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Abstract. Let S be a general set of s points in P4, and R the homogeneous coordinate ring
of P4. Then the ideal of S, IS has a minimal free resolution of the form:

0 −−−→ F3 −−−→ F2 −−−→ F1 −−−→ F0 −−−→ IS −−−→ 0

where Fp = R(−d − p)ap−1
⊕
R(−d − p − 1)bp , d being the smallest integer satifying s ≤

h0(P4,OP4(d)) and ap = h0(TS ⊗Ωp+1
P4 (d+ p+ 1)), bp = h1(TS ⊗Ωp+1

P4 (d+ p+ 1)) and
(
d+3
4

)
<

s ≤ (
d+4
4

)
, with 0 ≤ p ≤ 3 and when p = 0, we would have ap−1 =

(
d+4
4

) − s and when p = 3
then bp = s− (d+3

4

)
. In this paper I prove that either a0 = 0 or b0 = 0 by proving maximal rank

for the map:

H0
(
ΩP4(d+ 1)

) −→
s⊕
i=1

ΩP4(d+ 1)|Si

by use of the methods of Horace to prove bijectivity for a specific number of fibres and then
maximal rank for a general set.
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1. introduction
The Minimal Resolution Conjecture (MRC) was first explicitly formulated by A Lorenzini in
her PhD thesis [3] and it deals with the question of the form of the minimal free resolution for
ideals of general points in projective spaces i.e. for a general set of points {P1, . . . , Ps} ∈ Pn,
with s ≥ n+ 1, then the homogeneous ideal of the sub-scheme of the union of these points,
IS ⊂ R = k[x0, . . . , xn], k an algebraically closed field and R the homogeneous coordinate ring
of Pn, has the following expected form:

0 −−−→ Fn−1 −−−→ · · · −−−→ Fp −−−→ · · · −−−→ F0 −−−→ IS −−−→ 0,

Fp = R(−d− p)ap−1
⊕
R(−d− p− 1)bp ,

d being the smallest integer satifying s ≤ h0(Pn,OPn(d)), thus

ap = max{0, rk(Ωp+1
Pn )s− h0(Pn,Ωp+1

Pn (d+ p+ 1))},

bp = max{0, h0(Pn,Ωp+1
Pn (d+ p+ 1)) − rk(Ωp+1

Pn )s} and(
d+ n− 1

n

)
< s ≤

(
d+ n

n

)
.

The problem can be reduced to showing the following; for all 0 ≤ p ≤ n − 1 and non-negative
integers l then existence of the above resolution is the same as saying the evaluation map below
is of maximal rank i.e. it is surjective or injective or both.

H0
(
Pn,Ωp+1

Pn (l)
) −→

s⊕
i=1

Ωp+1
Pn (l)|Pi

.

C Walter [5] tackled the minimal free resolution for P4 in which his work yields many values
but misses out the most difficult values. He gave bounds for the dimension of H0 for which the
homogeneous ideal IS of s general points in P4 does not satisfy the MRC (i.e. apbp �= 0 for some
p). In this paper, I prove that ap = 0 or bp = 0 for p = 0 which inturn implies that apbp = 0.
See the sequence below:

· · · −−−→ R(−d− 2)b1
⊕
R(−d− 1)a0 −−−→ R(−d− 1)b0

⊕
R(−d)a−1 −−−→ IS −−−→ 0

which is deduced from the following from the proposition that is a particular case of the Minimal
Resolution Conjecture[2]:

Proposition 1.1. Let k be an algebraically closed field, P4 be a projective space over k and
R = k[X0,X1,X2,X3,X4] be the homogeneous coordinate ring of P4. If S = {P1, P2, ..., Ps} is a
general set of s points in P4, with s ≥ 5, then the ideal, IS has the expected minimal resolution
if the map

μ : H0
(
P4,ΩP4(d+ 1)

) −→
s⊕
i=1

ΩP4(d+ 1)|Pi

is of maximal rank.
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We wish to prove that μ is of maximal rank and as a consequence we have the following theorem.

Theorem 1.2. Suppose we have a general set S, of s points in P4, s ≥ 5 such that the map
μ : H0

(
P4,ΩP4(d + 1)

) −→ ⊕s
i=1 ΩP3(d + 1)|Si

is of maximal rank then the homogeneous ideal
IS ⊂ k[X0,X1,X2,X3,X4] has

(
1
6d(d+ 2)(d+ 3)(d+ 4) − 4m

)
+

number of minimal generators
of degree d+1 and

(
1
6d(d+2)(d+3)(d+4)−4m

)
− number of minimal relations of degree d+1,

where (x)+ = max(x, 0) and (x)− = max(−x, 0).

1.1. Preliminaries. Here we start by giving the maximal rank hypotheses or statements (the
so called Enonces) as in [1] by Hirschowitz and Simpson.

Let X be a smooth projective variety and X ′ non-singular divisor of X. Let F be a locally free
sheaf on X and

0 −−−→ F′′ −−−→ F|X′ −−−→ F′ −−−→ 0

be a exact sequence of locally free sheaves on X ′. The kernel E of F −→ F′ is a locally free sheaf
on X and we have another exact sequence of locally free sheaves on X ′

0 −−−→ F′(−X ′) −−−→ E|X′ −−−→ F′′ −−−→ 0

and as well exact sequences of coherent sheaves on X

0 −−−→ E −−−→ F −−−→ F′ −−−→ 0

and

0 −−−→ F(−X) −−−→ E −−−→ F′′ −−−→ 0.

Hypothesis 1.3. R(F,F′, y; a, b, c)
Let y, a, b and c be non-negative integers. The hypothesis R(F,F′, y; a, b, c) asserts that there
exists a points, U1, . . . , Ua, and b points, V1, . . . , Vb ∈ X ′ such that for the quotients

F′
Ui −−−→ Ai −−−→ 0,

FVi −−−→ Bi −−−→ 0

there exists the points W1, . . . ,Wc such that for the quotients

FWi −−−→ Ci −−−→ 0

with the kernel in ker(FWi −−−→ F′
Wi) then for a non-negative integer z, there exists y points,

Y1, . . . , Yy in X and z points Z1, . . . , Zz in X ′ such that the map below is bijective.

H0
(
X,F

) −−−→ ⊕a
i=1Ai ⊕

⊕b
i=1Bi ⊕

⊕c
i=1 Ci ⊕

⊕y
i=1 F′

Yi ⊕
⊕z

i=1 FZi

Hypothesis 1.4. RD(F,F′, y; a, b, c)
Let y, a, b and c be non-negative integers. The hypothesis R(F,F′, y; a, b, c) asserts that there
exists a points, U1, . . . , Ua, and b points, V1, . . . , Vb ∈ X ′ such that for the quotients

F′
Ui −−−→ Ai −−−→ 0,

FVi −−−→ Bi −−−→ 0
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there exists the points W1, . . . ,Wc such that for the quotients

γ(Y ) : FWi −−−→ Ci(Y ) −−−→ 0

with the kernel in ker(FWi −−−→ F′
Wi) then for a non-negative integer z, there exists y points,

Y1, . . . , Yy in X and z points Z1, . . . , Zz in X ′ such that the map below is bijective.

H0
(
X,F

) −−−→ ⊕a
i=1Ai ⊕

⊕b
i=1Bi ⊕

⊕c
i=1Ci(Y1 . . . Yy) ⊕

⊕y
i=1 F′

Yi ⊕
⊕z

i=1 FZi

Hypothesis 1.5. RD(E,F′′, y′; a′, b′, c′)
Let y′, a′, b′ and c′ be non-negative integers. The hypothesis R(E,F′′, y′; a′, b′, c′) asserts that
there exists a′ points, U1, . . . , U

′
a, and b′ points, V1, . . . , V

′
b ∈ X ′ such that for the quotients

F′′
Ui −−−→ Ai −−−→ 0,

EVi −−−→ Bi −−−→ 0

there exists the points W1, . . . ,W
′
c such that for the quotients

γ(Y ) : EWi −−−→ Ci(Y ) −−−→ 0

with the kernel in ker(EWi −−−→ F′′
Wi) then for a non-negative integer z′, there exists y′ points,

Y1, . . . , Y
′
y in X and z′ points Z1, . . . , Z

′
z in X ′ such that the map below is bijective.

H0
(
X,E

) −−−→ ⊕a′
i=1Ai ⊕

⊕b′
i=1Bi ⊕

⊕c′
i=1Ci(Y1 . . . Y

′
y) ⊕

⊕y′
i=1 F′′

Yi ⊕
⊕z′

i=1 EZi

1.2. Notation. Since we are talking about the MRC for projective spaces and the méthode
d’Horace then we set

X = P4, X ′ = P3, F = ΩP4 , F′ = ΩP3 , E = O⊕4
P4(−2), F′′ = OP3(−1).

The exact sequences of the elementary transformations after twisting by d+ 1 are:

0 0⏐⏐	 ⏐⏐	
ΩP4(d) ΩP4(d)⏐⏐	 ⏐⏐	

0 −−−→ OP4(d− 1)⊕4 −−−→ ΩP4(d+ 1) −−−→ ΩP3(d+ 1) −−−→ 0⏐⏐	 ⏐⏐	 ∥∥∥
0 −−−→ OP3(d) −−−→ ΩP4 |P3(d+ 1) −−−→ ΩP3(d+ 1) −−−→ 0⏐⏐	 ⏐⏐	

0 0
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From which we have the hypotheses:
H ′

Ω,4(d+ 1;α, β, γ) = H(ΩP4(d+ 1),ΩP3(d+ 1), α, β, γ) and
H ′
�,4(d− 1; ρ, σ, τ) = H(OP4(d− 1)⊕n,OP3(d);ρ, σ, τ) and

H ′′
�,4(d− 1; ρ, σ, τ) = H(OP4(d− 1)⊕n,OP3(d);ρ, σ, τ).

Our method is to prove inductively certain statements HΩ,4(d+ 1) and H�,4(d− 1). The exact
statements roughly speaking are:

Hypothesis 1.6. H ′
Ω,4(d+ 1;α, β, γ)

The hypothesis H ′
Ω,4(d+1;α, β, γ) asserts that for non-negative integers α, β γ and ε satisfying

the conditions:

0 ≤ γ ≤ 1, and 1 ≤ ε ≤ 2,
4α+ 3β + εγ = h0(ΩP4(d+ 1)), and
3β + εγ ≤ h0(ΩP3(d+ 1)) having for γ = 1 a quotient Γ′ then the map

η : H0
(
P4,ΩP4(d+ 1)

) −→
α⊕
i=1

ΩP4(d+ 1)|Ai
⊕

β⊕
j=1

ΩP3(d+ 1)|Bj
⊕ Γ′

|C

is bijective with h0(ΩP4(d+ 1)) = d
(d+4
d+1

)
and for α general points A1 . . . Aα ∈ P4, β + 1 general

points B1 . . . Bβ, C ∈ P3.

Hypothesis 1.7. HΩ,4(d+ 1)
The hypothesis HΩ,4(d+ 1) asserts that H ′

Ω,4(d+ 1;α, β, γ) is true for all α, β and γ satisfying
the conditions above.

Hypothesis 1.8. H ′
�,4(d− 1; ρ, σ, τ)

The hypothesis H ′
�,4(d−1; ρ, σ, τ) asserts that for non-negative integers ρ, σ, τ and θ satisfying

the conditions:

0 ≤ τ ≤ 1 and 2 ≤ θ ≤ 3,
4ρ+ σ + θτ = h0(OP4(d− 1)⊕4), and
σ + θτ ≤ h0(OP3(d)) having for τ = 1 a quotient Γ then the map

φ : H0
(
P4,OP4(d− 1)⊕4

) −→
ρ⊕
i=1

OP4(d− 1)⊕4
|Ri

⊕
σ⊕
j=1

OP3(d)|Sj
⊕ Γ(S)|T

is bijective with h0(OP4(d − 1)⊕4) = 4
(
d+4−1
d−1

)
and for ρ general points R1 . . . Rρ ∈ P4, σ + 1

general points S1 . . . Sσ, T ∈ P3.

Hypothesis 1.9. H�,4(d− 1)
The hypothesis H�,4(d−1) asserts that H ′

�,4(d−1; ρ, σ, τ) is true for any ρ, σ, and τ satisfying
the conditions above.

Hypothesis 1.10. H ′′
�,4(d− 1; ρ, σ, τ)

A variant version of the hypothesis H ′
�,4(d− 1; ρ, σ, τ) with Γ independent of Γ′ takes the form

H ′′
�,4(d − 1; ρ, σ, τ) and it makes the same assertion as the hypothesis H ′

�,4(d − 1; ρ, σ, τ) the
only difference being quotient dependency.
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1.3. Méthodes d’Horace. We will explain the méthodes d’Horace we use as we move on but
here we look at one of them:

1.3.1. Hypercritical mèthode d’Horace.

Lemma 1.11. Consider H ′
�,n(d−1; s1, s2, 0) with d ≥ 1, s1, and s2 being non-negative integers

that satisfy: ns1 + s2 = h0(OPn(d − 1)⊕n) and s2 ≤ h0(OPn−1(d)). Now suppose that the
H0(ΩPn(d)) −→ H0(ΩPn(d)|S1) is injective and H0(OPn(d− 1)⊕n) −→ H0(OPn(d− 1)⊕n|S1) is
surjective with a general S1 ⊆ Pn then the hypothesis H ′

�,n(d− 1; s1, s2, 0) is true.

This Lemma is for when we have no quotient.

Proof. From the hypothesis H ′
�,n(d − 1; s1, s2, 0) we have a set S1 of s1 general points in Pn

and a set S2 of s2 general points in Pn−1.

Consider the exact sequence:

0 −−−→ ΩPn(d) −−−→ OPn(d− 1)⊕n −−−→ OPn−1(d) −−−→ 0

We take its global sections and evaluate at corresponding points and thus construct a diagram:

0

��

kerφ

��

� � �� H0(OPn−1(d))

0 �� H0(ΩPn(d))
� �

��

�� H0(OPn(d− 1)⊕n) ��

φ
����

H0(OPn−1(d)) �� 0

0 �� H0(ΩPn(d)|S1) �� H0(OPn(d− 1)⊕n|S1)

��

�� 0

0
That is kerφ maps injectively on a subspace V ⊆ H0(OPn−1(d)) i.e.

kerφ

γ

��

��

α

��������������������� H0(OPn−1(d))

V
� �

������������������

β
��

H0(OPn−1(d)|S2) H0(OPn−1(d)|S2)

The hypothesis H ′
�,n(d − 1; s1, s2, 0) asserts that s2 = dimV for S2 ⊆ Pn−1 general, then α is

bijective and since β is bijective since OPn−1(d) is a line bundle also, since V depends only on
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S1 but not S2 then γ has no choice but to be bijective thus

H0
(
OPn(d− 1)⊕n

) −→
s1⊕
i=1

OPn(d− 1)⊕n|Ri
⊕

s2⊕
j=1

OPn−1(d)|Sj

is bijective and the hypothesis H ′
�,n(d− 1; s1, s2, 0) is true.

Lemma 1.12. Consider H ′
�,n(d − 1; s1, s2, 1) where d ≥ 1, s1, s2 and 2 ≤ θ ≤ n− 1 are non-

negative integers such that, ns1 + s2 + θ = h0(OPn(d− 1)⊕n) and s2 + θ ≤ h0(OPn−1(d)).
Under the same hypotheses as Lemma 2.1 i.e. H0(ΩPn(d)) −→ H0(ΩPn(d)|S1) is injective and
H0(OPn(d−1)⊕n) −→ H0(OPn(d−1)⊕n|S1) is surjective then the hypothesis H ′′

�,n(d−1; s1, s2, 1)
is true.

Proof. The proof is identical to the previous Lemma since this was the hypothesis with a quotient
OPn(d− 1)⊕n −→ Γ with Γ not depending on the Sjs.

2. statements for the the inductive steps
Hypothesis H ′

Ω,4(d+ 1;a, b, c). There exists A1, . . . , Aa ∈ P4, B1, . . . , Bb ∈ P3, and a quotient
ΩP3|C � Γ′

|C of dimension 1 or 2 if c = 1 for a point C ∈ P3 such that the restriction map (1)
is bijective.

H0
(
P4,ΩP4(d+ 1)

) −→
a⊕
i=1

ΩP4(d+ 1)|Ai
⊕

b⊕
j=1

ΩP3(d+ 1)|Bj
⊕ Γ′

|C(1)

Hypothesis H ′
�,4(d− 1; e, f, g). For Γ : (P3)f −→ Gr(1,ΩP3|G) ⊆ Gr(2,O⊕4

P4 |G) or Γ :
(P3)f −→ Gr(2,ΩP3(d)|G) ⊆ Gr(3,OP4(d − 1)⊕4|G) for g = 1 there exists E1, . . . , Ee ∈ P4,
F1, . . . , Ff , G ∈ P3 such that the restriction map (2) is bijective.

H0
(
P4,OP4(d− 1)⊕4

) −→
e⊕
i=1

OP4(d− 1)⊕4
|Ei

⊕
f⊕
j=1

OP3(d)|Fj
⊕ Γ(F )|G(2)

Hypothesis H ′′
�,4(d− 1; e, f, g). For Γ : (P3)f −→ Gr(1,ΩP3|G) ⊆ Gr(2,O⊕4

P4 |G) or Γ :
(P3)f −→ Gr(2,ΩP3(d)|G) ⊆ Gr(3,OP4(d − 1)⊕4|G) for g = 1 there exists E1, . . . , Ee ∈ P4,
F1, . . . , Ff , G ∈ P3 such that the restriction map (3) is bijective.

H0
(
P4,OP4(d− 1)⊕4

) −→
e⊕
i=1

OP4(d− 1)⊕4
|Ei

⊕
f⊕
j=1

OP3(d)|Fj
⊕ Γ|G(3)

Lemma 2.1. (a) If H ′
Ω,4(d+ 1;a, b, c) is true, then we have

3b+ ψc ≤ h0
(
ΩP3(d+ 1)

)
=

1
2
d(d+ 2)(d+ 3),(4a)

3b+ ψc ≡ h0
(
ΩP3(d+ 1)

)
(mod 4),(4b)

a =
1
4

(
h0

(
ΩP4(d+ 1)

) − 3b− ψc
)

(4c)
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Where ψ ∈ {0, 1, 2}, represents the dimension of the quotient

(b) If d, b, and c are non-negative integers verifying (4a) and (4b), then the a defined by (4c)
satisfies a ≥ 0.

Proof. (a) Suppose H ′
Ω,4(d+ 1;a, b, c) is true then:

In the sequences below, since α is surjective (and injective) and γ (and δ) is surjective, it
follows that β is surjective and thus 3b + ψc ≤ h0(ΩP3(d + 1) thus (4a) is proven. Next due
to α’s bijectivity we have 4a + 3b + ψc = (h0(ΩP4(d + 1)) hence (4c) follows. Also from 4a =(
h0

(
ΩP4(d+ 1)

) − 3b− ψc
)
, a, a non-negative integer then 3b+ ψc ≡ h0

(
ΩP3(d+ 1)

)
(mod 4)

follows.

(b) Since α is injective (and bijective) and φ (and ψ)is injective then π has must be injective
and thus a is bounded below by h0(OP4(d− 1)⊕4 = 1

6d(d+ 1)(d+ 2)(d+ 3) ≥ 0 for all d ≥ 0.

0 0�⏐⏐ �⏐⏐
H◦(P3,ΩP3(d+ 1))

β−−−→
surj

⊕b
j=1 ΩP3|Bj

⊕ Γ′
|C

γ

�⏐⏐ δ

�⏐⏐
H◦(P4,ΩP4(d+ 1)) α−−−→ ⊕a

i=1 ΩP4|Ai
⊕ ⊕b

j=1 ΩP3|Bj
⊕ Γ′

|C
φ

�⏐⏐ ψ

�⏐⏐
H◦(P4,OP4(d− 1)⊕4) π−−−→

inj

⊕a
i=1 ΩP4|Ai�⏐⏐ �⏐⏐

0 0

Lemma 2.2. (a) If H ′
�,4(d− 1; e, f, g) is true, then we have

f + g ≤ h0(OP3(d)) and 4e+ (ε− 1)g ≥ h0(ΩP4(d)) (5a)

f + εg ≡ 0 (mod 4) (5b)

e = 1
4(h0

(
OP4(d− 1)⊕4) − f − εg) (5c)

Where ε ∈ {0, 2, 3}, represents the dimension of the quotient
(b) If d ≥ 1, f and 0 ≤ g ≤ 1 are non-negative integers verifying (5a) and (5b), then the e
defined by (5c) satisfies e ≥ 0.
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Proof. Consider the following sequences

0 0�⏐⏐ �⏐⏐
H0(P3,OP3(d))

ρ−−−→ ⊕f
j=1 OP3(d)|Fj

⊕ OP3(d)|G

α

�⏐⏐ γ

�⏐⏐
H0(P4,OP4(d− 1)⊕4)

β−−−→ ⊕e
i=1 OP4(d− 1)⊕4

|Ei
⊕ ⊕f

j=1 OP3(d)|Fj
⊕ Γ(F )|G

η

�⏐⏐ ε

�⏐⏐
H0(P4,ΩP4(d)) τ−−−→ ⊕e

i=1 OP4(d− 1)⊕4
|Ei

⊕ Γ′(F )|G�⏐⏐ �⏐⏐
0 0

(a) Since β is surjective (and injective), γ and α are also surjective, then ρ is left with no choice
but to be surjective and thus f + g ≤ h0(OP3(d)).
Again since β is injective, η and ε are injective as well, then τ has to be injective and thus
4e+ (ε− 1)g ≥ h0(ΩP4(d)) having OP3(d)|G ⊕ Γ′(F )|G ∼= Γ(F )|G i.e. (5a) holds.
Since β is bijective then we have 4e+ f + εg = h0(

(
OP4(d− 1)⊕4) from which 4 divides 4e and

h0(
(
OP4(d− 1)⊕4) thus 4 divides f + εg i.e. f + εg ≡ 0 (mod 4) hence (5b) follows.

Finally, (5c) follows from bijectivity of β i.e. 4e+ f + εg = h0(
(
OP4(d− 1)⊕4).

(b) From (10a) we have 4e+(ε−1)g ≥ h0(ΩP4(d)) from which we have 4e ≥ h0(ΩP4(d))−g+εg

and thus e ≥ 1
4 (h0(ΩP4(d)) − g + εg) ≥ 0 for all d ≥ 1 since εg > g, hence e ≥ 0.

3. the general hypotheses and the main

theorem
Hypothesis HΩ,4(d+ 1). For all integers b ≥ 0, 0 ≤ c ≤ 1, and a verifying (4a), (4b), and
(4c), the hypothesis H ′

Ω,4(d+ 1;a, b, c) is true.

Hypothesis H�,4(d− 1). For all integers f ≥ 0, 0 ≤ g ≤ 1, and e verifying (5a), (5b), and
(5c), the hypothesis H ′

�,4(d− 1; e, f, g) is true.

Goal. To prove HΩ,4(d+ 1) for d ≥ 2 and H�,4(d− 1) for d ≥ 1.

3.1. Main Theorem.

Theorem 3.1. Suppose HΩ,4(d+ 1) is true. Then for any non-negative integer m, there exists
a set, S = {P1, P2, . . . , Pm} of m points in P4 such that the evaluation map, μ, is of maximal
rank.

μ : H0
(
P4,ΩP4(d+ 1)

) −→
m⊕
i=1

ΩP4|Pi
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Proof. Set r = 1
4h0(ΩP4(d+ 1))�

(a) If h0(ΩP4(d+1)) ≡ 0 (mod 4) the r is the critical number of points needed for the bijectivity
i.e. the map H0

(
P4,ΩP4(d + 1)

) −→ ⊕r
i=1 ΩP4|Pi

is bijective and now consider the following
cases:

(i) if m = r then our map is bijective since we have the same number of points as the critical
number i.e. the map α is bijective and γ an identity map and so μ is bijective see below:

H0(P4,ΩP4(d+ 1))
μ

��

α
��������������������

⊕m
i=1 ΩP4|Pi

⊕n
i=1 ΩP4|Pi

⊕ ⊕r
i=n+1 ΩP4|Pi

γ

��

(ii) if m > r i.e. we have more points than the critical number and our map is injective i.e. since
α is bijective and γ surjective then our map μ has to inject see below:

H0(P4,ΩP4)
∼=
α

��
� �

μ
������������������

⊕r
i=1 ΩP4|Pi

⊕r
i=1 ΩP4|Pi

⊕ ⊕m
i=r+1 ΩP4|Pi

γ

����

(iii) if m < r then we have the less points than the critical number thus our map surjects i.e.
since α is bijective and γ surjective then our map μ is surjective see below:

H0(P4,ΩP4)
μ

�� ��

α

∼= ������������������

⊕m
i=1 ΩP4|Pi

⊕m
i=1 ΩP4|Pi

⊕ ⊕r
i=m+1 ΩP4|Pi

γ

����

(b) If h0(ΩP4(d+ 1)) �≡ 0 (mod 4) then h0(ΩP4(d+ 1)) ≡ η (mod 4) and η has 3 possiblities:

(i) When η = 1 i.e. h0(ΩP4(d + 1)) ≡ 1 (mod 4) we have r general points P1, P2, . . . , Pr in P4

and a point B in P3 so that the map H0(ΩP4(d+ 1)) −→ ⊕r
i=1 ΩP4(d+ 1)|Pi ⊕ΩP3(d+ 1)|B is

bijective.

If m = r + 1 then H0(ΩP4(d+ 1)) −→ ⊕r
i=1 ΩP4(d+ 1)|Pi ⊕ ΩP4(d+ 1)|B is injective

Next, if m > r + 1 since the map H0(ΩP4(d + 1)) −→ ⊕r
i=1 ΩP4(d + 1)|Pi ⊕ ΩP3(d + 1)|S is

bijective then H0(ΩP4(d + 1)) −→ ⊕r
i=1 ΩP4(d + 1)|Pi ⊕ ΩP4(d+ 1)|B ⊕ ⊕m

i=r+2 ΩP4(d+ 1)|Pi

is injective.

Finally, if m < r + 1 then the map H0(ΩP4(d+ 1)) −→ ⊕m
i=1 ΩP4(d+ 1)|Pi is surjective.

(ii) For the cases when η = 2 and η = 3 it means that we need a quotient of dimension
2 or 1 respectively. We have h0(ΩP4(d + 1)) ≡ 2 (mod 4) or h0(ΩP4(d + 1)) ≡ 3 (mod 4)
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meaning we have r general points P1, P2, . . . , Pr in P4 and a point C in P3 so that the map
H0(ΩP4(d+ 1)) −→ ⊕r

i=1 ΩP4(d+ 1)|Pi ⊕ Γ′|C is bijective.

If m = r + 1 then map H0(ΩP4(d+ 1)) −→ ⊕r
i=1 ΩP4(d+ 1)|Pi ⊕ ΩP4(d+ 1)|C is injective

Next, if m > r + 1 since the map H0(ΩP4(d + 1)) −→ ⊕r
i=1 ΩP4(d + 1)|Pi ⊕ Γ′|C is bijective

then the map H0(ΩP4(d+ 1)) −→ ⊕r
i=1 ΩP4(d+ 1)|Pi ⊕ ΩP4(d+ 1)|C ⊕ ⊕m

i=r+2 ΩP4(d+ 1)|Pi

is injective.
Lastly, if m < r + 1 then the map H0(ΩP4(d+ 1)) −→ ⊕m

i=1 ΩP4(d+ 1)|Pi is surjective.

3.2. The Main Methods.

3.2.1. The initial cases.

Lemma 3.2. (a)HΩ,4(d+ 1) is true when d = 2 and
(b)H�,4(d− 1) is true when d = 1

Proof. (a) We prove that HΩ,4(3) is true by proving H ′
Ω,4(3;a, b, c).

The non-negative integers a, b and c satisfy the following:
a ≥ h0(OP4(1)) = 5
4a+ 3b+ ψc = 40 = h0(ΩP4(3))
3b+ ψc ≤ 20 = h0(ΩP3(3))
c = 0 or 1 and ψ = 1 or 2 and from these we have the following 6 possibilities for (a, b, c):

(i) (10,0, 0)
(ii) (9, 1, 1)
(iii) (8, 2, 1)
(iv) (7, 4, 0)
(v) (6, 5, 1)
(vi) (5, 6, 1)

(i) The hypothesis H ′
Ω,4(3; 10, 0, 0) means we have 10 general points, A1, · · · , A10 in P4.

We partition S = {A1, · · · , A10} ⊆ P4 into S = S1∪S2∪{Q} so that |S1| = 3 with S1 ⊂ P4 \P3

and S2, Q are in P3

1
4h

0(ΩP4(4)) = 10 =| S |

1
3h0(ΩP3(4))� = 20

3 � = 6

So of the 10 points, we specialize 7 points, A4, A5, A6, A7, A8, A9, A10 to P3, the 7th point A10

is for a quotient (the fractional part) thus the sets are:

S1 = {A1, A2, A3, }
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S2 = {A4, A5, A6, A7, A8, A9}

{Q} = {A10}

We have the following sequence for the quotient:

0

��

0

��

dim3 ΩP3(2) �� ��
� �

��

D′
|A10� �

��

dim 1

dim4 OP4(1)⊕4
|A10

�� ��

����

D|A10

����

dim 2

dim1 OP3(2)|A10

��

OP3(2)|A10

��

dim 1

0 0

We thus construct a diagram:
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dim 1 (depends only on S1) dim 8 dim10

0 �� H0(TS1 ⊗ ΩP4(2))

����������������

f

��

�� H0(TS1,P4(1)⊕4)

��

��

β

surj
�������������������
H0(OP3(2))

H0(ΩP4(2)|A10)

����������������
V dim 7

	�

��

∼=α

��

�� 0

0 �� H0(D′
|A10

) �� H0(OP3(2)|S2
⊕D|A10

) �� H0(OP3(2)|S2∪{A10}) �� 0
dim 1 (depends only on S2) dim 8 dim 7

From it we see that the map β is surjective by Proposition 3.13 and the map α is bijective since
V does not depend on S2 ∪ P10 it only depends on S1.

What is H0(TS1 ⊗ ΩP4(2))???

The set S1 = {A1, A2, A3} spans a P2 = {L1 = L2 = 0}

−−−→ R(−3)8
⊕
R(−2) −−−→ R(−2)3

⊕
R(−1)2 −−−→ I|S1 −−−→ 0

Thus a0 = h0(TS1 ⊗ ΩP4(2)) = 1, and b0 = h1(TS1 ⊗ ΩP4(2)) = 3 and so H0(TS1 ⊗ ΩP4(2)) is
the Koszul relation between L1 and L2.

To show that f is bijective, we calculate.

f : sections in H0(ΩP4(2)) = Λ2W vanishing along S1 = {A1, A2, A3}

Where W = H0(OP4(1)), linear forms.

Consider the exact sequence

0 −−−→ ΩP4(2) −−−→ W ⊗ OP4(1) −−−→ OP4(2) −−−→ 0

Taking global sections yields:

0 −−−→ H0(ΩP4(2)) −−−→ W ⊗H0(OP4(1)) −−−→ H0(OP4(2)) −−−→ 0

‖ ‖ ‖
Λ2W W ⊗W S2W

Sym2W

H0(ΩP4(2))
rest to fiber−−−−−−−−→ H0(ΩP4(2)|A10

)
rk 1 quot−−−−−−→ H0(D′

A10
)
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0 −−−→ ΩP4(2)|A10
−−−→ W ⊗ OP4(1)|A10

(a0:a1:a2:a3:a4)−−−−−−−−−−−→
evaluation at A10

OP4(2) −−−→ 0

‖ ‖
H0(TA10(1)) W

‖
(IA10)1

linear forms atA10

L1 ∧ L2 ∈ Λ2W �� L1 ⊗ L2(A10) − L2 ⊗ L1(A10)
Where L1, L2 ∈W and L1(A10), L2(A10) are forms in P4

If L1(A10) �= 0, L2(A10) = 0 and L1 ∧ L2 −→ L1(Q) · L2 ∈ ΩP4|Q, L1 ∧ L2

vanishes at P where L1(P ) = L2(P ) = 0 so f(L1∧L2) spans the 1 dimensional subspace of linear
forms vanishing at A10 composed of linear forms that vanish at S ∪A10 = {A1, A2, A3, A10} so
choose A1, A2, A3 general so that this subspace � ker(ΩP4|A10

−→ D′)

(ii) The hypothesis H ′
Ω,4(3; 9, 1, 1) says that we have 9 general points, A1, · · · , A9 in P4 and 2

points B,C in P3.
Consider the sequence;

0 −−−→ OP4(1)⊕4 −−−→ ΩP4(3) −−−→ ΩP3(3) −−−→ 0

On taking global sections for the sequence we have
dim20 dim 40 dim 20

0 −−−→ H0(P4,OP4(1)⊕4) −−−→ H0(P4,ΩP4(3)) −−−→ H0(P3,ΩP3(3)) −−−→ 0
Our fibres 9, 1 and 1 are of dimensions 4, 3 and 1 respectively giving us a total of 40 the
h0(P4,ΩP4(3)).

We invoke Lemma 3.4 with d = 2, (a, b, c) = (9, 1, 1) and (e, f, g) = (3, 5, 1)
For the hypothesis H ′

�,4(1; 3, 5, 1) invoke Lemma 1.12 with d = 2, (s1, s2, θ) = (3, 5, 1), n = 4
(iii) The hypothesis H ′

Ω,4(3; 8, 2, 1) says that we have 8 general points, A1, . . . , A8 in P4 and
are 3 general points, B1, B2, C in P3. We invoke Lemma 3.4 with d = 2, (a, b, c) = (8, 2, 1) and
(e, f, g) = (4, 4, 0)
We shall prove the hypothesis H ′

�,4(1; 4, 4, 0) in Lemma 3.3 (ii) below.

(iv) The hypothesis H ′
Ω,4(3; 7, 4, 0) means that we have 7 general points, A1, . . . , A7 in P4 and

4 general points, B1, B2, B3, B4in P3. We invoke Lemma 3.4 with d = 2, (a, b, c) = (7, 4, 0) and
(e, f, g) = (4, 2, 1) and the hypothesis H ′

�,4(1; 4, 1, 1) is proved in 3.3 (iv) below.

(v) In this case i.e. the hypothesis H ′
Ω,4(3; 6, 5, 1), we have 6 general points, A1, · · · , A6 in P4

and 6 general points, B1, · · · , B5, C in P3 with a quotient at C. We invoke Lemma 3.4 with
d = 2, (a, b, c) = (6, 5, 1) and (e, f, g) = (4, 1, 1)
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(vi) For the hypothesis H ′
Ω,4(3; 5, 6, 1) we have 5 general points, say A1, · · · , A5 ∈ P4 and 7

general points, B1, · · · , B6, C ∈ P3 with a quotient at C. We need to prove that the map below
is bijective

H0(P4,ΩP4(3)) −→
5⊕
i=1

ΩP4(3)|Ai
⊕

6⊕
j=1

ΩP3(3)|Bj
⊕ Γ′

|C

We invoke Lemma 3.4 with d = 2, (a, b, c) = (5, 6, 1) and (e, f, g) = (5, 0, 0). The hypothesis
H ′
�,4(1; 5, 0, 0) is proved below in the next Lemma.

From the above proofs several cases for the hypothesis H ′
�,4(1;u, v,w) for specific u, v,w have

arisen and they form part of the initial cases for (b). The hypotheses H ′
�,4(1;u, v,w) are for

specific u, v,w with d = 2. It happens that certain of these hypotheses are false when a quotient
depending badly on other points but we have:

Lemma 3.3. The hypotheses H ′
�,4(1; 3, 5, 1), H ′

�,4(1; 4, 4, 0), H ′
�,4(1; 4, 2, 1), H ′

�,4(1; 4, 1, 1)
and H ′

�,4(1; 5, 0, 0) are true.

Proof. Lemma 4 (b)
(i) (3, 5, 1) We have A1, A2, A3 general points in P4 and A4, · · · , A8, A9 points in P3 we choose
a hyperplane H ⊆ P4 disjoint from A4, · · · , A7 in P3 with H ∼= P3 since the points are general
and the we construct an exact sequence:

4 20 16

0 −−−→ O⊕4
P4 −−−→ OP4(1)⊕4 −−−→ OH(1)⊕4 −−−→ 0

(0, 4, 0) (3, 5, 1) (3, 1, 1)

where the (0, 4, 0) represents A4, · · · , A7 ∈ P3

(3, 5, 1) represents A1, A2, A3 ∈ P4, A4, · · · , A8, A9 points in P3

(3, 1, 1) represents A1, A2, A3 ∈ P4, A8 and A9 points in H

Thus taking global sections for the sequences above and evaluating at the corresponding points
as listed above we have the following exact sequences:

0 0�⏐⏐ �⏐⏐
H0(OH(1))⊕4 ρ−−−→ ⊕3

i=1 OH(1)⊕4
|Ai

⊕ OP3(2)|A8
⊕ Γ′

|A9�⏐⏐ �⏐⏐
H0(OP4(1)⊕4 σ−−−→ ⊕3

i=1 OP4(1)⊕4
|Ai

⊕ ⊕8
i=4 OP3(2)|Ai

⊕ Γ′
|A9�⏐⏐ �⏐⏐

H0(OP4(1)⊕4) τ−−−→ ⊕7
i=1 OP3(1)|Ai�⏐⏐ �⏐⏐

0 0.
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The quotient Γ′|A9 depends in principle on A4, · · · , A8 but because we can move the 4 four points
A4, · · · , A8 without the others changing ρ, we can assume that it is a general quotient by lemme
5 in [1] dual and thus the map ρ is an isomorphism i.e. 3 general points, a line bundle and a
dim 3 quotient thus we have that the map τ implies σ giving us the hypothesis H ′

�,4(0; 0, 4, 0)
implies H ′

�,4(1; 3, 5, 1) and we now prove H ′
�,4(0; 0, 4, 0) as follows:

We have A4, · · · , A7 ∈ P3 and so the hypothesis H ′
�,4(0; 0, 4, 0) we show that the mapping

H0(P4,O⊕4
P4) −→

⊕7
i=4 OP3(1)|Pi

is an isomorphism. Consider the exact sequence

0 −−−→ ΩP4(1) −−−→ O⊕4
P4 −−−→ OP3(1) −−−→ 0

now taking global sections and evaluating at the corresponding points we get

dim0 dim 4 dim 4

0 −−−→ H0(ΩP4(1)) −−−→ H0(O⊕4
P4)

π−−−→ H0(OP3(1)) −−−→ 0⏐⏐	φ ρ

⏐⏐	⊕7
i=4 OP3(1)|Ai

⊕7
i=4 OP3(1)|Ai

Thus π is bijective ρ is bijective also i.e. line bundles at four points and we have an identity
map and φ is a composition map of ρ and the identity map thus φ must be bijective.
(ii) (4, 4, 0)
We have A1, A2, A3, A4 ∈ P4 and A5, A6, A7, A8 ∈ P3 we want to show that H ′

�,4(1; 4, 4, 0) is
true.

We invoke the Plane Divisorial Method for P4 i.e. Lemma 3.8 with d = 2, e = f = 4, e′ = g = 0
and we have the hypothesis H ′

�,4(0; 0, 4, 0) to prove but we proved immediately above.
(iii) (4, 1, 1)
Here we have 4 general points A1, A2, A3, A4 ∈ P4, and 2 general points, A5, A6 ∈ P3 and by
Lemma 2.12 it is true.
(iv)(4,2,1)
We have general points, S1 = {A1, A2, A3, A4} ⊂ P4, general points, S2 = {A5, A6} and A7 in
P3 and by Lemma 2.12 it is true. (iv)For the hypothesis H ′

�,4(1; 5, 0, 0) we invoke the Plane
Divisorial Method for P4 i.e. Lemma 3.8 and we get the hypothesis H ′

�,4(0; 1, 0, 0) and this
is true since the map H0(O⊕4

P4) −→ O⊕4
P4 |P is the map of constants evaluated at a point and is

bijective.

3.2.2. The Inductive steps. The inductive steps that we proceed to prove are;

a. Vectorial Method 1
b. Vectorial Method 2
c. Plane Divisorial Method
d. Hypercritical Method

Lemma 3.4. Vectorial Method 1
Suppose d, a, b, c satisfy (4a), (4b), and (4c). Write h0(ΩP3(d + 1)) − 3b − ψc = 3f + θg with
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f, g, θ non-negative integers, 0 ≤ g ≤ 1 and 0 ≤ θ ≤ 2. Set e = a− f − g. If e is a non-negative
integer and f + g ≤ h0(OP3(d)) then H ′

�,4(d− 1; e, f, g) implies H ′
Ω,4(d+ 1;a, b, c).

Proof. Consider the exact sequence

0 −−−→ OP4(d− 1)⊕4 −−−→ ΩP4(d+ 1) −−−→ ΩP3(d+ 1) −−−→ 0

Taking global sections we have the following sequence with dimensions shown ;
d(d+1)(d+2)(d+3)

6
d(d+2)(d+3)(d+4)

6
d(d+2)(d+3)

2

0 −−−→ H0(P4,OP4(d− 1)⊕4) −−−→ H0(P4,ΩP4(d+ 1)) −−−→ H0(P3,ΩP3(d+ 1)) −−−→ 0

Let B and C be general sets of b and c points respectively in P3. We specialize A to E ∪ F ∪G
with E a set of e general points in P4 and F,G sets of f, g general points respectively in P3.
According to our work on P3[4], the map

H0(ΩP3(d+ 1)) λ−−−→ H0(ΩP3(d+ 1)|B∪F ) ⊕ Γ′|C
is surjective and

H0(ΩP3(d+ 1)) λ−−−→ H0(ΩP3(d+ 1)|B∪F∪C

is injective. So by Lemma 3.12 there exists a quotient OP4(d− 1)⊕4 surj−−−→ Γ|G(B,F ) of di-
mension θ with the property that if,

H0(OP4(d− 1)⊕4) −−−→ H0(OP4(d− 1)⊕4|E) ⊕H0(OP3(d)|F ) ⊕ Γ|G(B,F )

is bijective then

H0(ΩP4(d+ 1)) −−−→ H0(ΩP4(d+ 1)|E∪F∪G=A ⊕H0(ΩP3(d+ 1)|B) ⊕ Γ′|C
is bijective. But this is exactly H ′

�,4(d− 1; e, f, g) implies H ′
Ω,4(d+ 1;a, b, c).

The hypothesis H ′
�,n(d− 1; e, f, g) with dependent quotient Γ|G(B,F ) can be weakened to the

hypothesis H ′′
�,n(d− 1; e, f, g) with general quotient Γ|G in some cases.

Lemma 3.5. Under the same hypotheses as the immediately above Lemma, if in addition g = 0
(θ = 0) or b ≥ 2, then H ′′

�,n(d− 1; e, f, g) implies H ′
Ω,n(d+ 1;a, b, c).

Proof. If g = 0 then Γ|G(B,F ) = 0 is independent of B,F .
If b ≥ 2 apply [1] lemme 5 (dualized) to the map Ψ(F ) −→ ΓG(B,F ) with
Ψ(F ) = ker(H0(OP4(d−1)⊕4) −→ H0(OP4(d−1)⊕4|E)⊕H0(OP3(d)|F )) The relevant condition
is b ≥ dimGr(1,ΩP3|G) = 2 or b ≥ dimGr(2,ΩP3|G) = 2

Lemma 3.6. In the same circumstances as Lemma 3.4 we have f + g ≤ h0(OP3) and
e = a− f − g ≥ 0.

Proof. (i) We show f + g ≤ h0(OP3(d)).
We have h0(ΩP3(d+ 1)) − 3b− ψc = 3f + θg by the statement of the Lemma
This implies that 3f + θg ≤ h0(ΩP3(d+ 1)) i.e.

f + 1
3θg ≤ 1

3 (h0(ΩP3(d+ 1))) i.e.
f + 1

3θg ≤ 1
6d(d+ 2)(d+ 3) i.e

< 1
6d(d+ 2)(d+ 3) + 1

6(d+ 2)(d+ 3) i.e
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= 1
6(d+ 1)(d+ 2)(d+ 3) = h0(OP3(d)) i.e.

Thus we have f + 1
3θg < h0(OP3(d)) and since 0 ≤ θ ≤ 2 setting θ = 3 does no harm as long as

we have d ≥ 0 and thus f + g ≤ h0(OP3(d)) as required.

(ii) Next is e = a− f − g ≥ 0?
We have just proved that f + g ≤ h0(OP3(d)) and from (4c) in Lemma 2.1 we know that
a = 1

4(h0(ΩP4(d+ 1)) − 3b− ψc)

Now we have, e = a− f − g

= 1
4(h0(ΩP4(d+ 1)) − 3b− ψc) − f − g

= 1
4(h0(ΩP4(d+ 1)) − h0(ΩP3(d+ 1))) since 3b+ ψc ≤ h0(ΩP3(d+ 1))

= 1
4(h0(OP4(d− 1)⊕4)) − f − g

≥ 1
4(h0(OP4(d− 1)⊕4)) − 1

4h
0(OP3(d))

= h0(OP4(d− 1)) − 1
4h

0(OP3(d)) ≥ 0 for all d ≥ 1
Hence e ≥ 0 for d ≥ 2 as required.

Lemma 3.7. Vectorial Method 2
Suppose d, e, f, g satisfy (5a), (5b), and (5c). Write h0(OP3(d)) − f − g = b, where b is a non-
negative integer. Set a = e− b, c = g and ψ = ε− 1. If a ≥ 0 and 3b + ψc ≤ h0(ΩP3(d)), then
H ′

Ω,4(d;a, b, c) implies H ′
�,4(d− 1; e, f, g).

Proof. Consider the sequence;

0 −−−→ ΩP4(d) −−−→ OP4(d− 1)⊕4 −−−→ OP3(d) −−−→ 0.

Taking global sections we have;

dim (d−1)(d+1)(d+2)(d+3)
6 dim d(d+1)(d+2)(d+3)

6 dim (d+1)(d+2)(d+3)
6

0 −−−→ H0(P4,ΩP4(d)) −−−→ H0(P4,OP4(d− 1)⊕4) −−−→ H0(P3,OP3(d)) −−−→ 0

with the points E1, · · · , Ee ∈ P4, F1, · · · , Ff , G ∈ P3, we have f + g ≤ h0(OP3(d)).

Let F,G be general sets of f, g points respectively in P3, and specialize E to A ∪ B with A a
general set of a general points in P4 and B a general set of b points in P3, let C = G. The
map H0(OP3(d)) −→ H0(OP3(d)|F∪G∪B)is bijective, i.e. just specializing the points needed for
bijectivity which works since OP3(d) is a line bundle. We then construct the following diagram
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of exact sequences:

0 0�⏐⏐ �⏐⏐
H0(P3,OP3(d))

ρ−−−→ ⊕f
i=1 OP3(d)|Fi

⊕ OP3(d)|G ⊕ ⊕b
j=1 OP3(d)|Bj�⏐⏐ �⏐⏐

H0(P4,OP4(d− 1)⊕4) σ−−−→ ⊕e
i=1 OP4(d− 1)⊕4

|Ei
⊕ ⊕f

i=1 ΩP3(d)|Fi
⊕ Γ|G(F )�⏐⏐ �⏐⏐

H0(P4,ΩP4(d)) τ−−−→ ⊕a
i=1 ΩP4(d)|Ai

⊕ ⊕b
i=1 ΩP3(d)|Bi

⊕ Γ′|C(F )�⏐⏐ �⏐⏐
0 0

The map ρ is bijective. The map τ is bijective by H ′
Ω,4(d;a, b, c) if Γ′|C(F ) is general, which

we may assume for F general (note that τ does not depend on F ). So σ is also bijective, and
H ′
�,4(d − 1; e, f, g) holds. The hypothesis H ′′

�,4(d − 1; e, f, g) also holds because it is the same
except with Γ|G and Γ′|C not depending on F .
Note that:
For the hypothesis H ′

Ω,4(d;a, b, c) to be true, given e, f and g satisfy the conditions in Lemma
2.2, then a, b and c must satisfy:
(i) a = e− b ≥ 0 and
(ii) 3b+ ψc ≤ h0(ΩP3(d))

(i) We investigate the condition a ≥ 0.
From (5c) in Lemma 2.2 we know e = 1

4(h0
(
OP4(d− 1)⊕4) − f − εg) and from the definition of

this Lemma here we have b = h0(OP3(d)) − f − g.
We have,
a = e− b = 1

4(h0
(
OP4(d− 1)⊕4) − f − εg) − (h0(OP3(d)) − f − g)
= h0

(
OP4(d− 1)) − h0(OP3(d) + 3

4f + g(1 − ε
4). So we have

a ≥ 1
4(h0

(
OP4(d− 1)⊕4)) − h0(OP3(d))

= h0
(
OP4(d− 1)) − h0(OP3(d)) ≥ 0 for all d ≥ 4

=
(d+3

3

)
(d− 4)/4 Thus a ≥ 0 as required for d ≥ 4.

(ii) Now for 3b + ψc ≤ h0(ΩP3(d)) we have h0(OP3(d)) − f − g = b from which we have 3
possibilities since 0 ≤ ψ ≤ 2 and c = g.
(a) 3b = 3h0(OP3(d)) − 3f − 3g
(b) 3b+ c = 3h0(OP3(d)) − 3f − 2g
(c) 3b+ 2c = 3h0(OP3(d)) − 3f − g

Also since h0(OP3(d)) = 1
6(d+ 3)(d+ 2)(d+ 1) and h0(ΩP3(d)) = 1

2(d+ 2)(d+ 1)(d− 1),
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We pose the question, when is 3b+ ψc ≤ h0(ΩP3(d))?

We answer, when 3h0(OP3(d)) − h0(ΩP3(d)) = 2(d + 1)(d + 2) is less than 3f + ηg where
1 ≤ η ≤ 3 for 0 ≤ ψ ≤ 2 i.e.
Hence 3b+ ψc ≤ h0(ΩP3(d)) when 3f + ηg ≥ 2(d+ 1)(d+ 2) for 1 ≤ η ≤ 3 for 0 ≤ ψ ≤ 2.

We have e general points, E1, · · · , Ee in P4, and F1, · · · , Ff , G in P3 and the number of fibers
in P3 are few enough in comparison to d i.e. we use this method when the Vectorial Method 2
fails i.e. when none of the conditions relating d with f and g in the last Lemma fail specifically
when we have:
(a) f + g < 2

3(d+ 1)(d+ 2) for ψ = 0
(b) f + 2

3g <
2
3(d+ 1)(d+ 2) for ψ = 1

(c) f + 1
3g <

2
3(d+ 1)(d+ 2) for ψ = 2

Lemma 3.8. Plane Divisorial Method
Suppose d, e, f, g are non-negative integers satisfying the conditions of Lemma 2.2. Set e′ =
e− h0(OP3(d− 1)) = e− 1

6(d+ 2)(d+ 1)d. If we have e′ ≥ 0, and f + g ≤ h0(OP3(d− 1)), then
H ′
�,4(d− 2; e′, f, g) implies H ′

�,4(d− 1; e, f, g) and similarly for H ′′
�,4(d− 1; e, f, g).

Proof. We therefore choose a hyperplane H ⊆ P4 disjoint from {F1, · · · , Ff , G} with H ∼= P3

and send y = dim OH(d− 1) points from P4 to H and we have exact sequence:

0 −−−→ OP4(d− 2)⊕4 −−−→ OP4(d− 1)⊕4 −−−→ OH(d− 1)⊕4 −−−→ 0

(e′, f, g) (e, f, g) (h0(OP3(d− 1)),0, 0)

Taking global sections and evaluating at the corresponding points gives the sequence

0 0�⏐⏐
�⏐⏐

H0(H,OH (d− 1)⊕4) α−−−→∼=
⊕y

i=1 OH(d− 1)⊕4
|Ei�⏐⏐ �⏐⏐

H0(P4,OP4(d− 1)⊕4)
β−−−→ ⊕e

i=1 OP4(d− 1)⊕4
|Ei

⊕ ⊕f
i=1 OP3(d)|Fi

⊕ Γ|G�⏐⏐ �⏐⏐
H0(P4,OP4(d− 2)⊕4)

γ−−−→ ⊕e′
i=1 OP4(d− 2)⊕4

|Ei
⊕ ⊕f

i=1 OP3(d− 1)|Fi
⊕ Γ|G�⏐⏐ �⏐⏐

0 0
If γ is bijective then β is bijective giving us H ′

�,4(d− 2; e′, f, g) implies H ′
�,4(d− 1; e, f, g).

Two conditions to be satisfied by e′, f and g are:
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(i) e′ ≥ 0 and
(ii) f + g ≤ h0(OP3(d− 1))

(i) We have (i) e′ = e− y

= 1
4(h0(OP4(d− 1)⊕4) − f − εg) − h0(OP3(d− 1))

= 1
4(h0(OP4(d− 1)⊕4) − f − g + g − εg) − h0(OP3(d− 1))

≥ 1
4(h0(OP4(d− 1)⊕4) − h0(OP3(d)) + g(1 − ε)) − h0(OP3(d− 1))

≥ 1
4(h0(OP4(d− 1)⊕4) − h0(OP3(d)) − 4h0(OP3(d− 1)) + g(1 − ε))

= 1
4( (d+2)(d+1)2(d−3)

6 + g(1 − ε)) since g(1 − ε) ∈ {0,−1,−2} for d ≥ 4 thus
e′ ≥ 0 for d ≥ 4

(ii) In the cases where the Vectorial Method 2 does not work we have f+g < [23 (d+1)(d+2)+ 2
3 ]

= [46(d+ 1)(d+ 2) + 2
3 ] ≤ 1

6d(d+ 1)(d+ 2) for d ≥ 4.
For d ≥ 2 follows the initial cases and hence we have f + g ≤ h0(OP3(d− 1)).

Theorem 3.9. (a) For d ≥ 2,H�,4(d− 1) implies HΩ,4(d+ 1)
(b) For d ≥ 4,HΩ,4(d) and H�,4(d− 2) imply H�,4(d− 1)

Proof. (a) For any a, b, c satisfying the conditions of Lemma 2.1 we define e, f, g as in Lemma
3.4. By Lemma 3.6 they satisfy the conditions of Lemma 2.2. So since H�,4(d− 1) holds then,
the hypothesis H ′

�,4(d − 1; e, f, g) holds. So by Lemma 3.4 the hypothesis H ′
Ω,4(d + 1;a, b, c)

holds this proves HΩ,4(d+ 1)

(b) For any e, f, g verifying the conditions of Lemma 2.2 either we have HΩ,4(d;a, b, c) implying
H ′
�,4(d− 1; e, f, g) or H ′

�,4(d− 2; e′, f, g) implying H ′
�,4(d− 1; e, f, g).

In the first case, define a, b, c as in Lemma 4.9. If the numerical conditions hold then we have
a ≥ 0 and 3b+ ψc ≤ h0(ΩP3(d)) and so H ′

Ω,4(d;a, b, c) holds and so HΩ,4(d) holds.
If the numerical conditions do not hold the we have the second case and we define e′ = e −
h0(OP3(d − 1)) as in Lemma 3.8. We thus have e′ ≥ 0and f + g ≤ h0(OP3(d − 1)) and so
H ′
�,4(d− 2; e′, f, g) holds. This proves H�,4(d− 1).

This proves the goals we set ourselves to prove in the Subsection 4.3.

3.2.3. Hypercritical mèthode d’Horace.

Lemma 3.10. Consider H ′
�,4(d − 1; s1, s2, 0) where d ≥ 1, s1, and s2 are non-negative inte-

gers and suppose that the map H0(ΩP4(d)) −→ H0(ΩP4(d)|S1) is injective and that the map
H0(OP4(d − 1)⊕4) −→ H0(OP4(d − 1)⊕4|S1) is surjective with a general S1 ⊆ Pn then the
hypothesis H ′

�,4(d− 1; s1, s2, 0) is true.

Proof. Follows from Lemma 1.11

3.3. Other Lemmas and Corollaries.

Lemma 3.11. The following hypotheses are true.
a. H ′

�,4(2; 13, 8, 0)
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b. H ′
�,4(2; 12, 12, 0)

c. H ′
�,4(2; 12, 10, 1)

d. H ′
�,4(2; 12, 9, 1)

Proof. For (a) and (b) we use Lemma 4.9. Set s1 = 13 and s2 = 8 for (a) and s1 = 12 and s2 = 12
for (b) and injectivity of the map H0(ΩP4(3)) −→ H0(ΩP4(3)|S1) will follow from Lemma 4.4
i.e. for 10 general points in P4 we have bijectivity and in this two cases we have 12 and 13 points
thus it follows which in turn implies surjectivity of the map H0(O⊕4

P4(2)) −→ H0(O⊕4
P4(2)|S1)

Now for (c) we proceed as follows:
For the hypothesis H ′

�,4(2; 12, 10, 1) we have 12 general points, P1 · · · , P12 in P4, 10 general
points, Q1, · · · , Q10 in P3 and a quotient, Γ(Q1 · · · , Q10) at C in P3.
Let < F1, F2, F3 > be the space of quadratic forms on P4 vanishing at P1 · · · , P12. Identify
OP4(2)⊕4 = OP4(2) ⊗ V with V = H0(OP3(1)). Then we need to show that

< F1, F2, F3 > ⊗V −−−→ ⊕10
i=1 OP3(3)|Qi ⊕ Γ|C(Q1 · · · , Q10)

is bijective for some P1 · · · , P12, Q1, · · · , Q10, C.
Now the 2 dimensional quotient

OP4(2) ⊗ V �� �� Γ|C(Q1 · · · , Q10)

has a kernel < L1(Q1 · · · , Q10), L2(Q1 · · · , Q10) >⊆ V . The zero locus L1 = L2 = 0 is a line
D ⊆ P3. Since Q1 · · · , Q10 are in linear general position. So there exists two of the Qi say
Q9, Q10 such that D, Q9, Q10 span P3.
We claim that we can choose P1 · · · , P12 and a basis F1, F2, F3 of H0(TP1··· ,P12(2)) such that
F1, F2 vanish at C, Q9, Q10 while F3 does not vanish at C, Q9, Q10. In that case we have a
commutative diagram with exact rows

0 �� < F1, F2 > ⊗V

��

�� < F1, F2, F3 > ⊗V

��

�� F3 ⊗ V

��

�� 0

0 ��
⊕8

i=1 OP3(3)|Qi
��
⊕10

i=1 OP3(3)|Qi ⊕ Γ|C ��
⊕10

i=9 OP3(3)|Qi ⊕ Γ|C �� 0

in which the first and third vertical arrows are isomorphisms. The space < F1, F2 > ⊗V
injects onto an 8 dimensional subspace < F1, F2 > ⊗V ⊆ H0(OP3(3)) because the points
H0(ΩP4(3)) −→ ΩP4(3)|P1,··· ,P12 is injective by Lemma 4.4. The first vertical arrow is then
bijective for general Q1 · · · , Q8 as is the middle row and we will be done.
To prove our claim, pick P1 · · · , P10 so that vanishing at P1 · · · , P10, C,Q9, Q10 impose impose
13 independent conditions on H0(OP4(2)). Let < F1, F2 > be the space of forms vanishing at
those points. Let J = H0(TP1··· ,P10(2)) it is 5 dimensional and contains < F1, F2 >.
Since vanishing at C,Q9, Q10 impose non-trivial conditions on J , for general P11, P12 ∈ P4

vanishing at P11, P12, C impose independent conditions on J , as do vanishing at P11, P12, Q9

and P11, P12, Q10. So H0(TP1··· ,P12(2)) =< F1, F2, F3 > for an F3 not vanishing at any of
C,Q9, Q10.
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Lemma 3.12. (A specific case of [1] Lemme 1) Suppose we are given a surjective morphism of
vector spaces,

λ : H◦(P3,ΩP3(d+ 1)) � L

and suppose there exists a point Z ′ in P3 such that
H◦(P3,ΩP3(d+ 1)) ↪→ L⊕ ΩP3(d+ 1)|Z ′ and

Suppose also that H1(P4,OP4(d− 1)⊕4) = 0. Then there exists a quotient
OP4(d− 1)⊕4

|Z ′ −→ D(λ) with kernel contained in ΩP3(d)|Z ′ of dimension
dim(D(λ)) = rank(ΩP4(d + 1)) − dim(kerλ) having the following property.

Let μ : H◦(P4,ΩP4(d+1)) −→M be a morphism of vector spaces then there exists Z in P3 such
that if
H◦(P4,OP4(d− 1)⊕4) −→M ⊕D(λ) is of maximal rank then
H◦(P4,ΩP4(d+ 1)) −→M ⊕ L⊕ ΩP4(d+ 1)|Z is also of maximal rank.

Proposition 3.13. For any d ≥ 1 and any subspace V ⊆ H0(Pn,OPn(d)) there exists M1, . . . ,Mm ∈
Pn such that V −→ ⊕m

i=1 OPn(d)|Mihas maximal rank property.

Proof. Consider the following maps, α, β and γ inter-vectorial spaces

H0
(
Pn,OPn(d)

)
β

�� ��

α
���������������

V

γ

��⊕m
i=1 OPn(d)|Mi

If h0(Pn,OPn(d)) = m then α is bijective since it’s an evaluation of line bundles at m points; β
is surjective hence γ is injective.
If h0(Pn,OPn(d)) < m then α is injective; β is surjective and hence γ is injective.
If h0(Pn,OPn(d)) > m then α is surjective; β is surjective but then γ has 3 possiblities:
(a) if m < dimV then γ is surjective
(b) if m = dimV then γ is bijective
(c) finally if m > dimV then γ is injective
Hence γ is either injective, surjective or both (bijective) i.e. it is of maximal rank for as long as
V is independent of the M1, . . . ,Mm ∈ Pn
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