The Application of the Method of Horace to Get Number of Generators for an Ideal of

s General Points in P^4

Damian M. Maingi

Laboratoiré J A Dieudonne Université de Nice—Sophia Antipolis 06108 Nice Cedex 02 France dmaingi@unice.fr

The School of Mathematics, University of Nairobi P.O. Box 30197 00100 Nairobi, Kenia dmaingi@uonbi.ac.ke

Abstract. Let S be a general set of s points in \mathbf{P}^4 , and R the homogeneous coordinate ring of \mathbf{P}^4 . Then the ideal of S, I_S has a minimal free resolution of the form:

$$0 \longrightarrow F_3 \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow I_S \longrightarrow 0$$

where $F_p = R(-d-p)^{a_{p-1}} \bigoplus R(-d-p-1)^{b_p}$, d being the smallest integer satisfying $s \leq h^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d))$ and $a_p = h^0(\mathbf{T}_S \otimes \Omega_{\mathbf{P}^4}^{p+1}(d+p+1))$, $b_p = h^1(\mathbf{T}_S \otimes \Omega_{\mathbf{P}^4}^{p+1}(d+p+1))$ and $\binom{d+3}{4} < s \leq \binom{d+4}{4}$, with $0 \leq p \leq 3$ and when p = 0, we would have $a_{p-1} = \binom{d+4}{4} - s$ and when p = 3 then $b_p = s - \binom{d+3}{4}$. In this paper I prove that either $a_0 = 0$ or $b_0 = 0$ by proving maximal rank for the map:

$$H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^s \Omega_{\mathbf{P}^4}(d+1)_{|S_i}$$

by use of the methods of Horace to prove bijectivity for a specific number of fibres and then maximal rank for a general set.

Mathematics Subject Classification: 13D02, 16E05

Keywords: Maximal rank, method of Horace, minimal resolution

1. INTRODUCTION

The Minimal Resolution Conjecture (MRC) was first explicitly formulated by A Lorenzini in her PhD thesis [3] and it deals with the question of the form of the minimal free resolution for ideals of general points in projective spaces i.e. for a general set of points $\{P_1, \ldots, P_s\} \in \mathbf{P}^n$, with $s \geq n+1$, then the homogeneous ideal of the sub-scheme of the union of these points, $I_S \subset R = \mathbf{k}[x_0, \ldots, x_n]$, \mathbf{k} an algebraically closed field and R the homogeneous coordinate ring of \mathbf{P}^n , has the following expected form:

$$0 \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_p \longrightarrow \cdots \longrightarrow F_0 \longrightarrow I_S \longrightarrow 0,$$

$$F_p = R(-d-p)^{a_{p-1}} \bigoplus R(-d-p-1)^{b_p},$$

d being the smallest integer satisfying $s \leq h^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d))$, thus

$$a_p = \max\{0, \operatorname{rk}(\Omega_{\mathbf{P}^n}^{p+1})s - h^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}^{p+1}(d+p+1))\},$$

$$b_p = \max\{0, h^0(\mathbf{P}^n, \Omega_{\mathbf{P}^n}^{p+1}(d+p+1)) - \text{rk}(\Omega_{\mathbf{P}^n}^{p+1})s\}$$
 and

$$\binom{d+n-1}{n} < s \le \binom{d+n}{n}.$$

The problem can be reduced to showing the following; for all $0 \le p \le n-1$ and non-negative integers l then existence of the above resolution is the same as saying the evaluation map below is of maximal rank i.e. it is surjective or injective or both.

$$H^0\left(\mathbf{P}^n, \Omega_{\mathbf{P}^n}^{p+1}(l)\right) \longrightarrow \bigoplus_{i=1}^s \Omega_{\mathbf{P}^n}^{p+1}(l)_{|P_i}.$$

C Walter [5] tackled the minimal free resolution for \mathbf{P}^4 in which his work yields many values but misses out the most difficult values. He gave bounds for the dimension of H^0 for which the homogeneous ideal I_S of s general points in \mathbf{P}^4 does not satisfy the MRC (i.e. $a_pb_p \neq 0$ for some p). In this paper, I prove that $a_p = 0$ or $b_p = 0$ for p = 0 which inturn implies that $a_pb_p = 0$. See the sequence below:

$$\cdots \longrightarrow R(-d-2)^{b_1} \bigoplus R(-d-1)^{a_0} \longrightarrow R(-d-1)^{b_0} \bigoplus R(-d)^{a_{-1}} \longrightarrow I_S \longrightarrow 0$$

which is deduced from the following from the proposition that is a particular case of the Minimal Resolution Conjecture[2]:

Proposition 1.1. Let k be an algebraically closed field, \mathbf{P}^4 be a projective space over k and $R = k[X_0, X_1, X_2, X_3, X_4]$ be the homogeneous coordinate ring of \mathbf{P}^4 . If $S = \{P_1, P_2, ..., P_s\}$ is a general set of s points in \mathbf{P}^4 , with $s \geq 5$, then the ideal, I_S has the expected minimal resolution if the map

$$\mu: H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^s \Omega_{\mathbf{P}^4}(d+1)_{|P_i|}$$

is of maximal rank.

We wish to prove that μ is of maximal rank and as a consequence we have the following theorem.

Theorem 1.2. Suppose we have a general set S, of s points in \mathbf{P}^4 , $s \geq 5$ such that the map $\mu: H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^s \Omega_{\mathbf{P}^3}(d+1)_{|S_i}$ is of maximal rank then the homogeneous ideal $I_S \subset \mathbf{k}[X_0, X_1, X_2, X_3, X_4]$ has $(\frac{1}{6}d(d+2)(d+3)(d+4)-4m)_+$ number of minimal generators of degree d+1 and $(\frac{1}{6}d(d+2)(d+3)(d+4)-4m)_-$ number of minimal relations of degree d+1, where $(x)_+ = \max(x, 0)$ and $(x)_- = \max(-x, 0)$.

1.1. **Preliminaries.** Here we start by giving the maximal rank hypotheses or statements (the so called *Enonces*) as in [1] by Hirschowitz and Simpson.

Let X be a smooth projective variety and X' non-singular divisor of X. Let F be a locally free sheaf on X and

$$0 \, \longrightarrow \, \mathbf{F}'' \, \longrightarrow \, \mathbf{F}_{|X'} \, \longrightarrow \, \mathbf{F}' \, \longrightarrow \, 0$$

be a exact sequence of locally free sheaves on X'. The kernel E of F \longrightarrow F' is a locally free sheaf on X and we have another exact sequence of locally free sheaves on X'

$$0 \longrightarrow F'(-X') \longrightarrow E_{|X'} \longrightarrow F'' \longrightarrow 0$$

and as well exact sequences of coherent sheaves on X

$$0 \longrightarrow E \longrightarrow F \longrightarrow F' \longrightarrow 0$$

and

$$0 \longrightarrow F(-X) \longrightarrow E \longrightarrow F'' \longrightarrow 0.$$

Hypothesis 1.3. R(F, F', y; a, b, c)

Let y, a, b and c be non-negative integers. The hypothesis $\mathbf{R}(F, F', y; a, b, c)$ asserts that there exists a points, U_1, \ldots, U_a , and b points, $V_1, \ldots, V_b \in X'$ such that for the quotients

$$F'_{U_i} \longrightarrow A_i \longrightarrow 0,$$

$$F_{V_i} \longrightarrow B_i \longrightarrow 0$$

there exists the points W_1, \ldots, W_c such that for the quotients

$$F_{W_i} \longrightarrow C_i \longrightarrow 0$$

with the kernel in $\ker(\mathcal{F}_{W_i} \longrightarrow \mathcal{F}'_{W_i})$ then for a non-negative integer z, there exists y points, Y_1, \ldots, Y_y in X and z points Z_1, \ldots, Z_z in X' such that the map below is bijective.

$$H^0(X, \mathbb{F}) \longrightarrow \bigoplus_{i=1}^a A_i \oplus \bigoplus_{i=1}^b B_i \oplus \bigoplus_{i=1}^c C_i \oplus \bigoplus_{i=1}^y \mathbb{F}'_{Y_i} \oplus \bigoplus_{i=1}^z \mathbb{F}_{Z_i}$$

Hypothesis 1.4. RD(F, F', y; a, b, c)

Let y, a, b and c be non-negative integers. The hypothesis $\mathbf{R}(F, F', y; a, b, c)$ asserts that there exists a points, U_1, \ldots, U_a , and b points, $V_1, \ldots, V_b \in X'$ such that for the quotients

$$F'_{U_i} \longrightarrow A_i \longrightarrow 0,$$

$$F_{V_i} \longrightarrow B_i \longrightarrow 0$$

there exists the points W_1, \ldots, W_c such that for the quotients

$$\gamma(Y): \mathcal{F}_{W_i} \longrightarrow C_i(Y) \longrightarrow 0$$

with the kernel in $\ker(F_{W_i} \longrightarrow F'_{W_i})$ then for a non-negative integer z, there exists y points, Y_1, \ldots, Y_y in X and z points Z_1, \ldots, Z_z in X' such that the map below is bijective.

$$H^0(X, \mathbb{F}) \longrightarrow \bigoplus_{i=1}^a A_i \oplus \bigoplus_{i=1}^b B_i \oplus \bigoplus_{i=1}^c C_i(Y_1 \dots Y_y) \oplus \bigoplus_{i=1}^y \mathbb{F}'_{Y_i} \oplus \bigoplus_{i=1}^z \mathbb{F}_{Z_i}$$

Hypothesis 1.5. RD(E, F'', y'; a', b', c')

Let y', a', b' and c' be non-negative integers. The hypothesis $\mathbf{R}(E, F'', y'; a', b', c')$ asserts that there exists a' points, U_1, \ldots, U'_a , and b' points, $V_1, \ldots, V'_b \in X'$ such that for the quotients

$$F''_{U_i} \longrightarrow A_i \longrightarrow 0,$$
 $E_{V_i} \longrightarrow B_i \longrightarrow 0$

there exists the points W_1, \ldots, W'_c such that for the quotients

$$\gamma(Y): \mathcal{E}_{W_i} \longrightarrow C_i(Y) \longrightarrow 0$$

with the kernel in $\ker(E_{W_i} \longrightarrow F''_{W_i})$ then for a non-negative integer z', there exists y' points, Y_1, \ldots, Y'_y in X and z' points Z_1, \ldots, Z'_z in X' such that the map below is bijective.

$$H^0(X, \mathbb{E}) \longrightarrow \bigoplus_{i=1}^{a'} A_i \oplus \bigoplus_{i=1}^{b'} B_i \oplus \bigoplus_{i=1}^{c'} C_i(Y_1 \dots Y'_n) \oplus \bigoplus_{i=1}^{y'} F''_{Y_i} \oplus \bigoplus_{i=1}^{z'} \mathbb{E}_{Z_i}$$

1.2. **Notation.** Since we are talking about the MRC for projective spaces and the méthode d'Horace then we set

$$X = \mathbf{P}^4, X' = \mathbf{P}^3, F = \Omega_{\mathbf{P}^4}, F' = \Omega_{\mathbf{P}^3}, E = \mathcal{O}_{\mathbf{P}^4}^{\oplus 4}(-2), F'' = \mathcal{O}_{\mathbf{P}^3}(-1).$$

The exact sequences of the elementary transformations after twisting by d+1 are:

From which we have the hypotheses:

$$\begin{aligned} & \boldsymbol{H}_{\Omega,4}'(d+1;\alpha,\beta,\gamma) = \boldsymbol{H}(\Omega_{\mathbf{P}^4}(d+1),\Omega_{\mathbf{P}^3}(d+1),\alpha,\beta,\gamma) \text{ and} \\ & \boldsymbol{H}_{\mathcal{O},4}'(d-1;\rho,\sigma,\tau) = \boldsymbol{H}(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus n},\mathcal{O}_{\mathbf{P}^3}(d);\rho,\sigma,\tau) \text{ and} \\ & \boldsymbol{H}_{\mathcal{O},4}''(d-1;\rho,\sigma,\tau) = \boldsymbol{H}(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus n},\mathcal{O}_{\mathbf{P}^3}(d);\rho,\sigma,\tau). \end{aligned}$$

Our method is to prove inductively certain statements $\mathbf{H}_{\Omega,4}(d+1)$ and $\mathbf{H}_{0,4}(d-1)$. The exact statements roughly speaking are:

Hypothesis 1.6. $H'_{\Omega,4}(d+1;\alpha,\beta,\gamma)$

The hypothesis $\mathbf{H}'_{\Omega,4}(d+1;\alpha,\beta,\gamma)$ asserts that for non-negative integers α , β γ and ε satisfying the conditions:

$$0 \le \gamma \le 1$$
, and $1 \le \varepsilon \le 2$,
 $4\alpha + 3\beta + \varepsilon \gamma = h^0(\Omega_{\mathbf{P}^4}(d+1))$, and
 $3\beta + \varepsilon \gamma \le h^0(\Omega_{\mathbf{P}^3}(d+1))$ having for $\gamma = 1$ a quotient Γ' then the map

$$\eta: H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^{\alpha} \Omega_{\mathbf{P}^4}(d+1)_{|A_i} \oplus \bigoplus_{j=1}^{\beta} \Omega_{\mathbf{P}^3}(d+1)_{|B_j} \oplus \Gamma'_{|C}$$

is bijective with $h^0(\Omega_{\mathbf{P}^4}(d+1)) = d\binom{d+4}{d+1}$ and for α general points $A_1 \dots A_{\alpha} \in \mathbf{P}^4$, $\beta+1$ general points $B_1 \dots B_{\beta}, C \in \mathbf{P}^3$.

Hypothesis 1.7. $H_{\Omega,4}(d+1)$

The hypothesis $\mathbf{H}_{\Omega,4}(d+1)$ asserts that $\mathbf{H}'_{\Omega,4}(d+1;\alpha,\beta,\gamma)$ is true for all α , β and γ satisfying the conditions above.

Hypothesis 1.8. $H'_{0,4}(d-1; \rho, \sigma, \tau)$

The hypothesis $\mathbf{H}'_{0,4}(d-1; \rho, \sigma, \tau)$ asserts that for non-negative integers ρ , σ , τ and θ satisfying the conditions:

$$0 \le \tau \le 1$$
 and $2 \le \theta \le 3$,
 $4\rho + \sigma + \theta \tau = h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4})$, and
 $\sigma + \theta \tau \le h^0(\mathcal{O}_{\mathbf{P}^3}(d))$ having for $\tau = 1$ a quotient Γ then the map

$$\phi: H^0\left(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}\right) \longrightarrow \bigoplus_{i=1}^{\rho} \mathcal{O}_{\mathbf{P}^4}(d-1)_{|R_i}^{\oplus 4} \oplus \bigoplus_{j=1}^{\sigma} \mathcal{O}_{\mathbf{P}^3}(d)_{|S_j} \oplus \Gamma(S)_{|T}$$

is bijective with $h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) = 4\binom{d+4-1}{d-1}$ and for ρ general points $R_1 \dots R_{\rho} \in \mathbf{P}^4$, $\sigma + 1$ general points $S_1 \dots S_{\sigma}, T \in \mathbf{P}^3$.

Hypothesis 1.9. $H_{0,4}(d-1)$

The hypothesis $\boldsymbol{H}_{0,4}(d-1)$ asserts that $\boldsymbol{H}'_{0,4}(d-1;\rho,\sigma,\tau)$ is true for any ρ , σ , and τ satisfying the conditions above.

Hypothesis 1.10. $\boldsymbol{H}_{0,4}''(d-1;\rho,\sigma,\tau)$

A variant version of the hypothesis $\mathbf{H}'_{0,4}(d-1;\rho,\sigma,\tau)$ with Γ independent of Γ' takes the form $\mathbf{H}''_{0,4}(d-1;\rho,\sigma,\tau)$ and it makes the same assertion as the hypothesis $\mathbf{H}'_{0,4}(d-1;\rho,\sigma,\tau)$ the only difference being quotient dependency.

1.3. **Méthodes d'Horace.** We will explain the méthodes d'Horace we use as we move on but here we look at one of them:

1.3.1. Hypercritical mèthode d'Horace.

Lemma 1.11. Consider $H'_{0,n}(d-1;s_1,s_2,0)$ with $d \ge 1, s_1$, and s_2 being non-negative integers that satisfy: $ns_1 + s_2 = h^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n})$ and $s_2 \leq h^0(\mathfrak{O}_{\mathbf{P}^{n-1}}(d))$. Now suppose that the $H^0(\Omega_{\mathbf{P}^n}(d)) \longrightarrow H^0(\Omega_{\mathbf{P}^n}(d)|_{S_1})$ is injective and $H^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}|_{S_1})$ is surjective with a general $S_1 \subseteq \mathbf{P}^n$ then the hypothesis $\mathbf{H}'_{0,n}(d-1;s_1,s_2,0)$ is true.

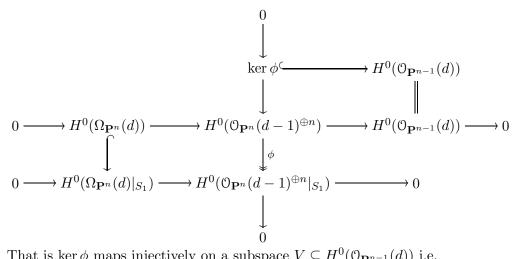
This Lemma is for when we have no quotient.

Proof. From the hypothesis $H'_{0,n}(d-1;s_1,s_2,0)$ we have a set S_1 of s_1 general points in \mathbf{P}^n and a set S_2 of s_2 general points in \mathbf{P}^{n-1} .

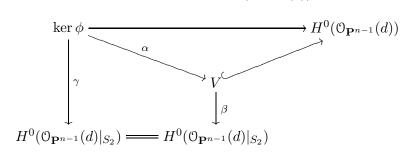
Consider the exact sequence:

$$0 \longrightarrow \Omega_{\mathbf{P}^n}(d) \longrightarrow \mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \mathfrak{O}_{\mathbf{P}^{n-1}}(d) \longrightarrow 0$$

We take its global sections and evaluate at corresponding points and thus construct a diagram:



That is ker ϕ maps injectively on a subspace $V \subseteq H^0(\mathcal{O}_{\mathbf{P}^{n-1}}(d))$ i.e.



The hypothesis $H'_{0,n}(d-1;s_1,s_2,0)$ asserts that $s_2 = \dim V$ for $S_2 \subseteq \mathbf{P}^{n-1}$ general, then α is bijective and since β is bijective since $\mathcal{O}_{\mathbf{P}^{n-1}}(d)$ is a line bundle also, since V depends only on

 S_1 but not S_2 then γ has no choice but to be bijective thus

$$H^0\left(\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n}\right) \longrightarrow \bigoplus_{i=1}^{s_1} \mathcal{O}_{\mathbf{P}^n}(d-1)_{|R_i}^{\oplus n} \oplus \bigoplus_{i=1}^{s_2} \mathcal{O}_{\mathbf{P}^{n-1}}(d)_{|S_j}$$

is bijective and the hypothesis $H'_{0,n}(d-1;s_1,s_2,0)$ is true.

Lemma 1.12. Consider $\mathbf{H}'_{\mathfrak{O},n}(d-1;s_1,s_2,1)$ where $d \geq 1,s_1, s_2$ and $2 \leq \theta \leq n-1$ are nonnegative integers such that, $ns_1 + s_2 + \theta = h^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n})$ and $s_2 + \theta \leq h^0(\mathfrak{O}_{\mathbf{P}^{n-1}}(d))$. Under the same hypotheses as Lemma 2.1 i.e. $H^0(\Omega_{\mathbf{P}^n}(d)) \longrightarrow H^0(\Omega_{\mathbf{P}^n}(d)|_{S_1})$ is injective and $H^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n}) \longrightarrow H^0(\mathfrak{O}_{\mathbf{P}^n}(d-1)^{\oplus n}|_{S_1})$ is surjective then the hypothesis $\mathbf{H}''_{\mathfrak{O},n}(d-1;s_1,s_2,1)$ is true.

Proof. The proof is identical to the previous Lemma since this was the hypothesis with a quotient $\mathcal{O}_{\mathbf{P}^n}(d-1)^{\oplus n} \longrightarrow \Gamma$ with Γ not depending on the S_j s.

2. STATEMENTS FOR THE THE INDUCTIVE STEPS

Hypothesis $H'_{\Omega,4}(d+1;a,b,c)$. There exists $A_1, \ldots, A_a \in \mathbf{P}^4$, $B_1, \ldots, B_b \in \mathbf{P}^3$, and a quotient $\Omega_{\mathbf{P}^3|C} \to \Gamma'_{|C}$ of dimension 1 or 2 if c=1 for a point $C \in \mathbf{P}^3$ such that the restriction map (1) is bijective.

(1)
$$H^{0}(\mathbf{P}^{4}, \Omega_{\mathbf{P}^{4}}(d+1)) \longrightarrow \bigoplus_{i=1}^{a} \Omega_{\mathbf{P}^{4}}(d+1)_{|A_{i}} \oplus \bigoplus_{j=1}^{b} \Omega_{\mathbf{P}^{3}}(d+1)_{|B_{j}} \oplus \Gamma'_{|C}$$

Hypothesis $H'_{0,4}(d-1;e,f,g)$. For $\Gamma: (\mathbf{P}^3)^f \longrightarrow \mathbf{Gr}(1,\Omega_{\mathbf{P}^3|G}) \subseteq \mathbf{Gr}(2,\mathcal{O}_{\mathbf{P}^4|G}^{\oplus 4})$ or $\Gamma: (\mathbf{P}^3)^f \longrightarrow \mathbf{Gr}(2,\Omega_{\mathbf{P}^3}(d)_{|G}) \subseteq \mathbf{Gr}(3,\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}_{|G})$ for g=1 there exists $E_1,\ldots,E_e \in \mathbf{P}^4$, $F_1,\ldots,F_f,G \in \mathbf{P}^3$ such that the restriction map (2) is bijective.

(2)
$$H^{0}\left(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(d-1)^{\oplus 4}\right) \longrightarrow \bigoplus_{i=1}^{e} \mathcal{O}_{\mathbf{P}^{4}}(d-1)_{|E_{i}}^{\oplus 4} \oplus \bigoplus_{j=1}^{f} \mathcal{O}_{\mathbf{P}^{3}}(d)_{|F_{j}} \oplus \Gamma(F)_{|G}$$

Hypothesis $H''_{0,4}(d-1;e,f,g)$. For $\Gamma: (\mathbf{P}^3)^f \longrightarrow \mathbf{Gr}(1,\Omega_{\mathbf{P}^3|G}) \subseteq \mathbf{Gr}(2,\mathfrak{O}_{\mathbf{P}^4|G}^{\oplus 4})$ or $\Gamma: (\mathbf{P}^3)^f \longrightarrow \mathbf{Gr}(2,\Omega_{\mathbf{P}^3}(d)_{|G}) \subseteq \mathbf{Gr}(3,\mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}_{|G})$ for g=1 there exists $E_1,\ldots,E_e \in \mathbf{P}^4$, $F_1,\ldots,F_f,G \in \mathbf{P}^3$ such that the restriction map (3) is bijective.

(3)
$$H^{0}(\mathbf{P}^{4}, \mathcal{O}_{\mathbf{P}^{4}}(d-1)^{\oplus 4}) \longrightarrow \bigoplus_{i=1}^{e} \mathcal{O}_{\mathbf{P}^{4}}(d-1)_{|E_{i}}^{\oplus 4} \oplus \bigoplus_{j=1}^{f} \mathcal{O}_{\mathbf{P}^{3}}(d)_{|F_{j}} \oplus \Gamma_{|G}$$

Lemma 2.1. (a) If $H'_{\Omega,4}(d+1;a,b,c)$ is true, then we have

(4a)
$$3b + \psi c \le h^0 \left(\Omega_{\mathbf{P}^3}(d+1) \right) = \frac{1}{2} d(d+2)(d+3),$$

(4b)
$$3b + \psi c \equiv h^0 \left(\Omega_{\mathbf{P}^3}(d+1) \right) \pmod{4},$$

(4c)
$$a = \frac{1}{4} \left(h^0 \left(\Omega_{\mathbf{P}^4} (d+1) \right) - 3b - \psi c \right)$$

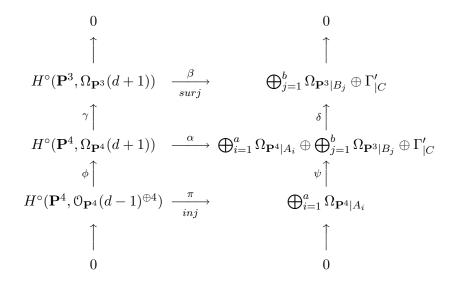
Where $\psi \in \{0, 1, 2\}$, represents the dimension of the quotient

(b) If d, b, and c are non-negative integers verifying (4a) and (4b), then the a defined by (4c) satisfies $a \ge 0$.

Proof. (a) Suppose $\mathbf{H}'_{\Omega,4}(d+1;a,b,c)$ is true then:

In the sequences below, since α is surjective (and injective) and γ (and δ) is surjective, it follows that β is surjective and thus $3b + \psi c \leq h^0(\Omega_{\mathbf{P}^3}(d+1))$ thus (4a) is proven. Next due to α 's bijectivity we have $4a + 3b + \psi c = (h^0(\Omega_{\mathbf{P}^4}(d+1)))$ hence (4c) follows. Also from $4a = (h^0(\Omega_{\mathbf{P}^4}(d+1)) - 3b - \psi c)$, a, a non-negative integer then $3b + \psi c \equiv h^0(\Omega_{\mathbf{P}^3}(d+1))$ (mod 4) follows.

(b) Since α is injective (and bijective) and ϕ (and ψ) is injective then π has must be injective and thus a is bounded below by $h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4} = \frac{1}{6}d(d+1)(d+2)(d+3) \geq 0$ for all $d \geq 0$.



Lemma 2.2. (a) If $\mathbf{H}'_{0,4}(d-1;e,f,g)$ is true, then we have $f+g \leq h^0(\mathfrak{O}_{\mathbf{P}^3}(d))$ and $4e+(\varepsilon-1)g \geq h^0(\Omega_{\mathbf{P}^4}(d))$ (5a)

$$f + \varepsilon g \equiv 0 \pmod{4} \tag{5b}$$

$$e = \frac{1}{4} (h^0 (\mathcal{O}_{\mathbf{P}^4} (d-1)^{\oplus 4}) - f - \varepsilon g)$$

$$\tag{5c}$$

Where $\varepsilon \in \{0, 2, 3\}$, represents the dimension of the quotient

(b) If $d \ge 1$, f and $0 \le g \le 1$ are non-negative integers verifying (5a) and (5b), then the e defined by (5c) satisfies $e \ge 0$.

Proof. Consider the following sequences

(a) Since β is surjective (and injective), γ and α are also surjective, then ρ is left with no choice but to be surjective and thus $f + g \leq h^0(\mathfrak{O}_{\mathbf{P}^3}(d))$.

Again since β is injective, η and ε are injective as well, then τ has to be injective and thus $4e + (\varepsilon - 1)g \ge h^0(\Omega_{\mathbf{P}^4}(d))$ having $\mathcal{O}_{\mathbf{P}^3}(d)_{|G} \oplus \Gamma'(F)_{|G} \cong \Gamma(F)_{|G}$ i.e. (5a) holds.

Since β is bijective then we have $4e + f + \varepsilon g = h^0((\mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}))$ from which 4 divides 4e and $h^0((\mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}))$ thus 4 divides $f + \varepsilon g$ i.e. $f + \varepsilon g \equiv 0 \pmod{4}$ hence (5b) follows.

Finally, (5c) follows from bijectivity of β i.e. $4e + f + \varepsilon g = h^0((\mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}).$

(b) From (10a) we have $4e + (\varepsilon - 1)g \ge h^0(\Omega_{\mathbf{P}^4}(d))$ from which we have $4e \ge h^0(\Omega_{\mathbf{P}^4}(d)) - g + \varepsilon g$ and thus $e \ge \frac{1}{4}(h^0(\Omega_{\mathbf{P}^4}(d)) - g + \varepsilon g) \ge 0$ for all $d \ge 1$ since $\varepsilon g > g$, hence $e \ge 0$.

3. THE GENERAL HYPOTHESES AND THE MAIN THEOREM

Hypothesis $H_{\Omega,4}(d+1)$. For all integers $b \ge 0$, $0 \le c \le 1$, and a verifying (4a), (4b), and (4c), the hypothesis $H'_{\Omega,4}(d+1;a,b,c)$ is true.

Hypothesis $H_{0,4}(d-1)$. For all integers $f \ge 0$, $0 \le g \le 1$, and e verifying (5a), (5b), and (5c), the hypothesis $H'_{0,4}(d-1;e,f,g)$ is true.

Goal. To prove $\mathbf{H}_{\Omega,4}(d+1)$ for $d \geq 2$ and $\mathbf{H}_{0,4}(d-1)$ for $d \geq 1$.

3.1. Main Theorem.

Theorem 3.1. Suppose $\mathbf{H}_{\Omega,4}(d+1)$ is true. Then for any non-negative integer m, there exists a set, $S = \{P_1, P_2, \dots, P_m\}$ of m points in \mathbf{P}^4 such that the evaluation map, μ , is of maximal rank.

$$\mu: H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^m \Omega_{\mathbf{P}^4|P_i}$$

Proof. Set $r = \frac{1}{4} \lfloor h^0(\Omega_{\mathbf{P}^4}(d+1)) \rfloor$

- (a) If $h^0(\Omega_{\mathbf{P}^4}(d+1)) \equiv 0 \pmod{4}$ the r is the critical number of points needed for the bijectivity i.e. the map $H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4|P_i}$ is bijective and now consider the following cases:
- (i) if m = r then our map is bijective since we have the same number of points as the critical number i.e. the map α is bijective and γ an identity map and so μ is bijective see below:

$$H^{0}(\mathbf{P}^{4}, \Omega_{\mathbf{P}^{4}}(d+1)) \xrightarrow{\mu} \bigoplus_{i=1}^{m} \Omega_{\mathbf{P}^{4}|P_{i}} \uparrow^{\gamma}$$

$$\bigoplus_{i=1}^{n} \Omega_{\mathbf{P}^{4}|P_{i}} \oplus \bigoplus_{i=n+1}^{r} \Omega_{\mathbf{P}^{4}|P_{i}}$$

(ii) if m > r i.e. we have more points than the critical number and our map is injective i.e. since α is bijective and γ surjective then our map μ has to inject see below:

$$H^{0}(\mathbf{P}^{4}, \Omega_{\mathbf{P}^{4}}) \xrightarrow{\cong} \bigoplus_{\alpha}^{r} \Omega_{\mathbf{P}^{4}|P_{i}}$$

$$\downarrow^{r} \qquad \qquad \uparrow^{r} \qquad \qquad \uparrow^{r} \qquad \qquad \uparrow^{r} \qquad \qquad \uparrow^{r} \qquad \qquad \downarrow^{r} \qquad$$

(iii) if m < r then we have the less points than the critical number thus our map surjects i.e. since α is bijective and γ surjective then our map μ is surjective see below:

$$H^{0}(\mathbf{P}^{4}, \Omega_{\mathbf{P}^{4}}) \xrightarrow{\mu} \bigoplus_{i=1}^{m} \Omega_{\mathbf{P}^{4}|P_{i}}$$

$$\stackrel{\alpha}{\underset{i=1}{\longrightarrow}} \uparrow^{\gamma}$$

$$\bigoplus_{i=1}^{m} \Omega_{\mathbf{P}^{4}|P_{i}} \oplus \bigoplus_{i=m+1}^{r} \Omega_{\mathbf{P}^{4}|P_{i}}$$

- (b) If $h^0(\Omega_{\mathbf{P}^4}(d+1)) \not\equiv 0 \pmod{4}$ then $h^0(\Omega_{\mathbf{P}^4}(d+1)) \equiv \eta \pmod{4}$ and η has 3 possiblities:
- (i) When $\eta = 1$ i.e. $h^0(\Omega_{\mathbf{P}^4}(d+1)) \equiv 1 \pmod{4}$ we have r general points P_1, P_2, \ldots, P_r in \mathbf{P}^4 and a point B in \mathbf{P}^3 so that the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^3}(d+1)|_B$ is bijective.

If
$$m=r+1$$
 then $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^4}(d+1)|_B$ is injective

Next, if m > r+1 since the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^3}(d+1)|_S$ is bijective then $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^4}(d+1)|_B \oplus \bigoplus_{i=r+2}^m \Omega_{\mathbf{P}^4}(d+1)|_{P_i}$ is injective.

Finally, if m < r + 1 then the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^m \Omega_{\mathbf{P}^4}(d+1)|_{P_i}$ is surjective. (ii) For the cases when $\eta = 2$ and $\eta = 3$ it means that we need a quotient of dimension 2 or 1 respectively. We have $h^0(\Omega_{\mathbf{P}^4}(d+1)) \equiv 2 \pmod{4}$ or $h^0(\Omega_{\mathbf{P}^4}(d+1)) \equiv 3 \pmod{4}$

meaning we have r general points P_1, P_2, \ldots, P_r in \mathbf{P}^4 and a point C in \mathbf{P}^3 so that the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Gamma'|_C$ is bijective.

If m=r+1 then map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^4}(d+1)|_C$ is injective Next, if m>r+1 since the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Gamma'|_C$ is bijective then the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^r \Omega_{\mathbf{P}^4}(d+1)|_{P_i} \oplus \Omega_{\mathbf{P}^4}(d+1)|_C \oplus \bigoplus_{i=r+2}^m \Omega_{\mathbf{P}^4}(d+1)|_{P_i}$ is injective.

Lastly, if m < r + 1 then the map $H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow \bigoplus_{i=1}^m \Omega_{\mathbf{P}^4}(d+1)|_{P_i}$ is surjective.

3.2. The Main Methods.

3.2.1. The initial cases.

Lemma 3.2. (a) $\mathbf{H}_{\Omega,4}(d+1)$ is true when d=2 and (b) $\mathbf{H}_{\Omega,4}(d-1)$ is true when d=1

Proof. (a) We prove that $H_{\Omega,4}(3)$ is true by proving $H'_{\Omega,4}(3;a,b,c)$.

The non-negative integers a, b and c satisfy the following:

$$a \ge h^0(\mathcal{O}_{\mathbf{P}^4}(1)) = 5$$

$$4a + 3b + \psi c = 40 = h^0(\Omega_{\mathbf{P}^4}(3))$$

$$3b + \psi c < 20 = h^0(\Omega_{\mathbf{P}^3}(3))$$

c=0 or 1 and $\psi=1$ or 2 and from these we have the following 6 possibilities for (a,b,c):

- (i) (10,0,0)
- (ii) (9,1,1)
- (iii) (8, 2, 1)
- (iv) (7,4,0)
- (v) (6,5,1)
- (vi) (5,6,1)
- (i) The hypothesis $\boldsymbol{H}'_{\Omega,4}(3;10,0,0)$ means we have 10 general points, A_1,\cdots,A_{10} in \mathbf{P}^4 .

We partition $S = \{A_1, \dots, A_{10}\} \subseteq \mathbf{P}^4$ into $S = S_1 \cup S_2 \cup \{Q\}$ so that $|S_1| = 3$ with $S_1 \subset \mathbf{P}^4 \setminus \mathbf{P}^3$ and S_2 , Q are in \mathbf{P}^3

$$\tfrac{1}{4}h^0(\Omega_{\mathbf{P}^4}(4)) = 10 = \mid S \mid$$

$$\frac{1}{3}\lfloor h^0(\Omega_{\mathbf{P}^3}(4))\rfloor = \lfloor \frac{20}{3}\rfloor = 6$$

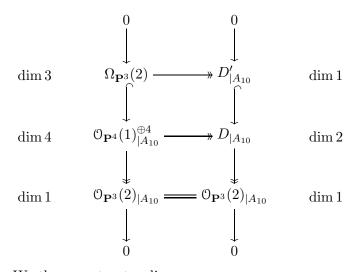
So of the 10 points, we specialize 7 points, A_4 , A_5 , A_6 , A_7 , A_8 , A_9 , A_{10} to \mathbf{P}^3 , the 7th point A_{10} is for a quotient (the fractional part) thus the sets are:

$$S_1 = \{A_1, A_2, A_3, \}$$

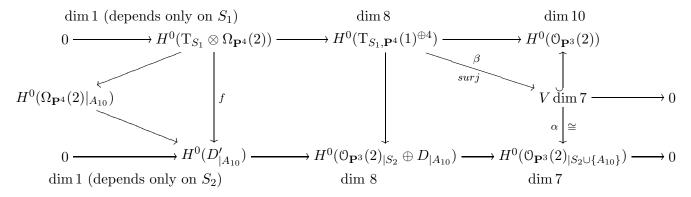
$$S_2 = \{A_4, A_5, A_6, A_7, A_8, A_9\}$$

 $\{Q\} = \{A_{10}\}$

We have the following sequence for the quotient:



We thus construct a diagram:



From it we see that the map β is surjective by Proposition 3.13 and the map α is bijective since V does not depend on $S_2 \cup P_{10}$ it only depends on S_1 .

What is $H^0(\mathcal{T}_{S_1} \otimes \Omega_{\mathbf{P}^4}(2))$???

The set
$$S_1 = \{A_1, A_2, A_3\}$$
 spans a $\mathbf{P}^2 = \{L_1 = L_2 = 0\}$

$$\longrightarrow R(-3)^8 \bigoplus R(-2) \longrightarrow R(-2)^3 \bigoplus R(-1)^2 \longrightarrow I|_{S_1} \longrightarrow 0$$

Thus $a_0 = h^0(\mathcal{T}_{S_1} \otimes \Omega_{\mathbf{P}^4}(2)) = 1$, and $b_0 = h^1(\mathcal{T}_{S_1} \otimes \Omega_{\mathbf{P}^4}(2)) = 3$ and so $H^0(\mathcal{T}_{S_1} \otimes \Omega_{\mathbf{P}^4}(2))$ is the Koszul relation between L_1 and L_2 .

To show that f is bijective, we calculate.

f: sections in $H^0(\Omega_{\mathbf{P}^4}(2)) = \Lambda^2 W$ vanishing along $S_1 = \{A_1, A_2, A_3\}$

Where $W = H^0(\mathcal{O}_{\mathbf{P}^4}(1))$, linear forms.

Consider the exact sequence

$$0 \; \longrightarrow \; \Omega_{{\bf P}^4}(2) \; \longrightarrow \; W \otimes {\mathfrak O}_{{\bf P}^4}(1) \; \longrightarrow \; {\mathfrak O}_{{\bf P}^4}(2) \; \longrightarrow \; 0$$

Taking global sections yields:

$$0 \longrightarrow H^{0}(\Omega_{\mathbf{P}^{4}}(2)) \longrightarrow W \otimes H^{0}(\mathcal{O}_{\mathbf{P}^{4}}(1)) \longrightarrow H^{0}(\mathcal{O}_{\mathbf{P}^{4}}(2)) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\Lambda^{2}W \qquad W \otimes W \qquad \qquad S^{2}W$$

$$\operatorname{Sym}^{2}W$$

$$H^0(\Omega_{\mathbf{P}^4}(2)) \xrightarrow{rest \ to \ fiber} H^0(\Omega_{\mathbf{P}^4}(2)_{|A_{10}}) \xrightarrow{rk \ 1 \ quot} H^0(D'_{A_{10}})$$

$$0 \longrightarrow \Omega_{\mathbf{P}^{4}}(2)_{|A_{10}} \longrightarrow W \otimes \mathcal{O}_{\mathbf{P}^{4}}(1)_{|A_{10}} \xrightarrow{(a_{0}:a_{1}:a_{2}:a_{3}:a_{4})} \mathcal{O}_{\mathbf{P}^{4}}(2) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel$$

$$H^{0}(T_{A_{10}}(1)) \qquad W$$

$$\parallel$$

$$(I_{A_{10}})_{1}$$

linear forms at A_{10}

$$L_1 \wedge L_2 \in \Lambda^2 W \longrightarrow L_1 \otimes L_2(A_{10}) - L_2 \otimes L_1(A_{10})$$

Where $L_1, L_2 \in W$ and $L_1(A_{10}), L_2(A_{10})$ are forms in \mathbf{P}^4

If $L_1(A_{10}) \neq 0$, $L_2(A_{10}) = 0$ and $L_1 \wedge L_2 \longrightarrow L_1(Q) \cdot L_2 \in \Omega_{\mathbf{P}^4|Q}$, $L_1 \wedge L_2$ vanishes at P where $L_1(P) = L_2(P) = 0$ so $f(L_1 \wedge L_2)$ spans the 1 dimensional subspace of linear forms vanishing at A_{10} composed of linear forms that vanish at $S \cup A_{10} = \{A_1, A_2, A_3, A_{10}\}$ so choose A_1, A_2, A_3 general so that this subspace $\subseteq \ker(\Omega_{\mathbf{P}^4|A_{10}} \longrightarrow D')$

(ii) The hypothesis $H'_{\Omega,4}(3;9,1,1)$ says that we have 9 general points, A_1, \dots, A_9 in \mathbf{P}^4 and 2 points B, C in \mathbf{P}^3 .

Consider the sequence;

$$0 \longrightarrow \mathfrak{O}_{\mathbf{P}^4}(1)^{\oplus 4} \longrightarrow \Omega_{\mathbf{P}^4}(3) \longrightarrow \Omega_{\mathbf{P}^3}(3) \longrightarrow 0$$

On taking global sections for the sequence we have

$$\dim 20$$
 $\dim 40$ $\dim 20$

$$0 \longrightarrow H^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(1)^{\oplus 4}) \longrightarrow H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(3)) \longrightarrow H^0(\mathbf{P}^3, \Omega_{\mathbf{P}^3}(3)) \longrightarrow 0$$

Our fibres 9, 1 and 1 are of dimensions 4, 3 and 1 respectively giving us a total of 40 the $h^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(3))$.

We invoke Lemma 3.4 with d = 2, (a, b, c) = (9, 1, 1) and (e, f, g) = (3, 5, 1)

For the hypothesis $H'_{0,4}(1;3,5,1)$ invoke Lemma 1.12 with d=2, $(s_1,s_2,\theta)=(3,5,1)$, n=4

(iii) The hypothesis $H'_{\Omega,4}(3;8,2,1)$ says that we have 8 general points, A_1,\ldots,A_8 in \mathbf{P}^4 and are 3 general points, B_1,B_2,C in \mathbf{P}^3 . We invoke Lemma 3.4 with d=2, (a,b,c)=(8,2,1) and (e,f,g)=(4,4,0)

We shall prove the hypothesis $\boldsymbol{H}'_{\circlearrowleft,4}(1;4,4,0)$ in Lemma 3.3 (ii) below.

- (iv) The hypothesis $\mathbf{H}'_{\Omega,4}(3;7,4,0)$ means that we have 7 general points, A_1,\ldots,A_7 in \mathbf{P}^4 and 4 general points, B_1,B_2,B_3,B_4 in \mathbf{P}^3 . We invoke Lemma 3.4 with d=2, (a,b,c)=(7,4,0) and (e,f,g)=(4,2,1) and the hypothesis $\mathbf{H}'_{0,4}(1;4,1,1)$ is proved in 3.3 (iv) below.
- (v) In this case i.e. the hypothesis $H'_{\Omega,4}(3;6,5,1)$, we have 6 general points, A_1, \dots, A_6 in \mathbf{P}^4 and 6 general points, B_1, \dots, B_5, C in \mathbf{P}^3 with a quotient at C. We invoke Lemma 3.4 with d=2, (a,b,c)=(6,5,1) and (e,f,g)=(4,1,1)

(vi) For the hypothesis $H'_{\Omega,4}(3;5,6,1)$ we have 5 general points, say $A_1, \dots, A_5 \in \mathbf{P}^4$ and 7 general points, $B_1, \dots, B_6, C \in \mathbf{P}^3$ with a quotient at C. We need to prove that the map below is bijective

$$H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(3)) \longrightarrow \bigoplus_{i=1}^5 \Omega_{\mathbf{P}^4}(3)_{|A_i} \oplus \bigoplus_{j=1}^6 \Omega_{\mathbf{P}^3}(3)_{|B_j} \oplus \Gamma'_{|C}$$

We invoke Lemma 3.4 with d=2, (a,b,c)=(5,6,1) and (e,f,g)=(5,0,0). The hypothesis $\boldsymbol{H}'_{0,4}(1;5,0,0)$ is proved below in the next Lemma.

From the above proofs several cases for the hypothesis $\mathbf{H}'_{0,4}(1;u,v,w)$ for specific u,v,w have arisen and they form part of the initial cases for (b). The hypotheses $\mathbf{H}'_{0,4}(1;u,v,w)$ are for specific u,v,w with d=2. It happens that certain of these hypotheses are false when a quotient depending badly on other points but we have:

Lemma 3.3. The hypotheses $\boldsymbol{H}'_{0,4}(1;3,5,1)$, $\boldsymbol{H}'_{0,4}(1;4,4,0)$, $\boldsymbol{H}'_{0,4}(1;4,2,1)$, $\boldsymbol{H}'_{0,4}(1;4,1,1)$ and $\boldsymbol{H}'_{0,4}(1;5,0,0)$ are true.

Proof. Lemma 4 (b)

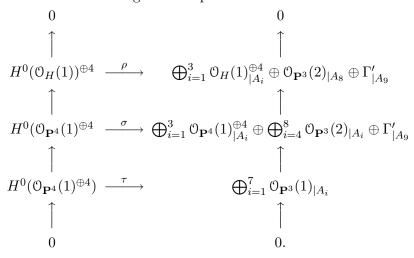
(i) (3,5,1) We have A_1,A_2,A_3 general points in \mathbf{P}^4 and A_4,\cdots,A_8,A_9 points in \mathbf{P}^3 we choose a hyperplane $H\subseteq\mathbf{P}^4$ disjoint from A_4,\cdots,A_7 in \mathbf{P}^3 with $H\cong\mathbf{P}^3$ since the points are general and the we construct an exact sequence:

where the (0,4,0) represents $A_4, \cdots, A_7 \in \mathbf{P}^3$

(3,5,1) represents $A_1, A_2, A_3 \in \mathbf{P}^4, A_4, \cdots, A_8, A_9$ points in \mathbf{P}^3

(3,1,1) represents $A_1,A_2,A_3\in \mathbf{P}^4,\,A_8$ and A_9 points in H

Thus taking global sections for the sequences above and evaluating at the corresponding points as listed above we have the following exact sequences:



The quotient $\Gamma'|_{A_9}$ depends in principle on A_4, \dots, A_8 but because we can move the 4 four points A_4, \dots, A_8 without the others changing ρ , we can assume that it is a general quotient by lemme 5 in [1] dual and thus the map ρ is an isomorphism i.e. 3 general points, a line bundle and a dim 3 quotient thus we have that the map τ implies σ giving us the hypothesis $H'_{0,4}(0;0,4,0)$ implies $H'_{0,4}(1;3,5,1)$ and we now prove $H'_{0,4}(0;0,4,0)$ as follows:

We have $A_4, \dots, A_7 \in \mathbf{P}^3$ and so the hypothesis $\mathbf{H}'_{0,4}(0;0,4,0)$ we show that the mapping $H^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}^{\oplus 4}) \longrightarrow \bigoplus_{i=4}^7 \mathcal{O}_{\mathbf{P}^3}(1)_{|P_i}$ is an isomorphism. Consider the exact sequence

$$0 \, \longrightarrow \, \Omega_{\mathbf{P}^4}(1) \, \longrightarrow \, \mathfrak{O}_{\mathbf{P}^4}^{\oplus 4} \, \longrightarrow \, \mathfrak{O}_{\mathbf{P}^3}(1) \, \longrightarrow \, 0$$

now taking global sections and evaluating at the corresponding points we get

$$\dim 0 \qquad \dim 4 \qquad \dim 4$$

$$0 \longrightarrow H^0(\Omega_{\mathbf{P}^4}(1)) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^4}^{\oplus 4}) \stackrel{\pi}{\longrightarrow} H^0(\mathcal{O}_{\mathbf{P}^3}(1)) \longrightarrow 0$$

$$\downarrow^{\phi} \qquad \qquad \rho \downarrow$$

$$\bigoplus_{i=4}^7 \mathcal{O}_{\mathbf{P}^3}(1)_{|A_i} = \bigoplus_{i=4}^7 \mathcal{O}_{\mathbf{P}^3}(1)_{|A_i}$$

Thus π is bijective ρ is bijective also i.e. line bundles at four points and we have an identity map and ϕ is a composition map of ρ and the identity map thus ϕ must be bijective. (ii) (4,4,0)

We have $A_1, A_2, A_3, A_4 \in \mathbf{P}^4$ and $A_5, A_6, A_7, A_8 \in \mathbf{P}^3$ we want to show that $\mathbf{H}'_{0,4}(1; 4, 4, 0)$ is true.

We invoke the Plane Divisorial Method for \mathbf{P}^4 i.e. Lemma 3.8 with d=2, e=f=4, e'=g=0 and we have the hypothesis $\mathbf{H}'_{0,4}(0;0,4,0)$ to prove but we proved immediately above. (iii) (4,1,1)

Here we have 4 general points $A_1, A_2, A_3, A_4 \in \mathbf{P}^4$, and 2 general points, $A_5, A_6 \in \mathbf{P}^3$ and by Lemma 2.12 it is true.

(iv)(4,2,1)

We have general points, $S_1 = \{A_1, A_2, A_3, A_4\} \subset \mathbf{P}^4$, general points, $S_2 = \{A_5, A_6\}$ and A_7 in \mathbf{P}^3 and by Lemma 2.12 it is true. (iv)For the hypothesis $\mathbf{H}'_{\mathbb{O},4}(1;5,0,0)$ we invoke the Plane Divisorial Method for \mathbf{P}^4 i.e. Lemma 3.8 and we get the hypothesis $\mathbf{H}'_{\mathbb{O},4}(0;1,0,0)$ and this is true since the map $H^0(\mathcal{O}_{\mathbf{P}^4}^{\oplus 4}) \longrightarrow \mathcal{O}_{\mathbf{P}^4}^{\oplus 4}|_P$ is the map of constants evaluated at a point and is bijective.

- 3.2.2. The Inductive steps. The inductive steps that we proceed to prove are;
 - a. Vectorial Method 1
 - b. Vectorial Method 2
 - c. Plane Divisorial Method
 - d. Hypercritical Method

Lemma 3.4. Vectorial Method 1

Suppose d, a, b, c satisfy (4a), (4b), and (4c). Write $h^0(\Omega_{\mathbf{P}^3}(d+1)) - 3b - \psi c = 3f + \theta g$ with

 f, g, θ non-negative integers, $0 \le g \le 1$ and $0 \le \theta \le 2$. Set e = a - f - g. If e is a non-negative integer and $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d))$ then $\mathbf{H}'_{0,4}(d-1;e,f,g)$ implies $\mathbf{H}'_{\Omega,4}(d+1;a,b,c)$.

Proof. Consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4} \longrightarrow \Omega_{\mathbf{P}^4}(d+1) \longrightarrow \Omega_{\mathbf{P}^3}(d+1) \longrightarrow 0$$

Taking global sections we have the following sequence with dimensions shown;

$$\frac{d(d+1)(d+2)(d+3)}{6} \qquad \qquad \frac{d(d+2)(d+3)(d+4)}{6} \qquad \qquad \frac{d(d+2)(d+3)}{2}$$

$$0 \longrightarrow H^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) \longrightarrow H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow H^0(\mathbf{P}^3, \Omega_{\mathbf{P}^3}(d+1)) \longrightarrow 0$$

Let B and C be general sets of b and c points respectively in \mathbf{P}^3 . We specialize A to $E \cup F \cup G$ with E a set of e general points in \mathbf{P}^4 and F,G sets of f,g general points respectively in \mathbf{P}^3 . According to our work on $\mathbf{P}^3[4]$, the map

$$H^0(\Omega_{\mathbf{P}^3}(d+1)) \xrightarrow{\lambda} H^0(\Omega_{\mathbf{P}^3}(d+1)|_{B \cup F}) \oplus \Gamma'|_C$$

is surjective and

$$H^0(\Omega_{\mathbf{P}^3}(d+1)) \xrightarrow{\lambda} H^0(\Omega_{\mathbf{P}^3}(d+1)|_{B \cup F \cup C}$$

is injective. So by Lemma 3.12 there exists a quotient $\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4} \xrightarrow{surj} \Gamma|_G(B,F)$ of dimension θ with the property that if,

$$H^{0}(\mathcal{O}_{\mathbf{P}^{4}}(d-1)^{\oplus 4}) \longrightarrow H^{0}(\mathcal{O}_{\mathbf{P}^{4}}(d-1)^{\oplus 4}|_{E}) \oplus H^{0}(\mathcal{O}_{\mathbf{P}^{3}}(d)|_{F}) \oplus \Gamma|_{G}(B,F)$$

is bijective then

$$H^0(\Omega_{\mathbf{P}^4}(d+1)) \longrightarrow H^0(\Omega_{\mathbf{P}^4}(d+1)|_{E \cup F \cup G=A} \oplus H^0(\Omega_{\mathbf{P}^3}(d+1)|_B) \oplus \Gamma'|_C$$

is bijective. But this is exactly $\boldsymbol{H}'_{\mathcal{O},4}(d-1;e,f,g)$ implies $\boldsymbol{H}'_{\Omega,4}(d+1;a,b,c)$.

The hypothesis $H'_{0,n}(d-1;e,f,g)$ with dependent quotient $\Gamma|_G(B,F)$ can be weakened to the hypothesis $H''_{0,n}(d-1;e,f,g)$ with general quotient $\Gamma|_G$ in some cases.

Lemma 3.5. Under the same hypotheses as the immediately above Lemma, if in addition g = 0 $(\theta = 0)$ or $b \ge 2$, then $\mathbf{H}''_{\mathcal{O},n}(d-1;e,f,g)$ implies $\mathbf{H}'_{\Omega,n}(d+1;a,b,c)$.

Proof. If g = 0 then $\Gamma|_G(B, F) = 0$ is independent of B, F.

If $b \geq 2$ apply [1] lemme 5 (dualized) to the map $\Psi(F) \longrightarrow \Gamma_G(B, F)$ with

 $\Psi(F) = \ker(H^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}|_E) \oplus H^0(\mathcal{O}_{\mathbf{P}^3}(d)|_F)) \text{ The relevant condition is } b \ge \dim \mathbf{Gr}(1, \Omega_{\mathbf{P}^3|_G}) = 2 \text{ or } b \ge \dim \mathbf{Gr}(2, \Omega_{\mathbf{P}^3|_G}) = 2$

Lemma 3.6. In the same circumstances as Lemma 3.4 we have $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3})$ and $e = a - f - g \ge 0$.

Proof. (i) We show $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d))$.

We have $h^0(\Omega_{\mathbf{P}^3}(d+1)) - 3b - \psi c = 3f + \theta g$ by the statement of the Lemma

This implies that $3f + \theta g \le h^0(\Omega_{\mathbf{P}^3}(d+1))$ i.e.

$$f + \frac{1}{3}\theta g \le \frac{1}{3}(h^0(\Omega_{\mathbf{P}^3}(d+1)))$$
 i.e. $f + \frac{1}{3}\theta g \le \frac{1}{6}d(d+2)(d+3)$ i.e $< \frac{1}{6}d(d+2)(d+3) + \frac{1}{6}(d+2)(d+3)$ i.e

$$=\frac{1}{6}(d+1)(d+2)(d+3)=h^0(\mathcal{O}_{\mathbf{P}^3}(d))$$
 i.e.

Thus we have $f + \frac{1}{3}\theta g < h^0(\mathcal{O}_{\mathbf{P}^3}(d))$ and since $0 \le \theta \le 2$ setting $\theta = 3$ does no harm as long as we have $d \ge 0$ and thus $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d))$ as required.

(ii) Next is $e = a - f - g \ge 0$?

We have just proved that $f+g \leq h^0(\mathcal{O}_{\mathbf{P}^3}(d))$ and from (4c) in Lemma 2.1 we know that $a=\frac{1}{4}(h^0(\Omega_{\mathbf{P}^4}(d+1))-3b-\psi c)$

Now we have,
$$e = a - f - g$$

$$= \frac{1}{4}(h^0(\Omega_{\mathbf{P}^4}(d+1)) - 3b - \psi c) - f - g$$

$$= \frac{1}{4}(h^0(\Omega_{\mathbf{P}^4}(d+1)) - h^0(\Omega_{\mathbf{P}^3}(d+1))) \text{ since } 3b + \psi c \le h^0(\Omega_{\mathbf{P}^3}(d+1))$$

$$= \frac{1}{4}(h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4})) - f - g$$

$$\ge \frac{1}{4}(h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4})) - \frac{1}{4}h^0(\mathcal{O}_{\mathbf{P}^3}(d))$$

$$= h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)) - \frac{1}{4}h^0(\mathcal{O}_{\mathbf{P}^3}(d)) \ge 0 \text{ for all } d \ge 1$$

Hence $e \geq 0$ for $d \geq 2$ as required.

Lemma 3.7. Vectorial Method 2

Suppose d, e, f, g satisfy (5a), (5b), and (5c). Write $h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - f - g = \overline{b}$, where \overline{b} is a non-negative integer. Set $\overline{a} = e - \overline{b}$, $\overline{c} = g$ and $\psi = \varepsilon - 1$. If $\overline{a} \ge 0$ and $3\overline{b} + \psi c \le h^0(\Omega_{\mathbf{P}^3}(d))$, then $\mathbf{H}'_{\Omega,4}(d; \overline{a}, \overline{b}, \overline{c})$ implies $\mathbf{H}'_{\Omega,4}(d-1; e, f, g)$.

Proof. Consider the sequence;

$$0 \; \longrightarrow \; \Omega_{\mathbf{P}^4}(d) \; \longrightarrow \; \mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4} \; \longrightarrow \; \mathfrak{O}_{\mathbf{P}^3}(d) \; \longrightarrow \; 0.$$

Taking global sections we have;

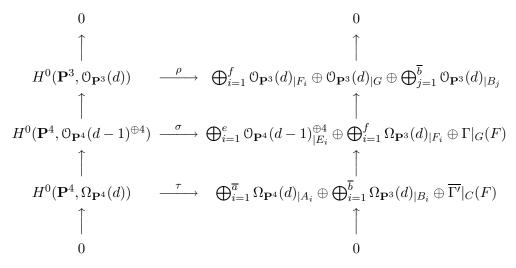
$$\dim \frac{(d-1)(d+1)(d+2)(d+3)}{6} \qquad \dim \frac{d(d+1)(d+2)(d+3)}{6} \qquad \dim \frac{(d+1)(d+2)(d+3)}{6}$$

$$0 \longrightarrow H^0(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d)) \longrightarrow H^0(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) \longrightarrow H^0(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(d)) \longrightarrow 0$$

with the points $E_1, \dots, E_e \in \mathbf{P}^4$, $F_1, \dots, F_f, G \in \mathbf{P}^3$, we have $f + g \leq h^0(\mathcal{O}_{\mathbf{P}^3}(d))$.

Let F, G be general sets of f, g points respectively in \mathbf{P}^3 , and specialize E to $\overline{A} \cup \overline{B}$ with \overline{A} a general set of \overline{a} general points in \mathbf{P}^4 and \overline{B} a general set of \overline{b} points in \mathbf{P}^3 , let $\overline{C} = G$. The map $H^0(\mathcal{O}_{\mathbf{P}^3}(d)) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^3}(d)|_{F \cup G \cup \overline{B}})$ is bijective, i.e. just specializing the points needed for bijectivity which works since $\mathcal{O}_{\mathbf{P}^3}(d)$ is a line bundle. We then construct the following diagram

of exact sequences:



The map ρ is bijective. The map τ is bijective by $\mathbf{H}'_{\Omega,4}(d;\overline{a},\overline{b},\overline{c})$ if $\Gamma'|_C(F)$ is general, which we may assume for F general (note that τ does not depend on F). So σ is also bijective, and $\mathbf{H}'_{0,4}(d-1;e,f,g)$ holds. The hypothesis $\mathbf{H}''_{0,4}(d-1;e,f,g)$ also holds because it is the same except with $\Gamma|_G$ and $\overline{\Gamma'}|_C$ not depending on F.

Note that:

For the hypothesis $H'_{\Omega,4}(d; \overline{a}, \overline{b}, \overline{c})$ to be true, given e, f and g satisfy the conditions in Lemma 2.2, then $\overline{a}, \overline{b}$ and \overline{c} must satisfy:

(i)
$$\overline{a} = e - \overline{b} \ge 0$$
 and

(ii)
$$3\overline{b} + \psi \overline{c} \le h^0(\Omega_{\mathbf{P}^3}(d))$$

(i) We investigate the condition $\overline{a} \geq 0$.

From (5c) in Lemma 2.2 we know $e = \frac{1}{4}(h^0(\mathfrak{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) - f - \varepsilon g)$ and from the definition of this Lemma here we have $\overline{b} = h^0(\mathfrak{O}_{\mathbf{P}^3}(d)) - f - g$.

We have,

$$\overline{a} = e - \overline{b} = \frac{1}{4} (h^0 (\mathcal{O}_{\mathbf{P}^4} (d-1)^{\oplus 4}) - f - \varepsilon g) - (h^0 (\mathcal{O}_{\mathbf{P}^3} (d)) - f - g)$$

$$= h^0 (\mathcal{O}_{\mathbf{P}^4} (d-1)) - h^0 (\mathcal{O}_{\mathbf{P}^3} (d) + \frac{3}{4} f + g(1 - \frac{\varepsilon}{4}). \text{ So we have}$$

$$\overline{a} \geq \frac{1}{4} (h^0 (\mathfrak{O}_{\mathbf{P}^4} (d-1)^{\oplus 4})) - h^0 (\mathfrak{O}_{\mathbf{P}^3} (d))$$

$$= h^0 (\mathfrak{O}_{\mathbf{P}^4} (d-1)) - h^0 (\mathfrak{O}_{\mathbf{P}^3} (d)) \geq 0 \text{ for all } d \geq 4$$

$$= \binom{d+3}{3} (d-4)/4 \text{ Thus } \overline{a} \geq 0 \text{ as required for } d \geq 4.$$

(ii) Now for $3\overline{b} + \psi \overline{c} \leq h^0(\Omega_{\mathbf{P}^3}(d))$ we have $h^0(\mathfrak{O}_{\mathbf{P}^3}(d)) - f - g = \overline{b}$ from which we have 3 possibilities since $0 \leq \psi \leq 2$ and $\overline{c} = g$.

(a)
$$3\overline{b} = 3h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - 3f - 3g$$

(b)
$$3\overline{b} + \overline{c} = 3h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - 3f - 2g$$

(c)
$$3\overline{b} + 2\overline{c} = 3h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - 3f - g$$

Also since $h^0(\mathcal{O}_{\mathbf{P}^3}(d)) = \frac{1}{6}(d+3)(d+2)(d+1)$ and $h^0(\Omega_{\mathbf{P}^3}(d)) = \frac{1}{2}(d+2)(d+1)(d-1)$,

We pose the question, when is $3\overline{b} + \psi \overline{c} \leq h^0(\Omega_{\mathbf{P}^3}(d))$?

We answer, when $3h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - h^0(\Omega_{\mathbf{P}^3}(d)) = 2(d+1)(d+2)$ is less than $3f + \eta g$ where $1 \le \eta \le 3$ for $0 \le \psi \le 2$ i.e.

Hence
$$3\overline{b} + \psi \overline{c} \le h^0(\Omega_{\mathbf{P}^3}(d))$$
 when $3f + \eta g \ge 2(d+1)(d+2)$ for $1 \le \eta \le 3$ for $0 \le \psi \le 2$.

We have e general points, E_1, \dots, E_e in \mathbf{P}^4 , and F_1, \dots, F_f, G in \mathbf{P}^3 and the number of fibers in \mathbf{P}^3 are few enough in comparison to d i.e. we use this method when the Vectorial Method 2 fails i.e. when none of the conditions relating d with f and g in the last Lemma fail specifically when we have:

- (a) $f + g < \frac{2}{3}(d+1)(d+2)$ for $\psi = 0$
- (b) $f + \frac{2}{3}g < \frac{2}{3}(d+1)(d+2)$ for $\psi = 1$ (c) $f + \frac{1}{3}g < \frac{2}{3}(d+1)(d+2)$ for $\psi = 2$

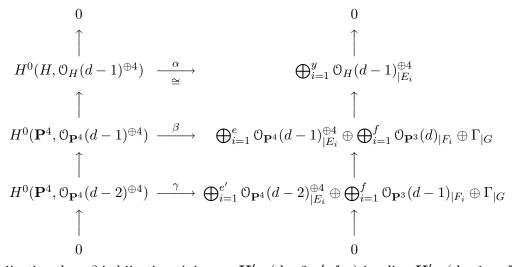
Lemma 3.8. Plane Divisorial Method

Suppose d, e, f, g are non-negative integers satisfying the conditions of Lemma 2.2. Set e' = $e - h^0(\mathcal{O}_{\mathbf{P}^3}(d-1)) = e - \frac{1}{6}(d+2)(d+1)d$. If we have $e' \ge 0$, and $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$, then $\boldsymbol{H}'_{0,4}(d-2;e',f,g)$ implies $\boldsymbol{H}'_{0,4}(d-1;e,f,g)$ and similarly for $\boldsymbol{H}''_{0,4}(d-1;e,f,g)$.

Proof. We therefore choose a hyperplane $H \subseteq \mathbf{P}^4$ disjoint from $\{F_1, \dots, F_f, G\}$ with $H \cong \mathbf{P}^3$ and send $y = \dim \mathcal{O}_H(d-1)$ points from \mathbf{P}^4 to H and we have exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^4}(d-2)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4} \longrightarrow \mathcal{O}_H(d-1)^{\oplus 4} \longrightarrow 0$$
$$(e',f,g) \qquad (e,f,g) \qquad (h^0(\mathcal{O}_{\mathbf{P}^3}(d-1)),0,0)$$

Taking global sections and evaluating at the corresponding points gives the sequence



If γ is bijective then β is bijective giving us $\mathbf{H}'_{0,4}(d-2;e',f,g)$ implies $\mathbf{H}'_{0,4}(d-1;e,f,g)$.

Two conditions to be satisfied by e', f and g are:

- (i) $e' \ge 0$ and
- (ii) $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$
- (i) We have (i) e' = e y $= \frac{1}{4} (h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) - f - \varepsilon g) - h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$ $= \frac{1}{4} (h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) - f - g + g - \varepsilon g) - h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$ $\geq \frac{1}{4} (h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) - h^0(\mathcal{O}_{\mathbf{P}^3}(d)) + g(1-\varepsilon)) - h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$ $\geq \frac{1}{4} (h^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) - h^0(\mathcal{O}_{\mathbf{P}^3}(d)) - 4h^0(\mathcal{O}_{\mathbf{P}^3}(d-1)) + g(1-\varepsilon))$ $= \frac{1}{4} (\frac{(d+2)(d+1)^2(d-3)}{6} + g(1-\varepsilon)) \text{ since } g(1-\varepsilon) \in \{0, -1, -2\} \text{ for } d \geq 4 \text{ thus } e' \geq 0 \text{ for } d \geq 4$
- (ii) In the cases where the Vectorial Method 2 does not work we have $f+g < [\frac{2}{3}(d+1)(d+2) + \frac{2}{3}] = [\frac{4}{6}(d+1)(d+2) + \frac{2}{3}] \le \frac{1}{6}d(d+1)(d+2)$ for $d \ge 4$.

For $d \ge 2$ follows the initial cases and hence we have $f + g \le h^0(\mathcal{O}_{\mathbf{P}^3}(d-1))$.

Theorem 3.9. (a) For $d \ge 2$, $\mathbf{H}_{0,4}(d-1)$ implies $\mathbf{H}_{\Omega,4}(d+1)$ (b) For $d \ge 4$, $\mathbf{H}_{\Omega,4}(d)$ and $\mathbf{H}_{0,4}(d-2)$ imply $\mathbf{H}_{0,4}(d-1)$

Proof. (a) For any a,b,c satisfying the conditions of Lemma 2.1 we define e,f,g as in Lemma 3.4. By Lemma 3.6 they satisfy the conditions of Lemma 2.2. So since $\mathbf{H}_{\mathbb{O},4}(d-1)$ holds then, the hypothesis $\mathbf{H}'_{\mathbb{O},4}(d-1;e,f,g)$ holds. So by Lemma 3.4 the hypothesis $\mathbf{H}'_{\mathbb{O},4}(d+1;a,b,c)$ holds this proves $\mathbf{H}_{\Omega,4}(d+1)$

(b) For any e, f, g verifying the conditions of Lemma 2.2 either we have $\mathbf{H}_{\Omega,4}(d; \overline{a}, \overline{b}, \overline{c})$ implying $\mathbf{H}'_{0,4}(d-1; e, f, g)$ or $\mathbf{H}'_{0,4}(d-2; e', f, g)$ implying $\mathbf{H}'_{0,4}(d-1; e, f, g)$. In the first case, define $\overline{a}, \overline{b}, \overline{c}$ as in Lemma 4.9. If the numerical conditions hold then we have $\overline{a} \geq 0$ and $3\overline{b} + \psi \overline{c} \leq h^0(\Omega_{\mathbf{P}^3}(d))$ and so $\mathbf{H}'_{\Omega,4}(d; \overline{a}, \overline{b}, \overline{c})$ holds and so $\mathbf{H}_{\Omega,4}(d)$ holds. If the numerical conditions do not hold the we have the second case and we define $e' = e - h^0(\mathfrak{O}_{\mathbf{P}^3}(d-1))$ as in Lemma 3.8. We thus have $e' \geq 0$ and $f + g \leq h^0(\mathfrak{O}_{\mathbf{P}^3}(d-1))$ and so $\mathbf{H}'_{0,4}(d-2;e',f,g)$ holds. This proves $\mathbf{H}_{\mathfrak{O},4}(d-1)$.

This proves the goals we set ourselves to prove in the Subsection 4.3.

3.2.3. Hypercritical mèthode d'Horace.

Lemma 3.10. Consider $\mathbf{H}'_{0,4}(d-1;s_1,s_2,0)$ where $d \geq 1,s_1$, and s_2 are non-negative integers and suppose that the map $H^0(\Omega_{\mathbf{P}^4}(d)) \longrightarrow H^0(\Omega_{\mathbf{P}^4}(d)|_{S_1})$ is injective and that the map $H^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}|_{S_1})$ is surjective with a general $S_1 \subseteq \mathbf{P}^n$ then the hypothesis $\mathbf{H}'_{0,4}(d-1;s_1,s_2,0)$ is true.

Proof. Follows from Lemma 1.11

3.3. Other Lemmas and Corollaries.

Lemma 3.11. The following hypotheses are true.

a.
$$\boldsymbol{H}'_{0.4}(2;13,8,0)$$

- b. $\boldsymbol{H}'_{0.4}(2;12,12,0)$
- c. $\boldsymbol{H}'_{0.4}(2;12,10,1)$
- d. $\boldsymbol{H}'_{0.4}(2;12,9,1)$

Proof. For (a) and (b) we use Lemma 4.9. Set $s_1 = 13$ and $s_2 = 8$ for (a) and $s_1 = 12$ and $s_2 = 12$ for (b) and injectivity of the map $H^0(\Omega_{\mathbf{P}^4}(3)) \longrightarrow H^0(\Omega_{\mathbf{P}^4}(3)|_{S_1})$ will follow from Lemma 4.4 i.e. for 10 general points in \mathbf{P}^4 we have bijectivity and in this two cases we have 12 and 13 points thus it follows which in turn implies surjectivity of the map $H^0(\mathcal{O}_{\mathbf{P}^4}^{\oplus 4}(2)) \longrightarrow H^0(\mathcal{O}_{\mathbf{P}^4}^{\oplus 4}(2)|_{S_1})$

Now for (c) we proceed as follows:

For the hypothesis $H'_{0,4}(2;12,10,1)$ we have 12 general points, $P_1 \cdots P_{12}$ in \mathbf{P}^4 , 10 general points, Q_1, \cdots, Q_{10} in \mathbf{P}^3 and a quotient, $\Gamma(Q_1 \cdots, Q_{10})$ at C in \mathbf{P}^3 .

Let $\langle F_1, F_2, F_3 \rangle$ be the space of quadratic forms on \mathbf{P}^4 vanishing at $P_1 \cdots, P_{12}$. Identify $\mathcal{O}_{\mathbf{P}^4}(2)^{\oplus 4} = \mathcal{O}_{\mathbf{P}^4}(2) \otimes V$ with $V = H^0(\mathcal{O}_{\mathbf{P}^3}(1))$. Then we need to show that

$$\langle F_1, F_2, F_3 \rangle \otimes V \longrightarrow \bigoplus_{i=1}^{10} \mathfrak{O}_{\mathbf{P}^3}(3)|_{Q_i} \oplus \Gamma|_C(Q_1 \cdots, Q_{10})$$

is bijective for some $P_1 \cdots, P_{12}, Q_1, \cdots, Q_{10}, C$. Now the 2 dimensional quotient

$$\mathfrak{O}_{\mathbf{P}^4}(2) \otimes V \xrightarrow{\longrightarrow} \Gamma|_C(Q_1 \cdots, Q_{10})$$

has a kernel $\langle L_1(Q_1 \cdots, Q_{10}), L_2(Q_1 \cdots, Q_{10}) \rangle \subseteq V$. The zero locus $L_1 = L_2 = 0$ is a line $D \subseteq \mathbf{P}^3$. Since $Q_1 \cdots, Q_{10}$ are in linear general position. So there exists two of the Q_i say Q_9, Q_{10} such that D, Q_9, Q_{10} span \mathbf{P}^3 .

We claim that we can choose $P_1 \cdots P_{12}$ and a basis F_1, F_2, F_3 of $H^0(\mathcal{T}_{P_1 \cdots P_{12}}(2))$ such that F_1, F_2 vanish at C, Q_9, Q_{10} while F_3 does not vanish at C, Q_9, Q_{10} . In that case we have a commutative diagram with exact rows

in which the first and third vertical arrows are isomorphisms. The space $\langle F_1, F_2 \rangle \otimes V$ injects onto an 8 dimensional subspace $\langle \overline{F_1}, \overline{F_2} \rangle \otimes V \subseteq H^0(\mathcal{O}_{\mathbf{P}^3}(3))$ because the points $H^0(\Omega_{\mathbf{P}^4}(3)) \longrightarrow \Omega_{\mathbf{P}^4}(3)|_{P_1,\dots,P_{12}}$ is injective by Lemma 4.4. The first vertical arrow is then bijective for general Q_1,\dots,Q_8 as is the middle row and we will be done.

To prove our claim, pick $P_1 \cdots P_{10}$ so that vanishing at $P_1 \cdots P_{10}$, P_{10} , P_{10} , P_{10} , P_{10} impose impose 13 independent conditions on $H^0(\mathcal{O}_{\mathbf{P}^4}(2))$. Let P_1 , P_2 be the space of forms vanishing at those points. Let P_1 the P_2 is 5 dimensional and contains P_1 , P_2 .

Since vanishing at C, Q_9, Q_{10} impose non-trivial conditions on J, for general $P_{11}, P_{12} \in \mathbf{P}^4$ vanishing at P_{11}, P_{12}, C impose independent conditions on J, as do vanishing at P_{11}, P_{12}, Q_9 and P_{11}, P_{12}, Q_{10} . So $H^0(\mathcal{T}_{P_1 \cdots, P_{12}}(2)) = \langle F_1, F_2, F_3 \rangle$ for an F_3 not vanishing at any of C, Q_9, Q_{10} .

Lemma 3.12. (A specific case of [1] Lemme 1) Suppose we are given a surjective morphism of vector spaces,

$$\lambda: H^{\circ}(\mathbf{P}^3, \Omega_{\mathbf{P}^3}(d+1)) \twoheadrightarrow L$$

and suppose there exists a point Z' in \mathbf{P}^3 such that

$$H^{\circ}(\mathbf{P}^3, \Omega_{\mathbf{P}^3}(d+1)) \hookrightarrow L \oplus \Omega_{\mathbf{P}^3}(d+1)_{|Z'}$$
 and

Suppose also that $H^1(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) = 0$. Then there exists a quotient

 $\mathcal{O}_{\mathbf{P}^4}(d-1)_{|Z'}^{\oplus 4} \longrightarrow D(\lambda)$ with kernel contained in $\Omega_{\mathbf{P}^3}(d)_{|Z'}$ of dimension

 $\dim(D(\lambda)) = \operatorname{rank}(\Omega_{\mathbf{P}^4}(d+1)) - \dim(\ker \lambda)$ having the following property.

Let $\mu: H^{\circ}(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow M$ be a morphism of vector spaces then there exists Z in \mathbf{P}^3 such that if

 $H^{\circ}(\mathbf{P}^4, \mathcal{O}_{\mathbf{P}^4}(d-1)^{\oplus 4}) \longrightarrow M \oplus D(\lambda)$ is of maximal rank then

 $H^{\circ}(\mathbf{P}^4, \Omega_{\mathbf{P}^4}(d+1)) \longrightarrow M \oplus L \oplus \Omega_{\mathbf{P}^4}(d+1)|_Z$ is also of maximal rank.

Proposition 3.13. For any $d \ge 1$ and any subspace $V \subseteq H^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d))$ there exists $M_1, \ldots, M_m \in \mathbf{P}^n$ such that $V \longrightarrow \bigoplus_{i=1}^m \mathcal{O}_{\mathbf{P}^n}(d)|_{M_i}$ has maximal rank property.

Proof. Consider the following maps, α, β and γ inter-vectorial spaces

$$H^{0}(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(d)) \xrightarrow{\beta} V$$

$$\bigoplus_{i=1}^{m} \mathcal{O}_{\mathbf{P}^{n}}(d)|_{M_{i}}$$

If $h^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d)) = m$ then α is bijective since it's an evaluation of line bundles at m points; β is surjective hence γ is injective.

If $h^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d)) < m$ then α is injective; β is surjective and hence γ is injective.

If $h^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(d)) > m$ then α is surjective; β is surjective but then γ has 3 possiblities:

- (a) if $m < \dim V$ then γ is surjective
- (b) if $m = \dim V$ then γ is bijective
- (c) finally if $m > \dim V$ then γ is injective

Hence γ is either injective, surjective or both (bijective) i.e. it is of maximal rank for as long as V is independent of the $M_1, \ldots, M_m \in \mathbf{P}^n$

References

- [1] A Hirschowitz and C Simpson: La résolution minimale de l'idéal d'un arrangement général d'un grand nombre de points dans **P**ⁿ. Invent. Math. **126**, 467–503 (1996).
- [2] A Lorenzini: The Minimal Resolution Conjecture. J Algebra 156, 5–35 (1993).
- [3] A Lorenzini: On the Betti numbers of points in projective space. Ph.D. thesis. Queen's University, Kingston, Ontario, 1987. J Algebra 156, 5–35 (1993).

- [4] D M Maingi: On the Minimal Resolution Conjecture for projective spaces of dimension 3. International Journal Contemporary Mathematical Sciences, Vol. 3, $\bf 33$, 1643-1655 (2008).
- [5] C Walter: The minimal free resolution of the homogeneous ideal of s general points in \mathbf{P}^4 . Math Z.219, 231–234 (1995).

Received: November, 2009