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Abstract. Let k an algebraically closed field and R the homogeneous coordinate ring

of Pn and ΩPn the cotangent bundle of Pn. In this paper I prove that for a given set S of

s general points in Pn then the evaluation map H0
(
Pn, ΩPn(l)

) −→ ⊕s
i=1 ΩPn(l)|Pi

is of

maximal rank. Implying that a0 = 0 or b0 = 0 so that a0b0 = 0 as conjectured by Anna

Lorenzini [4, 5] see below

· · · −−−→ R(−d − 2)b1
⊕

R(−d − 1)a0 −−−→ R(−d − 1)b0
⊕

R(−d)(
d+n

n )−s −−−→ IS −→ 0
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1. introduction
For a general set of points {P1, . . . , Ps} ∈ Pn, with s ≥ n + 1, then the homogeneous ideal

of the sub-scheme of the union of these points, IS ⊂ R = k[x0, . . . , xn], k an algebraically

closed field and R the homogeneous coordinate ring of Pn, has the following expected

form:

0 −−−→ Fn−1 −−−→ · · · −−−→ Fp −−−→ · · · −−−→ F0 −−−→ IS −−−→ 0,
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Fp = R(−d − p)ap−1
⊕

R(−d − p − 1)bp,

d being the smallest integer satifying s ≤ h0(Pn, OPn(d)), with

ap = max{0, h0(Pn, Ωp+1
Pn (d + p + 1)) − rk(Ωp+1

Pn )s},

bp = max{0, rk(Ωp+1
Pn )s − h0(Pn, Ωp+1

Pn (d + p + 1))}, and

(
d + n − 1

n

)
< s ≤

(
d + n

n

)
.

The problem can be reduced to showing the following; for all 0 ≤ p ≤ n − 1 and non-

negative integer l then existence of the above resolution is the same as saying the evalu-

ation map below is of maximal rank i.e. it is surjective or injective or both; see [1].

H0
(
Pn, Ωp+1

Pn (l)
) −→

s⊕
i=1

Ωp+1
Pn (l)|Pi

.

For this consider the exact sequence

0 −−−→ ΩPn(1) −−−→ W ⊗ OPn −−−→ OPn(1) −−−→ 0

Here, W = H0(OPn(1)), the set of linear forms and k[x0, x1, ..., xn] = Sym(W )

Tensoring the sequence above with TS(d) gives

0 −−−→ TS ⊗ ΩPn(d + 1) −−−→ W ⊗ TS(d) −−−→ TS(d + 1) −−−→ 0

Now taking global sections we get;

0 �� H0(TS ⊗ ΩPn(d + 1)) �� W ⊗ Id
�� Id+1

��

H1(TS ⊗ ΩPn(d + 1))

��

0

Thus H1(TS ⊗ΩPn(d + 1)) = Id+1/W · Id, corresponds to the minimal generators of IS of

degree d + 1, and its dimension is b0 i.e. h1(TS ⊗ ΩPn(d + 1)) = b0.
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Similarly, H0(TS ⊗ ΩPn(d + 1)) is the space of linear relations among the generators of

degree d, whose dimension is a0 i.e. h0(TS ⊗ ΩPn(d + 1)) = a0.

Now consider the exact sequence

0 −−−→ TS −−−→ OPn −−−→ OS −−−→ 0

Tensoring it by ΩPn(d + 1) gives;

0 −−−→ TS ⊗ ΩPn(d + 1) −−−→ ΩPn(d + 1) −−−→ ΩPn(d + 1)|S −−−→ 0

and now taking global sections yields

0 �� H0(TS ⊗ ΩPn(d + 1)) �� H0(ΩPn(d + 1))
μ

�� H0(ΩPn(d + 1)|S)

��

H1(TS ⊗ ΩPn(d + 1))

��

0

We will prove that μ is of maximal rank for a general set S of s points in Pn.

As result, if μ is injective then its kernel is null i.e. a0 = h0(TS ⊗ ΩPn(d + 1)) = 0 and

the cokernel is not null that is b0 = h1(TS ⊗ΩPn(d+1)) as expected. On other hand, if μ

is surjective then we have the cokernel of μ being null i.e. b0 = h1(TS ⊗ ΩPn(d + 1)) = 0

and the kernel of μ is not null that is, a0 = h0(TS ⊗ ΩPn(d + 1)).

2. preliminaries
We use the statements (the so called Enonces) as in [1] by Hirschowitz and Simpson which

F Lauze used in [2] to proof maximal rank for TPn .

Let X a smooth projective variety and X ′ non-singular divisor of X. Let F be a locally

free sheaf on X and

0 −−−→ F′′ −−−→ F|X′ −−−→ F′ −−−→ 0

be a exact sequence of locally free sheaves on X ′. The kernel E of F −→ F′ is a locally

free sheaf on X and we have another exact sequence of locally free sheaves on X ′

0 −−−→ F′(−X ′) −−−→ E|X′ −−−→ F′′ −−−→ 0

and as well exact sequences of coherent sheaves on X

0 −−−→ E −−−→ F −−−→ F′ −−−→ 0
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and

0 −−−→ F(−X) −−−→ E −−−→ F′′ −−−→ 0.

We have the following hypotheses:

R(F, F′, y; a, b, c)

RD(F, F′, y; a, b, c)

RD(E, F′′, y′; a′, b′, c′)

2.1. Notation. Set X = Pn, X ′ = Pn−1, F = ΩPn , F′ = ΩPn−1 , E = O⊕n
Pn(−2), F′′ =

OPn−1(−1).

The exact sequences of the elementary transformations after twisting by d + 1 are:

0 0⏐⏐	
⏐⏐	

ΩPn(d) ΩPn(d)⏐⏐	 ⏐⏐	
0 −−−→ OPn(d − 1)⊕n −−−→ ΩPn(d + 1) −−−→ ΩPn−1(d + 1) −−−→ 0⏐⏐	 ⏐⏐	 ∥∥∥
0 −−−→ OPn−1(d) −−−→ ΩPn |Pn−1(d + 1) −−−→ ΩPn−1(d + 1) −−−→ 0⏐⏐	

⏐⏐	
0 0

From which we have the hypotheses:

H ′
Ω,n(d + 1; α, β, γ) = H(ΩPn(d + 1), ΩPn−1(d + 1), α, β, γ) and

H ′
�,n(d − 1; ρ, σ, τ) = H(OPn(d − 1)⊕n, OPn−1(d); ρ, σ, τ) and

H ′′
�,n(d − 1; ρ, σ, τ) = H(OPn(d − 1)⊕n, OPn−1(d); ρ, σ, τ).

For the plane divisorial, with H ⊆ Pn a hyperplane isomorphic to Pn−1 we shall utilize

the sequence;

0 −−−→ OPn(d − 2)⊕n −−−→ OPn(d − 1)⊕n −−−→ OH(d − 1)⊕n −−−→ 0..

Hypothesis 2.1. H ′
Ω,n(d + 1; α, β, γ)

The hypothesis H ′
Ω,n(d + 1; α, β, γ) asserts that for non-negative integers α, β, γ and ε

satisfying the conditions:

0 ≤ γ ≤ 1, and 1 ≤ ε ≤ n − 2,

nα + n − 1β + εγ = h0(ΩPn(d + 1)), and
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(n − 1)β + εγ ≤ h0(ΩPn−1(d + 1)) having for γ = 1 a quotient Γ′ then the map

η : H0
(
Pn, ΩPn(d + 1)

) −→
α⊕

i=1

ΩPn(d + 1)|Ai
⊕

β⊕
j=1

ΩPn−1(d + 1)|Bj
⊕ Γ′

|C

is bijective with h0(ΩPn(d + 1)) = d
(

d+n
d+1

)
and for α general points A1 . . . Aα ∈ Pn, β + 1

general points B1 . . . Bβ, C ∈ Pn−1.

Hypothesis 2.2. HΩ,n(d + 1)

The hypothesis HΩ,n(d + 1) asserts that H ′
Ω,n(d + 1; α, β, γ) is true for all α, β and γ

satisfying the conditions above.

Hypothesis 2.3. H ′
�,n(d − 1; ρ, σ, τ)

The hypothesis H ′
�,n(d − 1; ρ, σ, τ) asserts that for non-negative integers ρ, σ, τ and θ

satisfying the conditions:

0 ≤ τ ≤ 1 and 2 ≤ θ ≤ n − 1,

nρ + σ + θτ = h0(OPn(d − 1)⊕n), and

σ + θτ ≤ h0(OPn−1(d)) having for τ = 1 a quotient Γ then the map

φ : H0
(
Pn, OPn(d − 1)⊕n

) −→
ρ⊕

i=1

OPn(d − 1)⊕n
|Ri

⊕
σ⊕

j=1

OPn−1(d)|Sj
⊕ Γ(S)|T

is bijective with h0(OPn(d − 1)⊕n) = n
(

d+n−1
d−1

)
and for ρ general points R1 . . . Rρ ∈ Pn,

σ + 1 general points S1 . . . Sσ, T ∈ Pn−1.

Hypothesis 2.4. H�,n(d − 1)

The hypothesis H�,n(d − 1) asserts that H ′
�,n(d − 1; ρ, σ, τ) is true for any ρ, σ, and τ

satisfying the conditions above.

Hypothesis 2.5. H ′′
�,n(d − 1; ρ, σ, τ)

A variant version of the hypothesis H ′
�,n(d − 1; ρ, σ, τ) with Γ independent of Γ′ takes

the form H ′′
�,n(d− 1; ρ, σ, τ) and it makes the same assertion as the hypothesis H ′

�,n(d−
1; ρ, σ, τ) the only difference being quotient dependency.

3. the methods of horace
Méthode d’Horace simple[3] lemme 1

Lemma 3.1. Suppose we have a bijective morphism of vector spaces γ : H0(X ′, F′) −−−→ L

and that we have H1(X, E) = 0. Let μ : H0(X, F) −−−→ L be a morphism of vector

spaces. Then for H0(X, F) −→ M⊕L to be of maximal rank it suffices that H0(X, E) −→
M is of maximal rank.
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Differential méthode d’Horace([1] lemme 1)

Lemma 3.2. Suppose we are given a surjective morphism of vector spaces,

λ : H0(Pn−1, ΩPn−1(d + 1)) �� L and suppose there exists a point Z ′ ∈ Pn−1 such that

H0(Pn−1, ΩPn−1(d + 1)) � � �� L ⊕ ΩPn−1(d + 1)|Z ′ and suppose H1(Pn, OPn(d − 1)⊕n) =

0. Then there exists a quotient OPn(d−1)⊕n
|Z ′ −→ D(λ) with kernel contained in ΩPn−1(d)|Z ′

of dimension dim(D(λ)) = rk(ΩPn(d + 1)) − dim(kerλ) having the following property.

Let μ : H0(Pn, ΩPn(d + 1)) −→ M be a morphism of vector spaces then there exists

Z ∈ Pn−1 such that if H0(Pn, OPn(d − 1)⊕n) −→ M
⊕

D(λ) is of maximal rank then

H0(Pn, ΩPn(d + 1)) −→ M ⊕ L
⊕

ΩPn(d + 1)|Z is also of maximal rank.

The sequences for the quotient are as follows:

0

��

0

��

dim n − 1 ΩPn−1(d)|Z �� ��
� �

��

D′
|Z� �

��

dim n − 3 (n − 2)

dim n OPn(d − 1)⊕n
|Z �� ��

����

D|Z ∼= OPn−1 |Z ⊕ D′
|Z

����

dim n − 2 (n − 1)

dim 1 OPn−1(d)|Z

��

OP3(d)|Z

��

dim 1

0 0

3.1. The Vectorial Methods.

Lemma 3.3. Vectorial Method 1

Let α, β, γ, d and ε be non-negative integers satisfying the conditions of Hypothesis 2.1

and ρ, σ, τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 then

the Hypothesis H ′
�,n(d − 1; ρ, σ, τ) implies H ′

Ω,n(d + 1; α, β, γ).

Proof. Consider the exact sequence;

0 �� OPn(d − 1)⊕n �� ΩPn(d + 1) �� ΩPn−1(d + 1) �� 0

and let B and C be general subsets of Pn−1. We specialize A to R ∪ S ∪ T with R a

general set of ρ points in Pn and S and T sets of σ and τ general points in Pn−1. To run

points to Pn−1, consider the map, γ : H0(ΩPn−1(d + 1)) −→ H0(ΩPn−1(d + 1)|B) ⊕ Γ′
|C , if
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the number of points we have satisfy h0(ΩPn−1(d + 1)) then γ is bijective, if not then we

specialize as many more points as we need to Pn−1 in order for γ to become bijective.

Taking global sections for the exact sequence above and evaluating we construct;

0 0�⏐⏐
�⏐⏐

H0(ΩPn−1(d + 1))
γ−−−→∼= H0(ΩPn−1(d + 1)|{B∪S}) ⊕ Γ′

|C ⊕ Γ|T�⏐⏐ �⏐⏐
H0(ΩPn(d + 1))

β−−−→ H0(ΩPn(d + 1)|R∪S∪T=A) ⊕ H0(ΩPn−1(d + 1)|B) ⊕ Γ′
|C�⏐⏐

�⏐⏐
H0(OPn(d − 1)⊕n)

α−−−→ H0(OPn(d − 1)⊕n
|R ) ⊕ H0(OPn−1(d)|S) ⊕ Γ|T�⏐⏐

�⏐⏐
0 0

From the above diagram of exact sequences, by Inductive hypothesis on Pn−1 and Lemma

3.2 the map γ is bijective and hence if α is bijective then β is bijective as well and this

gives H ′
�,n(d − 1; ρ, σ, τ) implies H ′

Ω,n(d + 1; α, β, γ)

Lemma 3.4. Vectorial Method 2

Let ρ, σ, τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 and α,

β, γ and ε be non-negative integers satisfying conditions similar to those of Hypothesis

2.1 with the Hypothesis H ′
Ω,n(d; α, β, γ) being the same as Hypothesis 2.1 but twisted by

1, then the Hypothesis H ′
Ω,n(d; α, β, γ) implies H ′

�,n(d − 1; ρ, σ, τ).

Proof. Consider the exact sequence;

0 �� ΩPn(d) �� OPn(d − 1)⊕n �� OPn−1(d) �� 0

and let S and T general sets of σ and τ points in Pn−1, specialize R to A ∪ B, where A

is a general set of α points in Pn and B is a general set of β points in Pn−1 with C = T .

Now consider the evaluation map, γ : H0(OPn−1(d)) −→ H0(OPn−1(d)|S∪T ), if the number

of points we have are enough to satisfy h0(OPn(d)) then γ bijective, if not then we spe-

cialize as many more points, β, in this case, to Pn−1 in order for γ to become bijective.

Taking global sections for the exact sequence above and evaluating at corresponding points

we construct a diagram of exact sequences as follows;
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0 0

H0(OPn−1(d))

��

γ
�� H0(OPn−1(d)|{S∪T∪B})

��

H0(OPn(d − 1)⊕n)

��

�� H0(OPn(d − 1)⊕n
|R ) ⊕ H0(OPn−1(d)|S) ⊕ ΓT

��

H0(ΩPn(d))

��

�� H0(ΩPn(d + 1)|A) ⊕ H0(ΩPn−1(d + 1)|B ⊕ ΓC

��

0

��

0

��

The map γ is bijective giving the Hypothesis H ′
Ω,n(d; α, β, γ) implies H ′

�,n(d− 1; ρ, σ, τ).

When the number of points we have in Pn−1 are few relative to d we use the plane

divisorial method in preference to this method.

Lemma 3.5. Plane Divisorial

Let ρ, σ, τ and θ non-negative integers satisfying the conditions of Hypothesis 2.3 and set

ρ′ = ρ − h0(OPn−1(d − 1)). If ρ′ ≥ 0 and σ + τ ≤ h0(OPn−1(d − 1)) then the Hypothesis

H�,n(d − 2; ρ′, σ, τ) implies H�,n(d − 1; ρ, σ, τ).

Proof. Let R be a general set of ρ points in Pn, S and T be general sets of σ and τ points

in Pn−1 such that they are fewer relative to d (i.e. when Vectorial Method 2 fails). We

choose a hyperplane H ⊂ Pn disjoint from S and T with H ∼= Pn−1 and specialize ρ′

points from Pn to H (i.e. R′ is the set we have after specializing from R in Pn) so that

H0(H, OH(d−1)⊕n) −→ H0(OH(d−1)⊕n
|R′) is bijective that is set ρ−ρ′ = h0(OPn−1(d−1))

and so taking global sections for the sequence

0 −−−→ OPn(d − 2)⊕n −−−→ OPn(d − 1)⊕n −−−→ OH(d − 1)⊕n −−−→ 0
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we construct a diagram of exact sequences:

0 0�⏐⏐
�⏐⏐

H0(H, OH(d − 1)⊕n)
α−−−→∼= H0(OH(d − 1)⊕n

|R′)�⏐⏐
�⏐⏐

H0(Pn, OPn(d − 1)⊕n)
β−−−→ H0(OPn(d − 1)⊕n

|R ⊕ H0(OPn−1(d)|S) ⊕ Γ|T�⏐⏐
�⏐⏐

H0(Pn, OPn(d − 2)⊕n)
γ−−−→ H0(OPn(d − 2)⊕n

|R\R′ ⊕ H0(OPn−1(d − 1)|S ⊕ Γ|T�⏐⏐ �⏐⏐
0 0

Since α is bijective then γ bijective implies β is also bijective and this gives the Hypothesis

H�,n(d − 2; ρ′, σ, τ) implies H�,n(d − 1; ρ, σ, τ).

3.2. Hypercritical mèthode d’Horace.

Lemma 3.6. Consider H ′
�,n(d−1; s1, s2, 0) with d ≥ 1, s1, and s2 being non-negative in-

tegers that satisfy: ns1 +s2 = h0(OPn(d−1)⊕n) and s2 ≤ h0(OPn−1(d)). Now suppose that

the H0(ΩPn(d)) −→ H0(ΩPn(d)|S1) is injective and H0(OPn(d − 1)⊕n) −→ H0(OPn(d −
1)⊕n|S1) is surjective with a general S1 ⊆ Pn then the Hypothesis H ′

�,n(d − 1; s1, s2, 0) is

true.

This Lemma is for when we have no quotient.

Proof. See [6] Lemma 1.11.

Lemma 3.7. Consider H ′
�,n(d − 1; s1, s2, 1) where d ≥ 1, s1, s2 and 2 ≤ θ ≤ n − 1 are

non-negative integers such that, ns1+s2+θ = h0(OPn(d−1)⊕n) and s2+θ ≤ h0(OPn−1(d)).

Under the same Hypotheses as Lemma 2.1 i.e. H0(ΩPn(d)) −→ H0(ΩPn(d)|S1) is injective

and H0(OPn(d−1)⊕n) −→ H0(OPn(d−1)⊕n|S1) is surjective then the Hypothesis H ′′
�,n(d−

1; s1, s2, 1) is true.

Proof. See [6] Lemma 1.12.

3.3. The Main Theorem.

Theorem 3.8. Suppose HΩ,n(d+1) is true. Then for any non-negative integer m, there

exists a set, M = {P1, P2, . . . , Pm} of m points in Pn such that the evaluation map, μ, is

of maximal rank.

μ : H0
(
Pn, ΩPn(d + 1)

) −→
m⊕

i=1

ΩPn(d + 1)|Pi
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Proof. (a) If h0(ΩPn(d + 1)) ≡ 0 (mod n) then r is the critical number of points needed

for bijectivity i.e. the map H0
(
Pn, ΩPn(d + 1)

) −→ ⊕r
i=1 ΩPn|Pi

is bijective. Set π =

 1
n
h0(ΩPn(d + 1))�

we now have the following cases:

(i) if m = r then our map is bijective since we have the same number of points as the

critical number i.e. the map α is bijective and γ an identity map and so μ is bijective see

below:

H0(Pn, ΩPn(d + 1))
μ

��

α
��������������������

⊕m
i=1 ΩPn|Pi

⊕n
i=1 ΩPn|Pi

⊕ ⊕r
i=n+1 ΩPn|Pi

γ

��

(ii) if m > r i.e. we have more points than the critical number and our map is injective

i.e. since α is bijective and γ surjective then our map μ has to inject see below:

H0(Pn, ΩPn)
∼=
α

��
� �

μ
������������������

⊕r
i=1 ΩPn|Pi

⊕r
i=1 ΩP4|Pi

⊕ ⊕m
i=r+1 ΩP4|Pi

γ

����

(iii) if m < r then we have the less points than the critical number thus our map surjects

i.e. since α is bijective and γ surjective then our map μ is surjective.
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