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SUM M ARY OF CONTENTS

The present thesis is concerned with the development of mathematical models 
for structured population species. The structuring or classification may be due to 
age, stage of development or a combination of both in a more general perspec­
tive. The class of matrix population models are examples of such models and have 
been the subject of theoretical and practical study for many years. In this work 
attention is focussed on vector population species which are carriers of disease 
agents for animals. This has therefore necessitated the investigation of a class of 
models which deal with the interaction of vector population species and the host 
population. In particular the study combines both discrete and continuous popu­
lation models in order to achieve its goal. Multi-dimensional coupled differential 
equations have proved handy in this respect.

Chapter I gives a general introduction to the work. In section 1.1 an intro­
ductory description of mathematical population models is given. In section 1.2 an 
overview of preliminary concepts and notations are introduced. In this section a 
brief description of matrix population models and continuous time models is also 
given. A brief review of relevant literature is presented in section 1.3. In this sec­
tion, literature review specific to a stage structured population species, the brown 
ear tick is also given. Sections 1.4 and 1.5 deal with the statement of the problem 
together with the specific objectives of the study. In section 1.6 the importance of 
this study is briefly mentioned. In the last section of the chapter the methodology 
of how data was acquired and analysed is given. This section is important because 
the study involved a practical application to validate the models. The data was 
for the three host brown ear tick the causal vector for East Coast fever.

Chapter II reviews basic models for age structured populations. After a brief 
introduction we present the Lotka’s Integral equation in section 2.2 where age 
and time are treated as continuous variables. The solution to this equation is 
reviewed in section 2.3 first by elementary mathematical methods in sub-section
2.3.1 and by Laplace transforms in sub-section 2.3.2. In particular it is shown 
that the solution has a real root which determines the direction of increase of a 
population. The asymptotic behaviour of the solution is given in sub-section 2.3.3.
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In section 2.4 we review the partial differential equation describing the evolution 
of the population density n(x,t) which is known as the McKendrick-von Foester 
equation. This model is a hyperbolic initial boundary value problem. Section 2.5 
deals with the discretized age and time matrix model which requires a thorough 
understanding of the life table survivorship function, presented in sub- section 
2.5.1. The actual formulation of the matrix model is given in sub- section 2.5.2. It 
is in this section where we demonstrate the connection of the matrix model and the 
McKendrick von Foerster model. One of the core problem in application of matrix 
population models is in the estimation of the matrix inputs. The derivation of the 
inputs is discussed in section 2.6 for two types of populations namely the birth 
flow populations and birth pulse populations. These are presented in sub-section
2.6.1 and 2.6.2 respectively.

Chapter III deals with the time homogeneous matrix model and its properties. 
After an introduction in section 3.1 the model is presented in section 3.2 for an age 
structured population. The chapter brings in the idea of the complete population 
projection matrix which includes both pre- and post- reproductive individuals. It 
is shown that after a long enough time it is the pre-reproductive part of the popula­
tion which determines the projection matrix of interest. Section 3.3 outlines a list 
of properties of the population projection matrix. The theory of directed graphs 
was used quite extensively to achieve this. The Perron-Frobenius theorem for both 
primitive and irreducible matrices is generally stated since it is important in the 
study of the limiting properties of the population projections. Sub- section 3.3.1 
thus talks about the stable population theory showing the asymptotic behaviour 
of the population structures. It is shown that the limiting population structure is 
independent of the initial population structure. This property is egordic in nature. 
Upto section 3.3 the population is structured according to age but the aim of the 
study is to generalise the classification. Thus in section 3.4 we present a generalized 
matrix model where classification is according to both stage of development and 
according to age within the stage. This model is more general and can be used to 
study the dynamics of many population species such as insects, arthropods, plants 
and many more. Estimation of the matrix inputs for such a model is discussed in

x



section 3.5. In sub-section 3.5.1 we consider estimation from transition frequency 
data while in sub-section 3.5.2 we consider estimation from stage duration data. 
Finally in sub-section 3.5.3 we consider estimation from experimental cumulative 
distributions. The connection between the transition probabilities in the classi­
cal Leslie model and those from experimental cumulative distributions is given in 

section 3.6.

In chapter IV we present a mathematical model for the brown ear tick which 
is a three host tick and is a vector for the East Coast fever(ECF). It is a stage 
structured population. In section 4.1 we present several modeling approaches in­
cluding terminology and definitions. In section 4.2 we present a continuous time 
compartmental model, cyclic in nature. The model is related to that by Metz and 
Diekmann(1986) for physiologically structured populations since individuals have 
to age within a stage with reference to chronological time before transiting to the 
next stage. The characteristic polynomial for the system is derived in this section 
and the dependence of the spectral bound on various population parameters is 
discussed through the implicit function theorem. We also derive the general per­
sistent stage structure in this section. Section 4.3 gives a discussion on vector-host 
interaction where an additional equation describing the dynamics of the host pop­
ulation is added into the system of the n coupled differential equations mentioned 
above. Conditions for population increase or decline and co-existence of the pop­
ulation species are discussed. The reproduction number for the tick population as 
a function of host density is also discussed. Section 4.4 gives a discussion on the 
stability analysis of the model. Section 4.5 is on the phenomenon of competition 
of ticks on host which acts as a regulatory mechanism for the population species 
not to increase without bound. In sub-section 4.5.1 we give a discussion of gen­
eral cyclic triangular systems with respect to density dependence on mortality and 
transition rates. An alternative method of deriving the reproduction number is 
also presented. In sub-section 4.5.2 we present a discussion on positive invariance 
paying attention to the qualitative behaviour of the system, distinguishing where 
the system is dissipative. In order to establish dissipativeness we find a bounded 
set that attracts all orbits and which is positive invariant. Sub-section 4.5.3 is on

xi



the connection between spectral radius and spectral bound; while we finish this 
chapter with a simulation experiment of the model based on the brown ear tick 

data.
In chapter V we consider the spatial distribution of the tick vector populat­

ion . Section 5.1 is an introduction to this topic. Section 5.2 discusses on host 
distribution of vector parasites then we derive the model in sub-section 5.2.1. The 
null hypothesis that the on host distribution of parasites is in general asymmetric 
and follows the negative binomial distribution is discussed in detail. Sub-section
5.2.2 discusses the parameter estimation in the model by the MLE method, as­
suming the parameters are functions of several host-specific attributes. In section 
5.3 density dependence and host heterogeneity on susceptibility to parasites is dis­
cussed. The effect of this on the stability of the parasite-host model is discussed 
in sub- section 5.3.1. Section 5.4 is about the effect of on host parasite load on the 
reproduction ratio of the parasite population. The general model is discussed in 
sub-sections 5.4.1 and 5.4.2. Section 5.5 suggests a possible area of future study 
aiming towards a general stochastic dynamical model particularly with respect to 
vector parasite populations such as ticks.

In chapter VI we demonstrate an application of the already developed theories 
to the brown ear tick( R. appendiculatus) based on Zimbabwe data. The application 
is based on a time dependent multiple matrix model incorporating seasonality and 
heterogeneity in the vegetation. Section 6.1 gives a general introduction while the 
model is given in section 6.2. In section 6.3 we deal with the problem of matrix 
parametrization estimating all the required matrices in the system stating all the 
assumptions made. Section 6.4 is on sensitivity analysis of the model parameters 
and conclusions. In chapter VII some comments regarding the significance of the 
results arrived at in this thesis are made. Some areas which we think need further 
investigation are also pointed out.

Xll



A C K N O W L E D G E M E N T

I wish to express my sincere gratitude to my supervisors Professor J. W. 
Odhiambo and J. Owino for their active supervision, continuous guidance and 
encouragement throughout the course of this study. I am particularly grateful to 
Professor J. W. Odhiambo for his deligence and excellent supervision which he 
showed by devoting a lot of his time to scrutinize my work and guide me in the 
best way possible. I am indebted to him for providing the background for the 

present study.
I am thankful to the late Dr. A.S. Young of former ILRAD who gave me a lot 

of insight on tick biology which has formed the basis of all the applications in the 
entire thesis. Special thanks also go to Dr. B. Perry of ILRI for his further advice 
and concern on the work particularly in pointing out areas on tick population 
dynamics that were not clear to me. I therefore thank ILRI as an institution for 
granting me a one year visiting graduate fellow where I got access to facilities 
which otherwise would have been hard to get.

I am thankful to Professor Dr. K. P. Hadeler of Tubingen university, Germany 
for his guidance and advice on modeling population dynamics during a six month 
visit period in his institute. I therefore thank the DAAD for making the visit 

possible.
I am thankful to all my collegues in my home university, ILRI and Tubingen, 

Germany for their good and friendly discussions in the course of this study. To 
all my friends and relatives, I thank the encouragement they have accorded me all 

along.
Finally, I am indebted to my wife and son for the understanding they have 

demonstrated throughout the study. All was of course only possible by the grace 
of God.

xm



G L O S S A R Y  O F  S Y M B O L S  A N D  N O T A T I O N S

ci{k: reproduction rate for hosts carrying u- type-A: parasites 

A*: general transition matrix for a k stage structured population 

bik: death rate for hosts carrying u- type-A: parasites 

Ek: total free living off host type-A; parasites 

E(X):  expectation operator on a random variable A 
fecundity rate for an individual in age class j  

F{x):  Pr[A < x] if A' is a random variable 
htk: number of hosts individuals carrying if. type-A’ parasites 

Hnk: total number of hosts born per unit time in the presence of type-A: 
parasites

Hbk : total number of hosts dying due to type-A; parasites per unit time

interval
Hk: total host density carrying type-A* parasites 

HSk: total host density susceptible to type-A: parasites 

rrik: mean on host type-A: parasite load 

rii(t): number of individuals alive in age class i at time t 

nUt): number of individuals in age class j  in stage i at time t 

n (x ,t ) ‘- individuals aged x at time t in the continuous population model 

Pi(t): probability of transition from age class i to age class i + 1 within the 

time interval (t,t + 1)
p\ •: probability of surviving and transiting into the first age class of stage 

i +  1 within the time interval (t,t + 1) for an individual in age class 
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continuous time stochastic model

Ro‘. average number of individuals produced by one adult reproductive 
individual in its life time

R[J:: positive orthant for an n dimensional real space 
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CHAPTER I 
INTRODUCTION

1.1 Matrix Population Models

The use of matrices in population mathematics has been extensively studied 

in relation to various population species. These include animal, human, insect, 

plant or tree popultions. The elements of the projection matrix are functions of 

survival and fertility rates, of the population in question. The basic classification 

of individuals in the population is by age. In this case the entire population is 

classified into s age classes say 1, 2 , . . . ,  s. The maximum age class is thus [s — 1, s). 
Such a model is called an age structured population model. Similar models based 

on other modes of classification can be defined. The assumption in age structured 

models is that age carries most of the information about the fertility rates, / x(£), 

and survival rates px(t) for each age group [x — l , x)  or age class at time t.

In a time homogeneous or time independent model, we assume that fertility 

and mortality rates are time independent. If we let n(t) denote the age structure 

at time t then the structure n(t +  1) at time t +  1, depends on n(t) through a con­
stant population projection matrix M. This dependence can be used recursively 
to generate future population structures for example T  time periods later via the 

matrix M T the Tttl power of M. However this is true only if M  is strictly time 

independent which in practice is not the case. The assumption of time indepen­

dence is possibly true only for very short time scales and conditions affecting the 

system remaining constant over time.

Different modes of classification apart from age may be more appropriate be­

cause that classification attribute may give more information regarding the relevant 

population parameters than age. For example in the case of renewable resources, 

such as forests, classification according to size may be more precise. The aim of 

modelling such a population this way could be for the purpose of formulating sound 

management and harvesting strategies. For insect/arthropod population species, 

classification according to stages of development such as egg, larvae, pupa, adult 

etcetera could be more ideal. Thus the classical Leslie model structured by age 

needs a more general treatment to cater for the different modes of classifications.
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This is one of the aims in the current study. We address this generalisation for 

both discrete and continuous class of population models.

The time independent or homogeneous class of population models are useful 

when we consider a population species living in an environment where there is no 

food shortage and other physical conditions affecting the system are constant over 

time. Under such conditions the matrix M  or the population evolution operator 

in the case of continuous compartmental models, possesses standard properties 

which may be exploited to infer about the stable population structure and its rate 

of growth. The implications of the Perron-Frobenius theorems are among some of 

these properties. These properties and their generalisation are also a subject of 

this study for both discrete and continuous class of models.

In an open environment however, the population parameters for any biological 

population are bound to be affected by external factors such as climatic conditions, 

migration, epidemics, environmental and many more. Such factors ought to be 

incorporated into the model, to make it more practical and realistic. This implies 

that, the projection matrix M (t), at time f, may not necessarily be -the same as 

M(t +  1), that at time t +  1. This means that the recursive relation between the 

population structures n(t) and n(i +  1) is no longer the same as that for the time 

independent case. In the current study a time dependent model is developed in 

relation to the life cycle of the brown ear tick (R. appendiculatus) which is the 

causal vector for East Coast fever in cattle and other ungulates. In this particular 

application, time dependence is brought about by several factors among them 

seasonal effects and differences in vegetation types in the location of interest.

In dealing with vector parasite populations one ought to study the aspect of 

vector-host interaction systems. This aspect is studied in detail in the current 
study and is given prominence for both discrete and continuous models. Density 

dependence is one aspect which we study in detail particularly for the continuous 

time models. We also use the notion of hybrid or semi-stochastic models to achieve 

the goal. This necessitated the need to investigate the null hypothesis that on host 

vector parasite distribution is asymmetric and is negative binomial. Stability of 
the vector-host model has also been studied in detail in the current study.
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We start by studying the time independent age structured Leslie model and its 

relation with the continuous time deterministic models. We develop a more general 

stage structured model applicable to almost any biological population species. We 

then study the model in relation to a stage structured population , the brown ear 

tick a vector population for the East Coast fever disease in cattle. Related to this 

we develop a continuous compartmental model for a general n stage structured 

population. The brown ear tick life cycle is treated as a special case. A time 

dependent matrix model is then developed for the species incorporating seasonally 

and heterogeneity in vegetation types in the location of interest. Then we study the 

vector-host interaction models in detail bringing in the idea of semi-stochasticity 

by incorporating the on host distribution of the vector parasite by means of a 

system of coupled differatial equations. We then study the stability of the vector- 

host model in detail. Finally the aim of all the above is to be able to comment or 

contribute in the control strategies and how to improve on them.

1.2 Prelim inary Concepts and N otations

Consider a population structured into s age classes which we. denote by 

1, . . .  ,n.  The age distribution at time t +  1 given that at time t can be expressed 

as a system of s linear equations as will be seen shortly. Precisely the age groups 

are, [0, /i), [h, 2h), and so on upto the last age group given by [(s — l)/i, s/i) where 

h is the size of one model time step.

Let
rii(t) denote the number of individuals alive in the age group i to i +  1 at time 

t.

Pij(t) denote the probability, that, an individual in the j  to j  -4-1 age group, at 

time <, will be in the age group i to i +  1, at time t +  1.

and

fn{t) denote the reproduction rate, in the time interval t to t + 1 per individual, 

aged (i — l)h to ih at time t whose offsprings will be in age group 1 at 

time t -j- 1.

For simplicity we denote Pij(t) by pj(t) and the f\j{t) by fj{t), j  =  1 , . . .  , s. Where 

Pj(t) denotes the transition probability from age class j to age class j  -f 1 and fj(t)

3



denotes the fecundity rate for individuals in age class j. Working from an arbitrary 

origin of time t, the age distribution at time t +  1, will be given by

ni ( t  + 1 ) = p i - i ( t ) r i i - i { t )  i =  ( 1.1a)

and 3
n,(f + 1) = /.(*)";(<)• (1.16)

1=1
The assumption here is that the size of one age interval is equal to the size of one 

model time step. The s equations in E q .(l.la) and E q .(l.lb ) can be written more 

compactly in matrix notation as

n(t +  1) =  M{t)n{t) (1.1c)

where n(t) and n(t +  1) are the vector population structures at time t and t +  1 
respectively. The matrix M(t) is square of order s with elements /,•(£), i =  
l , . . . , s  in the first row and i =  l , . . . , s  — 1 in the main subdiagonal.

The quantities >  0 may be zero for some age classes depending on the

reproductive biology of the population in question and on the relative span of the 

pre-reproductive and post-reproductive ages. Note that if fn  =  0 for all / >  k 
and fik > 0 that is a population with s — k post-reproductive age classes, then 

\M(t)\ =  0 that is the complete population projection matrix is non-singular.

Equation (1.1c) can be used to recursively generate the population structure, 

T time periods later as

T — 1
n(t +  T) =  [ f j  M (t+j)]n(t)  (1.2)

>=0

Equation (1.2) is important if for example we say there are k seasons each of 

duration r, and the season specific matrices are MTi and r, =  T. Then the 

population structure at the end of the complete season cycle is

k
n(t +  T )=  [ I j A f rj]fr(0  

1=1

4



If Ti is equivalent to r; model time steps of size h each and the season specific 

matrix per unit model time step is M ,, i =  1, 2, . . . , / :  then

n(t 4- T) n(t) (1.3)

where t* =  hr, and ^  r« =  T. A typical case is where T represents a one year 

period and k the number of seasons per year.

If we let riij(t) denote the number of individuals moving from age class j  into 

age class i, in a unit model time step, then the maximum likelihood estimate of 

Pij(t) is given by

Pijit) =
nij(t)
Tlj(t) '

(1.4)

The basic data for the estimation of E q .(l.la) and E q .(l.lb ) is derived from a 

form of life table relevant to the kind of biological population under study. The 

fertility or fecundities per age class, f\j(t) for j =  1, . . . ,  s are usually derived from 

a table of age specific fertility or reproductive rates appropriate to the population.

It was stated that for the deterministic time independent model, the projec­

tion matrix is assumed to be constant over time, so that

M(t) = M  Vt.

Equation (1.1c) therefore becomes

7i(t +  1) =  Mn(t) (1.5)

This equation can now be used to calculate the population structure T  time periods 

later as

n(t +  T) =  M Tn{t) T =  1 , 2 , . . .  (1.6)

Under such optimal conditions and if data is available over T time periods later, 

the MLE of is then given by

Pij =
1C*=i nu (0

(1.7)
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and the fertility rates are taken as the average fertility rates, over the T time 

periods as
h  = LLdiAllJ = 1.a (i.s )

After a population has been in existence for a long enough time such that the 
post-reproductive population does not contribute in the reproduction process the 

matrix can be partitioned symmetrically as

M  = (  B ° c )  <L9'

where
A is a square matrix of order k 

B is of order («s — k)xk 

C is also square of order s — k

O is a zero matrix of order kx(.s — k) 
It can be shown that

M l
A1

ft(A, B, C)
( 1.10)

where the function f t{A ,B ,C )  is given by

t-1
f t(A .B .C )  = Y ^ c3 '

;=i

For large t , the submatrix A remains the only one which is principally of inter­
est for growing population because it involves age classes in the pre- reproductive 
and reproductive age groups. It can be shown that

A\ = ( - l ) ' i+'(P2lP32 ■ ••Pk,k-\f\k) ( 1.11 )

Therefore the matrix is non-singular and hence there exists an inverse to the ma­
trix. The matrix can then Vie used to generate the forward process {A b?^)} of the
population structures with time. We shall then go ahead to derive a general ma­

trix model tor a stage structured population where individuals in a. stage undergo 
the aging process before transiting into the next stage.
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In general let a population’s life cycle consist of k developmental stages of 

variable residence times T,-, i =  1, . . . ,  By residence times we mean the length 

of time an individual stays in a stage before transiting to the next stage. We 

calculate the quantities =  Tt/h which gives the number of age classes in stage i 
for i , . . . ,  k. Now let us consider an individual of age class j  in stage i. We assume 

that this individual can survive the interval [t,t +  1) and transit to the next stage 

with probability

p i i = * i 7 { i  (1.12)

or transit to the next age class in the same stage with probability

nj+\,j ~~ s0'( l  7 ij) (1.13)

We remark here that 7} • is the conditional probability of transit ting to stage z +  1, 

given it survives and Sij is the probability that an individual will survive over a 

time interval. This individual reproduces /{• offsprings who survive and enter age 

group 1 of stage one just before or at time t +  1. The population structure specific 

to stage i is given by

n,(<) = (n |  n}.(<))' i =

and the entire population structure is given by

n(t) = (fii(t),... , n , ( f nk(t)Y 

A generalization to the matrix A is then given by

/(*1  +  41) f2 f 3 . . .  p * -l Fk\
Pi a 2 0 0 0
0 p2 A3 0 0

0 0 0 0
\ 0 0 0 . . .  Pk-l Ak )

(1.14)

(1.15)

(1.16)

where the matrices

Fi, i =  1 represents the reproduction process for the different age

classes in the population

7



A{, i =  1, . . . ,  k represents the intra stage dynamics

Pt, i =  1 , . . . ,  k — 1 represents the interstage dynamics.

Matrix A* is the generalised projection matrix for a general n stage population 

species. The matrix takes a specific form depending on the population species in 

question and the prevailing assumptions.

The Comnartmental Model

Let the variable denote the number of individuals in stage 1 to n

respectively. Let p, for i =  1 , . . . ,  n — 1, denote the rate of transition from stage i to 

i -}- 1. Let us assume the p\s are constant. Further let the stage specific mortality 

rates be p, for i =  1 , . . . ,  n. The model is a cyclic chain model given by the system 

of linear differential equations with constant coefficients as

x\ =  f x n -  P\X\ -  P\X\

Xi =  /?,_!.r ,_i -  piXi -  piXi i =  2, . . . ,  n -  1 

X n  =  P n  — \ X n  — l P n X n

where X{ for i =  1, . . . ,  n denote the derivative of X{ with respect to time. The 

model can be written in matrix notation in a similar manner as in the discrete 

case as

x =  Ax (1.17)

where the matrix A is derived from the model parameters and coefficients and x 
denotes the derivative with respect to time for an n dimensional vector with its i- 
th element equal to x*. Vector-host interaction is introduced via an extra equation 

denoting the rate of change with time for the host population. This equation can 

be written as

y =  r -d y  -  c1'xy (1.18)

where y denotes the total host population density, r is the rate of flow of hosts in 

a given area and c is given by

c (c i, C2 j • • • )Cn)T

8



denoting the effects of the different stages of the vector population to the estab­

lishment of the host population. Equation (1.17) is then modified to include an 

extra component to take care of the host population in the system. The combined 

system of equations contained in Equations (1.17) and (1.18) axe then utilized fully 

to investigate the stability of the vector free and infected equilibriums respectively.

On Host Distribution

Here we differentiate the host population by the number of parasites they 

carry. We denote by ik the number of on host type k paxasites. These axe found 

on h{k host individuals and the total host population is denoted by variable H. 
The variable Y  will now denote the total number of parasite individuals. We let 

rrik denote the mean on host type k parasite load, 7r will denote the dispersion or 

the variance to mean ratio of the on host parasite distribution. This quantity tells 

us about the dispersion of the on host parasite individuals in a community of a 

host population. We assume that all these are dynamic variables and we can talk 

of their derivatives with time.

The model parameters include b{k which gives the rate at which hosts carry­

ing ifg parasites die. This class of hosts reproduce at rate a,-fc and their relative 

susceptibility is S{k. Parasites on a host carrying i\t parasites die at a per capita 

death rate fj,ik. The per capita reproduction rate of type k parasites is Alfc. We 

modify this definition to mean also the moulting rate for type k paxasites where 

in general k will now denote the off host developing stage. Hosts with i* paxasites 

acquire new paxasites at the rate given by <f>ik. New born hosts axe assumed to be 

parasite free. The system of equations describing how hosts change state is thus 

given
oo

h0 =  —(&o + <j>o)ho 4- l*\ h\ + ^ 2 aik^ik (1.20)
i=0

and

hik =  ~  (&;* 4- 4>%k +  ikf*ik)hik

+  (ik 4- l)/Jt*+i^i+i +  u  =  1, 2, . . .  ( 1.21)

where h{k denotes the derivative of h{k with respect to time. We next define the
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aggregated variables
oo oo co

Hk = Y  b'*' U = Y  ikh i"  Ek = Y  (1.21)
ifc =0 ifc=0 ik— 0

where

Hk- denotes the total host density carrying parasites type k.

Yk: denotes the total number of type k parasites harboured by the total host 

community.

Ek’- denotes the total number of moulted type k parasites who await to attach 

on to passing hosts.

We define g(H) as the probability that an off host individual will attach onto a 

host as a function of host density H . This function will necessarily be an increasing 

function of H. The product Hkg(Hk) will then give the intensity of hosts that axe 

susceptible to type k parasites in a given area and it is also an increasing function 

of Hk- We further define more aggregated variables as follows
oo oo oo

H}fk =  y> bik i n t , H a k =  ’y H Sk =  ' y '  s i k h i k

ik—0 it =0 i»=0
( 1.22)

Ybk =  Y  ' k K K ,  Y„k =  Y  ( L 23)
ik— 0 *fc=0

where

Hbk: is the total number of hosts dying per unit time due to type k parasites

Hak: gives the total number of hosts born per unit time in the presence of type 

k parasites

H9k: gives the total host density per unit time susceptible to type k parasites

Ybk: gives the total number of type k parasites dying per unit time due to 

host death

Yflk: denotes the total number of type k parasites dying per unit time due to 

natural mortality.

From above definitions it follows that

Hk =  —Hbk +  Hak (1.24)
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and

Yk =  -Ybk -  Ynt +  H9kg{Hk)Ek (1.25)

We exploit the two dimensional system to study the stability of the vector- host 

interaction system. Density dependence in the model is introduced via two alter­

native considerations. First we consider the case where host mortality increases 

linearly with on host parasite burden such that

bik =  b +  ocik

We next introduced density dependence through the parasite death rate by making 

it a linearly increasing function of the on host parasite burden. That is

Mt'fc =  ^  +  7 ik-

We then go ahead to investigate the implication of these modifications to the 

stability of the system.

Next define the reproduction number Ro as the average number of female 

parasites attaining maturity produced by a female paxasite during her life time. 

For a constant population this number will take the value one. Due to possible 

density dependence we define the effective reproduction number as

Re = Rof(y)

where f(y) is the density dependence function on Ro expressed as a function of 

the mean on host parasite burden in a host community. Note that in the absence 

of density dependence

f (y)  =  2/-

The function f(y) is investigated for different assumptions on the on host parasite 

distributions.

1.3 Brief Literature Review

1.3.1 General Literature Review

The use of matrix population models was pioneered by Lewis(1942) and Leslie 

(1945). They independently developed a matrix model, that allowed prediction
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of future population age structures, given an initial distribution, and correspond­

ing age specific mortality and fertility rates. Leslie(1948) extended these ideas 

and showed how to determine the stable age structure. He discussed a number 

of properties of the projection matrix, such as the role of the dominant root in 

population growth. In these formulations the matrix inputs are assumed constant 

over time. However this is most of the time not true in practice. The popula­

tion mortality and fertility rates, are bound to vary due to several factors. These 

could be climatic in nature or other factors such as predation for some population 

species, epidemics, control interventions and so on. Another shortcoming is that 

of classifying the population according to age alone. Other classification criteria 

should be possible.

Leslie(1959) suggested a density dependent matrix model by making the fer­

tility and mortality rates functions of the previous and present number of individ­

uals in the population. He also suggested a simple hypothetical seasonally driven 

model.

Lefkovitch(1965) proposed a modified Leslie model applicable to organisms 

grouped according to stages of development. For a population species whose stages 

occupy exactly equal periods of time, Lefkovitch’s matrix model can as well be 

treated in a similar manner as the classical Leslie model. However a more general 

model for stage structured populations combining both stage and age modes of 

classifications is important. The elements rriij in Lefkovitch’s model denote the 

dependence of the 2-th stage at time i + l  upon the j-th  stage, at time t. Such a kind 

of model suffers from the unavoidable difficulty of a posteriori estimation of the 

matrix elements. The projection matrix M  is estimated from census observations, 

taken for a suitable number of time intervals. In this situation errors in estimation 

can only be reduced by increasing the frequency of census observations and/or 

the sizes of the census samples. Unfortunately, although the model is a useful 

technique, the matrix elements derived from partial regression may lack biological 

significance. The assumption of time independence on the matrix elements is 

obviously not a sound one since the elements are bound to vary at different times 
due to several factors such as seasonal fluctuations, type of vegetation, and so on.
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Usher( 1966,1969), developed a more useful model in the management of re­

newable resources, on forest data. He argued that, for sufficiently short periods, 

an organism initially in class i, at time £, may at time t +  1, either be dead, remain 

in class z, or progress into class i +  1. An implicit assumption in the model is that, 

the survival rates apply equally to each individual in each class at any time which 

might not be the case in reality. Individuals might have different rates of moving 

into class i +  1. In effect his assumption is that each class is characterized by a 

fixed residence time which we know is bound to fluctuate due to several factors.

Sykes(1966), in his Ph.D dissertation suggested three models namely the ad­

ditive error model, the independent binomial trials model and the matrix random 

variables model. Sykes(1969) reviewed the properties of the population matrix. 

The work by Sykes( 1966,1969), will therefore be a valuable source of background 

knowledge concerning the analysis of population projection matrices.

Applications of matrix population models have been undertaken extensively. 

Bosch(1971) examined the question of coast redwood extinction in California, in 

terms of expected population growth rates. However the model was deterministic 

in nature. It included several algebraic and model errors. Ways to improve the 

model include the use of more and smaller age classes, possibility of using variable 

elements in the matrix and the use of computer, in finding the characteristic roots 

of the resulting matrix which will be of high dimension. In the current study we 

intend to concentrate on the variability of the matrix elements and come up with 

a more general matrix model.

Namkoong et al( 1974) modelled as a stochastic process survival probabilities 

of coast redwood populations. The ultimate probabilities of extinction of the 

population species was investigated in relation to the degree of mortality and the 

dominant positive root of the projection matrix.

There are certain restrictions associated with using a projection matrix, in 

which the entire population is structured by stages, instead of by age. Most im­

portantly the probabilities in the matrix will not remain constant unless the system 

has attained stability. Vandermeer(1975) uses a special form of a projection ma­

trix, structured by stages, to clarify its relationship to the standard population
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projection matrix. His work was a modification to the work by Lefkovitch(1965). 

The author attempts to calculate the underlying age distribution, from a popula­

tion structured according to stages of development. We have studied this aspect 

in detail with more clarity and in a more general perspective.

The discrete time process described has been used to model the dynamics of a 

wide variety of ecological populations; for example plant population dynamics, by 

Sarukhan and Gadgil(1974). They considered the matrix as a function of seasons, 

comprising a year. We have attempted to generalise this aspect and an application 

developed for the brown ear tick(R. appendiculatus) with data collected from the 

highveld of Zimbabwe.

The problem of harvesting was introduced to matrix population theory by 

Lefkovitch(1967) and Usher(1969). That is if the population is age structured and 

the ultimate stable structure is u, the eigenvector corresponding to the dominant 

root Ai, then if Aj >  1 we may harvest (A] — l)u from the population, to maintain 

the constant equilibrium. The same idea can be used in the control problem where 

the harvesting now corresponds to a control intervention to reduce the-population. 

Extentions to the harvesting problem are aimed at optimum harvesting policies, 

different from removing equal proportions from each population class or group as in 

Beddington(1973). The rationale being that these other harvesting policies could 

produce a higher yield at a sustainable level. Thus Doubleday(1975), displayed 

the existence of a simple mathematical solution, to the harvesting problem, using 

a fisheries example. Enright and Ogden( 1979) applied the Leslie matrix model, 

to single species populations and similar transition models, to more than one tree 

population. They suggested that an important aspect of matrix population models 

is that, they provide a time scale for the trends exhibited by species that live long, 

in addition to predicting the magnitude and direction of future changes.

Woodward(1982), suggested a simple method for decomposing a population 

that is stage grouped into the underlying age structure. The population dynamics 

can then be predicted, using the standard age structured Leslie matrix model. He 

assumed that the residence in each of the stages follow a normal distribution. A 

weakness in this model is the assumption of normality on the residence times. We
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address the problem of stage distribution in relation to the residence times in the 

present work.

Desharnais and Laifu(1987) presented a general matrix population model, 

where the age-specific vital rates depend upon the age structure of the population. 

In more precise terms the authors were actually addressing the problem of density 

dependence. Fecundity and survival rates axe assumed to decrease exponentially, 

at rates dependent on the densities of each age class. They exhibit, the existence 

of a non-trivial equilibrium age structure, given the population can grow without 

density dependence. Necessary and sufficient conditions, for the existence of a local 

asymptotic stability were stated. Computer simulations were used to compare the 

model performance and that from census data.

Yanan et a/(1990), discusses the suitability of estimating the Leslie matrix 

elements from experimental cumulative distributions. The model is quite ideal for 

the study of an arthropod/insect or a general stage structured population, in a 

homogeneous system. We study this approach by developing a time dependent 

model for the brown ear tick(R. appendiculatus).

1.3.2 Literature Specific to the Brown Ear Tick

The tick Rhipicephalus appendiculatus is the most abundant and widely dis­

tributed tick species throughout eastern, central and southern Africa. Other tick 

species in that area include Boophilus decoloratus and B. microplu3. Together 

with R. appendiculatuŝ  these are vectors for animal diseases and hence cause con­

siderable economic losses in terms of live weight loss, milk yield and hide quality 

reduction. Many infected animals die if no remedial measures are taken.

The life cycle of R. appendiculatus consists of four successive developmental 

stages, namely the egg, larva, nymph, and adult. The time an individual stays 

in any of these stages differs. Furthermore, an individual in the larval, nymphal 

and adult stages can be classified as being in the state of questing (host finding) , 

feeding (on host) or developing (off host, after feeding). This means that the larva, 

nymph and adult attach to the host at one time towards the end of that stage. In 

view of the fact that the tick species feeds on three different hosts, it is called a 

three host tick. It is an interesting biological question why this species has larvae,
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nymphs and adults that feed on hosts while other species in the same habitat and 

roughly the same host range feed only on one host. The phenomenon that tick 

species vary with respect to the number of hosts (one, two, or three) is known for 

ticks all over the world, for example the common European tick, Ixodes ricinus, 

is also a three host tick. It can be speculated that the three host ticks are, with 

respect to the life cycle, more ancient than other tick species on an evolutionary 

scale. Norval et al (1992) state that one of the reasons why R. appendiculatus can 

become very abundant in the presence of cattle or wild ungulates is that these 

serve as primary hosts for all stages of its life cycle. Infact it is noted that tick 

species in which the immature stages are able to exploit the same ungulate hosts as 

adults tend to become common (pests) in agricultural systems, while tick species 

in which the immature stages tend to feed on specific non-ungulate hosts tend to 

be rare.

After oviposition by an adult female, egg development usually takes place at 

the base of the vegetation. A typical adult female deposits about 4,000 eggs, hence 

the fecundity is 2,000 taking account of an estimated sex ratio of 1:1. The newly 

hatched larva undergoes a period of adaptation, the length of which is tempera­

ture dependent. This period is followed by questing, that is host searching, where 

the tick is waiting for passing grazing host (domestic or wildlife). After successful 

attachment, the larva enters a feeding phase (on host) during which it extracts a 

blood meal. Once the larva has consumed the blood meal, it drops to the pas­

ture where it undergoes development which is also highly temperature dependent. 

Completion of this process leads to a newly moulted nymph which repeats the 

same sequence of events as the larva. The nymph moults to an adult tick which 

undergoes similar transformations; it also mates during the on-host period. When 

it completes feeding or successfully feeds (i.e engorged) , the adult female tick 

drops to the ground (pasture) and enters a period of oviposition which can be 

lengthy depending on the prevailing environmental conditions. In southern Africa 

the adults can undergo a diapause period of rather extended length if external 

conditions are unfavourable. The life cycle and questing process are illustrated in 

Figures 1 and 2 in page 28.
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Parameters of interest in the entire life cycle are the developmental, fecundity 

and survival rates. Development, as mentioned earlier, is normally temperature de­

pendent, faster at high temperatures, with a minimum and maximum temperature 

below which or above which development is seriously curtailed. Higher tempera­

tures appear to prolong the ovipositioning period for adult females. Adult male 

survival is usually high but can be reduced by predation if number of predators in 

the habitat is high. Rainy seasons are more favourable for hatching than dry sea­

sons. Therefore this suggests seasonality in fecundity rates. Survival for engorged 

larvae and nymphs is high in most seasons with nymphs being the hardier stage 

and eggs the most susceptible to adverse micro-climatic conditions.

The brown ear tick is the main vector of the Theileria parva group of or­

ganisms which is the causal parasite of East Coast fever and related diseases. 

Integrated control methods based on tick-resistant cattle, pasture spelling, strate­

gic dipping and tick killing plants, have been suggested for control of African ticks 

by Sutherst(1981). One of the requirements of such methods is an understanding 

of the population dynamics of the tick, hence the need for mathematical models 

to support the approach. Data sets with information on survival, fecundity, and 

development have been collected (both in the laboratory and the field) by several 

biologists, among them Short et al. (1989a Sz 1989b). The models in chapters IV  

and VI will make use of published data on the population dynamics of R. appendic­
ulatus for validation and simulation. One of the advantages of R. appendiculatus 
data is that there exists comparative data on the development and survival rates 

for most of its life stages in comparison with those of other tick species.

In the current study the aim is to design and investigate a series of models that 

will allow a better understanding of the life cycle processes of R. appendiculatus, 

the interaction with its hosts and possibly to identify biological input values that 

the model measure of population growth is sensitive to. This information can then 

be used in the design of control strategies.

The starting model is a very simple Leslie type compartment model. In all 

the models in the current study, the life cycle of the tick is divided into n =  10 
stages as illustrated in the figure 1 in page 28. The initial model in chapter IV
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is formulated excluding tick-host interaction. It is then further extended to take 
into account the interaction with hosts, both wild and domestic animals and the 
effects of interspecific competition and density dependence.

Vector-host interaction is analysed in a qualitative context in chapter IV of 
the current work and the findings are important in the understanding of the sys­
tem. The effect of seasonality and vegetative ecotype to tick population growth is 
addressed in chapter VI of the work .

An important aspect in the tick life cycle is the influence of environmental 
factors on the survival, development and behaviour of the different life cycle stages. 
Field observational and experimental studies show that there are distinct seasonal 
effects in the life cycle of R. appendiculatus especially in southern Africa (as com­
pared to tropical regions). The field studies and laboratory experiments carried 
out in Zimbabwe and reported in Short et al. ( 1989a,b) distinguish three seasonal 
regimes to which the ticks may be exposed, namely rainy, cool and hot. A high de­
gree of variability over these seasons was observed. The field study was conducted 
in the high veld of Zimbabwe under two vegetative ecotypes, defined a,s long grass 
and short grass. Type of vegetation is a factor that influences host seeking and 
survival. The study also indicated some aspects of predation on ticks and describes 
alternative hosts, in addition to cattle, such as rodents. It was also reported that 
R. appendiculatus can coexist with other tick species such as the Boophilus species. 
Zivkovic et al. (1986) reported that R.appendiculatus and R.zambeziensis are tax- 
onomically not clearly separated and tend to overlap at certain altitude ranges. 
Cleary more information on the ecology, in particular interaction with hosts, of 
both species is needed.

Similar information on seasonality can be found in Short and Norval (1981) 
where data from eight localities in east, central and southern Africa were compared 
and analysed. The results show that the seasonal pattern of R.appendiculatus 
is largely dependent on the ability of the adult ticks to adapt their activity, in 
particular oviposition, to take into account differences in humidity, temperature 
and daylength. However, based on a statistical analysis of data from five sites from 
southern Africa, Randolph (1993a,b) questions this assumption and puts forward
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the hypothesis that it is the timing of the questing activity of the larvae, vulnerable 

to desiccation, that determines the pattern of the seasonal dynamics of the tick. 

In Branagan (1973a,b) it is reported that R. appendiculatus in cool, more humid 

climates (e.g. Muguga, Kenya) suffer less climatic stress than those in a warm,more 

arid climate (e.g. Kedong, Kenya). Eggs in this latter site were exposed to a higher 

degree of desiccation than those in more humid areas. During periods of maximum 

saturation deficiency, complete egg failure (i.e egg dessication) occurred. Survival 

periods for questing ticks were shorter in Kedong than in Muguga, suggesting 

that host availability is more crucial in warmer arid areas than in cool, moist 

climates. Pegram and Banda (1990) studied development and survival of free- 

living stages of three tick species in central Zambia among them R. appendiculatus. 
The findings were that tick activity reflects seasonality. The univoltine that is 

single generation ticks exhibit diapause mechanisms that effectively synchronize 

the life cycle of these species to climatic conditions. No diapause wets observed 

in the multivoltine that is several generations species which are able to complete 

three to five generations per year with no seasonal synchronization.

All these papers indicate that temperature seems to be the critical variable as 

far as development times are concerned whereas humidity affects the probability 

of survival.

Branagan(1973a,b) also noted that development rates, including the rate of 

egg production, declines with falling temperatures, while fecundity (total egg pro­

duction), although reduced by extreme temperature, does not vary much within 

the temperature regimes experienced by R.appendiculatus and other tick species.

The question of density dependence seems not to be well documented in most 

articles but Branagan (1969), observed that as the on host density of nymphs in­

creased their feeding periods became shorter. It has been suggested that this phe­

nomenon may be associated either to the observed clustering behavior of nymphs 

on the host or to some resistance mechanism of the host. In fact, in certain tick 

species it has been experimentally observed, with rabbits as hosts, that repeated 

exposure of a rabbit to ticks results in shorter attachment periods and reduced 

repletion (Branagan 1974).
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O f the two explanations the the second seems more realistic due to the well 

known phenomena of acquired resistance by host species. However we cannot 

completely overule the first case because this tick species is known to prefer the 

ear for attachment than other parts of the host body hence the name ‘‘brown ear 

tick” .

The relationship between the abundance of R. appendiculatus and the degree 

of host resistance to it has also been disscussed in the book by Norval, Perry and 

Young (1992). In particular they point out that this tick species becomes very 

abundant because several host species do not acquire a high degree of resistance 

to it as opposed to other tick species.

Randolph (1993a,b) indicates that density-dependent mortality factors oper­

ate between nymphs and females after the nymphs have moulted, thus working in 

the same competitive way as the assumed resistance mechanism.

All these studies are aimed at finding methods of controlling tick transmitted 

diseases and the vector tick itself. Pegram et al. (1991) report on experiments 

where herds of sanga cattle were kept under controlled conditions. Two herds were 

kept in traditional grazing regime for three years. One herd was kept tick free by 

regular acaricidal treatment while the other had no tick control. The tick free herd, 

as expected, performed much better in terms of milk production, growth rate, 

fertility and mortality but the value of additional production was much less than 

the treatment costs. Similar studies are reported in Pegram et al. (1989a,b) where 

in fact heavy acaricidal applications were found to lead to effects such as poor 

liveweight gain, especially in young cattle. They also report that combined effect 

of climate and ecotype also affect tick dynamics in the region of central Zambia 

where the studies were conducted. On the other hand it is reported that during tick 

seasons infestations also caused significant reductions in liveweight gain. In the 

same papers it is reported that below average rainfall suppressed the abundance 

of ticks such as R appendiculatus. Cattle in woodland areas carried more tick 

infestations than those in open pasture. The studies indicate that integrated 

tick control strategies which rely less on heavy acaricidal applications axe more 

appropriate in all ways.

20



Pegram et al. (1989a,b) also report that there is a correlation between the 

numbers of different tick species on individual hosts over one year old. It is also 

clear that variations in climate, and consequent changes in grazing patterns may 

influence population dynamics of different tick species with varying degrees. Such 

issues raised above ought to be addressed when modelling such kind of population 

dynamics.

The dynamics of tick borne-diseases in Africa axe complex because there is 

a variety of infectious agents transmitted variously among the hosts (cattle and 

other ungulates) and the vectors (ticks). The principal host of interest is cattle, 

due to its economic importance. Among the tick -borne infections, East Coast 

fever (ECF) is a disease mainly found in cattle in most parts of eastern, central 

and southern Africa. In endemically stable areas (mainly eastern Africa) many 

indigenous zebu cattle are continuously exposed to ticks, thus there is a class of 

hosts (cattle) referred to as immune carriers who are not susceptible to disease 

but may transmit the parasite to ticks thus making the transmission problem even 

more complex. Epidemiological models being developed (Medley et al. 1993) can 

aid in the design of optimal control policies. However these models cannot work 

in isolation without proper tick population models.

The economic importance of the disease is three fold. First there is dam­

age to cattle by direct effect of ticks, for example increased irritation, blood loss, 

skin lesions etcetera. Secondly upgrading of cattle is impossible without exten- 

sive/intensive use of acaricides which are costly and further produce side effects 

and thirdly even if (disease parasite) does not cause appreciable mortality and mo- 

bidity, growth rates and productivity of the sick animals may be greatly reduced. 

The economic impact of the infection depends mainly on ECF-specific mortality.

Though Tkeileriosis is a vector-borne disease, its mode of transmission is 

slightly different from those transmitted by other vectors such as tse-tse flies which 

move from host to host within developmental stages. For the tick to be infected it 

has to feed on an infected and infectious host and since transovarian transmission 

is not feasible only the nymph and adult can transmit the disease to the host while 

feeding.
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Apart from the common control method of intensive use of acaricides, immu­

nisation provides a possible control option. This can be achieved by infection and 

treatment, and work is under way to develop an antigen vaccine. These methods 

have their own characteristic effects on the transmission dynamics which could be 

of importance to model building. More realistic and complex disease models de­

rived from basic information about the disease and its vector are therefore needed. 

Thus there is need for careful estimation both experimentally and statistically of 

various disease/vector parameters.

An important aspect of the disease is the question of seasonal occurrence of 

the disease especially in the southern parts of Africa. This implies changes in host 

age at infection thus advocating for host age structured disease models. However 

it should be noted that seasonal occurrence may provide a larger “window” in 

which to immunize most animals before exposure to natural infection. The effect 

of seasonality to the carrier/infected status of the host is also important in this 

respect especially for survival if the individual has to pass the parasite through 

the non transmission periods.

In summary the ultimate goal in these mathematical models is to improve 

understanding by means of appropriate quantitative tools and to forward sugges­

tions on future data collection aimed at aiding the design of better and efficient 

control programmes in order to reduce the economic impact of the disease and its 

vector. The book by Norval et al. (1992) gives a thorough account of the epidemi­

o lo g y  of the disease and the distribution of its vector in Africa. It will serve els an 

important source of information for the current and future modelling work.

The modelling of tick population dynamics has been uncommonly attempted 

probably due to the complex life cycle patterns and poor data availability. Gar­

diner and Gettinby (1981) modelled the dynamics of the European tick Ixodes 
ricinus, also a three host tick. They presented a method of calculating develop­

ment times based on the idea of development fractions. This method has also been 

used in Gettinby et al. (1974,1979) to determine development periods for parasitic 

helminths of cattle in Ireland. The method is based on the fact that one can apor- 

tion some fraction of development for each day based on functional relationships
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between temperature and development periods. Development is complete on that 

day when the sum of these fractions add up to at least 1. However comparing the 

predictions and observed periods the model requires further improvements.

Simulation models have also been developed to study tick dynamics. Haile 

and Mount (1987) and Mount et al (1993) developed simulation models for the 

American dog tick and the “lone star” tick. In the model tick individuals were 

classified into weekly age classes, the effects of temperature and humidity on the 

tick’s developmental periods and vital rates are incorporated. The predictions of 

the model were quite close to reality but as mentioned by the authors one needs 

to improve on the functions relating the vital rates and environmental factors. As 

the modelling of tick dynamics gets more attention models on diseases transmis­

sion should also begin receiving serious attention. Byrom and Gettinby (1992) 

used published data, especially those of Short and Norval (1981), to develop a 

microcomputer software ECFXPERT to study the dynamics of R.appendiculatus 
and East Coast fever. However as mentioned by Randolph ( 1993a,b) there is a 

significant lack of fit between model predictions and observations. This calls for 

a better understanding of the systems and development of better mathematical 

models. As Nokoe (1992) puts it we need a “mixed” model approach, that is, 

models both deterministic and stochastic in nature to model the complex tick life 

systems, especially the three-host brown ear tick. One of the aims of the current 

study is to address the problem of the tick population model results and what is 

observed in the field. Quite recently Medley et al. (1993) formulate a mathemati­

cal model to study the transmission dynamics of T. parva by R.appendiculatus to 

cattle in endemically stable areas.

Mathematical population dynamics models are still in high demand in order 

to link them with disease models such as these in order to come up with proper 

control strategies for both the disease and its vector.

Matrix population models similar to Leslie (1945) models can be used. These 

models have undergone many modifications to include populations structured by 

stages rather than age classes as initially formulated. Caswell (1989) in his book 

on Matrix Population Models addressed the various modifications to the Leslie
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(1945) matrix model to suit the different populations structured according to the 

stage variable other than age. Recently Sandberg et al. (1992) used Leslie’s idea 

to formulate a multiple matrix model for a three host tick that is a causal vector 

of Lyme disease in human populations. Their tick individuals were categorized as 

either in year 1 or 2 and further whether they were fall-fed or spring-fed. This 

model is different from the common Leslie model insofar as the successive entries 

in the population vector do not correspond to successive states in the life of one 

individual but rather there are different possible life histories. These authors 

work out a transition matrix for each month of the year thus in fact forming a 

periodic discrete time dynamical system that is time dependent. The product of 

all twelve matrices gives the transition matrix for one year which then of course 

defines an autonomous system on an annual time scale. Weaknesses in the model 

axe almost obvious even though the authors mention some of them. All of the 

matrices describe zero mortality in any stage except in adults after oviposition or 

non-fed individuals which have infinite mortality. This aspect is expressed in the 

matrices by either a 1 in the diagonal that is individual always remains in the 

same stage or, more generally, by a column sum equal to 1 describing transition 

without death to other stages. Infinite mortality is expressed by a row of zero 

entries. Looking at the schematic representation of the species life cycle it is 

not clear whether some of the states are clearly defined or can be distinguished 

in the field for example fed nymph 1 and fed nymph 2, observed in June, axe 

distinguished by the fact that the first has fed in May-July the year before and the 

second May-June of the present year. However, as the authors say, the model was 

supposed to illustrate the technique which can be further improved to account for 

seasonality and environmental variability in tick dynamics. It is finally important 

to once again mention the general comment by Randolph (1993a,b) that past 

studies on seasonal dynamics of tick species have beed based on relating climatic 

variables to numbers of ticks rather than its underlying demographic rates, a 

rather unfortunate situation since, for example an adverse season always causing 

high mortalities may follow a period of population growth hence associating it 

with high tick numbers which was not the case. Thus caution should be taken
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when designing and formulating tick population models.

In summary mathematical models in the field of vector population dynamics 

and epidemiology are and will remain an important tool for analysis. There is need 

to improve on existing models and to develop more robust ones for this work. This 

kind of task no dought requires a multidisciplinary approach to research work.

1.4 Statement of the Problem
Most litrature so far indicate that matrix population models have been time 

homogeneous and mostly for populations structured according to age. Such mod­

els are along the lines of the classical Leslie(1945) model. In the current study 

we develop a more general model for a stage structured population aplicable to 

any general n stage structured population species. We further develop a continu­

ous time compartmental model for this type of population. Thus the problem is 

addressed for both discrete and continuous class of population models.
In a time dependent model the projection matrix, M (t), at time t, may not 

necessarily be the same as M(t +  1) at time t +  1. Time dependence on the popu­

lation projection matrix is studied in relation to the brown ear tick (J2. appendic- 
ulatus). In this study time dependence is brought about by seasonal variation in 

the population parameters and the difference in vegetation types in the location 

of study, in our case the highveld of Zimbabwe.

We then develop a vector-host interaction model for a general n stage popu­

lation species. The brown ear tick is chosen as an example for the continuous and 

discrete cases. We in addition study the problem of density dependence for a gen­

eral parasite-host interaction system. The null hypothesis that the on host vector 

distribution is asymmetric and is negative binomial is investigated at length. We 
in addition study the stability of the vector-host interaction model along the lines 

of Adler and Kretzschmar(1992).

1.5 Specific Objectives of the Study

The specific objectives of the present study may be summarized as follows:

(i) To examine critically the time homogeneous model for age structured popu­

lations.

25



ii) To develop a more general matrix model applicable to a general n stage struc­

tured population species for both continuous and discrete cases.

(iii) To give ways of deriving the matrix inputs from experimental and field data.

(iv) To develop a general vector-host interaction model for a general n stage struc­

tured population with the brown ear tick as a specific case.

(v) Study the stability of the vector-host interaction model in (iv).

1.6 Significance of the Study
The results of this study will be useful in the understanding of population 

dynamics particularly the brown ear tick. In recent years the rapidly rising costs 

of acaricides and their application, as well as the growing problem of tick resistance 

to acaricides, have stimulated research into new innovative methods of tick control. 

Thus tick population models are also being developed and used to simulate and 

analyse the effects of control strategies, enabling veterinary authorities to select 

the most approriate and cost-effective strategies for given circumstances in the 

field. It will also bring out more clearly the relation between the -discrete and 

continuous population models. The generalized matrix model for stage structured 

populations is more flexible and can be adopted for any population species.

Time dependent matrix models are expected to be more realistic. This means 

that monitoring and control of biological populations can in general be carried 

out with more reliability, especially with the advent of powerful computers and 

softwares.

The results will be useful in the clear understanding of complex vector-host 

interaction models with the aim of qualitatively and quantitatively evaluating 

control strategies of vector populations which are carriers of disease agents to its 

host(s).

It is hoped that, the interpretation of some of the findings will contribute 

significantly in the study of tick population dynamics particularly the brown ear 

tick. Lastly the work will also serve as reference material to researchers and 

students in the field of mathematical population models.
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1.7 Methodology
Data for the study was obtained from international research institutes. These 

axe organisations that carry out research on specific populations for various rea­

sons. This particular study was in close collaboration with scientists at ILRI; the 

International Livestock Research Institute. The population of interest namely the 

brown ear tick(i2. appendiculatus) was generally categorized into a finite number 

of classes in this case according to stages of development. These are indexed by 

1 , . . . ,  n. The classification is general according to some specific attribute say age, 

size, developmental stages and so on depending on the population in question. 

Information concerning the fertility and mortality rates for each class is then ob­

tained over a period of time. From such an information we axe able to derive the 

required population projection matrix. This was done for the brown ear tick for 

different seasons and vegetation types in a location in Zimbabwe.

To validate the model we develop a simulation model using a statistical pack­

age, SPLUS, as described by Venables and Ripley(1994). Computer programs in 

C language were developed to facilitate simulations for the continuous compaxt- 

mental model. Thus computer methods (simulations, graphics etcetera) enabled 

us to analyse and summarize the results for final thesis preparation.
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Figure 1: Stages in the Life Cycle of R. appendiculatus
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DL: Developing Larvae 
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Figure 2: The Questing Process
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CHAPTER II
BASIC AGE STRUCURED MODELS

2.1 Introduction
In this chapter we describe mathematical models for the growth of age classi­

fied populations. First we consider models where mortality and fertility rates axe 

functions of the age of individuals in the population. Also we treat age and time as 

continuous variables leading to the well known Lotka’s integral equation. Then we 

consider the case when the two vital rates (mortality and fertility) sure functions of 

both age and time as continuous variables leading to the McKendrick-von Foerster 

equation. Then finally we consider the case where the vital rates are functions of 

age but with discrete intervals of both age and time. This will lead us to the Leslie 

matrix model which is the principal model discussed in the present study

2.2 Lotka’s Integral Equation

In this section we investigate the consequences of assuming that age-specific 

fertility and age-specific mortality are both time independent when both time, t 
and age, x are treated as continuous variables. Let,

m(x) =number of births or expected number of offsprings per individual aged 

x
m(x)Ax =expected number of offsprings per individual aged between x and 

x -f A x where A x is small

This definition makes no sense for an individual female but it is perfectly reasonable 

if considered as an average over a large population. In effect, it simply replaces 

probabilities for individuals with fractions for whole populations. The following 

assumptions are made about the maternity function m(x)

(a) m(x) is continuous and differentiable

(b) m(x) >  0 for a < x <  /? and

( \ _  n f /  0 <  x <  <*, pre-reproductive ages
m{x) — *or yp < x •< o o , post-reproductive ages
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0 <  a < (3 <  oo where a is the upper limit for the pre-reproductive ages and 

p the lower limit for the post- reproductive ages.

(c) depending on the population m(x) could have a single or more maxima. We 

assume a single maxima the simplest, such as for a human population.

Let,

n(x, t) =the number of individuals aged x at time t (this gives the population 

age distribution)

B(t) =  number of offsprings occuring at time t 

Then it follows that roo
B(t) =  /  n(x, t)m(x)dx (2-1)

Jo
Since it is important to uniquely represent the quantity n(x,tf) in Eq.(2.1) 

we derive the survivorship function or (life table function) in probabilistic terms. 

Once these are understood it will be sufficient to replace probabilities by their 

estimates.

Let,

f(x)dx =  Pro6{dying between age x and x +  dx} (2.2a)

then / f(x)dx =  1 (2.26)

since every individual eventually dies, so that f(x) is a proper density function. If 

u is the maximum attainable age then the upper limit in Eq.(2.2b) is replaced by 

uj. We now define the distribution function for the random variable -Y d e n o tin g  

age at death, by

F(x) = Prob{Xd < x) (2.2c)

and

F'{x) =  f(x) (2.2 d)

where f(x) is defined in Eq.(2.2a). It is also convenient for us to define a death 

rate called the force of mortality from f(x) and F(x) by

fl(x) = f(x)
1 -  F(X) (2.3 a)
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such that for Ax —► 0,

p(x)Ax =  Prob {dying between age x and x +  A x | survival to age x} (2.36)

Now let us assume we start off with a cohort of initial size 1(0). Let,

l(x) =number of individuals in a cohort of initial size 1(0) who survive to at 

least age x;

p(x) =  Prob {an individual survives to at least age x} (2.4a)

then assuming the fractions and probablities are interchangeable it follows

that

F(x) =  1 -p(x) (2.46)

P(x) =  i (x ) /m (2.4c)

which can also be looked at as the fraction of individuals who survive from birth to 

age x. Hence if the survivorship function, /(x), is known then p(x) and F(x) can 

easily be estimated. We state here three important properties of the p(x) similar 

to those possessed by l(x) namely,

i) p(x) is continuous and differentiable

ii) it is monotonically non-increasing

iii) 0 <  p(x) <  1 for 0 <  x <  u and p(u) =  0 where w is the terminal age for any 

individual.

Now at any point in time t we have two groups of individuals namely those 

present at time t =  0 and those born after time t =  0. Thus at time t, all 

individuals older than age t are in the first group, while all those individuals 

younger than age t fall in the second group. It is therefore true that individuals 

aged x > t existed at time t =  0 and were aged x — t. For such idividuals,

Prob {individuals survives upto time *} =  p(x)/p(x -  t) (2.5a)
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which is a conditional probability. In terms of the survivorship function l(x) this 

probability is given by

P(l(x))=l(x) /l(x-t)  (2.5 b)

assuming the population was observed for a long period of time. On the other 

hand individuals aged x < t were born at time t — x > 0 ,  hence,

Prob {individuals survives upto time t} =  p(x) (2.5c)

This probability is equal to the probability an individual survives to age x.
Now in practice it is census data and not life table data that is frequently 

available. Therefore let

n{x — t, 0) =  rio(x — t)

be the number of individuals present at the start of the census(t=0) who will be 

aged x at time t. Then

r , , /  n0(x -  t)p(x)/p(x -  t), t < x
£ [„ (* ,* )]  =  j B ( t _ x)p{l)i t > x

Substituting into the integral equation (2.1) which defines B(t) yields

p(x)

(2.6)

B(t) m(x)p(x)B(t — x)dx + [  ( \ p(x> /  m(x)—------
j t p(x - t)

rio(x — t)dx (2.7)

The product p(x)m(x) in the integrand (2.7) appears repeatedly in the work and 

is therefore given a special notation

xj)(x) — p(x)m(x)

and referred to as the net maternity function. Also from the definition of m(x) 
it is clear that the average number of offsprings born in the past to an individual 

who survives to the maximum reproductive age /? is given by

x.

This is the gross reproductive rate(grr). On the other hand the average number

of offsprings to be born in future to an individual itself just born is given by

x =  R0.

32



This is the net reproductive rate. Now the first term to the right of Eq.(2.7) 

represents births to individuals born after t =  0, while the second represents only 

the births to individuals already present at time t =  0.

Let,

,m - / m(x)
p(x)

p(x -  t)
uq(x — t)dx

Then, (2.7) can be rewritten as,

B(t) = f  il>(x)B(t — x)dx +  g(t) t >  0
Jo

(2.8)

Now assuming that the population has been in existence long enough such 

that the initial cohort of individuals present at t =  0 have died out, (that is no 

individual out of the ?i0(x — t) present at time t =  0 is still surviving) then the 

governing renewal equation reduces to
rOO

B(t) =  /  m(x)p(x)B(t — x)dx 
Jo
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ii'(x)B(t — x)dx- Jo
(2.9)

and

E[n(x,t)} = B(t — x)p(x)

Equation (2.8) is a non-homogeneous integral equation of the second order with 

band limited kernel since ip(x) ^  0 for a < x < while Eq.(2.9) is homogeneous. 

We now describe the solutions to these equations.

2.3 Solutions to the Integral Equations
We consider the solution first to equation (2.9) assuming exponential growth 

then secondly the solution to equation (2.8) by method of Laplace Transforms.

2.3.1 Solution by Elementary Methods
Let us assume the homogeneous form of the integral equation (2.9) admits 

solutions of the form

B(t) = Qexp(rt) (2.10)

Substituting in Eq.(2.9) we get the expresion

[V
Qexp(rt) =  Qexp(rt) I exp(—rx)ip(x)dz

J a
IX
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which on simplification reduces to

1 = [  e~rziHx)dx (2.11)
J Or

where the limits on the integral have been changed because t/>(x) is nonzero only 

in the interval a <  x < 3 on /?+. Equation (2.11) will in the sequel be referred as 

the characteristic equation. Now define ^(r) such that.

^(r) e rxily{x)dx

so that the characteristic equation now becomes

V?(r) =  1 (2.12)

Now let us investigate the limiting properties of the function r —► y?(r). It follows 

that the function possesses the following properties

i) </:>(r) —► 0 as 7* —> +oo

ii) ip(r) - m x ) as 7’ -> —oo

iii) ip{r) is monotonically non-increasing because,

<*p(r )
dr f .r exp( — rx)ip(x)dx <  0 (2.13a)

Thus we have shown that the integral equation has exactly one real root say 

r =  ru such that ^ (n )  =  1. We also observe from the definition of tp(r) that 

<p(0) =  R0, the net reproductive number. So it follows that, rj <  0, =  0, >  0 

according to whether Rq < 1, =  1, >  1.

Next we show that all other roots ? j =  2 . . .  of the integral equation which 

appear in complex conjugates are such that Re(rj) <  7q where Re(rj) denotes the 

real part of rj.

Let rj = u + iv, u,v real, v > 0 for some j  ^  1. Substituting into the 

characteristic equation (2.11) and equating real and imaginary parts leads to

e uxcos(vx)^(x)dx =  1 (2.136)
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j sin(vx)ii?(x)dx = 0 (2.14)
J o

If Eq.(2.14) holds for i\ it also holds for —t\ so fj = u — iv is also a root of 
the characteristic equation. Since cos(vx) < 1 then from Eq.(2.13b) we see that 
u < i'\. Hence rq is greater than the real parts of any of the complex roots. 
This is from the comparison of Eq.(2.13b) with Eq.(2.12) or more explicitly with 
Eq.(2.11). The conclusion here is that if cv < (3 < oo that is a finite fertile interval 
then there are infinite number of roots to the characteristic equation with only 
one real root while the rest appear in conjugate pairs of complex roots.

Since the renewal equation (2.S) is linear, it follows that the solutions are 
linear combinations of the form

oc
=  (2-15)

>=1

But the real root is dominant so that for large B(t) will tend asymptotically 
towards

B(t)  =  Q\er,t" (2.16)

Before we give detailed interpretation to Eq.(2.16) we consider the solution to 
Eq.(2.9) by method of Laplace transforms.

2.3.2 Solution by Laplace Transforms
We begin by first defining the Laplace transform of a function h(t) in general

r OO

L{h(t)}  = h‘ (r) = /  e~rt h(t)dt (2.17)
Jo

while the Laplace transform of the convolution of two functions is given by

L{h( t ) *f ( t ) }  = L

= h*(r)f*(x).  (2.18)

Now multiply the renewal equation (2.8) through by e~rt and integrate with re­
spect to t from zero to infinity. This gives

B*(r) = g*(r) + B*(r)r/>*(r) (2.19)
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where B*(r), g*(r) and ^*(r) are Laplace transforms of B{t), g(t) and xp(x) re­

spectively. Thus solving for B*(r) in Eq.(2.19) gives

B*(r) = 9 '(r)
1 -  V*(r)

(2.20)

Now note that,

**(r) =  /  
Jo

e rz ip(x) dx =  <p(r) =  1
which is precisely the characteristic equation (2.12) whose roots are defined as 

r =  n , 7*2, ___ Hence it is possible to write

1 -  0(.r) =  (r -  n )(r  - r 2)(r -  r3). (2 .21)

and if all the roots are assumed to be distinct, a partial fraction expansion of 

Eq.(2.20) yields

g*{r ) Qi , Q2 Q 3--------------- = --------------1-------------- 1------------
1 - y * ( r )  r - r  1 r -  r2 r -  r3

(2.22)

where Q j, j  =  1 ,2 , . . .  are real constants. In order to evaluate the numerators 

in Eq.(2.22) we express as

(2.23)

The second term above goes to zero, but the first term has to be evaluated by 

l’Hospital’s rule as

9*(ri)
dif)* ( r) 

dr
r=rj

Jnx  e - r<‘g(t)dt 
J0°° xe~ri X/ip(x) dx

So exp(-rjt)g(t)dt 
x exp(— rjx)xp(x) dx

(2.24)

We change the limits in the last expression in Eq.(2.24) because it is assumed that 

individuals will start reproducing when they attain age a and stop reproducing
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at age /?; that is the maternity function m(x) >  0 and it is positive only in the 

interval a < x < (3. Finally we make the following observation before inverting 

B*(r) to get B(t) namely;

L{Qjexp(rjt)} =  Qj (  exp(-rt)exp(rjt)dt = —®3 -
Jo r ~ rj

hence,

L~' { 7 Z 7 " } =  exP(rJt'>

It therefore follows from Eq.(2.22) that

oo ^  oo

B(t) =  L~'{B‘ (r)} = ^ Q , e x p ( r ><) (2.25)
>=1 Vj j= 1

which is same as what was obtained in Eq.(2.15) but the current derivation is more 

explicit.

2.3.3 Asymptotic behaviour of the dynamics
Notice that Eq.(2.25) and thus Eq.(2.15) may be written as

B(t) =  Qi exp(r,<){l +  eXp(r-’ “  r' ^ }

But we recall that Re(i'j) < r\, j =  2 ,3 ,—  Thus

lim exp{(rj -  rx)t} =  0, j =  2 ,3 , . . .
< — oo

which means that

B(t) —> Q\ exp(ri^) as t —> oo (2.26)

where Q\ is obtained from the general formula for Qj as

fa exp(-rtt)g(t)dt 
x exp(—r\t)\p(x)dx

Now since from Eq.(2.6)

E[n(x,t)} =  B(t -  x)p(x), t > x
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then the asymptotic behaviour of the expected population density is thus given by

E[n(x, 0] —1> Q\ exp(n#)[exp( — rix)p(x)] as , t —► oo (2.27)

Equation (2.27) above tells us that in the persistent solution the time and the 

age behaviour separate in the long run. We notice that the persistent age distri­

bution is a product of an exponential component and the survivorship function. 

Note that n  is the leading root of the characteristic equation (2.11) or (2.12). 

Thus as time elapses the age stucture or distribution grows exponentially at all 

ages. Recall that if the net reproductive rate R0 =  1 then the dominant root r\ 
takes the value zero. We say that the population reaches a state of equilibrium as 

t —► oo. In this case therefore the age-structure is proportional to the survivorship 

function and the total population size remains constant.

If the net reproductive rate Rq > l (Ro < 1) then the dominant root is 

correspondingly rj >  0 (7*1 <  0). This is the case of stable population in the 

limit as t —*■ 00. Relative to the stationary case, here the population age struc­

ture has an excess of young(old) individuals, hence the population as a whole 

increasesfdecreases) as time passes.

2.4 Continuous Age Structured Models
In this section we seek to derive a partial differential equation describing the 

evolution of population density n(x. t) with respect to age and time where both age 

and time are taken as continuous variables. This is supposed to be an extention 

of the model derived in sections 2.2 and 2.3 where both natural mortatility fj,(x) 
and fertility m(x) were assumed functions of age but not time.

Again let rt(x,t) be the dependent variable denoting the age density at time 

t. Then n(x,t)dx is the number of individuals aged between x and x-\-dx at time t 

or simply individuals in the age interval [x, x -f dx). In this section we assume that 

the mortatility is n(x,t) and maternity function m(x,t) are continuous functions 

of both age and time. Clearly the total population N(t) at time t is therefore 

given by puj
N(t) =  /  n(x,t)dx (2.

Jo
where u is the maximum possible age attainable by an individual in the population.
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Next we wish to derive the equation of conservation of individuals in the 

population as time passes. This depends on the fact that in one unit of time, an 

individual in the population either ages by one unit of age, or else it drops out of the 

group of individuals under study. It is worth mentioning here that in more complex 

life cycles it might be more realistic to consider other variables as providing better 

information on the vital rates other than age. For example in stage structured 

populations stage specific vital rates might be of more interest than age specific 

ones. Better still a stage/age structured population model might be more realistic 

in this particular case. We mention this here because in the current work as 

earlier mentioned emphasis is placed on stage structured population models which 

we believe are a generalization of age structured ones. In particular we concentrate 

on vector populations such as ticks which are agents of animal diseases for example 

R.appendiculatus which is an agent for East Coast fever.

We thus define the derivative operator D of the population age density n(a:, t) 
by the expression

Dji(x, t) lim
o

n(x +  St,t +  St) — 
Si

(2.29)

where St denotes a small increament of time, t such that an individual aged x at 

time t will be aged x 4- St at time t +  St. Now Eq.(2.29) can be written in a more 

familiar notation as follows: Add and subtract n(x +  St,t) on the right hand side 

and then take limits to obtain

_  , n(x 4- St,t +  St) -  n(x +  St,t) +  n(x +  St,t) -  n(x,t)
Dn(x,t) =  lim ---------------------------------------- 7T-------------------------------------------

6t^ o ot
n ( x  + St,t + St) -  n(x + St,t) n(x +  St,t) -  n(x,t)

=  l i m ----- -------------------------------------------+  lim -----------------—----------------6t—> 0 St 6t—>0 St
_  dn(x,t) dn(x,t)

dt dx

Now as in Eq.(2.3a) and Eq.(2.3b) we have that

fi(x,t)St =  Pro6 {dying between ages x and x +  St \ survival to age x at time t}

(2.30)

The population exposed to risk of dying at age x at time t is n (x ,i); thus the 

number of individuals who die between age x at time t and age x +  St at time
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n{x. t) — n{x + St, t +  St) =  fj,(x, t)n(x, t)St (2.31)

assuming no births. Hence

n(x +  St, t +  St) = n(x, t) — fi(x, t)n(x, t)St (2.32)

Equation (2.32) states that the number of individuals at time t -f- St is equal to the 

number present at time t less the number who die in the time interval [£, t «+■ St). 

Rearranging Eq.(2.32) then dividing through by St and taking the limit as St —> 0 

yields

Dn(x,t) +  f.i{x,t)n(x,t) =  0

t +  St is therefore given by

or
di i(x.t) 

dx
dn{x,t) 
~ d t +  n{x,t)n(x,t) =  0 (2.33)

where the operator D was defined in Eq.(2.29). Equation (2.33) is called the - 

McKendrick-von Foerster equation expressing the population dynamics under the 

process of aging and mortality. However since individuals age zero (new births) 

at time t are not accounted for in the equation we introduce this as a boundary 

condition or the birth law as

n{0,t)

and the initial condition as

m(x,t)n(x,t)dx =  B(t) (2.34a)

n(x, 0) =  no(z) (2.346)

Most of the time, it is assumed that the time dependence of both fi(x, .) and the 

maternity functions are related to the total population size at time t and not to 

time itself, such that the mortality and fertility functions are now in the form 

jj.(x,N(t)) and m{x,N(t)) where N(t) is the total population at time t defined in 

Eq.(2.28). One can say that the functions depend on age x, time t and the total 

population N(t).
In this case the analog to equation (2.6) is

jpr ( .X1 f n0(x ■ i)7r(x i, x, 0), t < x
E W ^ ) \  = \ B{t -  x)n{Q,x,t -  x\ t > x (2.35)

where the function n is a generalization of the survivorship function defined in 

Eq.(2.4a). Next we consider the case of discrete time/age population model.
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2.5 Discrete Age Structured Models

The requirements to the derivation of this model are the age specific vital 

rates obtainable from life table data. The life table in a sense deals only with 

death, as individuals in a cohort advance in age but in a broader manner it can 

be taken to include the maternity function, m(.r) to handle new entrants through 

reproduction. If the life table is not available then information on vital rates has 

to be estimated through census data or through a hypothetical functional relation 

between these rates and age as time passes.

2.5.1 The Survivorship Function

In this section we wish to explicitly show the relationship between the survival 

function p(x) and the force of mortality p(x) defined in Eq.(2.2a)-Eq.(2.3b). From 

the equation

F(x) =  1 ~p(x)

it follows that

p'(x) = -F'(x)  (2.36)

where .F(;r) is as defined in Eq.(2.2c). Then making the substitution of Eq.(2.36) 

in Eq.(2.3c) we get

/ i(x )
-p'(x)
p(x)

(2.37)

keeping in mind that

f(x) =  F'(x) =  - p ’(x).

Thus

/*(x ) =  - ~ f c l n p ( x ) (2.38)

assuming p(x) is a function of x alone otherwise we would replace the right hand 

side with its partial derivative analog. Solving equation (2.38) we obtain

p(x) =  exp (2.39)
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Therefore,

Prob{an individual survives to age x +  Sx | survival upto age x}

p(x ■f  6x)

=  exp

p(x)

/i  +  6x
ft(r )dr

(2.40)

and if we assume p(x) =  f.i in the age interval [x,x +  Sx) then Eq.(2.39) becomes

P rob{ an individual survives to age x +  Sx | survival to age x}

=  e~^x (2.41)

Thus equation (2.6) therefore becomes

Einlx Ml =  /  " o('C “  ° eXp[_ # <  x
\B(t -  r)exp[- j* p(T)dr)], t > x

(2.42)

If we have evidence that the vital rates are both age and time dependent then //(.) 

is replaced by the appropriate function. From Eq.(2.39) it implies that we can 

write the characteristic equation in Eq.(2.11) as

1 =  J  e rzexpJ- j  p(r)dT m(x)dx (2.43a)

which was shown to posses exactly one( simple) real root r =  /q , and any other root 

is necessarily complex. We remark that the kernel of this characteristic equation 

is given by

k(x) = m(x)e (2.436)

therefore equation (2.43a) can be written more elegantly as

1 =  / k(x)e rxdx. (2.43c)
J Q

Thus if l(x) is the continuos age life table function and the initial value is 1(0) then

l(x) = 1(0) exp J  f.i(T)dr
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where /(x) was defined earlier on. The function p(x) could be interpreted as the 

“instantaneous” death rate or force of mortality or the limiting value of the death 

rate when the age interval becomes very small.

Next we wish to formulate the discrete time matrix population model.

2.5.2 Formulation of the Matrix Model
A discrete version of the Lotka-Sharpe-McKendrick model was presented by 

Leslie(1945) which was also independently developed earlier by Lewis(1942). Con­

sider a population of size N(t) at time t that is closed to migration, and whose 

every individual is capable of reproducing. Let the population be composed of s 

distinct age classes of equal width say 6, such that age class i corresponds to the 

interval (i — 1 )h < x <  ih. The number h is defined appropriately depending on 

the maximum age, u, which an individual may possibly attain or on the life cycle 

of the population. Let

rii(t) denote the number of individuals alive in age class i at time t

Pij(t) denote the probability that an individual in age class j at time t will 

transit to age class i at time (t +  1) or after one time interval, i,j =  1 , . . . ,  s

denote the reproduction rate for an individual in age class j  in the time 

interval t to t 4- 1 (the offsprings who survive the interval join age class 1 at 

time t), j  =  l , . . . , s

For simplicity we denote pij by pj(t) and f\j{t) by j =  1 , . . .  ,s.  As­

suming the width of a time interval equals h, the width of one age interval, then

rii(t +  1) =  i =  2 , . . . , s  (2.44a)

and
3

ri\(t +  1) =  (2.446)
i=i

In a population where individuals can be classified into male or female then a sex 

ratio p : 1 — p of male:female say, can be used to determine the number of each 

sex in each age class. If we let

n(t) =  ( n i ( f ) , . . . ,n a(<))
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denote the population distribution at time f, ora vector of dimension s by 1 whose 

i-th component is the number of individuals alive in age class i at time t. The s 

equations in Eq.(2.44a) and Eq.(2.44b) can be written compactly more in matrix 

notation as

n(t +  1) =  M(t)n(t)  (2.45)

where M(t)  is given by

/ / . ( « ) h( t ) h(t) • • • fs- 1
P\{t) 0 0 0 0

M(t) = 0 P2(t) 0 0 0

V 0 0 0 . . .  Ps-l(t) 0 /

(2.46)

Obviously M(t) is square matrix of dimension s and f i ( t )  > 0 because not all 

age classes are capable of reproducing. It is also clear that 0 <  P i { t )  < 1 ,  i =

1........ 5 -1 .  Now equation (2.45) can be used recursively to generate the population

distribution T time periods later as

T - i
n(t +  T) = || M(t +  h) n(t) (2.47)

U=o

where the matrix product in the square brackets is explicitly written as

M(t + T -  l)M(t +  T -  2 ) ..........M(t +  l)M(t) (2.48).

Given the matrix elements are time invariant then equation (2.47) becomes

n(t +  T) =  M Tn(t) (2.49)

assuming M  and n(t) are given. The main statistical problem in both the time 

dependent and time independent population systems is in the estimation of the 

matrix entries. This problem will be addressed in detail in later chapters. In the 

the current section our interest is to show the relationship between the continuous 

age and/or time models derived in sections 2.3 and 2.4 and the current model. 

The analysis of the homogeneous or time independent matrix model will be dealt 

with at length in chapter III.
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Now consider the aging equation in Eq.(2.44a) where the survival probability, 

is a function of both age and time. Now define

8rii = rii(t + 1) — rii(t)

that is
6nl = pi-iTii-iit) -  iii(t) (2.50)

If we consider an infinitesmal value of h or time step then from the definition of 

the force of mortality, we can write Pi-i(t) as

Pi-i(t) % 1 -  p(i -  l ,t )

then substituting in Eq.(2.50) we obtain

8m =  [1 -  p{i ~ M )]n*-i(*) “  n»(t )

and by rearrangement of terms we finally obtain the expression

6 m  +  [rii(t) -  m-i(t)\ =  -/*(* “  (2*51)

When we examine Eq.(2.51) we see that the first term on the L.H.S is change in 

numbers with respect to time while the second term in square brackets denotes the 

change in nt(t) with respect to age. Hence we can rewrite the above expression as

^  ^  i -  l , i K _ ,  (<) (2.52)
ot ox

and letting St -> 0 and Sx -* 0 yields the time continuous population growth 

equation in Eq.(2.33), the McKendrick-von Foerster equation, showing the process 

of aging and mortality where age and time are both continuous variables.

It is important to understand the relationship between the continuous and 

discrete time population models because they often go hand in hand or supplement 

each other when developing other related models such as disease transmission or 

epideomological models. Thus it is important to have a sound population model 

before we could think of formulating a disease transmission model. For example to 

build a model for a vector transmitted disease model it is obviously important to
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have a sound model for the vector population and possibly for the host population. 

In chapter IV we derive a vector-host interaction compartmental model foi the 

brown ear tick or R. appendiculatus a vector for Theileriosis a disease for cattle in 

most parts of Africa.

Now the type of population under investigation in terms of its birth pattern is 

very important especially in the parametrization of the matrix elements. We now 

consider two types of populations according to their birth patterns namely birth 

flow and birth-pulse populaions and how to estimate the matrix elements for such 

types of populations.

2.6 Life Table Parametrization of the Matrix Model
The aim in this section is to find expressions for the matrix parameters /,- and 

pi from the life table survival function l(x) assumed to be continuous with respect 

to the age variable x.

2.6.1 Birth Flow Populations
Given an individual is in age class i at time t then such an individual will 

definitely enter age class i +  1 at time t +  1 if it survives that time interval. This 

is so if we assume that the projection interval [ty t -f-1) is equal to the width of one 

age class. Let the z-th age class include all individuals with ages in the interval 

i -  1 <  x < i and assume that l(x) and p{x) are defined as in Eq.(2.4a), as 

continuous functions of x.
Then since by definition p(x) = l(x)/l(0) it follows that an estimate of p{ the 

probability that an individual in age class z, ({ages# : i — 1 <  x <  2}), survives to 

age class i +  1, ({agesa: : i < x < i +  1}) will be estimated by

„ _  l{i) +  Hi +  1)
Pi ~ l ( i - l )  + l(i) (2.53 o)

which on dividing the numerator and denominator of the right hand side by /(0) 

yields
v(i) v(i 4- 1)

(2.536)
. __ p(i) +p(» +  1) 
Pt ~~ P(̂  -  1) +P(*)

Another alternative method is to calculate the probability of survival for each age
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x then average over the entire age interval. This method gives

l(x +  1)

l ( x )

dx

p(j + 1) 
p(*)

dx

which is discretely approximated by

_  1 ( P(0 , P(» + l h
P' 2 \p(i — 1) p(i) ) (2.54).

Formulae such as in Eq.(2.53a), Eq.(2.53b) and Eq.(2.54) are important because 

often values of the function p{x) are only available at discrete points. 0 , l , 2 , . . . , i  — 

More alternative methods of estimation of the matrix elements are 

going to be considered in detail in chapter III where the life table need not be a 

pre-requisite.

Now to be able to estimate the / ' s  consider equation (2.44b) which states

7l\(t +  1 )  —

i=i

We wish to find an estimate for / ; ,  i. =  1, . . .  , s from the maternity function m(x) 

and the survivorship function l(x).
Let B(t, t +  1) denote the total number of births recorded in the time interval 

(t,t +  1) and n(x,t) possess the same meaning as before, then

/
oo r <4* 1

J| m(x)n(x,u)dudx (2.55).

Assuming n(x, t) is known only at times t and t + 1 then B(t, t +  1) can be expressed 

as
n(x,t) +  n(x,t +  1)

m[x)\ 
ro

B(t,t +  1)= f  m ( i ) ( dx (2.56).

Now suppose that within an age interval { x  : i — l < x < i } ;  the functions m ( x )

and n ( x , t )  are fixed at m i  and rii(t) respectively then



Now recall that

nt(t + 1) = p,_i 7i,-i * > 2

then it follows

1 00
B(t,t +  1) «  +^ ,-171^-1(0)}

“ «=i

=  i f  r»,r*,(i) +  m2(n2(t) +  p i« i(0 )  +  m3{mz{t) + p2{t)) +  . . . }

1 00
= +P*m*+i)n*(i)} (2.58)

i= 1

and by comparison of Eq.(2.58) with Eq.(2.44b) it follows that an estimate of the 

fecundity rate / ,  is given by

fi =  l/2(7n, +  p,m ,+1) (2.59)

However B(t,t+  1) is not quite the same as rci(£-f-1) because some of the members 

in B(t, t +  1) might not survive to time t +  1. Individuals born just after time t are 

exposed to risk of mortality for a whole projection interval in order to be included 

in n\(t +  1) while those born just before time t +  1 are exposed to risk of mortality 

for only a negligible amount of time, and therefore have a high chance of being 

included in in ni(* + 1 ) .  We therefore need to multiply the R.H.S. of Eq.(2.59) 

by p(0.5h), the probability of an individual surviving to age x =  0.5h from birth 

assuming deaths are uniformly distributed over the rate interval [0, h). In case p(x) 
is only available for integral values of x; 0 , 1 , . . . ,  then p(0.5h) can be estimated 

by method of interpolation between the values p(0) and p{k).

The intuitive meaning of Eq.(2.59) is that a typical individual in age class i 
produces offsprings at a rate that is the average of the rate for that age class and 

the next age class, the latter weighted by the appropriate survival probability. The 

offspring has to on average survive for one- half time unit for it to be counted in 

the population at time t +  1. An alternative interpretation being that an individual 

aged i -   ̂ spends half of the time interval producing offsprings at rate m, and if 

it survives, enters the next age class and produces offsprings at the rate 771;+1 for 

the rest of the time interval.
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2.6.2 Birth-Pulse Populations
In this type of population, the functions m(x) and p(x) are discontinous. The 

age distribution at census time and formulae for p,- and / ,  depend on when the 

pulse of breeding occurs relative to the census time. I f 0 ( O < 0 < l )  denotes 

the fraction of a time interval that elapses between the pulse of reproduction and 

census, then at actual observation time, those who were age x will be age x +  9 
and therefore the age distribution at census time which we denote by ncensus is 

give by
t

^ c e n s u s  =  (  ^  I  . . . , 2 1 +  9 , 1  " f  , f l m a i )

where amax denotes the maximum possible age an individual can attain. Remem­

ber we had defined individuals of age class i to be all those individuals aged x 
such that {(i — 1) <  a: <  i} hence these individuals are at census time assigned 

age i — 1 +  0.
Now either 9 —> 1 corresponding to a pre-breeding census or 9 —> 0 corre­

sponding to a post-breeding census. Thus

Pi =  Pro6{individual transists to class i +  1 at t +  1 | survived to class i at t}

=  Prob{survival to age i +  9 | survival to age i — 1 +  9} 
_  p(i +  9) 

p(i - 1 + 9 )
(2.60)

since by assumption individuals in age class i at reproduction time are assigned age 

i — 1 +  9 at census time. To derive birth-pulse fertilities we require /,-s satisfying 

equation (2.44b) with the understanding that all births within the time interval 

(t ,t+ l)  occur at time t +  1 — 0, thus we can write

B(t,t + l) =  B(t + l - 9 )

and u>
B(t +  1 -  6) =  (2.61)

l—l
where

mi=the reproductive output of an individual of age class i upon reaching the 

2-th birth day (the individual is aged i — 1 +  9 at census time)
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4>i=-the probability of survival from age i — 1 + 8 to age i.

Such individuals have to survive a fraction 1 — 8 of a time interval in order to 

reproduce; hence

(2.62)

because these individuals have to survive a remaining fraction, 1 — 8 of an age class. 

Detailed information on seasonal mortality rate within the unit time interval (say a 

year, week, day etcetera depending on the population species) can be useful. Now 

once reproduction has occured, the offspring must survive a fraction, 8, of time 

unit for it to be counted in ri\(t +  1). The probability of such an event is given 

by p(8) according to the definition of the survival function p(x) for continuous 

age variable x. If p(8) cannot directly be obtained, then it can be estimated by 

interpolation between available values at inegral values of p{x) namely p(0) and 

p( 1). Thus substituting Eq.(2.62) into Eq.(2.61) we deduce that,

Si = P(0)p] )jni (2.63)

and depending on whether dealing with a pre-breeding {8 —> 1) or post-breeding 

(8 —► 0) census;

/ i  =

Pinrii, v
p(l)m», 0

0
1 (2.64)

To illustrate the difference between birth flow and birth-pulse populations we 

consider a mortality or life table for the larval stage for R. appendiculatus
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SOURCE: From paper by Newson et al (1984),’ International Journal for Par­
asitology Vol.14 No.5 483-489

Table 1: Life Table Data For R.Appendiculatus Larvae

Age(x) 4 5 6 T 8 9

p(x) 1.000 0.724 0.505 0.091 0.028 0.000

Now using Eq.(2.53) the formula for p, for birth-flow population and Eq.- 

(2.60) for a birth pulse population gives pi values for i =  5 ,6 , 7 ,8 ,9 . We take a 

one month age and time interval. Results are tabulated in table below

Table 2: Age Specific Survival Probabilities for Two Reproduction Patterns.

Birth Flow Birth Pulse Birth Pulse

i Pi
0t£ P i ( 9  1)

5 0.713 0.724 0.698

6 0.485 0.698 0.180

7 0.200 0.180 0.308

8 0.235 0.308 0.000 -

9 0.000 0.000 -

Notice that in the pre-breeding census (9 —► l),pg =  0 because in the 9th 
age class, at the time of census individuals would be beginning to attain their 9th 
birth day but the mortality table indicates that none of them survive to do so. If 

considered as a post-breeding census (9 —► 0),ps >  0 because individuals in the 

9th age class have just attained their 8th birthday.

The table tells us that if such data was available for the complete life cycle 

for the species then the transition matrix could completely be parametrized. The 

f's are calculated from the m(x) functions using formulae (2.64).

To wind up this chapter we refer to the matrix equations (2.47) and (2.49) 

for the time dependent and time independent matrix elements. The fact that we 

can project forward the number of individuals in each age class, is an advantage of 

the matrix model over the continuous age/time population models in sections 2.2 

to 2.4. We can follow the dynamics of the various age classes separately. Another 

advantage with the model is that other modes of classifications such as size, stage
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etcetera can be treated in a similar manner as the age classification and useful 

conclusions about the population dynamics derived. The other advantage with 

the discrete time/age matrix model, especially in the present computer age is that 

it can easily be computerized hence allowing simulations to be carried out on 

population dynamics to compare with observed information.

Finally it is seen from table 2 that the type of birth pattern of a popula­

tion is crucial in the estimation of the matrix elements. It is clear that a wrong 

classification of the population greatly affects the estimates.
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CHAPTER III
TIME HOMOGENEOUS M ATRIX MODELS

3.1 Introduction
In this chapter we consider the analysis of the case when the elements of the 

population projection matrix (rriij(t)) in Eq.(2.46) of chapter 2 are time indepen­

dent or time invariant. This means that the fertility and mortality rates (vital 

rates) are constant over time. However in real life situations this is not exactly 

true for any given population species. The rates are bound to vary with time 

due to the influence of several factors such as environmental factors which in turn 

change with time. However the validity of time homogeneous models to study 

population dynamics lies in the distinction between forecasting future population 

structure and projecting the structure given the set of prevailing current condi­

tions. The categorisation criteria depend on the population species and biology in 

question. For example when studying human populations, classification according 

to age is more appropriate. When dealing with tree populations size classification 

may be more appropriate than age classification while if it is an insect/arthropod 

and sometimes plant populations classification according to developmental stages 

is naturally the most suitable. A more complex mode of classification is that in­

volving a combination of more than one classification attributes say age and stage 

of development. We shall attempt to present a more general mode of classification. 

In order to do this we will refer to the various classes in which an individual in 

the population may belong at time t as simply states or stages.

It will be shown that as t oo the population structure n(t) becomes pro­

portional to the stable population structure. The concept of strong and weak 

ergodicity is brought out clearly. Finally we discuss the problem of estimating the 

matrix elements under various assumptions that of time homogeneity being one of 

them.

3.2 The Model

Consider a population composed of s age classes 1 , . . . ,  s. If the width of a 

typical age class is /i, then the i-th age class is composed of all those individuals 

or organisms with age x in the interval (i — l)h < x < i h. We also consider time
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scale in units of length h such that in real sense a time interval {t,t 4-1) means the 
interval [t,t. -f- h). Let, the time independent(invariant) fertility and survival rates
for individuals in the i -tli age class be /, and p, respectively for i = l , . . . ,  .s. Then 
the population disribution vector at time t. is given by

nt = • • • » ns(t)) (3.1)

where n,-(0 denotes the number of individuals in age class i. It is important to 
note that /, > 0 and 0 < p, < 1. That is an individual is either fertile or not 
fertile at all (/,• = 0) and if the individual survives the interval [t,t +  1) then it has 
to transit to the next age class. From these definitions it is clear that the number 
entering the lowest age class(offsprings) is given by

3

Tl\{t + 1) = 'y  ̂ni{t )fi • (3.2)
i = l

and nt(t + 1) is given by

Ti{(t + 1) = pi-i i = 2, . . . , s .  - (3.3)

Equations (3.2) and (3.3) can be written in matrix notation as

n(t + l) = M n(t) (3.4)

where the elements of the matrix M  are given by

f />, i =  1 j  =
mij = l Pj, J = 1 1 =  2 , . . . ,  6 (3.5)

l 0. elsewhere

The matrix M  above is referred to as the complete time homogeneous population 
projection matrix. It is called complete because it caters for the entire population. 
It has elements (non-zero) in the leading subdiagonal and in the first row. It is 
square of dimension .s and it is a non-negative matrix meaning m,y > 0 for all 
(L j ). It is also worth noting at this point that given n(t), then the distribution 
or structure after r time periods is given by

n(t + t) = M Tn(t) (3.6)
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If we set t =  0 then the above equation becomes

n(r) = M Tn(0), r — 1. 2, . . . ,

which shows that if we start observing the population at time zero then, the 

structure at time t is

n(t) =  M ln( 0) (3.7)

The column vector n(0) is known as the initial population vector. We stress here 

that the structure of the the matrix M  depends on the population species under 

investigation and other examples will be considered later. However there is no loss 

of generality in sticking to age classification.

It is not really necessary to deal with the complete population projection 

matrix, because if the fertility rates are such that; f j >  0, i =  1 , . . . ,  k — 1; / *  >  0 

and fj =  0 for j =  k + 1, A:+  2 , . . . ,  s then the matrix M  can be partioned as follows

M = ( Ab  g )  (3.8)

where the elements of the matrix A are

( fj i ? 11 j  1, • . . ,  k
d\j =  \ Pj, j — 2 2,

1 0, elsewhere
(3.86)

This means that the set of age classes can be partioned into pre-reproductive and 

reproductive age classes which is the set Si =  { 1 , . . . , / : }  and post reproductive 

age classes which is the set S2 =  {fc +  1,. • • >5} with 1511 =  k and IS2I =  s — k, 
where |S| denotes cardinality of the set S. Another observation as a result of this 

partitioning is that

Det M  =  0 (  J I  Pi j  = 0
M=1 '

hence M  is singular. The most important conclusion out of the above partitioning 

of the age classes is that the matrix M  can now be partitioned symmetrically as

M  =
A O 
B C (3.9)

where
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A is kxk with its only non-zero terms in the first row and along the main 

sub-diagonal

B is (s — k)xk with all its elements zero except in the upper right corner 

C is (5 -  fc)x(5 -  k) with its only non-zero terms in the upper right corner

and

O is kx(s — k) matrix of zeroes.

In the same manner we can write the population distribution vector as 

where
7?i(0 =  (ni(<) ,. . .  ,nk(t))'

a n d

By repeated multiplication we can show that

A1 0 \
Bit) C<)

where t — 1

i — O

(3.11a)

(3.116)

Therefore given n(0) ,

n ( < )  =
ni(t)
n2(t)

A‘ O \ / n , ( 0 )  
B{t) c v  w ° )

(3.12)

which implies that,

n,(t) =  A ‘ ni(0)

and

n2(t) =  -B(*)ni(0) +  ^ ^ 2(0)

(3.13a)

(3.136)

We notice that from Eqs.(3.13a,b) the components of n\(t) are independent of 

n2(0) while those of n2(f) are dependent on ni(0). This simply means that the 

population in the reproductive phase does not depend on the population past
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the reproductive phase. The converse is obviously not true. Infact intuitively 

C3~k =  O so that M f, t > s — k has all its last s — k columns equal to 0. This 

is because once an individual enters the post reproductive phase of the system it 

is already of age >  k units and the maximum possible attainable age is s thus it 

follows that this individual will remain in the system for at most s — k units of 

age hence the result.

What this means is that once the system has been in operation for s units of 

time the effect of the post-reproductive sub-cohort of individuals is immaterial and 

can therefore be forgotten as far as system renewal is concerned. The matrix A 
remains the only one which is principally of interest because it involves the set S\ 
of the pre-reproductive and reproductive age classes. The matrix A can explicitly

be written as
/ / « h h fk-l fk \

Pi 0 0 . . . 0 0
0 P2 0 . . . 0 0
0 0 P3 . . . 0 0

 ̂ 0 0 0 . . . PJfe-1 0 )

such that

Det A ( - l ) k+'piP2.--Pk-ifk

( - i ) t+i p.'jft, pi > ovj.

(3.14a)

(3.146)

Therefore as opposed to matrix M , A is non-singular hence it possesses an inverse. 

Thus given an initial age distribution vector n(0), we can in addition to the for­

ward series { A ‘ n(0)}, also consider the backward series namely { A “ en(0)}, t =  

1 ,2 ,—  In practice the latter does not find much use hence our attention will 

be focussed more on the forward series as time elapses. The matrix A will in the 

sequel be referred to as the population projection matrix.

It is very much dependent on the population species and the classification 

criteria used. For example considering a tree species with k size classes, then an 

individual in size class i at time t may by time t +  1 have moved to the next class, 

i +  l, remained in the same class or died. Let p,, 7r, and 1 — pt — 7r,- denote the
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probabilities of the above events. Then for such population species the matrix -4 

is given by

(aij) —

is given by

A =

( TTl +  f\ , for i = j =  1
i = 1 j =  2,

I 7T«, i —j = 2 , . . .
y Pj, j = i — 1 i -= 2........ Ar

luction rate for the ith size class. Ii

+  / i /2 h . . .  fk- 1 fk \
P\ *2 0 0 0
0 P2 71-3 0 0

0 0 P3 0 0

0 0 0 . . .  PIt_ 1 TTfc /

(3.15a)

(3.156)

Such kind of classification is or would be appropriate for a population model meant 

for the management of renewable resources such as forests. The aim would be to 

develop a sustainable harvesting strategy or policy. The question of appropriate 

classification will be revisited in section 3.4 for a general stage structured popula­

tion such as insect or arthropod populations.

In order to understand and analyse the time homogeneous model fully we 
study some of the relevant definitions and theorems in matrix algebra in the next 

section.

3.3 Properties of the Population Projection Matrix
From the discussion in the preceeding sections it is clear that both the com­

plete population projection matrix, M, and the population projection matrix A, 

are non-negative that is m,j >  0 and a,; >  0. The matrix is said to be positive if 

its elements are strictly positive. Negative elements for M  and A are not feasible 

because this would suggest a possibility of a negative number of individuals in 

a stage which is in practice not realistic. The matrices are square and the di­

mensions will depend on the number of age classes, hence the smaller the size of 

an age class the higher the dimension and vice versa. An interesting subclass of 

square non- negative matrices is that of stochastic matrices which have either all 

row or all column sums equal to unity, and which have an important role in the
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study of Markov chains. It is possible to break down the population projection 

matrix into a stochastic matrix which gives the transition probabilities and a sec­

ond matrix that gives the reproductive data for all the classes. We next present 

a series of important definitons, theorems and corollaries on nonnegative matrices 

as in Horn and Johnson(1985). However the structure of the projection matrix 

in the present study requires certain modifications in the proofs of some of the 

theorems , to bring them into context. Thus we briefly present some of the proofs 

and definitions. Their importance comes in when we present several properties of 

the population projection matrix in the sequel.

Definition 1: An nxn matrix P is called a permutation matrix if exactly one entry 

in each row and column is equal to 1, and all other entries are 0. Multiplication by 

such a matrix effects a permutation of rows or columns of the matrix multiplied.

The simplest example of a permutation matrix P has pij =  pji =  1 for some 

fixed «, j  and has all other nondiagonal entries 0. In general, left multiplication 

of an mxn matrix, A by an mxm permutation matrix P, permutes the rows of 

Ay while right multiplication of A by an nxn matrix P permutes the columns of 

A . The determinant of a permutation matrix is ±  which implies that permutation 

matrices are necessarily nonsingular. Although permutation matrices do not, in 

general commute under multiplication, the product of two permutation matrices 

is again a permutation matrix. Since the identity is a permutation matrix and 

PT =  P _1 for every permutation matrix P, it follows the permutation matrices 

constitute a subgroup of the group of nonsingular matrices. Further, from the 

definition of a permutation matrix, it follows that such a matrix is unitary, hence 

orthogonal(PT =  P _1 ). Since PT =  P -1 permutes columns in the same way that 

the nxn permutation matrix P permutes rows, the transformation A —> PAPT 
permutes the rows and columns of an nxn matrix A in the same way. Thus, if P  

is a permutation matrix, the similarity PAP is obtained from A by a suitable 

permutation of rows and colmns of A.

Definition 2: A matrix A  — (ctij) is said to have the p r o p e r t y  SC(strong con­
nected) if for every pair of distinct integers p, q with 1 < p, q <  n  there is a
sequence of distinct integers k\ = p, &2 i • • • >km-i, k m = <?, 1 < m < n, such
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that all of the matrix entries 3, ... , are non zero.

Definition 3: If A = (atJ) E Mm.n (the set of m-by- n complex matrices) we set 
\A\ = (|a,j|) and M ( A )  =  (/i,; ), where /i,y = 1 if atj 0 and mj =  0 if a,y =  0.
T h e  m a trix  A 1 ( A )  is ca lled  tl le in d ica tor or in ciden ce  illutriM o f  .4.

Definition 4: The directed graph of A 6 Mn (the set of n-by-n square matrices), 
denoted by T(.4), is the directed graph on nodes P \ , P2 , .  . . , P n such that there is 
a directed arc in T(A) from P, to Pj  if and only if atJ ^ 0(//;_, ^  0)

Definition 5 :  A directed path 7 in a graph Y is a sequence of arcs Ptl P,2, P t 2 P t 3 ,- 

P , 3 P , i n  r. The ordered list of nodes in the directed path 7 is P,-,,  P,-2,..  
The length of a directed path is the number of successive arcs in the directed path 
if the number is finite; otherwise, the directed path is said to have infinite length. 
A cycle is a directed path that begins and ends at the same node; this node occurs 

exactly twice in the ordered list of nodes in the path, and no other node occurs 
more than once in the list. A cycle of length one is called a loop.

Definition 6: A directed graph T is strongly connected if between every pair of 
distinct nodes P,, P3 in Y there is a directed path of finite length that begins at 
Pi and ends at Pj.

Theorem 3.1: Let A  6 M n. Then A  has the property SC if and only if the 
directed graph T(A) is strongly connected.

As a remark let Y be a directed graph on n nodes. If there is a directed path 
in T between two nodes , then between these nodes there is a directed path that 
has length not more than n — 1. The question is how one can tell if a given matrix 
A  has property SC. This amounts to checking whether Y(A)  is strongly connected. 
If n is not large or if M ( A )  has a special structure, then one can just inspect Y(A)  

and trace out paths between all pairs of nodes. However, this is not practical in 
general, thus we need some computational method.

Theorem 3.2: Let A E Mn be given, and let P, and Pj be given nodes in T(A).
There exists a directed path of length m in Y(A) between Pt and Pj if and only if
(\A\m)ij 7  ̂ 0, or equivalently, if [.M(A)rn]iJ ^  0.
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Proof: We proceed by induction. For m =  1 the assertion is trivial. For m =  2 
we compute

(|A|'% =  £p |]i*[|A |]*;
( = 1

(3.16a)

— y  ] loifci ia*:j i
k— 1

so that [|A|2],y 7̂  0 if and only if for at least one value of fc, a,-* and akj are both 

nonzero. But this is the case if and only if there exists a path of length 2 in T(A) 

from Pi and Pj. Assume the assertion is true for m = q. Then

[ W + , ]y =  E P I ’ WIAIU;
k= 1 

k=\

(3.166)

if and only if for at least one value of k, [ | a n d  â j are both nonzero. This is 

equivalent to having a path from P, to Pk of length q and from P* to Pj of length 

1, and this is the case if and only if there is a path from P, to Pj of length q +  1. 

The same argument works for M(A).

Definition 7: Let A = (ajj) € Mn. We say that A > 0 (A is nonnegative) if 

all its entries aij are real and nonnegative. We say A >  0(A is positive) if all its 

entries are real and positive.

Corollary 1: Let A € Mn. Then |A|m >  0 if and only if from each node P, to 

each node Pj in r(A) there is a directed path of length exactly m. The same is 

true for M(A )m.

Corollary 2: Let A G M „. Then A has property SC if and only if (/+|A|)n_1 > 0 
or equivalently if [ / +  M (A )]n_1 >  0.

Proof:

( I  + IAI)"-1 = /  + (n -  1)|A| + (" 2 ^  |A|2 + •'' + I  2)  I'4!""2 + M "- * > 0
(3-17)
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if and only if for each pair (i, j) of nodes with i ^  j  at least one of the terms 

|A|,|A|2, . . .,|A|n_1 has a positive (i, j) entry. But Theorem (3.2) says this happens 

if and only if there is some directed path in T(A) from P, to Pj. This is equivalent 

to r(A)  being strongly connected, which is equivalent to A having property SC.

Corollary 3: There is a path in T(A) from P, to Pj if and only if [ ( / +  |A|)n -1]tJ- ^  

0.

We finally introduce one more equivalent characterisation of the property SC. 

It is based on the fact that strong connectivity of T(A) is just a topological property 

of T(A) and has nothing to do with the labeling assigned to the nodes of T(A). If 

we permute the labels of the nodes, the graph stays either strongly connected or 

not strongly connected. It is important to note that if we interchange the z-th and 

j-th  rows of A as well as the i-th and j-th  columns this has the effect on T(A) of 

interchanging the labels on nodes P,- and Pj and vice-versa. Thus it is important 

to know whether some permutation of rows of A can be found that brings A into 

the following special block form.

Definition 8: A square non-negative matrix M  of order n is said to be reducible 

if there exists a permutation matrix P such that

p m p -' = ( ab c ) <3-18)
where A and C are square matrices of order r and n -  r respectively for some 

integer r with 1 <  r <  n -  1. The matrices O and B are of dimensions rx(n -  r) 

and (n — r)xr respectively.

Notice that the definition does not insist that the blocks A, B and C have 

nonzero entries, but only that we should be able to get an rx(n — r) block of 0 

entries in the indicated position by some sequence of row and column interchanges. 

If |M\ >  0, clearly M  is not reducible, and if M  is reducible, it must have at least 
(n-1) 0 entries.

Definition 9: A matrix A € M „ is irreducible if it is not reducible.

Theorem 3.3 : A matrix A 6 Mn is irreducible if and only if

( /  +  A)n - 1 > 0  (3.19a)
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or, equivalently, if

[I +  A/(.4)]n_1 >  0. (3.196)

Proof: We shall actually prove that .4 is reducible if and only if ( /  +  |.4|)n—1 has 

at least one 0 entry. Suppose that .4 is reducible such that for some permutation 

matrix P
P A P '1 A O 

B C

which implies that

-4  =  p " ( b  c ) p  =  p ~ ' A p
(3.20a)

where A , B , 0 ,  and C are block matrices as in definition (8) above. Now it follows

that

\A\ = \P~lAP\ = P~X\A\P (3.206)

since the effect of P is only to permute rows and columns, also we notice that |A|2, 

|A|3, . . . ,  |.4|"_1 all have the same r by (n — r) block of zeroes in the upper right 

corner as A. Thus

( / +  |A|)n- '  =  ( /  +  p-'|-d|P)”-1 

= ( p - , [/+|.4|]P)n- '

= P-|(/ + |A|)"-|P

=  P - 1 [ / +  |i| +  ( "  "  * )  'i|2 +  • • • +  ( "  I  0  lAr~']P

(3.20c)

and all the terms in the square brackets have an r-by-(n -  r) block of 0's in the 

upper right corner. Thus (I +  |A|)n-1 is reducible and hence it cannot have all 

nonzero entries.

Conversely, suppose for some p ^  q that the (p, q) entry of (I +  |>l|)n-1 is 0. 

Then we know that there is no directed path in T(i4) from Pp to Pq. Define the 

sets of nodes

Si =  {Pi : Pi =  Pq or there is a path inT(A) fromP, to Pq} (3.21a)

and let S2 contain all nodes of T(j4) that are not in Si. We notice that

Si US2 = { P\ Pn} (3.216)
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and

Pg £ 5] ^  0 SO 5 2 ^ { P l ,  • • • , Pn} (3.21c)

If there were a path from one node P, of 5 2 to some node Pj of 5 i, then (by 

definition of S\) there would be a path from P, to Pq and so Pj would already be 

in S\ which is a contradiction. Thus, there can be no path from any node of S2 

to any node of 5 i . Now we relable the nodes so that

5i =  {P i , . . . ,  Pr} and 5 2 =  {Pr+ i , • • •, Pr+n-r) (3.21d)

and hence

B £ A /r, 0  £ Mr , n — r (3.21e)

so that A is reducible. The argument for [I +  M(A)]n~l is similar.

Let us summarize the results as follows

T h eorem  3.4 : Let A £ Mn. The following are equivalent

(a) A is irreducible

(b) ( /+ | A | ) n" 1 > 0

(c) [7 +  M (A )]n- 1 > 0

(d) T(A) is strongly connected

(e) A has property SC

From definitions 8 and 9 we conclude that an age classified matrix with pre- 

reproductive and post-reproductive age classes or simply the complete population 

projection matrix given in Eq.(3.8) is reducible. In this case we can take P =  I. 
A matrix is irreducible if it is not reducible. Sometimes the terms decomposable 

and indecomposable are used instead of reducible and irreducible especially in the 

study of stochastic matrices. Next we show that the population projection matrix 

written in full in Eq.(3.14) is irreducible. Let us call this property 1 of matrix A

Property 1: A is irreducible.

This property follows from the following argument. The matrix A in Eq.(3.14) 

can in general be written as a sum of two matrices given by

A =  A0 + B (3.22 a)

A =  PAP~l =
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where the the matrix Aq =  (a^) has elements only in its first row given by

a\j = fj =  0, j =  1 , . . . ,  k -  1 and a°lk =  / *  >  0

and in the leading sub-diagonal given by

and zero elsewhere. The matrix B =  (6,j) has all its elements zero except possibly 

in the first row since by assumption

that this is not the case. Then there exist a permutation matrix P such that

where F  and H are square. Since the inverse of a permutation matrix is again a 

permutation matrix then B >  0 => PBP~1 >  0. But PAqP -1 cannot be of the 

form given in Eq.(3.22b) by hypothesis, hence A is irreducible, since the addition of 

the non-negative matrix PBP~l cannot result in a sum of the form in Eq.(3.22b). 

One can also see that by definition T(j4) is strongly connected and by Theorem

3.4 it follows that A is irreducible.

Next we state the fundamental Perron-Frobenius theorem which is vital in the 

study of both discrete and continuous time matrix population models. In what 

follows, therefore, we deal with square nonnegative matrices A =  (aty ) i,j =  

i, •. . ,  n; that is >  0 Vi, j ,  in which case we use the notation A >  0. If in fact 

aij >  0 Vi, j  we write A > 0. This definition and notation extends in an obvious 

way to row vectors and column vectors x also to expressions such as

b\j =  fj > 0 j =  1------ k -  1 and bik =  fk =  0.

We claim that if Aq is irreducible then so is the more general matrix, A. Suppose

PAP~l = P(A0 + B ) P - 1

= PA0P ' 1 4- PBP~l (3.226)

A > B A - B  >  0 (3.23)
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where A , B and O are square nonnegative matrices of compatible dimensions. We 

use the notation yT =  (y,), x = (x{) for row and column vectors respectively and 

A* =  (akj) for kth powers of matrices.

Definition 10: A square non-negative matrix is said to be primitive if there exists 

a positive integer k such that Ak > 0 .

It is clear that if any other matrix B has the same dimensions as A, and has 

positive entries and zero entries in the same positions of A, then this will also be 

true for powers A*, Bk of the two matrices. As incidence matrices A corresponding 

to a given matrix A replaces ail positive entries of A by ones clearly A is primitive iff 

A is. We now state without proof the two forms of the Perron-Frobenius Theorem 

first for strictly primitive matrices then secondly for general irreducible matrices. 

The proofs can be found in any of the books by Gantmacher(1959), Seneta(1981) 

or Horn and Johnson(1985).

T h eorem  3 .5 : Perron-Frobenius Theorem  for Prim itive M atrices: Sup­

pose L is an nxn non-negative primitive matrix. Then there exists an eigenvalue 

Aj such that
(a) Aj is real and >  0;

(b) with Ai can be associated strictly positive left and right eigenvectos yr and 

x respectively;

(c) Ai >  |A| for any eigenvalue A ^  Ai of L\
(d) the eigenvectors associated with Aj are unique to constant multiples.

(e) If O <  B < L and /? is an eigenvalue of B, then |/?| <  Aj. Moreover, 

\fi\ = \i => B = L. Here O denotes a matrix of zero elements only.

(f) Ai is a simple root of the characteristic equation of L.

T heorem  3 .6 : Perron-Frobenius for Irreducible M atrices: Suppose L is an 

nxn irreducible non-negative matrix. Then all of the assertions (a)-(f) of Theorem

3.5 hold except (c) is replaced by the weaker statement: Ai >  |A| for any eigenvalue 
A of L.

From the structures of M  and A given in Eq.(3.8) and Eq.(3.14a) together
with the size classsified case of Eq.(3.15b) it is clear that these matrices are non-
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negative square matrices. We had already indicated from Eq.(3.9), definition 8 

and property 1 of matrix A that matrix M  is reducible while .4, the population 

projection matrix is irreducible. Next we state the relevant definitions and rules 

to guide us on primitivity of a matrix.

Definition 11: The index of imprimitivity r of an irreducible non-negative matrix 

A is the algebraic multiplicity of its eigenvalues of modulus Aj that is t  is the 

number of eigenvalues A, of A such that |A,| =  Ai.

Definition 12: An irreducible non-negative matrix A is said to be primitive if the 

index of imprimitivity r =  1. Some books refer to the corresponding eigenvalue 

as a root of multiplicity one.

Now suppose the characteristic equation of a matrix B is given by

\M-B\  = 0 (3.24a)

then by the Descarte’s rule of signs, the number of positive roots of the equation is 

equal to the number of changes of signs in it. We also comment here that the terms 

‘aperiodic1 and ‘periodic1 are used instead of ‘primitive1 and ‘imprimitive1 and a 

stochastic matrix that is both irreducible and primitive is said to be ‘regular1 or 

ergodic. More precisely the corresponding Markov chain is said to be regular or an 

ergodic chain. The property of ergodicity in population dynamics will be revisited 

later in the work. Next we study the population projection matrix in relation to 

the above definitions and theorems as a discrete time homogeneous process.

3.3.1 Discrete Stable Population Theory
We now continue studying the properties of the matrix A in (3.14a) and the 

sequence {n(t +  1) =  An(f)}tejv as t -> oo.

Property 2: The projection matrix A has a positive eigenvalue A! which is a 

simple root (root of multiplicity one).

We know that the eigenvalues of the matrix A satisfy the homogeneous equa­

tion
Ax =  Ax 

=> (A — AI)x =  0 

=> \A -  Xl\ =  0
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and from the structure of matrix A in Eq.(3.14a) it follows that

k-1
IA -  A/| =  A* -  / ,  A*-1 -  p , /a A*"2 -  . . .  -  A  I J  P* = 0 (3.246)

i=l

Since p, >  0, i =  1 , . . . ,  k — 1 and / ,  >  0 for i =  1,2, — 1 and >  0 then

Jt-i
fk n » > 0  (3.24c)

1=1

so j4 ll2LS no 0 eigenvalue. Further dividing the characteristic equation in Eq.(3.19) 

by Xk and rearranging gives

/l P1/2 f k  W
/ ( A ) = ^ + ^ + . . . + g n p ' = i  (3-25° )

from which it is clear that

(i)
lim /(A) =  00

(ii)
lim /(A) =  0

A—>00

hence /(A)  is a monotonic decreasing function of A. This means that there 

is only one value of A =  Aj say which satisfies /(A) =  1. Another intuitive 

interpretation of (3.25a) is that given an individual is initially in age class 

one at time zero, then after one time interval we expect it to produce f\ 
individuals, p i /2 after two time periods, P1P2/3 after three time intervals and 

so on. That is, if we let Ep{j) denote the number of offsprings from such an 

individual after j  time periods then

>-1
E F ( j )  =  f i Y [ P i

1=1
(3.256)

Property 3: All remaining eigenvalues of A  are smaller in magnitude than the
one real positive eigenvalue Ai above.
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Let Aj, j  =  2 , . . . ,  k represent the remaining k — 1 eigenvalues of the popu­

lation projection matrix. Then in general we can write or represent, A j as

A j =  uj +  ivj, j  =  2, . . . ,  k — 1 Uj, vj e R

as a complex number (i=\/—1) or in polar coordinates form as

A j =  |Aj|(cos0 +  isin6) =  |Aj|e'^

where,

l\?'l =  \ /(u> +  vj)

and

6 = tan l(vj/uj)

It follows that

1 =  |Aj | l(cos6 — isinO) 

=  exp (a +  «/?), (3.25c)

where a is real, p is real and positive. Further 0 ^  27r, 47t, 67t, . . . ,  because if 

this was the case A j would be real and positive which was shown to be impossible 

from property 2 otherwise we have more than one positive real roots. Even from 

Descarte’s rule of signs it follows from Eq.(3.24b) that there is only one change of 

signs hence only one positive root exists.

Substituting Xj from Eq.(3.25c) in Eq.(3.25a) then equating the real parts we

get
k - 1

/i  eQcos(3 +  p i/2e2acos2j3 +  .. • + /te fcQ,cosA;/3 JJ Pi =  1
i=i

(3.26a)

Since Ai is real, then we can express it as Aj 1 — er for some r 6 R. Further since 

Ai satisfies f(X1) =  1 then it follows by substituting X -  \l = e~r in Eq.(3.25a) 

that
k- 1

/ ie r + p i h e 2r +  .. .  + fkekr J J  p,- =  1 (3.266)1=1
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where (3 =  0 in this case. But we know that \cosmP\ <  1 thus for some 7, 

the coefficient eQ in Eq.(3.26a) is greater than the corresponding coefficient in 

Eq.(3.26b) so that for that 7

eQ >  er <?=> e~Q < e~r \\j\ <  A] (3.26c)

This shows that for an age classified population projection matrix defined in 

Eq.(3.14a) there exists a dominant eigenvalue Ai which exceeds the modulus of all 

other eigenvalues.

P roperty 4 : The population projection matrix A has a right eigenvector xj, of 

dimension k corresponding to Aj such that all its components z t, i =  1, 2, . . . ,  k 
are positive.

To show this we let x\ =  ( z i , . . . ,  Xk) • Then iT] satisfies the homogeneous 

equation

Ai£i =  Ax 1 (3.27a)

which is a system of k simultaneous equations given by

k
A1 *r 1 =

1=1
A1 Xi = pi_ 1 xj_ 1, i 2, . . . ,  k

(3.27 b)

without loss of generality let a: 1 =  1 such that from the second of the k linear 

equations a: 2 is given by

x2 =  Pi/^i

and then from the third equation we get

P2 „ _£3 =  -7-x2 -  
'M

P 1P2

A?

and continuing recursively in a similar manner we get the general expression for

Xj as

3 =  1
From the definition of A we know that pi > 
thus from Eq.(3.27c) above each Xi > 0, i

=  2> • • • ,k. (3.27c)

0, i =  1, . . .  ? k — 1 and clearly Ai >  0 
=  1, . . . ,  fc hence the conclusion x\ >  0.
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The components of the eigenvector x\ characterise the stable age distribution. This 

is true because in ail the above derivations in this subsection we assume the system 

has attained stability.

P roperty 5: The matrix A has a left eigenvector y\ =  (yi , . . . ,  yjt) corresponding 

to Ai such that all its components are positive.

Again without loss of generality we let y\ =  1. But y\ satisfies the matrix 

equation

yjA =  A f

which again gives a system of k homogeneous equations given by

y i f i  +  y2Pi =  ^ 1 2/i

*/i/2 +  2/3 P2 =  Ai y2

2/1 fi +  yi+lPi — ^ 12/» (3.28a)

y i f k - \  A y k P k - i  =  ^iVk- i  
y i f k  =  Ai yk

Now from the last of these equations we see that

2ik =  A /Ai  since y Y =  1 (3 .286)

and from the second last equation in the system Eq.(3.28a) and using the value

for I/* above we get

Ai 2/fc-i =  fk-i +
fkPk- 1 

Ai

or

2/fc-i
fk-l , fkpk—l

A? (3.28c)

and in general we have

Vi =  )^ 'A' *’
i=j \h=j

(3.28 d)
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We adopt the condition =  1 to avoid ambiguity in Eq.(3.28d). Clearly

yj > 0, j  =  1, 2, . . . ,  fc. The quantities can be interpreted to measure the repro­

ductive potential of an individual in age class j =  1 ,2___ k. Thus the quantity yj
will be called the reproductive value of an individual aged j. It gives the expected 

total number of offsprings an individual currently in age class j  would give in the 

remaining expected life span, Caswell( 1982,1983).

P ropery 6 : For an initial population distribution vector n(0) not identically zero, 

there exists a constant c\, which depends upon the vector such that

.. -4Tn(0)
lim — -7p—  = c\X\ T — oc A| (3.29a)

where Ai is the dorminant eigenvalue and x\ its corresponding right eigenvector. 

To derive this property let A,, i =  1,2, . . . , & denote the k eigenvalues of the 

population projection matrix A. Then,

Axj =  A,x,, i =  0, 1, . . . ,  k — 1 (3.296)

and
yjA = \iy[ i =  l ,2 ,  . . . ,k (3.29c)

where x, and yi are respectively the right and left eigenvectors corresponding to 

A j. Further let,

D = diag(Xi) (3.29 d)

denote the Jordan canonical matrix representation of A. We assume that the 

population’s life cycle is such that the Â s are distinct. Without loss of generality 

assume that

|A,|>|A2|>--->|A*|.

Next we define, the two matrices X  and Y given by

X  =  (xi,X2, •• • ,Xk) (3.30a)

and

Y =  (y\,V2,"-,Vk)' (3.306)

72



We adopt the condition =  1 to avoid ambiguity in Eq.(3.28d). Clearly

yj >  0, j =  1 , 2 , . . . ,  k. The quantities can be interpreted to measure the repro­

ductive potential of an individual in age class j =  1 ,2 . . . .  k. Thus the quantity yj 
will be called the reproductive value of an individual aged j. It gives the expected 

total number of offsprings an individual currently in age class j would give in the 

remaining expected life span, Caswell( 1982,1983).

P ropery 6 : For an initial population distribution vector n(0) not identically zero, 

there exists a constant cj, which depends upon the vector such that

ATn(0)
lim — —  =  c\x\ (3.29a)

T — oc A |

where Ai is the dorminant eigenvalue and x\ its corresponding right eigenvector. 

To derive this property let A,, i =  1, 2, . . . , / :  denote the k eigenvalues of the 

population projection matrix A. Then,

Ax{ — A i =  0, 1, . . . ,  k — 1 (3.296)

and
y[A  =  \iy[ i =  l , 2 , . . . , f c  (3.29c)

where X{ and y, are respectively the right and left eigenvectors corresponding to 

A j. Further let,
D = diag(\i) (3.29 d)

denote the Jordan canonical matrix representation of A. We assume that the 

population’s life cycle is such that the A,s are distinct. Without loss of generality 

assume that
|A,| >  |A2| >  ••• >  |A*|.

Next we define, the two matrices X  and Y given by

X  =  ( X l , l 2, •••>**) (3.30a)

and

Y =  (t7i,«/2,•••,(/*)' (3.306)
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Then it follows that the matrix equation in Eq.(3.29b) and Eq.(3.29c) can be 

written compactly as

A X = X D  (3.31a)

and

Y A = DY. (3.316)

Assuming that X  and Y are invertible then,

A =  XDX~' = Y ~ 'D Y

which means that as a consequence of uniqueness

Ar =  Y~x <=* Y = X ~ l

thus
X Y  = XX~'  =  Y~lY  =  /

and

where

A =  X D X ~ l 

=  XDY

- A j i i yf  + \\X2iff +  • • • +  k̂XkVk

= E
i= i

= E
i=i

Hi =  Xiy[ i =  1, 2, . . . ,  fc

(3.31c)

(3.31d)

are k by k matrices called the spectral components of A and posses the special 

property that they are idempotent. To see this note that

a n =  x d nx ~'

but since

X ~ l = Y
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then

a n =  x d ny

t= 1

where N  is a non-negative integer. Now compare this with,

An = [XxHi +  A2H2 +  . . .  +  AjtHk]N

thus we conclude

H[* = Hi

and

It follows that for N — t

HiHj =  0 for i ^  j.

and given

A, >  |A2| >  . . .  >  I A* |

then

Hence

limt —*oo
2 = 1........Jt

lim 77 =  Hj — x\V\
I—oo A,

which on post-multiplying both sides by n(0) gives

A'n(O) -
lim — r r 2 =  x\V\ n(°) =  ci*i  / - *oo A,

where

c, =  yfn(0) > 0.

(3.31e)

(3.32)

(3.326)

(3.32c)

(3.33a)

(3.336)

(3.33c)
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The results obtained above allow us to make concrete conclusions about an age 

structured time homogeneous model. Given n(0) then the structure at time t is

given by
n(t) =  A'n(O)

k
= ^2  

i=i

(3.34a)

where

C« =  yj  n(0) (3.346).

For large £,

n(t) —> cjA^xi (3.35)

Thus an indication that the population has attained stability is achieved when

n(t +  1) =  Ai n(t) (3.36a)

or
An(t) =  A] n(t) (3.366)

holds.

After the population attains stability the initial age structure n(0) becomes 

irrelevant, while Eq.(3.34a) tells us that the growth of the classified population is 

decomposed into a set of exponential contributions one for each eigenvalue. The 

value Ai is called the true rate of population growth and it is related to the intrinsic 

rate of natural increase r, by the relation

loge Ai =  r (3.36c)

If |Aj| <  1 its contribution decays, either smoothly if A, >  0 or with damped 

oscillations if in addition A, <  0 or complex. If |A, | >  1, then its contribution to 

population growth grows exponentially, either smoothly if A, >  0 (positive and 

real) or with oscillations if A, <  0 or complex.

As t becomes large Ai, the dominant eigenvalue of A becomes the determining 

rate of growth and we notice that for a particular age class i

limt — oo
nj(t +  1) 

m(t) — Ai (3.37a)
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and n(t) becomes proportional to xi the eigenvector associated with Ai. Also it 

can be shown that for two consecutive age classes i and i +  1 the following relation 

holds:

lim — =  — — =  —  i =  1 . 2 , . . . , fc -  1 (3.376)
i-oo ni+ i(i) x i+i Pi

where the final equality is as a result of the expression for the stable distribution 

obtained for the x\s in Eq.(3.27c).

3.4 Generalized Stage-Age Structured Matrix Model
The classical age classified Leslie matrix for population dynamics was stated 

in Eq.(3.5) for the complete population projection matrix and in Eq.(3.14a) for 

the pre-reproductive and reproductive population. In this model we assume that 

all individuals in age class z, say, advance(transit) at the same rate and that the 

age of an individual carries all the vital information. The model also requires the 

classification to be such that the size of one age class be equal to the projection 

interval, or time step (t,t -f- h).

In general a population’s life cycle may consist of k developmental stages 

of variable residence times T,, i =  1 , 2 , . . . ,  k. By residence time we mean the 

expected length of time an individual waits in a stage before transiting to the 

next stage. Depending on the magnitude of Ti and /i, we can further classify 

individuals in stage i into ti =  Tijh age classes of size h each. We make the 

following assumptions regarding an individual in class j , j =  1, . . .  , of stage z 

within a unit time interval say [t,t -f h) = [t,t +  1);

A l. It survives to time t +  1 with probability stJf.

A2. (z) Given it survives to time t +  1 it either transits to age group 1 of the next 

stage i +  1 with probability 7 z =  1,. • •, j =  1, . . . ,

(zz) or transits to the next age group of the same stage with probability,

(1 -  7ij)
A3. Such an individual produces f{j offsprings who survive and enter age group 

1 of stage one just before or at time t +  1.

Now even for fixed or persistent environmental conditions, individuals in a 

particular stage may develope at different rates. Let
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Sij(t) =  event that an individual of age j  in stage i at time t will survive to 

time t +  1
Tj(t) =  event that an individual transits to the next stage, i +  1, during the 

time interval [t,t+l) and

7Jj(t) =  the transition probability from age group j  in stage i at time t to 

the next stage, i +  1.

Now, 7{ ■ is a conditional probability because an indvidual will transit to the next 

stage only if it survives to time t +  1. Therefore we can write, especially for the 

independent case,

l\j =  -^(^>(01 SijW) (3.38a)

Therefore the probability that an individual of age j  in stage i at time t will 

transit to the next stage during the time interval [t,t +  1) denoted by p\ ■ is given 

by;

p\j = P(T'j (t)nStJ(t))

= PiSijitmTjmSijit))

That is,

P\j =  (3.386)

If an individual survives the interval +  1) but does not transit to the next 

stage, i +  1, it will definitely transit to age class j +  1 within the same stage with 

probability nj+h j given by

= P(T]{ty n Sij(t))
=  P(S,y(<))P(?” (*)c|S,y(t)). (3.38c)

=  «Siji(l — 7jj)

From equations (3.38b) and (3.38c) it follows that the probability that an indi­
vidual in age class j  of stage i dies within the time interval ( t , t  +  1) is given

by

<idj = 1 ~ P\j ~ Kj+u = l - ’ * 3 (3.39)
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as expected. Now let n*(f) denote the numbers of individuals in age class j  of 

stage i. Then the vector representation of the population distribution for stage i 
is

fZi(t) = (n\(t) , . . . i =  I, - • •, k (3.40)

and for the entire population,

n(t) =  ... ,ni(t),... ,nk(t))' (3.41)

which is a partitioned column vector of dimension X3?=i by 1. Since newly born 

offsprings enter age class one of stage one on survival, it follows that

k ti

'>!(t + i ) = E E ^ ni(‘ ) (3-42)
i=i j=\

This equation defines the renewal process of the system.

Next consider the aging process which involves transitions within and between 

stages. It follows from Eq.(3.38c) that the transitions within stage i is governed 

by the equation

(t +  1) — ^j+i,jnj(̂ '> J — 1? 2, . . . ,  fi 1, i — 1, 2, . . . k. (3.43)

while the between stage dynamics are given by the equation

ti
nj+1(f +  1) =  YlPiJ * =  1 , 2 , . . . ,  fc -  1 (3.44)

j= i

where pij and nj+l j were derived from Eq.(3.38a), Eq.(3.38b) and Eq.(3.38c) and 

assumptions A2(i) and A2(ii) as stated in page 76.

Now equations Eq.(3.42), Eq.(3.43) and Eq.(3.44) can be linked together in 

matrix notation as

n(t +  1) =  A*n(t) (3.45)

where n(t) was stated in Eq.(3.40) and Eq.(3.41). The matrix A* will be called
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the generalized stage-age classified matrix and is written explicitly as;

( f h  • f1Jl.il — 1 //«, ■ / l l fi,ti-1 fiu •
fk
J1 ,f * — 1 fkJl,tk \

*21 * 0 0 . . .  0 0 0 0 0

0 0 . . .  0 0 0 0 0
Pl.l * Pl,l 1 . . .  0 0 0 0 0

0 . 0 0 . . .  0 0 0 0 0

0 0 0 . . .  7rjj 0 0 0 0

0 . 0 0 . . .  0 ••• 4 ^ - 1 0 0 0
0 . 0 0 . . .  plu ••• P\,u- 1 Pl.ti • 0 0

V 0 . 0 0 . . .  0 0 0 • wtk,tk- 1 0 /
(3.46)

A special observation here is that p\t. =  because given that an individual 

of age t{ in stage i survives the time interval [M  +  1) the only transition at its 

disposal is age class one of stage i +  1, that is 7j<{ =  1. .4* is more conveniently 

written as a partitioned matrix as

/(F,+i4,) f2 Fz . . .  Fft-J Fk
Pi a 2 0 0 0
0 P2 As . . .  0 0

0 o o . . .  Ak-\ 0
0 0 0 . . .  Pk- 1 A*

where, the matrix,

(3.47)

(3.48a)

which we call the fertility matrix for stage * may have positive elements only in 

the first row and zeroes elsewhere and is of dimension fjxf,-. That is

fhi =
/ =  1, 2, . . . , ^
elsewhere (3.486)

where for completeness denotes the number of offsprings born to an individual 

in age class / of stage i who survive to be counted in nn (f +  1) at time t +  1.
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The matrix

Ai =  (a'hl), * =  1 ,------A: h, l =  1 (3.49a)

is square o f order f, with positive elements only in the leading subdiagonal and 

zeroes elsewhere. That is

0
7T

elsewhere
(3.496)

The m atrix represents within stage dynamics in the sense that ' l̂h h_ l denotes the 

probability that an individual in age class /? -  1 of stage i at time t will transit to 

age class h o f the same stage at time t +  1.

Finally the matrix

represents the between stage dynamics with positive elements only in the first row 

by virtue o f assumption -42 (z). Thus

It is o f order t { + 1  by t t. In particular p\j denotes the probability that an individual 

in age class j  o f stage i at time t will transit to age class 1 of stage i -f 1 by time

see the within and between stage dynamics for the entire population. That is, at 

a glance, the array o f matrices on the leading subdiagonal represent the between 

stage dynamics while those on the main diagonal represent the within stage dy­

namics. The first row of the F  matrices represent the stage-age specific fertilities 

within a unit time interval. Their outputs end up in age class one o f stage one 

causing a change in the value nj ( f )  to n\(t +  1)- Thus the entire system represented 

by matrix A* can be looked at as an integration of k modules which define the life 

cvcle o f the particular population which may be under study.

(3.50a)

(3.506)

t T  1.
The elegance of the partitioned matrix in Eq.(3.47) is that we can explicitly
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3.5 Estimation of the Matrix Elements
In this section we consider the problem of estimation of the elements of the 

population projection matrix in Eq.(3.14a) and its generalized version in Eq.(3.46). 

The data requirements in the methods are (2) availability of census data observed 

for a defined period of time or (m) experimental data obtained under a given set 

of environmental conditions. Under the time homogeneous model the given set of 

environmental conditions are assumed to remain the same with time. However this 

is not the case in a real system. This requires the development of time dependent 

and stochastic models to study such types of systems. The problem with such 

kind of models however is the availability of relevant data to estimate some of the 

matrix or model input parameters.

3.5.1 Estimation from Transition Frequency Data
The entries in the projection matrix M  or A in Eq.(3.8) and Eq.(3.14a) re­

spectively reflect both the transition probabilities for the aging process and the 

fecundities for the reproducing individuals. If individuals can be monitored and 

identified as time elapses, the transition probabilities can be estimated by simply
•19

recording the state of individuals at time t and time t +  1 respectively. State 

variables include age, size, developmental stages or even a combination of any two 

or more attributes depending on the classification criteria. The state “dead” is 

trivial because a dead individual at time t is still dead at any later time r >  t say

t +  1.
Now let riij(t +  1) denote the number of individuals who transit from state

j  to state i within a unit time interval where i,j =  1, . . .  ,k. Let “d” denote the

death state. Then out of nj(t) individuals initially present in state j  at time <,

nij(t) transit to state * =  1 , . . . ,  k with probability ai<7- say. Let ndj(i +  1) denote

those who die between times t and t +  1. Then it follows that
k+1

nj(t) =  (3.51a)
1=1

giving a multinomial model for the process and the estimate of in the matrix 

A is given by
na(t + 1) +  D

(3.516)aij —
E ? - i ' + nj(t)
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If observations are repeatedly made at time t , t  +  1 +  r  then an im­

proved estimate of the transition probability a,y can be found because now more 

information is available. This improved estimate is precisely given by

d{j — Er=l ” »'>(* + r) 
E E o  E fci1 nu(t +  
Er=l n'j(t +
Er=o nj(

(3.52)

Note that in all we have k +  1 states including the death state because we need 

to account for every individual that was present at the beginning o f each time 

interval. The case for the time interval ( t , t  +  1) is shown in equation Eq.(3.51a). 

For an age classified population where the projection interval or model time step 

is equal to the size of one age class, transitions are possible only from age class 

(state) j  to state j  +  1 so that for all j  =  l , . . . , f c  — 1 we only estimate 

Now let b\j(t +  1) be the number of offsprings who are born to an individual in 

state j  and these offsprings survive to time t. +  1, then if data is available for r

time periods we have

f _  Er=l +
J j ~  T

j  = (3.53)

Thus f j  denotes the estimate of the fecundity rate for individuals in age class or 

state j . We assume observations are made at times . . . ,  t +  r  under homogeneous 

conditions. Thus from E q .(3 .52 ) and E q.(3 .53 ) one is able to estimate the entire 

matrix shown in Eq.(3.14a).

3 .5 .2  Estim ation from Stage Duration Distributions

Recall from Eq.(3.38a) and Eq.(3.38b) that for stage classified populations 

with k stages one can generally assume that the 2-th stage is o f duration T, due to 

both biotic and abiotic factors acting on individuals in that stage. This being the 

case, we can classify individuals in stage i into t t =  T{/h age classes o f size h each 

o f which is also equal to one time step in the population model. We know from 

Eq.(3.38b) and Eq.(3.38c) that;

Pij — s'jy\j
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and

nj+\,j ~ $0'(1 7ij)

Let us assume that 7} • =  7* for all individuals in stage z, i = 1,... ,k. Then the 

two equations above become

Pij =  (3.54a)

and

4 h , ; = * ; ( 1 - V ) .  (3.546)

Here 7* denotes the probability that an individual in stage i at time t grows or 

transits to stage z' +  l by time t + 1. We know the stage duration is T, for individuals 

in stage i which we can take as a random variable. Thus T, can take values 1 , 2 , . . .  

time intervals. Thus the probability that T, =  r time intervals is;

P ( T , = r )  =  7 ,( l - 7i)r_1, r =  1, 2, . . .

which is a geometric distribution with parameter 7*. Thus

E(Ti) =  i
7

or

7' =  i  =  f~ '  (3.54c)
I

where Tt is the average residence time for stage i obtained from experimental data. 

The intuitive interpretation of Eq.(3.54c) is that after each time interval a fraction 

equal to the reciprocal of the average residence time transits to the next stage.

Another useful approximation is based on within stage dynamics of the pop­

ulation. We had earlier stated that stage i is composed of t{ age classes of equal 

size (ti =  Ti/h) depending on the stage duration time Tj. Assuming equal survival 

probabilities for all age classes in stage i say s* we propose that the stable age 

distribution in stage i is given by

wi =  (1? (5i /^ )  1 • • • ? (si/^)tl 1); . (3.55a)
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To see this assume the within stage population dynamics axe governed by an under­

lying stage specific projection matrix A{. It follows that if the stage i population 

structure at time t is w(t) then the structure one time period later is given by

Wi(t +  1) =  AiWi(t), i =  (3.556)

where

«?,■(*) =  (3.55c)

It therefore means that once the population attains stability, there exists a time 

independent stable stage i age distribution vector u>, which satisfies the equation

Aiivi = \wi, i =  (3.55d)

where

Wi = i =  (3.55e)

and A is the dominant eigenvalue for the stage specific projection matrix A{. Ex­

panding Eq.(3.55d) we obtain the system of equations given by

stw\ = \wl2 

S i U) 2 — A XU g

. (3.56a)
SiWj =  A wj+1

=  Xwti

Without loss of generality assume w\ =  1 then from the first equation in the 

system of equations Eq.(3.56a) we get

w2 = si/^ (3.56 b)

then substituting for wl2 in the second equation of the same system we get

w'z = (si/A)2. (3.56c)
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Continuing recursively in this manner we get the general equation

w )  =  ( S i / x y - '  j  =  2 , . . . ,  ti .  (3 .5 6 d )

Substituting for these quantities in Wi we arrive at

Wi =  (1, s,/X, (Sj/X)2, (Si/A)'1'-1 )' (3.56e)

as required. Now since stage i sojourn time is T, it means that an individual 

currently in this stage i will transit to the next stage i +  1 only after reaching the 

last age class namely ti. Thus once the population has attained stability, then 

after every time step (s , /A )*1-1 individuals will always graduate to the next stage 

i~j-1. We know that in the stage individuals are distributed according to the stable 

vector Wi. Therefore

i»i/x
l +  (si/X) + ... + (Si/X )'<-> (3.57a)

and since the denominator is a geometric series with common ratio r =  Si/X it

follows that if r <  1,

(«</A)“ -  1
(3.576)

If r =  1 expression Eq.(3.57a) reduces to Eq.(3.54c). We note that for a given value 

of A and assuming Si is known one can use equation Eq.(3.57a) to estimate 7*. 

Then using this estimate in Eq.(3.38b) and Eq.(3.38c) we can estimate within and 

between transition probabilities hence be able to parametrize the entire stage-age 

population projection matrix A* displayed in Eq.(3.46).

To further generalise the above considerations, let us assume that an indi­

vidual currently in stage i can graduate into the next stage, i -j- 1 from any age 

class j  =  1 , . . . ,  ti within stage i. It is more realistic to assume that stage duration 

varies among individuals with mean T, and the variance cr,-. It follows that the 

proportion of individuals that graduate into stage 2 +  1 from stage i in the time 

interval (t,t +  1) depends on the within stage age distribution.

Now given an individual survives the time interval (t,t +  1) with probability 

Si let
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7j• denote the probability that an individual of age j  in stage i graduates to 

the next stage, i +  1, within the time interval (t,t +  1);

gj denote the probability that an individual in stage i at time t graduates 

into the next stage, i +  1, at age j given it did not transit at any age / <  

j  — 1, j  =  1 , . . . ,  ti assuming it survives;

hj denote the probability of not having graduated by age j  given it survives 

in the interval (t, t-j-1).

Clearly the set gj, j =  1 , . . . ,  ti gives the probability density of age at grad­

uation to the next stage from stage i. Then the following relations hold. First we 

observe that the probability density can be obtained from the exit probabilities, 

gx =  7 {, g2 =  72(1 -  7i), and in general

3 -1
Si =  7; I F 1 -  7»)- (3.58a)

k=l

Note that ^

S<i =  i l ( !
k= 1

Then h0 =  1, h] =  1 -  7 j , h 2 =  (1 -  72)(^ “  7i)» and in general

3- 1  3
hj  =  (1 _  t]) I F 1 — 7*) =  I IC 1 — 7t).k=\ k- 1

(3.585)

As a consequence we find

7II (3.58c)

Since by definition of 7] if an individual graduates at age j , then it means it did 

not graduate at any age before age j. In this setting, in the absence of (true) 

mortality, graduation can be seen as a mortality, and thus a life table and stable 

age distribution can be computed, of course {hj') replaces the survival function, 

7j replaces the mortality, and gj the probability of death at any given age j  =  

1 , 2 , . . . ,  U. Assume once again that the true within stage age distribution is 

Then it follows from Eq.(3.55b) that,

Wi{t +  1) =  AiWi(t) (3.59a)
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where the Ai is a submatrix extracted from Eq.(3.47) to represent the aging process 

within stage i. Now assuming the population has attained stability then the 

following equation, same as in Eq.(3.55d) holds

A{Wi =  \wt (3.596)

where as before W{ is the stable stage i age distribution vector given by Eq.(3.55e). 

Thus given this stable distribution, then the mean of the proportion of graduating 

individuals is
£ /= l  7 jv>)

7 i = Y** . wy (3.59c)

Now we have to find the stable stage i age distribution itself. To do this we have to 

take into account true mortality and population growth or assume a stage specific 

survival probability $,• over the time interval (t, t + 1). We next expand the matrix 

equation (3.59a) to get the system of equations

5,(1 -  7\)w\ = Xwl2 

5,(1 “ 72^2  =

5,(1 - 7 j _ i H _ i  =

Si(l - 7 1 , - i K - i =  Xwti

From the first equation in the system (3.59d) wl2 is given by

=  ( !  “ 7 i )*«7*

then from the second equation we get w3 as

^3 =  (1 -  72)(ai /* V 2

which on substituting for the expression for w2 becomes

u>3 =  C1 — 7i)(l -7 i ) (5 i /A )2

(3.59d)

(3.60a)

(3.606)

(3.60c)
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We continue solving the system recursively and in general

j - i
wh  j = 2  (3.60 d)

Jt= 1
It follows that the stable distribution ivi is explicitly given by

l  1 \
(1 — T'i )(-s./A)

( l - 7 i ) ( l - 7 : ! ) ( s .Y A ) 2to. = (3.61a)

V n iiY,1( l - 7 ( . ) ( ^ / A ) ,i- 1/

Introducing this distribution into the expression for the mean proportion who 

graduate to stage i +  1 from stage i we get

_  E>=i 7j ITi= i (1 -  7j)(^./A)J- 1 
7i E ^ , n i = , ( i - 7 i ) ( ^ / A ) > - '

_  A/a,-E‘Li gj(A/Sj) ~ 3

A hi Y.%o hj(\/si)~i

Now from here we want to extract an appplicable formula connecting 7* and 

the mean and the variance of 7*. Define

(3.616)

a =  ln(A/st).

Then take logarithms in Eq.(3.61b)

(3.62a)

U- 1
In 7; =  In ^  9j e - a> J  -  hi ^  h i e ~ al | • (3.626)

The first term on the right hand side is the cumulant generating function of the 

gj. The second term can be seen as the cumulant generating function of the 

appropriately normalized numbers hj. Thus writing

? _  n3
3 "  E j  h, ’

we find
t.-i

In7.' =  ln ( Y s g>e ^  “  ln ( J 2 ~hie a) I -  ln ^ -
J=i /  \i=o

(3.62c)

(3.62 rf)
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where of course, T{ — Ylj hi is the expected stage duration. We expand both 

cumulants into power series in a (see Kendall and Stuart 1958), to obtain,

a
In7,- =  1 — ak\(g) 4- -^k2{g)

Here

h(h) =

Thus, to first order in a,

or

The second expression gives

1 +  ak\(h) — — k2(h) +  • •—  InTi. (3.63a)

=  T,

=  <7.

V i +  T?
(3.63 b)

2Ti

l - i ) - 1” *
(3.63c)

’ [ - “ ( t ' S ) .  •
(3.63d)

— -11 (3.63e)

for sufficiently small values of a. When a =  ln(A/s,) >  0, it is obvious that the 

estimate 7, ~  1 /T ; overestimates 7, , because it overestimates the abundance of old 

individuals within the stage by neglecting the effects of mortality and population 

growth in shifting the age distribution towards young individuals. The smaller the 

variance a  in stage duration, and the larger the average duration f«, the greater 

the overestimate of 7 It is important to note that these estimates depend on the 

value of A. However A is an estimate to be made and cannot be known until the 

projection matrix is first estimated. One can however assume the value of A say 

A =  1 and use an iterative method to calculate 7,. The idea is to choose a value A 

then calculate the entries of A, the projection matrix. The eigenvalues of A yield 

a second estimate of A. If repeated the process usually converges to the matrix A  

whose entries are compatible with its own eigenvalues.

Another approach is to relax the assumption of stable within-stage age dis­

tribution and assume that the stage duration distribution is negative binomial 

with mean and variance E(T) and V(T) respectively. As before we let T, denote
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the residence time for stage i. There are k stages in the entire life cycle with a 

common probability 7 of moving from stage i to the next stage, 2 +  1. The time 

T required to grow through all the k stages is equal to the A>th success in a series 

of identically distributed Bernoulli trials with probability of success 7 ; that is

where

and

P (T  =  x ) =  ( * _ J j 7* ( l - 7 ) * - ‘ (3.64a)

E(T) =  T =  -  
7

(3.646)

v(T) =  M i r  t )) (3.64c)

To imitate such a situation for stage dynamics we divide a typical stage say i into 

a series of k identical but invisible “pseudostages” as in Longstaff(1984). These 

are supposed to slow down individuals proceeding through the stages so as to 

produce a distribution of stage durations with specified mean and variance. The 

assumption here is that mortalities and fertility axe identical for all pseudostages 

within a stage. Thus each transition within the stage is conditional on stage- 

specific survival probability s, and is given the same specific fertility cofficient / ,  

which is set to zero for noil adult stages in the current model. Solving for 7 in the 

two expressions for E(T) and V(T) yields

Tj
V(Ti) +  fi (3.64 d)

and

k
v(Ti) +  Ti (3.64c)

where T, and V(Ti) are estimates for E(T) and V(T). Thus using 7 * in Eq.(3.64d) 

we can estimate p\j and 7rj+1>J. in Eq.(3.38b) and Eq.(3.38c) respectively. Thus 

if from observed data we can estimate the mean and variance of stage duration 

then 7i and ki can be estimated from the equations above. The estimate ki can 

be interpreted as the waiting time before an individual transits to the next stage
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3.5.3 Estimation from Experimental Cumulative Distributions
Assume that an experiment is conducted at time to. Let us focus our attention 

on a particular stage say i =  1, . . . ,  k and on a specific cohort of individuals at 

time to. Since there are t{ age classes of equal size then at any time t 6 [to, <o +  £j), 

any individual still in this cohort is of age j = t — to +  1 • Let

M  =  total number of individuals which will transit to the next stage i -f- 1.

F(t) =  proportion of the M  individuals that have transited to stage z +  1 by

time t
t\ =  time just prior to the transition (to stage i +  1) of the first individual

t2 =  the time at which the last individual transits to stage i +  1.

Then obviously F(t) is monotonic increasing namely 0 <  F(t) <  1. It is 

called the experimental cumulative distribution. It follows that given an individual 

survives to stage i -1- 1, the probability that it transits to the next stage within 

[tf, t +  1) is given by the expression

^1 = F(t + l ) -F ( t )  " (3.65)

The event that an individual transits during [M  +  1) is the same as that it transits 

at age j =  t — to + l.
Given that an individual is in age j =  t — to -f 1 and it will survive to the next 

stage the conditional probability that it transits to the next stage during the time 

interval [t,t +  1), is given by the expression

7l j =
F ( t + l ) - F ( t )  * ^ x
— f < *2
1 t > t2 (3.66)

That is if we let Uij denote the event that an individual of age j  in stage i will 

survive to stage i +  1 then

f  F ( t + 1 ) - F ( t )  .
P(T(t)IUh) =  (  x i-rt') J <  J* (3.67)

that is

7,'y -  P(T(t)\Uij) (3.68)
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where T(t)\Uij denotes the event that an individual transits to stage i +  1 in the 

interval [t,t +  1) given it survives to that stage. The event T(t) had already been 

defined in section 3.4. That is if we can work out a functional expression for F(t) 
we can use Eq.(3.68) to estimate yjj then using it together with information on 

survival probabilities in Eq.(3.37b) and Eq.(3.38c) one is able to parametrize the 
matrix A*.

All the methods of estimation highlighted above are based on the assumption 

of homogeneity. In chapter VI we will revisit the problem of estimation of the 

elements of matrix A and its generalized counterpart, A*. The effect of seasonality 

and vegetation type to the vital rates is incorporated into the system.

3.6 Classical Leslie and Experimental Transition Probabilites

In this section we wish to derive the relationship between the two probabilities 

given in Eq.(3.38a) and Eq.(3.68). The difference between the two probabilities is 

in the condition. Sij(t) is the event that the individual will survive to time t +  1, 

but we do not know whether it will stay in the same stage or transit to the next 

stage. Sij(t) is only related to the time interval +  1). On the other hand Uij 
is the event that an individual will survive to the next stage, but we do not know 

when it will transit. Uij is related to the time interval [t,t +  t, _  j _j_ i). jn facj. 

we deduce that

— *^*>(0 (3.69)

The relationship between the transition probabilities in the classical Leslie model 

and those from experimental cumulative distributions is contained in the following 

two theorems. The theorems are proved elsewhere by Yanan et al (1990) but we 

present modified proofs relating to the current work. However before we state and 

prove the theorems we present some useful statements and notations:

S«i(M  +  m ) = the even* that an individual at age j  in stage i at time t will 
survive to time l +  m, and =  S ,j(M  +  I) for simplicity and

T(t, t + m) ^  the event that an individual will transit to the next stage during 
the time interval [t,t +  m), and T(t) =  T(t,t +  1) for simplicity.
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P(Sij(t,t +  r +  1) H T(t + r,t +  r +  1))

=  P ( S i j ( t ,  t  r )  n  T c ( t , t  -f- r ) ) P ( S t j + r ( t  +  r, t  +  r  +  1) H T ( t  +  r, t  -f- r  +  l ) )
(3.71a)

and

P(Sij(t, t +  r +  1) n Tc(t +  r,t 4- r +  1))

=  P(Sij(t, t+r)Ci Tc(t, t +  r))P(Si,j+r(t +  r, t +  r +  1) n Tc(t +  r, f +  r +  1))
(3.716)

then the transition probabilities in the Leslie model can be obtained from experi­

mental cumulative distributions by the following formulae:

Theorem 3.7 If the following Markov-like property holds,

t-HIIII (3.72a)

and
, . .  ; =  1 t- 1
7 ,J~  1 - [ 1 - * ( » ] V  3 '

(3.726)

where ti~j r— 1
fiU) = y  ] ( || si,j+m( 1 — 7»,J+m))^i,j+r7j,J+r?

r= 1 m= 1
(3.72c)

=  P (‘S'ifj-|-m(̂  “b ^))>

and the conventions

n ° ( n )  =  n  = 1
n ri = l

is always assumed. Further, if S{j — s* Vj  — l , . . . , t f , -, say, then Eq.(3.72d)

becomes r r-1 "j
<Kj) == V !  1 — 7*',y+ri r7i,>+r-

r=l lri = l J
(3.72e)

P roof: By definition of the event Uij, we have

U-i
Uij =  U  +  r + l ) n T ( (  +  r,( +  r + l ) )

r—0

Since
T(t +  r, < +  r +  1), r =  0 , - j ,
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axe mutually exclusive events

(Sij(t, t H- r -J- 1) fl T(t 7% t -f- r -f- 1)), r — 0 , 1 , . . . ,  t, — j

are also mutually exclusive. Hence

P(Uij) =  [ j  +  r +  l ) f l  T(t +  r, t +  r -hi))
V r= 0

ti~j
=  ^  +  r +  l ) n T ( (  +  r , H r  +  1 ) ) .

r= 0   ̂ '

From Eq.(3.71a)

P(Uij) =  ^  P{Sij(t,t + r)nTc(t,t + r))p(Sij+r(t +  r) C\T(t +  r))
r— 0

where

Si,j+r =  Si,j+r(t + r,t +  r +  ! )  and T(t + r) = T(t +  r.t +  r +  l) 

for simplicity. Using Eq.(3.71b) repeatedly we have

P(U,j) =  ' f { n  p ( s , j + m(t  + m) n  T c(t +  m)) } p ( s , , i+ r (f + r) n  T ( t  +  r)).
r= 0  ^m = 0

(3.73a)

By definition of Sij+m and 7i,j+m we have

p(si,j+m(t +  rn) n  Tc{t +  m )) =  P(Sij+m{t +  m ) ) p ( T c(i +  m )|5 i j +m(t -h m ))

=  ^i,j + Tn(l Tiij+m) (3.736)

for m =  0, l , . . . , r  — 1, and

P(Si,j+r(t + r) n T(t + r) = p(s„>+r(t + r )^ p ( r ( t  + r ) |S ,j+ r(t +  r))
— si,j+r/Ji,j+r• (3.73c)

Using equations (3.73a), (3.73b) and (3.73c) we get
ti-j ,  r—\ 1

P(Uij) =  IT "  7*,>+rn) r5*,>-|-r7t,i+r
r= 0   ̂m = 0  >

ti-j i 1

=  SijTfij d" ^*j(l T u ) ^   ̂ y J. J. ^hj+n^l 7i,ji+m ) J *si,<7 + r7i,.;+r
r= 1 m= 1

=  “  M ’)) +  (3.74a)
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where
t i—j  r— 1

</>(j) =  5 Z  ( I I  s'J+m(̂  ~~ ^*»i+m) ) ,s*-i+r^*->+r
r=  1 m=l

Now we show that
T(t) n Uij =  T(t) n Sij(t)

Note that u-j
Uij =  U  (Sij(t, i +  r + l ) n r ( i + r , (  +  r +  l))

Hence

r= 0

t i - j
T(t) n Uij = 1J T(t) n (Sij(t,t + r + 1) n T(t + r,t + r + 1))

r=0
=  T{t) n n T (f)]

=  s Uj(t) n T(t).

Thus we have

Now note that

thus

and from Eq.(3.74b)

P(T(t) n Uij) = P(T(t) n Sij(t))

_  P(T(t) n 
lij -  P(Sij(t)

snnj =  P(T(t)r\Sij)

s.ji.i =  P{T(t) n Uij)
p(T(t) n Un) ■

=  P(Uij)

We now use the expression for P(UtJ) to get

P(Uij)

sum  =  + sij<l>(i)}iij

and solving for -y,, we have

4>(j )iij
m  1 -  [1 -  <t>(j )]'tij  ’

j  =  - 1.

(3.746)
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l i j  =  7i>» j =  iff Sij =  1, \/j =  1 ,2 , . . .  ,ti

That is, for a given stage z, the two transition probabilites are identical if and 

only if the survival rate for any age group of the stage is 1.

P roof. (1) Sufficiency: Suppose that

Theorem 3.8: Under the condition that Eq.(3.71) and Eq.(3.71b) hold.

Sij — 1 \fj — 1 , . . . ,

Then

<t - l  /  r— 1 \
4>(j) =  ( n  ^  _  7i,j+m) y7i,>+r

r=  1 'm =  1 '

=  7*,>+i +  U  _  7 i,j+ i b«\>+2 +  (1 -  7 * , i+ i) ( l -  7*',i+2)7i,j+3 +  

+  (1 — 7i,j+1 ) ' *■( !  — 7j,*,- —2 )7*M,* — l 

+  (1 — 7 i,>+ i) ’ ’ ' (1 “  7t,f. —2)(1 — 7 i,t,--l)7 i,ti-

Now since

7 i,ti =  1

combining the last two terms in the just concluded expression gives

<f>(j) =  7 i',>+1 +  (1 “  7i.i+1 )7 i ,j+2 +  (1 “  7 i,> + l)( l “  7i,j>+2 )7i, j+3 +  

-f (1 — 7*\>+l ) * * ' “  7i,«.- —2 )•

Continuing in this manner we finally get

m  =  i

and by substituting this result into Eq.(3.72b) we get

7ij =  7ij j ~ U • • • > 1.

(2) Necessity: Suppose

7ij — 7*Ji j • • • i ti 1
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then from Theorem 3.7

l i j  =
<f>U)i

1 -  [1 -  <t>(j)]7 i j  1 ? • • • ? 1

which implies that

or

and since

then

1 -  [1 -  4>(j)]iij =  <t>(j)

[1 -  ^(i)](l -  7«>) =  0

Hj <1  Vj =  1, . . .  ,ti -  1

M ' ) = l  j  =

On the other hand if 3 some mT with 0 <  mi <  t{ -  j such that

then we can show that

<Ki) < 1

which contradicts Eq.(3.74c). Then we have

S{j =  1, 7 =

So all that is left to do is to show that Eq.(3.74d) implies Eq.(3.74e). 

Theorem 3.7

ti — 1 /  r— 1ti — l y r —i \
</>(j) =  (  J J  s i , j + m ( 1 — 7 i , j + m )  )  s i , j + r l i J + r

r =  1 ' m = l  '

wii- 1 /r -1 \

=  X /  (  I I  tj +T
r = l  ^ m = l  '

«i“ > / r- !  \
+  X /  (  I I  ~~ 7 t , i + m ) j 5 j ) J + r 7 l J + r

r = m i  ' ■ m = l '

(3.74c)

(3.74d)

(3.74e)

From
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Now lot all be replaced by 1 except » then

in \ — 1 /  r — 1

4>{j) 5  ( J J  t 1 ~  7 i J  +  m  ) ) h'J + r
r— 1 in — 1

t , ~ J  /  1 1 \

4* ^   ̂ ( }  J[ ( 1  fij+rn) J fi,j+r•

r =  m i m=l

Since 7xj+m < T m — 1,2 ,... J T and yi,«t- 1

j (1 — I f i J + m  >
m= 1

and from e q . ( 3 . 7 4 d )

5itj + m |
k m=l '  V m=1 '

Therefore »*l -1 / r- 1 \
<p ( j ) <  f — 7i ,J+m ) ) 7i,j  +  r

r =  1 'Vm  =  1

< , - l  /  r— 1 \

+  f J J ( 1  — 7«,; + m) ) 7 i,J +  r
r=rni 'm= 1

t i - j  , r - \  \
=  f (1 — 7i,J + m) W i. j+ r

r =  1 N m =  1

=  1.

That is
0(j) < !•

Since Eq.(3.74e) contradicts Eq.(3.74c) it follows that Eq.(3.74d) is false. There- 

fore we have
S{j =  1 Vj =  1, . . .  , t,-.

The practical implication of these two theorems is that the two kinds of tran- 
sition probabilities are very different for lower survival rates. This means that the 
difference will be significant for those stages where survival is generally low due to 
say high sensitivity to unfavourable conditions.
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It is important to note that while the experiments are often conducted under 

conditions which lead to high survival, the Leslie model is often used to simulate 

real environmental conditions, such as seasonality, diapause, predation, chemical 

treatment and so on. For example Stinner(1975) studies the effect of temperature 

on development rates of a beetle population. From Theorem 3.8 we know that 

the two kinds of transition probabilities are identical if and only if the survival 

rates in the experiment are 1. It follows that when the experimental survival rates 

are high, making the function <f>(j) close to 1, then the cumulative distribution 

provides a close approximation to the Leslie transition probabilities. The results 

described provide a connection between the two kinds of probabilities, and we 

expect will assist in more accurate model construction and use.

A simulation model for the brown ear tick (R. appendiculatus) population is 

presented in chapter VI to validate and clarify some of these ideas. The simulation 

is based on the data by Short et al( 1989a,b) collected in Zimbabwe. It is a multiple 

matrix product simulation model where variability in the matrix inputs is due to 

seasonality and vegetation type.
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C H A P T E R  IV

A  V E C T O R -H O S T  IN T E R A C T IO N  M O D E L

4.1 M odeling approaches

Terminology and Definitions
We start by giving some basic definitions and terminologies.
1. ) Fecundity means the number of eggs per female based on a 1:1 sex ratio. This

may vary with female body size and saturation.
2 . ) Pre-oviposition period: This is the period in the female adult, from completion

of engorgem ent to first day of egg laying.

3. ) Egg development period: This is the period from first day of egg laying to

first day of hatching.
~i.) period : Applies to engorged larvae and nymph.

Different types of mode.u

We shall design a sequence of models of increasing complexity in a building 
block fashion The simplest model will Ire si linear stage m odel for the tick p o p ­

ulation on ly  Here the first modeling problem arises. Each individual undergoes 
development from egg through larva, nymph and adult whereby the duration o f 

t is subject to variation and external factors such as temperature and humid- 
ity.SThere are basically four different ways to describe such a situation.
1.) Discrete time com partm ent model of the form

Q 7 — 1 7 — 1 j = (4.1)

\ b *pts taken cyclically. In general x lj denotes the number of individu-
. • while the constant aj denotes the proportion transiting als in com partm en  j

• _l 1 from compartment j  in one time step. Then thein to com partm ent j  +  L n o n  i

i , \ _ ;nterDreted either as a generation (which does not maketime step t has to be mie p .
J2 i i dnrlvl or as a chronological time step, for example t could sense in any held stuay;

i „ months. Then the different compartments x 7 have to be counting weeks 01 montn . . .
'b t d to certain developmental stages. This amounts to an implicit

be
coupling

of the lengths of these stages to the time steps.
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2 .) Continuous time compartment model in the form of

X j ( t )  Q i j — \ X j — \ f i j X j i  j  — 1 ,  — , n , (4.2)

again subscripts taken cyclically. The variable Xj carries the same meaning as 
above while i j ( t )  denotes its derivative with respect to time. This approach 
seems more flexible and suitable to describe overlapping generations. The 
rate a j- i  describes the transitions at which individuals enter the j -th com­
partment, and fij is the rate at which they leave the compartment. Again, the 
model structure implies an assumption on the underlying process: Individuals 
leave the j -th compartment according to a Poisson process with parameter 
fij. The probability for an individual to stay in compartment j  decreases as 
exp(-fijt).  If T is the exit time from stage j ,  then

Pr{T  > t }  = e~ n l. (4.3)

Then the probability distribution function is

F(t) = 1 -  e~flj 1, if t > 0
0, i f / < 0 .

and the probability density is:

m  =
fij e~^i 1, if f > 0
0, if t < 0.

(4.4)

(4.5)

Thus the mean and variance are;

E(T) = f ~ fije-',‘ ttd t= l  hi

l/(T) = E ( T 2) -  ( E ( T ) ) 2 =  1 (4 G)

Thus the compartment model assumes that the sojourn time in compartment 

j  is on the average, l/AO-
3.) A third possibility would be a structured model along the lines o f the physio­

logically structured population  models of Metz and Diekm ann (1986). These 

authors test their models for Daphnia populations. Then the model would

take the form
du(t,x) d(g(x)u{t,x))

-fi(x)u(t,x) (4.7)
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with an appropriate recruitment condition, namely

u(*,0) =  f  b(x)u(t,x)dx.
Jo

(4.8)

The continuous parameter x describes the stage, the function fi(x) is the stage 

dependent mortality and g(x) is the rate at which the individuals pass through 

the stages with reference to chronological time. Corresponding to the partial 

differential equation(4.7) there is an associated system of “characteristic” or­

dinary differential equations(see John 1978)

^ •  =  1, ^  = g(x), =-(g'(x) + fi(x)).
d s ds as

(4.9)

Since t =  <o +  s with some constant to, the second characteristic equation 

dx/dt =  g(x) describes how the different stages are passed in time. Notice 

that this law is again deterministic in the sense that the stage is uniquely 

determined by the time. Of course discontinuities such as transitions between 

entirely different stages such as larva and nymph can be incorporated by 

appropriately replacing the single equation by a system of equations.

4 ) Finally one can try to incorporate maturation periods, diapause periods and so 

on in the form of delays. In a general sense delay equations can be considered 

as special cases of the hyperbolic systems mentioned in Eq.(4.9) above where

coefficients are step functions.

It appears that there is a problem in comparing these approaches. As indi­

cated earlier, the Leslie type models described in Eq.(4.1) have a fixed time scale. 

The time step must be defined, for example as a period of one year, one month, 

or one week. Equation of the form (4.1), can more generally be expressed as

x‘+t = J L aikX‘k’ (4.10)
k

Where a ik denotes the proportion of individuals from the fc-th class that move into 

the i-th class during one time step. If the sum

x>< *
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is less than 1 then not ail individuals of the k class are distributed to other stages, 

that is a mortality after the k-th stage is implicitly modelled. A more detailed 

description can be obtained with time dependent transition matrices. In the gen­

eral system (4.10) the types or classes need not be consecutive stages in the life of 

an individual. As in the model of Sandberg et al (1992) where the classes were 

determined by whether an individual is in its 1-st or 2-nd year or whether fall-fed 

or spring-fed thus in a model the types or states may be different life histories 

apart from consecutive stages in the life of an individual.

In the ordinary differential equations model (4.2), or more generally

^  bikXk, (4.11a)

there is also an implicit time scale, because, if properly connected to data, the 

coefficients are rates, that is transitions per time unit. Typically the diagonal el­

ements axe negative numbers. Since for each stage the exit time from that stage 

is modeled by a Poisson process, the expected residence time in the ith stage is 

- 1/6 where 6„ <  0 since it denotes the rate which individuals leave stage i. 
For example in Eq.(4.2) the average residence time in the j-th  compartment is 

1/  . The residence time so computed is the residence time for all individuals in­

dependent of whether these move to the next stage or just die. Note that equation 

(4.11a) can be written in matrix notation as

'x = Bx  (4.116)

where
B =  (bik) i,k =  l , . . . ,n .  (4.11c)

Usually it is easy to condition on survival to the next stage. Suppose, for 

example the i-th and (« +  1H * equations posses the form

=  . . . — OiXi ftiXi,

X i+ l  =  • • • +  CliXi . . . ,

where a, is the trasition rate from stage i into stage i + 1 and /*, the mortality rate 

for individuals in stage i then it follows that the residence time in the i-th stage 

of those who continue to the next stage is 1/a ,.
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Now we consider the transition between the continuous time system (4.11a) 

and the discrete time system (4.10). The mathematical procedure we apply is the 

Euler one step method for the differential equation

u = F(u) (4.12)

where the variable u is a function of time and in general u could be vector valued. 

If we discretize time in small time steps of size h such that

*i+l =  *i +  h

then we can approximately write

u(*i+i) =  hF(u(ti)) -f u(*j). (4.13)

Thus if we discretize Eq.(4.11a) by the Euler one step method then we arrive 

formally at a discrete time system

V ? "  = vT + h Y , 1***” 'k
(4.13)

thus formally
CLik =  $ik +  hbik (4.14)

or, in matrix form,
A - I  + kB (4.15).

Here yf* denotes the number of individuals in class i after m time steps or at 

time t =mxh thus y™ must be seen as an approximation to £,(*). Of course one 

time step of the discrete system correponds to a time interval of length h in the 

continuous system. If we just interpret I + hB as the matrix of a discrete time

stage model then we must bear in mind that the rates are adapted to a time step 

h.
This is clear if we suppose in the expansion

hBy
E V  =  exp {hB} (4.16)
j=0
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h is small such that we can ignore powers of h of order two and above, so that we 

can write

exp{hB} ~ I  + hB (4.17).

Thus the above considerations are (approximately) correct only for small h that 

is as long as I  +  hB is a good approximation for exp{/if?}. If h is too large then 

I  -f- hB becomes meaningless as a matrix of a discrete time model.

The converse is even more difficult. Suppose we are given a discrete time 

system (4.10) then we can artificially make a transition to a continuous time system 

by introducing the length h =  1 of the time step that underlies the data, and write

xm+l - x m = h(A — I)xm. (4.18)

If h __ i can be considered small in relation to the changes in the xm then one can 

replace the difference quotient (xm+l -  xm)/h by the derivative x and thus arrive 

at Eq (4 l ib )  with B = A — I. The asymmetry between the two problems arises 

from the fact that a derivative (differential quotient) by definition isjffie limit of 

difference quotients, but a difference quotient in general cannot be approximated

(in a unique way) by derivatives.
Finally we try to etablish the connection between the partial differential equa-

j i /i  7\ anfl I eslie models. We discretize the time and space variable tions in model (4. /) anu ^
with equidistant steps A t and Ax, respectively. The solution u(t,x) is then ap­

proximated by «?, when x =  tAx, t =  kAt. That is u? denotes the number of 

individuals who are in stage class i after k time periods. In a similar manner
,. . •  ̂ mntinuous function g{x) such that represents the rate atwe can discretize tne cuji

. i i ooC tVirouch stage class i. Let us now closely consider individu- which individuals pass
i • of fime t who by definition are denoted by uf. Clearly the fate als in stage class i at time i wu j  »

. . • i i a 4- l)-th class after one time step is determined by one ofof an individual in tne  ̂ "r ;

the following;

(i)

(H)

(iii)

grow or mature into class i +  2 at rate determined by gi+1 

remain in the same stage or
exit the system through natural mortality at a rate of pi+1.
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Thus the discretized equation corresponding to Eq.(4.7) results in the follow­

ing balance equation

„ f+ ‘ =  u?+1 -  (At/Ax)(ff,+iu?+i - 9i U ki )  -  A</i1+iuf+I, (4.19a)

which by re-arrangements of terms gives

u*+> =  (i — (A</Ax)ji+i)uf+1 +  (A</Ax)pjuf — At^<i+iui+1. (4.196)

Then replacing i by i — 1 we get

u*+i _  (i _  (At/Ax)<7*)uf 4- (At/Ax)gi_iu,_| — A . (4.19c)

This system says that at the time step from H o i  +  l a  certain proportion 

(1 -  (A</Ax)gi) of individuals stay in the ith compartment, and a proportion 

of (A</Ax)<?i-i move from the (i -  l)-st to the i-th, whereas Atp; exit the system 

through natural mortality. The recruitment condition (4.8) is discretized as

N
u P '  = £  b i n * .  -  (4.20)

i=0

where we assume the system is structured into N compartments and 6; denotes 

the fecundity of the i-th compartment or stage class. Thus, formally, we obtain a

Leslie model.
So far we have attempted to reconcile the two types of population models

1 the continuous and discrete population models. This is important because

xi  ̂ , mndel approaches are used together or ideas in one can help in most cases the two mouci ^
to u n d e rs ta n d  the other better and vice versa.

4.2 The Com partm ent Model

. , , _ ro 'xn with (n =  10) denote the numbers of individ-
Let the variables xu *2,-

i Let Pi, i =  1, • • • ~  1? be the rate of transition fromuals in the stages 1 to n. ^
• . i iTrtr the moment we assume that the p,- are constants, later 

stage i to stage i +  1- ror
, onfities depend on external parameters such as temperaturewe can let these quantities aep

, , ,  „ „  In each stage there is a natural mortality p; , i =  1 , . . .  ,n .
or host abundance.
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The model is a cyclic chain model of n linear differential equations with constant 
coefficients,

Xl =  f xn — P\X\ — p\X\

X2 — pi X\ -  p2x2 — p2x2

xi ~ Pi-lXj-i — PiXi — piXi (4.21)

X n - 1 — P n - l X n - 2  ~  P n - l^ n - 1  — pLn- l^ n - 1

Xn Pn — 1 Xft — j fJ.nXn .

The Pj, j  =  1, 2, . . . ,  n — 1 are defined as follows:
Pi: rate of egg hatching
p2' rate of larval attachment onto a host
p$: rate of drop offs from a host by larva
P\\ rate of moulting by developing larva
P5 : rate of attachment by questing nymph
p6: rate of drop offs from host by nymph
p7: rate of moulting by developing nymph
Ps: rate of host attachment by questing adult
p9: rate of drop off from host by engorged adults
/ :  fecundity of the adult stage

Now, system (4.21) can be written in matrix notation as shown below,

/  *1  \ /  —a\ 0 0  • 0
/  \ x \ \

X2 P i - a 2 0 0 0 x 2
= 0 P2 - a 3 • 0 0

Xji — l \ • •
Xn - l

\ X n / \ 0 0 0 ••• P n - 1 ~ a n /  ̂ Xfi )

(4.22)

where a, =  p,- +  pi, i =  1,2,...,^ 1 an<̂  an — pn-
(4.22) can be writen as

x =  Ax

More compactly the system

(4.23)

where A is the matrix in Eq.(4.22).
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A discretized version of Eq.(4.23) is given by;

Xt+1 — Xt =  hAxt

or

x =  ( /  4* hA)xt — Lxt

where L =  I +  hA for small his a. discrete type Leslie matrix, as derived in section

4.1 and h measures the time step.

The matrix A =  (ai ; ) is of a type that is called essentially nonnegative, that

is the off-diagonal elements are nonnegative while the diagonal elements may be

of either sign (nonpositive in the present case). In case the p, and /  are all

positive, the matrix is irreducible. Thus to this matrix the theorem of Perron-

Frobenius can be applied. For any matrix define the spectral bound as the

least upper bound of the real parts of the eigenvalues. In other words, the spectral

bound is the maximum taken over the real parts of all eigenvalues. In general, the

spectral bound need not be an eigenvalue itself. But in the case of afi essentially
. • onectral bound is a (real) eigenvalue. Furthermore, if the

nonnegative matrix, tn I
* •_. irreducible then the spectral bound is a simpleessentially nonnegative matrix is irreducmi ** *

„ • f-„ nnlvnomial and all other eigenvalues have strictly smaller
root of the c h a ra c te r ise  \ y  . . .

.. fVw* Qnertral bound there is a positive eigenvector,
real parts. Corresponding to the spectral , _  f, * f ,

aio-pnvectors to any other eigenvalues. Thus the spectral 
There are no positive o

, .... e fUp 7pro solution of the differential equation. If 
bound governs the stability at the

. then the population will grow exponentially; if it is
the spectral bound is postive ttien

negative, then it will decay.
, s ectral bound is a zero o

Of course, t C SP  ̂^  dealing with in Eq.(4.22) is essentially nonnegative

is because the matrix ^  ^  properties of the matrix A by first getting a

and irreducible. We characteristic polynomial. In general the characteristic

compact expression ioT ^  ^  expanding the determinant \A — A/|.

polynomial can be ob in Eq.(4.23) the characteristic polynomial can
f the matrix

In the case o the corresponding linear system rather than
most conveniently be obtained

zero of the characteristic polynomial. This

108



by expanding determinants, this is clear from the fact that the characteristic poly­

nomial is a function of A only. Thus to obtain the polynomial from Ax =  Ax we 

have to eliminate the x.'s from the equation which is explicitly given by

Axi =  f x n -  p\x\ -  fi\xi 

\x2 =  p\X\ — P2X2 -  V2X2

A Xi  =  p i - i X i - i  — P i x i P i X i  ( 4 . 2 4 )

A x „ _ l  =  P n - 2 X n - 2  — p n - l ^ n - l  P n - \ X n - l

Xxn =  Pn-lXn-l -  PnXff

From the last equation an +  A ^
a: ,i-i = ---------- Xn' ( 4 . 2 5 )

Pn - 1

and from the second last equation

<2n-l +  ^
Xn- 2 — Xn — 1

Pn—2
( a n - 1 +  A ) ( f l n  +  A )

P n - 2 P n - \

( 4 . 2 6 )

where <2, =  Pi  +

get a general expression

• _  o n — 1 and an = Pn- Continuing in this manner we1 — Z ,••• 1
for a?» asi

n —1

Xi = x n II II P>
,=.+1 >='

( 4 . 2 7 )

In particular n — 1

X\ = xn n < - > + n  p>
7=2

From the first of the equati
in Eq.(4-24) we get that,

a\
Xn

+  A

7 X,

( 4 . 2 8 )

(4.29)
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Substituting this expression in the above formula for xx and eliminating xx ^  0 
we finally get the characteristic polynomial in the form

n — 1

■p (A) = + a) —/  n
z—1 *=1

that is 71—  1

p{ a ) = + hi+ a) -  /  n pi<
t=i •=>

(4.30a)

(4.306)

(with pn =  0) since in general p, denotes the rate of moving from compartment

i to compartment i +  1 and according to the model specification, compartment n

is the last in the system therefore p„ is set to zero. It is assumed individuals can

only leave the last compartment through death. These individuals reproduce at a

rate /  when still surviving. At this point we wish to discuss the relationship of the
. .. JUrrete case particularly in relation to the Perron-Frobeniuscurrent system to the discrete v

Theorem and Cauchy polynomials.

Remark 4.1: The Discrete Time C ' .
Consider any nonnegative matrix A =  («y)- Then the Perron-Frobenius

\ Tn narticular one can look at matrices of Leslie
theorem ̂ classical version) applies, in p

, 1 of stochastic matrices, and the class of stochas-
Also one can consider the class o

Th stochastic companion matrices have characteristic
tic companion matrices, 

polynomials of the form n — 1
P(A) =  A" -  5 3 aiA’

i=0
(4.31a)

here c—̂ - / .  « \
a, > 0, £  ai =  1- (4‘316)

i= 0

(4 31a) with the property (4.31b) is called a Cauchy
polynomial of the or have several interesting properties. Trivially

Dlynomial. Cauchy P ^  disc {A : |A| <  1}, and 1 is an eigenvalue.

1 their eigenvalues h those numbers can be eigenvalue of any Cauchy
i fVip unit circle omy

arthermore on ts Qf unity of some order m < n. Except 1, no
Dlynomial of order n that are
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positive number can be a root of any Cauchy polynomial. For given n, the set of 

all eigenvalues of all Cauchy polynomials is a compact subset of the unit circle that 

has two connected components: the isolated point { 1} and a compact star-shaped

domain.
In the present c a s e  of m a t r ic e s  related to the continuous time evolution we 

have probably quite similar properties that have to be discussed. At this moment 

one sees that depending on the sign of the expression

d = n  ^  -  h  n  Pi (4.3ic)
1=1 j=i

either all coefficients are positive (D >  0) or all coefficients are positive with the 

exception of the absolute term (D <  0), where

ai =  Pi +  Pi (4.31c?)

Since P( A) is an increasing function for positive A, the sign of D =  P(0) determines
A Tf D >  0 then the spectral bound is negative, the 

the sign of the spectral bound, n u s  . . . . .
Tr r> ^  n thm  the spectral bound is positive, the population grows 

solutions decay, if U  <

exponentially \» p n  f\) is a polynomial with all coefficients nonneg-
I f£><OthenQ( A)  =  A ) . . . r

,. coefficient that is negative. Thus, up to a simple scaling, 
ative except the leading

Q(\)  is a Cauchy polynomial.

Now if P(A) is e x p a n d e d  in the form ^

P( A) =  ^2  C> A' (4-32)
:=1

_ nnsitive, in particular c„ =  1, and by substituting 
then all coefficients except c« P

(A. ^0b) or 4.32 we ge A =  0 in equation (4.dUo; n —1

CO

Clearly the condition c0

=  P(0) =  I >  +  ^  ^ I I Pi'
i= 1 1=1

< 0 holds if in the equation above 

-1 ”
f n  pi > I T p i + ^

,i> •='

(4.33a)

(4.336)
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and of course f  >  0. Now define

m =  min (p, +  Pi).1 <i<n
(4.34)

In view of n n
P(*) =  ^ ,Y[(Pi + ^  +

■=1

the function P(A) is strictly increasing, as long as

(4.35)

A >  - m . (4.36)

, ,.i. p/m  -  D < 0 and m > 0 we have P ( -m ) <  0 andIf from the above rernaik P(U) -  ^  ^  .
P(A) > 0 for A »  0. Hence the spectral bound s0 is the unique zero of P(A) in 

the interval (—772, “ho®)*
mu • f r  determines that of s0. If c0 <  0 then P(0) <  0 and it follows 
The sign of c0 deterim

t- (a the tick population is exponentially increasing (with
s0 >  0. Thus from Eq.(4.3JPJ 1

exponent so) if an<̂  on^  ^
n n —1

/ >  n c p . +#•*>/n  w. (4.37)

or, equivalently, if

tt Pi_P_tL — f i n f j t 1 +  — ) •  (4.38a)
/  >  I I  Pi tJi Pi1= 1

that the tick population persists if the egg

n — 1
Mi

In biological terms this inequality say

production rate e x c e e d s  the pro uc
71 —  1

Mn ]J(i + v /pO- (4.38b)
i=i

tl mortalities against the average sojourn times in the 
This product measur interprete this more recall that we had shown

corresponding compar the rate Qf leaving a stage i to the next stage

in section 4.1 that if in £ that stage is 1/a,-. In the current model
is a, then the average sojourn time
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specification this rate is p, and the mortality rate is /.i, thus the ratio p,/p, is a 
measure of mortality against the average sojourn time in stage i. We can get some 
more information on the dependence of .so on the parameters through the implicit 
function theorem which is crucial in such kind of analysis. The g e n e ra l fo rm  o f  

the theorem is s t a t e d  below.

T heorem  4 .1 : T he Implicit Function Theorem

Let E, F. G be three Banach spaces, /  a continuously differentiable mapping 
(i.e continuous and its first derivative also continuous) of an open subset A of 
E x F  into G .Let ( x0,yo)  he a point of .4 such that f ( x 0 ,yo)  = 0 and that

n 'i of f with respect to second variable be a linearthe partial derivative Dnf^o^Jo) ol J wi 1
, . . f rp ontn r; Then, there is an open neighborhood L0 of a;0 m Ehomeomorphism of r ont

v connected neighborhood U of x0, contained m U0, there such that, for every open connected n g
B mannino; a of U into F such that u(x0) =  yo, (®,u(*)) € Ais a unique continuous mapping uo

r  t t  Furthermore, u is continuouslv differentiable m and / ( * ,« ( * ) )  =  0 for any * 6  1'•
U, and its derivative is given by

- ( D 2f ( x , u ( z ) ) )  1 (T>1 f { x , u ( x ) ) ) , (4.39a)

the first
where D , / ( * ,„ < * »  *»■*«> " »  ' » “ 1 “

variable.
.. r„nrtion theorem applied to the equation A) = 0 we get 

From the implicit iunctio

d O P i U M M
m -  (pj +  ih +  '5o)
L-±H---- r------------------ <  0.

P M
(4.39 b)

\ = 3 0

for P(A) is given in Eq.(4.35). Thus the spectral bound 
where a. general eXPres mortalities, as it should be. Similarly one shows

r function of tne m
vSq is a d e c i  easing r r The dependence of on the transitions p,• _. function oi j •
that s0 is an increasn implicit function theorem, for j  < n — 1,
is more involved. Again by

n ? -  +  so) -  /  n ? - i  PjX j _____________________J jT

P M
(4.40)

A=5o
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Hence dso /dpi is positive if and only if

n
+ Pj + so) < /  I I  Pj (4.41a)

j=i
j

; = i} 7*'

Using the fact that so is a root of the characteristic polynomial P(A) given by 

Eq.(4.30b) the expression P(so) =  0 implies that

n —1

i i ( w + n + ^o) -  /  n  pj- 
>=1 ■>='

Now it follows that inequality (4.41a) can be written as

(4.416)

n L i t P i + z u + ^ o )  <  f u U p j
pi + Pi + 50 Pi

pi + Pi + •SO > Pi
which implies that

(4.41c)

(4.42a)

using equality (4
41b). Thus we find that inequality (4.41a) is equivalent to

so > (4.426)

Thus for an increasing
tick population increasing any p, leads to an increase

of sq. In biological terms, act
derating the development process increases the rate

of exponential growth. trix A corresponding to the eigenvalue s0 describes
The eigenvector of th &t exponential growth (or decay). From -

the “persistent” stage d.stn =  1,
Eq.(4.27) we f i n O y  normalizing the a

-  TT (PJ +  +  s° ^  II (4.43)%i 1 A jz=i
j=i+1

£  tribution we mean that stage distribution attained
where by persistent stag This stage distribution determines the future

_Ugg stabiii y.
when the system rea js gOVerned by the spectral bound s0i growiu *
population structure an These numbers give the relative proportions of

of the matrix A in Eq-(4-22)'
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the different stages in the persistent stage distribution. Of course we also could 

normalize x\ but this choice is not appropriate from a practical point of view since

adults can be counted more easily.
As indicated earlier this model is the first building block for subsequent more 

realistic models. But the simplified model can already be used. Assume the tick 

population is in factical equilibrium with respect to the environment, in particular 

with the host population. Then s„ is close to 1 and we can try to fit the coef­

ficients, based on realistic biological assumptions, to the observed frequencies of 

eggs, larvae, nymphs and adults. In this case the rates w , Vi are factical rates

given the environment.

4.3 Vector Host Interaction

Model (4.21) is a stage structured model for the vector population only. It does
, „ „  fartnrs that would limit population growth, in particular hostnot incorporate any iaciois ma-
i -uwiifv has not been considered. In this section we introduce abundance and availabili y

. i f  .W rib e s  the number of available natural (wild) hosts such as 
a variable y tnat ue&«~n
(wild) ungulates and also a quantity * that counts the domestic animals serving

• i *■ i W p assume that the rate of transition from an off-host stage 
as hosts for tile ticks. wc

nnortional to the numbers oi hosts available, that is of 
to an on-host stage is pr p , . , 01 >

,  ̂ Whnt we mean here is that the rate Pi m system (4.21) can m
the form q i ( y  +  z )- vvu , , \ \ t , . ..

, . .1 m„re orecisely as p, +  «.(</ +  *) where for an off host questing
general be denoted m 1 . , ,. , ,

n anrl n v 4- z) >  0 since such a tick has some 
tick searching for a host p, -  0 ana q%\y

to a host. On the other hand if the transition is that to
positive rate of a ^  ^ q i ( y  + z) is zero. At low host densities y +  z, these

a non-host stat6^  bo^ tlenecks for the development of the vector population.

transitions be densities might be too low to support the vector
This is because sucn n

h ords there is a possibility of a critical host density below
population. In iation is threatened with extinction. It is important to

which the vec or the number of vectors (tick population)^Limiting

know what con ^  ^  intraspecific competition for hosts or a detrimental

effects could  ̂ disease transmitted by them) to the hosts. One could

effect of the ticks (o tjck infested areas. This would mean that if tick
imagine that hosts avoid heavily
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abundance goes up then host density goes down, in specific grazing areas. Thus 
we get something like or similar to a predator prey model. The host equation is

therefore given by
y = r - d y - c Txy (4.44a)

where r is the inflow of hosts due to immigration of hosts into a given grazing area 
or renewal of hosts within that area. The constant (row) vector

cT =  (ci, C2 • • •, c„) (4.446)

measnisures the effects of the different stages of the vectors present in the area on the 
host p op u la tion . We assume that > 0 and C, > 0 only if 1 is a questing stage. 
The vector X has the sam e meaning as before. Here competition effects have not

been incorporated.
We assume that the quantity -- describing the available cattle population is 

‘ ble but a parameter, simply for the reason that cattle densitynot a dynamic var:
will be controlled by actionss not within the framework of the model.

At this moment we 
of the three questing tic

a qC) not incorporate the aspect of host preference for each

domestic host z or a w

T stages That is a questing tick can either attach onto a 
did host y if it is lucky to find one. The transition rates are 

Thus the new set of equations giving between stage
qt(y + z) for the ith stage, 
interactions are given by

XX = / * n - ( P «  + h < n ) X X - ^

ia = (px + hqx)*i '  &  + b* * 2 ~  ,t2Xt

X =  (Pj-i + hqj -  (Pi + (4.45a)

= ( p „ - 2  -i h q „ - 2 ) X n - 2 ' ( P » - ' + h q " - ' )Xn- '  

i n  =  (P„-1 ' fl"Xn

'y = r - d y -  cTx y

Here the term describing die 

is pi + hqi, with h V ^

transition from the z-th stage to the (i + l)-st stage 
where, of course, pi = 0 if i is a questing stage and
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qi =  0 if i is a non questing stage. The system (4.45a) is exactly the same as the 

original system (4.21) except that here we attempt to express p, as a function of 

host density given by pdy + z) where the variables y and 2 represent the natural 

wild hosts and cattle hosts respectively. As a first approximation we let

Pi(y +  z ) =  Pi "b hqii i ~~ • • • >n  ̂ (4.456)

which takes specific forms determined by whether a tick is questing or not. For 

a questing tick Pi =  0 and qi > 0 since the transition to state i +  1 is host 

dependent while for non-questing tick «  =  0 and p, >  0 since the transition to 

state i +  1 for this tick is host independent. In our case n =  10 since we have 10 

distinct developmental stages in the life cycle. Here the questing stages are 2, 5, 

and 8, corresponding to questing larvae, nymphs, and adults. Together with the 

host equation (4.44a) we have a system of altogether n +  1 equations, 11 in the

particular case.
We now wish to express the system (4.45a) in matrix notation but first we 

define the following set of matrices. Let matrices F, D, P, Q, M  have the following 

structures. The stage transition matrix is
/ - I  o c

1 _1 fl ••• V u ,
(4.46)D =

0 0 
0 0

\ 0  0 0 1 0
* cinffle nonzero element, at the right top corner 

The fecundity matrix F  contains a sing

i.e /0  0 o 
o 0 0

F =

In ") 
0

(4.47)

The matrices

Vo o o ••• o /
P, Q and M, are the diagonal matrices given by

P =  (pi<5i;)' Q =  M =  (4.48)

to on host stages, and of stage specific mortalities.
• * i ff liost

of transitions o o Qf equations (4.45a) may be written as

Th“  “ “ “ “  i ; " +

y r ^ dy -
(4.49a)
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Putting
A = F + DP -  M , B = DQ (4.496)

this system assumes the form

x =  (-4 +  (y +  z)B)x 
j -T-y = r -d y  - c  xy

(4.50)

where A can be looked at as a matrix denoting the survival and birth process of 

the tick population, while B denotes the matrix of interaction between the tick

population and its host.
Before entering the analysis of the model we discuss a two-dimensional cari­

cature where *  is just one compartment and consequently A, B, C, are numbers.
n d A =  -a  < 0 negative because ticks do not survive

We choose b =
in the absence of any hosts. In this case the system reads

X =  -ax  +  b(y +  z)x
(4.51)

y = r -  dy -  cxy

There is always a tick free equilibrium given by

x =  0, V =  r/d (4.52)

Now assume there is a 

Then the conditions

stationary state where ticks are present, that is x > 0.

b(y + z) =  °  (4-53)

and r -  dy =  cxy (4.54)

must hold.

Case 1: z > a/b. cannot be satisfied with positive y. In this situation

Then the first equatio ât a fixed density) that all the three species z, y

there is so much c Thus the wildlife will be expelled, the ticks persist

and x do not persist tog density is exponentially increasing. Factically

on cattle alone and their p cattje density cannot be maintained,
this would suggest that a so
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Case 2: z < a/b.
Then the equation (4.53) can be solved with y > 0, given by

V = a/b- z. (4.55)

Thus we get formally
i  = r-ZZ*L. (4.56)

cy

Hence there are again two subcases.
Case 2a): y >  r/d or r <  dy.
In this case there is no coexistence of all three species, the tick density would

become negative.
Case 2b): y < r/dor r > dy.
Ill this case there is a coexistence point (x,y) with y < r/d. To have something
concrete at hand we keel) a, 6, c and d fixed and draw a parameter plane.
Briefly this plane can be divided into three regions namely region I, II and III. In
region I we get coexistence between - and without ticks. In region II there is
coexistence of all three species x, y and z while in region III the parameter space
can only allow coexistence between ticks and cattle but no wildlife. A further

- . 1  Ill is that the tick density is such that it will explode andproperty with region in  is
ultimately cattle cannot be maintained.

,. .Up situation where all points are fixed except s, i.e the situ-Now we discuss uit
.. iQr -ottle breeder considers to exploit a certain region. There ation that a particular cam

are two cases again.
case I: r < ad/b or r/d < « / 6-

n lo nn ticks Introducing cattle at low densities still makes Then at z =  0 one finds no
r -i ip for ticks This is from the fact that condition (4.53) for 

the biotope not teasiDie .
re- v satisfied that is we have a situation where there are no the host population is not sa

. , • natural wild host population is not feasible the existence cattle and the existing < .
fl lensity is increased then there is a first theshold at which the of ticks. If cattle tie . y

c;ihie for first time. This threshold value is biotope becomes feasible 101

z\ = a/b -  r/d. (4.57a)
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F igure  3: System  o f W ild Hosts, Cattle and T icks

Wild
hosts
(y)

Cattle (z)

Ticks ( x )

i

->  Death (a)

Leave aue to ticks

( C )

Figure 4: A ( z, r ) parameter plane

A

B l, Li — 
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At this threshold

~i + y  =  a/b (4.576)

and equation (4.53) is satisfied. Beyond this (z =  z\) cattle, wildlife and ticks 

co-exist. But as z is further increased beyond

Z2 — a/b (4.58)

the wildlife will vanish and ticks explode same as the situation described in case 

1 above.

case II: r > ad/b or r/d > a/b.
In this case a possible cattle breeder will introduce some cattle into an already in­

fected area. The cattle will result in an increase in the tick density. More precisely 

the situation here is that before the breeder introduces cattle in this region, the 

natural wild host population is already enough to support a tick population. How­

ever the stationary total host population is supposed to be a/b by condition (4.53) 

thus the introduction of cattle in this region means disturbing the stationary state 

of the system. Thus after the threshold Z2 = a/b the wildlife will continuously fall 

and eventually vanish and the tick population will explode.

Now we return to the discussion of system (4.49a). We find similar ph enomena 

as in the caricature, but in addition we find the stage distribution of the ticks. 

The first step in the analysis of this system will be the determination of stationary 

states. At a stationary state (x,y) the following equations must hold

0 =  (A +  ( y  + z)B)x 

0 =  r -  dy -  (Fxy. (4.59)

For fixed y +  z ,  the first equation is a homogeneous linear system for the vector i .  

Thus a necessary condition for the existence of a nonzero x is that the determinant

of the matrix
A + (y + z)B (4.60a)

vanishes, that is
det(A + ( y  + z ) B )  =  0. (4.605)



Thus consider the equation
det(.4 + h B )  = 0. (4.61)

We compare the linear system

0 =  f x n -  {pi +  h q i ) x i  -  p \ x i  

0 =  (p\ + h q \ ) x \  -  (p2 + hq2 )x2 -

= ( p j -1 + h q j - i  )xj-i-  ( P j  + (4.62)

o = (pn- 2 +  hqn- 2 )xn- 2  -  (Pn-l + hqn-l)xn-l  M n-lln-l

o = (pn_i +  hq.,-1 ) i » - l  -  P"x"

to sytem (4.24) with A =  0 and p, replaced by Pi + h q t . Then from Eq.(4.30b) one
i nfifv h must be a zero of the polynomialsees that the quantity

n —l
(4.63)p ( h ) = f [ ( P , + k(p n (p' +

z = 1

This polynomial eat. '•« « “ <“  “  “ “

w  - « . . .  n < »  n < ‘ « + ' " ’ - h~< n *  n «  < « • >
i<£E

1 m jg the number of questing stages in the system, 
where E C  {1 ' ^  product terms in the right hand side of Eq.(4.63)
In otherwords we g P tQ qUesting stages (indices in the set E) and
according to param Now we define the quantity
non questing tick stages (in ’

- n - X n - ^ T I r 31- -  (4.65)
R o W  ~  p n i t  Pi + P i  hq i  +  V i

1  ̂o£ ticks produced by one adult female tick in its life 
which is the average 1 hiibk' reproduction number of the tick populati
time. This M ' ( ]  ”  * *  ‘ w  „  that

on a host ......... .... W ' . .
(4.66)

on

Ro(°°) = 1Z Ui&E
L 1 r —
Pn H  +
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If Rq(oo) > 1 then the tick can persist on sufficiently dense host populations. 

The critical host density is h0, where h0 is the unique positive root of the equation 

Ro(h) =  1. Thus the tick can persist on host populations with density >  h0 and 

cannot persist on host populations with density <  ho. Notice that ho depends only 

on the parameters pi, qi, m and / .  This conclusion is in agreement with what is 

expected in the field. Norval ti al (1992) concluded that the most important factors 

affecting the abundance of R. appendiculatus in wildlife reserves in Zimbabwe are 

host density and climate. The authors suggest that in a given environment the 

tick can only become established if the host density exceeds a certain threshold 

level. Norval et al (1992) state that this level is low when a high proportion of 

host population is comprised of tick-susceptible animals and becomes higher as the 

suitability of the environment for tick survival decreases. They further state that 

the most severe tick problems occur in wildlife reserves with highest host densities. 

The model so far seems to be in the right direction as far as tick dynamics are 

concerned. At any nontrivial equilibrium we would have R(h) =  1, thus h =  h0. 
Then the non-normalized tick distribution, according to stage is

n
Xi =  x„ Y l  (Pj + h0qj + Vj)/Yl(Pi + h0<li), « =  l , . . . , n - l .  (4.67)

J=!+1 I*1
Furthermore the three populations of wildlife, cattle and ticks must satisfy

r -  dy -  cTxy =  0 and y + z = h0. (4.68)

Case 1: When z > ho then the equation y + z = h0 cannot be satisfied with 

y >  0. We have # 0(2) >  L Thus’ at the given level of domestic animals, the tick 
population can survive on cattle alone, the tick population grows exponentially, 

and the wild animals disappear. Factically, cattle breeding at this density (with 

the given transition rates) is impossible.

Case 2: When z < h0 then at equilibrium y = y, where

y - h o ~  Z.

For the tick population £, we get the equation

r - d y  =  f ' i .
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Hence there are again two cases.

Case 2a): y > r/d or r < dy.

In this case
y = ho — z > r/d

or
/i0 >  z +  r/d.

Then
(2 *f* r / d) <  /io-

Thus the tick population cannot survive on the joint 

Case 2b): y < r/d or r > dy.

In this case
y = h0 -  z < r/d

wild and domestic animals.

or
hQ < z + r/d.

Then
z r/d >  ^0*

, 1 ooiimpd nossibility that wild animals avoid heavily tick infested Thus, due to the assumes ^
.... . j^rvdtv of wild animals y establishes itself. The cattle density areas, an equilibrium aen y
. £ wildlife animals is y =  h0 -  z and the total population size of

is 2, the density 
ticks is determined from T-c x =

-  dy (4.69)

right hand side of Eq.(4.69) is positive, since r /d > h 0 - z  =  y.
The right 

4.4 Stability Analysis
1 f fhpre are at most two stationary states. It remains to 

We have just found that tnere
. . . .  „ n f ler  w h ic h  these states are stable or unstable, respec-investigate the conditions una

& t e r fo r m  a stability analysis we have to linearise at the stationary
tively. In o e. rm the Jacobian at the stationary state. We start by
f f fhat is we have to 101

S a e’ f nnV state (r, y). We do not form the Jacobian, as usual,
forming the Jacobian at any
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by computing partial derivatives, but we introduce small „ variations in the 

equations and drop terms of order greater than 1. Thus we enter x +  u.y + v ia 
equation (4.49a) to obtain the following equations

(x -f u)' =  F(x +  u) +  D(P + (y + v + z)Q){x +  u) -  M(x -f- u)

(y +  v)‘ =  r — d(y +  v )~  f'(x  4- u)(y 4- v) (4*70)

Expanding the two equations above and ignoring terms of order 2 we get

u =  (F + DP +  (y +  z)DQ -  M)u 4- vDQx
• T orv =  —yc u — c xv — dv ( 4 . 7 1 )

where u is a column vector of length n and v is a scalar variable. The two equations 
above may be written in matrix notation as;

u
v

F  4- DP + {y + z)DQ -  M DQx
- yc1' - d  -  CTX

u
v ( 4 . 7 2 )

In coordinate notation the system reads

ui =  fun -  (pi +  (y +  z)qx )ui -  vqixi -  pixx

u2 =  (pi +  (y + Z)<1\ )u\ -  (P2 +  (y 4- z)q2)u2 +  vqjXj -  vq2x2 -  y.2x2

i i i  =  (p i — i  +  (y +  z ) q i —  i )w i-i (P i  4- (y “h z ) q i ) u {  -f- v q x x {  — v q ± X i  —

un =  {jpn—l +  ( j /  4 "  z)qn- i ) un—\ ~h vqn~\Xn—\ — pnxn 

V =  —yc1' CL — c^ xv — dv

(4-73)
In the special case of the equilibrium the coefficients of v have a well-defined 

sign, negative for a questing stage equation and positive for a post questing stage 

equation (a stage following a questing stage)

First we look at the uninfected stationary state. The stability analysis will 

show whether the tick can invade a tick-free area. Then y =  r/d and x =  0. In 

this case the Jacobian becomes

Jo =
F  4- DP 4- (2/o +  z)DQ -  M  q

~yocT -d (4-74)
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The matrix splits. There is one eigenvalue A0 =  -d. The remaining eigenvalues 

are those of the matrix

A0 =  F + DP +  (y0 +  z)DQ -  M. (4.75)

Thus we find that the uninfected stationary state is stable if the spectral bound 

satisfies
s(A0) < 0.

This condition is equivalent to the inequality

Ro <  1*

This means that the uninfected stationary state is stable meaning that a tick 

population invading a tick free area declines exponentially with time. Now consider 

the infected state (•?, y) where we have the Jacobian

J(S,y)
/  F + DP + (y + z)DQ ~ M  

=  ' - y?
DQx 

—d — cTx (4.76)

trix does not split, and the problem gets exceedingly more difficult.

i +,Mi<~tnre of this problem we see that in general the matrix 
To demonstrate the struciui

above is of the form _ f  A B\
J(x,y) =  D )

onentially positive, C is a nonpositive row vector, D is a 
the matrix A is e*P ^  & coiurnn with entries of either sign. Although these

negative scalar, an  ̂ uctures it is not obvious that, under the condition that

matrices have su stable. If it were unstable then we would expect
R0 >  1, this matrix infected stationary state (x,y).
secondary bifurcations of the
4.5 Competition o f Ticks t i p

bserved in a series of experiments involving R. appendic-
As Branagan (1969) ^  ̂ ^ere is competition when ticks attach onto a host for

ulatus, it is evident ^ a t Qn host nymphs tend to detach earlier than
i Tt was ooser

a blood meal.  ̂ density on the host is high. The resultant obvious effect
expected when nymp
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is that ticks do not get enough blood share, hence their chances of survival in the 

next stage is reduced to some extent. We wish to consider an extension of the 

model (4.45a) where the observed competition effects are incorporated. It is not 

obvious how this should be done. If we just increase the rate of detachment then 

instead of modeling a competitive effect we are actually speeding up the life cycle 

of the ticks which results in a cooperative effect. Modeling incomplete saturation 

due to premature detachment would require considering a population structured 

according to nutritional status which of course would be much more complicated 

and would contain many parameters that are difficult to estimate. Within the 

framework of the present model there seem to be only two ways to describe the 

observed competition. Either one assumes that the rate of attachment is a de­

creasing function of density of the on-host population, or one assumes that the 

mortality of the detached ticks is an increasing function of the density of the pre­

ceding on host stage. Of course one can incorporate both nonlinearities into the 

model. Both approaches do not exactly describe what happens in the field, but 

they seem sufficiently close to reality at this level of model complexity.

In the following we assume that similar competitive effects take place at every 

questing stage. Thus we are led to consider the following system

X1 =  f x  10 — P \x \ ~~ P \ x \ 
x2 =  p\X\ — hq2(xs)x2 — P2 X2 

X3 =  hq2{x3 )x2 ~~ P3X3 Pzx3 

X 4 =  p 3 X 3 — p A x A — P a ( x z ) x a

£ 5  =  PAXA ”" hqs{x6)x5 ~~ P5X5

j g  =r h q 5 ( x e ) x 5 ~~ P6X6 ~  P6X6 (4.77)

Xj =  pg#6 p7x7 ~~ Pt(x§)x7

X8 =: P7 ~~ _  P&x 8

X 9 =  hq8(x9)x8 P9X9 ~ P9 X9 

X1Q =  P9 x 9 — ^10(^9 )^10

y ^ r - d y -  c T x y .
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= f x n — (pj -f- hq\ )xj — p} x-i 

%2 =  (Pi +  hq\ )xj — (p2 -f hq2 )x2 — P2 %2

= (Pj-l +  hqj-i )xj- 1  — (pj -f- hqj)xj — pjXj
..........  (4.78)

Xn-l =  (Pn- 2  +  hqn- 2)Xn-2 ~  (Pn- 1 +  />?„_l)xn- l  -

=  ( ,P n  — 1 ~t~ hqn — l )x ti — i flnXn

y = r  — dy — cTxy.

where Pj and qj depend on a:i+1 for j  =  1, . . . ,  n -  1, and pj depend on for 

j  =  2 , . . . ,  n. Thus the system has, apart from the last equation, a three-diagonal 

structure, the right hand side in the equation for xj depends only on the three 
variables x j - 1, xj, xj+i.

4.5.1 General cyclic triangular systems

The first part of the system (4.78) has the general form

X\ ~  Tn{x  j  ) xn ^*1 ( *^ 2  ) ^ 1  Pi (%n ) ^ 1  

X2 =  r\{x2 )X\ — T2 (X3 )x2 ~ P2(X\)%2

i j  =  Vj —i ( x j ) x j - i  — r j ( x j + i  ) x j  — P j ( x j ^ i  ) x j  (4.79)

6

i n_ l  =  r n- 2 ( ‘r « - l  )xn-2 -  rn-\(xn)xn-i  — Pn-\(xn̂ 2)xn̂ x

xn =  rn-i{xn)xn~\ — Mn(Xn-l)Xn- 

Note that when the transition rates are not density dependent then

rj(xj+i) =  Pj +  j  =  1» •••»«-  1 and ) — y.

Now we look for stationary states of the system (4.79). At a stationary state the

This system is of the general form
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following equations hold,

rn(xi)2n =  ( n f e )  +Vl(Xn))x1 

ri (x2)xi -  (r2(xz) + t*2{x\))x2

rj-\(xj)xj-\ — ) ~f~ f ĵixj—1 ))xj (4.80)

rn- 2 (xn-i )xn—2 — ( r n — l ( x n)  ~i~ Mn — l(xn—2))xn — i 

r „ _ i  (xn)x„-i = fin(xn̂  1 )xn.

We consider two special cases corresponding to the two modeling approaches de­

scribed above.

Case 1: Assume that the coefficients rj do not depend on density, and the com- 

petion effect is described only by increased mortality after detachment.

Then in the j th equation we solve for the variable xj. We obtain .the following 

system
T'n.Xn

V\ +  1 ( x n)

_  7' l X l  

X2 ~ r2 +fi2(11)

rj-jXj-i
rj +  1) (4.81)

In-I

X „

T xi—2 Xn — 1

rn —1 +  fJ>n — l ( x n—2) 
rn-l^n-1 
f J in { X n - 1 )

We can look at these equations as a cyclic iteration. Now we assume that the 

mortalities are linear functions of the form

/*>(*)= /*?+/*)*• (4.82)
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d\Xn

Then the equations assume the following form

rnx,
x\ =  F\{xn) =  

x2 =  F2(xi ) =

c\Xn “h  d\ r i + ^ j + ^ i ^ n

0 2 ^ 1 ________ri3?i_____
C2̂ 1 -f- d2 T2 "f* P2X1

dj X j — 1 __ T j  — 1 x j — 1

xi ~  Fj(xJ 1) cjXj—\ + dj rj+n°j+ fijXj-i (4.83)

dn—lXn—2 r  n—2*^n—2

*^n —1 F n  — \ (*^n  ̂) Cn — l # n  —2 “H d n —1 ^n —1 d* f t n — \ “1" ^ n — \ X n —2

aŵ n-l _  rn - l Jn-l  
Xn —l) C n j „ _ i  +  dn f*n + /ina'n — 1

These equations define a cyclic iteration. We can start with x„, compute succes-
onrl airain Thus we have the equation sively the xj down to x, and again x„.

I ,  =  F(xn) (4.84)

where
F =  F„ o F„-1 o • • • o F2 o F, (4.85)

f tional linear functions and a product of fractional linear func- 
Since all Fj are jinear function, and furthermore F (0) =  0, we find that
tions is again a 
F  can be represented as

W  = C ^ D

. found in the following manner. If 
The coefficients can be f

r . x  _♦ (aii  +  6i ) / ( ci I  +  <ii)

(4.86)

and

are two fractional linear

f2 -.x~> (atX+h)/(ciX + d2) 

functions then the function

h = h °  h
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has the form
h  : * -* (azx +  h)/{czx +  dz)

with
/  0.3 63 \    f  0201 +  ^2c i 02&i +  £>2̂ 1 \
\ c3 cfe /  ~  \ c2ai + ^ c i  C2&1 H~ d̂ di )  ’ (4.87)

in other words, the coefficients multiply in the same way as 2 x 2 matrices. Thus

the product Fn oFn-  \ 0 •. • °F\ is a fractional linear function where the coefficients

are given by the entries of the matrix product

Ctfi
Cn

bn
dn

0.2 62
C2 C?2

01 hi 
ci di (4.88)

In case these matrices are of triangular form, bj =  0, the formulae get somewhat 

simpler because the diagonal elements of the product are simply

cLnCLn—\ • • * 0201 and dndn~\ • • • c?2C?i (4.89)

and the left lower element has a form which we better give for a fixed length of 

the product, say n =  6,

Cq 0 5  0 4  0 3  0 2  01 +  d 6 C 5 < 2 4 0 3 0 2 0 1  + ^ 6 ^ 5 0 4 0 5 3 0 2 0 1  

+ ^ 6 ^ 5 ^ 4 c 3 f l2 0 i  +  ded5d4dzC2ai +  d^d^d^dzd2c\

In the general case we find

(4.90)

h n
A = J \aj, D = Y[dj, 

i=1 J=1
(4.91a)

n ( J-l n
C =  E{ IIa* n dk

j= 1 [ *=1 k=j+1 j
' (4.916)

where to avoid ambiguity in the expression we define

IIa* = 1
fc=l

(4.91c)

and JL f
U  dk — 1.

*=«+!
(4.91c?)
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Thus x n must be obtained from the equation

xn
Ax n

C X n +  D
(4.92)

This equation has the trivial solution x„ = 0. and possibly one nontrivial solution 

which satisfies
Cx„ = A -  D. (4.93)

Thus this (positive) solution exists if and only if

A > D (4.94)

or
4 i 

" "  =  D > 1
(4.95)

where R  

we have

is the basic reproduction number. In terms o f the original coefficients

R0 = n  t  (4-96)
i=i

or n — 1

Ro= / n Pi +<ljh (4.97)
i l  pj + +  f‘j

,^creasing function of the host density h.Notice that Ro is a nondecreasi g

1 , ttv, (A Q7) has the property R0 > 1 then the system (4.81) 
Tf R as defined by >'

° ’ . rpyg solution can be obtained by first computing xn from
has a nontrivial solution from cVstem (4

1 then successively, * „  ■ • •. * - *  from s7stem (4-83)Eq.(4.93) and then su
,i t questing parameters rj depend on density, but 

P 9- Hpre we assume i _
- ase .̂-  ̂ constant. In this case it is not possible to arrive at a first
that the morta lti second order recursion can be derived. We
order recursion for the but
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f in d

Xfi — Fji(x 1, 3̂2)

x\ =  F\{xi,x$) —

r\(x2) + l*\
rn{x1) Xl

r2(x$) + 1* 2
r i ( x 2 ) X2

x; =  F(xj+i,a:>+2) -
rj+ 1( ^ + 2) +  Pj+i „

r>(*i+i) J+1
(4.98)

rn-l(^n) + /Xn- 1  _
x„-2 =  F(x>‘- i ’ *»)  -  r„_2( x „ _ i ) " _1

t*n
*"-1  “  F(Jn) _  »•„_,(*„)

3:.

One can start from x„, compute x„_,  from the last equation, and then continue 

in Fibonacci style down to x, and finally again to xn. In this way we arrive at an

equation
xn =  G(xn) (4.99)

where G is constructed by the iteration. This equation has again the trivial solution 

x -  0 and possibly also nontrivial solutions. Since the function Fj is increasing

in the first argumen
¥ ancj decreasing in the second, not much can be said about

findwhether G is monotone. However we can

Ro =  G'(O). (4.100)

Forming partial derivatives
does not lead anywhere. By direct expansion we find

O+i (0) +  ri+i (°)x>+2 +Mj+i
Xj = O (0) +  rj( ° )ab+1

Xj+l (4.101)

the first derivative of rj+i with respect to xj+2. Multiplying nu- 
where rj+x is Eq.(4. l01) by o ( 0) -  r '(0)o + i  and deleting second

a n d  d e n o m in a tor  o t ^ Kmerator and 

order terms we
find the first order recursion

Xi
_ Ij+M+Jiiii-Xj+U J = 2,. . . ,n —1
-  o ( 0)

(4.102)
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hence the basic reproduction number is the inverse of the product of these numbers 

(since in equations (4.101), (4.102) the iteration is moving backwards). Thus

n —1

Ro = f H
i= i

rj(0)
ri+1 (0) +  f*j+\

Case 3* In the general case where both the f.ij and the r-j are nonconstant, one 

cannot solve the recursion for the equilibrium densities, but still, by linearization, 

one can get the basic reproduction number. Indeed, the Jacobian of the right hand 

side of the system (4.77) is a cyclic two-diagonal matrix.

4.5.2 Positive invariance

In the linear case we know that the solutions of the “tick only” system are un­

bounded unless the parameters are such that the population remains constant or

r ♦!,„ nonlinear case we have to pay attention to the qualitative 
is decaying, in me uum . . . . .

we distinguish the cases where the system is dissipative, 
behaviour, in particuiai w &

, i. s;Dativeness we have to find a bounded set that attracts 
In order to establish cii p
all orbits and which is positively invariant.

first step we show that the positive orthant R$. is positively invariant
. a We must show that at each boundary point of the 

with respect to the flow. We m

vector field /  =  ( / . )  P°inti" S ^  ’ ’ ’ ’ ’ "

(.: R “ n  =  0 f i { x )  — O' tA 105\

. .  qpp immediately the implication assumes the form
Prom the system (4.79) we

±i = n -i(0 )x ,-i > 0 (4.104)r  f?n  X i =  0 X  €

t k n c y c l ic a l ly . This is true because the coefficients pi and
with the subscript i 
qi are positive.

Now we c o n s t r u c t  a posi

rectangle =  ; Q < g i  < m,-, t =

tively invariant domain in the form of a generalized

(4.105)

134 V



where the m< >  0 are constants to be chosen appropriately. Again we have to show 

that at any boundary point the vector field is pointing inward. We have already 

covered those boundary points where one of the x< vanishes. We still have to treat 

those boundary points where one x, assumes the value m,. At such a point we 

have x, =  m, and 0 <  Xj < mj for j f  i. The i-th equation reads

Xi =  rj_i(x,)xj-i  -ri(xi+i)xi-iu(xi-i)xi. (4.106)

To get an upper bound on x; we can dismiss the term containing r, because it is
Since r; i is a nonincreasing function we can replace it by nonpositive anyway, omcc h -i

its maximum, which is r.-_,(0). Since we look at a point where x, =  m, we can 

use this equality. Then we arrive at the bound

x, < r , _ , ( 0) x - p j ( x ) ' Tli for 0 <  x <  m >-i- (4.107)

^ i „ of m, that satisfy the following inequalities (We write 
Now we have to find a set ot m,

Tj  instead of t j ( 0 ) ) -

r„Xn <  0 < x „ < m „ ,

r. xi <  )m2 < 0 < x t < mu

< /l,(Xi-l)mi' 0 ^  Xj—j S mi—i,
(4.108)

We claim that we can s

x , <  tln(Xn-l)m<" 0 -  In_1 -  m " - > ’ n —1Xn — i — r
atisfy these inequalities if we choose

7711 =  m 2
—r • • • 777 n 777

where m =  sup sup
n y

up sup —— t-7 (4.109)
i 0<y<oo

• • taken cyclically, provided the supremum is finite.

'h -e  aSain the " ^ ^ t l  component, we find 
ndeed, in this case, fo

n-
. )mt =  ri-jXi-i -  m{xi-i)m <  0. (a 1 im
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Now we want to show that all trajectories in eventually end up in U. Suppose 
that x &U. Then x, > m for at least one i. Then at this point

x i =  i ' i —\ (X| ) x j_ i  — r , ( x ,+ i  )x i  — / i , ( x , _ i  )x,-

< 7*,_ i (0)x,_l — )xi

<  7’j_ i  (0)X,_1 — H i ( x i - \ ) m

< 0

Thus whenever a component exceeds m then it strictly decreases.

Assume that the m(x) increase at least linearly for * -  oo. Then the quo- 
bounded and m exists. Thus we have proved the following result.

tients UL-t are
in+1 (y)

Theorem  4.2 : . .
If the mortalities are at least linearly increasing then the system (4.79) is diss.pat.ve

with respect to the set

U =  {x  ■■ 0 < xi <  m, i =  l , . . . , n }  

where m is given by Eq.(4.109).
hits These are obviously fixed points of the map- 

Next consider stationary P°i

ping T, where r , - i (4.111)
T ^ 1 =

clicallv. By construction, TU C U. Thus, by the fixed point 
again with i taken c>c 1  ̂ point in U. But trivially, 0 is a fixed
i r T F I Rrouwcr^  ̂ ttheorem ot . Therefore consider the Jacobian J of T at

point. Thus we do not get a

./

where

a
d\ \

ck
0

0 d"

7’,— 1 (0)
d> =  ^ (0 )T /i .(0 )

(4.112)

(4.113)
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Compare this matrix to the Jacobian of the right hand side of system (4.79) at
the stationary point 0.

f -r\  -  Pi
7’i - r 2 -  H2

J =

r„ \ 
0

\ r n- 1 - f i n )

From a general principle (see claim 4.1 below) it follows that the spectral radius

of j  is greater than 1 if and only if the spectral bound of J is positive. Thus the

spectral radius of 3 is greater than 1 if and only if the trivial stationary point of
the differntial equations system is unstable. Then the linearization of the mapping
T at r =  0 has an eigenvalue greater than 1 with a positive eigenvector, that is an

• the interior of the first orthant. Thus the point 0 (whicheigenvector pointing into
. ,, . , O,. and a boundary point of U), is an ejective fixed point with
is the vertex ot K+ ana d u

TT r  rr^ral 0 will be a saddle point and have a stable manifold 
respect to the set U (in g . . _

• tt\ Rv the F.Browder-Horn principle on ejective fixed 
which however is not in /• y

nA fired ooint of the mapping T in U. This fixed point is a points there is a second hxea poi
stationary point of the differential equation.

y V B ^ r fjorn principle is formulated only for infinite-dimensional
Usually t e ro dimensions). Here the result applies since 0 is a
sets (and is even false in nun . . . .

v we cannot claim that the nontrivial stationary point
boundary point. How sUtionary point the Jacobian contains also a
is stable. Indeed, at ma;n diagonal. Hence we cannot exclude
diagonal of negative elemen s a

cycling behavior.
.. onrl spectral bound

4 .5 .3  Spectral radius .
^d j) a positive diagonal matrix. I hen it is clear that

Let P be a Perron iratr ^ ^ obvious that the matrix difference P — D

D 1P is also a Perron matrix or what is known as a Metzler matrix
is an  e x p o n e n tia lly  n on n egative

(Metzler 1945). _ lp )  <  l

Claim 4 .1 : s(^ ~ ^  <  onectral bound and spectral radius of a matrix,

where , ( . )  and p(-) ^  * *  SP

respectively.
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Proof: We show the equivalence for the case that P is irreducible. The general 

case is shown by approximation.
1) Assume s(P -  D) < 0. Then there exists an eigenvector x >  0 such that

(P -D ) x  = sx,

Px -  Dx =  sx,

Px =  Dx +  <sx,

Px =  x +  sD~'x < x.

The so called “quotient theorem” states that for a nonnegative matrix A =  (ajk) 

and any positive vector x {xj)

min ^  <  P(A) <  max ^
Xi X

Thus the quotient theorem gives p(D~1P )<1 .
, n - i  p\ ^  1. Then there exists x > 0 such that 

2) Now assume p(D P)
D-'Px  = px,

(£)-1 p -  I)x =  (p -  ! ) * ’

(P — D)x = (p — l ) - ^ ’

((P -  D) + «I)Z + VD£ a »  0
Vo oo and hence s(P -  D) < 0.

Thus p{P -  D +  <  a ’ V

4.6 Simulations
developed to study the tick-host interaction systems

A simulation m° del^ e c  prograinming language was used. The simulation

developed in this work. rsj0ns of the model namely siml, sim2 and sim3
model is divided into th Snrnroorated. Each of these is composed of

ber of features incoip
with increasing nuffl ^ r file where all inputs such as parameters, ar-

three modules wnic ^  ̂̂ common pointer array which we call p. Then

rays etcetera are defined ^  graphic display is designed and finally the

comes the graphics module ^formation from the header and graphics mod-
i-iiilp which nierge , , .

computation module iations and produce the graphic representations.
, the actual calcu

ules to carry out th
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Colour graphic display was used to distinguish between the different tick stages 

and the two host populations namely the domestic cattle and the wild animal 

host. The relative densities in the different tick stages were defined in an array 

i =  1, . . . .  10, the domestic host by a variable 2 and the wild animal host 

by the variable y as in the model set up. An extra output was designed to show 

the dynamics of the total tick population. The domestic host was set at a fixed 

value because, as mentioned in the modeling section, its dynamics are outside the

the further advantage, 
is very close to a discrete time

current model specification.

The mathematical procedure used in the simulation is the Euler method for
F(u) that is u(ti+i) =  hF(u(U)) + u(U), where the the differential equation u — t\uh +

. , From the point of view of numerical analysis,
stepsize, h, is small and ti+i — +  ,

lo hut it is quite sufficient for the present purpose. It has 
this method is rather crude, but it is q

that the Euler method, applied to the differential equation, 
model. Such interpretation seems impossible for

lution schemes such as the fourth order Runge-Kutta method.
m ore sophisticate so u ^  rocedures see the book by Braun (1975).
For more inform ation on some P . , . . .

allows to choose suitable parameter inputs describing
The simulation pi g ditions Qf fcjie host and tick populations depending on the 

specific demograpl eneral the simulations show the relative densities in
tick and host populati ^  population in the progress of time,
the various tick stages as we

a i.i-ne what each s u b -m o d e l  does.
Now we briefly outline wn

m (4 45) is s im u la te d  using th e  above method. A typical
In siml the syste .^ ahy there is the host population and ticks are intro-

“run” is the following.  ̂jiQst population continues to stay or even to rise.

duced at very low den mher is above one, the tick population will increase

Then, if the reproduc ^  ̂ j oWn. Eventually it starts to decline while the

and the host population but the rate of increase reduces and eventually
• l ppc on rising

tick population Ke p stable stage distribution and coexists together with

the tick population at ventually the tick population increases exponentially.

the two host population observed. The important observation here was
*1 d above can o

Both cases describe attachment rate below which the tick
,;tical value of tne 

that there is a critic
139



population starts to decline monotonically. In this computer experiment a value 

of qj =  0.07, j  =  2, 5,8 gives this kind of observation where the numbers 2, 5 

and 8 denote the questing tick stages. Interestingly this value is of the same order 

of magnitude with that reported in Byrom and Gettinby (1992) of 0.04 in their 

ECFXPERT simulation model. Thus the conclusion here is that host availability 

during questing periods is paramount for tick existence. Finally in siml we ob­

serve that the stable tick stage distribution produces peaks a phenomena which is 

general for stage structured populations since when the rate of recruitment into a 

stage exceeds the transit rate from that stage individuals may pile up in that stage 

contrary to what we observe for a stable age distribution, a phenomenon which 

has also been explained in the book by Caswell (1989) page 105.

In sim2 the basic features of siml were maintained but for each stage the
bv the reciprocal of the combined rate of leaving

residence times were esti
, .. * • .Umueh mortality and advancement. Then the stage frequen-

that stage that is thro g
, , . thp corresponding residence time at each iteration step. Then

cies were scaled by the . , , ,,
• n time) the size of that stage is represented -by the area

to each stage (a g ^  ^  mgan residence time is given by the width

m the histogram co^ that by this rescaling of the heights of the his-

of that columns. crowing or constant tick population) would
toeram columns the histogram (for a grow g /  *  .
togram coi similar to the age histogram of a growing or con-
be monotonically deer e^ ecte  ̂ that the “piling up” in certain stages would
stant population, tha . WOuld be spread over residence time.

disappear from t e 1S ^ atically not quite justified, because we use the mean

This expectation is nia tfie width of the cohort. Nevertheless, ex-
,i stage to aeniic

residence time in ^  observation was that in the stage frequency

perimentally it came out finally attained stable stage distribution

histograms, with a ^  stage number. Again co-existence between

was a strictly decreasing observed under suitable conditions. Both siml
. pr;es was o”

the three population sp cOInpetition effect for on host feeding ticks nor any
and sim2 do not include any  ̂off host fieveloping stages.
effects carried forward to subsequ

rr simulated by expressing the mortality of an

In s i  m3 . t a  « « » * * »  *
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oir host deveiopping stage tus a function of the previous on host density, that is 
p. — u? +  n ! i I_, For the data set used, the observed stable stage distribution was 
similar to that in sim2 except that the total population size of ticks was relatively 

lower, in comparison to that in sim2.
Figure 5 in the next page shows the structure of the stable distribution with­

out scaling down the stage frequencies at each model iteration step. We notice 
that in this case the stage frequencies in the stable distribution do not decrease 
monotonically like in the following case. The reason for this is of course due to 
the difference in residence times for the different stages. Figure 6 on the other 
hand shows the stable stage distribution but with stage frequencies scaled down

residence times at each iteration step. We notice that
by the corresponding  stage

, . • fl • ;s similar to that of a population structured bythe stable distribution in this case i.
• 1 pacpc; we have more on host larvae followed by onage. We also note that m both cases

, . i„nc Hie least. This result is in agreement with what
host nym phs then on hos ac . . , ,

.Ven a host population in the field, there are more
is observed in the held. -

,  Unwed bv oil host nymphs then on host adults the least, 
on host larvae, ioliowc J
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Figure 5: Model Simulation 1

Stages on the x-axis

rioure 6: Model Simulation 2
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CHAPTER V
SPATIAL DISTRIBUTION OF PARASITES

5.1 Introduction
In this chapter we consider the question of possible spatial frequency distri­

butions of vector parasites in a habitat. The tick vector population will serve as a 

key example in the current study. Part of this question is the on-host distribution 

of vector parasites. An attempt is made to uncover the most proximate causes 

for observed phenomena such as inhomogeneity in the presence of homogeneous 

conditions or uniform distribution in spite of unevenly distributed opposition sites.

Communal grazing is a common phenomena in most parts of eastern, central 
and southern Africa. Consider a typical communal grazing area which can be 
thought of as composed of identical units (observation plots) which are sufficiently 
small and very many. Take a typical grazing area as composed of n units (where 
n is large) each equally likely to be occupied by an individual parasite(tick). At

A not differentiate between stages. Let N be the total number 
the moment we ao n

. . Then „ =  jV/n is the average number of parasites( ticks) per

^  'Tarea^N ow  the N parasites(ticks) are distributed. Observe a single space

Z t  T ach  individual parasite(tick) either occupies that unit or it doesn’t. Thus
'ment The parasite(tick) selects that particular area 

we have a Berno „ _  jVp. The probability to find exactly k
with probability p — ln
parasites(ticks) in the area considered, is

_  ( N\ k( l - p ) N~k k =  0........ N .  (5.1)
P r o b { k  ticks in area) -  \̂ k J? ;

the soatial distribution of parasites(ticks) follows a
With the above assumptions
Bernoulli or binomial distribution.

Now we apply the
f llowing view. An ever larger area is taken into consider-

't (observation areas) stay constant in size. Thus the total
ation, whereby th increasing, but the average number of parasites(ticks)

number of parasit mathematical terms, n is getting large, p =  1/nthe same.
per unit area rem large in such a way that p stays the same. Thus,

11 and N is also &
is getting srna , scaling of variables we arrive to the exact hypothesis
wUV, most approp
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for the transition from the binomial distribution to the Poisson distribution, that

is.

Prob{k ticks in area} =  P)
fike

A:!
as N —> oo. (5 .2 )

Of course in applications the probability of finding that the observation unit con­

tains k parasites(ticks) is interpreted as the relative proportion of observation 

units containing k parasites(ticks). In other words, when the size of the obser­

vation area is selected in such a way that parasites(ticks) are sparse with respect 

to this size, then the spatial distribution of parasites(ticks) is described by the 

Poissson distribution with parameter *  where p is the average or expected num­

ber of parasites(ticks) per space area. We underline that this approach makes 

for sparsely distributed parasites(ticks). If ^ m the Poisson distribution be- 
well use the normal distribution to approximate the original

sense

comes large, we can as

As we have

binomial distribution.
said earlier any description of spatial distribution relies on a con- 

.. The Poisson distribution, being the limit of the binomialcept of observation uni .
N and large n, under the condition that N/n is constant, is 

distribution for large ’ . ^
, ^  The binomial and the Poisson distribution

by construction invanant to scalmg. 1 . . . . . . .  .f , f. . ,
, • i the hvoothesis, that each individual parasite(tick)

both have been derived under in . . . . . . . . . .  . .
• leoendent of the others, that is, the derivation is done 

can choose the unit area m . . . . . .
* ' inhomegeneity such as staying near oviposition site or a

excluding any a snCh as competition for space. In Poisson distribution

posteriori inh g ^  ^   ̂ Although ticks are not insects (but nevertheless 

the variance to tomological studies indicate that the ratio of the sample vari- 
arthropods), most e ^  anywhere near one; the variance greatly exceeds the 

ance and mean is u indication that the frequency distribution itself

mean. Su  ̂ ^ ^  observed tick pattern could be “clumped” . The book by
is “contagious a ^  provides detailed information on observed patterns

Pielou (1969,19 )* P j^ore realistic distributions are normally derived via

and possible distrib ethod of generalized distributions and the method of
two methods namely t

compound distributions.
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Case 1: Generalized distributions approach

Here we suppose individuals occur in clusters and these constitute the entities 

having a specified pattern and the number of individuals per cluster is random vari­

ate with its own probability distribution. One can derive the mean and variance 

say p and <r2 of the generalized distribution in terms of the means and variances 

of the cluster distribution that is distribution of clusters in space (px and cr?) and 

disribution of individuals in each cluster (with mean p2 and variance a|). Let G(z) 
denote the pgf of the cluster distribution and let g(z) be that of the distribution of 

individuals. Then the generalized pgf for the number of individuals per unit area

is
H{z) =  G{g{z)). (5.5)

Thus the mean and variance of the generalized distribution is

p =  H'(l) and a2 =  t f " ( l )  +  t f ' ( l ) ( l - t f ' ( l ) ) .

Now let pi denote the probability that a unit contains i clusters i =  0, 1, . . .  and 

7Tj the probability a cluster contains j  individuals j =  1, 2, . . .  Then it follows by

definition that
<?(*) =  & * '  (5-6)

and __r
</(*) =  z J * -’'2'-  (5-7)

>

Then com bining these two formulae we get an expression for H(z) as

# ( * )  =  <?(<?(*))= X > ■z3

to calculate the generalised mean and variance (p and <r2). 
Then we use this pgt m  }

of the chain rule we getBy successive a p p h c a t io i

# ' ( 1) =  C x ' ^ l ) ) ^ 1) =  ^ =  ^iP2 (5.8)

and from the relation

# » ( ! )  =  +  G ' i s M W  = <r2 ~V- +  fi2 (5.9)
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we get

o'- = lijal 4- o ‘ nl. (5,10)
For example, if the number of clusters and individuals per cluster are both dis­
tributed as Poisson with parameters A, and A2, respectively, then the mean and 
variance of number of ticks per grazing unit are

ft — A]A2

and

a — Aj A2(l + A2). (5 11)

The resulting distribution here is known as a Poisson-Poisson distribution The 
probability, pk, that a randomly chosen grazing unit contains k individuals is 
given by the coefficient of zk in the power series expansion of H(z). As a second 
frequently used example of a generalized distribution, let the number of clusters 
per any grazing unit follow a Poisson distribution hence having pgf

G{z) (5.12)

and assume that the number of individuals per cluster follows a logarithmic prob 
ability distribution with parameter a. This means that the probability p(x ) of a 
cluster to contain x individuals is proportional to ax/x, for x = 1,2,... (no cluster 
is empty). Then it follows from the normalization

oo

p ( x ) =  1

that
p(x) =

x= 1

-1
’ x — 2, (5.13)ln(l — a) x 

The pgf of the logarithmic disribution is
= ln(l -  ocz)

9^ ] ln(l — a) (5.14)

Thus from these two probability laws it follows that the combined pgf H(z) is then 
given by

H(z) =  G (g(z)) = exp f A
Tn(l -  az)

- 1 (5.15)
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Now making the transformation A — klnq, a — p/q with q 
tuting back and a bit of algebra gives

H(z) = (q~pz)-  \ - k

— 1 +  p, then substi-

(5.16)

We notice that this H(z) is the pgf of the negative binomial distribution. The 

of the combined or generalized distribution is given bymean

H'( 1) = p = kp (5.17)

while the variance g is given by

H"{ 1) +  H'( 1)(1 ~  H(D) = =  kp(l+p) =  kpq. (5.18)

Note that if we write the mean in the form p =  kp then the variance becomes

a2 — p + p2/k. (5.19)

, proportion is larger than in the case of the Poisson
Thus, the variance to mean P P . , .

smaller the value of k, the greater the variance, but as
distribution. Clearly

f the Poisson distribution, the mean and the variance are 
k —> oo, cr —> p, as tor
equal, in fact it can be shown that

Pr r!
oo

bability that a unit contains r individuals (for a proof 
where pr gives P colllbined distribution derived above is also called the 

see Pielou (1977)).  ̂ *bution where the first name indicates the distribution

Poisson-logarithmi ^ second is the distribution of the number of

of the number of these distributions mean is this: if we are willing to

individuals per clus § QUr case) exhibit a pattern of randomly dispersed

accept that indivi ua j:v; duals per cluster may equally as well be a Poisson
clumps then the number of m

variate or a logarithmic variate.
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Case 2: Compound distributions approach
Assume all individuals are independent (no clustering) of one another and that 

all units available are identical such that the pattern exhibited by individuals is 

uniform. Let A denote the mean density, then the probability that any unit would

contain k individuals is Poisson i.e.
Are“ r

Prob{r ticks in area} =  — ^— . (5.20)

The idea of compound distributions arises due to the fact that A might itself be a 

random variable because some areas may provide more favourable environments 

than others. Assume A has a gamma distribution with parameter a = k and

/3 =  1/p, that is,

~ T(k) (
i ) * Xk- le -x(1/p), A >  0. (5.21)

Then f°° \rp"X
(5.22)Pr = l A;,

On sim
plifying the right hand side by integrating out A one arrives-at the final

expression given by
Pr =

r ( r  +  fe) g  

r!r(fc) qzk+r r =  0, 1, . . . (5.23)

with S =  1 +  P- Thus once again
we arrive at the negative binomial distribution.

a =  1 -f- p. inus uxxv.- -o-
. .-rpsnondence between every compound distribution and

In general there is a co . ^  r c t ±
6 A tribution counterpart and vice-versa. For a proof of this fact

its generalize is 'ence to find that two or more theoretical
ii  M 9 6 8 ) .  I *  i s  c o i n n l o n  e x P e r i c l

see teller  ̂ ^ qUate fits to a set of observations since most of them
distributions pro ^  important to note that since generalized

resemble each other y ^  b^ed on at least two assumptions, a single set of

and c o m p o u n d  distr ^  ^ inadequate to confirm both assumptions, that is one on

observations is quite cluster. Only if one of them were derived from
, other on ticks pei

dusters and  ̂information could then the other be judged by fitting the
an independent sourc ^  the fitting of theoretical probability distributions

generalized distri Pvnlain the pattern of natural populations; further
is never by itself adequate to exp

analysis is definitely required.
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5.2 On host distribution

species 
exposure

in

in

In this section we focus on the on host distribution of ticks. Host 
differ in their tick acquisition rates due to factors such as differences ... . 
to ticks, heterogeneity due to age and behavioural or micro-habitat differences 
among hosts. It has been observed in various studies that host heterogeneity i

susceptibilities results to:
i) On host parasite(vector) distribution that is aggregated or asymmetric i 

nature.
ii) Both mean number of parasites per host and the variance to mean ratio 

increase monotonically with age.
One important result due to the above observation is that we get density

.. and parasite induced-host mortality. According todependent parasite mort y ,
_  j aa-p-intensity relation and the relation between theAnderson and Gordon(1982) age inten *

indicate the kind of density dependence present, 
variance to mean ratio to host age .

• . • i._. relations host populations are typically classified accord-
Ta p̂ tiniRtG sffG intensity

tmW of parasites calculated for each "class. The 
ine: to age then the mean numoer f

to fit a mathematical relation to the data with host age as the 
problem is en ^ known that data from oldest age classes is scarce and
explanatory varia ^  associated with these age classes that determine if the
it is mean parasite aked The most common applicable distribution used
age intensity relation is distribution is the negative binomial.

to describe treattnent or analysis of the above problem is
Thus the mos *sjtion and mortality rates to be general functions

i) to allow parasite ^  ^  indices, rather than constant rates.

of time, host ag i governing inherent differences among hosts which

ii) define proba specific densities such as the Poisson distribu-
should be arbitrary ra ier

tuion. v‘ ty dependence need to be distinguished. These include
The different forms of c nortality, parasite induced host mortality and para-
density-dependent para 1 o s t ’ s s u s c e p t ib il ity . A s  far as th e  t i c k  population is

site induced changes i r ms Qf density dependence are the most impor-
i  ̂ Cf and the third tornw 

concerned the fir
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tant. This is because tick induced host mortality is an indirect relation since ticks 

only act as carriers of the actual disease parasites namely Theileria paroa group 

of organisms. The negative binomial distribution has proven to be an excellent 

empirical descriptor of the on host tick distribution according to Anderson and 

May (1985). Now recall from section 5.1 that the mean n and the variance <r2 for 

a negative binomial distribution are related as

<r2 *  fi(l +  p/k) (5.24)

where k  is the aggregation parameter. Thus the degree of agrregation decreases
, . . oo lnfact the distribution converges to the Poissonas k  increases, that is as * —*

for large k .  The problem normally is to seek maximum likelihood estimates for 
d k  which in reality could depend on other explanatory variables such as

hostage. ttTwill attempt to show how the maximum likelihood method can be
j  l thev are functions of other factors. The ultimate

used to estimate n  and k  wnen tney
, ,  . Question of heterogeneity in host susceptibility relaxing the

aim is to address tne 4 , , v A .. . p
r U ^o-mieitv in susceptibility, hence on host distribution of vectors, 

assumption of homogeneity

5 .2 .1  T h e m odel . .. .
denote the probaility that a host of age u at time t carries n

Let qresent situation. Let A(f, «)A« be the probability that a
parasites additional tick during the the time interval (t,t+An) that
host of age u acqu ^  Finally suppose that u) Au is the probability
is between ages u a nooulation of n tick parasites attaching a host
that a single death occurs in tn p P . . . . .  , . . . . .
tnat a sing . , a .,) Thus the following balance equation holds:
aged u within the interval (M  + A b

, a =  Aft, u )?» -i(*. " ) Au +  (n + <*’ u)b(t, « )A u
a ( t  4 - A u * u - r  ^ U J v9nV + qn^  u)[i -  A(t, u)Au -  n(t, u)Au]. (5.25)

, .ides and dividing both sides of the equation by
Subtracting from
A u  and letting Au -* 0 yieWS

u) f̂fn(t ,M) _  \{t. u)tln-l ~h (n 4- l)/l(t, u)gn+i (t, u)Q<ln\Li q. -—-z
dt “ _  A(t,u)?n(t,“ )-«M (<, “ )?n(t,u). (5.26)
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A solution o f Eq.(5.2C) is o f t(1(. form

'/».( t . l i )  =
~ ° o u

n:
where

This

<.) — Mt - 11 S. S )r
/ U/iI f -  ii -r y . y ) dy is

5.27

(5.28)

fl stall(Tti(l M>lurion . Ih u > . flic probability that then* are // p a ra s ite s  on 

° f  a^r // at tinir t is Poisson with mean o. In the special ease of constant // 
an  ̂ A Eq.f5.28) be comes

[ ' x ' - s : * ' ,
Jo

I s

N

=  - d  -
-  n it

° w suppose*

A f t ,  u ) =  Z  e f t ,  u )

5.29)

5.30)

'vhere the non-negative random variable Z  accounts for the difference among hosts

h susceptibilities to ticks. We may assume that each host is assigned a value

flt birth then it retains it throughout life. However this is different for different ] •
individuals. The function e f t , //) is a 11011-negative dependent on the host age 

lIlfl time. Now suppose (JujA u is the probability that a host encounters a questing 

111 the time interval f t , t  +  An).  These are host seeking tick stages which 

ar° namely the questing larvae, nymph and adult. However it is only the questing 

^Tinph and adult which can pass the disease organisms to the host when feeding. 

e,Se can therefore be referee! to as the infective stages. The variable 0 denotes 

number o f the infective stages present in the host’s grazing area. This number 

1S affected by several factors therefore it is bound to be random in nature. The 

Quantity cj A u denotes the probability that the host encounters an infective stage 
^bere to is Js a measure o f host preference by the questing stage. This quantity is 

also affected by several factors such as environmental factors, host age and type 

and many more therefore it can be taken as a random variable. Further let s be 

the Probability that the host is infected given an encounter. Then it follows that

Aft, u) =  0u)e (5 .3 1 )
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ext we g iv e  th ree  jn*s»ihle ieUitl(>ll> UelWeeli Z( ' ( t , u)  aild Ô Jz.

Crise 1; Z  — ft r i l e l z-~ — <'f /• ft j

This C I S C  may a, is,- if wc suppose mean density and spatial distribution o f the 

infective stages is constant in time, but the sp a tia l distribution is patchy that is 

some host zones contain more infective stages than others " ’hull < an he interpreted

to mean that some areas are more tick prone than others. This set up brings about
i . . . . .  . . . . .  i. :, icolined that 5 and uj var\heterogeneity m susceptibilities to tick acquisition.

i flie sam e  co h o r t .temporally with host age but do not vary among host.

£gj?e 2: 7  =  uj and — c[ t . n )

Here we assume host behaviour varies such that ~ is indcpct.dcnt of age atK 

hine but differs among hosts. I his could be due to bt t\u t ii h ■' 

host preference. This time 0 and - vary temporally and with host ag 

a m o n g  hosts of the same cohort. * i

£i£lL_3: Z  =  <aid

This situation occurs if we assume' that some hosts are able to i (Slb
i f - js liidepen-

tacliment, better than others and vice-versa, given an encounter, tm -
dent o f  a g e  a n d  t im e .  T h e  a b o v e  characterisations d o  not re p re s e n t  an e xh a u stiv e

list. They are among many that lead to the relation A =  "  lth

^presentation E<i.(5.'2T) becomes

</»(<■ “ ) =
(5.32)

n

where
/ h e - .  +  c x X - f "  (5.33)

Jo
rr,. i „ i , f ..iinepn host of age u at time t will have nThus the probability that a randomly chosen 8

Parasites is given by .
/  /(--)</„(*, ulZ  =  z ) d z  (5.34)

Jo
r 7 if 7 is a discrete random variable, 

where f ( z )  is the probability density of Z . It Z i
Jy J ,. , =,irn T et us assume that susceptibility

then the integral is replaced by a discrete sum. Let
. ~ is a Poisson random  variable. L e t

in fection  for different hosts is sue
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ill.) hr I hr minimi' «<»>.* r'

funrtic.ii A t .  u \ 2  : )  is ‘d 1’1'11 I*.'

. i*»f _/"(-?)• •'4 ,]... i .mUliiliti '

_  \

=  r

 ̂  ̂  ̂f r  iW . . c  J
I 57 _

1 n

= ■> i * *« •< ■» —

= 0

r ..,,,,1 of Eil.(S.3 4 ) 1r R' V,M1 ’ ’V 
anil so the probability jrrnel'.'d IlHf 'l11'

V  P  =
P( S. t . < ‘ ) =  2 - c -  . / „

ri = *>

~  r  ft*

=  c/(/.»)(•■* -  1 *'
(5.30

f /, - I Wo thus obtain  the m ean.function ot .?(- )■
where tt(.) is the n ion ien ' K1'11' “  ' directly front tr(f/(f.'')(•< ~ 1>) as

................ ......................
(o.3 i a)

/i ( / , o  =  / ^ ( M l )

MU, u ) and t,hr

and
(5.376)

2( , +  d ^ ' u)'
"  ’ , aI1d variance o f the variable Z . From

,̂)(»<'11\r<'ly' tin I11( 4 . fnnrtioii of age and
where /i, and o\ are, I ( , l 7n e a n  ratio as a

- o'-K'i tlie variance, to
E q .(o .3 7 a )  a n d  E q -O -3 ' )-
.. . , ~2 (5.38)
tim e is given by — \

’  “  T 1S J * » y .  a g g r « S. « < t  if 1' “ ‘  P° PU-

N o t e  t h a t  P . r « i « e ( . i c k )  •f c l n ” , ; U°  „ „ p l ib i l i . y  t o  , » » * - ■  T ‘“

M e n  i ,  heterogeneous w »  « « *  “  “  „g which i .  .
i ,  a  m e a s u r e  o f  th e  * g «  T h i ,  is see .,  f r o m  E , . ( 5 .3 S)

u f3r o f  p a ra s ites  p n o s t p a ra s ite  is
function of th e  mean ntn in d ic a t io n  that 1

2 1 „  are fixed. In f^ 4 au ‘ _  , - 37b) and Eq.(5.38) are
Assuming cr? and /iz < l Fn (5 37a), Ed-l0-

> 1 . I n  gen era l
aggegated is when 7<x2:/*
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, , >llsirv-(iei)eii(U'iit parasite mortality or paiasite m-
not valid for systems where dm,it> <ui . . . . ,

T1 . variance to mean ratio often decreases as fL(t, u )
duced mortality are present • 11 11 ^Iso be

.Vl,n \)V less than one. The same would also
increases and the ratio » ia> ,ls . , This means that

.. .rtv w,,n . ;1 function of its parasite burden. Tins means that
true if host suseeptilnh . ^  ^  ^̂ geurral not monotone. Thus if

the relation between r j ^  ^  <)f then it is an evidence of

J 1S n<,, a 1I1< ' : IK)t necessarily true since a linear
density depend,mee. However -he eons- s

n 0  system s with density dependent parasite mor- 
relation m ig h t  b e  e x p e c t e d  m / <jf acquisition o f  ticks. T h e  result in

tality that might alter tin* 1)1() ,<l * ^  inherent assumption that
i it , i "i 3 S) is dependent on

E-i.(5.37a). E<p(5.37b) am <1- ' • on host age and time. The density
ft - 'i does not (U l , I,the probability density j \ - >  r example, if hosts become immunologically

f {z )  woulfl be a funeti-m of b< b The negative binomial distribu-
rpneoiis as tiie> .

°r behaviourallv h‘ss 1̂( t( 1()  ̂ , .. use its variance to mean latio is o

.....................................................................>■ ............................

the for m
Vrr?- 1 +

//(*. m) (5.39)

c  , - , S) is related to the negative binomial distribu- 
It follows that the result m <1- J ' 

tion as follows

(/ .  u) 1 +  

1 +  

1 +

fTZ g(t< u)
/*-- '

f l zlLZ

d
A

)

, u ) .
(5.40a)

, • . Eci (5-38) resembles the negative
/} T h u s  the result

‘ "ce ^ U) =  ,i:<J\ a tUat the parameter
binomial case provide ^ ^  4q^

A
cl

of density dependence from negative bino-
js „ n  _ ,.oUld obtain evidenc varies significantly from cohort
1Sl constant. One coum  ecking whether
thially distributed field data }

to cohort.
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, uJSCl gave a method of estimating parasite-induced
Adjei. Barnes am ‘ negative binomial distribution. Now

host mortality that >s based -n  unn .at.d  m g ostnnated
. .. , tioll in Eq.(5.37a) and Eq.lo.36) is estimated

suppose that tin- au<-no.-ns,.> ^  M̂  olie cohort is repeatedly sampled
using data from a lointH inline . ci, a studv could be

through ........ A , - » k  ... .....  ...... ..

caused 1 jv , . ..... ,ine to seasonal decrease
• . ... that decreases  with tune sa\

i) parasite invasion i <ir<

iu ah.,.,dance of uH.reasP over time
ii) vector parasite mortality i<'t< * following. Suppose that

r tlio two abo\ t
One interesting case apt'1' IO! ^  temporally but are unaffected by host

P arasite  invasion and mortality rates w u>^ ^ ^  wh(.n , SCVeral h o s t  coh orts are

^ e . Further s u p , - - '  a <•><•— > m d a n d  mortality rates become

sampled at a single pom ' 1U ' . r „ / u 37a) becomes
\ / ;tv relation in ^ 1*’
Mt) and ii(t ) and 1

r11 + u)(lv i ..

I‘ :
\( / -  (/ +

_ i"‘ n(t-"+y)(l\ i l 
s)( J‘

(5.41)

' ' " . , „ r t io „ » l.  <>.. ,h “  r l” ” Se ° f
1 tu d v  is cross s tt

w»th < c o n s ta n t  b e c a u se  the • . ( 5 .4 1 ) beoom es
. then Eq-W

E n a b le s  s '  =  s  -  » aI1<1 ?/ ' , , - ao\
r* 0 . . . '  \  A )

//( " /'
/  \(t+ ■>')<■ L

r.. .„i.. it follows that
Thus using the Leibnitz i »

'la =  / irA (t - « ) e

j%0 /t(< + .V, )̂ .V (5.43a)

N°w since \{t — a)

, ) a r e  b oth  n o n n egative  H follow s th at

an<l ,i{t + « > <U<

dJ i >  0.
du

(5.436)

, casing function of age.non-decreasing
Tu nuulber of parasites ,s a » on lly varying system
This tells us that the moan aSSU,«p tio» of B nd the study is cross
^ o te  th a t  t in s  is tru e  b e c a u se  o f th (lepe„ d e n t o f a g e a r

l arCWW e  the epidem iological v<

Action al
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5 .2 .2  P a r a m e t e r  e st im at io n  by the M L E  m e th o d

S u p p ose  a sam ple  o f  .V hosts is collected  and let / ,  be  the the n u m b er o f  p a r ­

asites on or  in t h e m ! ,  host and let 0 , =  ( « , . / , )  be a vector o f  a series o f  m easured  

attributes o f  the i-th  host exclud ing  In the eontext o f  parasite p op u la t ion s  0 ,  

would in c lu d e  the age a n . l /o r  time o f  collection  o f  the t-th host but other  tim e 

and h ost -sp ecif ic  variables such as habitat descriptors or host size or rep rod u ct ion

. m i . I ',d (*r tlit' assum ption  of asym m etrica l vector  para-
^onclitioiis are also  possib le . L 1 1

. . ■cniiu1 the probability  that a host w ith  vector  site d is tr ib u t ion  on  host wo may asssunu tm p io o a
e -  1 ivirasites is given bv tlu' negative binomialOf attributes 0 ,  has a given iminbei of paiaMt s gi

j. _ # n \ . i Mvrr- dispersion parameter t (>-« h 1 1, . . . , - .
distribution with moan /M ,̂ ) ,l11

tiv(. b inom ial d istribution  with param eters p  and
We know that in g en e ia l  tin n u

r is given l>y r , , + r -U  „r.,r r = 0. 1. 2. . . .  (5 4 4 )f ( r+I  ')l>r,l r ’ .r — 0 , 1 . 2 . .  . •
•» — < 1 elsewhere

rq __ 

P

r( 1 -  }>) (5.45a)

f ( s - p - r) -  [ 0

where q =  1 -  p.Now  we know  that

£ (  .V ) =  P=
. . • , t‘ nns of r and ,t. Particularly in terms of

which m ean s that on e  so lv , ‘ fl>‘ P

a b ove  p a r a m e te r  sp ecif ica t ion  P <•*“

P

|)0 written as a function of and as

P(P, )  =  r ( s? , )  +  / ‘ ( ^ )

(5 .456)

Thus r('-PP ( ,!(»,)
(5 -4 6 )

-  ___ ) [ Xi / •
' ' ' 1 1 l o  elsewhere ](>re are fu n c t io n s  of the host-

the parameters o f  M *> “ d ^  , ' “

P 't i f ic  v a r ia b le s ,  th e  * » ■  *  «“  ' « * * * ,  , ......... *  »»<’ ' «  » “  *  ■ “ *

b trran ieters o f  th e  / ' d 1 ) b u n t in '1 l,e  * ’ v , „ „ s  o f  the # . »<<  ~
t ,, =  ........... , a .r.V ( =  1, ■ • • , JV.

the r (i 3  )function be r " '  . , the data (■<'■. " ‘d'
u b o o d  fu n rtio n  foi 46) and is g iven  by

maximize the 1<>8' lllu' 1 ^ ))e (lenved from Eq (

1<;t the log-likelihoo<l fun« . ) log(r (^ .) +

, g  )) =  y ' [ r ( r ? . ) lo g r (^ ) ' ' ( r '
L { x , ,  r(<fi  h /h  “ TP

at,

150



-  X ,  log /<«*,) -  J .log (/*(£ ) + r ' - r - . ) )

+ £ ( l o g (  - j ) )  -log(.r,M

; = 1

The estimates for 0 « : 11 .̂....... r . . ,
which are roots of  ̂ 4- -s simultaneous equations fi1Vl'n

v -  4- .r, 1  ̂ ■
OL

> are the MLE estimates

(5.47)

) \ J j_  _  L -
2-> - 5 5 T  ’ /h^ .)  / / (^i) +  r(Yr,)
i= icW„

0. JZ = 1........k (5.48a)

and

OL
( ) -~

T  V

V

Z
!= 1

gM
t)

r 1 1 4- h>£ /• r 1 log( / / (0«) +  r (^« ^

r «’
1........s (5.486)

T1

i . k an d  v — 1 ,  • • • ,  «s.- i  ̂ t where u — 1■ • •
1,.unfed 1)V aU< T'' % cVcfpms where there is:iese estimates arc d<,H> * . ,,.tor or host-parasite sjst<.n .

"Ti * . m host .ft-ihiition is ■asvmmetric.Uns procedure is nni)()I taI ^ ()r parasite distiibuuou
i t  tl,c on host vectoi _ be used to estimate

(‘inpirical evidence that _ . a these can
,t(,r vectors r~ » aU

After estimating the l)aIalU< . j distribution.
parameters of tin1 n( oatl%( on su sceptib ility

* . t a lld host h eterogei aistribution rather than
•3 D en sity  d e p e n d e . ‘ oU host paras. variance of

section -  —  ■ ^  ^  o p t i o n  ,  to ^  ^  ^

“ *umins *  » f  « *  disp" si“
' 16 P araK 1te d is t r ib u t io n   ̂ ^  R g iven  set o . ^  system  stab iliz e s .

K re tz sch m a r ( 1 9 9 2 ) obS<>1' < paI.a s ite lo ad  >ncreaseS. ^  tfae m ean and  v a ria n ce  

C r e a s e s  a s  th e  m e a n  <>n 1 j  a  m odel th at a  sy stem .
T 1 l they pr°P0b - ,i p dvnainl

0 generalise the iu ° ( ( , -tracti011 ot ndence and the on
t0 act independently as a between ^  ^  there are several

The key issue was the r« ‘ ■ ^  gucb kmd o ^  acqUlsition rates

ho t̂ paraslte or vector dfctn >«> ^  attacbme«t «■** ^  (.y) parasite re-
Parameters o f interest among t * . ^  .gration (» 0  h * ^  is bound to be

fii) host renewal rates by but > * ^  For example msi U1C vv ui *
cit(' m ()1
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reduced for a heavily infest,-.1 host population. These die more rapidly than do

.  ̂ 1Ilf< hU (I P° ‘sfs* 1 lllIS tllr r^rrt o f density dependence to these parameters is 
Ilnp° rtailt- HowrV(‘r the effect of density dependence to all these param-

CterS Can PI'° VV roiI1i,I<lx- TI“ >* die nwst reasonable thing to do is to study single 
ntitks that reflect density dependence and are biologically meaningful. ( ) Ile 

SlUp quantities is the effective reproductive rate of parasites and hosts. In most 

tP<' PI(‘vhnis studies, focus has been on the widely observed pattern of aggre- 

 ̂ ed distributions o f parasites, as opposed to a completely random distribution 
SUrp as the Poisson. One reasonable distribution for aggregated on host parasite 

crtor distributions is flic negative binomial. Reasons for observed aggregated 

P îri.site distributions include host heterogeneity in susceptibility due to several 

1C ° r,s such as age (Anderson and May 19S5). Distributions studied include (i) 

tegular positive binomial (ii) the negative binomial with fixed overdispersion 

Parameter fiii) the random or Poisson ditributions. The results by Anderson and 

' Pl3' (19 /S) showed that th<‘ equilibrium j)oint is unstable in the first case, stable 

11 die second and neutrally stable in the last. This suggests that aggregated distri- 

lldons enhance stability. Adler and Kretzschmar (1992) suggest an improvement 

0 diis by taking dispersion as a dynamic variable. A problem of interest has 

deen the analysis o f the relationship between density dependence at the individ- 
Ual level as opposed to the entire host population. This is very important in the 

design o f control strategies. This requires the understanding of the complexities 

Parasite-host interraction and their respective population dynamics. This is 

^cause justification for chemotherapeutic intervention against parasite or ticks 

Ulu*t be made with sound quantitative arguments.

T h e  g en era l m o d e l
The m odel to be developed is dynamic in nature. It incorporates the host birth 

a»d death, parasite death, reproduction and transmission. We ignore the struc- 

turing o f the host population, assuming that attached or on host parasites/ticks 

di* (or their survival to the next stage is greatly curtailed) when their hosts die.

Allows that their is need to classify hosts according to their parasite burden, 
ai1 approach which has been extended to include host age-structuring by Hadeler
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(1982) and Kretzsehmar i 1989a. 1 * *.
Let h, denote the iiuiuImt of hosts per unit area carrying ik parasites. Here1 k

a unit area is equivalent to it grazing area and A- denotes parasite type. We tints 

define the following model variables.

i*: the number of on h<»t type k parasites. 

t: the time variable
hlk: thr lnunhrr o f  hosts with type*  paiasite:

H:  r.lit* t o t a l  n u m b e r  o f  l i ( )s fs  

y : t h e  t o t a l  n u m b e r  o i  p a i a > ‘ t< -s

x: the mean nt.tnl.er of parasites per host
. r ,i1(. distribution of parasites on host, 

the variance to "uan ratio of
f interest. We note that these parameters can

• pXt we also list the pa nun rte is  <> introduce the following parame-
5as>ly be made density  dependent it nee<

tors

Hlif]

...... ■ "  p r o d u c e .

n 'V  rat<> E l i c i t  hoS,S W,th '*  p a l ‘^ th parasites .
, lt : relative susceptibility »f busts «« ites.

1 fl, , ' l t e  111 il()hlS
/ ' . t : per capita parasite < < a ' . hosts with n- parasites.
1 ■ • s ite  e g g  p r o d u c t io na , t : p e r  c a p i t a  p aras itt  JW l

■ r os it es acquire new parasite.
j . ■ i i insts w ith  ik I)<1vdy: rate at whi(‘li ho. h o s ts  a re  parasite free  th a t is a re  in

We m a k e  th e  a s s u m p t io n  that new >< ib in g  h o w  hosts c h a n g e  state

cW l , The system of « l « atl° nS‘ s by definition. T* - ^

(5.49a)

,,'U oy ueniiibi^ii. -  ,• nc

‘S described by the following set of < 9ua

.(/m +  tf'nV'0 + / “
h + J L aik

h

+  <t>u +  )h
Ik (5.496)
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. . will) respect to time. T h e  system  o f  dif-

;Vhere a r , ln t , ‘S "  tin.*- evolution  o f  parasite p op u la t ion  am i host
feremud e q u a t io n s  < ■ -  •> uilil (Ustributio.i o f  parasites on  the host.
population s ta r t in g  from  som e  w ' 1 ■>

, I variables  which are g n c i i  b>acttreitated \alia im .
Next \v<* define  the ag£i

ih  =  X > -
it=|)

CO

r* =  f, kh. Ek = Y . ‘ kX,k
(5.50)

I l: =  1)
I k=  0

where
T-vvinii' parasites t\p*  ̂f ].()s(s ('<tl I  ̂m?-> i

II,; is the tota l d en sity  ot _ b<)ured bv total host com m u n ity
Ykis the tota l nu m h ei o f  type k parasites i

in a ty p ica l  g ra /.m g  area say: and ^  ^  tim e by fecund type  k

) »r o f  (u,'2is l)e
E k is the  to ta l  n u m  >' - ' a.fined earlier on as
parasites . W e  ca n  then  express Cm <

(5.51)

, t, „ ln>el,[U ine»rlvo,U l.e,...m bet . f . ggs

T h a t  is. th e  ......................  '*  k ..... l ily  th » l » “ 6 "  ' ” Ck’  “  , ' ' ' g ‘ e

Produced. Tin- f,i , , - n o "  » ( « ) * " • " ” d e n s ity - Adler • »« K re.ssdnn.r
'56 and i, expressed «• »  "  °  ff . This mean, that as H  n,creases
, . I,.creasing funttioi , , „ rause of the simple
^992) assume g ( H )  otf host egg dimmis ms the992) assume g( H ) lS c t egg dinmus 1

irk1-; an  ̂ 1 . r ^finn To generalise the
e chance that a host p vluals exp°secl to in e

r more host individual. 1 bability that a single
reason that there are »   ̂ ^  ^  (lefhie <j(H) *» > ^  & function of
model for vector paras. ■ by a single hos -  of
off h ost questing individual is P necessarily an increasing
i 1 , . . ^ aIlS that (5 51) is more generally
lGst density, H  • Tins n .aSite type  ̂ ien
Thus in general if the on host par 

Wfitten as
(5.52)

" 'here  n o w  d e n o t e s  tin

lUing.7  , in a grazing area a

fhe p r o b a b i l i ty  that an >udlvK
1 6 0

indi-,du»S prior to * •"<*
nil dost guest. t  H . - f  l h )  gives

nuiv.v*—  *
; , T h e  q u a n t ity  Hk9 {Hk) gives

; nere u o w  u ~ ....... to stage k -  l -  ^  H shou ld  be an
An- i  b e c o m e s  the m o u lt in g  p , -  area attac



ti1(. probability of locating a host should increase 
increasing function of Ilk xin< < 1 \

with host density. Tli[ i l l s
- }hg\Hk) >  0

(5.53)

dHk
W e can  d e fin e  f m t h e r  a g g r e g a te d  v a i ia l . l . -  a.-

and

where

V ^ ; , H =  f .. .
n>.> =  L  /'” /'■*• H ‘"

ik =«)
no

; V =  ikllikh'k

, k =0

«k (5.54)

(5.55)

f l  , lv in ,  per unit time due to type k parasites; 
H „ k: denotes total number <>i ^  time in the presence of type
H at : d e n o te s  tota l number o f  hosts ’

k parasites; , t density per ' in'1 time for a tJPC
H , k : denotes  the total snsrept.bh "<>'

parasite: k parasites dying Per unlt 'tinl<? du
Vi,: denotes the tota l i» unl,<'1 °

host death; k parasites dying per nnit time due to
„ i ...milter of t>T° 1 

V(u : d e n o te s  the total mu*

natural m orta l ity .  It f0*'0' (5.56)

Hk =  +

and
Yk

r, (5.57)
y .  _ y .  + H s > 9 ( H k ) E k

, lhe derivative of U *
M,aii<l Yk denott Anderson and May (1978)

where the notation pecial case following -
Yk with respect to tinn Pffects and set

density J f l - ' " 11' " "we assume no

fhk /' A I k A, *ik
5, a'k a Vu* (5.58)

Thus we have

Hn-k aHk ■> H3 k
i Hk)

1 6 1

Ek Put =  ftYk=  A U , r e*
(5.59)



^  . ...........  .;a lv  with parasite burden such that
Assume h o s t  m o r t a l i t y  ni« m <l- '

= l) + o t k"u

(5.60)
• c

■timis we can assume that hosts 
f • k }1()st interrac tion.

We note here that in the case of n< Mld also by avoid ing  an over

« i t  a typ ica l g ra z in g  area due  '<> tjmt param eter values and m to

infested area  a. ............ . S u hsM tunng '
.1 - /r ..... 1 Vi. \VC» g('t
the expressions  for  Hk  aI1^  ̂k

Hk

oo

• U) +  V  ahlk\  i b  +  <"k)fl*k 1
/_-> t k — 0

u = "
((1 -  b ) H k - n} k

(5.61a)

and
cc . ..

V u ( ' '  +  o u ) / , k

' , = " ^  ... „ f l Y k + H»9(Hk)M

l V " +
.(/> +  / ‘ )u

(5.616)

'  f  n  a n d  H .  is th e  la st  t e r m . Now the

Tw , • • n o t  »  f « n c t i0 “•the o n ly  t e r m  t h a t  i*s (5 .6 2 a )

Q u a n tity  =  h i k / & k . Tr ,,
. t v p e fc paras ites .  I f  the

i. ; s c a r r y in g  u-
i • 1;tv  th a t  a  h o s  _ , m  u . is d is c r e te  th e n

b e  ' “ k e d  “  y n i ’ l . - *  » ” r “ S“ '  “ " a I n » « h  »  - d i v e r s i o n
A s s u m p t io n  o f  a g g r e g a  t : v e  b in OIllia _ ra s ;te  lo a d  b e  m k  a n d

rc th e  n e g a tl v.nst m e a n  parasne
We c a n  a s s u m e  it  f o l l °  ‘ L e t the o n  r a s ite  in t e r r a c t io n

. n aram etei * • ^  the entire host-paras

P a r a m e te r  o r  c l u m p 111̂  * ^  re fo r m ll â te  ^ tL at th e  m e a n  n u m b e r

>ts v a r ia n c e  a 2 . W e  n e x t  ^*k- N otlC e

s y s te m  in  t e r m s  o f  the »a  ' g jv e n  b y
.  ■. c ner h o s t  is  th  R (5 .6 2 6 )
f  ^ P e  k p a r a s it e s  i ^  _  y k/ H k

... s r  i k h j B k  -
m k  —

1 6 2



jv; (riven by
By definition the vartanc.'

-k = ni < rrik “ k77 l- —  <7 l- (5.63a)

hut cri ran lx* expressed ;i>

rr, — >I‘/u -  "*k
= ti

(o.63b)

thus

y   ̂ ti'i'*
ik=,)

=  / nk~k 1 nk7 =  m t (n- +  »'*•

We n o w  m a k e  th e  f o l lo w in g  eliatnie (>f %ana

= mthk  ilU<} ',  = ttU- t «fc =  lHk{ Xk +  7Uk ^

i k= 0

(5.63c)

(5.64)

*u filiations (5.61u) uiul ,-3.011,1 to <>l,taiu

b)Hk"

__ /; — (\rnk)Hk•
(5.65a)

X°w r*. can he e x p r e s s e d  aS

•. +  nu­
ll- =

(5.656)

^ence (5.61h) become*

nikHk +  rnkHk

— (V

(b +  t')inktlk
, +  sXHkg(Hk)mkHk

(b +  ii)'” kJik

Hk(” n-(*k +  ’nk))-

-  a H k *1-9* A:

»fc=  0

(5.65c)

l :sing Eq.(5.65a) in Eq-(5-C° ‘ > w< g
m + sXHk9(H^mkHk 

_  nHk(mk^ k +

(5.65d)
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then cancelling out terms in .In' ...............!uatloU

the equation \vr get

fo l low ed  by  a re o rg a n is a t io n  o f

5.66)
m k

,  . ■ , . II in E<| '‘ H't E<i.(5-C6) respectively we get the
Setting Hk -  0and "U = 11 L H 
equilibrium state i m i d h  wlii* Ii >,lt‘

III k -  (a -  b)/n
(5.67a)

arid / - \ (5.676)
=  + ........... ..
.is (I ?> b and a positive solution for Hk as 

*  follows that vn: is positive as long as <« fecundity . sA, is sufficiently

° nS ;vs th e  p r o d u c t  ot ho- • ■ full(-tion o f  Hk-

W ge sin ce  Hk!l(Hk) is «*» te { fn K ,Hk)  is K‘ven b >'
V- , . . f ,he (.<ptihhrnmi
Now the Jacob,an a \ - (5 .67c)

./
h —om r 1,1 * I

.........  n f  ,•
" ;  , , ,  I -  o t  w’ .

„  .1,0 , lo > io » t io o  o l  «  »  y o (  lh e  , . d i , „ e „ . , o i , « l  s y s te m  ,

o • - 111 t 2 v n (’r a l  t l u  ‘' llnie that ?/>*.- is varying-

determined by

as-

is

0  the d e te rm in a n t  o f J  

ll) the t ra c e  o f  J  

N°w  sin ce jL-Hk<AHk)>°
Hk

(5.67 d)
■ . ,t is given by 

follows that the (letei»liu
fr jL(Hk9(Hk))\Hk̂

I rI -  oA-s77U'^ fc Hk' , such systems is that the equffibnum

, kn0wn result abort ^  stability is achieved if
Positive. The geneia '  nd in this particU
stable if the trace is negative aiH (5.68)

a fn k « '^ k) ?  °
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l when the trace is zero is not
and unstable if the inequality  is ieve.se,1. Stab.Lt>

determined bv t h e  l i n e a r i z e d  >\ >11 in- ,
" () E(| . 5 GS) indira.es .hat the e q u . l .b r .u m  will be stable if the

, -  i an in creas in g  fu n ct ion  o f  the m ean  p a ra s ite  lo a d  mk
variance to mean ratio .* r * , i i tt„ ccj

■ i i i . This is in line with the work bv Hassel and
and unstable if the opposite m <■ of risks■ • . models where hosts experience a tange ot risks.

arala (1990) on l.nst -pa.as. < ^  ^  varial)ility -gen era t in g  mechanisms the

It is s h o w n  here that  for » J  /  ^  <)f the degree  of risk is less than
system s t a b i l i z e s  , f  t h e  ro e  11 t h a t  in  th e  c lu m p in g

1- W o r k  b y  Perry and Taylor ( - ^  (.(1uilibriuni. This m ean s  that m o d e l

Parameter r eaii liio.hfv t h< ■ - mean rather than being fixed values.

Parameters can systeniat .eallv d ip '11 most on host parasite distributions

There is strong empirical ‘M“ ‘ ‘ ‘ nl(.alling that most host individuals
are asymmetric the negatae 1>iik i ^  ^  an;nials will carry heavy tick loads.
*111 carry intermediate tick loads wh. * * for the on host parasite 

Thus if one assumes the m g '1' 1

distribution then from Ed-bT mjt (5.69a)
?r(mt) =  '  ^  r .

host parasite distribution. This is a

re m t is the menu o f the & stable equilibrium by Eq.(5.6S). A
‘ ‘nearly increasing function and thus <«“   ̂ (.onstant variance to mean ratio nk

P o isson  d i s t r i b u t i o n  on the other ham 1 ■ • ^  ^  im P ly in g  a n eu tra l
f m. with respect

P r o d u c in g  a z e r o  d e r iv a t iv e  o  ial d is tr ib u t io n  on e  ge s

stability. In the e a se  of the m (5.696)

, ,  ) is a  d ecrea s in g  fu n c t io n  o f  m k
t tins case tTkVnk) .

where c is a  fixed parameter. 11 - -------- s ta b le  equilibrium.

(since

whe

7T,

t f ix ed  p a ra m eter .  In tlllb tB an unstable equilibrium .

ami , 1 -  E'l lJK

C ase  II , b ,  m aking  U «  P " ' 1*  <J“ th *
i n u o d m e  ------------------------------ --------

r oil IlOSb , ,
^nearly in c re a s in g  fu n c t io n  °  s . T h a t  is, assume a
H r  Uv o f  the a b ov e  rest • (5 .70a)
n°w n  the s im p lic i ty  ot

b n = l i +  7U'
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Then
l>V»

y iik = ^  n ( f L + ~i*k ^ l'k

11. = 0

=  / ‘ U  +  ~r ’ ~k'ih* k (5.70 b)

Ik=  0

. . „  . .•xurt'.ssion o f  Yk >n Eq-(5.57) w e get
then s u b s t i t u t in g  tins in to  tin

oo
= -  i kb,t h,„ - l ‘n - - - S

,lh,k + H . kg(Hk)Ek

= 0
i k-0

=  _  y  lk(b +  «>k)h'‘ u- = 0

i2. h , t + H , t g( Hk)  y  nXh,k
ik= o

tfc=‘>
oc v  _  V

=  _  ^  +  ' ^ k -= 0

ik=  0

,/}lh I k l _  QK lk — 0

t _ 7 i \ h ,k + H , „ g ( H k ) X Y koo '  ■)
=  - i , y i khik - «  b  k

t - '  It =° lk ~>o

=  - 6 U  -  «•#*. S ' * 9

. , )Hkf ' i h i >  + H’ >9{Hk)XYk
—   (b ^  ft)* k , j; ^ 0

_ i l Y k - 1 * * 1 1
i*= 0

T h en  u s in g  Eq.(5.G3c) w e S<>(

n  =  -
( «

. 4 - m t )  +
+  1 )Hkmk(*k +  , m > ^

Now re c a ll th a t
77U- n / t f *

. =* Yk =  mfc
-h TTlk̂ k

(5.71)

T h e re fo re

rnkHk +  7 nkHk 

Now u s in g  th e  expression

u ,  _ ( « + 7 )Hkmk(nk 
j  — — ( b +  fL ^

fo r Hk 111
in E q .( 5 -6 5 a) an d  u sin g

the fact th at

Y k m kHk

1 6 6



we obtain

ink
n . _  (n +  ; ) H kjnk(-k +  »'k)

/ / t =  /' » '"*
-  /) -  Arm ))

C ancelling  o u t  like  :,u<1 !ii,,,l ,1,fymR

, ;u . =  rm ( *SH k<j(H k

(5.72)

and

f  the sy s tem  a b o v e  at the e q u il ib r iu m  sta te
m , the .laeobian o
N e x t  w e  p re se n t  111

(Hk,rhk):

/  0
J =  ( . - _jUHki/{Hknnt = lh

:s uiich^11̂ 1 ,
T l><“ d e t e r m in a n t  o f  th e  ' .,m li l ib r iu m  is g iven  >>'

• ■ . , The trace  at t 
^ s t e n i  a n d  it. is ■

- a H k  ) (5.72)

. o b ta in e d  in the  earlier
fro m  that

( - ( ( «  +  7
) » ; ( . » » ) +  7 ) ) m *

■ c t ai )le tf"the equilibrium lS ,s (5.73)

tr;.(»'»••)>  . , ,
,  before the equilibrium is stable

utility is revel-sec • However if - 1 < 7IU mfc)
unstable if the lin’d £ ” stable if Tr'kThis means that a

«•»*>  >  »• -  “  ■ *  ■» • "f c l e " t “
-S -r ib r .- .m  may ^  e  density dependent p.rns.te

reasing variance to icC „ f  suffi«en ^  consider a 3.dimensional
bilize the system m tl 1 ^  approach woul . which may accurately

ttality. An extents™  “  >f » « l ^  ”  Jthough the « ,n d ibr ,u n

t 'm ,r “ ki” S  tlie infinite throughout dynn.nic.
;cribe the dynain ‘ trainecl to a bJ
tribution might remm
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, describing that distribution to vary.the idea is to allow more than one pai ameU rs des< R
v , . . r th(. negative binomial one can allow the clumping
For example in the ca>e ()t rllt u . . . r J

, . •• tIn' mean. This approach is left out as a future
parameter to vary along "ttli •sa.>

research area.

A Hpnsitv dependence 
5.4 The reproduction ratio and

. thp of density dependence to quantities
In this section w«- investigate  ̂ o{such density dependent variables

that explain p o p u la t io n  ' (<) UIKlerstand the p opu la t ion  dynamics o f

is the reproduction ratio. /?«• 11 in general This is because parasites
harmful populations such as ti< ks oi I c o m m u n it ie s  and are thus

■I ' litv and mortality m nosi
arc important causes of nioi >i . e c o n o m ic  importance. The

important causes of pr()dll< ^01 . r \ the parasite populations
)1 strateg ics  01 i

m odels aid in the design of conti o s c , ig the use of chemicals or
)f the ineMioua

and the diseases they cause. <»“ ’ ‘ ^  most optimal control strategy to
chemotherapy. The problem hen’ is <> ,m them has to be supported by
reduce cost and effort. Thus the  justification

So»nd quantitative arguments. tQ this approach. An overdis-

The on host distribuion of paiasiP- ^  ^  lightly infested or infected and

Persed ditnhution means that >-< ^  & infected fraction of hosts

few harbour heavy p a r a s i te  loads. ConAnother aim is to focus on

attract most o f the medical or veteiinai of chemotherapy.
rvclethat are the W 6

stages in the parasite life cyu  e popuiations is that the popula-
„  . . .  the control of par . .  continually being
The critical issue hosts and parasit  .

tirm • , , fl .t„m e with time. BOU1 birth and immigration re-Ucms involved fluctuate oration and by 01
i i Apath a n d  enng . iant or not. Now

A m o v e d  a n d  r e p la c e d  t jie  p o p u la t io n  is c

sPectively. T t o  »  » '  of f t o *
» h .„  lhe population »  „ „  „ fe t o e  *  1. «  »  “

■ m«ri,y produced by » * * * *  „,„re r«prod«Uo» to o  ,» t o .

'tself in th e  next g e n e r a t io n .  Thus let f ( M )
r i c;tv dependenc • i st Then we can

wFich takes account of ( f n> - p aras ite  burden pe

density effects where M  >h



write
Rr = f (

(5 .7 4 a )

such that w h e n  th e re  is n<> (l,‘
len -ity  dependence.

(5 .7 4 6 )

,  .............. T l,, ' 1 » „ , i . y  i s ™ 1W  ' I -  e f fe c t ive
" ’here /? „  is th e  b a s ic  n  ! ’ “ "  ‘  ̂ ^  p o p u la t i0 n is in creas in g  a n d  w h e n

r e p r o d u c t io n  r a t io  su ch  that w h en  »< titv  is a lw ays  less th an
• ■ d ec lin in g .  T h e  d u a n u  -

K  <  1 t h e n  th e  population  is p-fined as the average  n u m b e r  o f  fem a le

the b a s ic  r e p r o d u c t i o n  ra t io  Rosu scep tib le  h ost  p o p u la t io n .  

Parasites p r o d u c e d  b y  o n '  f' 111 . density  d e p e n d e n ce  and  or  c r o w d in g

Note th a t  d i f f e r e n c e  b e tw e e n  R* ‘ lU<1

e ffects . n )lex w ays a n d  actua lly  affects  the  rate  o f

D e n s i t y  dependence fu n c t io n s  m camp ^  N o w  at e q u il ib r iu m

recovery  o f  p a r a s i t e  p o p u la t i o n  fo l lo w in g  ,ut< 1

........................................  ■

In

very  l igh tly  in fec ted  h osts  m a y  h a v e  Re
, r l e  p aras ites  m  • in h eav ily  in fested  h osts .

a c tu a l  fact  t h o s e  fen>ai< l , , less th an  7?o m  lKa -
, b e  co i is io o i  ' . i ic 4-n c a o t u r e  d en s ity  de-

Vei7  c lo se  t o  i?o w ln h 1 i r m ula t ion  o f  n ioc  ‘
T), .m n r o a c h  in the t o n  p a ra s ite  in d iv id u a ls .
■Luu m o s t  c o m m o n  a p i n Oationslnp tor 011

. u,u> se p a ra te  Lt 11<;:ne: s o m e  d is t r ib u t io n
P e n d e n ce  is t o  a s s u m e  s< rasit-e p o p u la t io

. t i ie w h o le  pa i
c a n  t h e n  a v e r a g e  ° v( 1

for
. . the d is tr ib u t io n  o f  p aras ites  is

p a r a s ite s .  . .1 .  sense that tne
^  . . . .  c o m p l e x  in tlie * o o p u la t io n  d y n a m ic s  o f  the
T h e  s i t u a t i o n  is function  o f  tl P

, • 4-Uns a 1 nr n a t ion  as a
T h e  s i t u a t i o n  is c o m p ^  o f  the p o p u la t io n  y

„d  is thus a im , perturbation as a
' t se l f  a  d y n a m i c  en t ity  -l v ; t l i i »  a  c o m n m n i  y,
n . ,  tra„sinission w .th n  ,  t ion  o f  h o s ts  is d e p e n d e n t  o n
Parasites , p a t t e r n  o f  . *.1-^ rate  of m -tlmi Thus tne verted  as a function oi
r' SU“ of * c“ ,tro1 <|v.i«y < l .p r a " nc '  Consider
>Le d i s t r ib u t i o n  o f  th e  « «  » f  < * * * "

l he d i s t r i b u t i o n  w h ic h  n> t u in  site lo a d  p er  h ost  g>ven  y

'■he ra te  o f  c h a n g e  o f  tin  I11C M f
dt

(5.74 d)
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I ... rl«. is declining, p o sit iv e  d u rin g  p a ra s ite
Tins va lu e  is n e g a t iv e  w l n n  h l 1

.... . , i m easu red  in n u m b e rs  o f  p aras ites  p er  unit
grow th  a n d  z e r o  at e.|.iilil>nuni and  is nieastu

time. Tims we ran write

M =  -  1)

= ,1 M l  Hr -
(5.74e)

,. The equation is in this form because the popu- 
wher fj. is the parasite n iorta 1 >'  ̂ m„rta iity  and when a parasite dies it

lation is be in g  rem oved  at a w  1 l ‘ ^  m phasizes that the death rate o f adult

replaces itself by a factor ft,-. Eq (o- verv o f a parasite population
11 ..ffi'ct on the rate oi

P a ra s ite . / / , has an overall _.lSUres. Paradoxically the equation says

from a p ertu rb a tion  d u e fo 111,11 '* ’ , ufe expectancy o f  parasites) the
t ' r  tin’ shorter uw m  r

that the larger the death rat< useful in deciding the frequencies
C 'li 'i coiic^p^

faster the rate o f  recovery. Sue < ^  ^  rontrol the population. W e m ention
of ch em oth erap eu tic  intervention r - l " 1̂ ^  bound to exist. One source o f  such 

here that host heterogeneity  to suseept. - ,f intensity o f infection is higher
------  ----- . iTor exdmr*"

» h etero germ itv  i» * r  < * * *  * * ” * ■  * H h  h igher h" , i m  S ™ e ra " y

»  « * ,  .........  i .  - ..... *  *...... .»  « *

Provide b e s t  u . r g e t .  * »  ' ' • -  d - * ' ™ ™ 1 ™  <*
■ ab’P 'PP  A" ' " ir' . , determ ination of the effect of

. of.fpm  and tne
„ . .tents o f tl‘ is ' ,at MlP probability o f m ating and
are im portan t c o in p 01 I governs t 1
i . . dependence < ■ _ r aje parasites that is

chem otherapy. D ensity d< P m oportion  of teiml('U,'<' proportion  o f female parasites that is
, ......* ' „  T et g ( M ) denote tl»e effective reproduction  ratio
hence R c as fo llow s, bet ./ . burden. l n e e

• f  the m ean para- 
mated as a fu n ction  °t

given by
(5 .74 /)

R __ f(M)g(M)Ro
'  horde, i n c h e s  following chemoth-

ara.3 JonpnHpnr.e m-
site burden increases

This equ ation  show s that as but the effect o f  ^ n d e n c e  im

- a p y the p ro b a b ility  o  ^  „  reproduction  ratio for control o f

creases as w ell. T h u s 1 theory o f  chenrot & dynam ic distribution

mean Parasite bu rden .  ̂ attem pts to m ^  vecto f parasite

Parasite p op u la tion s  ie v o  v (H adeler and Dmtz dipping say will
° f  parasites in p op u la tion  m« the population throng

ticks reduetion
Populations such  as
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,, . , raxrv. The relationship between the
reduce the rate of infectious agents 1,1 " . . f •1 ,t of the transmitted infection is 
density of vectors and the equilibrium prevalence

..... , . lnction in transmitted infection is achiered only
non-linear, where a signifn an i ' 1 ■ narasite vectors. . .. For chemotherapy against parasite rectors
at very low densities <> < - ^  (.arried  infection significantly, it ought
to alter the pattern <>f transmission • d to ,-educe morbidity and

I„. ..................................... ..  I -  ......'

mortality due vector parasites.
_ ted distributions

5*4.1 C o n ta g io u s  and I i lllK density functions which may or may

Let. / ,  ( . ) ........ /.d  • ' 1,,‘ a S,''1U' n<' ),e a sequence of parameters
I et />i • ]}~........'Hot depend on paraiin t< 1 ■ •

i x  D 1, du tt 
satisfy ing p x ^  0 a n d  ^ 1  = 0 ‘

1=11

is a d e n s i ty  f u n c t i o n  c a lh 'd  a <  ̂ ;u the  fo l lo w in g  m anner,.

T he c o n c e p t  o f  m i x i n g  is n a tu ra lly  ‘ >* t<'11‘ fu n c t io ns p a ra m e tr iz e d  o r  in d e x e d

L et < / ( , ; * ) . *  €  U }  *  faIllUy 0 f ‘  ct:  and  let , ( * >  b e  a p r o b a b i l i t y  d en s ity

..................................s i i s
(5.75a)^ n o t i o n  w h ic h  is z e i o

/(• r
f { x - e ) g { Q ) de

•ions d is tr ib u t io n  or a mixture. Thus 
is . , fun(.tion calh’d a rontag existing families by the tech-

agam a density in ^  , j e  obtained f  te new families of
P a ra m etr ic  fa m i l ie s  o f  1 ‘ 1 js0 b e  e m p l ° y ec d is t r ib u

o , ............ . . .  <■»"»aS well ut
d iscrete  d e n s i t ie s .  It ( (lli

tions.
. , w ith  d e n s ity  / ( * )  a n d  ^ r e s p o n d i n g  

v  . a  ra u t lo m  variab le  trunCated  at a an d  o n  the
In g e n e r a l  if A  lh 1 (h { ,n  the d en s ity  °

C u m ulative  d i s t r i b u t i o n  C (

right o f  b is g iv e n  by a <  x < b
(5.75 b)
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5.4.2 T h e  m o d e l (1,stnl)ution. relaxing the assumption of any par-
n order to nio< < 1><1 ‘ ‘ >tll(),l need be devised of incorporating host

ticular theoretical distribution. narasite This suscepti-, , . susceptibility to type k parasite, tins suscepti
heterogeneity. Eru'h host la> s >  ̂ .uc\cnt For now we assume the latter. The
bilitv may he tune drpendt h* 01 *n 1 susceptibilitv to parasite establish-
susceptihilitv index ineasuies a h°- ure differences or acquired. iriVinii: its basis in txposm
meat. It could be pcr(,(,1V(,(l ‘ ‘ ‘ n.• , (V to tick challenge.
immune resistance due to expel i‘*n< ^  ^  ^ anq A(t) denote the mean

Let h , denote the sum < I * exility Then will give the mean

attachment rate for paiasius i 1 for host i denoted by M t is
j\ iC parasite omuc

establishment rate foi ti()S •1 . r 1, nrocess, tnai is 1 • ' r r ^ tu)ii dentil idescribed by an iinniigia

JV/, =  A (t)lu-
(5.75c)

• the Poisson distribution (Cox and Miller- 

The general s o lu t i o n  to su ch  a hosts having same susceptibility factor
(1965, pg. 168) o f parasites both >« From case 2 of section 5.1, it follows

and within the s a m e  h o s t  at the distribution of ticks fol-
that if susceptibility fe to r s  are gaunn approach has been used previously
lows the n e g a t iv e  b in o m ia l  distn >ut,o. ■ Anderson and May(1985). Let us

Dietz(1982), H a d *  » « '
that tl... variable *  * •  the

is skew ed . The v a r ia b le  !l ‘ r h a descrip tion- That is
^ fits well to

mean unity and p a ra m *  (
>■* e - ' e  /j > o

g{h, k)

(5.75 d)

, for the distribution '» H *  *
Obviously the v a r ia n ce  ^

var(h) =  jf.
tion mechanisms based on an mdi-

T , t 0f h e te r o g e n e ity  g ne suscep tib il ity .  T h e  host
The s a m e  argumen *.s each with .

n tn g r o u p s  of b fvnes or ca tegor ies  a c c o i d m g
vidual apply equally to g Qf parasite type
Population can be divided into a mu
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. . . . .  . . i i _ I 9 each having a rate of susceptibility relative
to suscetibilitv indexed •>>

, ; i Mr/ii^ortional rep resen ta t ion  in the  c o m m u -
to the whole population equal •<> >>, “ »«1Pr»P‘“ t« ’nnI 1

. . T , . ,s o r  classes are simply theoretical constructs to enable
mty given bv w,. The t>p<s<)i

• . . , , . w.ntihilitv in a discrete rather than in a contin-
us deal with the d im e n s io n  of slls 1 * r™ , .

• dividual hosts specifically. Thus m order to 
'tons manner without focussing on individual

variable h is divided into discrete intervals with 
calculate h, and a , the r a u m w *  . ^  ^  ^  ^  . is {h : H)_ t < h < H] } .

upper limit for each ^  and the integral of 9(h,k)
The weighted avcrage v<dut } ^
over the interval are Itj and ii'j 11 !'1><

kk [ T _*-i - r , /r (5.76a)
P(.r.k' ) n o

. .1 , I,dim ension fro m  i to  H, =  0 )
then fo r  h o s t  js|>annmg tin

n  k

k - n - r
w

r - e 'dr
l .< , A  //; - l

k-Hp. k) ~  C( k H j - u k )
(5.761))

. .  m e n t a t i o n  o f  tdass ,  in the entire community, it

Since wj is the proportional i cpM-  i.ff ) is given by

follows that the mean of ' 111 -A.*,//,
.̂A + i rk">

h> =  f (T )  A / / , . ,  . , n
, , . H  /, +  1 ) - M i T i ^ T + T  (5 .76c)

P{ tvpe ;  has n parasites be denoted by p „ .  
Now let the probability that a host o . ^  cannot have a fractional num-

Definitely the distribution is <‘>srrete *  ‘ ^ ^ l e  distribution to choose is the 

her of parasites o n  a !»«* . Th" ‘" ’J. tribution of parasites over the entire host 
Poisson with mean wr  However t >< < _ asym,netric where majority of host
community is according to empirical e ^  ^  a feW carry heavy parasite
in d iv id u a ls  c a r r y  in te rm e d ia te  p a ra s it  ‘ ^ r ^  ^  com m u n ity  is fo u n d  by

>oads. Thus the d is t r ib u t io n  of hog(. types which m this case

fix in g  the distributions of th ^  p 0jssons such that
re a so n a b ly  g iv e n  b y  a  gamma mixture ( 5 .7 6 d)

- 5 3 p n ’ W ]
J-1
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where the is now t 11<* probability that a host has n parasites. The distribution 
is negative binomial be(*ause we had seen m section 5.1 that a gamma mixture of 

Poissons is negative binomial. Using Eq.(5.7Gd) one may calculate the variance 

and prevalence of parasite burdens. These may then be compared with expected 

values from the negative binomial distribution .
Now before we study the effect of host heterogeneity oil susceptibility on den­

sity dependence we consider the homogeneous case first where there is no assump­

tion on differential susceptibility. Consider a situation where the mean parasite 

burden y in a host community is governed by tin1 equation

^  = / ! / ? ( ) / ( ! / ) - / ' ! /  <5-77a) (It

where ,t is the per eapita heath rate of parasites and 7?„ is the basic reproduc­

tion ratio. The function /(-/> represents the density-dependence effects caused by 

Parasite crowding. Note that undei no d< nsit\ (fh it.

/ ( y )  =  y (5.77b)

T h e  s im p le s t  a s s u m p t io n  o n  density dej 

t r ib u t io n  w ith  p a r a m e t e r  *) such  that

x 'l id en ce  is to  a ssu m e  the  e x p o n e n t ia l  dis-

(5.77c)

T h u s  g iv e n  a  d i s t r ib u t io n  fo i pn 

for f(y)e x p l ic i t ly .  W e  c o n s id e r

it m a y  then be  p o ss ib le  to  s im p li fy  the exp re ss io n  

three  cases  on e  b y  one.

£a se_i
A s s u m e  th e  d i s t r ib u t io n  o f  p aras ites  o n  

d isp e r s io n  p a r a m e t r  k then

host is n ega tive  b in o m ia l  w ith  over-

pu(k\p) - k +  n j p kqn

an d  s in ce  th e  m e a n
p a r a s i te  b u r d e n  is the  d y n a m ic  v a n

E(n) =  —  =  y va r ( n ) " / > 2 
P

able  y then 

kq
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therefore

/  (1/)
k + 11 — 

11

W k +  n

„ = i)
ii

k
V

Tl
<1 e n

i -~jii \ n
P '

it

Thus we have
/ ( ! / )  =  l / 1 +  A-(1 ' '

-it

C  rl Sr * 9

Assume /)„ is Poisson with ,,1‘

M A> =  I n

rate A. Then

-AVI n =  0 ,1 . • •
elsew here

dIlfl since we know the on

E(u)

. „ s ite load  is y then 
host m e a l1 pai< •

. ,llKl v a r (n )  -  ^ V\ r= // all tl

thu s

That, is )

(5 .7 7 (f )

(5.78a)
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Case 3 

Assui 
Then

♦
„ p t o  a m a x im u m  paras ite  lo a d  say N.  

A s s u m e  that a host ran  on  . ■ ' p arasites will b e  g iv en  b y
:n ; ;n th e  probabil i ty that a host carries n < I

])u\ n.Ji..V •v V v v " ‘ - ,, =  0<1- 2 ...................*v

n /

and

N

/ ( y
S \

M  c11 J

,i=D

^ 0

v < s
k n

-  1 \ n n V "  ,l

-  “r

ow  s in ce  t h e  m e a n  l

= //(</ +  /K

I, » a  » » .......... 1
jV

£ ( « ) =  S p = ' J * p =  V

T hus

/ ( y )
i -  p+p<~ )

-  y (

=  y[v y

T h a t is

/(!/) =  y 1̂  y

.V

v

;V (5.786)

i f know ^
, F n  ( 5 -77a )  We UeeC 4 A d u r in g  re in fect ion .  Generally

In  o r d e r  t o  s o lv e  E«l-l t rea tm en t  an d  d u n  g

d ^ e n t  t im e s  say  ^  ^  p a r t lcu lar  ^  o f

6 distrlbutl° nS may T0 ,  of density dependence we -  ^  ^  dependence

T o  c a l c u la t e  th e  e e . ^  P o is so „  T h u s  ^  the su sce p t ib i l i ty

^rasites w i t h in  e a c h  n ■ _  }lj
‘ ' ‘ “ I ,  L o r e  .I." — *•“ “ »

”  ' L L  b u rd en  i»
-  ■ ,s tb e  m ea n  ? « « »   ̂ . -n the enttre c o m m u n ity ,
fo r  h o s t  t y p e  J a l ld  J• . 1 T’l

^ SthelUeaIlPT r o f c l - s ;  -  the entire  community.
-■ -* . „t representation o

i that w3 is the proportion.
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Th us from the a s s u m p t io n  of c o m p le te ly  random acquisition of parasites b y  hosts  

and summing Eq.(5.7Sa) over  all p oss ib le  classes we get

— «/j (r— 1
/ ( y . k . - , ) =  y

j = >
3

=  S u'jhjtje 
;=>

- y( 1 -e

T h a t  is - M l 1 - '

where the dependence of J(!/'
Setting

/ ( i / .A ' . ' / i  =  \ ) Y . W,k]~
i='

k takes care of the different host types.

(5.7Sc)

Now c o n s id e r  E q - O - ' " 1 ' f-—-n a m e ly

, the left hand side of this equation equal to

Zero we see that then
;ire two equilibrium points

with u o  p a r a s i te s  and a n o th e i  <»»<

/ ( 0 )  =  o

,  narasite population given b.y
* w ith  a p <11

=  i?0/ (y ) -

(b.lSd)

(5.78e)

Now Eq.(5 .7Se) can  a lso  be 'v l l t t , n  ‘

/ ( i / O )  "  R0

°r from Eq . (5 .78c)
^  Wjhjt

-hj ?/(1- e - )  _  _ L  =  0
Ko

(5.78/)

lSed to numerically solve for
• i ov be uj

, . tant condition because A ctiv e  ratio by varying the
which is an important basic reproduc

■fe burden aIlC r ~ _  n is stable for i7o < E
7 for a given mean Par^  i rni e first point of y

/r ~on satisfied. q equilibrium point
Value of 7 until E q .(o -< 1 . n attains the se

•*.P nopulatioii i* rnSs three cases
V t  if > 1 the» ' tor R , <  1. We next <>»™»
w hich is s ta b le  fo r fin >  1  ulations are! tbeir ' o lltro

o f im p o rta n c e  in U »  o f
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Case 1: Estiinat inti tin- with a criti,'al l);inislte 1>Ur< —
Here we hypothesize that there is .a eritieal part,site load n, above which the

host reaches a 'critical phase or dies. Given the distribution of parasites across the
, , . ;i 1. . , , ,  dcKne the proportion of the host population with
host population it is poh.sibU in iU mu i l l

. . . .  . r„ Tf wt. Irt D(t) denote this proportion at time t then
the critical burden 01 moi< •

v

D im  =  Y  P'(0
5. / 9a)

1 = »»r

'crasite load possible and p ,(0  the proportion of thewhere .V is the tnaxinm in patasit, toa | f r „ , r ) 7 7 . ,
... . .  .. .  t. Note that solution of Lq. (o.i i a)

host p o p u la t io n  carry in g  1 P‘ l la ' '  From Ea (5 7Sc)
. „  . u 1).ll, isit,. burden ,,(M with respect to tune. From  E q .(o . ,S c

gives ' ( a n , p ro b a b il i ty  values d er ived  fr o m  the

WC I 10t i<' ;:  " 7  rh<' 7  f ! l w s  tlu.« the mean parasite burden y(t)  which is time 
ga m m a  d is tr ib u t ion .  n nixture o f  Poissons. Therefore  the final

dependent is derived  from  a gaiimi jximat(lly d istributed  variable,

variable we o b ta in  is from  section  o.

i hi o i u inr ,llafinn (lvnainl—
£ a s e  2: M o d e ll in jL l l i S L d l h l - 1 1 ^ ^  o v i c i d e s  for the case o f

stategv such <1>S
Consider an in terventioi • bk  to divide the parasite population

ticks. Tht'n at any particular turn i >• ^ survived the last round o f acaricidal
into two coh orts  accord ing  to thos< ( ia hosts after the last treatment. Let

application and those that h -md x (0  the mean number o f parasites
C f) denote the burden  o f s u n u m  P«u total parasite load is
that have established since treatm ent. T1 •

y(t) =  » ( t ) + XW

ies of cohorts die at a common rate p but the
N o w  it is a s s u m e d  th a t  b o t h  e a t e g o i u -  ^ d iv id u a l  th ere fore
-  , r ,.s itS(d f  w ith  a factor  P
first c a t e g o r y  repl<u ( •

= /ii?o f ( y ^ ' ^ v

(5.796)

(5.79c)
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The 11011-trivial  equil ibrium Matt (̂)11
. with parasites) is given by 

■. — 0 and y = ~r
(5.79 d)

with a corresponding distribution of parasites.

.... mu,nt » „ the «iistdla i t ig iu > L ia £ a ^
Case 3: M odelhmLiJiL jA 'T i-i1 JAiJ T T vrn tion  strategy or policy will----------------------- . ■ , following an intervention

The distribution of P!,raM" '^  individuals not treated, and the

be a mixture o f the existing ‘h  ̂  ̂ treatment. Let us define:
induced distribution in ,hos<' tl“ 1' “  ' ■ individuals killed by the drug)«• ,-v ( Proport ion  of patasit .  m

o : as the drug ef+u a . (U. m bution in host type
. rim*nt oaraMtt m- 4 \ . 'lib 111 lpn : as the pi* 1 M

and lt distribution

: as ............ . ............. ,  ,,<>„ala>.« >«>' '
. , l(|i,..l0v paraniett 1

The effort o f a drug wit . < - ^  p̂ ,utilJI1 with
Per host is to produce a bmom

✓ X v T1
r -  11( 1 -  a) n =  0 .........r

(5 .S0a)

. -t skilled by the drug or «  parasites

i T tr  o f  having r "  11 l)al<l‘ ignore any density
which is tin’ probabdi . ;tinl parasites. 11 ,t „ f  the r unt'al 1 ,.tion o f  hosts treated
surviving th e  treatment otit (leI1ote the pr°Poltl°

drug i 'tiiwy-  L(t 17
" I t - " " "  ,5.so n

then
S

, a V  D ( n \ r , » ) P r ,  
(1 - 6 ) p « ,  + t i  2 ^y r-n_M —• n )I’ll ; ’ ----*

rasites on  u n trea ted  hosts

........* * * * * * « * * ' % » -  * * * * *  T *vhere  th e  f irs t  t e r m  g 1' 1 1 . i l i tv  o f  fintlhig n * over  all p o ss ib le

rnd th e  s e c o n d  g iv e s  ioU in  th e  se co n  ■ treatn ient p aras ite

. t r e a t e d  h o s t s .  T h u s  th e  » « » “  c o n t r ib u te  to  a pos  ^  p Q pu la tlon

of „ P— • T1, „  , ( »  *  lbe |)rob,0,111V U -  .

f a r  m o r t a l i t y  « .  «  » » “  , „ „ „  „  r e - , 1 , * „ , <

Ve d e c l i n e d  b y  a ( . « »  • • t„ „ e  1

at o f , , p e y l — .......... ...



.t!' dt (0>:"  “  ° ......V ftivr" ,1,r ,|is' r i i , , , t io ' 1 o f  su rv iv in g  parasites  im m e d ia te ly
a*ter t r e a t m e n t .

d i s t n b u h o n  f d e sr  p aras ites  is g iven  as the sum  o f  term s from  a seri 

ittomial d i s t r ib u t io n s  o n e  for earli initial c o n d it io n ,  thus
•series o f

~  *r} (0 )B(n; r, e ,lt) (5 .8 0 c)
r = n

OW Pnj d e n o t e  the  d is t r ib u t io n  o f  all parasites  w hether  those  su rv iv in g  treat 

Inent o r  t h o s e  a r is in g  as a result o f  re in fect ion  w ith in  each host type. T h e n
n

t ) s i " - • ' i .(/ )- ” = 0....... v  -  1 (5.80d)
r  =  0

and
.v - 1

Z’ v, =  1 -  / ’ » ; ( * )  ( 5 .8 0 e)
11 =  0

^cl-(5 .8 0 d) a n d  E q . f 5 .S0 e )  is ju s t  a c o n v o lu t io n  o f  the su rv iv in g  paras ite  d is tr ibu -  

lQrb stlj , a n d  th e  r e in fe c t io n  p aras ite  d is tr ib u t io n  qU} . A s s u m in g  p aras ite  acqu i-  

•Slt]on  b y  h o s t s  to  b e  a P o is s o n  p ro ce ss  then the qUj are P o isson  for each  j  w ith  

m ean hjx(t).  w h e n 1 x(t) is g iv e n  by tin* e s ta b lish m e n t-d e a th  eq u a tio n  ( 5 .7 9 c).  T h e  

d is t r ib u t io n  a c r o s s  all th e  h ost  ty p e  is the w eighted  average  fro m  each  h ost  ty p e  

as di E q . f5 .7 G d ) .  T h e n  to ta l  d e n s ity  d e p e n d e n c e  effect over  all host  types  an d  for

different n u m b e r  o f  o n  h os t  p a ra s ites  p e r  host typ e  is
N

/ (  w:k, 7 )  =  J2wi'Ji E Pn’
j  n =  0

\ TiN° w  d e f in e  th e  f o l lo w in g  th ree  benefit  m easures

By(x)\ r e d u c t i o n  o f  m e a n  p a ra s ite  b u rd e n  o ver  so lu t io n  yeai .z 

£?p(x): r e d u c t i o n  o f  p r e v a le n c e  o f  in fe c t ion  o ver  t im e in te iva l  (x l ,zr )

B d (x ): r e d u c t i o n  o f  p re v a le n c e  o f  d isease  over  the t im e in te iva l (.r — l , x )  

T h e s e  a re  c a lc u la t e d  as

( 5 .8 1 )

B y(x) =  y* y(t)dt

B„(x)  = (1 - P o ) ~ (1 ~ Po(t)
I — 1

B d (x ) = £ > * - /
J I -  1
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i i  T h ese  ben efits  are g en era lly  the d if-where *  is the yea r  of the m o d e l s o lu u o n . i n
1 , i lo sc  o f  the m o d e l s o lu t io n  w ith  

ferences b e tw e e n  -h e  e , ,» i l ib n u « n  values and thost

treatm en t.

5.5 Towards a stochastic dynamical model
, , d e v e lo p  a s to ch a stic  tim e d e p e n d e n t m o d e l fo r  

In th is  s e c t io n  w e n t t -n q n  ^  ^ r 1>opulation  w h ose  life c y c le  is

a gen era l m u lt i -s t a g e  V,M to1 I>(>  ̂ ^  stages T h en  som e a n a ly tica l a sp e cts

a sequence o f  d is t in c t  developin ' »  ,l ^  ^  ^ appendicu la tus  is our typical

o f  th e  m o d e l  w ill fo llo w . T in  tin set the fo u n d a tio n  for  th e  m o d e l is the

exa m p le . T h e  m a th e m a t ic a l  to o l " h n  ‘ " *  -a te  o b se rv a tio n . W e  fo llow
r functions for a nnnu

idea o f  p r o h a h il it y  g e n e ra t in g  q 9 , w h ich  w as fu rth er  s tu d ie d  b y
I I py  ffa d e le r  (U o - - /

c lose ly  th e  id e a s  in , l l *‘ 1U< ' > a d  was then gen era lized  b y  K re tzsch m a r

H adeler a n d  D ie tz  ( 1 9 S 3 . 1 9 ^ )  tage d isease parasite on  a h ost as a b ir th

(1 9 8 9 a ,b )  W here sh e  s tu d ie s  a ‘ ‘ | ‘ j;s((>sollliasis . T h ese  m o d e ls  are h y b r id

death  p r o c e s s  m o d e l  w i th  refe.em e to ^  w ith  ca ta s tro p h e s  for  the on

m od e ls  in th e  se n se  that a 1 ,uth  '  ̂ (1(,term in istic  age s tru ctu re d  m o d e l fo r  the

host p a r a s ite  p o p u la t io n  is c o u p le d  to  a "  cloes not p la y  an y  ro le .
- context tm < ft „

host p o p u la t io n . In t lu ‘ 1) 1 ( ‘ del In the pi'esellt b io log ica l s itu a tio n' IJu p iu a  • r m od ' --
We ju s t  keep  the stochastic part «»  ̂ ^  ^ typ ica l g razin g  area  w ith  som e

the m u lt is ta g e  tick  p o p u la t io n  h ' ,h  ' ^  & ^  for a b lood  m eal. In d iv id u a ls

in d iv id u a ls  on  the vegetation  a»< *<>»>* and developm ent w h ile  som e

m ove fro m  o n e  stage to the next t ^  allow for E m ig ra t io n  into the area

U ltim ate ly  e x it  th e  a re a  through d ea  n ^  ^  ^  h osts. W e n u m ber the

,, , sUch as the d o m e s  . 1 1  T h u s  w ith ou t an y
th rou gh  o th e r  agents • tate  or stage  v a iia b i

QlWi let i d en ote t u 1, n efine the fu n ctio n s
stages b y  1 , -----71 an  f in d iv id u a ls  in stag

t liumbei 01
a m b ig u ity  u- can  conn  ^

P ( M , -  ••--)•

. j  is the p ro b a b ility  th at a  ra n d o m ly

E ith er  p ( f , i ............ . . ) » " » &  e O - O " '  ̂ i , ' . v id u r r l .  w here 1

selected  patch  contains ik, , , >  q is the number o f p atch es with th 

or w ith E ,  P(<̂ ’definl " the probability generating function

d is tr ib u tio n  o f in d iv id u a ls . Ne.
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s ta te  v e c to r  a t  t im e  t a> follow *
(5.S3)

u I t. :  i . •
-  V  .  -1

. 11.........

where
z = < - ..........
.......... .I , . - , l » c t « e

IS a vecto r o f ( lu m m y v a r i a b l e
the n o ta tio n

d iffe ren tia b le  fu n c t io n .  N ° w llltl(><

z - r K
* = i

o  .*lv wr i t e  the e x p oUien w e ca n  co in p a *  > l>
■rssion for u as

« ( / , z =  V V / X C i ) -

• f „  with respect to -/
V̂e can find flu' <U‘ii%,ltl%<

sav as fo llow s

0~i \

1 .

In v e c to r  n o t a t io n  wt ha

uz(t-z ) =  dz V S i  d.2i- enf>(<’ i ) /

where
ek (0. . 0 .1 - °' 0) r

tor. Define
*s the /c-th coord in a te  ^((

U -
,D -

r o7) evaluatc
T h e  r ig h t  h a n d  s id e  o f  ( ^

ve c to r -v a lu e d  r a n d o m  v a iia

o(l at z 1  g iyes
the expectation

£ ( * '
u2(f - n

(5.54)

in to  a

(5.55)

(5.56)

(5.87)

(5.88)

(5.89)

o f  the

(5.90)
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Now w,  „ i ,| , . l . - r i v . - " f > • " » '  tor , he pr° b '

........................... ..........  * * « " "  ..........,
V > (); ............. .................. .. ...................  o f stage j g i »  b .rll. to those o f

stage A*, j . k — 1.........11 •
, L]>  d e n o te s  .In ' m o rta lity  ra te  for iiw lividtials in stage

, >  0: denote  th e  immigration rate into stage j

, rate from stage J  to stage A
Tj k >  0: denotes the transition Lit

,  ..i ... define the matrices and vectors below
th e se  p a ra m e te rs  w e fu . th. i «l< nn

jjyj = d l < U j ( ] J \ ........V{/ 6 ^

13 =  | hjk )• J - k ~ 1.."

T = {Tj>.). J’ k = l .........

[ T t \  =  dl , uJ w L  T j k J  J  1-
n

Z =  (Ini(/[ -  .........~M

\J =  <Iin<)( I1 ........ fl"

r 1 T  11

. rtHl derivative o f u ( t , z )  with resp ect t o t  is 
,c :nii for th(M)altial

T h e n  a il exp lic it e x p i (

g iven  b y

-  * r lz -e )u(t .z )  + U D{ Z
_ e ) ) r Z  +  ( V ( e - z )) T + ( T Z  1T ' 1Z) }

T ^du{t,z) 
dz
(5.91)

0t . , z)) as a  row  vector w ith  each  com po-
.ffir ie ilt fu n c t io n  (!7( z d  rt

T h u s  if  w e d e fin e  th e  <<>< variables z

nent b e in g  a s e c o n

</(z )

■ i the variables z, 
d  o r d e r  p o ly n o m ia l >»

( Z  D ( z

T (5.92)

then the d iffe r e n t ia l e q u a tio n  a.ssum<
,s the com pact form

W p ]  + q ( z
0u
d z

<PT (  z  -  e ) u { t , z )  = 0

The in it ia l  condition o f o u r system

describes the sta te  o f the p o p u latio n  at
=  0,

:(0 . z u o ( z )

1S3



w l x t ’ xc> w c  j u s . s u i i i f

0 11 11 ( z i X

2=1

. , f r.,i m n n lx 'r  o f  spare  units o b s e rv e d  is fin ite .
T h is  a m o u n ts  to  assuming t in "  ’ 1“ ' ' . . .  . f. .

, . , , ,,  e x tin ctio n  p ro b a b ilit ie s  o f  th e  p o p u la t io n  is

T h e  im p lic a t io n  o f  . I n .  ^  in K retzsch m a r (1 9 8 9 , . - .n a t io n  ,4 .5 )  th e

im p o r ta n t . C o m p a . .  <1 *<> < ‘ ^  ^  n,s[>ecl to  the age o f  th e  h ost d o  n o t

term s c o n t a in in g  P ;iI , ia  ‘ ‘ ^  , )(>(.;ins(. cu rren tly  w e are co n s id e r in g  the

o c c u r  in  th e  cu rre n t  s y s te m . 11 is c o n s id e re d  as p a rt o f

d y n a m ic ,  o f  ......  ........ .................... "

the p a tc h .

Example, for amultistage mf.tor population

y atr o f  the m o d e l d erived  a b o v e  we con s id e r  the life
F o r  a  b e t t e r  understand u R l;fe  ^  in to  .V =  10 d ist in ct

A • *arlier we uiwut 11
cy c le  o f  R. appcndiculatufi. - s <(f rt,p r o (l „ c in g  w h ile  o th e r  stages  are

stages  a n d  o n ly  th e  adul t  R , tran sition  rates (ftj,(lj /+ i  )t i'e sPe c -
l l»v their death nil . ,

completely characterize  -  ̂ ^  assu m e that im m ig ra tio n  takes p la ce

live ly . W e  in c lu d e  i in m i* r,lt,<m a n im a ls. T h e  im m ig ra t io n  ra te

m a in ly  i „  Urn o n  t o *  *  " “ " ' “ '“T  „ „  stages. T h u s  in gen era l w e

........."  .........

have

D
' i

\hn.

0
0

0

0 \  
0

0 J

which we call the b ir th  matrix .

/ 0  71 0
1 0  o <72

T
0 o o

V 0 o 0

0 \
0

qn-1
o /

> 0 fo r  i ii 1
a n d  the last row  is zero

because th e  a d u lt

w h ere  qi =  7M + 1
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s ta g e  c a n n o t  t r a n s i t  to a n v  o th e r  s ta g e  excep t u l t im a te  d e a th . N ex t we hav e

f i e 1 =

( <l\
0 <li

0 0
V o o

° \  
0

0• In -  1
0 0 /

T lien  w e f in a lly  h a v e

> 0  j  =  3 ,6 ,0 .
O = ( r  1.............  " ;

, I r st-tires. T hen  for the m o rta lities we have
w here 3 . C an ti 9 denote the on '< ■ •

\J =  (li<uj{l‘ \........ / ' ’■*•

, . . .  sttttlietl p o p u la t io n  d y n a m ic  m o d e ls  w h ere  the h ost 
In th is  c h a p t e r  w e ^  ^  n u m b er „ f  parasites it h a rb o u rs . T h e

p o p u la t io n  is s t r u c t m *  ( ' “  (( , • c en d o -p a ra s ites  su ch  as h elim -

m o d e ls  w e re  first d e r e lo p t  i t  - H ndeler an d  D ie tz (1 9 S 3 ). It is
, , . „  host p o p u la tio n ^  as m  n

tilths in c a t t le  a n d  human ■ ^  p o ss ib le  for  v e cto r  p o p u la t io n s  su ch

ou r c o n v ic t io n  th a t  tin sa in  1 1 i'•ulatu'< in ou r  case. T h e  c la ss ifica tion

the b r o w n  e a r  t ick  Rhipi™rhahu' M a s ite load  is im p o rta n t  p a r t icu la r ly

o f  th e  h o s t  p o p u la t io n  accord ing  t(> ^  (h(i d esign  o f  co n tro l stra teg ies . T h e

w h en  con siderin g  th e  use o f  a ,U° “  ‘ <)f m u ltista g e  v e c to r  p o p u la t io n s  su ch

last s e c t io n  is v e r y  convenient in > le can  n ow  b e  co n s id e re d  as
i stages  in tn

as the b r o w n  e a r  ti< k w fu rth er research in this area.
. n e e d  to  e x te n d  fm tn e i

the ‘ t y p e s ’ . T h u s  th e re  is
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C H A P T E R  VI 
AN a p p l i c a t i o n

6.1 Introduction

... ............................... ................................ ................ ................... “ •>«'

i„  lh .  - I . , . - ---------------------------■ * --  M o ,.  * « * » %
 ̂ . |(4 developed and anahsed m thaptti III and

we annlv the ‘reiier?dised inatnx
PI y R , , T. f i v  T h e  life cv c le  o f  the tick has b e e n

its c o n t in u o u s  t im e  counterpart m  e h a p u . I V  -
f ;i in su b -s e c t ion  1 .3 .2  o f  ch a p ter  I and  rep resen ted  d ia g ra m a tica lly

" ' “ ” Sed ............. . „ study .1,,. dynamics „ f  the , « * * .  « . l ,
m fig u re  1  m  p a g e  -  • (.|mtrt)1 m easures in relation to  s u sce p tib ility

Tfuzrzzzr*.............. ...... ..... f co f  r a t t l e  t o  n <  k,̂  ^  f _  a h j o t j c  w  h o s t s

tick  s u r v iv a l a n d  ° ,b < 1  . f . .. rs in c lu d e  fa ctors  re la ted  to  theT h e  b io t ic  lac tors m *
are a lso  a il im p o r ta n t  fa (

1 lie UlW.rv
,  . U1 SU(.h as survival, m o rta lity  or fertility  rates  sp ectfic

b io lo g y  o f  th e  t ick P ° 1 ) U  , c lim a tic  and  e n v iro n m e n ta l fa c to rs
, I • ric fa ctors  incl ine c i n»

to th e  p o p u la t io n .  ^ 1(  ̂ *ographical lo ca t io n  and  so  o n : T h e  m a in

su ch  as s e a s o n a lity , v e g e ta n o u  G P ' - ^  Jn s h o r t  a /(1 9 8 9 a ,b ) w h ere

s o u rce  o f  d a t a  a n d  in fo r m a tio n  *  an d  su rv iva l o f  d e v e lo p m e n t

an e x te n s iv e  s tu d y  o n  d e v e lo p m e n t u'_ and  D. w as
c n d r c u l a t u * .  H o o f

sta ges  o f  th e  t ick s  R-app̂culatu,■ T h e  seCo n d  p a p er  re p o rts  o n  the

j fjf.]d c o n d it io n s  in • Qf  t icks aga in  u n d er
e a rn e d  o u t  u n d e r  n<1 „r  sam e species  6c o n (liti()Ils 111 11 ‘ sam e sp e c ies o f  ticks aga in  u n d er

, , , . v io u r  o f  unfo<l stages  of
su rv iv a l a n d  b e h « lV

fie ld  c o n d i t io n s  in  Z i t » b a b " ‘ ' ()f the b ro w n  ear tick , a th ree  h ost

i. fo cu se s  o n  fb( 1 1 n . ps :n  a s im ila r  m a n n er
The c u r r e n t  w o rk  t » '  , . ltPg o r ize d  in to  10 stages in

M  th e  p o p u la t io n  is m  ft re p re sen ta tion  o f  th e  life cy c le
tick . In the m o d e l  th  ! T h e  d ia g rainatIC P . ,

1 Ce t t in b v  ( 1 " 2 ) - . , iife cy c le  o f  the tick  are th e  egg ,a s i n B y r o m a n d G e t t u  . es m  the m e J , ,
o g  T h e  m a m  sta g  tu d y  the life cy c le  m u ch  b e tte r

is in  f ig u re  1  p a g e  -  • to  b e  ab le  • a fe  fu rth er  c la sS1fied

larva e , n y m p h  a m  a< «  n y m p b a l anc a ^  t o ta i th ere  are 1 0
by  th e  m a t r ix  a p p r o a c h  t o r  d eve lop in g - la t io n  is th a t

, ii .p r  nn estin gs . • f u e system  i ° Ilu
a c c o r d in g  t o  w  ie j er c o n ip b ca t lo n  d u ra t io n  o r  s o jo u r n
sta ges  in  th e  s y s te m - A  ^  have va ria b le  stage

ea ch  o f  th e s e  m a in  s ta g e s  an<
1 8 6



. ,_irv due to several factors for example the season of the
time These duiatioiis . . . , .h u ll .*  c u m u t  m o d e l the year is p a r t it io n e d  in to
year v e g e ta t io n  t\]H ■ and  ■ i
' . ,-h wi th d u ra tion  and  tim e span  a c c o r d in g  to  how
rainy, c o o l  a n d  hot sea son s.
i f 1 in Short t\t all 19S9a.b ).

they Were reP°  th(. stn,iv was conducted could broadly be classified into

Tll<‘ n 'gl° “  "  “ “  ar<'. mainly the short grass vegetation type which is
two vegetation types. 11 M ’ ( the long grass vegetation type which
associated with coinniunal ,_i nlodel therefore studies the
is associated with commerce „   ̂ c-otypes and the aim is to attempt
tick dynamics in relation to tin •"< -  ^  ^ fa rm in g  systems in terms of the
and bring out the diif<I,u , j overall population growth

if is a n iea sm t
m o d e l outputs. One such ou 'l" ' particular matrix to be presented in

, • , ,,r iMiK'iivalue o i a i
c a lc u la te d  as th e  dominant ig

the n e x t  s ec t i o n -

6.2 The M odel  ̂ (.j.isses or co m p artm en ts  namely the
The life cycle is sub.hvulcd ” ‘ ' ‘Y ‘ “ ^ lopinglarvae(4),questingnyinph-

egg(l), questing harvael 2). liost at questing adult(S), host adult (9)
1 (6) d e v e lo p in g  n>n , , t p a rticu la r ly  th at b y( 5 ), host n y m p h  (h) .  F rom  p u b lish e d  d a ta  p a i

«„d  ,l=,el.,Pi,.B/<»l>“ iU‘,R “  „ it is k n ow n  the. » '  •>»* « • »
i \ u ,u l S h ort et aHlW *' ’ ■ l ......... n , w h ere

Branagan (1973aJ>) £ |)C denoted b y  n
• urn time whi< h < . T •«, riue to several factors

have a variable s o j°  -pjie variation in t .
application. • st to mention a few ̂ rurrein aPi ( fupse factors justn is ten  in  th e  c u  c o in e ot tnese _

i • fir  in  l i a t u i t . on h ica l lo c a t io n  an d  so on .
b o t h  b io t i c  a n d  a b io t ic  ;o n  ty p e , g e o g ra p h ica l

erature, *(o
include moisture, temp ‘ afferent stages.

, different foi « ,u reported in Short al-
The times T, are also dim 7imbabwe data as repoi

model is based <»» observed during the cool seasons
The current *  . of «  “ >«

M 8 9 . , b ) .  T h e  lo n 6e«. «  „ ,e  iif« » ' ,  „ „
f o ,  h o f h  t y p e ,  o f  v « g e . . . k -  ^  |ite c y c le  i -  , d o p te d  .  lh e

sh o rte st  » .« * «  ^  ^  th is t « ‘  *  " ' *  i ,  exp ressed  »  •

host feeding stag • tbat every actua uCh that (5t, =  T,).

model time step. Thi bdived into ag
, r , Each stage is 

multiple of o day •



. • , i;f CVcle can lie looked at as composed of withinThus the progression in un \
. . , . . This means that an individual in stage i say, hasand between stage d\nanins. in -

th<> maximum age class t, in that stage after
to a d v a n c e  m  a g e  unti l  it 1<a( --

, . , . . ,, H,.st .11£(. class of the next stage depending on whetherwinch it transits to tin hist < l,
■ I f .  „ c l ,  ail event o r  n ot. T h is  tra n s ition  is c o n d it io n a l 

c o n d it io n s  a re  fa v o u r a b le  fot -s
, . . . . ,  , cince there was no exact information concerning

on survival of tin- tick individual, bin.
, „ ..,i UP- St aee the model allocates one age class

the s ta g e  d u r a t io n  for  u c  -  4 ' '  ‘ stages n am ely  the larvae, n y m p h
(5 d a y  d u r a t io n ,  to  th is  s ta ., -  f o r , ^  ^  ^  ^ ^  ̂  ^  ^  an in d iv id u a l m ay

and adult. This nn an ^  mnaill questing if it survives. Thus for each

c ith er  a t ta c h  to  a passi g  ^  iln l.a tioI,s are calculated for each  o f  the ten  life

■season a n d  vegetation  type ‘ h jg h ,y  seas0nal s ta rtin g  w ith  th e  rainy,

cycle stages. The elinian' in Z,,“  ^  data by Sh orts a/(19S9a.b) the

Coo] a n d  h o t  s e a s o n s  r e s p e c t n .  . • are g iv en  in ta b le
. short gra*ss) veS ‘ 1

stage du ration s fo r th e  lon g  K1 ' "

3 below:

Sjj-ble 3: S t;

s t a g e  

1 

o

3

4

5

6

7

8

9

10

t o t a l

c o o l

13

1

1

12
1

1

17

1

1

10

58

I-IOT

s
1

1

3

1

1

6

1

1

2

25

r a i n

10

1

1

4

1

1

7

1

1

1

28

r «- ofae;e durations
The c o r r e s p o n d in g  ■ *  beloW

th ree  s e a s o n s  a re  g iv e n  m

in
th e  sh ort grass

v eg e ta tion  ty p e  fo r  the
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T able 4 : S ta g e  d n  

S T A G E

ra t io n s  in sliojXJlxLii^

R A I N Y

1 

2

3

4 

o 

G

7

8

9

10

T O T A L

1

1

3

COOL

13

1

1

5

1

1

H O T

1

9

1

1

4

4

36
19

:' ' L 2 3  projection
„ ... ; s to p»r»»,‘‘tn 1 ■ ,1 six m atrices  are required one for

m'Xt ‘ l'S iH(. T in s  m ean s that m - • ' ^  iu  eacli of the two
and vegetation spe< ’ ,  ,,,ol a»«l hot . are denoted by
each of the s e a s o n s  n a n n  b  ' ,r ific p r o je c t io n  m a

The three season  M> to the rainy, cool and hot
vegetative e c o t y p e s -  * p  2  and 6

,he siil>sl H P1-'
T i ,  A 2 a n d  .4 ,  'v l i e i '  ; o n  is in  m u ltip les  o f  five  d ay

r<'“ l>" ' l ' V''ly , ul„,l,-l . . 'W  ' i,“  del time »«P« 5  dWs

* *  “ d i " r « t  36= " » e » . . . . ^ » »
in terva ls . T h u s  a  ><- tt/ ( l 9 S9 a ,b )  nW  c o o l s e a so n , 15 tim e

i Short . oo times steps
each . T h e  data >. ^  ^  „t . » » • ' '  „ lny season. Now s in ce  th e

he p a r t it io n e d  .»«>  '  „  , i . » e . « »  »  in  ,  five d ay  tim e step  or

step s  o f  h o t  s e a s o n  an  n sp e u ti c o r re s p o n d in g  to  th e  fu ll
i i ,  are tin . , tioll matrix coriesi

matrices A \ , -42 a11 ulation PrOJ
i . t th e  p ° P uin terv a l, it fo l lo w s  th

• 1 is given by ,  27 (6-^°ne year p e r io d  i- b ^ l5 ^22

■A "  " 1 relation structure at the
that if the populatioi

•oduct means year (equivalent to
el is matrix P»odU ,7. then after one y

In simple terms th • the vet
- i s  £ lVtU y

beginning of the >e ^gg



73 model time steps) the population slru,tuH WlU b<? S

a ? * . .

,  . ,],at may occur depending on tl,« initial
However this is jus, one <> ‘ lation vector is considered from
time in the  m odel. For exam ple d tin

i „  Fn lG.2) becom es
the start of the eool season, t n

_  ± 1''A\* Ao2 ijto
lit o-t--5 ' ' 1 5

(6.3)

, ■ V(. , , (,r is considered from the start of the hot season

while if the initial population  

then the equation herotnes
(6.4a)

y t o+ ' 1
. > > i a i i 1 -5 r  A~ -'M cl 3 yt o'

hut ;m v j)a rticn lar case can  he d erived  in a s im ila r

T h e se  eases  a re  n o t  e x h a u s t  n< on e  year p o p u la t io n  p r o je c t io n
v ii tl.c possible cases ioi

manner as above. - _ jued indicator variable Sj v k u  .
i t l u *  n ia ti ix <

matrices arc g ive11 . „
......... . , - n o <  J  <

(6.46)

5;

,c , , ,  j i t - ;  0 < j  <  27 
'^i 7 3. f b ,  J9-; 27 <  J  <  ^9

.4:) ' i ' ' ,100-; 64 <  J  < ' 3
4 ; - " ‘ ,4V -K - -4 i

’ that is 5 ;  co u ld  b e  R ) , ^  o r

T h e  v a r ia b le  S ,  * « * *  T lic  n o ta t io n -  R) * t  « 5  <>“ » “
dap  e n d in g  o n  tire ‘  “  1  b e g in n in g  an d  tow a rd s  the en d  o f  the

and seco n d  t a i n ,  ,> « » * '»  • * * .....  to ,n » .  » '
. i , T h e  ra in y  season • the a ssu m p tio n  is th at the

year r e s p e c t iv e ly . f  ()Uly o th erw i
0 nf tu n e  refei< n - , same fo r  the tw o  ra in y

ju s t  fo r  th e  p u r p o s  nm ila tio n  d yn a m ic . ■

e ffect o ,  th e  ranty  .. ................. the c o o l an d  h ot — »  - » - • » *
p e rro d s  T h e  v .t i .b t e  C, m *  »>  N o te  th , t  the s u p .r s c n p t e  a lw ays
periods, i  cyrlic in natul . , nt to one year o f  365
T h u s  th e  s y s te m  is g rn< f  t im e  steps eqmva . . .

ti,u n u m h e i <>i the in itia l tu n e  w ith
h ave t o  a d d  u p  t o  ,3 ,  the cliscuss d e p e n d in g  on  th
, T th ere  are  fou r cases in itia ted . N ext the four cases

d a ys . In  g e n e ra l tl tlie  m o d e l i.
, r t-iip year v/n

re sp e c t  to  th e  s e a so n  

are a n a ly s e d  o n e  h\ o n
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Case I

Let us define
,4r , =  .4?.4]5 . 4 f - 4 f .  (6-oa)

, • *i tick- nnmilation with initial time at theThis  m a tr ix  « l a m n i . i r s t l H M l y . i a . m . - « « . f - t . . k Po , , «

1,. in rlie vear. Further assume that the 
b e g in n in g  o f  the first rainy season , early m >e<

h h ,  . . .  . , r ;v  is A w ith  its co rre sp o n d in g  righ t e ig e n v e c to r
m a x im u m  eigenvalue o f  tins nia - 1

given by vr, • By definition _ (6.56)
.4 ,., = Ar, tv,.

•S o f  a system  w h ose  in itia l tim e is an y w h ere  d u rin g
Now in general the d\nnmi( 

the first rainy season is <h t< im
•d by the following matrix product

77] =  -4, --v.t'+t .4ir> A ?  A ? ~ ’ 0 < J <  27 '

i •• ,n  eigenvalue o f  the m atrix  for  0 <  j
Lemma 6.1: An 1S ‘

T in s  is c le a r  f r o m  th e  fo llo w in g

<  2 i

rl

. . f . this exp ression  redu ces to
b u t fr o m  th e  d e fin it io n  o f  An

n '(A  i r n ) =  AU

w h ich  is m o r e  c o m p a( ^  (
*ssed as

/?] »i — ^ ri " 1
0 < j < 27

( 6.6)

(6 .7 )

where
u l =  A\ Vn 0 < J

. , , \ is a lso  an eigen
T h u s  th e  c o n c lu s io n  is t ia  ' . „ ea son ).

<  27.

value o f  R)  for  0 <  ;  <  27  ( i .e  fo r

a p o p u la t io n
in it ia lly  in  th e  early  ra iny sea
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Ca.se II
Now consider the growth of a population whose initial time is from the be­

lt was stated in E cp(6 .3 ) that the dynamics of such a
gining of the cool season 
population are governed by the matrix pioduct

.4 ,- = d f  d j* d f ( 6 .S a)

i f 4 he with the corresponding right eigen- 
\Tow let the maxiniuin eigenvalue oi - r . . .
■ , .  .. ...... .......................... .... of .  pop“ i**>“ > “  “ f
vector given by er . n 

point in the cool season is gi^( 11

■ — J7 4 J»> 1 1 :> J ,!) Jc ,  =  .V, A x A.I a -2
^  J

27 <  j  < 4 9 . ( 6 .S6)

L e m m a  6 . 2  V  S  ................................. ......................- f t * * " ' * *

• of d,- then it satisfies the equation.
Since Ac is an eigen ' * 1

Ar er =  l’c'
( 6 .9 )

iJ -'27in then using E q.(6 .Sa) and 
• . l-itrix C ,  with the vectoi - 2

No w post m u ltip ly 111# lllr

E'|■(C■9 , SiV''S

_  _J; -  ̂ 7 ( A l'J d't ' d o 2 ) A 

=  4 ' a7(-4r«'c)

__ M ' 17(Ar '7c)

=  A r ( d r 2 7 ^

c a a A ‘ p

and letting

it follows that

an d  th e  re su lt  fo llo w s .

U2
A^ v c, 49

C , a2 Ar M2 27 <  ; <  49

192
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Proof:
Let wT , w7\ w l  and be the left eignvectors corresponding to the maxi­

mum eigenvalues Ari, Ac, \h and Ar, for the matrices A ri, -4C, A h and respec­

tively. Then by definition the following is tnu

w jx A n — ^rt Wrt 

wj Ac =  Ac w] 

wjt An =  A/» ti n

vT
- 7'

T 

T

(6 .20  b)

wL An — Ar?

Sow c o n s id e r  th e  m a tr ix  BJ corresponding to  the early  ra in y  that i .

then
(w

R) =  . 4 ' ^ ^ 5 -4 f A ? ->

I' a 2 7 — 1\ a 1 5  a 2 2  / l  2 * 7

d j A 2t ~ } ) R )  =  ( w c - 4 i ) -4 > -4 3 -4 2 ' 1
- T / j 36 i 15 422 N 427-7=  a'r ( ai, -T-3 “ ' ”2 > 1

-T 1 J 27"^=  U»c *T-C -T-l
.T t  < 27—>

=  (Ac wc )-4j 

= Ac (U’p -4 1 '

- r  _  ,7rr  -if7 7 then  
that is if w e d e fin e  v, -  c - 1

(6.21)

implying that Ac >s also an elgen 

is given by . ->7 .se <15 j 49 —1

\r  R)  =  Ac u,

value of R\- Now consider the matr'X Ci Which

j -27 j 36 ^ 1 5  Ao
C j  =  ^ 2  -4 1 ^3 2

then it follows that, ^ A ’ - ”  A ?  A\* A ? ' 1- ( J l A ? ' J)A

=  (tliI a ^ a T 1 

=  ( A ^ D 4 9' ; 

=  a , ( ^ 4 9- j )

4 9 - ;
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and Je tting  q f ill'll

‘^Plying h is an

"1 Cj = Ah v f

eigenvalue of C'j. N ext con s id er  the 

=  . 4 r ' , 9 - l f . 4 ? fl.4,64->

( 6.22)

m a tr ix  g iv e a  by

T h en

( <  A\*~3)H) =  ( <  -43M ^ ) . 4 > - 49^ ^ 3 6  4 64->
“ 1 “ 3

= i d *  (.4-j'\4f .4j6).4?4->
- T J ) J6*~T r2 - ~r2 y -*13

Thus Jett

VVe h a v e

in g

=  ( "

=  ( 4 rj

=  Arj «  -4J4 - -7)

7'r ~ T  | 6*1 —7' 3 = "V, -4.3

C 'i H2 — A T -J C 3
( 6 .2 3 )

" 'h ic h  im p lie s  th a t  A rj is an  e ig en v a lu e  o f  F in a lly  con s id er  the m a tr ix  /?2 •
hv ' .........

g iv en

T h en

aud  le t t in g

We o b t a in

R2j = . 4 r M .4 js .4|2 .4 '00->.

( w j  A j 00~'>) R 2] =  ( w J - A r - J) A r e4A ^ A l 2A r ~ J 

= reJ(A]6 A l5 A l2)A\00- 3 

=  ( ^ . 4 , ) ^ ° ° “ '

= (Ac wJ)A\00~3
\ /  -T j 100—>\=  Ac (u ^  -4, ),

- r  _  - r  jioo->— T6’c -T-j

v j R ^ K v J ( 6 .2 4 a )
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which implies that A r is an eigenvalue of R r
. , • r n mnfr:v n ran he represented in the form Q R  the productNow m  general 11 a marrix u  1

. • r o m r order, such that R Q  is equal to A  then theof two square m a t r i c e s  of f i l e  sann orem.
, , , , lf , ..re Hie sam e a.s those o f  B. T h is is the fa c to r iz a t io n

e ig e n v a lu e s  ( r o o t s )  o i .4 air n
i ...11 in Horn and Johnson (19S5).

principle which is covered wel .
G n  , RIUi lem m a G.l it fo llow s  that th e  e igen va lu es  o f  

bsing this result, rLq.(u.
whi(.h iu tu„ i  has same eigenvalues as matrix .4r,

A r are same as tnosr r>i i l ;

therefore (6.246)
Ac — Ar,

6.4 it follows that the eigenvalues of

i Muie eigenvalues as matrix -4r2 therefore 
2 which in  turn has same eigei

(6.24c)

n • i It Fd (6.24a) and lemmaBut using the result, 14

Ar are the sam e as R j

Ar — '^r2

and from  E q .(6 .2 4 b ) nl><> (6 .24d)
Ar =  Ar3 = Ar>-

9 it follows that the eigenvalu es o f A h are

S im ila r ly  fro m  Eq.(6-22) an d  1‘ ,,n ,n a  6 "  r v a l u e s  a* those o f Ac, thereforef C - w h i f h  in turn has same eigenv

the sam e as those oi j

A/, =
(6 .25  a)

 ̂ 4 are the sam e as those
r 3 the eigenvalues oi d r2 are

Finally from Eq.(6.23) “ d L'" “ " ," ri„ , lv, l „ «  »  >h<*c °f
h as the sam e ift

o f Hj  w h ich  in  tu rn

A h =  ^ r2
Ac-

(6.256)

N ow  c o m b in in g  (6
, l d ) » < '  I®-25' ’ 1 e ' V"

\ =  ^A c
Ar 2 — A fc =  r̂na.

(6 .25c)

. . hed  w h en  th e  tick  n u m b e rs  w ill in crea se  

T1 - a  q u a s i-s t e a d y  s ta te  w ill b e  1<?a o in in a a t e igen value AmaI - F or  ea ch

,e „  b y  .  by d istrib u tio n  will b« g i v «  b y  .h e  cor-
each  su c c e s s iv e  y -  s i. s te a d y  sta te  e i, envalue Ama* w here
.. . o r. „  Ve a r  the qu asi the dom in an t eigei
tim e s te p  J  o f  th e  . a sso c ia ted  w itl

re sp o n d in g  eigenvector
19 8



c , « l ' E(, , o 4b) The above analysis is similar to that by Gettinby and
5 ; was defined m Eq.(C. )• fonnulation of the life cycle of liver
M cG le a n  1 19 79 ) where they presen t a m a trix  i

C , r 1 1 This demonstrates the potentiality o f such m odels in
fluke in B ritain and Ireland. I his

; or**ire uouulations in general.
the s t u d y  of vector a,K pa ^  ^  above is a long term effect but on the

It is important to no e . ^  fluctliations about an equilibrium state. The

short term there might be I>°I>U ,l ancl the results compared.
i ror the two vegetation tyi

matrix system is stu( 1 ^  ..ontinuous time matrix models and that from
From the work in chapter ^ shown for both cases that ‘ he maximum

chapter III for discrete matrix m«< e s > J -  elements. This means that

eigenvalue of either systems ,s a fu»c  > ^  ^  ^  maximum eigenvalue

. . i j  rall be used to stu . ffect 0f several life cycle
the matrix model a current model the

, -v elements, lu K . y 1 s:nce the matrix elements
to different m atrix f\ :s value is studi.

„ f  th e  b r o w n  ea r  tick  to  • ■ „ ieters  Gf  the p o p u la t io n  in q u estion ,
p a r a m e te r s  o f  tin  rVCle param eter

i i <= •. function of the 1 - models for practical systems like the
are themselves a 1 lfprec] in snrhm . . , t
„  .............f f i c t i M * " „  b . »bfc to estimate the element.
h o w  o n e  o f  the 'I ' ^  > v> ilj >iUt,  o f  d * “  is ,  b r ie f  d iscu ss ion

one just descri k -c iection matIlX‘ . tUdied are derived. As

of the entire p o p ^  for the infonnation and personal

of how the » » • ' “  “ ' soutf,  'lata «  J “ ng population model, i,
earlier mention* * problem m al . atrix model and

. „ The mam ln classical Leslie
communications. .probabilities m has been addressed

. transition P t-ibutions. ■Lm
in relating the t cUI1au lative disti
those from experiment*1 

in chapter III section
tr i*a tio »  r:be how the m atrices  A i,v i2 and A 3

6.3 M a tr ix  p a ra « « e .g to briefly several assumptions. As earlier

The aim in this sec ^  exercise » ^ ° ^  further subdivided into U 

are parametrized. Of say i, ^  =  ,  for the cool season in long
. . , . s t a ge o f  d e v e l 1  , For exam p le  g 3  u  =  1 2stated each stag leach- lrv a e  stage and from

1 r nve d a y  in te  j^ v e lo p in S iar i„~ses C o n sid er an
hge c la s s e s  «  d . W ‘ «  “ “  ‘  d iv id od "> '«  1 2  * 6<i m a y

gras, veg.tati ^  , . .S «  ^  model t h «  • “ >>

meaning that stage l *

individual in a&e C 199



do the following:

(i) ,r» sit to the ,« x . « e  cl»» - th in  the . « «  »■ «« "■ * ' <> > * ' > +  1

(ii, B t o ,  to the fir,, age d as. of the next • « «  if i« »  i» the >“ • « «  «•“  “ <

the current stage 01 

(iii) die if it does not survive

Since the life cvcle of this p a r " ™ '-  «  »  ~ » P » “ d ° '  ’ U“ th“S '
, , . • „ <taffPS oue particular stage will be considered for each case

on host and developing • g •

then the other stage, can be handler!

T h e z : Z L  s . » . . « - w - f '  » «« ■  - » th,s sug : ”
’ , r  i This is equivalent to thirteen five day age classes. It was re p o r te d  

D] -  65  days^ 3 8 .0 %  of the egg. hatch to l a m e  o v e r  th is

that during t v  co  ̂ common five day survival probability si for all the
period. Now let us assume a ^  expected to hatch into larvae

age c la sse s . Then given o'- ; steps. Thus letting s , denote the 
1 • u priuivalent to io Liixi v 

after D\ days w h ich  1- 1

within egg stage survival the 13 _  q 3 35  (6.26a)

value gives an estimate of the the probability that an egg 
gives J ,  =  0.929. 13 traMit tQ the next age class in the next time step.

currently in age class J  . tjie maximum age then the probability
an egg attains

This also means that one , Thus 0.929 is also an estimate of
- , frb to become a iar

is 0.929 that it Will haten this case the questing larvae stage.
i '1 ‘ f-u to the next stag _

the transition  p robab i 1  ̂ are ;n the last age class at time t then

This precisely means that given '■

s , E u  w ill hatch  to larvae by time

The questing stage: ^  in terms of 50% survival times
In form ation  on questing ticks ^  of questing ticks of a particular

that i. the time until 50% »f th« u ^  ^  ^  c« e  „ f  the quoting
CB,  been lost through mort survivalquesting s ta g e  h as been  . , . p long g rass  vegetation  typ e , in

, j  • „  rhe cool season m tne & Q1 i vs which is equivalentlarvae during tne co o  ,e rpnorted as 91 nays

time for
• this season is reportquesting larvae in tin
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to  18 m o d e l t im e  s te p ,  o f  five days each . N ow  lettin g  the w ith in  sta ge  su rv iva l 

p r o b a b il i t y  b e  s 2 th en  it fo llow s  that

(6.2  6b)s ' 8 =  0.5

, . , • ,• .u f s _  n 06'> This means that given N q(t) questing ticks at the
which implies that ^2 u- . , r ,
b e g in n in g  o f  a  t im e  s te p  O .S62.V ,(f) a re  e x p e c te d  to  » r v ,v .  u p to  th e  en d  o f  th e

J L  period „ .d  0.038,V,(«) to exit the W  S' " “  “
P , . . ,  firks have two alternatives either to survive and

a questing stage t '  a pBSsing host. In general let the daily attachment
re m a in  q u e s t in g  - ^ ................th „  »  a tta ch es  teith in  .  p e r io d

p r o b a b i l i t y  bp  pth

o f £> days is given by D ( 6 .27)
Pb =  1 - ( 1 - P )  • V

u three important events that can take place for a questing tick
In general there are - , ,i e beginning of the time step. These

given it was present at tne g 
in the next time step £

are

(i) attach onto a passing host 

(ii) remain questing

md ,e  d “ ,o  in  F ie u r e  2 o n  w  2 S -
T hese events hav hes within D  days is

t l a b i l i t y  that it attacnes 
T he u n con d ition a l probe

S2 ( 1 - ( 1 - P ) D )-
(6 .2 8 )

Patt

. it  sUTvivesan d  r e n » i » q u e s t i n g  is then g iven  bp

The probability that
, , n  _  p)D =  $2 Patt

S, ( l - P a )  =  ^ 1 P)

f  iv in g  w ith in  a tim e step  is g iven  b y  
a n d  th e  p r o b a b i l i t y  o f  d y in g

(6 .2 9 )

(6 .3 0 a ) .
q =  1 -  52

xo reau ired . T h u s  g iv en  th ere  
i ] lities is on e  as requ

. . . .  .h o t  th e  su m  o f  th ese  ^  step  * -  >* -  *  “ “

N ,( »  q u e s t in g  ticks -  the
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, ■ 1 1 these individuals are accounted for in the followingtime step that is by time t-rl ttuse

balance equation

wh„ «  the ,h ,ce terms „»  M  * *  denote M M .
, _____The total ...testing ticks at time t +  1 are then g.ven

questing and die rcspi

hy , , , p | /  +  i )  (6 .3 0 c )
Nii(t +  1) =  -V,(i)(-S2 -  +  K' (t +  1

. ., , , , i tme.it term into the questing state from the previous 
where R,(t +  D  ^  ^  < f ^  ^  The term takes specific forms for a

developing stage in the 1 e ' J ' 1 consider eggs moulting into questing
p a r t icu la r  developing sta ge . For exampl

la rvae  th e n  r? (6 .3 0 d )
Rq(t +  1) =

her of eees in the maximum age class about to moult, 
where E tl denotes the nun  ̂  ̂ ^   ̂ ^  Q Q4 a vaiue fa  =  .185 is calculated as

Now assuming a reporte< va the same for all the three
1 for the m odel. in is  Vcli

the initial input value ph and adult. It is not possible
, (Up questing larvae, nympu

questing stages name v different questing stages because this kind of
to use different values for t ie «  carried out for all the questing

. . above kind of analyse
information is lacking. \  phenomena of importance in the

stages in all the seasons an h ^  means in simple terms is that

study of tick dynamics is d i a p a u s e . ^ ^ ^  climatic conditions are not

an adult tick undergoes a state o £  (6 .30b) p„« is zero such that

favourable for questing. This means

“ d  N,it +  »  =  w > , , + R t { t  +  ' ) t6  3 0 />

. „  time 1 and «  * » *  “ ™ v a l  pr° b'‘ “ '

• h e r e  N g « )  * " » * “  d i ' ‘P “ ° n e  or d ia p .n s in g  M « l «  M  »  *h '  d * h lh

ity  in  a  u n i .  t o e  .M r -  « “ ' * " . *  •  o f th.  tick ’ s life eycle hence th e

s ta g e  a c c o r d in g  »  “ " « » •  ■»<*>
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notation j 8. Again lU[t t  1) denote., lhe lerui into Uic dUpausm*
.state. Precisely these will he n ym p h s m oulting into adults w hen con d ition s are 

not fa v o u r a b le  fo r  a c t iv e  qu estin g .

D evelop in g  stage:
A s a ,,  e x a m p le  o f how  the m a trix  elem ents were d erived  from  the d a ta  fro m

S h o rt et . f ( 1 9 8 9 . ,b )  ro n .id e , the developing larvae in long g ra ss  vegetatio n  in the

cool se a so n . In g en e ra l a fte r a tick hat M  to repletion detaches from  the h o , .

and  d ro p s  o n to  the g ro u n d  w here it ............... . a  process o develop m en t before

■ t„  ,h e  n ex t in s ta r  o f developm ent. T h e stage d n r .t .o n  under these 
m o u lt ,„ g  m to  • o <|av> w h k h  ,s to 6 v e d ay  age classes. It

co n d itio n s  »  r e p o . . "  »  ^  |arvae m oulted  w as 8 0 .5% . Let

'"a s  fu r th e r  re p o rtec  n ^ bp ^  X hen sin ce there are  1 2  age classes

th e  w ith in  s ta g e  su rv iv a l p

b efo re  an  in d iv id u a l m o u lts  it fo l lo w  th *

, 12  _  0.805, ( 6 .3 1a )

. _  982  T h is  value m eans that at the end o f one tim e step

w h ich  im p lie s  th a t S4 * , ; w ih tran sit to the n ext age class
1 . •, • iiy  jj} age class j vvia

0 .9 8 2  o f  th e  individuals m i ' a  & m ore  p re cise m a n n er  th is  m ean s
1 9  \ a fter one tune step. , ,

0 + 1 - ' - * • • • ; •  
th a t i f  Nj(t)  d e n o te s  in

, , i  a t  tim e < +  1 ‘ s R 'ven by
m a g e  c la ss  j  +  1

Jv ; + 1 (̂  +  1) =  '-4jVj4(<)’
(6.31&)

id generally

, 1 _  J 1 i , . . . , i o . (6.31c)

N  j + 1 l 1 ‘ '

, of individuals in age class of stage * at

this case N)W d »»*“  “ “  probability in •  uni. model « » •  «<*■ “
le « and s, .be • « * "  ^  , r„ silli„g(mo»l.i»S) *b«
urther assum ed that i n d i ' * * 1* tr ^  imt.ally m the to t

• n e  the maximum age the end of that time
y after attaining th time step will y



step transit to the 1-st age class of the next stage. Tins process can therefore be 

represented as
+ 1) =  ••*, yi,(0-  1 = 1.........9■ (6-31c?)

.. i i.*nweeii stage recruitment process in the system. The This equation describes the between stage ,
, . . ,-lass ill stage 1 . This value depends on the stage

subscript t, denotes the las g
. , „„„ tbp duration the more the number of age classes,

duration because the long ,.
.  r ,n . stages T h e  values s , are e stim a ted  for  all seasons

“  »  * * “ *  f“  the . A t « A  A . which
and vegetation types in or ; developing stages were handled
have already been defined. AU <

in exactly  the sam e wav.

F ecu n d ity : to ovipositioning and assuming a sex ratio of
Based on survival probab. < ^  ^  .g adjusted to /  in order to estimate

1  : 1  total fecundity F  by  an a u e be realised to await hatching.
l ,-h are female and wm

the number o f  eggs w n formula

F r e e l y  /  tr° m ^  '  (6.32)
f  =  O.5(sio) ‘ 10 C

• the pre-ovipositioning female adult stage.
, timber of age classesm female in age

where f10 is the number bability that an adult

The quantity (s>o)“ ° elld of the last age class.

d J .  . i l l  i t a o n c  for lh« - h e  -
T h e  parametrization p r ° c  d  sh ort grass resp ectiv e  y. 13 ‘

. m n e lv  ^  long Srass , tion projection matrices but since
vegetation types n specific p°Pu a . ..

tr:ze the season • 1 unities the assumption that a tick
enough to param ^  the feeding pr° )a Thus an initial probability
there is no inform* ^  almost surely is and was later

attaching will SULJ  ^  ^  event. This time steps occurring in the

0f d i n g e s t  life cycle tyPe. Since the corresponding
modified. The 6  grass vege 5g time steps

the cool ■» tb'  M  *  libllily in the

life cycle . . . . .  * » * “  “  elled * ,  i .  « • »  “  “  “ “ ^ t i o o  ptob.hilite.

p . . . ^ 1386’  "  „  im. * i . «  —  « - * "
J  y-tq These are Jub 

matrix product •



* t„  No diapause effects are included at the initial
into these stages were set to • -

stage of model simulations.
U) give fu tu re  p o p u la tio n  stru ctu res  g iv en  by theThe model is then snnulatt d g , . .. . n f

, -  , > 0 1  where 1 is expressed in multiples of the model time step. Of
sequence initial population structure say yb but as was shown
course one has sP > structure is independent of yV The tick

in the analysis the long time I ^  ^  using the SPLUS computer software

model for simulation p" pOS“  ^  by Veuables and Ripley (1994). As explained 
for applied statistics as escn e the dominant eigenvalue of the

above the population Kro" '^  J \ mulation is that with the model parameters as 

matrix .4 and the initial m  ̂ a/( 1989a,b). Under these initial inputs the

calculated from the paper y  ̂ ^  niucb greater than one consequently

dominant eigenvalue of the ^  suggested some aspects in the model which
indicating a population increase. ^  ^  flf (1990) it is obvious that

were not realisic. Based on t e ^  sifeeding is not realistic. This is

the value of one as the Proha ‘ , Gf resistance to ticks due to several
.^rrline to  the elegies ^

because animals vary *<-<  ̂ ^  ^  animal. Previous exposure to tick

factors among them age and/or ^  ^  resistance to ticks is concerned.

challenge la » ■ »  »  of successful ^
Therefor, a value of one »  ^  which no. realistic. In o .h er.o rd ,

hoa. population is 1 0 0 % ^  it feed, to repletion contrary to what

it means that « «  ^ p r n b .b i i i t i e s  are therefore set to 0 . 1 1  for

is observed in practice. for the nymph accoicl g
. ..up adult and 0. b ;s that an adult tick

the larvae, 0.16 for the a assumption we malce
( 1  GOO)- ^  fu itiH  get the p r o b a b ility  ot

r e p o r t e d  in  F iv a z  ( 1 9 J^  lU „ _ ;nV seaso n  thus we ...........................
A fu rth er  a s s u m e -  probability o f

r e p o r t e d  in  F iv a z  1—  . ra in y  season  thus we P
tine: d u r in g  the n  J =r,« -t iv e lv . A  th o u g h  w ith

is o n ly  a c t iv e ly  q u e s t in g  faot seasons resp ective ly  6
„  , to zero in the c o o l  a n d  th  is the m a x im u m  e igen  va lue

a t t a c h in g  t o  _ _ w th  in d ex  (A,» « )  =  2 .3 5 ., . ir k  g r o w th  in d ex  (Amati i namely Amo* =  2 .35 .
these m o d if ic a t io n s  the  u ck  S ^  ^ ^  ge, ter th „  1 » «

reduced, . ___ „*h  rate ofLit- ----  r
• p.-nwth rate  o i in tr in s ic  grow

(6 .33)
o f  A n  w a s  g r e a t ly

T his value is equivalen _  Q g5g >  0
__ log!,, Ar;i«x

r  "  . „  T h u s  an e x ten s iv e
. .popu la tion  increase.

• * 1 n rlv indicates a 1 1
• „  .h e  value sim ilarlym e a n in g  tn e 205



s e n s it iv ity  a n a ly s is  to  s tu d y  the effect o f  som e  o f  the m atrix  in p u ts  on  the g row th  

in d e x  set*nis m o s t  a p p ro p r ia te . T h e  findings o f  such  an an a lysis  a ie  o u tlin ed

in the following section.

6.4 S e n s it iv ity  an alysis

The input parameters in the model are those derived from the information 

reported in Short ef a/(19S9a.b) and Fivaz et al( 1990). Starting with these inputs 

a sensitivity analysis is earned on the model by gradually varying attachment
i ) „ f  sueressfull feeding and the mortalities of questing tickprobabilities, probabilities ol sut

, . T l„, results from these kind of simulations are then presented in 
stages separately. n i ( Ilhlu *
„ _ , , , - The results will briefly be discussed and their implications
figures / through lo. J- 11(

to tick control strategies point* d
. .. . ted a daily attachment probability of 0.04 as reported in By-

S T c  Tt n bv  (1 9 9 * )  S ives a five  ‘ lay a tta ch m en t p robab iH ty  ° f  ° ' 1S5' TW S
r° m aiK e 1 ,  fhe initial input parameters for the model. At these initial

!S thCre OU< d °  in d (.x calculated as the m a x im u m  eigen value o f  th e  m a tr ix  .4n
mputs the growth m l -  population increases. Next the be-
i , i i  \ is found to be 2.Jo. 1

denoted by A max ■ ..-w-hment probabilities is investigated
1 • r x for different values of attacmneu n
haviour of Amox for different values of attachment probabilities. Fig-
by simulating the tick mo< < 01 can be seen that in general

ure 7 shows the case for fmu.ti(m of the attachment probabilities. The im-

lambda (Amttx) is an increasing "  ^  reducing attachment probabilites

plications here is that contio ' owth of tick populations. This result
of lowering the gi

can be adopted as a meai * s lling, lowering stocking rates or

therefore supports methoc s ■ the tick popuiation is expected
1 f ’ during seasons wuen

moving out the cattle hos s  ̂ lmed at lowering the chances to attach
to be questing. All these methods a n tfae generai population growth 

for a questing tick. This has the effect m ^  vegetation type and the

rate. The same kind of analysis is c one e seen in these two figures

results are depicted in Figure 1 -  jncreases w ith  a tta ch m en t probability

is that the growth index la m b d a  (Am.U m This scenario is more evident in 

values upto a  m a x im u m  then it s ta rts  to c ec tfae growth index hardly

the short g ra ss  vegetation type- In tins type ve®
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e x c e e d s  th e  va lu e  o f  o n e  w h ich  is the value w here the p o p u la t io n  n eith er in creases

n o r  d e cre a se s . It is c le a r  from  the grap h s that there is a b ig  d ifferen ce  b etw een

. f-.,. -w the grow th  o f  the tick p o p u la t io n  is co n ce rn e d , 
th e  tw o  v e g e ta t io n  ty p e s  as tar as ft

i „ fMr the sam e value o f  a tta ch m e n t p ro b a - 
It c a n  b e  seen  fro m  th e  tw o g ra p h s  that for the sam

, • u - i n  lon g  glass than in short grass. T h u s  o n  avera gebility, the growth rate is higher m long gr .
u . . ,  r th _ tick  p o p u la t io n  is h igher in the lon g  th an  in sh ort grass

th e  g r o w th  in d e x  fo i fh  . . , , -r r
. rpi • ,llow s that even  co n tro l strateg ies sh ou ld  n ot b e  u n ifo rm  fo r

vegetation  type. T his s ; n o q o t  tick a b u n d a n ce
f  (rotation 4s  mentioned in N orva le f (1 9 9 2 ) tick a b u n d a n ce

, l ,e  tw o  t y p o ,  o f  » (  ron [ro|  is i|etCTmin„ ,  b j, the s o ,e e p t ,b i l i ty  o f  ca tt le  to

on  c a t t le  in  th o  . » < » d  v e g e ta t .o n ) t o ,  tick  - -

th e  s u it a b i l i t y   ̂ p resen ce  o f  a ltern ate  hosts,
a n d  o t h e r  fa c to r s  su ch  as 1

ter experiment involves the effect o f  va ry in g  the su ccess-
T h e  s e c o n d  c o m p u  fo n n u la tion  th is is d o n e  b y  va ry in g  the

t T t ip o  F rom  tne 1I1Uful feed ing p ro b a b ilit ie s .  ̂ ^ ^  ^  the off host developing stage,

p roba b ility  o f  transiting floIU ' ^  si1()Wn in Figure 8 for the long grass vege-

T h e  results o f  this type °  Minu d short grass vegetation type are depicted

tation  type. T h e  corn  spoil S firoWth index Amar is a m onotom cally
in F igure 13. T h e  figures m d v * t e  ia ^  StiU in short grass vegetation

increasing fu n ction  o f  this pro ^  ^  feedlllg is considered separately from  the 

the com p eten ce  o f  the nym p > s suCcess  o f feeding by the nym ph but fixing
larvae and adult stages by varying k  • ^  ^  .g shown in Figure 14 and the 

the values for the “ d t!“  “ “ Note that in the graphs the
graph show s the s a m e  trend ae o» • W hat »  observed here , ,

probabilities are referred U» as <' ~  ^  | ,n .b d .(A „ . , )  «  *  monotonically

that for both vegetation W )  ‘ ‘  feeding- h° ”'CT"
ir o b a b ih t ie  grow th  in d ex  o r  fa c to r

d e ta c im ie i i ) is a m o n o to n ic a llyfhe growth index la m b d a (A max ) i

S m l feed in g . It is n o te d  h ow ever
u n t ie s  o f successful feedin g

• t etinn of the p roD a b u iti g ro w th  index or factor
inreasing functioi , rpeding probability s
that for  the sanre - «  » f  „ „  from ,he t.c -host

1,  h ig h e r  in  lo n g  f -  - «  ‘ „  p ro b ab ilitie s o f  ^  ^ n g  fo r -

in teraction  system  it is know n ‘ ^  o t  resistance to tick , by he host.

on host tick is h igh ly dependent » »  ^  to nek . the ower
t .^stance to ticks say other factors also come to

The higher the » » • -  „„  host tick. Other
the chances of successful feed.
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play for example Fivaz tt a/(1990) reports oil average that the nymph seem to be 
more competent m feeding than the larvae and adult. From the analysis m chapter 
IV there are also density dependent effects which can affect the overall success­
ful feeding probabilities. In general the giaphs indicate that foi highly resistant 
herds the growth of Iihipiccp halns appcTidiculo-tus can greatly be reduced. Thus 
the use of resistant breeds can be considered as an alternative future option to the 
tick problem which has become of great economic importance. Theoretically what 
the graphs indicate is that other factors constant detachment probabilities can be 
lowered to a point beyond which the tick population will decline monotonically 
towards zero. This will happen when the probabilities are such that \max < 1 . It 
is obvious that this is not true in reality because of the many factors that come 
into play. Some of the factors are advantageous to the tick population growth

. • , imnurt The tick control problem therefore requires 
while some have a negative imp* ■ . . . . . . .

. 1 where several control m easures are ap p lied  in the m ost

an integrated aW r0a" ^  ;ire costs to be incurred in the whole execise in
optimal way not forgt  ̂ £

general.

, trafecies are aimed at causing an increased mortality to the 
Some contro s indude for example burning of the pasture which

questing tick stages. HoWever this practise should be carried out
results to killing the questing cause a serious environmental

- f i t  is n o t  p r o p e r ly  n on e  can
with caution because 1 • ^  ^  ^  overrall effect of mortality of questing
degradation. This prompted p- g shows the effect of questing

1 t'r.n growth index Amaz- r l8l“
ticks to the populati b grass vegetation type. Initial model input
larval m orta lity  on A,„ar 111 Short et a/(1989a,b) and this gives

, , i (\ from the data oy onoi
p a r a m e te r s  a re  c a ic u ia  ,.. c n 056. T h e  a ssu m p tio n s  are

. . , C la rv a l q u e s tin g  n io ita lity
us an initial value oi m idc may attach or remain questing

• f-ime step a (guesting
that on surviving one ‘ ^  probability of attaching. This probability
with probability l — Pa whcie  j a  ̂ function of questing tick mortality. This 
is conditional on surviving mortality gave a value of growth index of
initial value of 0.056 of questing Thereafter the model is simulated for
2.35  which indicates a population mcî ^  depicted in Figure
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9 C le a r ly  th e  g r o w th  in d e x  is a d ecrea sin g  fu n ction  o f  qu estin g  larva l m orta lity . 

T h e  w h o le  p r o ce s s  is re p e a te d  for qu estin g  n y m p h  and  adu lt ticks an d  th e  resu lts  

are shown in  F ig u re s  10 an d  11. A g a in  as w ith  the qu estin g  larvae m o r ta lity  the

g ro w th  in d e x  is a d e cre a s in g  fu n ctio n  o f  qu estin g  n y m p h  an d  a d u lt m ortaU t.es .

• „A  -,t increasing the mortalities o f any o f  the questing Thus con trol m easures aimed at increasing .
• ,,, If is n oted  how ever that w hen  the m o rta h te s  o f  

tick  s ta g e s  s h o u ld  b e  a p p ro p r ia te . It is n oted
, , . to<rM , re Set to  on e  the m od e l gives a g ro w th  in d e x  o f  a lm o st

the a d u lt  an  ar b fo r  q u esting n y m p h  m orta lity . T h is  o b se rv a tio n  ten d s

T r0  T  L  th a t th e  g ro w th  in d ex  is m ore  sensitive  to  larval and  a d u lt m o rta lity

m  ' . . . .  T h e  p rocess  is rep ea ted  fo r  the sh ort grass v e g e ta tion
th an  n v m p h  m o rta lity . T  1 . u

d  th e  observation is that for qu estin g  tick m orta lities  m  th e  range b etw een

o n e  h e  g r o w th  in d ices  are a lw ays less than  one. T h is  ten d s to  su ggest 
Ze ro  a n d  o n e  tl g  . t in sh ort grass v eg eta tion  ty p e  th ere  m u st

that for a tick popu a ^  ^  th eir  overa ll e ffect m ust ou tw e ig h  that

b e  s e v e r a l fa c to r s  a c t in g  m  ^  ^  sh ort grass v eg eta tion  ty p e  is a sso c ia te d

fro m  the negative fa c to r s . , stoclcing rates are co m m o n . T h is  co u ld

w ith  communal g ra z in g  a ie a s . ^  ^  m a in ten an ce  of th e  tick  p o p u la t io n  in

b e  o n e  o f  th e  c o n tr ib u t in g  fa c to  ^  ^  fu rth er  s im u la tion  ex p e r im e n t w h ich  is

th is  t y p e  o f  v e g e ta t io n  and  lane US g that o f  th e  survival of d ia p a u s in g  a d u lt

c a r r ie d  o u t  in  sh o r t  grass  vegeta  ion  ^  o f  the surv ia l p ro b a b ilit ie s  o f

tick s . T h e  g r o w th  in d e x  ■ ‘  ^  ^  ^  that fo r  the tick  p o p u la t io n  to  g row ,

d ia p a u s in g  a d u lt  ticks. Howevei ^  d ia p a u sin g  ticks are n ecessary  as can

h ig h  v a lu e s  o f  th e  su rv iva l p ro  .a

be seen from Figure 15.
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Figure 9: Larval mortality, rainy season
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C H A P T E R  VII  
C O N C L U D I N G  R E M A R K S

T in s  th esis  is co n ce rn e d  with the d eve lop m en t o f  m a th em a tica l m o d e ls  for 

s ta g e  s tr u c tu r e d  p o p u la t io n s . In part i cular  the s tu d y  has dealt m o st ly  w ith  m a tr ix  

a n d  c o m  p a rt m e n ta l p o p u la t io n  m od e ls . T h ese  ap p roach es  are b o th  su ita b le  w hen  

d e a lin g  w i t h  s tr u c tu r e d  p o p u la t io n  m od els .

M a tr ix  p o p u la t io n  m o d e ls  have been  a su b je c t  o f  th eoretica l an d  p ra ctica l 

s tu d y  fo r  m a n y  yea rs , p a r t icu la r ly  the t ime h om ogen eou s  m a tr ix  m od e ls . S ta rtin g  

fr o m  th e  t im e  h o m o g e n e o u s  age stru ctu red  m od e l a m ore  gen era l stage  s tru c ­

tu re d  p o p u la t io n  m o d e l a p p lica b le  to a genera l n stage classified  p o p u la t io n  is 

c o n s tr u c t e d .  C o n d it io n s  relat ing the tran sition  p rob a b ilit ie s  in the classica l p o p ­

u la t io n  p r o je c t io n  m a tr ix  to those experimentally derived  are g iven  for such  k ind 

o f  p o p u la t io n s .

It is s h o w n  that  the age s tru ctu re d  m a tr ix  m o d e l is a ctu a lly  a sp ecia l case 

o f  th e  g e n e ra lis e d  n s ta g e  s tru ctu re d  m od e l. T h e  la tter m o d e l is flex ib le  in that 

o n e  ca n  s tu d y  th e  wi th in  and  betw een  stage  p o p u la t io n  d y n a m ics . In this w ay 

th e  q u e s t io n  o f  r e s id e n ce  tim es in a stage  can  be  taken care o f  b eca u se  in d iv id u a ls  

h a v e  to  a g e  w ith in  a  sta ge  b e fo re  tra n sittin g  in to  the next stage.

In t im e  d e p e n d e n t  p o p u la t io n  tra je c to r ie s , the p r o je c t io n  m a tr ix  at tim e t, 

m a y  n o t  n e ce s sa r ily  b e  equ a l to  that fit t ime t T  1. T im e  d e p e n d e n ce  m  such  

m o d e ls  is b r o u g h t  a b o u t  by  several in tera ctin g  fa ctors  a ctin g  on  the p o p u la t io n  

v ita l ra tes . T h e s e  fa c to rs  are th em selves tim e d ep en d en t. T h ese  in c lu d e  fa ctors  

su ch  as se a so n a lity , v e g e ta t io n  ty p e  and  so  on . A  p ra ctica l tim e d ep en d en t m a tr ix  

m oclp l is c o n s tr u c te d  fo r  the b row n  ear t i ck( /2 . appendiculatus), the causal v e c to r  

fo r  E a st C o a s t  fev er  ( E C F ) .  In th is m o d e l the effect o f  season a lity  an d  v e g e ta tion  

ty p e  is in c o r p o r a te d  h e n ce  m a k in g  the m o d e l tim e d ep en d en t. T h e  m o d e l has a 

b ig  p o t e n t ia l  in  a ssessin g  the e ffe c t iv ity  o f  various co n tro l strateg ies  in re la tion  to 

v a r io u s  e n v iro n m e n ta l fa c to rs . It can  be e x te n d e d  to in c lu d e  the effect o f  m ore  

e n v ir o n m e n ta l  fa c to r s  on  the p o p u la t io n  p aram eters . A  sim ila r a p p ro a ch  can  be  

a p p lie d  to  o th e r  v e c to r  p o p u la t io n  species .

T h e  s tu d y  a lso  d ea lt w ith  co n tin u o u s  tim e co m p a rtm e n ta l m o d e ls  fo r  stage
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structured p o p u la t io n s ,  tak ing the brow n ear tick append,culatus) taken as a

s p e c ia l  case . T h e  m o d e l  is a ssoc ia ted  w ith a con tin u ou s  t im e e v o lu t io n  o p e r a to r  

s im ila r  to  th e  p o p u la t io n  p r o je c t io n  m atr ix  for  the d iscrete  case. It has  been  

s h o w n  th a t  th e  s ign  o f  the  spectra l b ou n d , p os it iv e  o r  negative , a sso c ia te d  w ith  

th is  o p e r a t o r  d e te rm in e s  w h eth er  the p o p u la t io n  will g ro w  or  d ec lin e  re sp e c t iv e ly  

F o r m u la e  s h o w in g  the d e p e n d e n c e  o f  the spectra l b o u n d  on  the p o p u la t io n  v ita l 

p a r a m e t e r s  are  o b t a in e d  th rou gh  the use o f  the im plic it  fu n ct ion  th eorem . T h e  

r e p r o d u c t i o n  n u m b e r  R(h) on  a host den s ity  h is derived . T h e  m o d e l  is useful 

in th e  e x p la n a t io n  o f  the in teraction s  betw een  the tick and  its host p o p u la t io n .

It is s h o w n  that the tick p o p u la t io n  will persist on ly  w hen  the host p o p u la t io n  

d e n s i ty  e x c e e d s  a ce r ta in  thresh old  value ho. S tab ility  analysis  ind icates  that 

th e  u n in fe c t e d  s ta t io n a r y  s ta te  is stab le  if the spectra l b o u n d  is less than  zero  a 

c o n d i t i o n  c o r r e s p o n d in g  to  R(h) <  1. It is argu ed  that the in fected  s ta tion a ry  

s ta te  is n e ce s sa r i ly  s ta b le  o th erw ise  s e co n d a ry  b ifu rcat ion s  o f  the in fected  state  

w o u ld  b e  e x p e c t e d .

T h e  s t u d y  a lso  dea ls  in d e p th  w ith the aspect  o f  density  d e p e n d e n ce  on  host 

a t t a c h m e n t  rates  a n d  m o r ta l i ty  rates for the tick p o p u la t io n .  A n  a lternative  

d e r iv a t io n  o f  th e  b a s ic  r e p r o d u c t io n  n u m b e r  R(h) via the genera l cy c lic  tr iangu lar  

s y s te m s  a p a r t  f r o m  the d irect  ex p a n s io n  m e th o d  is given. T h e  s tu d y  d ist ingu ishes  

b e t w e e n  th e  l in ear  a n d  n o n - l in e a r  eases as fo llow s.

In th e  l in ea r  ca s e  it is c lear that the so lu t ion  o f  the “ tick o n ly ’ ’ sy s tem  is 

u n b o u n d e d  u n less  th e  p a ra m e te rs  are such  that the p o p u la t io n  rem ains  co n s ta n t  o r  

is d e c a y in g .  In  th e  n o n l in e a r  case  a tten tion  is fo cu ssed  o n  the qu a lita t ive  b e h a v io u r  

o f  th e  s y s te m ,  d is t in g u is h in g  the case w here  the  system  is d iss ipative . In o r d e r  to  

e s ta b l is h  d is s ip a t iv e n e s s  a b o u n d e d  set is fo u n d  that a ttracts  all o rb .ts  an d  w h ich

is p o s i t iv e ly  in var ian t.

T h e  s t u d y  f in a lly  dea ls  w ith  a class o f  v e c to r -h o s t  i n t e r a c t i o n  m o d e ls  w here

, , , • - i  i r e c o rd in g  to  the n u m b e r  o f  paras ites  it carries,th e  h o s t  p o p u la t i o n  is classified  at c o m in g

S u c h  m o d e l s  are  usefu l in  the  sense that for  m ost  ve c to r  diseases, the severity  

o f  th e  d isea se  to  the  h ost  d e p e n d s  on  h ow  h eavy  is the paras ite  load . T h e  null 

h y p o t h e s is  th a t  o n  h os t  v e c to r  d is tr ib u t io n  is a sy m m e tr ic  and  is n egative  b in o m ia l
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is in v e s t ig a te d  in d e p th .

T h e  resu lts  o f  the  s tu d y  are useful in the u n d ersta n d in g  o f  v e c to r  p o p u la t io n  

d y n a m ic s  in  gen era l .  It br ings  out d e a r ly  the co n n e c t io n  b e tw e e n  d iscre te  and  

c o n t in u o u s  p o p u la t i o n  m od e ls .  T h e  generalised  m atr ix  m o d e l  for  s tage  s tru c tu re d  

p o p u la t i o n s  is m o r e  f lex ib le  am i can  be  a d o p te d  for  o th er  v e c to r  p o p u la t io n s  ap art  

fr o m  R. appcndiculatus. In co r p o r a t in g  tim e d e p e n d e n ce  in m a tr ix  m o d e ls  b y  in ­

c lu d in g  v a r io u s  e n v iro n m e n ta l  factors  is a m ore  realistic ap p roa ch . T h is  im plies  

th a t  m o n i t o r in g  a n d  co n tr o l  o f  b io log ica l  p o p u la t io n s  can  m  general be  carr ied  

o u t  w ith  m o r e  re liab ility ,  esp ec ia lly  w ith  the ad ven t  o f  m o re  pow erfu l c o m p u te rs  

a n d  so ftw a re .  T h e  resu lts  o f  the s tu d y  p ro v id e  useful in fo rm a tio n  tow ard s  the

understanding o f  c o m p le x  vec tor -  host in teraction  system s.

It is h o p e d  that  the  interpretations of the findings will c o n tr ib u te  sign ificantly

th e  s t u d y  o f  g e u e r . l  . . d o r  p o p . d . . ™  “ w “ d *
th e  d e v e lo p m e n t  o f  v e c to r  c o n tr o l  m e th o d s .  It, c o n c lu s io n  we list s o m e  p r o b le m .

which require further investigation:
(a) Further validation of the tune depemle.it matrix model for the brown ear tick 

bv including more field based estimates of the model parameters.

,, i E x t e n s io n  o f  the compartmental m o d e l  a long  the lines o f  s to ch a st ic  p o p u la t io n  

m o d e l s  to  take care  o f  the  variability  in the transition  rates in the m o d e l

. • ,tn more robust estimation methods for the transition proba-

(C) generalised time <lepemle.it matrix model, particularly under

( d )  ^ " h - t o c h a s t i c  d y n a m ica l  m o d e l  suggested  here  b y  h a n d lin g  the

( d )  y ' . b ir th im m ig ra t io n  and  d eath  process .
t ick  d y n a m ic s  as a ^  ^  thp b ro w n  ear tick d e v e lo p e d  here to  the

(e) Linking the population
' ,. tt t Coast fever disease models,corresponding East Coa.



LIST OF REFEREN CES

1. A d le r ,  F . R . a n d  k r e tz s c h m a r .  M . (1992 ):  “ A g g re g a t io n  and  s ta b il ity  in 

p a r a s i t e -h o s t  m o d e ls . "  Parasitology, 1 0 4 .  199-205.

2. A d je i ,  E. L., B a rn es ,  A . and Lester. R . J. G. (19S6): “ A  m e t h o d  for  esti- 

m a t i n g  p o s s ib le  p a ra s ite  related  host m orta lity  illustrated  using d a ta  fro m  

Callitcrarhynchus gracilis (C e s to d a :  T ry p a n o rh y n ch a )  in lizard  fish ( Saurida) 

s p p . ” Parasitology, 9 2 ,  227-243.

3. A n d e r s o n ,  R . M . a n d  G o r d o n .  D. M . (1982 ):  “ P rocesses  in fluencing  the d is ­

t r ib u t io n  o f  p a ra s ite  n u m b e rs  w ith in  host p o p u la t io n s  w ith  specia l em phasis  

o n  p a r a s i t e - in d u c e d  h ost  m o r ta l it ie s .” Parasitology, 8 5 ,  373-398.

4 . A n d e r s o n ,  R . M . a n d  M ay, R. M . (197S ):  “ R egu la t ion  and  stab ility  o f  host-  

p a r a s i te  p o p u la t io n  in teraction s . I. R e g u la to ry  p r o ce s s .” Journal of Animal

Ecology, 4 7 ,  219-24S .

5. A n d e r s o n ,  R . M . a n d  M ay, R . M . (1985 ):  “ H elm in th  in fections  o f  hum an s: 

m a t h e m a t i c a l  m o d e ls ,  p o p u la t io n  d y n a m ics  and  c o n tr o l . ” Advances in Para­

sitology, 2 4 .  1-101.

G. B e d d in g t o n ,  J. R . (1 9 7 3 ) :  “ O p t im u m  age specif ic  harvestin g  o f  a  p o p u la t io n . ” 

Biometrics, 2 9 ,  S01-S09.

7  B o s c h ,  C . A . (1 9 7 1 ) :  “ R e d w o o d s :  a p o p u la t io n  m o d e l . ” Science, 1 7 2 ,  345- 

349 .
8 B r a n a g a n ,  D . ( 1 9 6 9 ) : “ T h e  m a in te n a n ce  o f  Theileria parva in fection s  b y  m ean s  

o f  th e  i x o d id  tick, Rhipicephalus appendiculatus P Troy. Anim. Hlth. Prod,

1 , 119 -1 30 .
9 B r a n a g a n ,  D. (1 9 7 3 a ) :  “ T h e  d e v e lo p m e n t  p er iod s  o f  the ix o d id  tick Rhipi- 

'cephalus appendiculatus N eu m . u n d er  la b o r a to r y  c o n d it io n s . ” Bull. Ent

Res., 6 3 ,  155-168 .
10. B r a n a g a n .  D . ( 1 9 7 3 b ) :  “ O b se rv a t io n  o n  the d e v e lo p m e n t  a n d  surviva l o f  the 

i x o d i d  tick  Rhipicephalus appendiculatus N eu m an n , 1901 u n d er  the  quasi­

n a tu r a l  c o n d i t io n s  in K e n y a .”  Trap. Anim. Hlth. Prod., 5, 153-165.

218



11 . B ra n a g a n , D. ( 1 9 / 4 ) :  "T h e  feeding perform ance o f  the ixod id  tick

ccphalus a p p e n d ,culatusXeum . on rahhits. cattle and other hosts .”

of Entomological Res earch. 64. 3S7-400.

12 . B ra u n . M . (1 9 75 ): Differential Equatioand their Applications. S pr inger-  

V erlag  N ew  York, Heidelberg, Berlin.

13. B y r o in ,  \V., G e tt in b v ,  G. (1 9 9 2 ):  “ l  s ing tin' c o m p u te r  M o d e l  EC’F X P E R T  to 

s t u d y  ticks  a n d  east coast  fever ."  Insect Science, 1 3 (4 ) ,  527-535.

14. C a s w e l l ,  H. (1 9 8 2 ) :  “ S ta b le  p o p u la t io n  s tru ctu re  and  re p ro d u c t iv e  value for 

p o p u l a t i o n s  w ith  c o m p le x  life cy c le s ."  Ecology, 6 3 .  1223-1231.

15. C a s w e l l .  H. ( 1 9 S3 ): “ P h e n o ty p ic  p lastic it  y in life -h istory  traits: d e m o g ra p h ic  

e f fe c ts  a n d  e v o lu t io n a r y  consequences.*  American Zoologoist, 2 3 ,  35-46.

16. C a s w e l l ,  H. (1 9 8 9 ) :  Matrix Population Models. S inauer A ssocia tes ,  Inc. S u n ­

d e r  1 an  d , M a s s a c h u s e t s .

17. C o x ,  D . R . a n d  M iller  H. D. (1 9 6 5 ):  The Theory of Stochastic Processes.

C h a p m a n  a n d  Hall: L o n d o n .

18. D e s h a r n a is ,  R .  A . an d  Liu, L. (19S 7):  “ S tab le  d e m o g ra p h ic  cyc les  in la b o r a ­

t o r y  p o p u la t i o n s  o f  Tribolium Casteneum." J. Anim. Ecol.s 5 6 ,  S85-906.

19. D ie tz ,  K .  (1 9 8 2 ) :  “ O vera ll  p o p u la t io n  p atterns  in the transm iss ion  cyc le  o f  

in fe c t i o u s  d isea se  a g e n ts ."  In Population Biology of Infectious Diseases (ed .

R .  M .  A n d e r s o n  a n d  R . M . M a y ) ,  p p .  87-102. Berlin : Springer- Verlag.

20. D o u b le d a y ,  W .  G . (1 9 7 5 ) :  “Harvesting in m a tr ix  p o p u la t io n  m o d e ls . ” Bio­

metrics, 3 1 ,  189 -200 .

2 1  E n r ig h t ,  N. a n d  O g d e n ,  J. (1 9 7 9 ) :  “ A p p l ic a t io n  o f  transition  m a tr ix  m o d e ls . ” 

Australian J. of Ecol, 4 , 3-23.

99  Eeller  W  (1 9 6 8 ) :  An Introduction to Probability Theory and its Applications. 

Volume I. 3 rd  ed .,  N ew  Y ork .

23. F iv a z ,  B . H. a n d  N orva l,  R . A .  I . ( 19 9 0 ) : “ Im m u n ity  o f  the o x  to  the  b row n

e a r  t ick  Rhipicephalus appendiculatus(N e u m a n n ) . ” Epenmental and Applied

Acarology, 8 , 51 -63 .

24. G a n t m a c h e r ,  F . R .  (1 9 5 9 ) :  Applications of the Theory of Matrices ( tra n s la ted  

b y  J .L .  B r e n n e r ) .  In tersc ien ce , N ew  Y ork.

219



25. G a r d in e r ,  W .  P., G e tt in b y .  G . ( 1QS1): "M o d e ls  based  

o p m e n t  plia.se o f  the  sh eep  tick Ixodes nanus L..." 
9 , 75 -S6 .

on  w eather  for  the devel- 

Veterinary Parasitology,

2G. G e t t i n b y  G ., H o p e -C a w d e r y .  M. J. and  G ra inger , .J. N. R . (1974 )-  “ Fore 

e a s t in g  th e  in c id e n c e  o f  Fasaoliasis from  c lim ate  d a ta . ’’ Int. J. Biometeor 
1 8 ( 4 ) ,  3 1 9 -3 2 3 .

27. G e t t in b y ,  G .,  B a ird e n ,  K .,  A r m o u r ,  .J.. Usher, C. B. (1979 ):  “ A  p re d ic t io n  

m o d e l  fo r  b o v in e  O ste r ta g ia s is ."  Veterinary Record , 1 0 5 ,  57-59

28. G e t t in b y ,  G . a n d  M c C le a n ,  S. (1979 ):  “ A m a tr ix  fo rm u la t ion  o f  the life cyc le  

o f  l iv e r  f lu k e ."  Proc. R. I. A.. 79 . Sect. D, 155-167.

29. H a d e le r  K . P. (1 9 8 2 ) :  Integral equ a tion s  for in fections  w ith  d iscrete  parasites: 

H o s ts  w ith  L o tk a  b ir th  laws. In: Levin , S .A . and  H allam , T .G .  (ed s .)  (1984 ).  

M a t h e m a t i c a l  e co lo g y .  Lent. Notes Biomath. , 5 4 ,  356-365, Springer-V erlag  

B e r l in ,  H e id e lb e r g ,  N ew  York.

30. H a d e le r  Iv. P. a n d  D ie tz  K. (1983 ):  “ N on linear  h y p e r b o l ic  partia l differential 

e q u a t io n s  fo r  the  d y n a m ic s  o f  paras ite  p op u la t ion s .  Comp. Maths. Appl.,

9 , 4 1 5 -4 3 0 .

31. H a d e le r  K .  P. a n d  D ie tz  K . (19S4): “ P o p u la t io n  d y n a m ics  o f  k illing parasites  

w h ic h  r e p r o d u c e  in the h o s t ."  Journal of Mathematical Biology, 2 1 ,  45-65 .

32. H a ile ,  D . G . a n d  M o u n t ,  G. A . (1 9 8 7 ) :  “ C o m p u te r  s im u lat ion  o f  p o p u la t io n  

d y n a m i c s  of L o n e  star  tick, Amblyomma americanum (Acan: Ixodidae).” J. 

Med. Entomol., 2 4 ,  356 -369 .

33. Hass el, M . P. and P a ca la ,  S. N. (1990): "Heterogeneity and the dynam ics o f 

liost-p arasito id  interactions." Philosophical Transactions of the Royal Society

of London, B 3 3 0 ,  203 -320 .

3 4 . H o r n ,  R .  A .  a n d  J o h n s o n ,  C . A . (1 9 8 5 ):  Matrix Analysis. C a m b r id g e  U n iver ­

s i ty  P r e s s ;  L o n d o n ,  N e w  Y ork , N ew  R och e lle ,  M e lb o u rn e ,  Sydney .

3 5 . J o h n ,  F .  ( 1 9 7 8 ) :  Partial Differential Equations. S p r in ger -V er lag  N ew  Y ork , 

H e id e lb e r g ,  B er lin .

36. K e n d a l l ,  M . G . a n d  S tu art ,  A . (1 9 5 8 ) :  Advanced Theory of statistics

Volume I. H a fn er ,  N ew  Y ork .

220



37. K r e t z s c l im a r  M . ( 19S9a): “ A renewal equation  w ith  a b ir th -d e a th -p ro ce ss  as a 

m o d e l  fo r  p a ra s it ic  in fe c t io n s .” Journal of Mathematical Biology. 2 7 ,  191-221.

38. K r e t z s c l im a r  M . (1 9 S 9 b ) :  “ Persistent so lu tions  in a m o d e l  for p aras it ic  in fec­

t i o n s . ” Journal of Mathematical Biology. 2 7 .  549-573.

3 9 . L a n c a s te r .  P. a n d  T im en etsk y . M . (19S5): The Theory of Matrices with Ap­

plications. A c a d e m ic  press. INC. Sun D iego , New N oik , Berkeley, B o s to n ,  

L o n d o n ,  S y d n e y ,  T o k y o ,  T o ro n to .

40  L e fk o v it r h ,  L. P. (1 9 6 5 ) :  “ T h e  s tu d y  o f  p o p u la t io n  g ro w th  in o rgan ism s

g r o u p e d  b y  s ta g e s . ” Biometrics. 2 1 .  M o .

41 L e fk o v i t r h  L. P. (1 9 6 7 ) :  “ A th eo ie t ica l  eva luation  o f  p o p u la t io n  g ro w th  after 

r e m o v in g  in d iv id u a ls  fro m  s o m e  age g r o u p s .” Bull. Ent. Res.. 57, 437-445.

9 L es lie  P  H (1 9 4 5 a ) :  “ O n  the use o f  m atrices  in certa in  p o p u la t io n  m a th e ­

m a t i c s . ” Biometnka. 3 3 ,  162-212.

4 3  L es lie  P  H ( 1 9 4 5 b ) :  “ O n  the use o f  m atrices  in certa in  p o p u la t io n  m a th e ­

m a t i c s . ” Biometika, 3 5 ,  213-245.

14 L es lie  P  H. (1 9 4 8 ) :  “ S o m e  further notes  on  the use o f  m a tr ices  in p o p u la t io n  

m a t h e m a t i c s . ”  Biometnka. 3 5 .  213-245.

L es lie  P H (1 9 5 9 ) :  “ T h e  p rop ert ies  o f  certa in  lag typ e  o f  p o p u la t io n  g ro w th  

' a n d  th e  in f lu e n ce  o f  an ex tern a l r a n d o m  fa ctor  on  a n u m b e r  o f  such  p o p u la ­

t i o n .M PysioL Ecol. 3 2 ,  1 5 1 - lo 9 .
_  n ( -i (-MO V “ O n  the generation and g ro w th  o f  a p o p u la t io n .  Sankya,

46. L e w is  E. L». ( J-

6  9 3 -9 6
’ ff R C f 1984): “An extension of the Leslie matrix model to include

47 . L o n g s t a  , ) e r i o d . ” A ustra lian  Journal of Ecology, 9 ,  289-293.

a  v a r ia b le  n n m a t u i  1^ ^  ^  Yonnp;, A  S . (1993 ):  “ P re l im in a ry  analysis  o f

48 . 'M e d le y ,  G .  F . ,  e iry ,  Thcilcria in eastern  A fr ic a . ” Parasitology,
th e  t r a n s m is s io n  dynam ics o

1 0 6 , 2 5 1 - 2 6 4 .  o (S6 ): The Dynamics of Physiologically
n. A/f frr T A  J an d  D iek n ian n ,49 . M e t z ,  J. a . o . cum ^  u i ; „

structured Populations. S pnngei-V «i ag,



50. M o u n t ,  G . A . ,  H aile , D. G .. B a rn ard . D. R. and  D aniels , E. (1 9 9 3 ):  “ N ew  ver­

s io n  o f  L S T S I M  for  c o m p u te r  s im u lation  o f  Amblyomma americanum (Acari: 
Ixodidac) p o p u la t io n  d y n a m ics .  J. Med. E ntom ol3 0 ( 5 ) ,  S43-S57 

o l .  N a m k o o n g ,  G . et al (1 9 7 4 )  “ E x t in c t ion  probab il it ies  an d  the ch a n g in g  age 

s t r u c t u r e  o f  r e d w o o d  forests. The American Naturalist, Vol. 1 0 8 ,  N o  961  

355-368.

52. N e w s o n ,  R . M .,  Cl liera, .J. Y ou n g . A. S., D olan , T . T . ,  C u n n in g h a m , M . P. 
a n d  R a d le y ,  D. E. (19S 4):  “ Survival o f  Rhipicephalus appendiculatus(AccL- 
r in a : I x o d id a e )  a n d  p ers is ten ce  o f  Thcilcria parva( A p ico m p le x a iT h e ile r i id a e )  

in th e  f ie ld ."  International Journal for Parasitology, 14 ,483 -489 .

53. N o k o e ,  S. (1 9 9 2 ) :  “ M o d e l l in g  for tin* m a n a g em en t and  con tro l  o f  ticks: Special 

c o n s id e r a t io n s  a n d  I C I P E 's  a p p r o a c h ."  Insect Sci. Apphc., 1 3 (4 ) ,  545-549.

5 4 . N orvaJ , R .  A .  I., Perry , B. D. and  Y ou n g , A . S. (1992 ):  The Epidemiology 
of Theilenosis m Africa. A c a d e m ic  Press; L o n d o n ,  San D iego , N ew  York, 

B o s t o n ,  S y d n e y ,  T o k y o ,  T o ro n to .

5 5 . P e g r a m  R . G .,  L e in ch e  J.. C h izyuk a . H. G. B., Sutherst, R. W . ,  F lo y d ,  R . B ., 

K e r r ,  J. D . a n d  M c C o s k e r  P. J. (1989 a ):  “ E co log ica l  a sp ects  o f  catt le  tick 

c o n t r o l  in ce n tra l  Z a m b ia ."  Medical and Veterinary Entomology, 3  307-312.

56. P e g r a m  R . G .,  L e m c h e  J., C h izyu k a , H. G. B ., Sutherst, R . W . ,  F lo y d ,  R . B ., 

K e r r ,  J. D . a n d  M c C ’osk er  P. J. ( 19S9b): "E ffects  o f  ticks co n tro l  on  livew eight 

g a in  o f  c a t t l e  in cen tra l  Z a m b ia ."  Medical and Veterinary Entomology, 3 ,  313-

320 .
57. P e g r a m  R .  G .a n d  B a n d a  D . S. (1 9 9 0 ) :  “ E c o lo g y  and  p h e n o lo g y  o f  ticks in 

Z a m b ia :  D e v e lo p m e n t  an d  surviva l o f  free -liv in g  s tages .”  Experimental and 

*Applied Acarology, 8 , 291 -301 .

58 . P e g r a m  R .  G . ,  J a m e s ,  A . D ., O o ste rw ijk ,  G. P. M .,  K i l l o m ,  K . J., L em che , 

J . ,  G h i r o t t i ,  M „  T ek le ,  Z „  C h izyu k a , H. G . B „  M w a se ,  E. T .  and  C h izhuka 

F . ( 1 9 9 1 ) :  “ S tu d ie s  o n  the e c o n o m ic s  o f  ticks in Z a m b ia .” Experimental and

Applied Acarology, 1 2 ,  9-26.

999



59. Perry, J. N. and Taylor, L. R. ( 19S6): “Stability ot real in teract in g  p o p u la ­
t ion s  m  s p a ce  an d  tim e: im p lica tion s , a lternatives and nei

Journal of Animal Ecology, 5 5 . 1053- 1 0 GS.

GO. P ie lo u ,  E. C. ( 1 0 G0 ): .4 n introduction t<

York.

?gative b in o m ia l  kc .” 

mathematical ecology. W iley , N ew

25
(ft

'j
O
“1

>
5
O )
u

I

01. P ie lo u .  E . C . (1077  ): M athem atica l Ecology. .1 o\\n W Wev a n d  S on s .  N ew  

Y ork , C h ich e s te r ,  B r isb a n e , T oron to .

G2. R a n d o lp h ,  S. E. (1 9 9 3 a ) :  “ P o p u la t io n  d y n a m ics  and d en s ity -d ep en d en t  sea­

s o n a l  m o r t a l i t y  ind ices  o f  the tick Rhipicephalus appendiculatus in east and 

s o u t h e r n  A f r i c a . ” Medical and Veterinary Entomology (S u b m itte d ) .

G3. R a n d o l p h ,  S. E. (1 9 9 3 b ) :  “ C lim ate , satellite im agery  and  the seasonal abun- 

d a n c e  o f  the  tick Rhipicephalus appendiculatus in southern  A frica : A  new 

p e r s p e c t i v e . ”  Medical arid Veterinary Entomology, 7, 243-25S.

G4 . S a n d b e r g ,  S., T a m a ra .  E. A . and Sp iehnan  A. (1992 ):  “ A  com p reh en s iv e  

m u lt ip le  m a tr ix  m o d e l  rep resen tin g  the life cyc le  o f  tick that transm its  the 

a g e n t  o f  l y m e  d ise a se ."  Journal of Theoretical Biology, 1 5 7 ,  203- 220.

65. S a r u k h a n ,  J. a n d  G a d g il ,  M . (1974 ):  “ Studies  on  p lant d e m ogra p y . Ranun­

culus repens L., R. bulhosus L. and R. acris L. I l l  A  m a th e m a t ica l  m o d e l  

i n c o r p o r a t i n g  m u lt ip le  m o d e s  o f  r e p r o d u c t io n .” J. Ecol., 6 2 ,  921-936.

66  S e n e t a  E. (1 9 8 1 ) :  Non-negatvc Matrices and Markov Chains. Springer-

V e r la g ;  N e w  Y ork , H e id e lb erg ,  Berlin.

0 7  S h o r t ,  N. J., N o rv a l ,  R .  A . I., (1981 ):  "R e g u la t io n  o f  seasonal o c c u rr e n c e  in 

the tick Rhipicephalus appendiculatus N eu m an n , 1901.” Trap. Amm. Hlth.

Prod., 1 3 ,  19-26 .

68  Short, N , J ., F loy d , R . B .. . W  R- A . I ,  » < '  «•  "  W
. . W n n d i tv  and  survival o f  d eve lop m en t  stages o f  the ticks

“ D evelopm ent rates , t e c u n a n y  ana
, Boovhilus decoloratus and  B.microplus u n d erRhipicephalus appendiculatus, JJoopt

T „ .  , | » Exvenme and Applied , 6, 1
f je ld  c o n d i t i o n s  In Z im b a b w e .

69  S h o r t  N . J .,  F lo y d ,  R .  B .,  N orva l,  R . A . I., and Sutherst, R . W .  (1 9 8 9 b ) :  “ Sur-

v iva l a n d  behaviour o f  unfed stages o f  the ticks Rhipicephalus appendiculatus,



Dooplniu, decoloratus and D.muroplus under field conditions in Zimbabwe.” 
Experimental and Applied Acaroloyy. 6. 215-236.

/0 .  Stumer, R. E. et al [ 1975): “ S im u la t ion  o f  tem p era tu re  d e p e n d e n t  deve lop -

n ie n t  in p o p u la t i o n  d y n a m ic s  m od e ls .  C'anad. Entomol. 1 0 7 ,  1167-74 

/ l .  S u t h e r s t ,  R .  \\ . (1 9 8 1 ) :  “ Is tin* A u stra lian  pest m a n a g e m e n t  approach to

t ick  c o n t r o l  re levant to A frica? '*  In: Tick biology and Control: Proceedings 

of an International Conference Held in G ra lia m sto w n , 27- 29 January, 1981 

E d i t o r s ,  G . B . W h it e h e a d  and  J. D. G ib so n ,  T ick  R esearch  Unit, R h o d e s  

U n iv e rs i ty ,  G r a l ia m s t o w n .  pp . 79-85.

S y k e s ,  Z. M . (1 9 6 6 ) :  “ T h e  variance  o f  p o p u la t io n  d y n a m ic s . ” A d isserta ­

t io n  s u b m i t t e d  to  the J o h n  H opk ins  l  n ivers ity  for the degree  o f  D o c t o r  o f  

P h i l o s o p h y .  Balt mo re. Maryland.

73. S y k e s ,  Z. M . ( 1 9 6 9 ) :  “ O n  d iscre te  s ta b le  p o p u la t io n  th eory ." Biometrics, 2 5 ,

72

285-293.
74 . Usher, M. B. (1966): “A matrix approach to the management of renewable 

resources, with reference to slecfion forests. J. Appl. Ecol., 3, 355-387.
7 5 . Usher, M . B. (1959): “ A matrix model for forest management." Biometrics,

25, 309-315.
70. Vandermeer. .J. H. (1975): " On the construction of the population projection 

matrix for a population grouped in unequal stages. ’ Biometrics, 31, 239-242.
77. Venables, W. N. and Ripley. B. D. (1994): Applied Statistics with

S-PLUS. S p r in g e r -V e r la g ,  N e w  \ ork , In , .

78. Woodward, I. O. (1982): "Modelling population growth in stage- grouped
organisms: a simple to Leslie Leslie model.” Australian J. Ecol., 7 , 389-394.

7 9 . Van an, Y „  Harvey, J. CL and Stinner. R. E. (1990): “ Relation of transi­
tion probabilities in the Leslie model to those from experimental cumulative 
distributions.” Res. Popul. Ecol., 32, 105-177.

80 Zivkovic, D., Pegram R.G., .Jongejan F., and Mwase E.T. (1986): “Biology of 
' R h i p i c e p h a l u s  appendiculatusand R.zaand production of a fertile

hybrid under laboratory conditions.” Experimental and Applied Acarology, 2

2 8 5 -2 9 8 .

224


