa 

WaiaKako 
Mbooni 

KitetaKisau 

Tulimani 
 

""" 
 

 

fig, axes = plt.subplots(3,4, figsize=(35, 20)) 
  

# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 
plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['Tulimani'], y=Rainfall_Sensor_1990_2020_T['Tulimani'], color='r') 

sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['KitetaKisau'], y=Rainfall_Sensor_1990_2020_T['KitetaKisau'], color='b') 

sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Mbooni'], y=Rainfall_Sensor_1990_2020_T['Mbooni'], color='r') 
sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['WaiaKako'], y=Rainfall_Sensor_1990_2020_T['WaiaKako'], color='b') 

sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['Kalawa'], y=Rainfall_Sensor_1990_2020_T['Kalawa'], color='r') 

sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['KithungoKitundu'], y=Rainfall_Sensor_1990_2020_T['KithungoKitundu'], color=
'b') 

sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['Kee'], y=Rainfall_Sensor_1990_2020_T['Kee'],color='r') 

sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['Ukia'], y=Rainfall_Sensor_1990_2020_T['Ukia'], color='b') 
 

 

sns.regplot(ax=axes[2, 0], x=Rainfall_Station_1990_2020['KiimaKiuKalanzoni'], y=Rainfall_Sensor_1990_2020_T['KiimaKiuKalanzoni'], c
olor='r') 

sns.regplot(ax=axes[2, 1], x=Rainfall_Station_1990_2020['Kilungu'], y=Rainfall_Sensor_1990_2020_T['Kilungu'], color='b') 

sns.regplot(ax=axes[2, 2], x=Rainfall_Station_1990_2020['Wote'], y=Rainfall_Sensor_1990_2020_T['Wote'], color='r') 
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sns.regplot(ax=axes[2, 3], x=Rainfall_Station_1990_2020['Ilima'], y=Rainfall_Sensor_1990_2020_T['Ilima'], color='b') 

 

 
[ ] 
for col in Rainfall_Station_1990_2020.columns: 

    print(col) 

ID 
CentralWard 

Evurore 

GaturiNorth 
GaturiSouth 

KagaariNorth 

KagaariSouth 
Kiambere 

Kirimari 

Kithimu 
KyeniNorth 

KyeniSouth 

Makima 
Mavuria 

MbetiNorth 

MbetiSouth 
Muminji 

Mwea 

Nginda 
Nthawa 

RuguruNgandori 

Athi 
Central 

Chuluni 

EndauMalalani 
IkangaKyatune 

Ikutha 

Kanyangi 
Kanziko 

Kauwi 

KiomoKyethani 
Kisasi 

Kivou 

KwaMutongaKithumula 

KwavonzaYatta 

KyangwithyaEast 

KyangwithyaWest 
KyomeThaana 

Kyuso 

Matinyani 
Mbitini_x 

Miambani 

Migwani 
Mui 

Mulango 
Mumoni 

Mutha 

MutitoKaliku 
Mutomo 

Mutonguni 

Ngomeni 
Nguni 

Nguutani 

Nuu 

Nzambani 

Tharaka 

Township 
Tseikuru 

VooKyamatu 

Waita 
ZombeMwitika 

AthiRiver 

Ekalakala 
Ikombe 

Kalama 

KangundoCentral 
KangundoEast 

KangundoNorth 

KangundoWest 
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Katangi 

KathianiCentral 

Kibauni 

Kinanie 
Kithimani 

Kivaa 

Kola 
Kyeleni 

LowerKaewaKaani 

MachakosCentral 
MakutanoMwala 

Masii 

MasingaCentral 
MatunguluEast 

MatunguluNorth 

MatunguluWest 
Matuu 

Mbiuni 

Mitaboni 
Mua 

MumbuniNorth 

Muthesya 
Muthetheni 

Muthwani 

Mutituni 
MuvutiKiimaKimwe 

Ndalani 

Ndithini 
SyokimauMulolongo 

Tala 

unknown7 
UpperKaewaIveti 

Wamunyu 

EmaliMulala 
Ilima 

IvingoniNzambani 

Kalawa 
Kasikeu 

Kathonzweni 

Kee 

KiimaKiuKalanzoni 

KikumbulyuNorth 

KikumbulyuSouth 
Kilungu 

KitetaKisau 

KithungoKitundu 
KitiseKithuki 

Makindu 

Masongaleni 
Mavindini 

Mbitini_y 
Mbooni 

MtitoAndei 

Mukaa 
MuvauKikuumini 

NguuMasumba 

Nguumo 
NzauiKililiKalamba 

Thange 

Tulimani 

Ukia 

WaiaKako 

Wote 
AbogetaEast 

AbogetaWest 

AbothuguchiCentral 
AbothuguchiWest 

Akachiu_x 

AkirangOndu 
Akithii 

Amwathi 

Antuambui 
AntubetweKiongo 

AthiruGaiti 

AthiruRuujine 
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Athwana 

IgembeEast 

IgojiEast 

IgojiWest 
Kangeta 

Kanuni 

Karama 
Kiagu 

Kianjai 

Kibirichia 
KiegoiAntubochiu 

Kiguchwa 

KiiruaNaari 
Kisima 

Maua 

Mbeu 
Mikinduri 

Mitunguu 

Municipality 
Muthara 

Mwanganthia 

Naathu 
Njia 

Nkomo 

Nkuene 
NtimaEast 

NtimaWest 

Ntunene 
NyakiEast 

NyakiWest 

RuiriRwarera 
Thangatha 

Timau 

unknown5 
Akachiu_y 

Chiakariga 

Chogoria 
Ganga 

Gatunga 

IgambangOmbe 

Karingani 

Magumoni 

Mariani 
Mitheru 

Mugwe 

Mukothima 
Muthambi 

Mwimbi 

Nkondi 
ID2 

 
[ ] 

# """ 

# MERU COUNTY 
# SouthImenti 

# CentralImenti 

# unknown5 
# NorthImenti 

# Buuri 

# IgembeSouth 

# TiganiaWest 

# TiganiaEast 

# IgembeCentral 
# IgembeNorth 

 

# AthiruGaiti 
# AthiruRuujine 

# Athwana 

# IgembeEast 
# IgojiEast 

# IgojiWest 

# """ 
 

# fig, axes = plt.subplots(2,4, figsize=(35, 20)) 
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# # fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# # fig.tight_layout() 

# plt.rcParams["figure.autolayout"] = True 

# fig.subplots_adjust(hspace=0.125, wspace=0.125) 
 

# sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['IgembeEast'], y=Rainfall_Sensor_1990_2020_T['IgembeEast'], color='r') 

# sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['IgojiWest'], y=Rainfall_Sensor_1990_2020_T['IgojiWest'], color='b') 
# sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Athwana'], y=Rainfall_Sensor_1990_2020_T['Athwana'], color='r') 

# sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['AthiruRuujine'], y=Rainfall_Sensor_1990_2020_T['AthiruRuujine'], color='b') 

# sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['AthiruGaiti'], y=Rainfall_Sensor_1990_2020_T['AthiruGaiti'], color='r') 
# sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['TiganiaWest'], y=Rainfall_Sensor_1990_2020_T['TiganiaWest'], color='b') 

# sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['TiganiaEast'], y=Rainfall_Sensor_1990_2020_T['TiganiaEast'],color='r') 

# sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['IgembeCentral'], y=Rainfall_Sensor_1990_2020_T['IgembeCentral'], color='b') 
 

import plotly.express as px 

 
# df = px.data.tips() 

# fig = px.scatter(df, x=Rainfall_Station_1990_2020['IgembeEast'], y=Rainfall_Sensor_1990_2020_T['IgembeEast'], trendline="ols") 

# fig.show() 
 

 

 
[ ] 

""" 

THARAKA_NITHI 
 

IgambangOmbe 

Mariani 
KyeniNorth 

Magumoni 

Mugwe 
Chiakariga 

Karingani 

Mitheru 
Muthambi 

Ganga 

Mwimbi 
Chogoria 

Gatunga 

Nkondi 

Mukothima 

 

""" 
 

fig, axes = plt.subplots(3,4, figsize=(35, 20)) 

  
# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 
fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 
sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['Mukothima'], y=Rainfall_Sensor_1990_2020_T['Mukothima'], color='r') 

sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['Nkondi'], y=Rainfall_Sensor_1990_2020_T['Nkondi'], color='b') 

sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Gatunga'], y=Rainfall_Sensor_1990_2020_T['Gatunga'], color='r') 
sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['Mariani'], y=Rainfall_Sensor_1990_2020_T['Mariani'], color='b') 

sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['Chogoria'], y=Rainfall_Sensor_1990_2020_T['Chogoria'], color='r') 

sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['Mwimbi'], y=Rainfall_Sensor_1990_2020_T['Mwimbi'], color='b') 
sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['Ganga'], y=Rainfall_Sensor_1990_2020_T['Ganga'],color='r') 

sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['Muthambi'], y=Rainfall_Sensor_1990_2020_T['Muthambi'], color='b') 

 

 

sns.regplot(ax=axes[2, 0], x=Rainfall_Station_1990_2020['Mitheru'], y=Rainfall_Sensor_1990_2020_T['Mitheru'], color='r') 

 
sns.regplot(ax=axes[2, 1], x=Rainfall_Station_1990_2020['Karingani'], y=Rainfall_Sensor_1990_2020_T['Karingani'], color='b') 

sns.regplot(ax=axes[2, 2], x=Rainfall_Station_1990_2020['Chiakariga'], y=Rainfall_Sensor_1990_2020_T['Chiakariga'], color='r') 

sns.regplot(ax=axes[2, 3], x=Rainfall_Station_1990_2020['Mugwe'], y=Rainfall_Sensor_1990_2020_T['Mugwe'], color='b') 

 
Accuracy assessment table for each station of observed rainfall against station data 

 
[ ] 

Rainfall_Station_1990_2020['AthiRiver'] 

0         7.678 
1         0.000 

2         0.006 

3         0.001 



 

124 

 

 

4         0.000 

          ...   

10953     0.000 

10954     0.000 
10955     0.000 

10956    11.411 

10957     1.491 
Name: AthiRiver, Length: 10958, dtype: float64 

 
[ ] 
from sklearn.metrics import confusion_matrix 

 

# confusion_matrix(Rainfall_Station_1990_2020['AthiRiver'], Rainfall_Sensor_1990_2020_T['AthiRiver']) 
y_pred = Rainfall_Sensor_1990_2020_T['AthiRiver'] 

 

y_act = Rainfall_Station_1990_2020['AthiRiver'] 
# df_confusion = pd.crosstab(y_pred, y_act, rownames=['Actual'], colnames=['Predicted'], margins=True) 

confusion_matrix = pd.crosstab(y_pred, y_act, rownames=['Actual'], colnames=['Predicted']) 

print(confusion_matrix) 
 

# sns.regplot(ax=axes[0, 0], x=Rainfall_Station_1990_2020['AthiRiver'], y=Rainfall_Sensor_1990_2020_T['AthiRiver'], color='r') 

# sns.regplot(ax=axes[0, 1], x=Rainfall_Station_1990_2020['Ekalakala'], y=Rainfall_Sensor_1990_2020_T['Ekalakala'], color='b') 
# sns.regplot(ax=axes[0, 2], x=Rainfall_Station_1990_2020['Ikombe'], y=Rainfall_Sensor_1990_2020_T['Ikombe'], color='r') 

# sns.regplot(ax=axes[0, 3], x=Rainfall_Station_1990_2020['Kalama'], y=Rainfall_Sensor_1990_2020_T['Kalama'], color='b') 

# sns.regplot(ax=axes[1, 0], x=Rainfall_Station_1990_2020['KangundoCentral'], y=Rainfall_Sensor_1990_2020_T['KangundoCentral'], colo
r='r') 

# sns.regplot(ax=axes[1, 1], x=Rainfall_Station_1990_2020['KangundoEast'], y=Rainfall_Sensor_1990_2020_T['KangundoEast'], color='b') 

# sns.regplot(ax=axes[1, 2], x=Rainfall_Station_1990_2020['KangundoNorth'], y=Rainfall_Sensor_1990_2020_T['KangundoNorth'],color='r'
) 

# sns.regplot(ax=axes[1, 3], x=Rainfall_Station_1990_2020['KangundoWest'], y=Rainfall_Sensor_1990_2020_T['KangundoWest'], color='b'

) 
Empty DataFrame 

Columns: [] 

Index: [] 

 
Plotting line of best fit for any of the station data. The station rainfall against sensor based data. 

 
[ ] 

from scipy.stats import linregress 

 

from sklearn.metrics import r2_score 

linregress(Rainfall_Station_1990_2020['AthiRiver'], Rainfall_Sensor_1990_2020_T['AthiRiver']) 

pearsons_coefficient = np.corrcoef(Rainfall_Station_1990_2020['AthiRiver'], Rainfall_Sensor_1990_2020_T['AthiRiver']) 
sns.heatmap(pearsons_coefficient, annot=True) 

print(linregress(Rainfall_Station_1990_2020['AthiRiver'], Rainfall_Sensor_1990_2020_T['AthiRiver'])) 

print(linregress(Rainfall_Station_1990_2020['AthiRiver'], Rainfall_Sensor_1990_2020_T['AthiRiver'])) 
print(linregress(Rainfall_Station_1990_2020['Ekalakala'], Rainfall_Sensor_1990_2020_T['Ekalakala'])) 

 
Plotting confusion matrix of rainfall dataset 

 
[ ] 
Temperature_Sensor_1990_2020_T = Temperature_Sensor_1990_2020_T.head().reset_index() 

Temperature_Station_1990_2020 = Temperature_Station_1990_2020.head() 

 
Repeating the process above for temperature data, with scatter plots, and producing line of best fit First by making sure that both the 

datasets are equal in terms of length. Station data was observed to have fewer columns than sensor's data. This was done through merging of 

both dataframes and then dropping the null values. 

 
[ ] 

Temperature_Station_1990_2020.head() 

Temperature_Sensor_1990_2020_T.head() 

 
[ ] 
# Temperature_Sensor_1990_2020_T = Temperature_Sensor_1990_2020_T.reset_index(drop=True) 

# Temperature_Sensor_1990_2020_T.head() 

 
 

 

Temperature_Sensor_1990_2020_T.rename(columns = {'index':'Date'}, inplace = True) 
Temperature_Station_1990_2020.rename(columns = {'ID':'Date'}, inplace = True) 

Temperature_Station_1990_2020.head() 

# Temperature_Sensor_1990_2020_T.drop([0,1], axis=0, inplace=True) 
Temperature_Station_1990_2020.tail() 

# Temperature_Sensor_1990_2020_T.tail() 

# df.drop([5,6], axis=0, inplace=True) 
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# Temperature_Sensor_1990_2020_T.drop('Date', inplace=True, axis=1) 

# Temperature_Sensor_1990_2020_T.head() 
# Temperature_Sensor_1990_2020_T.drop(['Place', 'Date', 'Date', 'level_0'], axis=1) 

# Temperature_Station_1990_2020.head() 

 
[ ] 

Temperature_Sensor= pd.read_csv('/content/drive/MyDrive/csv/DailyTemp_csv_exports_ALL_1990-2021_REGIONAL_COL_DATA.csv') 

Temperature_Station = pd.read_csv('/content/drive/MyDrive/csv/Temperature_Station_Regional_1991_2020_Transposed.csv') 
Temperature_Station.head() 

Temperature_Sensor.head() 

Temperature_Sensor_T = Temperature_Sensor.set_index('Place').T.reset_index() 
Temperature_Sensor_T.head() 

 
[ ] 
from google.colab import drive 

drive.mount('/content/drive') 

Mounted at /content/drive 

 
[ ] 

""" printing the column heads for temeprature data for refernce""" 
print(Temperature_Sensor_T.columns) 

print(Temperature_Station.columns) 

 
[ ] 

Temperature_Sensor_T.rename(columns = {'index':'Date'}, inplace = True) 

Temperature_Station.rename(columns = {'ID':'Date'}, inplace = True) 
Temperature_Station_1990_2020.head() 

 
[ ] 
 

""" 

Station data was inadequate as it covered up to July 2020, while sensor data covered up to December. 
To plot correlation plots, equal length of data is needed, thus merging of dataframes to eliminate the  

null values, and have an equal length of data 

""" 
Temperature_Sensor_T['Date']=Temperature_Sensor_T['Date'].astype(int) 

 

Temperature_Station['Date']=Temperature_Station['Date'].astype(int) 

 

 

Merged_data_Sensor_Station = pd.merge(Temperature_Sensor_T, Temperature_Station, on="Date") 
Merged_data_Sensor_Station.tail() 

print(Merged_data_Sensor_Station.columns) 

Merged_data_Sensor_Station.tail() 

 
[ ] 

Temperature_Sensor_1990_2020_T.rename(columns = {'index':'Date'}, inplace = True) 
Temperature_Station_1990_2020.rename(columns = {'ID':'Date'}, inplace = True) 

Temperature_Station_1990_2020.head() 
 

print(Merged_data_Sensor_Station.columns) 

 
[ ] 

fig, axes = plt.subplots(10, 4, figsize=(40, 90)) 

  
# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

 
"""transforming kelvin temperature to degree celcius before plotting by subtracting 271.15 """ 

sns.regplot(ax=axes[0, 0], x=(Merged_data_Sensor_Station['AthiRiver_x'] -

272.15), y=Merged_data_Sensor_Station['AthiRiver_y'], color='r', truncate=False) 
sns.regplot(ax=axes[0, 1], x=Merged_data_Sensor_Station['Ekalakala_x']-

272.15, y=Merged_data_Sensor_Station['Ekalakala_y'], color='b',ci=68, truncate=False) 

sns.regplot(ax=axes[0, 2], x=Merged_data_Sensor_Station['Ikombe_x']-
272.15, y=Merged_data_Sensor_Station['Ikombe_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[0, 3], x=Merged_data_Sensor_Station['Kalama_x']-

272.15, y=Merged_data_Sensor_Station['Kalama_y'], color='b', ci=68, truncate=False) 
sns.regplot(ax=axes[1, 0], x=Merged_data_Sensor_Station['KangundoCentral_x']-

272.15, y=Merged_data_Sensor_Station['KangundoCentral_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[1, 1], x=Merged_data_Sensor_Station['KangundoEast_x']-
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272.15, y=Merged_data_Sensor_Station['KangundoEast_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[1, 2], x=Merged_data_Sensor_Station['KangundoNorth_x']-

272.15, y=Merged_data_Sensor_Station['KangundoNorth_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[1, 3], x=Merged_data_Sensor_Station['KangundoWest_x']-
272.15, y=Merged_data_Sensor_Station['KangundoWest_y'], color='b', ci=68, truncate=False) 

 

 
sns.regplot(ax=axes[2, 0], x=(Merged_data_Sensor_Station['Katangi_x'] -

272.15), y=Merged_data_Sensor_Station['AthiRiver_y'], color='r', truncate=False) 

sns.regplot(ax=axes[2, 1], x=Merged_data_Sensor_Station['KathianiCentral_x']-
272.15, y=Merged_data_Sensor_Station['Ekalakala_y'], color='b',ci=68, truncate=False) 

sns.regplot(ax=axes[2, 2], x=Merged_data_Sensor_Station['Kibauni_x']-

272.15, y=Merged_data_Sensor_Station['Ikombe_y'], color='r', ci=68, truncate=False) 
sns.regplot(ax=axes[2, 3], x=Merged_data_Sensor_Station['Kinanie_x']-272.15, y=Merged_data_Sensor_Station['Kalama_y'],  

            color='b', ci=68, truncate=False) 

 
sns.regplot(ax=axes[3, 0], x=Merged_data_Sensor_Station['Kithimani_x']-

272.15, y=Merged_data_Sensor_Station['KangundoCentral_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[3, 1], x=Merged_data_Sensor_Station['Kivaa_x']-
272.15, y=Merged_data_Sensor_Station['KangundoEast_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[3, 2], x=Merged_data_Sensor_Station['Kola_x']-

272.15, y=Merged_data_Sensor_Station['KangundoNorth_y'],color='r', ci=68, truncate=False) 
sns.regplot(ax=axes[3, 3], x=Merged_data_Sensor_Station['Kyeleni_x']-

272.15, y=Merged_data_Sensor_Station['KangundoWest_y'], color='b', ci=68, truncate=False) 

 
""" 

 'LowerKaewaKaani_x', 'MachakosCentral_x', 'MakutanoMwala_x', 'Masii_x', 

        
       'MasingaCentral_x', 'MatunguluEast_x', 'MatunguluNorth_x', 

       'MatunguluWest_x',  

        
       'Matuu_x', 'Mbiuni_x', 'Mitaboni_x', 'Mua_x', 

        

        
       'MumbuniNorth_x', 'Muthesya_x', 'Muthetheni_x', 'Muthwani_x', 

 

 
       'Mutituni_x', 'MuvutiKiimaKimwe_x', 'Ndalani_x', 'Ndithini_x', 

       'SyokimauMulolongo_x', 'Tala_x', 'unknown7_x', 'UpperKaewaIveti_x', 

       'Wamunyu_x' """ 

 

 

 
 

sns.regplot(ax=axes[4, 0], x=Merged_data_Sensor_Station['LowerKaewaKaani_x']-

272.15, y=Merged_data_Sensor_Station['LowerKaewaKaani_y'], color='r', ci=68, truncate=False) 
sns.regplot(ax=axes[4, 1], x=Merged_data_Sensor_Station['MachakosCentral_x']-

272.15, y=Merged_data_Sensor_Station['MachakosCentral_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[4, 2], x=Merged_data_Sensor_Station['MakutanoMwala_x']-
272.15, y=Merged_data_Sensor_Station['MakutanoMwala_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[4, 3], x=Merged_data_Sensor_Station['Masii_x']-
272.15, y=Merged_data_Sensor_Station['Masii_y'], color='b', ci=68, truncate=False) 

 

 
sns.regplot(ax=axes[5, 0], x=Merged_data_Sensor_Station['MasingaCentral_x']-

272.15, y=Merged_data_Sensor_Station['MasingaCentral_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[5, 1], x=Merged_data_Sensor_Station['MatunguluEast_x']-
272.15, y=Merged_data_Sensor_Station['MatunguluEast_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[5, 2], x=Merged_data_Sensor_Station['MatunguluNorth_x']-

272.15, y=Merged_data_Sensor_Station['MatunguluNorth_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[5, 3], x=Merged_data_Sensor_Station['MatunguluWest_x']-

272.15, y=Merged_data_Sensor_Station['MatunguluWest_y'], color='b', ci=68, truncate=False) 

 
sns.regplot(ax=axes[6, 0], x=Merged_data_Sensor_Station['Matuu_x']-

272.15, y=Merged_data_Sensor_Station['Matuu_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[6, 1], x=Merged_data_Sensor_Station['Mbiuni_x']-
272.15, y=Merged_data_Sensor_Station['Mbiuni_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[6, 2], x=Merged_data_Sensor_Station['Mitaboni_x']-

272.15, y=Merged_data_Sensor_Station['Mitaboni_y'],color='r', ci=68, truncate=False) 
sns.regplot(ax=axes[6, 3], x=Merged_data_Sensor_Station['Mua_x']-

272.15, y=Merged_data_Sensor_Station['Mua_y'], color='b', ci=68, truncate=False) 

 
sns.regplot(ax=axes[7, 0], x=Merged_data_Sensor_Station['MumbuniNorth_x']-

272.15, y=Merged_data_Sensor_Station['MumbuniNorth_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[7, 1], x=Merged_data_Sensor_Station['Muthesya_x']-
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272.15, y=Merged_data_Sensor_Station['Muthesya_y'], color='b', ci=68, truncate=False) 

sns.regplot(ax=axes[7, 2], x=Merged_data_Sensor_Station['Muthetheni_x']-

272.15, y=Merged_data_Sensor_Station['Muthetheni_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[7, 3], x=Merged_data_Sensor_Station['Muthwani_x']-
272.15, y=Merged_data_Sensor_Station['Muthwani_y'], color='b', ci=68, truncate=False) 

 

sns.regplot(ax=axes[8, 0], x=Merged_data_Sensor_Station['Mutituni_x']-
272.15, y=Merged_data_Sensor_Station['Mutituni_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[8, 1], x=Merged_data_Sensor_Station['MuvutiKiimaKimwe_x']-

272.15, y=Merged_data_Sensor_Station['MuvutiKiimaKimwe_y'], color='b', ci=68, truncate=False) 
sns.regplot(ax=axes[8, 2], x=Merged_data_Sensor_Station['Ndalani_x']-

272.15, y=Merged_data_Sensor_Station['Ndalani_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[8, 3], x=Merged_data_Sensor_Station['Ndithini_x']-
272.15, y=Merged_data_Sensor_Station['Ndithini_y'], color='b', ci=68, truncate=False) 

 

sns.regplot(ax=axes[9, 0], x=Merged_data_Sensor_Station['SyokimauMulolongo_x']-
272.15, y=Merged_data_Sensor_Station['SyokimauMulolongo_y'], color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[9, 1], x=Merged_data_Sensor_Station['Tala_x']-

272.15, y=Merged_data_Sensor_Station['Tala_y'], color='b', ci=68, truncate=False) 
sns.regplot(ax=axes[9, 2], x=Merged_data_Sensor_Station['UpperKaewaIveti_x']-

272.15, y=Merged_data_Sensor_Station['UpperKaewaIveti_y'],color='r', ci=68, truncate=False) 

sns.regplot(ax=axes[9, 3], x=Merged_data_Sensor_Station['Wamunyu_x']-
272.15, y=Merged_data_Sensor_Station['Wamunyu_y'], color='b', ci=68, truncate=False) 

 

 

 
[ ] 

""" 
Plots of other counties  

Embu Plots 

 
Makima 

Mwea 

Mavuria 
Kiambere 

MbetiSouth 

Muminji 
Nthawa 

MbetiNorth 

Kithimu 

Kirimari 

Evurore 

KagaariSouth 
GaturiSouth 

KyeniSouth 

CentralWard 
GaturiNorth 

RuguruNgandori 

Nginda 
KagaariNorth 

""" 
 

 

fig, axes = plt.subplots(3,4, figsize=(35, 20)) 
  

# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 
plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

  

sns.regplot(ax=axes[0, 0], x=Merged_data_Sensor_Station['KagaariNorth_x'], y=Merged_data_Sensor_Station['KagaariNorth_y'], color='r') 

sns.regplot(ax=axes[0, 1], x=Merged_data_Sensor_Station['Nginda_x'], y=Merged_data_Sensor_Station['Nginda_y'], color='b') 
sns.regplot(ax=axes[0, 2], x=Merged_data_Sensor_Station['RuguruNgandori_x'], y=Merged_data_Sensor_Station['RuguruNgandori_y'], colo

r='r') 

sns.regplot(ax=axes[0, 3], x=Merged_data_Sensor_Station['GaturiNorth_x'], y=Merged_data_Sensor_Station['GaturiNorth_y'], color='b') 
sns.regplot(ax=axes[1, 0], x=Merged_data_Sensor_Station['CentralWard_x'], y=Merged_data_Sensor_Station['CentralWard_y'], color='r') 

sns.regplot(ax=axes[1, 1], x=Merged_data_Sensor_Station['KyeniSouth_x'], y=Merged_data_Sensor_Station['KyeniSouth_y'], color='b') 

sns.regplot(ax=axes[1, 2], x=Merged_data_Sensor_Station['GaturiSouth_x'], y=Merged_data_Sensor_Station['GaturiSouth_y'],color='r') 
sns.regplot(ax=axes[1, 3], x=Merged_data_Sensor_Station['KagaariSouth_x'], y=Merged_data_Sensor_Station['KagaariSouth_y'], color='b') 

 

 
sns.regplot(ax=axes[2, 0], x=Merged_data_Sensor_Station['Evurore_x'], y=Merged_data_Sensor_Station['Evurore_y'], color='r') 

sns.regplot(ax=axes[2, 1], x=Merged_data_Sensor_Station['Kirimari_x'], y=Merged_data_Sensor_Station['Kirimari_y'], color='b') 
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sns.regplot(ax=axes[2, 2], x=Merged_data_Sensor_Station['Nthawa_x'], y=Merged_data_Sensor_Station['Nthawa_y'], color='r') 

sns.regplot(ax=axes[2, 3], x=Merged_data_Sensor_Station['MbetiNorth_x'], y=Merged_data_Sensor_Station['MbetiNorth_y'], color='b') 

 
[ ] 
""" 

Kitui temperature Plots 

""" 
 

fig, axes = plt.subplots(3,4, figsize=(35, 20)) 

  
# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 
fig.subplots_adjust(hspace=0.125, wspace=0.125) 

 

sns.regplot(ax=axes[0, 0], x=Merged_data_Sensor_Station['Tseikuru_x'], y=Merged_data_Sensor_Station['Tseikuru_y'], color='r') 
sns.regplot(ax=axes[0, 1], x=Merged_data_Sensor_Station['Tharaka_x'], y=Merged_data_Sensor_Station['Tharaka_y'], color='b') 

sns.regplot(ax=axes[0, 2], x=Merged_data_Sensor_Station['Kyuso_x'], y=Merged_data_Sensor_Station['Kyuso_y'], color='r') 

sns.regplot(ax=axes[0, 3], x=Merged_data_Sensor_Station['Ngomeni_x'], y=Merged_data_Sensor_Station['Ngomeni_y'], color='b') 
sns.regplot(ax=axes[1, 0], x=Merged_data_Sensor_Station['Mumoni_x'], y=Merged_data_Sensor_Station['Mumoni_y'], color='r') 

sns.regplot(ax=axes[1, 1], x=Merged_data_Sensor_Station['Waita_x'], y=Merged_data_Sensor_Station['Waita_y'], color='b') 

sns.regplot(ax=axes[1, 2], x=Merged_data_Sensor_Station['Nguni_x'], y=Merged_data_Sensor_Station['Nguni_y'],color='r') 
sns.regplot(ax=axes[1, 3], x=Merged_data_Sensor_Station['KiomoKyethani_x'], y=Merged_data_Sensor_Station['KiomoKyethani_y'], color

='b') 

 
 

sns.regplot(ax=axes[2, 0], x=Merged_data_Sensor_Station['Kivou_x'], y=Merged_data_Sensor_Station['Kivou_y'], color='r') 

sns.regplot(ax=axes[2, 1], x=Merged_data_Sensor_Station['KyomeThaana_x'], y=Merged_data_Sensor_Station['KyomeThaana_y'], color='b'
) 

sns.regplot(ax=axes[2, 2], x=Merged_data_Sensor_Station['Central_x'], y=Merged_data_Sensor_Station['Central_y'], color='r') 

sns.regplot(ax=axes[2, 3], x=Merged_data_Sensor_Station['Migwani_x'], y=Merged_data_Sensor_Station['Migwani_y'], color='b') 

 
[ ] 

""" 
THARAKA_NITHI Temperaryre plots 

""" 

 
fig, axes = plt.subplots(3,4, figsize=(35, 20)) 

  

# fig.suptitle('Station data against sensor data for Rainfall amounts (mm)') 

# fig.tight_layout() 

plt.rcParams["figure.autolayout"] = True 

fig.subplots_adjust(hspace=0.125, wspace=0.125) 
 

sns.regplot(ax=axes[0, 0], x=Merged_data_Sensor_Station['Mukothima_x'], y=Merged_data_Sensor_Station['Mukothima_y'], color='r') 

sns.regplot(ax=axes[0, 1], x=Merged_data_Sensor_Station['Nkondi_x'], y=Merged_data_Sensor_Station['Nkondi_y'], color='b') 
sns.regplot(ax=axes[0, 2], x=Merged_data_Sensor_Station['Gatunga_x'], y=Merged_data_Sensor_Station['Gatunga_y'], color='r') 

sns.regplot(ax=axes[0, 3], x=Merged_data_Sensor_Station['Mariani_x'], y=Merged_data_Sensor_Station['Mariani_y'], color='b') 

sns.regplot(ax=axes[1, 0], x=Merged_data_Sensor_Station['Chogoria_x'], y=Merged_data_Sensor_Station['Chogoria_y'], color='r') 
sns.regplot(ax=axes[1, 1], x=Merged_data_Sensor_Station['Mwimbi_x'], y=Merged_data_Sensor_Station['Mwimbi_y'], color='b') 

sns.regplot(ax=axes[1, 2], x=Merged_data_Sensor_Station['Ganga_x'], y=Merged_data_Sensor_Station['Ganga_y'],color='r') 
sns.regplot(ax=axes[1, 3], x=Merged_data_Sensor_Station['Muthambi_x'], y=Merged_data_Sensor_Station['Muthambi_y'], color='b') 

 

 
sns.regplot(ax=axes[2, 0], x=Merged_data_Sensor_Station['Mitheru_x'], y=Merged_data_Sensor_Station['Mitheru_y'], color='r') 

 

sns.regplot(ax=axes[2, 1], x=Merged_data_Sensor_Station['Karingani_x'], y=Merged_data_Sensor_Station['Karingani_y'], color='b') 
sns.regplot(ax=axes[2, 2], x=Merged_data_Sensor_Station['Chiakariga_x'], y=Merged_data_Sensor_Station['Chiakariga_y'], color='r') 

sns.regplot(ax=axes[2, 3], x=Merged_data_Sensor_Station['Mugwe_x'], y=Merged_data_Sensor_Station['Mugwe_y'], color='b') 

 
Computing standard error based on each station and sensor data, plus their correlation matrix. There is a high correlation between 

the two datasets (tempertaure sensors and temperature station). 

 
[ ] 

from scipy.stats import linregress 

 
from sklearn.metrics import r2_score 

 

linregress(Merged_data_Sensor_Station['AthiRiver_x'], Merged_data_Sensor_Station['AthiRiver_y']) 
pearsons_coefficient = np.corrcoef(Merged_data_Sensor_Station['AthiRiver_x'], Merged_data_Sensor_Station['AthiRiver_y']) 

pearsons_coefficient2 = np.corrcoef(Merged_data_Sensor_Station['Ekalakala_x'], Merged_data_Sensor_Station['Ekalakala_x']) 

sns.heatmap(pearsons_coefficient, annot=True) 
 

print(linregress((Merged_data_Sensor_Station['AthiRiver_x'] -272.15), Merged_data_Sensor_Station['AthiRiver_y'])) 

print(linregress((Merged_data_Sensor_Station['Ekalakala_x'] -272.15), Merged_data_Sensor_Station['Ekalakala_y'])) 
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print(linregress((Merged_data_Sensor_Station['Ikombe_x'] -272.15), Merged_data_Sensor_Station['Ikombe_y'])) 

# sns.heatmap(pearsons_coefficient2, annot=True) 

 
Getting the Tavg finding the average between the Min temperature and max temperature. 

 
[ ] 

Min_Temp = pd.read_csv('/content/drive/MyDrive/AEZ_MACHAKOS_CSV/machakos-tmax_stations.csv') 
Min_Temp.head() 

Max_Temp = pd.read_csv('/content/drive/MyDrive/AEZ_MACHAKOS_CSV/machakos-tmin-stations.csv') 

print(Max_Temp.size) 
print(Min_Temp.size) 

 

# concatenate dataframe  
 

Cont_Temp = pd.concat([Max_Temp, Min_Temp]) 

Cont_Temp.mean() 
 

Blended_Temp = pd.DataFrame(Cont_Temp.mean()).reset_index().drop(1, ) 

 
Blended_Temp.rename(columns={'index' :'Place', 0 : 'Temperature'},inplace=True) 

 

Blended_Temp.head() 
Temp_mean = Blended_Temp.drop([0, ]) 

 
Plotting temperature mean plots based on the averaged min and max temperatures 

 
[ ] 

import seaborn as sn 
fig = px.line(Temp_mean, x="Place", y="Temperature") 

fig.show() 

 
[ ] 

""" 

Plotting LGP since we had all the dataset processed earlier from codes going down 
""" 

LGP_90_MAM = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_1990_2005_MAM_T_PET.csv') 

LGP_90_MAM.head() 
 

import seaborn as sn 

fig = px.line(LGP_90_MAM, x="index", y="Sum") 

fig.show() 

 
[ ] 
LGP_90_OND = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_1990_2005_OND_T_LPG.csv') 

LGP_90_OND.head() 

 
import seaborn as sn 

fig = px.line(LGP_90_OND, x="index", y="Sum") 

fig.show() 

 
[ ] 
LGP_20_MAM = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_2006_2020_MAM_T_LPG.csv') 

LGP_90_MAM.head() 

 
import seaborn as sn 

fig = px.line(LGP_90_OND, x="index", y="Sum") 

fig.show() 

 
[ ] 

LGP_20_OND = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_2006_2020_OND_T_LPG.csv') 

LGP_90_OND.head() 

 

import seaborn as sn 
fig = px.line(LGP_90_OND, x="index", y="Sum") 

fig.show() 

 
[ ] 

PET_90_MAM = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_1990_2005_MAM_T_PET.csv') 

PET_90_MAM .head() 
 

import seaborn as sn 

fig = px.line(PET_90_MAM, x="index", y="Sum") 
fig.show() 

 
[ ] 



 

130 

 

 

PET_90_OND = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_1990_2005_OND_T_PET.csv') 

PET_90_OND .head() 

 

import seaborn as sn 
fig = px.line(PET_90_OND, x="index", y="Sum") 

fig.show() 

 
[ ] 

PET_20_MAM = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_2006_2020_MAM_T_PET.csv') 

PET_90_MAM .head() 
 

import seaborn as sn 

fig = px.line(PET_90_MAM, x="index", y="Sum") 
fig.show() 

 
[ ] 
PET_20_OND = pd.read_csv('/content/drive/MyDrive/csv/SELECTED_2006_2020_OND_T_PET.csv') 

PET_90_OND .head() 

 
import seaborn as sn 

fig = px.line(PET_90_OND, x="index", y="Sum") 

fig.show() 

 
The codes going down might be obsolete since they focused on computing LGP. We already computed LGP initially so their usage migh be 

limited from here. The graph abaove can show the avaerage temeperature, but its output is not so needed. 

 
Processing dataframe and preparing it to be ingested in the R function for computation of daily PET using methods available. 

 
[ ] 

Temperature_Sensor.head() 

 
[ ] 

Temperature_Sensor.head() 

 
[ ] 

 

 
""" Saving the locations as a separate dataframe for later use in merging to the final datasets for processing of PET in R """ 

 

 

Positions = Temperature_Sensor[['Place','Latitude','Longitude']] 

Positions.head() 

 
Positions.rename(columns = {'Place':'index'}, inplace = True) 

 

Positions.head() 

 
[ ] 

 
"""  

setting the new dataframe in a manner that can be used in formating the index column to Year, Month and Day to be used in PET computatio
n in R  

 

""" 
Temperature_Sensor_T_PET = Temperature_Sensor.drop(['Latitude', 'Longitude'], axis=1, inplace=False) 

Temperature_Sensor_T_PET_T = Temperature_Sensor_T_PET.set_index('Place').T.reset_index() 

Temperature_Sensor_T_PET_T.head() 
 

 

 

 

 
[ ] 
""" 

Processing the LGP for the entire study area. Start by transposing the Temperature and Rainfall sensor data extracted. 

After transposing, change the data format to years and months alone 
""" 

 

 
Temperature_Regional = (pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/DailyTemp_csv_exports_ALL_1990-

2021_REGIONAL_FOR_LGP.csv')).set_index('ID').T.reset_index() 

 
Rainfall_Regional = (pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/DailyTemp_csv_exports_ALL_1990-

2021_REGIONAL_FOR_LGP.csv')).set_index('ID').T.reset_index() 

date_col = Rainfall_Regional['index'].to_frame() 
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date_col 

# Temperature_Regional 

# Rainfall_Regional.head() 

 
[ ] 

from datetime import datetime 

 
regional_date = pd.DataFrame(columns=['Year','Month','Day']) 

 

for data in range(len(date_col)): 
  # print(ppt_llpg_fitered.iloc[data,0]) 

  date_coverted = datetime.strptime((date_col.iloc[data,0]),'%Y%m%d') 

  Year = date_coverted.date().year 
  Month = date_coverted.date().month 

  Day = date_coverted.date().day 

 
  # print(date_coverted) 

 

  regional_date = regional_date.append({'Year':Year,'Month':Month,'Day':Day}, ignore_index=True) 
 

 

regional_date 
     

 
[ ] 
Temperature_Regional 

# Rainfall_Regional 

 
regional_date.to_csv('regional_date.csv', index=True, encoding='utf-8') 

 
[ ] 
Rainfall_Regional.head() 

 

Rainfall_Regional.to_csv('Rainfall_Regional_dateset.csv', index=True, encoding='utf-8') 

 
[ ] 

""" 
Converting the date column to year, month and day. Later the Dataframe will 

 be merged with the other dataframe for processing purposes 

 """ 

import datetime 

from datetime import datetime 

Temperature_Sensor_T_PET_T.head() 
 

Just_Temp_Data = pd.DataFrame(columns=['Date','Year', 'Month', 'Day', 'index']) 

 
     

 
[ ] 
print(',-1.5'*156)   

 
[ ] 

# Temperature_Sensor_T_PET_T.head() 

Just_Temp_Data.head() 

 
[ ] 

Positions.head() 

 
[ ] 

""" 

Merging the various dataframes with date, year adn day columns for processing thereafter 

""" 

 
Merged_Temp_Sensor_Station_4PET = pd.merge(Temperature_Sensor_T_PET_T, Just_Temp_Data, on="index") 

Merged_Temp_Sensor_Station_4PET.head() 

 
Merged_Temp_Transposed = Merged_Temp_Sensor_Station_4PET.set_index('index').T.reset_index() 

Merged_Positions_Temp_Transposed = pd.merge(Merged_Temp_Transposed, Positions, on = "index") 

Merged_Positions_Temp_Transposed.head() 
# print(Merged_Positions_Temp_Transposed.columns) 

Merged_Positions_Temp_Transposed.tail() 

# print(Merged_Positions_Temp_Transposed['index']) 
Merged_Temp_Sensor_Station_4PET.head() 

# Merged_Temp_Transposed.tail() 

# print(Merged_Temp_Transposed['index']) 
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"""  

 saving the prepared dataframe as a csv and using it in R for PET analysis 

 """ 
 

Merged_Temp_Sensor_Station_4PET.to_csv('Merged_Temp_Sensor_Station_4PET.csv', index=True, encoding='utf-8') 

 
[ ] 

""" 

using the daily PET to compute LGP for various years in each station 
 

""" 

 
Daily_PET = pd.read_csv('/content/drive/MyDrive/AEZ_MACHAKOS_CSV/DAILY_PET_DATA_COMPUTED_With_ROWS.csv') 

Daily_PET 

 
[ ] 

""" 

Computing the value of LGP per year based on the Rainfall Data. Rainfall data that is more than 0.5 PET should be considered as a day that c
rops could germinate, as some  

mositure was left in the soil. This starts by reading the daily PET that was computed in R using the thornthwite function, with Tavg and latitu

de as the input of the model 
 

""" 

 
Compututed_daily_PET = pd.read_csv('/content/drive/MyDrive/AEZ_MACHAKOS_CSV/DAILY_PET_DATA_COMPUTED_With_ROW

S_FORLGP.csv') 

Compututed_daily_PET.head() 
Compututed_daily_PPT = pd.read_csv('/content/drive/MyDrive/AEZ_MACHAKOS_CSV/Rainfall_Sensor_1990_2020_Transposed_ROWS

_forLGP_2.csv') 

Compututed_daily_PPT.head() 
 

""" 

Comparing the values of daily precipitation and the values of daily PET 
where PPT >= 0.5PET 

""" 

 
Compututed_daily_PPT.head() 

# Compututed_daily_PET.head() 

 

 

columns = Compututed_daily_PPT[['Year','Month']] 

columns 
 

Compututed_daily_PET 

 
[ ] 

""" 

Comparing the dataframes of PET and daily Rainfall to analys LPG. The resultant dataframe was transformed to a bolean dataframe, where t
he days that 

PPT was greater than PET, the value is 1, while the reverse was made to be 0. This is to necessitate the possibility of creating a pivot table of 
sum of days that  

of LPG 

 
""" 

 
[ ] 
import pandas as pd 

import numpy as np 

 

 

 

final_df = pd.DataFrame() 
 

 

 
 

Compututed_daily_PPT.head() 

Compututed_daily_PET.head() 
 

for column, col in range(len(Compututed_daily_PPT.iloc[: 2:42]), len(Compututed_daily_PET.iloc[: 2:42])): 

    df = column  >= col/2 
 

    print(df)   
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    final_df = final_df.append(df) 

final_df.head() 

 
[ ] 
Compututed_daily_PPT 

 
[ ] 
 

Compututed_daily_PPT 

Compututed_daily_PET 
 

Compututed_daily_PPT.eq(Compututed_daily_PET/2) 

 
df_new = (Compututed_daily_PPT.iloc[:, 0:43]).ge(Compututed_daily_PET.iloc[:, 0:43]/2) 

df_new 

 
 

Compututed_daily_PET.iloc[:, 0:43]/2 

 
[ ] 

Regional_PET = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_REGIONAL.csv') 

Regional_PET 
 

 

""" 
Filtering by years and months to identify the MAM and OND LGP values 

 

""" 
 

""" 

Filtering by seasons including OND and MAM for both epochs and findingh their LPG  per season in each location. 
 

""" 

 
""" 

Finding the LPG (MAM & OND) 1991 - 2005 

""" 
SELECTED1990_2005_MAM = Regional_PET[(Regional_PET['Year'] >= 1991) & (Regional_PET['Year'] <= 2005) & (Regional_PET['Mo

nth'] >= 3) & (Regional_PET['Month'] <= 5) ] 

SELECTED1990_2005_MAM 

SELECTED1990_2005_OND = Regional_PET[(Regional_PET['Year'] >= 1991) & (Regional_PET['Year'] <= 2005) & (Regional_PET['Mo

nth'] >= 10) & (Regional_PET['Month'] <= 12) ] 

SELECTED1990_2005_OND 
 

""" 

Finding the LPG (MAM & OND) 2006 - 2021 
""" 

 

SELECTED2006_2020_OND = Regional_PET[(Regional_PET['Year'] >= 2006) & (Regional_PET['Year'] <= 2020) & (Regional_PET['Mo
nth'] >= 10) & (Regional_PET['Month'] <= 12) ] 

 
SELECTED2006_2020_MAM = Regional_PET[(Regional_PET['Year'] >= 2006) & (Regional_PET['Year'] <= 2020) & (Regional_PET['Mo

nth'] >= 3) & (Regional_PET['Month'] <= 5) ] 

SELECTED2006_2020_MAM.head() 
 

""" 

Rearranging the LPGs to plottabel both spatially and as charts and maps and getting the sum of OND days per season 
""" 

 

SELECTED_2006_2020_MAM_T_PET = SELECTED2006_2020_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().renam

e(columns = {0:'Sum'}).reset_index() 

 

SELECTED_2006_2020_OND_T_PET = SELECTED2006_2020_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename
(columns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_OND_T_PET = SELECTED1990_2005_OND.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().rename
(columns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_MAM_T_PET = SELECTED1990_2005_MAM.drop(['Year', 'Month'], axis=1).T.mean(axis = 1).to_frame().renam
e(columns = {0:'Sum'}).reset_index() 
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SELECTED_1990_2005_MAM_T_PET 

SELECTED_1990_2005_OND_T_PET 

 
[ ] 
SELECTED_2006_2020_MAM_T_PET.to_csv('SELECTED_2006_2020_MAM_T_PET.csv', encoding='utf-8') 

SELECTED_1990_2005_MAM_T_PET.to_csv('SELECTED_1990_2005_MAM_T_PET.csv', encoding='utf-8') 

SELECTED_2006_2020_OND_T_PET.to_csv('SELECTED_2006_2020_OND_T_PET.csv', encoding='utf-8') 
SELECTED_1990_2005_OND_T_PET.to_csv('SELECTED_1990_2005_OND_T_PET.csv', encoding='utf-8') 

 
[ ] 
""" 

Computing for regional LGP, using regional PET and regional PPT 

then finding the summation and of each location in terms of season, afterwhich are plotted spatially. 
""" 

 

Regional_PET = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_REGIONAL.csv') 
Regional_Rainfall = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/Rainfall_Regional_dateset.csv') 

 

Regional_LGP = (Regional_Rainfall.iloc[:, 3:155]).ge(Regional_PET.iloc[:, 3:155]/2) 
Regional_LGP 

Regional_LGP_2 = Regional_LGP.replace({True: 1, False: 0}) 

Regional_LGP_2 
Regional_LGP_2['Year'] = regional_date['Year'] 

Regional_LGP_2['Month'] = regional_date['Month'] 

Regional_LGP_2.head() 

 
[ ] 

""" 
Filtering by years and months to identify the MAM and OND LGP values 

 

""" 
 

""" 

Filtering by seasons including OND and MAM for both epochs and findingh their LPG  per season in each location. 
 

""" 

 
""" 

Finding the LPG (MAM & OND) 1991 - 2005 

""" 

SELECTED1990_2005_MAM = Regional_LGP_2[(Regional_LGP_2['Year'] >= 1991) & (Regional_LGP_2['Year'] <= 2005) & (Regional_

LGP_2['Month'] >= 3) & (Regional_LGP_2['Month'] <= 5) ] 

SELECTED1990_2005_MAM 
SELECTED1990_2005_OND = Regional_LGP_2[(Regional_LGP_2['Year'] >= 1991) & (Regional_LGP_2['Year'] <= 2005) & (Regional_L

GP_2['Month'] >= 10) & (Regional_LGP_2['Month'] <= 12) ] 

SELECTED1990_2005_OND 
 

""" 

Finding the LPG (MAM & OND) 2006 - 2021 
""" 

 
SELECTED2006_2020_OND = Regional_LGP_2[(Regional_LGP_2['Year'] >= 2006) & (Regional_LGP_2['Year'] <= 2020) & (Regional_L

GP_2['Month'] >= 10) & (Regional_LGP_2['Month'] <= 12) ] 

 
SELECTED2006_2020_MAM = Regional_LGP_2[(Regional_LGP_2['Year'] >= 2006) & (Regional_LGP_2['Year'] <= 2020) & (Regional_

LGP_2['Month'] >= 3) & (Regional_LGP_2['Month'] <= 5) ] 

SELECTED2006_2020_MAM.head() 
 

""" 

Rearranging the LPGs to plottabel both spatially and as charts and maps and getting the sum of OND days per season 

""" 

 

SELECTED_2006_2020_MAM_T = SELECTED2006_2020_MAM.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colu
mns = {0:'Sum'}).reset_index() 

 

SELECTED_2006_2020_OND_T = SELECTED2006_2020_OND.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colum
ns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_OND_T = SELECTED1990_2005_OND.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colum
ns = {0:'Sum'}).reset_index() 

 

SELECTED_1990_2005_MAM_T = SELECTED1990_2005_MAM.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colu
mns = {0:'Sum'}).reset_index() 
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SELECTED_1990_2005_MAM_T 
 

 

 
[ ] 

""" 

Saving the PET as CSV for plotting ready 
""" 

SELECTED_2006_2020_MAM_T.to_csv('SELECTED_2006_2020_MAM_T_LPG.csv', encoding='utf-8') 

SELECTED_1990_2005_MAM_T.to_csv('SELECTED_1990_2005_MAM_T_LPG.csv', encoding='utf-8') 
SELECTED_2006_2020_OND_T.to_csv('SELECTED_2006_2020_OND_T_LPG.csv', encoding='utf-8') 

SELECTED_1990_2005_OND_T.to_csv('SELECTED_1990_2005_OND_T_LPG.csv', encoding='utf-8') 

 
[ ] 

""" 

Saving the LPGs as CSV for plotting ready 
""" 

SELECTED_2006_2020_MAM_T.to_csv('SELECTED_2006_2020_MAM_T_LPG.csv', encoding='utf-8') 

SELECTED_1990_2005_MAM_T.to_csv('SELECTED_1990_2005_MAM_T_LPG.csv', encoding='utf-8') 
SELECTED_2006_2020_OND_T.to_csv('SELECTED_2006_2020_OND_T_LPG.csv', encoding='utf-8') 

SELECTED_1990_2005_OND_T.to_csv('SELECTED_1990_2005_OND_T_LPG.csv', encoding='utf-8') 

 
[ ] 

df_new2 = df_new.replace({True: 1, False: 0}) 

df_new2 
 

 
[ ] 
df_new2['Year'] = columns['Year'] 

df_new2['Month'] = columns['Month'] 

PET_LPG_COUNTS = df_new2 
 

PET_LPG_COUNTS 

 
[ ] 

PET_LPG_COUNTS 

 
[ ] 

""" 

Creating a copy of the dataframe for summation analysis per year for the LPG 
""" 

 

PET_LPG_COUNTS_copy = PET_LPG_COUNTS.copy() 
 

 
[ ] 
""" 

dropping the unecessary columns to compute the sum of number of LPG 
 

""" 

dropped_df = PET_LPG_COUNTS_copy.drop(['Year', 'Month'], axis=1) 
dropped_df.head() 

 
[ ] 
""" 

Doing the row sum for each location to get the number of crop growing days in each location 

 

""" 

 

dropped_df_T = dropped_df.T 
dropped_df_T_sum = dropped_df_T.sum(axis = 1).to_frame().reset_index() 

dropped_df_T_sum 

dropped_df_T_sum.head() 
dropped_df_T_sum['Year']=columns['Year'] 

dropped_df_T_sum['Month']=columns['Month'] 

# df_new2['Year'] = columns['Year'] 
# df_new2['Month'] = columns['Month'] 

 

import seaborn as sn 
fig = px.bar(dropped_df_T_sum, x="index", y=0) 

fig.show() 

# ax = sns.barplot(x="index", y=0, hue="Year", data=dropped_df_T_sum) 
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# dropped_df_T_sum 

# dropped_df_T 

""" 

The plot shows the areas that had the hisgest number of crop growing days from 1991 to 2020. The data has not been filtered by season yet 
""" 

 
[ ] 
""" 

Filtering by seasons including OND and MAM for both epochs and findingh their LPG  per season in each location. 

 
""" 

 

dropped_df 
dropped_df 

dropped_df['Year']=columns['Year'] 

dropped_df['Month']=columns['Month'] 
dropped_df.head() 

 

""" 
Finding the LPG (MAM & OND) 1991 - 2005 

""" 

SELECTED1990_2005_MAM = dropped_df[(dropped_df['Year'] >= 1991) & (dropped_df['Year'] <= 2005) & (dropped_df['Month'] >= 3) 
& (dropped_df['Month'] <= 5) ] 

SELECTED1990_2005_MAM 

SELECTED1990_2005_OND = dropped_df[(dropped_df['Year'] >= 1991) & (dropped_df['Year'] <= 2005) & (dropped_df['Month'] >= 10) 
& (dropped_df['Month'] <= 12) ] 

SELECTED1990_2005_OND 

 
""" 

Finding the LPG (MAM & OND) 2006 - 2021 

""" 
 

SELECTED2006_2020_OND = dropped_df[(dropped_df['Year'] >= 2006) & (dropped_df['Year'] <= 2020) & (dropped_df['Month'] >= 10) 

& (dropped_df['Month'] <= 12) ] 
 

SELECTED2006_2020_MAM = dropped_df[(dropped_df['Year'] >= 2006) & (dropped_df['Year'] <= 2020) & (dropped_df['Month'] >= 3) 

& (dropped_df['Month'] <= 5) ] 
 

 

""" 

Rearranging the LPGs to plottabel both spatially and as charts and maps and getting the sum of OND days per season 

""" 

 
SELECTED_2006_2020_MAM_T = SELECTED2006_2020_MAM.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colu

mns = {0:'Sum'}).reset_index() 

 
SELECTED_2006_2020_OND_T = SELECTED2006_2020_OND.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colum

ns = {0:'Sum'}).reset_index() 

 
SELECTED_1990_2005_OND_T = SELECTED1990_2005_OND.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colum

ns = {0:'Sum'}).reset_index() 
 

SELECTED_1990_2005_MAM_T = SELECTED1990_2005_MAM.drop(['Year', 'Month'], axis=1).T.sum(axis = 1).to_frame().rename(colu

mns = {0:'Sum'}).reset_index() 
 

 

 
 

 

SELECTED_1990_2005_MAM_T 

 
[ ] 

""" 
SAVING THE LPGs AS CSV FOR MAP GENERATION OF LGP MAPS PER SEASON 

""" 

 
SELECTED_2006_2020_MAM_T 

SELECTED_1990_2005_MAM_T 

SELECTED_2006_2020_OND_T 
SELECTED_1990_2005_OND_T 

 

SELECTED_2006_2020_MAM_T.to_csv('SELECTED_2006_2020_MAM_T_LPG.csv', encoding='utf-8') 
SELECTED_1990_2005_MAM_T.to_csv('SELECTED_1990_2005_MAM_T_LPG.csv', encoding='utf-8') 

SELECTED_2006_2020_OND_T.to_csv('SELECTED_2006_2020_OND_T_LPG.csv', encoding='utf-8') 

SELECTED_1990_2005_OND_T.to_csv('SELECTED_1990_2005_OND_T_LPG.csv', encoding='utf-8') 
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[ ] 

""" 

 LPG MAM 2006 TO 2020 GRAPH 
""" 

fig = px.bar(SELECTED_2006_2020_MAM_T, x="index", y='Sum') 

fig.show() 

 
[ ] 

""" 
 MAM 1990 TO 2005 GRAPH 

""" 

fig = px.bar(SELECTED_1990_2005_MAM_T, x="index", y='Sum') 
fig.show() 

 
[ ] 
""" 

 OND 2006 TO 2020 GRAPH 

""" 
fig = px.bar(SELECTED_2006_2020_OND_T, x="index", y='Sum') 

fig.show() 

 
[ ] 

 

""" 
 OND 1990 TO 2005 GRAPH 

""" 

fig = px.bar(SELECTED_1990_2005_OND_T, x="index", y='Sum') 
fig.show() 

 
[ ] 
""" 

finding the sum of number of LPG per day as a single count with a column, then later merging it with the whole dataset 

""" 
PET_LPG_COUNTS_copy_sum_per_day = dropped_df.sum(axis = 1).to_frame() 

PET_LPG_COUNTS_copy_sum_per_day.rename(columns = {0:'Sum'}).astype(str) 

 
[ ] 

""" 

combining the columns with the year and months with the LPG counts 

""" 

columns.reset_index(drop=True, inplace=True) 

PET_LPG_COUNTS_copy_sum_per_day.reset_index(drop=True, inplace=True) 
concatenated_summationLPG_ = pd.concat([PET_LPG_COUNTS_copy_sum_per_day, columns], axis=1) 

concatenated_summationLPG_.rename(columns = {0:'Sum'}) 

 
[ ] 

concatenated_summationLPG_[(concatenated_summationLPG_['Year'] == 2017) & (concatenated_summationLPG_[0] == 1)] 

 
[ ] 

# concatenated_summationLPG_[(concatenated_summationLPG_['Year'] == 2017) & (concatenated_summationLPG_[0] == 1)] 
selected_columns = concatenated_summationLPG_[(concatenated_summationLPG_[0] == 1)] 

selected_columns.head() 

# df["A"][(df["B"] > 50) & (df["C"] == 900)] 

 
[ ] 

# """" 
# Drawing the number of days that the Pet was twice as much as rainfall from 1990 - 2005 

# showing only a few days that had the said condition as can be seen in the graph. 

 

# Number of crop growth days in each year, based on potential PET and received rainfall 

 

# """" 
 

fig = px.bar(selected_columns, x="Year", y=0) 

fig = px.histogram(selected_columns, x="Year", y=0) 
# fig = px.bar(selected_columns, x="Year", y=0) 

fig.show() 

 
[ ] 

""" 

Filtering the daily PET data based on MAM and OND seasons, for basically kriging for computation on LGD and combination with other dat
asets on googlea earth negine 

This entails transforming to csv for later processing in excel to save on time 

""" 
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Compututed_daily_PET.head() 

 

PET_MAM_1991_2005 = Compututed_daily_PET[(Compututed_daily_PET['Year'] <= 2005) & (Compututed_daily_PET['Month'] >= 3) & 
(Compututed_daily_PET['Month'] <= 5) ] 

PET_MAM_1991_2005_T = PET_MAM_1991_2005.set_index('Year').T 

PET_MAM_1991_2005_T_mean = PET_MAM_1991_2005_T.mean(axis=1).to_frame().reset_index() 
PET_MAM_1991_2005_T_mean.to_csv('PET_MAM_1991_2005_T_mean.csv', encoding='utf-8') 

 

PET_OND_1991_2005 = Compututed_daily_PET[(Compututed_daily_PET['Year'] <= 2005) & (Compututed_daily_PET['Month'] >= 10) &
 (Compututed_daily_PET['Month'] <= 12) ] 

PET_OND_1991_2005_T = PET_OND_1991_2005.set_index('Year').T 

PET_OND_1991_2005_T_mean = PET_OND_1991_2005_T.mean(axis=1).to_frame().reset_index() 
PET_OND_1991_2005_T_mean.to_csv('PET_OND_1991_2005_T_mean.csv', encoding='utf-8') 

 

PET_OND_2006_2021 = Compututed_daily_PET[(Compututed_daily_PET['Year'] >= 2006) & (Compututed_daily_PET['Month'] >= 3) & (
Compututed_daily_PET['Month'] <= 5) ] 

PET_OND_2006_2021_T = PET_OND_2006_2021.set_index('Year').T 

PET_OND_2006_2021_T_mean = PET_OND_2006_2021_T.mean(axis=1).to_frame().reset_index() 
PET_OND_2006_2021_T_mean.to_csv('PET_OND_2006_2021_T_mean.csv', encoding='utf-8') 

 

 
PET_MAM_2006_2021 = Compututed_daily_PET[(Compututed_daily_PET['Year'] >= 2006) & (Compututed_daily_PET['Month'] >= 10) 

& (Compututed_daily_PET['Month'] <= 12) ] 

PET_MAM_2006_2021_T = PET_MAM_1991_2005.set_index('Year').T 
PET_MAM_2006_2021_T_mean = PET_MAM_2006_2021_T.mean(axis=1).to_frame().reset_index() 

PET_MAM_2006_2021_T_mean.to_csv('PET_MAM_2006_2021_T_mean.csv', encoding='utf-8') 

 
 

PET_MAM_2006_2021_T.mean(axis=1) 

 
for_latitude = pd.read_csv('/content/Temperature_csv_exports_ALL_1990-2020.csv') 

for_latitude 

LATLONG = for_latitude[['Place','Latitude','Longitude']] 
LATLONG.to_csv('LATLONG.csv', encoding='utf-8') 

 

# LATLONG_2 = LATLONG.rename(columns = {'Place':'index'}, inplace = True) 
# PET_MAM_2006_2021_T_mean_merged = pd.merge(PET_MAM_2006_2021_T_mean, LATLONG_2, on="index") 

 

# df.rename(columns = {'old_col1':'new_col1', 'old_col2':'new_col2'}, inplace = True) 

 
Processing the predicted or future AEZ CSV data for the sake of interplolation and processing of LGP, PET and Rainfall Rasters. 

 
[ ] 

Rainfall_rcp85 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/Rainfall_RCP85.csv').reset_index().set_index('index').T.a

stype(str).reset_index() 
Temperature_rcp85 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/TEMPERATURE_RCP85.csv').reset_index().set_ind

ex('index').T.reset_index() 

Temperature_rcp45 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/TEMPERATURE_RCP45.csv').reset_index().set_ind
ex('index').T.reset_index() 

Rainfall_rcp45 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/Rainfall_RCP45.csv').reset_index().set_index('index').T.re
set_index() 

Temperature_rcp85.head() 

Rainfall_rcp45.head() 

 
Converting data column to interable feature 

 
[ ] 

from datetime import datetime 

Predicted_date = Temperature_rcp85[['index']].astype(str) 

 

 

PREDICTED_DATES = pd.DataFrame(columns=['Year','Month']) 
 

for data in range(len(Temperature_rcp85)): 

  # print(ppt_llpg_fitered.iloc[data,0]) 
  date_coverted = datetime.strptime((Temperature_rcp85.iloc[data,0]), '%d/%m/%Y') 

  Year = date_coverted.date().year 

  Month = date_coverted.date().month 
 

  

  # print(date_coverted) 
 

  PREDICTED_DATES = PREDICTED_DATES.append({'Year':Year,'Month':Month}, ignore_index=True) 
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PREDICTED_DATES 

 

# regional_date3['ID2']=rain_date['ID'] 
# regional_date 

 
Joining the date colum with the entire dataframe, for filtering and selection 

 
[ ] 

Temperature_rcp85[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 
Rainfall_rcp85[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

Rainfall_rcp45[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

Temperature_rcp45[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 
Rainfall_rcp85.head() 

Temperature_rcp85.head() 

Temperature_rcp45.head() 

 
Comparing CSV data of rainfal to develop LGP 

 
[ ] 

Rainfall_rcp85 

Rainfall_rcp45.head() 
PET_rcp85 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_rcp85_Transposed.csv') 

PET_rcp45 = pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_rcp45_Transposed.csv') 

PET_rcp45.head() 
Rainfall_rcp45 

Rainfall_rcp85.head() 

PET_rcp45.head() 

 
Selecting for the various products including MAM and OND 

 
[ ] 

 

Temperature_rcp85_select = Temperature_rcp85.iloc[:, 1:462] 
Temperature_rcp45.head() 

Temperature_rcp85_select 

Rainfall_rcp85_select = Rainfall_rcp85.iloc[:, 1:462] 
Rainfall_rcp85_select 

Rainfall_rcp45_select = Rainfall_rcp45.iloc[:,1:462] 

 

Rainfall_rcp45_select[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

Rainfall_rcp85_select[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

Rainfall_rcp85_select 
Rainfall_rcp45_select 

 
[ ] 
Temperature_rcp85_select = Temperature_rcp85.iloc[:, 1:462] 

Temperature_rcp45_select = Temperature_rcp45.iloc[:, 1:462] 

Temperature_rcp85_select[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 
Temperature_rcp45_select[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

Temperature_rcp45_select.head() 

 
Calling the PET data that have been calculated in R FOR 2040 

 
[ ] 

PET_rc45 = (pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_rcp45_Transposed.csv')).iloc[:,0:461] 

PET_rc85 = (pd.read_csv('/content/drive/MyDrive/CSV_FINAL_2022_08_31/PET_rcp85_Transposed.csv')).iloc[:,0:461] 
PET_rc45[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

PET_rc85[['Year','Month']] = PREDICTED_DATES[['Year','Month']] 

 
[ ] 

# concat_temp_station[(concat_temp_station['Year'] >= 1991) & (concat_temp_station['Year'] <= 2005) & (concat_temp_station['Month'] >=

 3) & (concat_temp_station['Month'] <= 5) ] 
RAIN_rc85_MAM = (Rainfall_rcp85_select[(Rainfall_rcp85_select['Year'] >= 2021) & (Rainfall_rcp85_select['Year'] <= 2040) & (Rainfall

_rcp85_select['Month'] >= 3) & (Rainfall_rcp85_select['Month'] <= 5) ]).iloc[:,0:461] 

RAIN_rc85_OND = (Rainfall_rcp85_select[(Rainfall_rcp85_select['Year'] >= 2021) & (Rainfall_rcp85_select['Year'] <= 2040) & (Rainfall_
rcp85_select['Month'] >= 10) & (Rainfall_rcp85_select['Month'] <= 12) ]).iloc[:,0:461] 

RAIN_rc45_MAM = (Rainfall_rcp45_select[(Rainfall_rcp45_select['Year'] >= 2021) & (Rainfall_rcp45_select['Year'] <= 2040) & (Rainfall

_rcp45_select['Month'] >= 3) & (Rainfall_rcp45_select['Month'] <= 5) ]).iloc[:,0:461] 
RAIN_rc45_OND = (Rainfall_rcp45_select[(Rainfall_rcp45_select['Year'] >= 2021) & (Rainfall_rcp45_select['Year'] <= 2040) & (Rainfall_

rcp45_select['Month'] >= 10) & (Rainfall_rcp45_select['Month'] <= 12) ]).iloc[:,0:461] 

 
# PET_rc45_MAM = (PET_rc45[(PET_rc45['Year'] >= 2021) & (PET_rc45['Year'] <= 2040) & (PET_rc45['Month'] >= 3) & (PET_rc45['M

onth'] <= 5) ]).iloc[:,0:461] 

# PET_rc45_OND = (PET_rc45[(PET_rc45['Year'] >= 2021) & (PET_rc45['Year'] <= 2040) & (PET_rc45['Month'] >= 10) & (PET_rc45['M
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onth'] <= 12) ]).iloc[:,0:461] 

# PET_rc85_MAM = (PET_rc85[(PET_rc85['Year'] >= 2021) & (PET_rc85['Year'] <= 2040) & (PET_rc85['Month'] >= 3) & (PET_rc85['M

onth'] <= 5) ]).iloc[:,0:461] 

# PET_rc85_OND = (PET_rc85[(PET_rc85['Year'] >= 2021) & (PET_rc85['Year'] <= 2040) & (PET_rc85['Month'] >= 10) & (PET_rc85['M
onth'] <= 12) ]).iloc[:,0:461] 

# PET_rc45_MAM 

 
[ ] 

RAIN_rc85_MAM_2 = RAIN_rc85_MAM.astype('float').T.mean(axis=1).T.to_frame().reset_index() 

RAIN_rc85_OND_2 = RAIN_rc85_OND.astype('float').T.mean(axis=1).T.to_frame().reset_index() 
RAIN_rc45_MAM_2 = RAIN_rc45_MAM.astype('float').T.mean(axis=1).T.to_frame().reset_index() 

RAIN_rc45_OND_2 = RAIN_rc45_OND.astype('float').T.mean(axis=1).T.to_frame().reset_index() 

 
RAIN_rc85_MAM_2.to_csv('RAIN_rc85_MAM_2.csv', index=True, encoding='utf-8') 

RAIN_rc85_OND_2.to_csv('RAIN_rc85_OND_2.csv', index=True, encoding='utf-8') 

RAIN_rc45_MAM_2.to_csv('RAIN_rc45_MAM_2.csv', index=True, encoding='utf-8') 
RAIN_rc45_OND_2.to_csv('RAIN_rc45_OND_2.csv', index=True, encoding='utf-8') 

 
[ ] 
TEMP_rc45_MAM.to_csv('TEMP_rc45_MAM.csv', index=True, encoding='utf-8') 

TEMP_rc45_OND.to_csv('TEMP_rc45_OND.csv', index=True, encoding='utf-8') 

TEMP_rc85_MAM.to_csv('TEMP_rc85_MAM.csv', index=True, encoding='utf-8') 
TEMP_rc85_OND.to_csv('TEMP_rc85_OND.csv', index=True, encoding='utf-8') 

 

 
making sure the columns have the same name, so as to compare them 

 
[ ] 
# # RAIN_rc85_MAM.head() 

# # PET_rc85_MAM = PET_rc85_MAM.astype('int') 

# RAIN_rc85_MAM = RAIN_rc85_MAM.astype('float') 
# PET_rc85_MAM = PET_rc85_MAM.astype('float') 

# RAIN_rc85_MAM 

# PET_rc85_MAM 
# # lgp_rc85_MAM  = RAIN_rc85_MAM.loc[RAIN_rc85_MAM > (PET_rc85_MAM/2)] 

 

# PET_rc85_MAM.reset_index(drop=True)# 
# PET_rc85_MAM 

# list(RAIN_rc85_MAM) 

# PET_rc85_MAM.columns = list(RAIN_rc85_MAM) 

# PET_rc85_MAM 

 

PET_rc85_MAM.columns = list(RAIN_rc85_MAM) 
PET_rc85_OND.columns = list(RAIN_rc85_MAM) 

PET_rc45_MAM.columns = list(RAIN_rc85_MAM) 

PET_rc45_OND.columns = list(RAIN_rc85_MAM) 
 

PET_rc45_OND 

 
lgp_rc85_MAM = ((((RAIN_rc85_MAM.astype('float')).reset_index()).ge((PET_rc85_MAM.astype('float')/2).reset_index()).replace({True: 

1, False: 0})).iloc[:,1:462]).T.sum(axis=1).T.to_frame().reset_index() 
lgp_rc85_OND = ((((RAIN_rc85_OND.astype('float')).reset_index()).ge(((PET_rc85_OND.astype('float'))/2).reset_index()).replace({True: 1

, False: 0})).iloc[:,1:462]).T.sum(axis=1).T.to_frame().reset_index() 

lgp_rc45_MAM = ((((RAIN_rc45_MAM.astype('float')).reset_index()).ge(((PET_rc45_MAM.astype('float'))/2).reset_index()).replace({True
: 1, False: 0})).iloc[:,1:462]).T.sum(axis=1).T.to_frame().reset_index() 

lgp_rc45_OND = (((((RAIN_rc45_OND.astype('float')).reset_index()).ge(((PET_rc45_OND.astype('float'))/2).reset_index()).replace({True: 

1, False: 0}))).iloc[:,1:462]).T.sum(axis=1).T.to_frame().reset_index() 
 

# # .sum(axis=1).to_frame() 

# RAIN_rc85_MAM 

# PET_rc85_MAM 

PET_rc45_OND 

 
[ ] 

 

 
[ ] 

PET_rc85_MAM_2 = PET_rc85_MAM.T.reset_index().mean(axis=1).T.to_frame().reset_index() 

PET_rc85_OND_2 = PET_rc85_OND.T.reset_index().mean(axis=1).T.to_frame().reset_index() 
PET_rc45_MAM_2 = PET_rc45_MAM.T.reset_index().mean(axis=1).T.to_frame().reset_index() 

PET_rc45_OND_2 = PET_rc45_OND.T.reset_index().mean(axis=1).T.to_frame().reset_index() 

 
PET_rc85_MAM_2.to_csv('PET_rc85_MAM_2.csv', index=True, encoding='utf-8') 

PET_rc85_OND_2.to_csv('PET_rc85_OND_2.csv', index=True, encoding='utf-8') 
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PET_rc45_MAM_2.to_csv('PET_rc45_MAM_2.csv', index=True, encoding='utf-8') 

PET_rc45_OND_2.to_csv('PET_rc45_OND_2.csv', index=True, encoding='utf-8') 

 
[ ] 
PET_rc85_MAM.to_csv('lgp_rc85_MAM.csv', index=True, encoding='utf-8') 

PET_rc85_OND.to_csv('lgp_rc85_OND.csv', index=True, encoding='utf-8') 

PET_rc45_MAM.to_csv('lgp_rc45_MAM.csv', index=True, encoding='utf-8') 
PET_rc45_OND.to_csv('lgp_rc45_OND.csv', index=True, encoding='utf-8') 

 
[ ] 
lgp_rc85_MAM 

 

lgp_rc85_MAM.to_csv('lgp_rc85_MAM.csv', index=True, encoding='utf-8') 
lgp_rc85_OND.to_csv('lgp_rc85_OND.csv', index=True, encoding='utf-8') 

lgp_rc45_MAM.to_csv('lgp_rc45_MAM.csv', index=True, encoding='utf-8') 

lgp_rc45_OND.to_csv('lgp_rc45_OND.csv', index=True, encoding='utf-8') 

 
[ ] 

TEMP_rc45_MAM = ((Temperature_rcp45_select[(Temperature_rcp45_select['Year'] >= 2021) & (Temperature_rcp45_select['Year'] <= 20
40) & (Temperature_rcp45_select['Month'] >= 3) & (Temperature_rcp45_select['Month'] <= 5) ]).iloc[:,0:461]).T.mean(axis=1).T.to_frame()

.reset_index() 

TEMP_rc45_OND = (Temperature_rcp45_select[(Temperature_rcp45_select['Year'] >= 2021) & (Temperature_rcp45_select['Year'] <= 2040
) & (Temperature_rcp45_select['Month'] >= 10) & (Temperature_rcp45_select['Month'] <= 12) ]).iloc[:,0:461].T.mean(axis=1).T.to_frame().

reset_index() 

TEMP_rc85_MAM = (Temperature_rcp85_select[(Temperature_rcp85_select['Year'] >= 2021) & (Temperature_rcp85_select['Year'] <= 204
0) & (Temperature_rcp85_select['Month'] >= 3) & (Temperature_rcp85_select['Month'] <= 5) ]).iloc[:,0:461].T.mean(axis=1).T.to_frame().r

eset_index() 

TEMP_rc85_OND = (Temperature_rcp85_select[(Temperature_rcp85_select['Year'] >= 2021) & (Temperature_rcp85_select['Year'] <= 2040
) & (Temperature_rcp85_select['Month'] >= 10) & (Temperature_rcp85_select['Month'] <= 12) ]).iloc[:,0:461].T.mean(axis=1).T.to_frame().

reset_index() 

TEMP_rc45_OND 

 
[ ] 

TEMP_rc45_MAM.to_csv('TEMP_rc45_MAM.csv', index=True, encoding='utf-8') 
TEMP_rc45_OND.to_csv('TEMP_rc45_OND.csv', index=True, encoding='utf-8') 

TEMP_rc85_MAM.to_csv('TEMP_rc85_MAM.csv', index=True, encoding='utf-8') 

TEMP_rc85_OND.to_csv('TEMP_rc85_OND.csv', index=True, encoding='utf-8') 

 
Colab paid products - Cancel contracts here 

 

 

8.2.2 GEE Code (Baseline Mapping) 

LGP PRODUCTS 2 

Map.setOptions('SATELLITE'); 

Map.centerObject(table, 9); 

 

var startDate = '1991-01-01'; 

var endDate = '2005-12-31'; 

 

var start = '2006-01-01'; 

var end = '2020-12-31'; 

 

//////////////////////////////////////////////////////////////////////////////// 

//////////////////////////////////////Aridity Index 

 

var dataset_AI_ond = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('1991-01-01', '2005-12-30')).select(['pet','pr']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(3, 5, 'month')); 

                   

 

var dataset_AI_mam = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription
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                  .filter(ee.Filter.date('1991-01-01', '2005-12-30')).select(['pet','pr']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(10, 12, 'month')); 

                   

var dataset_AI_mam_2 = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('2006-01-01', '2020-12-30')).select(['pet','pr']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(3, 5, 'month')); 

                   

 

var dataset_AI_2_ond_2 = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('2006-01-01', '2020-12-30')).select(['pet','pr']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(10, 12, 'month')); 

 

 

// print(dataset_AI); 

 

function AI(collection){ 

  var ratio = (collection.select(['pet']).divide(collection.select(['pr']))).multiply(100); 

  var clipped_ratio = ratio.clip(table); 

  return ratio; 

} 

 

 

 

var AI_OND_1990 = (dataset_AI_ond.map(AI)).mean().clip(table); 

 

var AI_MAM_1990 = (dataset_AI_mam.map(AI)).mean().clip(table); 

 

var AI_OND_2020 =  (dataset_AI_2_ond_2.map(AI)).mean().clip(table); 

 

var AI_MAM_2020 = (dataset_AI_mam_2.map(AI)).mean().clip(table); 

 

print(AI_MAM_2020); 

Map.addLayer(AI_MAM_2020,{},'AI_MAM_2020'); 

 

 

 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////Potential Evapotranspiration (PET) 

 

var dataset_PET_ond = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('1991-01-01', '2005-12-30')).select(['pet']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(3, 5, 'month')); 

                   

 

var dataset_PET_mam = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('1991-01-01', '2005-12-30')).select(['pet']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(10, 12, 'month')); 

                   

var dataset_PET_mam_2 = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('2006-01-01', '2020-12-30')).select(['pet']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(3, 5, 'month')); 
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var dataset_PET_2_ond_2 = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE') 

                  .filter(ee.Filter.date('2006-01-01', '2020-12-30')).select(['pet']).sort('system:time_start', 

true).filter(ee.Filter.calendarRange(10, 12, 'month')); 

 

 

function PET(collection){ 

  var ratio = (collection.select(['pet'])); 

  var clipped_ratio = ratio.clip(table); 

  return ratio; 

} 

 

 

 

var PET_OND_1990 = (dataset_PET_ond.map(PET)).mean().clip(table); 

 

var PET_MAM_1990 = (dataset_PET_mam.map(PET)).mean().clip(table); 

 

var PET_OND_2020 =  (dataset_PET_2_ond_2 .map(PET)).mean().clip(table); 

 

var PET_MAM_2020 = (dataset_PET_mam_2.map(PET)).mean().clip(table); 

 

print(PET_MAM_2020); 

// Map.addLayer(PET_MAM_2020,{},'PET_MAM_2020'); 

 

 

 

 

 

/////////////////////////////////////////////////////////////////////////////////// 

////////////////////////////////////////interpolating LPG values to generate LPG output raster for modelling 

var KRIGING_LPG_1990_2005_MAM = table13.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var LPG_1990_2005_MAM_MAP = KRIGING_LPG_1990_2005_MAM.clip(table); 

Map.addLayer(LPG_1990_2005_MAM_MAP,{},'LPG_1990_2005_MAM_MAP'); 

Export.image.toDrive({image:LPG_1990_2005_MAM_MAP, scale: 1000, description: 

'LPG_1990_2005_MAM_MAP', fileNamePrefix: 'LPG_1990_2005_MAM_MAP', 

    region: table, maxPixels: 1e13}); 

 

var KRIGING_LPG_1990_2005_OND = table14.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 
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  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var LPG_1990_2005_OND_MAP = KRIGING_LPG_1990_2005_OND.clip(table); 

Map.addLayer(LPG_1990_2005_OND_MAP,{},'LPG_1990_2005_OND_MAP'); 

Export.image.toDrive({image:LPG_1990_2005_OND_MAP, scale: 1000, description: 'LPG_1990_2005_OND_MAP', 

fileNamePrefix: 'LPG_1990_2005_OND_MAP', 

    region: table, maxPixels: 1e13}); 

 

var KRIGING_LPG_2006_2020_MAM = table12.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var LPG_2006_2020_MAM_MAP = KRIGING_LPG_2006_2020_MAM.clip(table); 

Map.addLayer(LPG_2006_2020_MAM_MAP,{},'LPG_2006_2020_MAM_MAP'); 

Export.image.toDrive({image:LPG_2006_2020_MAM_MAP, scale: 1000, description: 

'LPG_2006_2020_MAM_MAP', fileNamePrefix: 'LPG_2006_2020_MAM_MAP', 

    region: table, maxPixels: 1e13}); 

 

var KRIGING_LPG_2006_2020_OND = table11.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var LPG_2006_2020_OND_MAP = KRIGING_LPG_2006_2020_OND.clip(table); 

Map.addLayer(LPG_2006_2020_OND_MAP,{},'LPG_2006_2020_OND_MAP'); 

Export.image.toDrive({image:LPG_2006_2020_OND_MAP, scale: 1000, description: 'LPG_2006_2020_OND_MAP', 

fileNamePrefix: 'LPG_2006_2020_OND_MAP', 

    region: table, maxPixels: 1e13}); 

 

 

 

 

/////////////////////////////////////////////////// 

 

var KRIGING_PET_MAM_1991_2005 = table6.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 
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  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var krig_PET_MAM_91_05 = KRIGING_PET_MAM_1991_2005.clip(table); 

Map.addLayer(krig_PET_MAM_91_05,{},'krig_PET_MAM_91_05'); 

Export.image.toDrive({image:krig_PET_MAM_91_05, scale: 1000, description: 'krig_PET_MAM_91_05', 

fileNamePrefix: 'krig_PET_MAM_91_05', 

    region: table, maxPixels: 1e13}); 

 

var KRIGING_PET_MAM_2006_2021 = table9.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var krig_PET_MAM_06_21 = KRIGING_PET_MAM_2006_2021.clip(table); 

Map.addLayer(krig_PET_MAM_06_21,{},'krig_PET_MAM_06_21'); 

Export.image.toDrive({image:krig_PET_MAM_06_21, scale: 1000, description: 'krig_PET_MAM_06_21', 

fileNamePrefix: 'krig_PET_MAM_06_21', 

    region: table, maxPixels: 1e13}); 

 

var KRIGING_PET_OND_1991_2005 = table8.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 

  reducer: 'mean', 

}); 

 

var krig_PET_OND_91_05 = KRIGING_PET_OND_1991_2005.clip(table); 

Map.addLayer(krig_PET_OND_91_05,{},'krig_PET_OND_91_05'); 

Export.image.toDrive({image:krig_PET_OND_91_05, scale: 1000, description: 'krig_PET_OND_91_05', 

fileNamePrefix: 'krig_PET_OND_91_05', 

    region: table, maxPixels: 1e13}); 

 

 

var KRIGING_PET_MAM_2006_2021 = table9.kriging({ 

  propertyName: 'Sum', 

  shape: 'exponential', 

  range: 100 * 1000, 

  sill: 1.0, 

  nugget: 0.1, 

  maxDistance: 100 * 1000, 
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  reducer: 'mean', 

}); 

 

var krig_PET_OND_06_21 = KRIGING_PET_MAM_2006_2021.clip(table); 

Map.addLayer(krig_PET_OND_06_21,{},'krig_PET_OND_06_21'); 

Export.image.toDrive({image:krig_PET_OND_06_21, scale: 1000, description: 'krig_PET_OND_06_21', 

fileNamePrefix: 'krig_PET_OND_06_21', 

    region: table, maxPixels: 1e13}); 

 

 

// print('kriging',kriging_test ) 

// Map.addLayer(KRIGING.clip(table),{},'Kriging'); 

 

 

/////////////////////////////////////////////////////////////////////////////////// 

///////////////////////////////////////////////////////////////////// 

////MAN-KENDALL ANALYSIS OF TREND USING TIME SERIES (RAINFALL, TEMPERATURE, 

EVAPOTRANSPIRATION DURING MAM & OND PERIODS) 

 

 

var NASA_2 = ee.ImageCollection("NASA/FLDAS/NOAH01/C/GL/M/V001").select("Evap_tavg") 

  .filterDate(startDate, endDate).sort('system:time_start', false); 

   

// var mean_PET_3_5_2 = NASA.mean(); 

var temperature_dataset_2 = 

ee.ImageCollection('ECMWF/ERA5/DAILY').select('mean_2m_air_temperature').filterDate(startDate, 

endDate).sort('system:time_start', false);   

// print('TEMP DATA',temperature_dataset_2) 

var rainfall_2 = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY").select('precipitation').filterDate(startDate, 

endDate) 

  .sort('system:time_start', false); 

 

 

var rainfall_3 = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY").select('precipitation').filterDate(start, 

end).sort('system:time_start', false); 

   

var temperature_dataset_3 = 

ee.ImageCollection('ECMWF/ERA5/DAILY').select('mean_2m_air_temperature').filterDate(start, 

end).sort('system:time_start', false);   

// print('TEMP DATA',temperature_dataset_2) 

 

 

 

function clip_temp(collection){ 

  var clipped = collection.clip(table); 

  return clipped; 

}   

   

function multiply(image_collection){ 

  var image_mm = image_collection.multiply(86400); 

  var clipped_tavg = image_mm.clip(table); 

  return clipped_tavg; 
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} 

 

function temp(image_collection){ 

  var image_mm = image_collection; 

  var clipped_temp_degree = image_mm.clip(table); 

  return clipped_temp_degree; 

} 

 

 

////////////////Filtering the images for the MAM & OND Periods 

// var Evapotranspiration_MAM = NASA_2.filter(ee.Filter.calendarRange(3, 5, 'month')).map(multiply); 

 

// var Evapotranspiration_OND = NASA_2.filter(ee.Filter.calendarRange(10, 12, 'month')).map(multiply); 

 

var Temperature_MAM_90_05 = (temperature_dataset_2.filter(ee.Filter.calendarRange(3, 5, 

'month')).map(temp).mean()).subtract(273.15).clip(table); 

Map.addLayer(Temperature_MAM_90_05,{},'Temperature_MAM_90_05'); 

Export.image.toDrive({image:Temperature_MAM_90_05, scale: 1000, description: 'Temperature_MAM_90_05', 

fileNamePrefix: 'Temperature_MAM_90_05', 

    region: table, maxPixels: 1e13}); 

 

 

 

var Temperature_OND_90_05 = (temperature_dataset_2.filter(ee.Filter.calendarRange(10, 12, 

'month')).map(temp).mean()).subtract(273.15).clip(table); 

Map.addLayer(Temperature_OND_90_05,{},'Temperature_OND_90_05'); 

Export.image.toDrive({image:Temperature_OND_90_05, scale: 1000, description: 'Temperature_OND_90_05', 

fileNamePrefix: 'Temperature_OND_90_05', 

    region: table, maxPixels: 1e13}); 

 

 

 

var Precipitation_MAM_90_05 = (rainfall_2.filter(ee.Filter.calendarRange(3, 5, 'month')).map(clip_temp).mean()); 

Export.image.toDrive({image:Precipitation_MAM_90_05, scale: 1000, description: 'Precipitation_MAM_90_05', 

fileNamePrefix: 'Precipitation_MAM_90_05', 

    region: table, maxPixels: 1e13}); 

 

var Precipitation_OND_90_05 = (rainfall_2.filter(ee.Filter.calendarRange(10, 12, 'month')).map(clip_temp).mean()); 

Export.image.toDrive({image:Precipitation_OND_90_05, scale: 1000, description: 'Precipitation_OND_90_05', 

fileNamePrefix: 'Precipitation_OND_90_05', 

    region: table, maxPixels: 1e13}); 

 

 

 

var Temperature_MAM_06_21 = (temperature_dataset_3.filter(ee.Filter.calendarRange(3, 5, 

'month')).map(temp).mean()).subtract(273.15); 

Map.addLayer(Temperature_MAM_06_21,{},'Temperature_MAM_06_21'); 

Export.image.toDrive({image:Temperature_MAM_06_21, scale: 1000, description: 'Temperature_MAM_06_21', 

fileNamePrefix: 'Temperature_MAM_06_21', 

    region: table, maxPixels: 1e13}); 
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var Temperature_OND_06_21 = (temperature_dataset_3.filter(ee.Filter.calendarRange(10, 12, 

'month')).map(temp).mean()).subtract(273.15); 

Map.addLayer(Temperature_OND_06_21,{},'Temperature_OND_06_21'); 

Export.image.toDrive({image:Temperature_OND_06_21, scale: 1000, description: 'Temperature_OND_06_21', 

fileNamePrefix: 'Temperature_OND_06_21', 

    region: table, maxPixels: 1e13}); 

 

var Precipitation_MAM_06_21 = rainfall_3.filter(ee.Filter.calendarRange(3, 5, 'month')).map(clip_temp).mean(); 

Export.image.toDrive({image:Precipitation_MAM_06_21, scale: 1000, description: 'Precipitation_MAM_06_21', 

fileNamePrefix: 'Precipitation_MAM_06_21', 

    region: table, maxPixels: 1e13}); 

 

var Precipitation_OND_06_21 = rainfall_3.filter(ee.Filter.calendarRange(10, 12, 'month')).map(clip_temp).mean(); 

Export.image.toDrive({image:Precipitation_OND_06_21, scale: 1000, description: 'Precipitation_OND_06_21', 

fileNamePrefix: 'Precipitation_OND_06_21', 

    region: table, maxPixels: 1e13}); 

 

print(Precipitation_OND_06_21); 

 

 

/////computing MI for preparation to compute the climate regimes 

 

var MI_90_05_MAM = 

(((Precipitation_MAM_90_05.subtract(krig_PET_MAM_91_05)).divide(krig_PET_MAM_91_05))).rename('MI_MA

M_90'); 

print('mi',  MI_90_05_MAM ); 

Export.image.toDrive({image:MI_90_05_MAM, scale: 1000, description: 'MI_90_05_MAM', fileNamePrefix: 

'MI_90_05_MAM', 

    region: table, maxPixels: 1e13}); 

 

var MI_90_05_OND = 

(((Precipitation_OND_90_05.subtract(krig_PET_OND_91_05)).divide(krig_PET_OND_91_05))).rename('MI_OND_

90'); 

 

Export.image.toDrive({image:MI_90_05_OND, scale: 1000, description: 'MI_90_05_OND', fileNamePrefix: 

'MI_90_05_OND', 

    region: table, maxPixels: 1e13}); 

 

 

var MI_06_20_MAM = 

(((Precipitation_MAM_06_21.multiply(krig_PET_MAM_06_21)).divide(krig_PET_MAM_06_21))).rename('MI_M

AM_06'); 

Export.image.toDrive({image:MI_06_20_MAM, scale: 1000, description: 'MI_06_20_MAM', fileNamePrefix: 

'MI_06_20_MAM', 

    region: table, maxPixels: 1e13}); 

 

 

var MI_06_20_OND = 

(((Precipitation_OND_06_21.multiply(krig_PET_OND_06_21)).divide(krig_PET_OND_06_21))).rename('MI_OND

_06'); 

Export.image.toDrive({image:MI_06_20_OND, scale: 1000, description: 'MI_06_20_OND', fileNamePrefix: 

'MI_06_20_OND', 
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    region: table, maxPixels: 1e13}); 

 

 

 

// print('test',TR_MAM_05_20 ); 

 

Map.addLayer(TR_MAM_05_20,{},'TR_MAM_05_20'); 

Export.image.toDrive({image:TR_MAM_05_20, scale: 1000, description: 'TR_MAM_05_20', fileNamePrefix: 

'TR_MAM_05_20', 

    region: table, maxPixels: 1e13}); 

 

//////////////////////// 

////////////////////computing Climate Regimes (CR) 

var CI_OND_90_05 = 

(TR_OND_90_05.multiply(LPG_1990_2005_OND_MAP).multiply(MI_90_05_OND)).rename('CI_OND_90'); 

 

Map.addLayer(CI_OND_90_05,{},'CI_OND_90_05'); 

Export.image.toDrive({image:CI_OND_90_05, scale: 1000, description: 'CI_OND_90_05', fileNamePrefix: 

'CI_OND_90_05', 

    region: table, maxPixels: 1e13}); 

 

var CI_OND_06_20 = 

(TR_OND_05_20.multiply(LPG_2006_2020_OND_MAP).multiply(MI_06_20_OND)).rename('CI_OND_06'); 

 

Map.addLayer(CI_OND_06_20,{},'CI_OND_06_20'); 

Export.image.toDrive({image:CI_OND_06_20, scale: 1000, description: 'CI_OND_06_20', fileNamePrefix: 

'CI_OND_06_20', 

    region: table, maxPixels: 1e13}); 

 

var CI_MAM_90_05 = 

(TR_MAM_90_05.multiply(LPG_1990_2005_MAM_MAP).multiply(MI_90_05_MAM)).rename('CI_MAM_90'); 

 

 

Map.addLayer(CI_MAM_90_05,{},'CI_MAM_90_05'); 

Export.image.toDrive({image:CI_MAM_90_05, scale: 1000, description: 'CI_MAM_90_05', fileNamePrefix: 

'CI_MAM_90_05', 

    region: table, maxPixels: 1e13}); 

 

print('CI_MAM_90_05', CI_MAM_90_05); 

 

var CI_MAM_06_20 = 

(TR_MAM_05_20.multiply(LPG_2006_2020_MAM_MAP).multiply(MI_06_20_MAM)).rename('CI_MAM_06'); 

 

Map.addLayer(CI_MAM_06_20,{},'CI_MAM_06_20'); 

Export.image.toDrive({image:CI_MAM_06_20, scale: 1000, description: 'CI_MAM_06_20', fileNamePrefix: 

'CI_MAM_06_20', 

    region: table, maxPixels: 1e13}); 

 

 

 

///////////////////////////slope in percentage 
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// A digital elevation model. 

var dem = ee.Image('NASA/NASADEM_HGT/001').select('elevation').clip(table); 

 

// Calculate slope. Units are percentage 

var slope = (ee.Terrain.slope(dem)).multiply(0.27777777); 

 

// Calculate aspect. Units are degrees where 0=N, 90=E, 180=S, 270=W. 

var aspect = ee.Terrain.aspect(dem); 

 

Map.addLayer(slope, {}, 'Slope'); 

 

var terrain = ee.Terrain.products(dem); 

// print('ee.Terrain.products bands', terrain.bandNames()); 

// Map.addLayer(terrain.select('hillshade'), {min: 0, max: 255}, 'Hillshade'); 

 

 

 

 

 

// var slopereclass = ee.Image(1) 

//           .where(slope.gte(0).and(slope.lte(2)), 1) 

//           .where(slope.gt(2).and(slope.lte(5)), 2) 

//           .where(slope.gt(5).and(slope.lte(8)), 3) 

//           .where(slope.gt(8).and(slope.lte(16)),4) 

//           .where(slope.gt(16).and(slope.lte(30)),5) 

//           .where(slope.gt(30).and(slope.lte(45)),6) 

//           .where(slope.gt(45).and(slope.lte(100)),7); 

 

Map.addLayer(slopereclass.clip(table),{},'slopereclass%'); 

var slopereclass_2 = slopereclass.clip(table); 

 

Export.image.toDrive({image:slope, scale: 1000, description: 'slope', fileNamePrefix: 'slope', 

    region: table, maxPixels: 1e13}); 

 

 

 

/////////////////////////////////////////////////////////////////// 

/////////////////Computing the Aridity index of each season (MAM & OND) 

////////////////////////////////////////////////////////////////// 

 

var AI_90_05_MAM = 

((Precipitation_MAM_90_05.divide(krig_PET_MAM_91_05)).multiply(100)).rename('AI_MAM_90'); 

print('mi',  AI_90_05_MAM ); 

Map.addLayer(AI_90_05_MAM,{},'AI_90_05_MAM'); 

 

Export.image.toDrive({image:AI_90_05_MAM, scale: 1000, description: 'AI_90_05_MAM', fileNamePrefix: 

'AI_90_05_MAM', 

    region: table, maxPixels: 1e13}); 

 

var AI_90_05_OND = 

((Precipitation_OND_90_05.divide(krig_PET_OND_91_05)).multiply(100)).rename('AI_OND_90'); 

Map.addLayer(AI_90_05_OND,{},'AI_90_05_OND'); 
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Export.image.toDrive({image:AI_90_05_OND, scale: 1000, description: 'AI_90_05_OND', fileNamePrefix: 

'AI_90_05_OND', 

    region: table, maxPixels: 1e13}); 

     

     

var AI_06_20_MAM = 

((Precipitation_MAM_06_21.divide(krig_PET_MAM_06_21)).multiply(100)).rename('AI_MAM_06'); 

Map.addLayer(AI_06_20_MAM,{},'AI_06_20_MAM'); 

Export.image.toDrive({image:AI_06_20_MAM, scale: 1000, description: 'AI_06_20_MAM', fileNamePrefix: 

'AI_06_20_MAM', 

    region: table, maxPixels: 1e13}); 

 

var AI_06_20_OND = 

((Precipitation_OND_06_21.divide(krig_PET_OND_06_21)).multiply(100)).rename('AI_OND_06'); 

Map.addLayer(AI_06_20_OND,{},'AI_06_20_OND'); 

Export.image.toDrive({image:AI_06_20_OND, scale: 1000, description: 'AI_06_20_OND', fileNamePrefix: 

'AI_06_20_OND', 

    region: table, maxPixels: 1e13}); 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//////////soil dataset comprising of agricultural zones suitable areas and soil drainage extracted from soil classification 

data 

 

 

Map.addLayer(soil_ag_suit,{},'soil_agri_suit'); 

Export.image.toDrive({image:soil_ag_suit, scale: 1000, description: 'soil_ag_suit', fileNamePrefix: 'soil_ag_suit', 

    region: table, maxPixels: 1e13}); 

 

Map.addLayer(soil_drainage,{},'soil_drainage'); 

Export.image.toDrive({image:soil_drainage, scale: 1000, description: 'soil_drainage', fileNamePrefix: 'soil_drainage', 

    region: table, maxPixels: 1e13}); 

 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//////////////////contrained elevation data 

 

var constrained_slope = ee.Image(1) 

          .where(slope.gte(0).and(slope.lte(8)), 1) 

          .where(slope.gt(8).and(slope.lte(15)), 2) 

          .where(slope.gt(16).and(slope.lte(30)), 3) 

          .where(slope.gt(30).and(slope.lte(100)),4); 

           

var constrained_slope_clip = constrained_slope.clip(table); 

           

Map.addLayer(constrained_slope_clip,{},'constrained_slope_clip'); 

Export.image.toDrive({image:constrained_slope_clip, scale: 1000, description: 'constrained_slope_clip', 

fileNamePrefix: 'constrained_slope_clip', 

    region: table, maxPixels: 1e13}); 

 

 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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////////////////////////////////ASSESSING DRY MATTER & productivity USING DAILY NDVI 

var dataset_mod = ee.ImageCollection('MODIS/061/MOD13A2') 

                  .filter(ee.Filter.date('2006-01-01', '2020-12-31')); 

var ndvi = dataset_mod.select('NDVI'); 

 

var dataset = ee.ImageCollection('MODIS/061/MOD13A2') 

                  .filter(ee.Filter.date('1991-01-01', '2005-12-31')); 

                   

var ndvi_2 = dataset.select('NDVI'); 

                   

                   

 

                   

var MAM_NDVI_1990 = (((ndvi_2.select('NDVI').filter(ee.Filter.calendarRange(3, 5, 

'month')).max()).clip(table)).multiply(1.615).pow(1.318)).unitScale(58000, 315000); 

 

var OND_NDVI_1990 = ((ndvi_2.select('NDVI').filter(ee.Filter.calendarRange(10, 12, 

'month')).max().clip(table)).multiply(1.615).pow(1.318)).unitScale(58000, 315000); 

 

var OND_NDVI_2020 = ((ndvi.select('NDVI').filter(ee.Filter.calendarRange(10, 12, 

'month')).max().clip(table)).multiply(1.615).pow(1.318)).unitScale(58000, 315000); 

 

var MAM_NDVI_2020 = ((ndvi.select('NDVI').filter(ee.Filter.calendarRange(3, 5, 

'month')).max().clip(table)).multiply(1.615).pow(1.318)).unitScale(58000, 315000); 

 

Map.addLayer(MAM_NDVI_2020,{},'MAM_NDVI_2020_DM'); 

Export.image.toDrive({image:MAM_NDVI_2020, scale: 1000, description: 'MAM_NDVI_2020', fileNamePrefix: 

'MAM_NDVI_2020', 

    region: table, maxPixels: 1e13}); 

 

Map.addLayer(OND_NDVI_2020,{},'OND_NDVI_2020_DM'); 

Export.image.toDrive({image:OND_NDVI_2020, scale: 1000, description: 'OND_NDVI_2020', fileNamePrefix: 

'OND_NDVI_2020', 

    region: table, maxPixels: 1e13}); 

 

Map.addLayer(OND_NDVI_1990,{},'OND_NDVI_1990_DM'); 

Export.image.toDrive({image:OND_NDVI_1990, scale: 1000, description: 'OND_NDVI_1990', fileNamePrefix: 

'OND_NDVI_1990', 

    region: table, maxPixels: 1e13}); 

 

Map.addLayer(MAM_NDVI_1990,{},'MAM_NDVI_1990_DM'); 

Export.image.toDrive({image:MAM_NDVI_1990, scale: 1000, description: 'MAM_NDVI_1990', fileNamePrefix: 

'MAM_NDVI_1990', 

    region: table, maxPixels: 1e13}); 

 

 

 

 

 

/////////////////////////////////// 

///////////////////////////////////////////// 

////////////////////////Computing AEZ of MAM and OND 
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var AEZ_1990_MAM = (CI_MAM_90_05.multiply((AI_90_05_MAM).pow(-1)).multiply((slope).pow(-

1)).multiply(soil_drainage).multiply(MAM_NDVI_1990)) 

Map.addLayer(AEZ_1990_MAM,{},'AEZ_1990_MAM'); 

Export.image.toDrive({image:AEZ_1990_MAM, scale: 1000, description: 'AEZ_1990_MAM', fileNamePrefix: 

'AEZ_1990_MAM', 

    region: table, maxPixels: 1e13}); 

 

var AEZ_1990_OND = (CI_OND_90_05.multiply((AI_90_05_OND).pow(-1)).multiply((slope).pow(-

1)).multiply(soil_drainage).multiply(OND_NDVI_1990)) 

Map.addLayer(AEZ_1990_OND,{},'AEZ_1990_OND'); 

Export.image.toDrive({image:AEZ_1990_OND, scale: 1000, description: 'AEZ_1990_OND', fileNamePrefix: 

'AEZ_1990_OND', 

    region: table, maxPixels: 1e13}); 

 

var AEZ_2020_OND = (CI_OND_06_20.multiply((AI_06_20_OND).pow(-1)).multiply((slope).pow(-

1)).multiply(soil_drainage).multiply(OND_NDVI_2020)) 

Map.addLayer(AEZ_2020_OND,{},'AEZ_2020_OND'); 

Export.image.toDrive({image:AEZ_2020_OND, scale: 1000, description: 'AEZ_2020_OND', fileNamePrefix: 

'AEZ_2020_OND', 

    region: table, maxPixels: 1e13}); 

 

var AEZ_2020_MAM = (CI_MAM_06_20.multiply((AI_06_20_MAM).pow(-1)).multiply((slope).pow(-

1)).multiply(soil_drainage).multiply(MAM_NDVI_2020)) 

Map.addLayer(AEZ_2020_OND,{},'AEZ_2020_OND'); 

Export.image.toDrive({image:AEZ_2020_OND, scale: 1000, description: 'AEZ_2020_MAM', fileNamePrefix: 

'AEZ_2020_MAM', 

    region: table, maxPixels: 1e13}); 

 

 

function fuzzyfication(image){ 

  var min = image.reduceRegion(ee.Reducer.min(),table.geometry(),1000); 

  var max = image.reduceRegion(ee.Reducer.max(),table.geometry(),1000); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

8.2.3 GEE Code (Future Mapping) 

 

/////////////////////////////////////////////////////// 
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///////////////////////////////CLIMAT EREGIMES = WEIGHTED OVERLAY OF MI,LGP,TR 

////////////////////////MI = ((P - PET)/PET)*100 

 

var MULTI_BAND_PET = (PET_rc45_MAM_2.addBands(PET_rc85_OND_2_2) 

.addBands(PET_rc85_MAM_2_2).addBands(PET_rc45_OND_2_2)).rename(['PET_rc45_MAM_2','PET_rc85_OND

_2_2','PET_rc85_MAM_2_2','PET_rc45_OND_2_2']); 

print(MULTI_BAND_PET); 

 

 

var MULTI_BAND_TEMP = (TEMP_rc45_MAM_2.addBands(TEMP_rc45_OND_2) 

.addBands(TEMP_rc85_MAM_2).addBands(TEMP_rc85_OND_2)).rename(['TEMP_rc45_MAM_2','TEMP_rc45_O

ND_2','TEMP_rc85_MAM_2','TEMP_rc85_OND_2']); 

 

var MULTI_BAND_LGP = (lgp_rc45_MAM_2.addBands(lgp_rc45_OND_2) 

.addBands(lgp_rc85_MAM_2).addBands(lgp_rc85_OND_2)).rename(['lgp_rc45_MAM_2','lgp_rc45_OND_2','lgp_rc

85_MAM_2','lgp_rc85_OND_2']); 

 

var MULTI_BAND_RAIN = (RAIN_rc45_MAM_2_2.addBands(RAIN_rc45_OND_2_2) 

.addBands(RAIN_rc85_MAM_2_2).addBands(RAIN_rc85_OND_2_2)).rename(['RAIN_rc45_MAM_2_2','RAIN_rc

45_OND_2_2','RAIN_rc85_MAM_2_2','RAIN_rc85_OND_2_2']); 

 

 

///////////////////////////////////////////////////computing the moisture index 

 

function products(MULTIBAND1,MULTIBAND2,MULTIBAND3,MULTIBAND4){ 

  var MI = ((MULTIBAND4.subtract(MULTIBAND1)).divide(MULTIBAND1)); 

  return MI.rename(['MI_rc45_MAM','MI_rc45_OND_2','MI_rc85_MAM_2','MI_rc85_OND_2']); 

} 

var MI_OUTPUT = 

products(MULTI_BAND_PET,MULTI_BAND_TEMP,MULTI_BAND_LGP,MULTI_BAND_RAIN); 

print(MI_OUTPUT); 

Map.addLayer(MI_OUTPUT,{},'MI_OUTPUT'); 

Export.image.toDrive({image:MI_OUTPUT, scale: 1000, description: 'MI_OUTPUT', fileNamePrefix: 'MI_OUTPUT', 

    region: table, maxPixels: 1e13}); 

 

/////////////////////////////////comptuting climate regimes 

 

function CR_computing(MI,MULTIBAND1,MULTIBAND2,MULTIBAND3,MULTIBAND4){ 

  var CR = 

((MI).multiply(MULTIBAND3).multiply(MULTIBAND2)).rename(['CR_rc45_MAM','CR_rc45_OND_2','CR_rc85_

MAM_2','CR_rc85_OND_2']); 

  return CR; 

} 

var CR_OUTPUT = 

CR_computing(MI_OUTPUT,MULTI_BAND_PET,MULTI_BAND_TEMP,MULTI_BAND_LGP,MULTI_BAND_

RAIN); 

print(CR_OUTPUT); 

Map.addLayer(CR_OUTPUT,{},'CR_OUTPUT'); 

Export.image.toDrive({image:CR_OUTPUT, scale: 1000, description: 'CR_OUTPUT', fileNamePrefix: 

'CR_OUTPUT', 

    region: table, maxPixels: 1e13}); 

 

/////////////////////////////////comptuting Aridity Index 

function AI_computing(MI,MULTIBAND1,MULTIBAND2,MULTIBAND3,MULTIBAND4){ 

  var AI = 

((MULTIBAND4).divide(MULTIBAND1)).rename(['AI_rc45_MAM','AI_rc45_OND_2','AI_rc85_MAM_2','AI_rc8

5_OND_2']); 

  return AI; 

} 
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var AI_OUTPUT = 

AI_computing(MI_OUTPUT,MULTI_BAND_PET,MULTI_BAND_TEMP,MULTI_BAND_LGP,MULTI_BAND_

RAIN); 

print(AI_OUTPUT); 

Export.image.toDrive({image:AI_OUTPUT, scale: 1000, description: 'AI_OUTPUT', fileNamePrefix: 'AI_OUTPUT', 

    region: table, maxPixels: 1e13}); 

 

Map.addLayer(AI_OUTPUT,{},'AI_OUTPUT'); 

 

/////////////////////////////////////////// 

////////////////////computing sub AEZ from the foavailable outputs 

function AEZ(MULTIBAND1,MULTIBAND2,MULTIBAND3){ 

  var AEZ_COMPUTED = MULTIBAND1.multiply(MULTIBAND2).multiply(MULTIBAND3); 

  return 

AEZ_COMPUTED.rename(['AEZ_rc45_MAM','AEZ_rc45_OND_2','AEZ_rc85_MAM_2','AEZ_rc85_OND_2']); 

} 

 

var AEZ_output = AEZ(AI_OUTPUT,CR_OUTPUT,MI_OUTPUT); 

 

Map.addLayer(AEZ_output,{},'AEZ_output'); 

 

/////////////////////////////////////////// 

/////////////////////After attaining the computation, we now download the data and process it in a GIS environment, in  

////////order to utilize the various methods such as fuzzification found there 
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