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Abstract. Let S be a general set of s points in P, and R the homogeneous coordinate ring
of P%. Then the ideal of S, Is has a minimal free resolution of the form:

0 F3 Fy Py Ey Is 0

where F, = R(—d — p)*» '@ R(—d — p — 1), d being the smallest integer satifying s <
hO(P*,0pi(d)) and a, = h%(Ts @ QZL (d+p+1)), by = K1 (Ts @ Q2L (d+p+ 1)) and (%) <
s < (df), with 0 < p < 3 and when p = 0, we would have a,_1 = (dfl) — s and when p = 3
then b, = s — (dzg). In this paper I prove that either ag = 0 or by = 0 by proving maximal rank
for the map:

HO(QP4(d + 1)) — @Qp;(d + 1)‘51.
i=1

by use of the methods of Horace to prove bijectivity for a specific number of fibres and then
maximal rank for a general set.
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1. INTRODUCTION

The Minimal Resolution Conjecture (MRC) was first explicitly formulated by A Lorenzini in
her PhD thesis [3] and it deals with the question of the form of the minimal free resolution for
ideals of general points in projective spaces i.e. for a general set of points {Pj,..., P} € P™,
with s > n+ 1, then the homogeneous ideal of the sub-scheme of the union of these points,
Is C R = K|z, ...,z,], k an algebraically closed field and R the homogeneous coordinate ring
of P", has the following expected form:

0 —— F,_4 E, Fy Ig 0
Fpy=R(—d—p)» @ R(—d—p—1)"

d being the smallest integer satifying s < h%(P", Opx(d)), thus
a, = max{0, rk(Q%H)s — hO(P", QBN (d + p 4 1))},

b, = max{0, hlO(P", Q5 (d + p + 1)) — rk(QB51)s} and

<d+n—1) cs< (d—i—n).
n n

The problem can be reduced to showing the following; for all 0 < p < n — 1 and non-negative
integers [ then existence of the above resolution is the same as saying the evaluation map below
is of maximal rank i.e. it is surjective or injective or both.

HO (PTL’ Q]E;‘;l @ Qp-‘rl

C Walter [5] tackled the minimal free resolution for P* in which his work yields many values
but misses out the most difficult values. He gave bounds for the dimension of H° for which the
homogeneous ideal Ig of s general points in P* does not satisfy the MRC (i.e. apb, # 0 for some
p). In this paper, I prove that a, = 0 or b, = 0 for p = 0 which inturn implies that a,b, = 0.
See the sequence below:

i R(—d—2"@PR(—d 1) —— R(—d— 1)@ R(—d)*! Ig 0
which is deduced from the following from the proposition that is a particular case of the Minimal

Resolution Conjecture|[2]:

Proposition 1.1. Let k be an algebraically closed field, P* be a projective space over k and
R = K[Xo, X1, X2, X3, X4] be the homogeneous coordinate ring of P*. If S = {Py, P,,..., P,} is a
general set of s points in P4, with s > 5, then the ideal, Is has the expected minimal resolution
if the map

o HO (P, Qpa(d + 1)) @Qp4d+1

18 of mazximal rank.
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We wish to prove that p is of maximal rank and as a consequence we have the following theorem.

Theorem 1.2. Suppose we have a general set S, of s points in P4, s > 5 such that the map
p: HO (P, Qpa(d+1)) — @j_; Ops(d + 1)s, is of mazimal rank then the homogeneous ideal
Is C k[Xo, X1, X2, X3, X4] has (§d(d+2)(d+3)(d +4) — 4m)Jr number of minimal generators
of degree d+1 and (%d(d—i— 2)(d+3)(d+4) —4m) _ number of minimal relations of degree d+ 1,
where ()4 = max(z,0) and (z)- = max(—=x,0).

1.1. Preliminaries. Here we start by giving the maximal rank hypotheses or statements (the
so called Enonces) as in [1] by Hirschowitz and Simpson.
Let X be a smooth projective variety and X’ non-singular divisor of X. Let F be a locally free
sheaf on X and

0 F” Fx/ F’ 0

be a exact sequence of locally free sheaves on X’. The kernel E of F — F’ is a locally free sheaf
on X and we have another exact sequence of locally free sheaves on X’

0 —— F(-X') —— Ejx F 0

and as well exact sequences of coherent sheaves on X

0 E F F/ 0
and

0 —— F(-X) E F 0.

Hypothesis 1.3. R(F,F',y;a,b,¢)
Let y,a,b and ¢ be non-negative integers. The hypothesis R(F,F' y;a,b,c) asserts that there
exists a points, Uq,...,U,, and b points, V1,..., Vi, € X' such that for the quotients

F'y, A; 0,

Fy, B; 0
there exists the points Wy, ..., W, such that for the quotients

Fw, C; 0

with the kernel in ker(Fy, —— F'y,) then for a non-negative integer z, there exists y points,
Yi,...,Y, in X and z points Zy,...,Z, in X' such that the map below is bijective.

H(X,F) — @i Ao @?:1 Bio@i_,Cio@_ Fyv, oD, Fz

Hypothesis 1.4. RD(F,¥ y;a,b,c)
Let y,a,b and ¢ be non-negative integers. The hypothesis R(F,F’, y;a,b,c) asserts that there
exists a points, Uy,...,U,, and b points, V1,...,V, € X' such that for the quotients

F'y, A, 0,

Fy, Bi 0
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there exists the points Wy, ..., W, such that for the quotients

vY):Fw, —— Ci(Y) —— 0

with the kernel in ker(Fy, —— F'y,) then for a non-negative integer z, there exists y points,
Yi,...,Y, in X and z points Zy,...,Z, in X' such that the map below is bijective.

H°(X,F) —— @, Ai® @?:1 Bio@_,Ci(Y1...V,) e D, Fv, oD Fz

Hypothesis 1.5. RD(E,F”,y/;d’, V)
Let y',a’, b and ¢ be non-negative integers. The hypothesis R(E,F" y';a’ b, ) asserts that
there exists a' points, Uy, ...,U,, and b’ points, Vi,..., V] € X' such that for the quotients

y Yar

F”Ui AZ Oa

Ev B; 0

(3

there exists the points W1, ..., W/! such that for the quotients

vY):Ey, — Ci(Y) —— 0

with the kernel in ker(Eyw, —— F"y.) then for a non-negative integer z', there exists y' points,
Yi,..., Y, in X and 2’ points Zy,...,Z. in X' such that the map below is bijective.

H'(X,E) — @ A0 Baod®_,C(Yi...Y) e ®L F'y, o D7, Ez,

1.2. Notation. Since we are talking about the MRC for projective spaces and the méthode
d’Horace then we set

X=P4 X' =P3 F=Qps, F' =Qps, E=051(-2), F = Ops(—1).
The exact sequences of the elementary transformations after twisting by d + 1 are:
0 0

QP4(d) p— QP4(d)
0 —— Opa(d—1)% —— Qpa(d+1) —— Qps(d+1) —— 0

0 —— Ops(d) —_— QP4’P3(d+1) — st(d+1) — 0
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From which we have the hypotheses:
&,4(61 + 1L a, 5, 7) - H(QP4 (d + 1)7 Qps (d + 1)7 «, 57’7) and
/0,4(d —Lip,o, T) = H(OP4 (d - 1)6971’ Ops (d), P, 0, T) and
H%A(d - 1; p,0, T) - H(OP4 (d - 1)®n7 OP3 (d)a p,0, T)'

Our method is to prove inductively certain statements Hq 4(d+ 1) and Hg 4(d —1). The exact
statements roughly speaking are:

Hypothesis 1.6. Hg ,(d+ 1;0,(,7)

The hypothesis H’QA(d—i— 1;a, B8,7) asserts that for non-negative integers o, 3 v and € satisfying
the conditions:

0<y<1,andl1 <e<2,
da+ 38 +ey=h'(Qps(d+1)), and
38+ ey < hO(Qps(d+ 1)) having for v = 1 a quotient I” then the map

a B
n: H (P, Qpa(d+1)) — P Opa(d+ 4, & P ps(d + 1) 15, & T,
i=1 j=1
is bijective with hO(Qpa(d+1)) = d(gﬁ) and for o general points Ay ... Ay € P4, 3+1 general
points By ...Bg,C € P3.
Hypothesis 1.7. Hq4(d+ 1)
The hypothesis Ho a(d+ 1) asserts that Hgq ,(d+1;a,3,7) is true for all a, 3 and v satisfying
the conditions above.
Hypothesis 1.8. HbA(d —1;p,0,7)
The hypothesis H6,4(d_ 1;p,0,7T) asserts that for non-negative integers p, o, 7 and 0 satisfying
the conditions:

0<7<1land?2<60<3,
4p 4o+ 01 = hO(Ops(d — 1)%%), and
o+ 01 < h%(Ops(d)) having for T = 1 a quotient T then the map

¢: HO(P* Ops(d— 1)) — @op4 —1@4 @ops )is; BT(S)r

is bijective with h%(Opa(d — 1)%4) = 4(d+4 1) and for p geneml points Ry...R, € P4, 0 +1
general points Sy ...Sy, T € P3.

Hypothesis 1.9. Hg4(d — 1)

The hypothesis Hg 4(d—1) asserts that H6,4(d_ 1;p,0,7) is true for any p, o, and T satisfying
the conditions above.

Hypothesis 1.10. H{ ,(d —1;p,0,7)

A wvariant version of the hypothesis H674(d — 1;p,0,7) with T independent of T takes the form
H(SA(d — 1;p,0,7) and it makes the same assertion as the hypothesis HbA(d —1;p,0,7) the
only difference being quotient dependency.
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1.3. Méthodes d’Horace. We will explain the méthodes d’Horace we use as we move on but
here we look at one of them:

1.3.1. Hypercritical méthode d’Horace.

Lemma 1.11. Consider Hbm(d— 15 81,892,0) with d > 1,51, and sy being non-negative integers
that satisfy: nsy + so = h%(Opn(d — 1)®") and so < h%(Opn-1(d)). Now suppose that the
HO(Qpn(d)) — H(Qpn(d)|s,) is injective and H*(Opn(d —1)®") — HO(Opn(d —1)%"|g,) is
surjective with a general S1 C P™ then the hypothesis Hb,n(d —1; 1, 82,0) is true.

This Lemma is for when we have no quotient.

Proof. From the hypothesis an(d —1;81,52,0) we have a set S; of s; general points in P"
and a set Sy of sy general points in P"~1.

Consider the exact sequence:
0 —— Qpa(d) —— Opn(d—1)%" —— Opn-1(d) —— 0

We take its global sections and evaluate at corresponding points and thus construct a diagram:
0

ker pg—————— H(Opn-1(d))

0 —— H%(Qpn(d)) ——— H(Opn(d — 1)®") —— H(Opn-1(d)) —— 0

| ’

0 —— H°(Qpn(d)]s,) —— H(Opn(d — 1)®"|s,) ————0

0
That is ker ¢ maps injectively on a subspace V C H(Opn-1(d)) i.e.

ker ¢ H°(Opn-1(d))

. \V/
ik

H®(Opn-1(d)ls,) == H"(Opn-1(d)|s,)

The hypothesis Hb,n(d —1;51,59,0) asserts that so = dim V for So C P"~! general, then « is
bijective and since (3 is bijective since Opn-1(d) is a line bundle also, since V' depends only on
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S1 but not Sy then + has no choice but to be bijective thus

52
H°(Opn(d — 1)) @ Opn(d - 1) ® @ Opn-1(d)s
j=1

is bijective and the hypothesis Hy , (d — 1551, 52,0) is true. O

Lemma 1.12. Consider Hégn(d —1;81,82,1) where d > 1,51, s9 and 2 < 6 < n —1 are non-
negative integers such that, nsy + s + 6 = h%(Opn(d — 1)®") and s3 + 0 < h°(Opn-1(d)).
Under the same hypotheses as Lemma 2.1 i.e. H*(Qpn(d)) — H®(Qpn(d)|s,) is injective and
HY(Opn(d—1)%") — H(Opn(d—1)%"|s,) is surjective then the hypothesis H ,,(d—1;s1,52,1)
18 true.

Proof. The proof is identical to the previous Lemma since this was the hypothesis with a quotient
Opn(d —1)®" — T" with T’ not depending on the S;s. O

2. STATEMENTS FOR THE THE INDUCTIVE STEPS

Hypothesis H’QA(d +1;a,b,c). There exists Ay,..., A, € P*, By,..., By € P3, and a quotient
Qpsjc — FTC of dimension 1 or 2 if c = 1 for a point C € P3 such that the restriction map (1)
1s bijective.

a b
(1) H°(P*, Qpa(d+1)) — @D Qps(d+ )4, & @D Qpa(d + 1)5, & Tl
i=1 j=1

Hypothesis H{ 4(d - 1;e, f,g). For T : PH — Gr(1,Qpsg) € GT(2, (‘)EB |G) or I' :

P — Gr(2,0ps(d)|c) € Gr(3,0pa(d — 1)% ) for g = 1 there exists E, ..., E. € P4,
Fi,...,F;,G e P3 such that the restriction map (2) is bijective.

(2) H(P*,0pa(d — 1)®) — @om —1@4@@01»3 Wr, ©T(F)g

Hypothesis H{) 4(d — 1;¢, f,g). For T : (P*)/ — Gr(1,Qpsz) C Gr(2 O%ﬁlﬂg) or T :
P — Gr(2,0ps(d)|¢) € Gr(3,0pa(d — 1)® ) for g = 1 there exists E, ..., E. € P4,
Fi,...,F;,G e P3 such that the restriction map (3) is bijective.

(3) HO(P*, 0pa(d — 1)®1) — @op4 - 1) @@opg )ir, @ \g

Lemma 2.1. (a) If Hq 4(d+ 1;a,b,c) is true, then we have

(4a) 3b+ e < 10(Qps(d + 1)) = %d(d+2)(d+3),
(4b) 3b+ e =h"(Qps(d+1)) (mod 4),
1

(4c) a=7 (R°(pa(d + 1)) — 3b — )
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Where ¢ € {0,1,2}, represents the dimension of the quotient

(b) If d, b, and c are non-negative integers verifying (4a) and (4b), then the a defined by (4c)
satisfies a > 0.

Proof. (a) Suppose Hg, 4(d + 1;a,b,c) is true then:

In the sequences below, since « is surjective (and injective) and « (and J) is surjective, it
follows that 3 is surjective and thus 3b + e < h%(Qps(d + 1) thus (4a) is proven. Next due
to a’s bijectivity we have 4a + 3b + ¢ = (h°(Qpa(d + 1)) hence (4c) follows. Also from 4a =
(RO(Qpa(d + 1)) — 3b — ¢c), a, a non-negative integer then 3b + ¢ = h°(Qps(d + 1)) (mod 4)
follows.

(b) Since « is injective (and bijective) and ¢ (and t)is injective then 7w has must be injective
and thus a is bounded below by h?(Opa(d — 1) = +d(d + 1)(d + 2)(d + 3) > 0 for all d > 0.

0 0
o 8
H°(P?, Qps(d +1)) o B)_, psyp, @ Llc
¥ 5

HO(PY, Qpa(d+1)) —"— D, Wpaja, & D)y Upsyp,; © Lo

¢ (4
He(P4,0pa(d — 1)%) —— D, Qpaa,
inj
0 0
O
Lemma 2.2. (a) If Hy 4(d — L;e, f,g) is true, then we have
f+9<h%0Ops(d) and 4e + (¢ — 1)g > h°(Qpa(d)) (5a)
f+eg=0 (mod 4) (5b)
e = 7(h°(0ps(d —1)®*) — f —eg) (5¢)

Where ¢ € {0,2,3}, represents the dimension of the quotient
(b) If d > 1, f and 0 < g < 1 are non-negative integers verifying (5a) and (5b), then the e
defined by (5¢) satisfies e > 0.
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Proof. Consider the following sequences

0 0
HO(P3, Ops (d)) LN @;.c:l Ops (d)\Fj @ Ops (Cl)‘g
o 0l
B ¢
HO(P*, 0pa(d — 1)%) —— P, Opa(d — 1)|E ® GBJ 1 9ps ()|, ©T(F)je
n 5
HO(P* Qpa(d) —— D, Opa(d — )|E o I'(F)q
0 0

(a) Since [ is surjective (and injective), v and « are also surjective, then p is left with no choice
but to be surjective and thus f + g < h%(Ops(d)).

Again since ( is injective, n and e are injective as well, then 7 has to be injective and thus
de + (¢ — 1)g > h°(Qpa(d)) having Ops(d) ¢ I’ (F) g = T(F)¢ i.e. (5a) holds.

Since 3 is bijective then we have 4e + f + eg = h?((Opa(d — 1)®*) from which 4 divides 4e and
RO((Opa(d — 1)®*) thus 4 divides f 4+ eg i.e. f+eg=0 (mod 4) hence (5b) follows.

Finally, (5¢) follows from bijectivity of 3 i.e. 4de + f +eg = h%((Opa(d — 1)®?).

(b) From (10a) we have 4e+ (e —1)g > h%(Qpa(d)) from which we have 4e > h%(Qpa(d)) —g+eg
and thus e > i(hO(Q[m (d)) —g+eg) >0 for all d > 1 since €g > g, hence e > 0. O

3. THE GENERAL HYPOTHESES AND THE MAIN

THEOREM

Hypothesis Hq 4(d + 1). For all integers b > 0, 0 < ¢ < 1, and a verifying (4a), (4b), and
(4c), the hypothesis Hgm(d + 1;a,b,¢) is true.

Hypothesis Hy 4(d — 1). For all integers f >0, 0 < g < 1, and e verifying (5a), (5b), and
(5¢), the hypothesis H'OA(d —1;e, f,g) is true.

Goal. To prove Hg4(d+ 1) for d > 2 and Hg 4(d — 1) for d > 1.
3.1. Main Theorem.

Theorem 3.1. Suppose Hq 4(d+1) is true. Then for any non-negative integer m, there exists
a set, S = {P, Py,..., Py} of m points in P* such that the evaluation map, u, is of maximal
rank.

o HO(PY Qpa(d + 1)) @QP4|P



486 D. M. Maingi

Proof. Set r = iLhO(szx(d +1))]

(a) If hO(Qpa(d+1)) =0 (mod 4) the r is the critical number of points needed for the bijectivity
i.e. the map H° (P4 Qpa(d+1 ) — P, Qdpa|p, is bijective and now consider the following
cases:

(i) if m = r then our map is bijective since we have the same number of points as the critical
number i.e. the map « is bijective and v an identity map and so u is bijective see below:

HO(P*, Qpa(d + 1)) —— D, Upiyp,

\%

n T

(ii) if m > r i.e. we have more points than the critical number and our map is injective i.e. since
« is bijective and ~ surjective then our map p has to inject see below:

)

HO(P*, Qpa - Diz1 pajp,

T

T m
@i:1 QP4|P¢ D @i:r—i—l QP“\Pi

(iii) if m < r then we have the less points than the critical number thus our map surjects i.e.
since « is bijective and ~ surjective then our map p is surjective see below:

H(P*, Qpa) . DL, Qpp,

[}

m T
@i:l QP4|P¢ S @i:m+l QP4|P¢

(b) If h°(Qpa(d+ 1)) #0 (mod 4) then h°(Qps(d+ 1)) =n (mod 4) and n has 3 possiblities:

(i) When n = 1 i.e. h%(Qpa(d+ 1)) =1 (mod 4) we have r general points Py, Py, ..., P, in P*
and a point B in P3 so that the map H°(Qpa(d+1)) — @)_; Qpa(d+ 1)|p, ® Qps(d+1)|p is
bijective.

If m =7 + 1 then HO(Qpi(d + 1)) — @, Qpi(d + 1)|p, ® Qpa(d + )| is injective

Next, if m > r + 1 since the map H°(Qpa(d + 1)) — Di_; Qpa(d + 1)|p, ® Qps(d + 1)|s is
bijective then HO(QP4 (d+1)) — @::1 Qpa(d+1)|p, & Qpa(d+1)|p & GBZTZT-FQ Qpa(d+1)|p,

is injective.

Finally, if m < r + 1 then the map H?(Qpa(d + 1)) — @2, Qpa(d + 1)|p, is surjective.
(ii) For the cases when n = 2 and n = 3 it means that we need a quotient of dimension
2 or 1 respectively. We have h?(Qpa(d + 1)) = 2 (mod 4) or h%(Qpa(d + 1)) = 3 (mod 4)
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meaning we have r general points Py, P, ..., P, in P* and a point C in P? so that the map

HY(Qpa(d+1)) — Pl_; Qpa(d+1)|p, & I'|c is bijective.

If m = r + 1 then map HO(Qpi(d+ 1)) — @), Qpi(d+ 1)|p, & Upa(d + 1)|c is injective
Next, if m > r + 1 since the map H(Qpa(d + 1)) — D._; Qpa(d + 1)|p, ® I|¢ is bijective
then the map HO(QP4(d + 1)) SN @;‘Zl QP4(Cl + 1)|P¢ ©® QP4(Cl + 1)|C 7 ®?ir+2 QP4(d + 1)|Pi
is injective.

Lastly, if m < 7 + 1 then the map H%(Qpa(d+ 1)) — P2, Qpa(d + 1)|p, is surjective.

3.2. The Main Methods.

3.2.1. The initial cases.

Lemma 3.2. (a)Hq4(d+ 1) is true when d =2 and
(b)H g 4(d — 1) is true when d =1

Proof. (a) We prove that Hq 4(3) is true by proving Hg, 4(3;a,b,c).
The non-negative integers a,b and c satisfy the following:
a>h%0ps(1)) =5

4a + 3b+ e = 40 = h9(Qpa(3))

3b + e < 20 = % (Qps(3))
c=0or1and ¥ =1 or 2 and from these we have the following 6 possibilities for (a, b, ¢):

(i) The hypothesis H’QA(S; 10,0,0) means we have 10 general points, Ay,--- , Ajg in P4

We partition S = {41, , 410} € P*into S = S1US2U{Q} so that |S1| = 3 with S; C P4\ P3
and Ss, Q are in P3

L0 (Qpa(4)) = 10 =] S |
%LhO(QPS(Zl))J — L?J —6

So of the 10 points, we specialize 7 points, A4, As, Ag, A7, Ag, Ag, A1o to P3, the 7th point Aj
is for a quotient (the fractional part) thus the sets are:

S1={A1, A2, A3, }
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SQ == {A47 A57 A67 A77 A87 AQ}

{Q} = {Alo}

We have the following sequence for the quotient:

0 0
dim 3 Qps(2) ——» D[y dim 1
dim4  Opi(D)fy — Dy dim 2
dim 1 Op3(2)14,) == Ops(2)4,, dim 1
0 0

We thus construct a diagram:
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dim 1 (depends only on S) dim 8 dim 10
0 ————— H(Ts, ® Qpa(2)) —— HO(Ts, ps (1)) ————— H(0ps(2))

H(Qp4(2)|a,) i Vdim7 —————0
0 HO(D[,,,) ——— H°(0ps(2);s, @ Dja,y) —— H'(Op3(2)js,0{410}) — 0
dim 1 (depends only on Ss) dim 8 dim 7

From it we see that the map ( is surjective by Proposition 3.13 and the map « is bijective since
V' does not depend on Sy U Py it only depends on 5.

What is H?(Tg, ® Qpa(2))???
The set S = {Ay, Ay, A3} spans a P? = {L; = Ly = 0}
—— R(=3)°@ R(-2) —— R(-2’@R(-1)*> —— I|s, —— 0

Thus ag = h°(Ts, ® Qpa(2)) = 1, and by = h'(Ts, ® Qp4(2)) = 3 and so H(Tg, ® Qpa(2)) is
the Koszul relation between L and L.

To show that f is bijective, we calculate.
f: sections in H(Qpa(2)) = A2W vanishing along S7 = {A1, Ay, A3}
Where W = H°(Opa(1)), linear forms.
Consider the exact sequence
0 —— Qpi(2) —— W@ 0pi(l) —— Ops(2) —— 0

Taking global sections yields:

0 —— H(Qps(2)) —— W H(0ps(1)) —— HO(0ps(2)) —— 0
I I I

AW WeW S2W
Sym?W
rest to fiber rk 1 quot
HO(Qpa(2)) 5 HO(Qpa(2))4,) ——— HO(D,,)
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(ap:a1:a2:a3:a4)

0 —— Qpa(2)1450 —— W ®O0pa(1)a,, Ops(2) —— 0

| |
HO(TAw(l)) w

evaluation at Aig

(IAlo)l

linear forms atAjg

LiALye N°W —— L1 ® La(A1g) — La ® L1(Arg)
Where Ly, Ly € W and L, (Alo), L2(A10) are forms in P*

If LI(AIO) #0, L2(A10) =0and L1 ALy — LI(Q) - Ly € QPHQ? Ly N Lo

vanishes at P where Ly (P) = La(P) = 0so f(LiALs) spans the 1 dimensional subspace of linear
forms vanishing at Ay composed of linear forms that vanish at S U A9 = {41, Ag, Az, A1p} so
choose A1, Az, Az general so that this subspace G ker(Qpaj4,, — D)

(ii) The hypothesis H§174(3;9, 1,1) says that we have 9 general points, Ay, -- , Ag in P* and 2
points B, C in P3.
Consider the sequence;

0 —— Ops(1)®* —— Qpa(3) —— Qps(3) —— 0

On taking global sections for the sequence we have
dim 20 dim 40 dim 20

0 —— HOP* 0ps(1)®) —— HO(P* Qps(3)) —— HO(P3,Qps(3)) —— 0
Our fibres 9, 1 and 1 are of dimensions 4, 3 and 1 respectively giving us a total of 40 the
RO (P4, Qpa(3)).

We invoke Lemma 3.4 with d = 2, (a,b,c¢) = (9,1,1) and (e, f,g9) = (3,5,1)

For the hypothesis H 4(1;3,5,1) invoke Lemma 1.12 with d = 2, (s1,82,0) = (3,5,1), n = 4
(iii) The hypothesis H’§274(3;8,2, 1) says that we have 8 general points, Aj,...,Ag in P* and
are 3 general points, By, By, C in P3. We invoke Lemma 3.4 with d = 2, (a,b,c) = (8,2,1) and
(6, s g) = (4,4,0)

We shall prove the hypothesis H(DA(I; 4,4,0) in Lemma 3.3 (ii) below.

(iv) The hypothesis H’QA(S; 7,4,0) means that we have 7 general points, Ay, ..., A7 in P* and
4 general points, By, By, B3, B4in P3. We invoke Lemma 3.4 with d = 2, (a,b, c) = (7,4,0) and
(e, f,9) = (4,2,1) and the hypothesis H674(1;4, 1,1) is proved in 3.3 (iv) below.

(v) In this case i.e. the hypothesis H’974(3;6,5, 1), we have 6 general points, Ay,--- , Ag in P*
and 6 general points, By,--- ,Bs,C in P? with a quotient at C. We invoke Lemma 3.4 with
d=2, (a,b,c) = (6,5,1) and (e, f,g9) = (4,1,1)
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(vi) For the hypothesis H’§274(3;5,6, 1) we have 5 general points, say Aj,---,A; € P* and 7
general points, By, -- , Bg,C € P? with a quotient at C'. We need to prove that the map below
is bijective

5 6
HO(P*,Qpa(3)) — EP Qps(3)14, ® P 2 (3)15, & Tl
i=1 j=1

We invoke Lemma 3.4 with d = 2, (a,b,c¢) = (5,6,1) and (e, f,g) = (5,0,0). The hypothesis
H, 4(1;5,0,0) is proved below in the next Lemma. O

From the above proofs several cases for the hypothesis H (9,4(1; u,v,w) for specific u, v, w have
arisen and they form part of the initial cases for (b). The hypotheses H 4(1;u, v, w) are for
specific u, v, w with d = 2. It happens that certain of these hypotheses are false when a quotient
depending badly on other points but we have:

Lemma 3.3. The hypotheses H6’4(1;3,5, 1), H674(1;4,4,0), H6’4(1;4,2,1), H6,4(1;4,1,1)
and H@74(1;5,0,0) are true.

Proof. Lemma 4 (b)
(i) (3,5,1) We have Aj, As, A3 general points in P* and Ay, - - - , Ag, Ag points in P? we choose
a hyperplane H C P* disjoint from Ay, --- , A7 in P? with H = P?3 since the points are general
and the we construct an exact sequence:

4 20 16

0 —— 0pf —— Opas(N® —— Og()®* —— 0

(0,4,0) (3,5,1) (3,1,1)
where the (0,4,0) represents Ay,--- , A7 € P3
(3,5,1) represents Ay, Ap, A3 € P4 Ay, --- | Ag, Ag points in P3
(3,1,1) represents Ay, Az, A3 € P4, Ag and Ag points in H

Thus taking global sections for the sequences above and evaluating at the corresponding points
as listed above we have the following exact sequences:
0 0

HO(O0u(1)* —— @Y, 0u(1)f} @ 0ps(2)a, &),

9

HO(Ops(1)®* —2— @2, op4(1)|634§ ® D), Ops(2)4, ® I,

9

HO(0pa(1)%4) —— D;_1 Ops(1)4,

7
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The quotient I''| 4, depends in principle on Ay, - - - , Ag but because we can move the 4 four points
Ay, -+, Ag without the others changing p, we can assume that it is a general quotient by lemme
5 in [1] dual and thus the map p is an isomorphism i.e. 3 general points, a line bundle and a
dim 3 quotient thus we have that the map 7 implies o giving us the hypothesis H 6,4(0; 0,4,0)
implies H(y 4(1;3,5,1) and we now prove Hy 4(0;0,4,0) as follows:

We have Ay,---, A7 € P3? and so the hypothesis H(974(0;0,4, 0) we show that the mapping
HO (P4, ng) — @Z:4 Ops(1)p, is an isomorphism. Consider the exact sequence

0 —— Qpa(l) —— ngi — Op3(l) —— 0

now taking global sections and evaluating at the corresponding points we get

dim 0 dim 4 dim 4
0 —— H'Qpi(1)) ——  HOO0F) —T— HOps(1)) —— 0

s di
B Ops(1)a, == D_, Ops(1),

Thus 7 is bijective p is bijective also i.e. line bundles at four points and we have an identity
map and ¢ is a composition map of p and the identity map thus ¢ must be bijective.

(i) (4,4,0)

We have Ay, Ay, A3, Ay € P* and As, Ag, A7, Ag € P3 we want to show that H(974(1;4,4,0) is
true.

We invoke the Plane Divisorial Method for P* i.e. Lemma 3.8 withd =2, e=f =4, ¢ =g =0
and we have the hypothesis H 674(0; 0,4,0) to prove but we proved immediately above.

(iii) (4, 1, 1)

Here we have 4 general points A, Ay, A3, Ay € P*, and 2 general points, As, Ag € P? and by
Lemma 2.12 it is true.

(iv)(4,2,1)

We have general points, S; = {A1, Ay, A3, A4} C P*, general points, Sy = {A5, Ag} and A7 in
P3 and by Lemma 2.12 it is true. (iv)For the hypothesis H 4(1;5,0,0) we invoke the Plane
Divisorial Method for P* i.e. Lemma 3.8 and we get the hypothesis H(DA(O; 1,0,0) and this
is true since the map H O(Ogﬁ) — O%ﬂ p is the map of constants evaluated at a point and is
bijective. O

3.2.2. The Inductive steps. The inductive steps that we proceed to prove are;

. Vectorial Method 1

. Vectorial Method 2

. Plane Divisorial Method
. Hypercritical Method

Q.0 T

Lemma 3.4. Vectorial Method 1
Suppose d,a,b,c satisfy (4a), (4b), and (4c). Write h%(Qps(d + 1)) — 3b — e = 3f + Og with
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£, 9,0 non-negative integers, 0 < g <1 and0<60<2. Sete=a— f—g. If e is a non-negative
integer and f + g < h°(Ops(d)) then H ,(d—1se, f,g) implies H, 4(d + 1;a,b,c).

Proof. Consider the exact sequence
0 —— Opa(d—1)% —— Qpa(d+1) —— Qps(d+1) —— 0

Taking global sections we have the following sequence with dimensions shown ;
d(d+1)(d+2)(d+3) d(d+2)(d+3)(d+4) d(d+2)(d+3)
6 6 2

0 —— HOP* Ops(d—1)%) —— HO(P%,Qpa(d+1)) —— HO(P3,Qps(d+1)) —— 0

Let B and C be general sets of b and ¢ points respectively in P3. We specialize A to EUFUG
with E a set of e general points in P4 and F,G sets of f, g general points respectively in P3.
According to our work on P3[4], the map

HO(Qps(d+1)) —>— H(Qps(d + 1)|pur) @ I'|c

is surjective and

HO(Qps(d+1)) —>— HO(Qps(d + 1)|puruc

surj

is injective. So by Lemma 3.12 there exists a quotient 9p,(d — D 2 16(B, F) of di-
mension § with the property that if,

H(Opa(d — 1)) —— H°(Ops(d —1)*!|p) ® H(Ops(d)|r) © T|c(B, F)
is bijective then
H(Qpa(d+1)) —— H°(Qps(d+1)|purve=2 & H*(Qps(d+1)|5) & T'|c
is bijective. But this is exactly H 4(d — 1;e, f,g) implies Hg 4(d + 1;a,b,¢). O

The hypothesis H ,,(d — 1;e, f,g) with dependent quotient I'|¢(B, F') can be weakened to the
hypothesis Hgn(d — 1;e, f,g) with general quotient I'|¢ in some cases.

Lemma 3.5. Under the same hypotheses as the immediately above Lemma, if in addition g = 0
(0 =0) orb>2, then H%n(d — 1;e, f,g) implies th(d + 1;a,b,¢).

Proof. 1If g =0 then I'|¢(B, F') = 0 is independent of B, F.

If b > 2 apply [1] lemme 5 (dualized) to the map V(F) — I'¢(B, F') with

U(F) = ker(H%(Opa(d— 1)) — HO(Opa(d—1)%4| ) ® H°(Ops(d)|r)) The relevant condition
is b > dim Gr(1,Qps|,) = 2 or b > dim Gr(2, 2ps|,) = 2 O

Lemma 3.6. In the same circumstances as Lemma 3.4 we have f + g < h%(Ops) and
e=a—f—g>0.

Proof. (i) We show f + g < h%(Ops(d)).
We have h°(Qps(d + 1)) — 3b — e = 3f + Og by the statement of the Lemma
This implies that 3f + 0g < h%(Qps(d + 1)) i.e.
[+ 309 < 3(R°(Qps(d +1))) ie.
f+10g < id(d+2)(d+3)ie
< 3d(d+2)(d+3)+ g(d+2)(d+3) ie
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= 3(d+1)(d+2)(d+3) = h%(Ops(d)) i.e.
Thus we have f + 10g < h%(Ops(d)) and since 0 < < 2 setting § = 3 does no harm as long as
we have d > 0 and thus f + g < h%(Ops(d)) as required.

(ii) Nextise=a— f — g > 07?
We have just proved that f + g < h%(Ops(d)) and from (4c) in Lemma 2.1 we know that
= 1 (R°(Qpa(d+ 1)) — 3b — ¢c)

Now we have, e =a — f —
i(hO(QP (d+1))=3b—yec)—f—g
1(R2(Qpa(d+ 1)) — hO(Qps(d + 1))) since 3b+ e < h(Qps(d + 1))
= (% (Opa(d - 1)@4)) f—yg
> 1(A%(Opa(d — 1)®")) — 3h°(Ops(d))
:ho( 4(d —1))—ih (Ops(d)) >0 foralld>1
Hence e > 0 for d > 2 as required. O

Lemma 3.7. Vectorial Method 2

Suppose d, e, f,g satisfy (5a), (5b), and (5¢). Write h%(Ops(d)) — f — g = b, where b is a non-

negative integer. Set@=e —b, ¢ =g and ) = — 1. Ifa >0 and 3b + 1pc < h®(Qps(d)), then
aald;a, b,€) implies H ,(d—1se, f,g).

Proof. Consider the sequence;

0 —— Qpa(d) —— Opa(d—1)%* —— Ops(d) — 0.

Taking global sections we have;

dim (d—l)(d+1§d+2)(d+3) dim d(d+1)(dg—2)(d+3) dim (d+1)(d-é—2)(d+3)

0 ——  HPYOpi(d) —— HOPLOpi(d—1)®) —— HOPY 0ps(d) — 0

with the points Ey,--- ,E. € P4, Fy,--- | Ff,G € P3, we have f + g < h%(Ops(d)).

Let F,G be general sets of f, g points respectively in P?3, and specialize F to AU B with A a
general set of @ general points in P4 and B a general set of b points in P3, let C = G. The
map HY(Ops(d)) — H°(Ops(d)|p cup)is bijective, i.e. just specializing the points needed for
bijectivity which works since Ops(d) is a line bundle. We then construct the following diagram
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of exact sequences:
0 0
HY(P?,0ps(d))  —2— L, 0ps(d)p, ® Ops(d) i & D, Ops(d)5,

HO(PY, 0pa(d — 1)®) —"— @, Ops(d— 1) & DL, Wps(d)5, & T|a(F)

HOPY,Qpa(d)  —— @, Opa(d)ia, ® B, Qps(d) 5, & T (F)

0 0

The map p is bijective. The map 7 is bijective by H’QA(d;E,B, ¢) if I"|¢(F) is general, which

we may assume for F' general (note that 7 does not depend on F'). So o is also bijective, and
0.4(d—1;e, f,g) holds. The hypothesis H 4(d — 1;¢, f, g) also holds because it is the same

except with I'|¢ and I'|c not depending on F.

Note that:

For the hypothesis Hgm(d; @,b,¢) to be true, given e, f and g satisfy the conditions in Lemma

2.2, then @, b and ¢ must satisfy:

(i)a=e—b>0and

(ii) 3b + ¢c < hO(Qps(d))

(i) We investigate the condition @ > 0.
From (5¢) in Lemma 2.2 we know e = 1 (h%(Opa(d — 1)®*) — f — eg) and from the definition of
this Lemma here we have b = h°(Ops(d)) — f — g.
We have,
G=e—b=1(h(Ops(d—1)%4) — f — cg) — (H(Ops () — f —g)
= h0(Opa(d—1)) — h%(Ops(d) + 2 f + g(1 — £). So we have

(h°(Opi(d —1)%%)) — h%(Opa(d))
0(0pa(d—1)) — h°(Ops(d)) > 0 for all d > 4
= (d}:?’) (d —4)/4 Thus @ > 0 as required for d > 4.

(ii) Now for 3b 4+ ¢ < h%(Qps(d)) we have h%(Ops(d)) — f — g = b from which we have 3
possibilities since 0 < <2 and ¢ = g.

(a) 3b = 3h°(Ops(d)) — 3f — 3g

(b) 3b+¢ = 3h%(Ops(d)) — 3f —2¢

(c) 3b+2¢ = 3h°(Ops(d)) —3f — g

Also since h%(Ops(d)) = #(d + 3)(d + 2)(d + 1) and h°(Qps(d)) = 3(d+2)(d+ 1)(d — 1),
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We pose the question, when is 3b + ¢¢ < h%(Qps(d))?

We answer, when 3h°(Ops(d)) — h%(Qps(d)) = 2(d + 1)(d + 2) is less than 3f + ng where
1<n<3for 0 <y <2i.e.
Hence 3b + ¢ < h?(Qps(d)) when 3f +ng > 2(d+1)(d+2) for 1 <n<3for 0 < <2. O

We have e general points, Ey,--- , E, in P4, and Fy,--- , Fr,G in P? and the number of fibers
in P? are few enough in comparison to d i.e. we use this method when the Vectorial Method 2
fails i.e. when none of the conditions relating d with f and g in the last Lemma fail specifically
when we have:

(a) f+g<2(d+1)(d+2)foryp =0

(b) f+2g<2(d+1)(d+2)forp =1

(c) f+3g<2(d+1)(d+2) for i =2

Lemma 3.8. Plane Divisorial Method

Suppose d,e, f,g are non-negative integers satisfying the conditions of Lemma 2.2. Set ¢/ =
e—h0(Ops(d—1)) =e— :(d+2)(d+1)d. If we have € >0, and f + g < h®(Ops(d — 1)), then
H ,(d—2;¢, f,g) implies Hy 4(d — 1;e, f,g) and similarly for Hy 4(d — 1;e, f, g).

Proof. We therefore choose a hyperplane H C P* disjoint from {F,--- ,Fy, G} with H = pP3
and send y = dim Oy (d — 1) points from P* to H and we have exact sequence:

0 —— Opa(d—2)% —— Opa(d—1)% —— Oy (d—1)%4 — 0

(€, f.9) (e, f.9) (h°(Ops(d - 1)),0,0)
Taking global sections and evaluating at the corresponding points gives the sequence

0 0

HO(H,0g4(d—1)%%)

v l

1 0n(d— 1)

B e
HO(P*, 0pa(d = 1)®) —— @, Opa(d— 1) & DL, Ops(d)p, @ T

HO(P*, 0pa(d — 2)%Y) —— @5, Opa(d — 2)%41, &P, Ops(d— Dip ®Tq

0 0
If 7 is bijective then f is bijective giving us H 4(d — 2;¢€/, f, g) implies H{y 4(d — 1;¢, f, ).

Two conditions to be satisfied by ¢/, f and g are:
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(i) ¢ > 0 and
(i) f+g < h°(Ops(d — 1))

(i) We have (i) ¢ =e—y
= 1(h%(0pa(d - 1)¥*) — f —g) — h%(Ops(d — 1))
= 1(R°(Opa(d = 1)®*) — f — g+ g —eg) — h®(Ops(d — 1))
> 7(h°(0pa(d = 1)®*) = h%(Ops(d)) + g(1 — €)) — h°(Ops(d — 1))
> 7(h°(Opa(d — 1)%) — h%(Ops(d)) — 4h%(Ops(d — 1)) + g(1 —¢))
= i(%&y(d*g) + g(1 —¢)) since g(1 —¢) € {0,—1,—2} for d > 4 thus

e >0ford>4

(ii) In the cases where the Vectorial Method 2 does not work we have f+g < [3(d+1)(d+2)+ 3]
=[2(d+1)(d+2)+ 2] < 2d(d+1)(d+2) for d > 4.
For d > 2 follows the initial cases and hence we have f + g < h%(Ops(d — 1)).

Theorem 3.9. (a) Ford >2,Hg4(d— 1) implies Hq 4(d + 1)

(b) Ford > 4,Hq4(d) and Ho 4(d —2) imply Ho 4(d — 1)

Proof. (a) For any a, b, ¢ satisfying the conditions of Lemma 2.1 we define e, f, g as in Lemma
3.4. By Lemma 3.6 they satisfy the conditions of Lemma 2.2. So since H 4(d — 1) holds then,

the hypothesis H/o,4(d — 1;e, f,g) holds. So by Lemma 3.4 the hypothesis HgM(d + 1;a,b,¢)
holds this proves Hq 4(d + 1)

(b) For any e, f, g verifying the conditions of Lemma 2.2 either we have Hq 4(d;@,b, ) implying

H ,(d—1se, f,g) or Hy ,(d—2;¢, f,g) implying Hyy 4(d — 1;e, f,g).

In the first case, define a,b,¢ as in Lemma 4.9. If the numerical conditions hold then we have

@ >0 and 3b+ ¢ < h9(Qps(d)) and so Hg ,(d;a, b,¢) holds and so Hg 4(d) holds.

If the numerical conditions do not hold the we have the second case and we define ¢/ = e —

h%(Ops(d — 1)) as in Lemma 3.8. We thus have ¢ > Oand f + g < h%(Ops(d — 1)) and so
0.4(d—2;¢, f,g) holds. This proves Ho4(d — 1). O

This proves the goals we set ourselves to prove in the Subsection 4.3.
3.2.3. Hypercritical méthode d’Horace.

Lemma 3.10. Consider H674(d — 1;81,592,0) where d > 1,s1, and so are non-negative inte-
gers and suppose that the map H°(Qpi(d)) — H°(Qpa(d)|s,) is injective and that the map
HO(Opa(d — 1)%%) — HY(Opa(d — 1)®4|s,) is surjective with a general S; C P™ then the
hypothesis H@A(d —1;1,892,0) is true.

Proof. Follows from Lemma 1.11 O
3.3. Other Lemmas and Corollaries.

Lemma 3.11. The following hypotheses are true.
a. H(974(2;13,8,0)



498 D. M. Maingi

b. Hy 4(2;12,12,0)
c. Hy 4(2;12,10,1)
d. Hl,4(2:12,9,1)

Proof. For (a) and (b) we use Lemma 4.9. Set s; = 13 and sy = 8 for (a) and s; = 12 and sp = 12
for (b) and injectivity of the map H°(Qpa(3)) — H°(Qp1(3)|s,) will follow from Lemma 4.4
i.e. for 10 general points in P* we have bijectivity and in this two cases we have 12 and 13 points
thus it follows which in turn implies surjectivity of the map HO(O%§(2)) — HO(O%3(2)|SI)

Now for (c) we proceed as follows:

For the hypothesis H674(2; 12,10,1) we have 12 general points, P;---, Pjs in P* 10 general
points, Q1,- -+, Q10 in P? and a quotient, T'(Q1 - -+ , Q1p) at C in P3.

Let < Fy, F», F3 > be the space of quadratic forms on P* vanishing at P; --- , Pjo. Identify
Op4(2)%* = 9ps(2) ® V with V = H°(Ops(1)). Then we need to show that

<P, B Fy >V —— @;2,0p3(3)|q; @ T|c(Q1--+ Qo)

is bijective for some P; --- , P2, Q1, - , @10, C.
Now the 2 dimensional quotient

Ops(2) @V —= Tc(Q1 -+, Q1o0)

has a kernel < L1(Q1---,Q10), L2(Q1--- ,Q10) >C V. The zero locus L1 = Ly = 0 is a line
D C P3. Since Q---,Qq are in linear general position. So there exists two of the Q; say

Qg, QIO such that D, Qg, QIO sSpan PS.
We claim that we can choose P;---, P and a basis Fi, Fy, F3 of HO(TPI...,p12(2)) such that
P, F5 vanish at C, QQg, Q19 while F3 does not vanish at C, Qg, @Q19. In that case we have a
commutative diagram with exact rows

00— < B, >RV —— < I, F), F3 >V F;0V———0

J | J

0—— D1 Ops(3)lg, — B:21 Ops(3)lo, B Tlc — Biy Ops(3)lq, @ Tl —— 0

in which the first and third vertical arrows are isomorphisms. The space < Fy,Fy > QV
injects onto an 8 dimensional subspace < Fi,Fy > ®V C H%(Ops3(3)) because the points
HO(Qpa(3)) — Qpa(3)|p,... p, is injective by Lemma 4.4. The first vertical arrow is then
bijective for general @)1 --- , Qg as is the middle row and we will be done.

To prove our claim, pick P --- , Pjg so that vanishing at P; --- , Pg, C, Q9,19 impose impose
13 independent conditions on HY(Op4(2)). Let < Fy, Fy > be the space of forms vanishing at
those points. Let J = H°(Tp,... p,(2)) it is 5 dimensional and contains < Fy, Fh >.

Since vanishing at C,Qg, Q19 impose non-trivial conditions on J, for general Pji, Pj» € P*
vanishing at P;1, Pi2,C impose independent conditions on J, as do vanishing at Pi1, P12, Qg
and Pi1, P12, Qio- So HY(Tp,... p,(2)) =< Fi,F»,F3 > for an F3 not vanishing at any of

Cu Q97Q10~ O
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Lemma 3.12. (A4 specific case of [1] Lemme 1) Suppose we are given a surjective morphism of
vector spaces,
A H°(P3,Qps(d+1)) — L
and suppose there exists a point Z' in P> such that
H°(P3,Qps(d+1)) — L® Qpa(d+ 1)z and
Suppose also that H*(P*, Opa(d — 1)%%) = 0. Then there exists a quotient
Opa(d— 1)|@Z4, — D(X) with kernel contained in Qps(d)|z of dimension
dim(D()N)) = rank(Qpa(d + 1)) — dim(ker A) having the following property.

Let p: H°(P*, Qpa(d+1)) — M be a morphism of vector spaces then there exists Z in P3 such
that if

H°(P*, 0pa(d —1)®Y) — M @ D()) is of mazimal rank then

He(P* Qpi(d+1)) — M & L@ Qpa(d+1)|z is also of mazimal rank.

Proposition 3.13. For anyd > 1 and any subspace V.C HO(P", Opn(d)) there exists My, ..., M, €
P" such that V. — @." Opn(d)|m, has mazimal rank property.

Proof. Consider the following maps, «, 8 and 7 inter-vectorial spaces
H(P™,Opn(d))

T, |

D1 Opn(d)n;

If h°(P™, Opn(d)) = m then « is bijective since it’s an evaluation of line bundles at m points; 3
is surjective hence ~ is injective.

If h°(P™, Opn(d)) < m then « is injective; (3 is surjective and hence v is injective.

If hO(P", Opn(d)) > m then « is surjective; 3 is surjective but then « has 3 possiblities:

(a) if m < dimV then ~ is surjective

(b) if m = dim V then + is bijective

(c) finally if m > dim V' then ~ is injective

Hence 7 is either injective, surjective or both (bijective) i.e. it is of maximal rank for as long as
V' is independent of the My,..., M,, € P" [l
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