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SUMMARY OF CONTENTS

The present thesis is concerned with the development of mathematical models
for structured population species. The structuring or classification may be due to
age, stage of development or a combination of both in a more general perspec-
tive. The class of matrix population models are examples of such models and have
been the subject of theoretical and practical study for many years. In this work
attention is focussed on vector population species which are carriers of disease
agents for animals. This has therefore necessitated the investigation of a class of
models which deal with the interaction of vector population species and the host
population. In particular the study combines both discrete and continuous popu-
lation models in order to achieve its goal. Multi-dimensional coupled differential

equations have proved handy in this respect.

Chapter | gives a general introduction to the work. In section 1.1 an intro-
ductory description of mathematical population models is given. In section 1.2 an
overview of preliminary concepts and notations are introduced. In this section a
brief description of matrix population models and continuous time models is also
given. A Dbrief review of relevant literature is presented in section 1.3. In this sec-
tion, literature review specific to a stage structured population species, the brown
ear tick is also given. Sections 1.4 and 1.5 deal with the statement of the problem
together with the specific objectives of the study. In section 1.6 the importance of
this study is briefly mentioned. In the last section of the chapter the methodology
of how data was acquired and analysed is given. This section is important because
the study involved a practical application to validate the models. The data was

for the three host brown ear tick the causal vector for East Coast fever.

Chapter Il reviews basic models for age structured populations. After a brief
introduction we present the Lotka’'s Integral equation in section 2.2 where age
and time are treated as continuous variables. The solution to this equation is
reviewed in section 2.3 first by elementary mathematical methods in sub-section
2.3.1 and by Laplace transforms in sub-section 2.3.2. In particular it is shown
that the solution has a real root which determines the direction of increase of a

population. The asymptotic behaviour of the solution is given in sub-section 2.3.3.
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In section 2.4 we review the partial differential equation describing the evolution
of the population density n(x,t) which is known as the McKendrick-von Foester
equation. This model is a hyperbolic initial boundary value problem. Section 2.5
deals with the discretized age and time matrix model which requires a thorough
understanding of the life table survivorship function, presented in sub- section
2.5.1. The actual formulation of the matrix model is given in sub- section 2.5.2. It
is in this section where we demonstrate the connection of the matrix model and the
McKendrick von Foerster model. One of the core problem in application of matrix
population models is in the estimation of the matrix inputs. The derivation of the
inputs is discussed in section 2.6 for two types of populations namely the birth
flow populations and birth pulse populations. These are presented in sub-section

2.6.1 and 2.6.2 respectively.

Chapter 111 deals with the time homogeneous matrix model and its properties.
After an introduction in section 3.1 the model is presented in section 3.2 for an age
structured population. The chapter brings in the idea of the complete population
projection matrix which includes both pre- and post- reproductive individuals. It
Is shown that after a long enough time it is the pre-reproductive part of the popula-
tion which determines the projection matrix of interest. Section 3.3 outlines a list
of properties of the population projection matrix. The theory of directed graphs
was used quite extensively to achieve this. The Perron-Frobenius theorem for both
primitive and irreducible matrices is generally stated since it is important in the
study of the limiting properties of the population projections. Sub- section 3.3.1
thus talks about the stable population theory showing the asymptotic behaviour
of the population structures. It is shown that the limiting population structure is
independent of the initial population structure. This property is egordic in nature.
Upto section 3.3 the population is structured according to age but the aim of the
study is to generalise the classification. Thus in section 3.4 we present a generalized
matrix model where classification is according to both stage of development and
according to age within the stage. This model is more general and can be used to
study the dynamics of many population species such as insects, arthropods, plants

and many more. Estimation of the matrix inputs for such a model is discussed in



section 3.5. In sub-section 3.5.1 we consider estimation from transition frequency
data while in sub-section 3.5.2 we consider estimation from stage duration data.
Finally in sub-section 3.5.3 we consider estimation from experimental cumulative
distributions. The connection between the transition probabilities in the classi-
cal Leslie model and those from experimental cumulative distributions is given in

section 3.6.

In chapter IV we present a mathematical model for the brown ear tick which
is a three host tick and is a vector for the East Coast fever(ECF). It is a stage
structured population. In section 4.1 we present several modeling approaches in-
cluding terminology and definitions. In section 4.2 we present a continuous time
compartmental model, cyclic in nature. The model is related to that by Metz and
Diekmann(1986) for physiologically structured populations since individuals have
to age within a stage with reference to chronological time before transiting to the
next stage. The characteristic polynomial for the system is derived in this section
and the dependence of the spectral bound on various population parameters is
discussed through the implicit function theorem. We also derive the general per-
sistent stage structure in this section. Section 4.3 gives a discussion on vector-host
interaction where an additional equation describing the dynamics of the host pop-
ulation is added into the system of the n coupled differential equations mentioned
above. Conditions for population increase or decline and co-existence of the pop-
ulation species are discussed. The reproduction number for the tick population as
a function of host density is also discussed. Section 4.4 gives a discussion on the
stability analysis of the model. Section 4.5 is on the phenomenon of competition
of ticks on host which acts as a regulatory mechanism for the population species
not to increase without bound. In sub-section 4.5.1 we give a discussion of gen-
eral cyclic triangular systems with respect to density dependence on mortality and
transition rates. An alternative method of deriving the reproduction number is
also presented. In sub-section 4.5.2 we present a discussion on positive invariance
paying attention to the qualitative behaviour of the system, distinguishing where
the system is dissipative. In order to establish dissipativeness we find a bounded

set that attracts all orbits and which is positive invariant. Sub-section 4.5.3 is on

Xi



the connection between spectral radius and spectral bound; while we finish this
chapter with a simulation experiment of the model based on the brown ear tick
data.

In chapter V we consider the spatial distribution of the tick vector populat-
ion. Section 5.1 is an introduction to this topic. Section 5.2 discusses on host
distribution of vector parasites then we derive the model in sub-section 5.2.1. The
null hypothesis that the on host distribution of parasites is in general asymmetric
and follows the negative binomial distribution is discussed in detail. Sub-section
5.2.2 discusses the parameter estimation in the model by the MLE method, as-
suming the parameters are functions of several host-specific attributes. In section
5.3 density dependence and host heterogeneity on susceptibility to parasites is dis-
cussed. The effect of this on the stability of the parasite-host model is discussed
in sub- section 5.3.1. Section 5.4 is about the effect of on host parasite load on the
reproduction ratio of the parasite population. The general model is discussed in
sub-sections 5.4.1 and 5.4.2. Section 5.5 suggests a possible area of future study
aiming towards a general stochastic dynamical model particularly with respect to
vector parasite populations such as ticks.

In chapter VI we demonstrate an application of the already developed theories
to the brown ear tick( R. appendiculatus) based on Zimbabwe data. The application
is based on a time dependent multiple matrix model incorporating seasonality and
heterogeneity in the vegetation. Section 6.1 gives a general introduction while the
model is given in section 6.2. In section 6.3 we deal with the problem of matrix
parametrization estimating all the required matrices in the system stating all the
assumptions made. Section 6.4 is on sensitivity analysis of the model parameters
and conclusions. In chapter VII some comments regarding the significance of the
results arrived at in this thesis are made. Some areas which we think need further

investigation are also pointed out.
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CHAPTER I
INTRODUCTION

1.1 Matrix Population Models

The use of matrices in population mathematics has been extensively studied
in relation to various population species. These include animal, human, insect,
plant or tree popultions. The elements of the projection matrix are functions of
survival and fertility rates, of the population in question. The basic classification
of individuals in the population is by age. In this case the entire population is
classified into s age classes say 1,2,...,s. The maximum age class is thus [s —1, s).
Such a model is called an age structured population model. Similar models based
on other modes of classification can be defined. The assumption in age structured
models is that age carries most of the information about the fertility rates, f;(t),

and survival rates p.(t) for each age group [z — 1,z) or age class at time ¢.

In a time homogeneous or time independent model, we assume that fertility
and mortality rates are time independent. If we let 77(t) denote the age structure
at time ¢ then the structure 72(¢ + 1) at time ¢ + 1, depends on 7i(t) through a con-
stant population projection matrix M. This dependence can be used recursively
to generate future population structures for example T time periods later via the
matrix MT the Tt power of M. However this is true only if M is strictly time
independent which in practice is not the case. The assumption of time indepen-
dence is possibly true only for very short time scales and conditions affecting the

system remaining constant over time.

Different modes of classification apart from age may be more appropriate be-
cause that classification attribute may give more information regarding the relevant
population parameters than age. For example in the case of renewable resources,
such as forests, classification according to size may be more precise. The aim of
modelling such a population this way could be for the purpose of formulating sound
management and harvesting strategies. For insect/arthropod population species,
classification according to stages of development such as egg, larvae, pupa, adult
etcetera could be more ideal. Thus the classical Leslie model structured by age

needs a more general treatment to cater for the different modes of classifications.



This is one of the aims in the current study. We address this generalisation for

both discrete and continuous class of population models.

The time independent or homogeneous class of population models are useful
when we consider a population species living in an environment where there is no
food shortage and other physical conditions affecting the system are constant over
time. Under such conditions the matrix M or the population evolution operator
in the case of continuous compartmental models, possesses standard properties
which may be exploited to infer about the stable population structure and its rate
of growth. The implications of the Perron-Frobenius theorems are among some of
these properties. These properties and their generalisation are also a subject of

this study for both discrete and continuous class of models.

In an open environment however, the population parameters for any biological
population are bound to be affected by external factors such as climatic conditions,
migration, epidemics, environmental and many more. Such factors ought to be
incorporated into the model, to make it more practical and realistic. This implies
that, the projection matrix M(t), at time ¢, may not necessarily be the same as
M(t + 1), that at time ¢ + 1. This means that the recursive relation between the
population structures 7i(t) and 7i(¢ + 1) is no longer the same as that for the time
independent case. In the current study a time dependent model is developed in
relation to the life cycle of the brown ear tick (R. eppendiculatus) which is the
causal vector for East Coast fever in cattle and other ungulates. In this particular
application, time dependence is brought about by several factors among them

seasonal effects and differences in vegetation types in the location of interest.

In dealing with vector parasite populations one ought to study the aspect of
vector-host interaction systems. This aspect is studied in detail in the current
study and is given prominence for both discrete and continuous models. Density
dependence is one aspect which we study in detail particularly for the continuous
time models. We also use the notion of hybrid or semi-stochastic models to achieve
the goal. This necessitated the need to investigate the null hypothesis that on host
vector parasite distribution is asymmetric and is negative binomial. Stability of

the vector-host model has also been studied in detail in the current study.
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We start by studying the time independent age structured Leslie model and its
relation with the continuous time deterministic medels. We develop a more general
stage structured model applicable to almost any biological population species. We
then study the model in relation to a stage structured population , the brown ear
tick a vector population for the East Coast fever disease in cattle. Related to this
we develop a continuous compartmental model for a general n stage structured
population. The brown ear tick life cycle is treated as a special case. A time
dependent matrix model is then developed for the species incorporating seasonaliy
and heterogeneity in vegetation types in the location of interest. Then we study the
" vector-host interaction models in detail bringing in the idea of semi-stochasticity
by incorporating the on host distribution of the vector parasite by means of a
system of coupled differatial equations. We then study the stability of the vector-
host model in detail. Finally the aim of all the above is to be able to comment or

contribute in the control strategies and how to improve on them.

1.2 Preliminary Concepts and Notations

Consider a population structured into s age classes which we. denote by
1,...,n. The age distribution at time ¢ + 1 given that at time ¢ can be expressed
as a system of s linear equations as will be seen shortly. Precisely the age groups
are, (0, k), [h,2h), and so on upto the last age group given by [(s — 1)k, sh) where
h is the size of one model time step.

Let

n;i(t) denote the number of individuals alive in the age group ¢ to 7 + 1 at time

t.

pi;(t) denote the probability, that, an individual in the j to j + 1 age group, at
time ¢, will be in the age group 7 to ¢ + 1, at time ¢t + 1.
and
f1i(t) denote the reproduction rate, in the time interval ¢ to t+1 per individual,
aged (¢ — 1)h to th at time ¢t whose offsprings will be in age group 1 at
time ¢ + 1.
For simplicity we denote p;;(t) by p;(¢) and the fy;(t) by f;(t),7 =1,...,s. Where
pj(t) denotes the transition probability from age class j to age class j + 1 and f;(t)

3



denotes the fecundity rate for individuals in age class j. Working from an arbitrary

origin of time ¢, the age distribution at time ¢ + 1. will be given by
ni(t +1) = piy(t)nima(t) =205 (1.1a)

and

m(t+1) =Y flt)ni(t). (1.1b)
i=1

The assumption here is that the size of one age interval is equal to the size of one
model time step. The s equations in Eq.(1.1a) and Eq.(1.1b) can be written more

compactly in matrix notation as
n(t+ 1) = M(t)r(t) (1.1c)

where 7i(t) and 7i(¢ + 1) are the vector population structures at time ¢t and ¢ + 1
respectively. The matrix Af(t) is square of order s with elements f;(t), : =
1,...,s in the first row and p;(t), ¢ = 1,...,s — 1 in the main subdiagonal.
The quantities f;;(t) > 0 may be zero for some age classes depenaing on the
reproductive biology of the population in question and on the relative span of the
pre-reproductive and post-reproductive ages. Note that if fiy = 0 for all I > &
and fix > 0 that is a population with s — k post-reproductive age classes, then
|M(t)] = 0 that is the complete population projection matrix is non-singular.
Equation (1.1¢c) can be used to recursively generate the population structure,

T time periods later as
At +T) = [1‘[ M(t + 7)]A(2) (1.2)
j=0

Equation (1.2) is important if for example we say there are k seasons each of
duration 7; and the season specific matrices are M,, and > 7, = T. Then the

population structure at the end of the complete season cycle is

At +T) = [[[ M-]5@)



If 7; is equivalent to r; model time steps of size h each and the season specific

matrix per unit model time step is M;, :=1,2,...,k then

k
it +T) = HM,"'} () (1.3)
1=1

where 7; = hr; and }_ 7, = T. A typical case is where T represents a one year
period and k the number of seasons per year.
If we let n;j(t) denote the number of individuals moving from age class j into

age class ¢, in a unit model time step, then the maximum likelihood estimate of

pi;(t) is given by
ni;(t)
n;(t)

The basic data for the estimation of Eq.(1.1a) and Eq.(1.1b) is derived from a

pij(t) = (1.4)

form of life table relevant to the kind of biological population under study. The
fertility or fecundities per age class, fi;(t) for j = 1,...,s are usually derived from
a table of age specific fertility or reproductive rates appropriate to the population.

It was stated that for the deterministic time independent model, the projec-

tion matrix is assumed to be constant over time, so that
Mit)y=M Vit
Equation (1.1c) therefore becomes
n(t+1) = Mn(t) (1.5)

This equation can now be used to calculate the population structure T time periods

later as

At+T)=MTA(t) T=1.2,... (1.6)

Under such optimal conditions and if data is available over T time periods later,

the MLE of p;; is then given by

b = > Mii(t)
’ Z;r:l nJ(t)

5
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and the fertility rates are taken as the average fertility rates, over the T time

periods as

h = B= 1la

After a population has been in existence for a long enough time such that the
post-reproductive population does not contribute in the reproduction process the

matrix can be partitioned symmetrically as

M= (B °c) <L9'

where
A is a square matrix of order k

B is of order (s —k)xk
C is also square of order s —k

O is a zero matrix of order kx(.s —Kk)

It can be shown that

Al
1.10
ME A B, ) (%29

where the function ft{A,B,C) is given by
t-1
ft(A.B.C) = Y~ c3 '

=i
For large t, the submatrix A remains the only one which is principally of inter-
est for growing population because it involves age classes in the pre- reproductive

and reproductive age groups. It can be shown that

A\ = (-1)"i+'(P2IP32 meePk,k-\f\K) (1.11)

Therefore the matrix is non-singular and hence there exists an inverse to the ma-
trix. The matrix can then Me used to generate the forward process {Ab?”)} of the
population structures with time. We shall then go ahead to derive a general ma-
trix model tor a stage structured population where individuals in a stage undergo

the aging process before transiting into the next stage.

(i.s)



In general let a population’s life cycle consist of k¥ developmental stages of
variable residence times T;,i = 1,...,k. By residence times we mean the length
of time an individual stays in a stage before transitting to the next stage. We
calculate the quantities ¢; = T;/h which gives the number of age classes in stage :
for i,...,k. Now let us consider an individual of age class j in stage ;. We assume
that this individual can survive the interval [t,¢ + 1) and transit to the next stage
with probability

Pij = SijM; (1.12)

or transit to the next age class in the same stage with probability
mher; = sii(1=71;5) (1.13)

We remark here that ! j is the conditional probability of transitting to stage ¢ +1,
given it survives and s;; is the probability that an individual will survive over a
time interval. This individual reproduces f} ; offsprings who survive and enter age
group 1 of stage one just before or at time ¢ + 1. The population structure specific

to stage z is given by
Ait) = (ni(t),...,np, (1) i=1,...,k (1.14)
and the entire population structure is given by
A(t) = (FA(2), ..., wi(t), ..., me(t)) (1.15)

A generalization to the matrix A is then given by

/(F1+A1) F, F ... Fr_, Fk\
P, A, O ... O 0
o P, Ay ... O 0
A* = S : (1.16)
0] O O ... 4, O }
\ 0 0 0 .. P, A
where the matrices
Fi, 1 = 1,...,k represents the reproduction process for the different age

classes in the population




A;, t=1,...,k represents the intra stage dynamics
P;,, i:=1,...,k— 1 represents the interstage dynamics.

Matrix A* is the generalised projection matrix for a general n stage population
species. The matrix takes a specific form depending on the population species in

question and the prevailing assumptions.

The Compartmental Model
Let the variable z,,...,z, denote the number of individuals in stage 1 to n

respectively. Let p; fori =1,...,n—1, denote the rate of transition from stage 7 to
i + 1. Let us assume the p’s are constant. Further let the stage specific mortality
rates be y; for ¢ = 1,...,n. The model is a cyclic chain model given by the system

of linear differential equations with constant coefficients as

1 = foa — 171 —
Ty =pim1Tic) —PiTi—piT; 1=2,...,n—1

Tn = Pn—-1Tn—-1 — HUnTn

where z; for ¢ = 1,...,n denote the derivative of z; with respect to time. The
model can be written in matrix notation in a similar manner as in the discrete

case as
7= AT (1.17)

where the matrix A is derived from the model parameters and coefficients and -
denotes the derivative with respect to time for an n dimensional vector with its ¢-
th element equal to z;. Vector-host interaction is introduced via an extra equation
denoting the rate of change with time for the host population. This equation can

be written as

y=r—dy—" Ty (1.18)

where y denotes the total host population density, r is the rate of low of hosts in

a given area and ¢ is given by

€=(c1,02,...,cn)T
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denoting the effects of the different stages of the vector population to the estab-
lishment of the host population. Equation (1.17) is then modified to include an
extra component to take care of the host population in the system. The combined
system of equations contained in Equations (1.17) and (1.18) are then utilized fully

to investigate the stability of the vector free and infected equilibriums respectively.

On Host Distribution

Here we differentiate the host population by the number of parasites they

carry. We denote by ix the number of on host type k parasites. These are found
on h;, host individuals and the total host population is denoted by variable H.
The variable Y will now denote the total number of parasite individuals. We let
m denote the mean on host type k parasite load, = will denote the dispersion or
the variance to mean ratio of the on host parasite distribution. This quantity tells
us about the dispersion of the on host parasite individuals in a community of a
host population. We assume that all these are dynamic variables and we can talk
of their derivatives with time.

The model parameters include b;, which gives the rate at which hosts carry-
ing ¢y parasites die. This class of hosts reproduce at rate a;, and their relative
susceptibility is s;, . Parasites on a host carrying ¢y parasites die at a per capita
death rate u;,. The per capita reproduction rate of type k parasites is A;,. We
modify this definition to mean also the moulting rate for type k parasites where
in general k will now denote the off host developing stage. Hosts with ¢} parasites
acquire new parasites at the rate given by ¢;,. New born hosts are assumed to be
parasite free. The system of equations describing how hosts change state is thus
given -

ho = —(bo + do)ho + p1h1 + Y aihiy (1.20)
i=0

and

ilik = _(bik + ¢5k + ik“ik)hi"
+ Gk + Dpig4rhivr + dis—rhip—1 i =1,2,... (1.21)

where iz,'k denotes the derivative of h;, with respect to time. We next define the

9



aggregated variables

Hi = Z hiu Y = Z ikh,'k, E, = Z ik/\ik h,‘k (1.21)
1, =0 1,=0 =0

where

Hy: denotes the total host density carrying parasites type k.

Y:: denotes the total number of type & parasites harboured by the total host

community.

E:: denotes the total number of moulted type k parasites who await to attach

on to passing hosts.

We define g( H) as the probability that an off host individual will attach onto a
host as a function of host density H. This function will necessarily be an increasing
function of H. The product Hyg{H}) will then give the intensity of hosts that are
susceptible to type k parasites in a given area and it is also an increasing function

of Hy. We further define more aggregated variables as follows

oo x) oo
Hy, = Z bivhi,, Ha, = z ai hiy,  Ha = Z Sichiy (1.22)
ir=0 ix=0 =0
and o oo
Vie = 3 dkbihiy, Yoo = D dapichi, (1.23)
1, =0 iy =0
where

Hy,: is the total number of hosts dying per unit time due to type k parasites

H,,: gives the total number of hosts born per unit time in the presence of type
k parasites

H,,: gives the total host density per unit time susceptible to type k parasites

Ys,: gives the total number of type k parasites dying per unit time due to
host death

Y,.: denotes the total number of type & parasites dying per unit time due to
natural mortality.

From above definitions it follows that

)

Hy = —Hy, + H,, (1.24)
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and

Yi = =Y, — Y,, + Hs, g(Hi)Ex (1.25)

We exploit the two dimensional system to study the stability of the vector- host
interaction system. Density dependence in the model is introduced via two alter-
native considerations. First we consider the case where host mortality increases

linearly with on host parasite burden such that
b,’k =b + « ik

We next introduced density dependence through the parasite death rate by making

it a linearly increasing function of the on host parasite burden. That is
Hie = ¢+ Y.

We then go ahead to investigate the implication of these modifications to the
stability of the system.

Next define the reproduction number Ry as the average number of female
parasites attaining maturity produced by a female parasite during hér life time.
For a constant population this number will take the value one. Due to possible

density dependence we define the effective reproduction number as

Re = ROf(y)

where f(y) is the density dependence function on Ry expressed as a function of
the mean on host parasite burden in a host community. Note that in the absence

of density dependence
fly) =y.

The function f(y) is investigated for different assumptions on the on host parasite

distributions.

1.3 Brief Literature Review

1.3.1 General Literature Review

The use of matrix population models was pioneered by Lewis(1942) and Leslie

(1945). They independently developed a matrix model, that allowed prediction
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of future population age structures, given an initial distribution, and correspond-
ing age specific mortality and fertility rates. Leslie(1948) extended these ideas
and showed how to determine the stable age structure. He discussed a number
of properties of the projection matrix, such as the role of the dominant root in
population growth. In these formulations the matrix inputs are assumed constant
over time. However this is most of the time not true in practice. The popula-
tion mortality and fertility rates, are bound to vary due to several factors. These
could be climatic in nature or other factors such as predation for some population
species, epidemics, control interventions and so on. Another shortcoming is that
of classifying the population according to age alone. Other classification criteria

should be possible.

Leslie(1959) suggested a density dependent matrix model by making the fer-
tility and mortality rates functions of the previous and present number of individ-

uals in the population. He also suggested a simple hypothetical seasonally driven

model.

Lefkovitch(1965) proposed a modified Leslie model applicable to organisms
grouped according to stages of development. For a population species whose stages
occupy exactly equal periods of time, Lefkovitch’s matrix model can as well be
treated in a similar manner as the classical Leslie model. However a more general
model for stage structured populations combining both stage and age modes of
classifications is important. The elements m;; in Lefkovitch’s model denote the
dependence of the i-th stage at time ¢+1 upon the j-th stage, at time t. Such a kind
of model suffers from the unavoidable difficulty of a posteriori estimation of the
matrix elements. The projection matrix M is estimated from census observations,
taken for a suitable number of time intervals. In this situation errors in estimation
can only be reduced by increasing the frequency of census observations and/or
the sizes of the census samples. Unfortunately, although the model is a useful
technique, the matrix elements derived from partial regression may lack biological
significance. The assumption of time independence on the matrix elements is

obviously not a sound one since the elements are bound to vary at different times

due to several factors such as seasonal fluctuations, type of vegetation, and so on.

12
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Usher(1966,1969), developed a more useful model in the management of re-
newable resources, on forest data. He argued that, for sufficiently short periods,
an organism initially in class 7, at time ¢, may at time ¢ + 1, either be dead, remain
in class 7, or progress into class i + 1. An implicit assumption in the model is that,
the survival rates apply equally to each individual in each class at any time which
might not be the case in reality. Individuals might have different rates of moving
into class i + 1. In effect his assumption is that each class is characterized by a

fixed residence time which we know is bound to fluctuate due to several factors.

Sykes(1966), in his Ph.D dissertation suggested three models namely the ad-
ditive error model, the independent binomial trials model and the matrix random
variables model. Sykes(1969) reviewed the properties of the population matrix.
The work by Sykes(1966,1969), will therefore be a valuable source of background

knowledge concerning the analysis of population projection matrices.

Applications of matrix population models have been undertaken extensively.
Bosch(1971) examined the question of coast redwood extinction in california, in
terms of expected population growth rates. However the model was deterministic
in nature. It included several algebraic and model errors. Ways to improve the
model include the use of more and smaller age classes, possibility of using variable
elements in the matrix and the use of computer, in finding the characteristic roots
of the resulting matrix which will be of high dimension. In the current study we
intend to concentrate on the variability of the matrix elements and come up with

a more general matrix model.

Namkoong et al(1974) modelled as a stochastic process survival probabilities
of coast redwood populations. The ultimate probabilities of extinction of the
population species was investigated in relation to the degree of mortality and the

dominant positive root of the projection matrix.

‘There are certain restrictions associated with using a projection matrix, in
which the entire population is structured by stages, instead of by age. Most im-
portantly the probabilities in the matrix will not remain constant unless the system
has attained stability. Vandermeer(1975) uses a special form of a projection ma-

trix, structured by stages, to clarify its relationship to the standard population
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projection matrix. His work was a modification to the work by Lefkovitch(1965).
The author attempts to calculate the underlying age distribution, from a popula-
tion structured according to stages of development. We have studied this aspect

in detail with more clarity and in a more general perspective.

The discrete time process described has been used to model the dynamics of a
wide variety of ecological populations; for example plant population dynamics, by
Sarukhan and Gadgil(1974). They considered the matrix as a function of seasons,
comprising a year. We have attempted to generalise this aspect and an application
developed for the brown ear tick(R. appendiculatus) with data collected from the

highveld of Zimbabwe.

The problem of harvesting was introduced to matrix population theory by
Lefkovitch(1967) and Usher(1969). That is if the population is age structured and
the ultimate stable structure is 7, the eigenvector corresponding to the dominant
root Ay, then if A; > 1 we may harvest (A; — 1)7 from the population, to maintain
the constant equilibrium. The same idea can be used in the control problem where
the harvesting now corresponds to a control intervention to reduce the -population.
Extentions to the harvesting problem are aimed at optimum harvesting policies,
different from removing equal proportions from each population class or group as in
Beddington(1973). The rationale being that these other harvesting policies could
produce a higher yield at a sustainable level. Thus Doubleday(1975), displayed
the existence of a simple mathematical solution, to the harvesting problem, using
a fisheries example. Enright and Ogden( 1979) applied the Leslie matrix model,
to single species populations and similar transition models, to more than one tree
population. They suggested that an important aspect of matrix population models
is that, they provide a time scale for the trends exhibited by species that live long,

in addition to predicting the magnitude and direction of future changes.

Woodward(1982), suggested a simple method for decomposing a population
that is stage grouped into the underlying age structure. The population dynamics
can then be predicted, using the standard age structured Leslie matrix model. He
assumed that the residence in each of the stages follow a normal distribution. A

weakness in this model is the assumption of normality on the residence times. We
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address the problem of stage distribution in relation to the residence times in the
present work.

Desharnais and Laifu(1987) presented a general matrix population model,
where the age-specific vital rates depend upon the age structure of the population.
In more precise terms the authors were actually addressing the problem of density
dependence. Fecundity and survival rates are assumed to decrease exponentially,
at rates dependent on the densities of each age class. They exhibit, the existence
of a non-trivial equilibrium age structure, given the population can grow without
density dependence. Necessary and sufficient conditions, for the existence of a local
asymptotic stability were stated. Computer simulations were used to compare the
model performance and that from census data.

Yanan et ¢f(1990), discusses the suitability of estimating the Leslie matrix
elements from experimental cumulative distributions. The model is quite ideal for
the study of an arthropod/insect or a general stage structured population, in a
homogeneous system. We study this approach by developing a time dependent

model for the brown ear tick(R. appendiculatus).

1.3.2 Literature Specific to the Brown Ear Tick

The tick Rhipicephalus appendiculatus is the most abundant and widely dis-
tributed tick species throughout eastern, central and southern Africa. Other tick
species in that area include Boophilus decoloratus and B. microplus. Together
with R.appendiculatus, these are vectors for animal diseases and hence cause con-
siderable economic losses in terms of live weight loss, milk yield and hide quality
reduction. Many infected animals die if no remedial measures are taken.

The life cycle of R. appendiculatus consists of four successive developmental
stages, namely the egg, larva, nymph, and adult. The time an individual stays
in any of these stages differs. Furthermore, an individual in the larval, nymphal
and adult stages can be classified as being in the state of questing (host finding) ,
feeding (on host) or developing (off host, after feeding). This means that the larva,
nymph and adult attach to the host at one time towards the end of that stage. In
view of the fact that the tick species feeds on three different hosts, it is called a

three host tick. It is an interesting biological question why this species has larvae,
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nymphs and adults that feed on hosts while other species in the same habitat and
roughly the same host range feed only on one host. The phenomenon that tick
species vary with respect to the number of hosts (one, two, or three) is known for
ticks all over the world, for example the common European tick, Izodes ricinus,
is also a three host tick. It can be speculated that the three host ticks are, with
respect to the life cycle, more ancient than other tick species on an evolutionary
scale. Norval et al (1992) state that one of the reasons why R. eppendiculatus can
become very abundant in the presence of cattle or wild ungulates is that these
serve as primary hosts for all stages of its life cycle. Infact it is noted that tick
species in which the immature stages are able to exploit the same ungulate hosts as
adults tend to become common (pests) in agricultural systems, while tick species
in which the immature stages tend to feed on specific non-ungulate hosts tend to

be rare.

After oviposition by an adult female, egg development usually takes place at
the base of the vegetation. A typical adult female deposits about 4,000 eggs, hence
the fecundity is 2,000 taking account of an estimated sex ratio of 1:17 The newly
hatched larva undergoes a period of adaptation, the length of which is tempera-
ture dependent. This period is followed by questing, that is host searching, where
the tick is waiting for passing grazing host (domestic or wildlife). After successful
attachment, the larva enters a feeding phase (on host) during which it extracts a
blood meal. Once the larva has consumed the blood meal, it drops to the pas-
ture where it undergoes development which is also highly temperature dependent.
Completion of this process leads to a newly moulted nymph which repeats the
same sequence of events as the larva. The nymph moults to an adult tick which
undergoes similar transformations; it also mates during the on-host period. When
it completes feeding or successfully feeds (i.e engorged) , the adult female tick
drops to the ground (pasture) and enters a period of oviposition which can be
lengthy depending on the prevailing environmental conditions. In southern Africa
the adults can undergo a diapause period of rather extended length if external
conditions are unfavourable. The life cycle and questing process are illustrated in

Figures 1 and 2 in page 28.
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Parameters of interest in the entire life cycle are the developmental. fecundity
and survival rates. Development, as mentioned earlier, is normally temperature de-
pendent, faster at high temperatures, with a minimum and maximum temperature
below which or above which development is seriously curtailed. Higher tempera-
tures appear to prolong the ovipositioning period for adult females. Adult male
survival is usually high but can be reduced by predation if number of predators in
the habitat is high. Rainy seasons are more favourable for hatching than dry sea-
sons. Therefore this suggests seasonality in fecundity rates. Survival for engorged
larvae and nymphs is high in most seasons with nymphs being the hardier stage

and eggs the most susceptible to adverse micro-climatic conditions.

The brown ear tick is the main vector of the Theileria parve group of or-
ganisms which is the causal parasite of East Coast fever and related diseases.
Integrated control methods based on tick-resistant cattle, pasture spelling, strate-
gic dipping and tick killing plants, have been suggested for control of African ticks
by Sutherst(1981). One of the requirements of such methods is an understanding
of the population dynamics of the tick, hence the need for mathematical models
to support the approach. Data sets with information on survival, ff;cundity, and
development have been collected (both in the laboratory and the field) by several
biologists, among them Short et al. (1989a & 1989b). The models in chapters IV
and VI will make use of published data on the population dynamics of R. appendic-
ulatus for validation and simulation. One of the advantages of R. appendiculatus
data is that there exists comparative data on the development and survival rates

for most of its life stages in comparison with those of other tick species.

In the current study the aim is to design and investigate a series of models that
will allow a better understanding of the life cycle processes of R. appendiculatus,
the interaction with its hosts and possibly to identify biological input values that
the model measure of population growth is sensitive to. This information can then

be used in the design of control strategies.

The starting model is a very simple Leslie type compartment model. In all
the models in the current study, the life cycle of the tick is divided into n = 10
stages as illustrated in the figure 1 in page 28. The initial model in chapter IV

17



is formulated excluding tick-host interaction. It is then further extended to take
into account the interaction with hosts, both wild and domestic animals and the

effects of interspecific competition and density dependence.

Vector-host interaction is analysed in a qualitative context in chapter IV of
the current work and the findings are important in the understanding of the sys-
tem. The effect of seasonality and vegetative ecotype to tick population growth is

addressed in chapter VI of the work .

An important aspect in the tick life cycle is the influence of environmental
factors on the survival, development and behaviour of the different life cycle stages.
Field observational and experimental studies show that there are distinct seasonal
effects in the life cycle of R appendiculatus especially in southern Africa (as com-
pared to tropical regions). The field studies and laboratory experiments carried
out in Zimbabwe and reported in Short et al. (1989a,b) distinguish three seasonal
regimes to which the ticks may be exposed, namely rainy, cool and hot. A high de-
gree of variability over these seasons was observed. The field study was conducted
in the high veld of Zimbabwe under two vegetative ecotypes, defined as long grass
and short grass. Type of vegetation is a factor that influences host seeking and
survival. The study also indicated some aspects of predation on ticks and describes
alternative hosts, in addition to cattle, such as rodents. It was also reported that
R. appendiculatus can coexist with other tick species such as the Boophilus species.
Zivkovic et al. (1986) reported that R.appendiculatus and R.zambeziensis are tax-
onomically not clearly separated and tend to overlap at certain altitude ranges.
Cleary more information on the ecology, in particular interaction with hosts, of

both species is needed.

Similar information on seasonality can be found in Short and Norval (1981)
where data from eight localities in east, central and southern Africa were compared
and analysed. The results show that the seasonal pattern of R.appendiculatus
is largely dependent on the ability of the adult ticks to adapt their activity, in
particular oviposition, to take into account differences in humidity, temperature
and daylength. However, based on a statistical analysis of data from five sites from

southern Africa, Randolph (1993a,b) questions this assumption and puts forward
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the hypothesis that it is the timing of the questing activity of the larvae, vulnerable
to desiccation, that determines the pattern of the seasonal dynamics of the tick.
In Branagan (1973a,b) it is reported that R. eppendiculatus in cool, more humid
climates (e.g. Muguga, Kenya) suffer less climatic stress than those in a warm,more
arid climate (e.g. Kedong, Kenya). Eggs in this latter site were exposed to a higher
degree of desiccation than those in more humid areas. During periods of maximum
saturation deficiency, complete egg failure (i.e egg dessication) occurred. Survival
periods for questing ticks were shorter in Kedong than in Muguga, suggesting
that host availability is more crucial in warmer arid areas than in cool, moist
climates. Pegram and Banda (1990) studied development and survival of free-
living stages of three tick species in central Zambia among them R.appendiculatus.
The findings were that tick activity reflects seasonality. The univoltine that is
single generation ticks exhibit diapause mechanisms that effectively synchronize
the life cycle of these species to climatic conditions. No diapause was observed
in the multivoltine that is several generations species which are able to complete

three to five generations per year with no seasonal synchronization.

All these papers indicate that temperature seems to be the critical variable as
far as development times are concerned whereas humidity affects the probability

of survival.

Branagan(1973a,b) also noted that development rates, including the rate of
egg production, declines with falling temperatures, while fecundity (total egg pro-
duction), although reduced by extreme temperature, does not vary much within

the temperature regimes experienced by R.appendiculatus and other tick species.

The question of density dependence seems not to be well documented in most
articles but Branagan (1969), observed that as the on host density of nymphs in-
creased their feeding periods became shorter. It has been suggested that this phe-
nomenon may be associated either to the observed clustering behavior of nymphs
on the host or to some resistance mechanism of the host. In fact, in certain tick
species it has been experimentally observed, with rabbits as hosts, that repeated
exposure of a rabbit to ticks results in shorter attachment periods and reduced

repletion (Branagan 1974).
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Of the two explanations the the second seems more realistic due to the well
known phenomena of acquired resistance by host species. However we cannot
completely overule the first case because this tick species is known to prefer the
ear for attachment than other parts of the host body hence the name “brown ear
tick”.

The relationship between the abundance of R. appendiculatus and the degree
of host resistance to it has also been disscussed in the book by Norval, Perry and
Young (1992). In particular they point out that this tick species becomes very
abundant because several host species do not acquire a high degree of resistance

to it as opposed to other tick species.

Randolph (1993a,b) indicates that density-dependent mortality factors oper-
ate between nymphs and females after the nymphs have moulted, thus working in

the same competitive way as the assumed resistance mechanism.

All these studies are aimed at finding methods of controlling tick transmitted
diseases and the vector tick itself. Pegram et al. (1991) report on experiments
where herds of sanga cattle were kept under controlled conditions. Two herds were
kept in traditional grazing regime for three years. One herd was kept tick free by
regular acaricidal treatment while the other had no tick control. The tick free herd,
as expected, performed much better in terms of milk production, growth rate,
fertility and mortality but the value of additional production was much less than
the treatment costs. Similar studies are reported in Pegram et al. (1989a,b) where
in fact heavy acaricidal applications were found to lead to effects such as poor
liveweight gain, especially in young cattle. They also report that combined effect
of climate and ecotype also affect tick dynamics in the region of central Zambia
where the studies were conducted. On the other hand it is reported that during tick
seasons infestations also caused significant reductions in liveweight gain. In the
same papers it is reported that below average rainfall suppressed the abundance
of ticks such as R appendiculatus. Cattle in woodland areas carried more tick
infestations than those in open pasture. The studies indicate that integrated
tick control strategies which rely less on heavy acaricidal applications are more

appropriate in all ways.
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Pegram et al. (1989a,b) also report that there is a correlation between the
numbers of different tick species on individual hosts over one year old. It is also
clear that variations in climate, and consequent changes in grazing patterns may
influence population dynamics of different tick species with varying degrees. Such
issues raised above ought to be addressed when modelling such kind of population

dynamics.

The dynamics of tick borne-diseases in Africa are complex because there is
a variety of infectious agents transmitted variously among the hosts (cattle and
other ungulates) and the vectors (ticks). The principal host of interest is cattle,
due to its economic importance. Among the tick -borne infections, East Coast
fever (ECF) is a disease mainly found in cattle in most parts of eastern, central
and southern Africa. In endemically stable areas (mainly eastern Africa) many
indigenous zebu cattle are continuously exposed to ticks, thus there is a class of
hosts (cattle) referred to as immune carriers who are not susceptible to disease
but may transmit the parasite to ticks thus making the transmission problem even
more complex. Epidemiological models being developed (Medley et al. 1993) can
aid in the design of optimal control policies. However these models cannot work

in isolation without proper tick population models.

The economic importance of the disease is three fold. First there is dam-
age to cattle by direct effect of ticks, for example increased irritation, blood loss,
skin lesions etcetera. Secondly upgrading of cattle is impossible without exten-
sive/intensive use of acaricides which are costly and further produce side effects
and thirdly even if (disease parasite) does not cause appreciable mortality and mo-
bidity, growth rates and productivity of the sick animals may be greatly reduced.

The economic impact of the infection depends mainly on ECF-specific mortality.

Though Theileriosis is a vector-borne disease, its mode of transmission is
slightly different from those transmitted by other vectors such as tse-tse flies which
move from host to host within developmental stages. For the tick to be infected it
has to feed on an infected and infectious host and since transovarian transmission

is not feasible only the nymph and adult can transmit the disease to the host while

feeding.
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Apart from the common control method of intensive use of acaricides, immu-
nisation provides a possible control option. This can be achieved by infection and
treatment, and work is under way to develop an antigen vaccine. These methods
have their own characteristic effects on the transmission dynamics which could be
of importance to model building. More realistic and complex disease models de-
rived from basic information about the disease and its vector are therefore needed.
Thus there is need for careful estimation both experimentally and statistically of

various disease/vector parameters.

An important aspect of the disease is the question of seasonal occurrence of
the disease especially in the southern parts of Africa. This implies changes in host
age at infection thus advocating for host age structured disease models. However
it should be noted that seasonal occurrence may provide a larger “window” in
which to immunize most animals before exposure to natural infection. The effect
of seasonality to the carrier/infected status of the host is also important in this
respect especially for survival if the individual has to pass the parasite through

the non transmission periods.

In summary the ultimate goal in these mathematical models is to improve
understanding by means of appropriate quantitative tools and to forward sugges-
tions on future data collection aimed at aiding the design of better and efficient

control programmes in order to reduce the economic impact of the disease and its

vector. The hook by Norval et al. (1992) gives a thorough account of the epidemi-
ology of the disease and the distribution of its vector in Africa. It will serve as an

important source of information for the current and future modelling work.

The modelling of tick population dynamics has been uncommonly attempted
probably due to the complex life cycle patterns and poor data availability. Gar-
diner and Gettinby (1981) modelled the dynamics of the European tick Izodes
Ticinus, also a three host tick. They presented a method of calculating develop-
ment times based on the idea of development fractions. This method has also been
used in Gettinby et al. (1974,1979) to determine development periods for parasitic
helminths of cattle in Ireland. The method is based on the fact that one can apor-

tion some fraction of development for each day based on functional relationships
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between temperature and development periods. Development is complete on that
day when the sum of these fractions add up to at least 1. However comparing the

predictions and observed periods the model requires further improvements.

Simulation models have also been developed to study tick dynamics. Haile
and Mount (1987) and Mount et al (1993) developed simulation models for the
American dog tick and the “lone star” tick. In the model tick individuals were
classified into weekly age classes, the effects of temperature and humidity on the
tick’s developmental periods and vital rates are incorporated. The predictions of
the model were quite close to reality but as mentioned by the authors one needs
to improve on the functions relating the vital rates and environmental factors. As
the modelling of tick dynamics gets more attention models on diseases transmis-
sion should also begin receiving serious attention. Byrom and Gettinby (1992)
used published data, especially those of Short and Norval (1981), to develop a
microcomputer software ECFXPERT to study the dynamics of R.appendiculatus
and East Coast fever. However as mentioned by Randolph (1993a,b) there is a
significant lack of fit between model predictions and observations. This calls for
a better understanding of the systems and development of better mathematical
models. As Nokoe (1992) puts it we need a “mixed” model approach, that is,
models both deterministic and stochastic in nature to model the complex tick life
systems, especially the three-host brown ear tick. One of the aims of the current
study is to address the problem of the tick population model results and what is
observed in the field. Quite recently Medley et al. (1993) formulate a mathemati-
cal model to study the transmission dynamics of T. parva by R.appendiculatus to

cattle in endemically stable areas.

Mathematical population dynamics models are still in high demand in order
to link them with disease models such as these in order to come up with proper

control strategies for both the disease and its vector.

Matrix population models similar to Leslie (1945) models can be used. These
models have undergone many modifications to include populations structured by
stages rather than age classes as initially formulated. Caswell (1989) in his book

on Matrix Population Models addressed the various modifications to the Leslie
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(1945) matrix model to suit the different populations structured according to the
stage variable other than age. Recently Sandberg et al. (1992) used Leslie’s idea
to formulate a multiple matrix model for a three host tick that is a causal vector
of Lyme disease in human populations. Their tick individuals were categorized as
either in year 1 or 2 and further whether they were fall-fed or spring-fed. This
model is different from the common Leslie model insofar as the successive entries
in the population vector do not correspond to successive states in the life of one
individual but rather there are different possible life histories. These authors
work out a transition matrix for each month of the year thus in fact forming a
periodic discrete time dynamical system that is time dependent. The product of
all twelve matrices gives the transition matrix for one year which then of course
defines an autonomous system on an annual time scale. Weaknesses in the model
are almost obvious even though the authors mention some of them. All of the
matrices describe zero mortality in any stage except in aduits after oviposition or
non-fed individuals which have infinite mortality. This aspect is expressed in the
matrices by either a 1 in the diagonal that is individual always remains in the
same stage or, more generally, by a column sum equal to 1 describir;g transition
without death to other stages. Infinite mortality is expressed by a row of zero
entries. Looking at the schematic representation of the species life cycle it is
not clear whether some of the states are clearly defined or can be distinguished
in the field for example fed nymph 1 and fed nymph 2, observed in June, are
distinguished by the fact that the first has fed in May-July the year before and the
second May-June of the present year. However, as the authors say, the model was
supposed to illustrate the technique which can be further improved to account for
seasonality and environmental variability in tick dynamics. It is finally important
to once again mention the general comment by Randolph (1993a,b) that past
studies on seasonal dynamics of tick species have beed based on relating climatic
variables to numbers of ticks rather than its underlying demographic rates, a
rather unfortunate situation since, for example an adverse season always causing
high mortalities may follow a period of population growth hence associating it

with high tick numbers which was not the case. Thus caution should be taken
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when designing and formulating tick population models.

In summary mathematical models in the field of vector population dynamics
and epidemiology are and will remain an important tool for analysis. There is need
to improve on existing models and to develop more robust ones for this work. This

kind of task no dought requires a multidisciplinary approach to research work.

1.4 Statement of the Problem

Most litrature so far indicate that matrix population models have been time
homogeneous and mostly for populations structured according to age. Such mod-
els are along the lines of the classical Leslie(1945) model. In the current study
we develop a more general model for a stage structured population aplicable to
any general n stage structured population species. We further develop a continu-
ous time compartmental model for this type of population. Thus the problem is
addressed for both discrete and continuous class of population models.

In a time dependent model the projection matrix, M(t), at time ¢, may not
necessarily be the same as M (¢ + 1) at time ¢t + 1. Time dependence on the popu-
lation projection matrix is studied in relation to the brown ear tick (R. appendic-
ulatus). In this study time dependence is brought about by seasonal variation in
the population parameters and the difference in vegetation types in the location
of study, in our case the highveld of Zimbabwe.

We then develop a vector-host interaction model for a general n stage popu-
lation species. The brown ear tick is chosen as an example for the continuous and
discrete cases. We in addition study the problem of density dependence for a gen-
eral parasite-host interaction system. The null hypothesis that the on host vector
distribution is asymmetric and is negative binomial is investigated at length. We
in addition study the stability of the vector-host interaction model along the lines

of Adler and Kretzschmar(1992).

1.5 Specific Objectives of the Study

The specific objectives of the present study may be summarized as follows:

(i) To examine critically the time homogeneous model for age structured popu-

lations.
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ii) To develop a more general matrix model applicable to a general n stage struc-

tured population species for both continuous and discrete cases.
(iii) To give ways of deriving the matrix inputs from experimental and field data.

(iv) To develop a general vector-host interaction model for a general n stage struc-

tured population with the brown ear tick as a specific case.
(v) Study the stability of the vector-host interaction model in (iv).

1.6 Significance of the Study

The results of this study will be useful in the understanding of population
dynamics particularly the brown ear tick. In recent years the rapidly rising costs
of acaricides and their application, as well as the growing problem of tick resistance
to acaricides, have stimulated research into new innovative methods of tick control.
Thus tick population models are also being developed and used to simulate and
analyse the effects of control strategies, enabling veterinary authorities to select
the most approriate and cost-effective strategies for given circumstances in the
field. It will also bring out more clearly the relation between the discrete and
continuous population models. The generalized matrix model for stage structured
populations is more flexible and can be adopted for any population species.

Time dependent matrix models are expected to be more realistic. This means
that monitoring and control of biological populations can in general be carried
out with more reliability, especially with the advent of powerful computers and
softwares.

The results will be useful in the clear understanding of complex vector-host
interaction models with the aim of qualitatively and quantitatively evaluating
control strategies of vector populations which are carriers of disease agents to its
host(s).

It is hoped that, the interpretation of some of the findings will contribute
significantly in the study of tick population dynamics particularly the brown ear
tick. Lastly the work will also serve as reference material to researchers and

students in the field of mathematical population models.
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1.7 Methodology

Data for the study was obtained from international research institutes. These
are organisations that carry out research on specific populations for various rea-
sons. This particular study was in close collaboration with scientists at ILRI; the
International Livestock Research Institute. The population of interest namely the
brown ear tick(R. appendiculatus) was generally categorized into a finite number
of classes in this case according to stages of development. These are indexed by
1,...,n. The classification is general according to some specific attribute say age,
size, developmental stages and so on depending on the population in question.
Information concerning the fertility and mortality rates for each class is then ob-
tained over a period of time. From such an information we are able to derive the
required population projection matrix. This was done for the brown ear tick for
different seasons and vegetation types in a location in Zimbabwe.

To validate the model we develop a simulation model using a. statistical pack-
age, SPLUS, as described by Venables and Ripley(1994). Computer programs in
C language were developed to facilitate simulations for the continuous compart-
mental model. Thus computer methods (simulations, graphics etcete“ra) enabled

us to analyse and sumimarize the results for final thesis preparation.
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Figure 1: Stages in the Life Cycle of R. appendiculatus
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CHAPTER II
BASIC AGE STRUCURED MODELS

2.1 Introduction

In this chapter we describe mathematical models for the growth of age classi-
fied populations. First we consider models where mortality and fertility rates are
functions of the age of individuals in the population. Also we treat age and time as
continuous variables leading to the well known Lotka's integral equation. Then we
consider the case when the two vital rates (mortality and fertility) are functions of
both age and time as continuous variables leading to the McKendrick-von Foerster
equation. Then finally we consider the case where the vital rates are functions of
age but with discrete intervals of both age and time. This will lead us to the Leslie

matrix model which is the principal model discussed in the present study

2.2 Lotka’s Integral Equation
In this section we investigate the consequences of assuming that age-specific
fertility and age-specific mortality are both time independent when both time, ¢

and age, z are treated as continuous variables. Let,

m(z) =number of births or expected number of offsprings per individual aged
T
m(z)Az =expected number of offsprings per individual aged between z and

z + Ar where Az is small

This definition makes no sense for an individual female but it is perfectly reasonable
if considered as an average over a large population. In effect, it simply replaces
probabilities for individuals with fractions for whole populations. The following

assumptions are made about the maternity function m(z)

(a) m(z) is continuous and differentiable

(b) m(z) >0fora <z < B and

0 <z < a, prereproductive ages
m(z) =0 - . :
(x) for {ﬂ <z < 0o, post-reproductive ages

29



0 < a < 3 < oo where « is the upper limit for the pre-reproductive ages and
B the lower limit for the post- reproductive ages.

(c) depending on the population m(z) could have a single or more maxima. We
assume a single maxima the simplest, such as for a human population.

Let,

n(z,t) =the number of individuals aged z at time ¢ (this gives the population
age distribution)

B(t) = number of offsprings occuring at time ¢

Then it follows that -
B(t) =/ n(z,t)ym(z)dr (2.1)
0

Since it is important to uniquely represent the quantity n(z,t) in Eq.(2.1)
we derive the survivorship function or (life table function) in probabilistic terms.
Once these are understood it will be sufficient to replace probabilities by their
estimates.

Let, .

f(z)dx = Prob{dying between age z and z + dz} (2.2a)

then

/ " Ha)dz =1 (2.28)
0

since every individual eventually dies, so that f(z) is a proper density function. If
w is the maximum attainable age then the upper limit in Eq.(2.2b) is replaced by
w. We now define the distribution function for the random variable X4, denoting
age at death, by

F(z) = Prob{X4 < z} (2.2¢)

and
F'(z) = f(z) (2.2d)

where f(z) is defined in Eq.(2.2a). It is also convenient for us to define a death

rate called the force of mortality from f(z) and F(z) by

p(z) = 1—{% (2.3a)
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such that for Az — 0,
p(z)Az = Prob{dying between age r and z + Az | survival to age z} (2.3b)

Now let us assume we start off with a cohort of initial size {(0). Let,

I(z) =number of individuals in a cohort of initial size {(0) who survive to at

least age r;

p(z) = Prob{an individual survives to at least age z} (2.4a)

then assuming the fractions and probablities are interchangeable it follows

that
F(z)=1- p(z) (2.4b)

and
p(x) = l(z)/1(0) (2.4¢)

which can also be looked at as the fraction of individuals who survive from birth to
age z. Hence if the survivorship function, /(z), is known then p(z) and F(z) can
easily be estimated. We state here three important properties of the p(z) similar

to those possessed by I(z) namely,

1) p(z) is continuous and differentiable
ii) it is monotonically non-increasing
i) 0 < p(z) < 1for 0 < z < w and p(w) = 0 where w is the terminal age for any

individual.

Now at any point in time ¢ we have two groups of individuals namely those
present at time ¢ = 0 and those born after time { = 0. Thus at time £, all
individuals older than age t are in the first group, while all those individuals
younger than age ¢ fall in the second group. It is therefore true that individuals

aged z > t existed at time ¢ = 0 and were aged z — t. For such idividuals,

Prob {individuals survives upto time t} = p(z)/p(z - t) (2.5a)
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which is a conditional probability. In terms of the survivorship function {(z) this
probability is given by

P(l(z)) = l(z)/l(z - 1) (2.5b)
assuming the population was observed for a long period of time. On the other

hand individuals aged x < t were born at time ¢t — z > 0, hence,
Prob {individuals survives upto time t} = p(zx) (2.5¢)

This probability is equal to the probability an individual survives to age z.
Now in practice it is census data and not life table data that is frequently
available. Therefore let

n(r —t,0) =ne(x —t)
be the number of individuals present at the start of the census(t=0) who will be

aged = at time t. Then

| _ fnolx =t)p(x)/p(z —t), t<x
E[n(.r.,t)] - { Bo(t _ .‘L‘)p(l‘), t> 1 (26)

Substituting into the integral equation (2.1) which defines B(t) yields

p(z — t)

The product p(z)m(z) in the integrand (2.7) appears repeatedly in the work and

B(t) = /0 m(x)p(z)B(t — z)dz + /“00 m(:c)—m-no(z —t)dz (2.7)

is therefore given a special notation

¥(z) = p(z)m(z)

and referred to as the net maternity function. Also from the definition of m(x)
it is clear that the average number of offsprings born in the past to an individual

who survives to the maximum reproductive age 8 is given by

/a ? m(z) dz.

This is the gross reproductive rate(grr). On the other hand the average number

of offsprings to be horn in future to an individual itself just born is given by
B
/ p(z)m(z)dz = Ry.

32



This is the net reproductive rate. Now the first term to the right of Eq.(2.7)
represents births to individuals born after ¢ = 0, while the second represents only
the births to individuals already present at time ¢ = 0.

Let,

[ p(z) no(z — t)dr
o) = [ mix) B oz~ t)d

Then, (2.7) can be rewritten as,

B(t) = /0 ¥(z)B(t — z)dz + g(t) t >0 (2.8)

Now assuming that the population has been in existence long enough such
that the initial cohort of individuals present at ¢ = 0 have died out, (that is no
individual out of the ng(z — t) present at time ¢ = 0 is still surviving) then the

governing renewal equation reduces to
o ]
B(t) = / m(z)p(z)B(t — z)dx
0

= /oo Y(z)B(t — z)dz (2.9)
and .
E[n(z,t)] = B(t — z)p(x)

Equation (2.8) is a non-homogeneous integral equation of the second order with
band limited kernel since ¥(z) # 0 for « < £ < 8 while Eq.(2.9) is homogeneous.

We now describe the solutions to these equations.

2.3 Solutions to the Integral Equations
We consider the solution first to equation (2.9) assuming exponential growth

then secondly the solution to equation (2.8) by method of Laplace Transforms.

2.3.1 Solution by Elementary Methods
Let us assume the homogeneous form of the integral equation (2.9) admits

solutions of the form
B(t) = Qexp(rt) (2.10)
Substituting in Eq.(2.9) we get the expresion

8
Qexp(rt) = Qexp(rt)/ exp(—rz)y(z)de
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which on simplification reduces to

3
1=/ e "TY(z)dx (2.11)

where the limits on the integral have been changed because i»(z) is nonzero only
in the interval a < r < 3 on R;. Equation (2.11) will in the sequel be referred as

the characteristic equation. Now define (o(r) such that,

g
s = [ e utaps
a
so that the characteristic equation now becomes
w(r)=1 (2.12)

Now let us investigate the limiting properties of the function r — p(r). It follows

that the function possesses the following properties

i) ¢(r) = 0 asr — +oo
1) ¢(r) — oo asr — —oo
ii1) ©(r) is monotonically non-increasing because,
dp(r)

8
D = —/ rexp(—rz)y(z)dz <0 (2.13q)

Thus we have shown that the integral equation has exactly one real root say
r = 7y, such that ¢(r;) = 1. We also observe from the definition of ¢(r) that
¢(0) = Ryg, the net reproductive number. So it follows that, r; < 0,= 0,> 0
according to whether Rp < 1,=1,> 1.

Next we show that all other roots r;, j = 2...of the integral equation which
appear in complex conjugates are such that Re(r;) < r; where Re(r;) denotes the
real part of r;.

Let r; = w + iv, u,v real, v > 0 for some j # 1. Substituting into the

characteristic equation (2.11) and equating real and imaginary parts leads to

B
/ e *Fcos(vz)p(z)dr =1 (2.13b)
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and

Jsin(vx)ii?(x)dx = 0 (2.14)
Jo

If Eq.(2.14) holds for i\ it also holds for —\ so fj = u —iv is also a root of
the characteristic equation. Since cos(vx) < 1 then from Eq.(2.13b) we see that
u < I\ Hence rg is greater than the real parts of any of the complex roots.
This is from the comparison of Eq.(2.13b) with Eqg.(2.12) or more explicitly with
Eq.(2.11). The conclusion here is that if v < 3< oo that is a finite fertile interval
then there are infinite number of roots to the characteristic equation with only
one real root while the rest appear in conjugate pairs of complex roots.

Since the renewal equation (2.S) is linear, it follows that the solutions are

linear combinations of the form
= (2-15)
>=1
But the real root is dominant so that for large  B(t) will tend asymptotically

towards
B(t)-

Before we give detailed interpretation to Eq.(2.16) we consider the solution to

Eq.(2.9) by method of Laplace transforms.

2.3.2 Solution by Laplace Transforms

We begin by first defining the Laplace transform of a function h(t) in general

L{h(t)} = h'(r) = / e~rth(t)dt (2.17)
Jo
while the Laplace transform of the convolution of two functions is given by
L{h(t)*f(t)} =L {/ h(t-x)f{x)dx |

= h*(r)f*(x). (2.18)

Now multiply the renewal equation (2.8) through by e~rt and integrate with re-

spect to t from zero to infinity. This gives
B*(r) = g*(r) + BX(r)r/>*(r) (2.19)
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where B*(r), g*(r) and ¥*(r) are Laplace transforms of B(t), g(t) and ¢(z) re-
spectively. Thus solving for B*(r) in Eq.(2.19) gives

(2.20)

Now note that, -
v (r) =/ T (x)dz = () = 1
0

which is precisely the characteristic equation (2.12) whose roots are defined as

r =rq,r2,.... Hence it is possible to write
1—(x)=(r=r)(r—re)(r —r3)... (2.21)

and if all the roots are assumed to be distinct, a partial fraction expansion of

Eq.(2.20) yields

By =20 @, @ [ @& (2.22)
1 —y*(r) r—rn r—ro r—rs3
where (Q;, j = 1,2,... are real constants. In order to evaluate the numerators

in Eq.(2.22) we express (; as

Q; = lim‘{(rl__ri’)*g(r()r) —(r— rj)z Qi } (2.23)

The second term above goes to zero, but the first term has to be evaluated by

I’Hospital’s rule as

Q, = g*(r;)

__dy*(r)
dr

r=rj
Jyo e rtg(t)dt

= fooo ze~Ti I:‘p(z) dx
foﬁ exp(—rjt)g(t) dt

N ff rexp(—-r;z)Y(z)dz '

(2.24)

We change the limits in the last expression in Eq.(2.24) because it is assumed that

individuals will start reproducing when they attain age a and stop reproducing
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at age §; that is the maternity function m(z) > 0 and it is positive only in the
interval o < z < 3. Finally we make the following observation before inverting

B*(r) to get B(t) namely;

L{@j exp(rst)) = Q; [ exp(=rt)exp(rytidt = ~2
0 j
hence, o
L {2} = Qs explrt
It therefore follows from Eq.(2.22) that

B(t) = LB ()} = LY ) - ZQ, exp(rst)  (2:25)
=1

which is same as what was obtained in Eq.(2.15) but the current derivation is more

explicit.

2.3.3 Asymptotic behaviour of the dynamics
Notice that Eq.(2.25) and thus Eq.(2.15) may be written as

B(t) —QleXP(V‘lt){l‘l'Z exp(r T‘l)t}

But we recall that Re(r;) <r;, j=2,3,.... Thus
tlim exp{(r; =)t} =0, j=2.3,...

which means that
B(t) = Qq exp(rit) as t— o0 (2.26)

where Q; is obtained from the general formula for Q; as

P exp(—rit)g(t)dt
f zexp(—rt)(z)dzx

Q1 =

Now since from Eq.(2.6)

E[n(z,t)) = Bt - 2)p(z), t>g
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then the asymptotic behaviour of the expected population density is thus given by
En(x,t)] = Q) exp(rit)[exp(—riz)p(z)] as.t — oo (2.27)

Equation (2.27) above tells us that in the persistent solution the time and the
age behaviour separate in the long run. We notice that the persistent age distri-
bution is a product of an exponential component and the survivorship function.
Note that r, is the leading root of the characteristic equation (2.11) or (2.12).
Thus as time elapses the age stucture or distribution grows exponentially at all
ages. Recall that if the net reproductive rate Ry = 1 then the dominant root r,
takes the value zero. We say that the population reaches a state of equilibrium as
t — oo. In this case therefore the age-structure is proportional to the survivorship
function and the total population size remains constant.

If the net reproductive rate Ry > 1 (Rp < 1) then the dominant root is
correspondingly »; > 0 (r; < 0). This is the case of stable population in the
limit as ¢ — oo. Relative to the stationary case, here the population age struc-
ture has an excess of young(old) individuals, hence the population as a whole

increases(decreases) as time passes.

2.4 Continuous Age Structured Models

In this section we seek to derive a partial differential equation describing the
evolution of population density n(xr.t) with respect to age and time where both age
and time are taken as continuous variables. This is supposed to be an extention
of the model derived in sections 2.2 and 2.3 where both natural mortatility u(z)
and fertility m(z) were assumed functions of age but not time.

Again let n(z,t) be the dependent variable denoting the age density at time
t. Then n(z,t)dz is the number of individuals aged between x and z 4+ dz at time t
or simply individuals in the age interval [z, z +dz). In this section we assume that
the mortatility is y(x,t) and maternity function m(z,t) are continuous functions
of both age and time. Clearly the total population N(t) at time ¢ is therefore
given by

w
N(t) = /o n(z,t)dz (2.28)

where w is the maximum possible age attainable by an individual in the population.
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Next we wish to derive the equation of conservation of individuals in the
population as time passes. This depends on the fact that in one unit of time, an
individual in the population either ages by one unit of age, or else it drops out of the
group of individuals under study. It is worth mentioning here that in more complex
life cycles it might be more realistic to consider other variables as providing better
information on the vital rates other than age. For example in stage structured
populations stage specific vital rates might be of more interest than age specific
ones. Better still a stage/age structured population model might be more realistic
in this particular case. We mention this here because in the current work as
earlier mentioned emphasis is placed on stage structured population models which
we believe are a generalization of age structured ones. In particular we concentrate
on vector populations such as ticks which are agents of animal diseases for example
R.appendiculatus which is an agent for East Coast fever.

We thus define the derivative operator D of the population age density n(z, )
by the expression

. n(r+6t,t+6t) —n(zx,t)
lim -

Dn(r,t) =
n(r.t) 5t—0 ot

(2.29)

where 6t denotes a small increament of time, ¢ such that an individual aged z at
time ¢ will be aged x + 8t at time ¢t 4 §t. Now Eq.(2.29) can be written in a more
familiar notation as follows: Add and subtract n(z + é¢,t) on the right hand side

and then take limits to obtain

n(z + 8t,t + 6t) — n(z + 6t,t) + n(z + 6¢,t) — n(z, t)

Dn(z,t) = lim

§1—0 ot

 lLm n(x + 6t,t + bt) — n(zr + 6t,1) + lim n(z + 8t,t) — n(zx,t)
5t—0 ot 5t—0 ot

_ On(z,t) + on(z,t)

T ot Ox

Now as in Eq.(2.3a) and Eq.(2.3b) we have that

pu(z,t)ét = Prob {dying between ages x and z + 6t | survival to age z at time t}

(2.30)
The population exposed to risk of dying at age z at time ¢ is n(z,t); thus the

number of individuals who die between age z at time ¢t and age z + 6t at time
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t + 6t is therefore given by

n(r.t) —n(x + ot,t + 6t) = p(x,t)n(zx, t)bt (2.31)
assuming no births. Hence |

n(x + ét.t + 6t) = n(z,t) — p(zr,t)n(z, t)ét (2.32)
Equation (2.32) states that the number of individials at time ¢ + 8¢ is equal to the
number present at time ¢ less the number who die in the time interval [¢,¢ + §¢).
Rearranging Eq.(2.32) then dividing through by é¢ and taking the limit as 6t — 0
yields

Dn(z,t) + p(z,t)n(x,t) =0

or
on(x.t) N on(z.t)
Ox ot
where the operator D was defined in Eq.(2.29). Equation (2.33) is called the -

+ p(z,t)n(x,t) =0 (2.33)

McKendrick-von Foerster equation expressing the population dynamics under the
process of aging and mortality. However since individuals age zero (new births)
at time ¢ are not accounted for in the equation we introduce this as a boundary

condition or the birth law as
n(0,t) = / m(zx,t)n(z,t)de = B(t) (2.34a)
0

and the initial condition as

n(z,0) = no(x) (2.34b)
Most of the time, it is assumed that the time dependence of both x(z,.) and the
maternity functions are related to the total population size at time ¢t and not to
time itself, such that the mortality and fertility functions are now in the form
p(x, N(t)) and m(x, N(t)) where N(#) is the total population at time ¢ defined in
Eq.(2.28). One can say that the functions depend on age z, time ¢ and the total
population N(t).

In this case the analog to equation (2.6) is

n ((t—'t)ﬂ'(-'l'—t,l‘,O), i<z
E[n(z.)] = { AU R LN (2.35)

where the function 7 is a generalization of the survivorship function defined in

Eq.(2.4a). Next we consider the case of discrete time/age population model.
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2.5 Discrete Age Structured Models

The requirements to the derivation of this model are the age specific vital
rates obtainable from life table data. The life table in a sense deals only with
death, as individuals in a cohort advance in age but in a broader manner it can
be taken to include the maternity function, m(zx) to handle new entrants through
reproduction. If the life table is not available then information on vital rates has
to be estimated through census data or through a hypothetical functional relation

between these rates and age as time passes.

2.5.1 The Survivorship Function

In this section we wish to explicitly show the relationship between the survival
function p(z) and the force of mortality y(.r) defined in Eq.(2.2a)-Eq.(2.3b). From

the equation

F(zr)=1-p(z)

it follows that

pllx) = -F'(z) - (2.36)

where F(r) is as defined in Eq.(2.2c). Then making the substitution of Eq.(2.36)
in Eq.(2.3c) we get
—p'(z)
r) = 2.37
) =—rs (2.37)

keeping in mind that

f(z) = F'(z) = —p'(z).
Thus

ulz) = —ad;lnp(r) (2.38)

assuming p(z) is a function of z alone otherwise we would replace the right hand

side with its partial derivative analog. Solving equation (2.38) we obtain

p(z) = exp [— /Oz u(T)dT] (2.39)
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Therefore,

Prob{an individual survives to age r + éz | survival upto age z}

plz + )
p(z)

= exp[— /H-&: }t(T)dT]

and if we assume p(r) = g in the age interval [z, r + éz) then Eq.(2.39) becomes

(2.40)

P rob{an individual survives to age x + §z | survival to age x}
= e (2.41)
Thus equation (2.6) therefore becomes

no(z — t)exp[— f;_t p(rydr], t<ur

Blt — x)expl- [ p(r)dr), > ¢ (2.42)

En(z.t)] = {

If we have evidence that the vital rates are both age and time dependent then u(.)
is replaced by the appropriate function. From Eq.(2.39) it implies that we can

write the characteristic equation in Eq.(2.11) as

1=/”6_n exp [_ /I;L(T)dr]m(:c)d:r (2.43a)

which was shown to posses exactly one(simple) real root r = 1, and any other root
is necessarily complex. We remark that the kernel of this characteristic equation
1s given by

k(z) = m(z)e”do M4 (2.43b)

therefore equation (2.43a) can be written more elegantly as
H —
1= / k(z)e™™ dz. (2.43¢)
Thus if /() is the continuos age life table function and the initial value is {(0) then
l{(z) =1(0)exp [—/ ;t(r)dr]
0
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where I(z) was defined earlier on. The function u(z) could be interpreted as the
“instantaneous” death rate or force of mortality or the limiting value of the death
rate when the age interval becomes very small.

Next we wish to formulate the discrete time matrix population model.

2.5.2 Formulation of the Matrix Model

A discrete version of the Lotka-Sharpe-McKendrick model was presented by
Leslie(1945) which was also independently developed earlier by Lewis(1942). Con-
sider a population of size N(t¢) at time ¢ that is closed to migration, and whose
every individual is capable of reproducing. Let the population be composed of s
distinct age classes of equal width say h, such that age class ¢ corresponds to the
interval (: = 1)h < ¢ < th. The number h is defined appropriately depending on
the maximum age, w, which an individual may possibly attain or on the life cycle

of the population. Let
ni(t) denote the number of individuals alive in age class : at time ¢

pij(t) denote the probability that an individual in age class j at time t will

transit to age class ¢ at time (¢ + 1) or after one time interval, i,.j =1,...,s

f1;(t) denote the reproduction rate for an individual in age class j in the time
interval # to t + 1 (the offsprings who survive the interval join age class 1 at
timet), 7 =1,...,$

For simplicity we denote p;; by p;(t) and f1;(?) by f;(¢), j=1,...,s. As-

suming the width of a time interval equals h, the width of one age interval, then

nit+1) =pici(t)ni-1, 1=2,..., (2.44q)

and ,
n(t+1) = Y filt)ni(?) (2.44)

=1

In a population where individuals can be classified into male or female then a sex

ratio p : 1 — p of male:female say, can be used to determine the number of each

sex in each age class. If we let

’

a(t) = (ni(t),.. ., ns(t))
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denote the population distribution at time ¢, or a vector of dimension s by 1 whose
i-th component is the number of individuals alive in age class : at time t. The s
equations in Eq.(2.44a) and Eq.(2.44b) can be written compactly more in matrix

notation as

n(t+ 1) = M(t)n(t) (2.45)
where M(#) 1s given by
fHt) fat)y f(t) .. fa-r fs(2)
p(t) 0 0 ... 0 0
Mpy=| 0 m@® 0 .. 0 0 (2.46)
0 0 0 ... pei(t) O

Obviously M(t) is square matrix of dimension s and f;(t) > 0 because not all
age classes are capable of reproducing. It is also clear that 0 < pi(f) <1, 1=
1,...,s—1. Now equation (2.45) can be used recursively to generate the population

distribution T time periods later as

T-1

n(t+T) = [H M(t + h)

h=0

n(t) ) (2.47)

where the matrix product in the square brackets is explicitly written as
Mt +T-1)ME+T—=2)...... Mt + 1)M(t) (2.48).
Given the matrix elements are time invariant then equation (2.47) becomes
At +T) = MTA() (2.49)

assuming M and #i(t) are given. The main statistical problem in both the time
dependent and time independent population systems 1s in the estimation of the
matrix entries. This problem will be addressed in detail in later chapters. In the
the current section our interest is to show the relationship between the continuous
age and/or time models derived in sections 2.3 and 2.4 and the current model.

The analysis of the homogeneous or time independent matrix model will be dealt

with at length in chapter III.
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Now consider the aging equation in Eq.(2.44a) where the survival probability,

pi—1(t) is a function of both age and time. Now define
§ni = ni(t + 1) — ni(t)

that 1s
éni = piini—1(t) — ni(t) (2.50)

If we consider an infinitesmal value of & or time step then from the definition of

the force of mortality, we can write p;—i(t) as
pi—1(t) =1 —pu(i —1,t)
then substituting in Eq.(2.50) we obtain
éni = [1 — p(i — 1L, t)|ni=1(2) — ni(t)
and by rearrangement of terms we finally obtain the expression
6ni + [ni(t) = nimi(t)] = —p(E = 1,t)ni_y(t) ; (2.51)

When we examine Eq.(2.51) we see that the first term on the L.H.S is change in
numbers with respect to time while the second term in square brackets denotes the

change in n,(t) with respect to age. Hence we can rewrite the above expression as

én;  én;
———l -—l = - } — 1 t t— .
O i Lt () (2.52)

and letting §¢ — 0 and 6z — 0 yields the time continuous population growth
equation in Eq.(2.33), the McKendrick-von Foerster equation, showing the process
of aging and mortality where age and time are both continuous variables.

It is important to understand the relationship between the continuous and
discrete time population models because they often go hand in hand or supplement

each other when developing other related models such as disease transmission or
epideomological models. Thus it is important to have a sound population model
before we could think of formulating a disease transmission model. For example to

build a model for a vector transmitted disease model it is obviously important to
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have a sound model for the vector population and possibly for the host population.
In chapter IV we derive a vector-host interaction compartmental model for the
brown ear tick or R. appendiculatus a vector for Theileriosis a disease for cattle in
most parts of Africa.

Now the type of population under investigation in terms of its birth pattern is
very important especially in the parametrization of the matrix elements. We now
consider two types of populations according to their birth patterns namely birth
flow and birth-pulse populaions and how to estimate the matrix elements for such

types of populations.

2.6 Life Table Parametrization of the Matrix Model
The aim in this section is to find expressions for the matrix parameters f; and
pi from the life table survival function /(z) assumed to be continuous with respect

to the age variable z.

2.6.1 Birth Flow Populations

Given an individual is in age class ¢ at time ¢ then such an individual will
definitely enter age class i + 1 at time t + 1 if it survives that time interval. This
is so if we assume that the projection interval [t,t 4 1) is equal to the width of one
age class. Let the :-th age class include all individuals with ages in the interval
i —1 < z < i and assume that /(z) and p(z) are defined as in Eq.(2.4a), as
continuous functions of .

Then since by definition p(z) = I(z)/1(0) it follows that an estimate of p; the
probability that an individual in age class ¢, ({agesz : i — 1 < z < i}), survives to

age class 1 + 1, ({agesz: 1 < <i+1}) will be estimated by

@)+ I+ 1)
Pi= G D) +1(3)

(2.53a)

which on dividing the numerator and denominator of the right hand side by 1(0)

yields
 p() +pli+ 1)
Pi= (i~ 1) +p(i)

Another alternative method is to calculate the probability of survival for each age

(2.53b)
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z then average over the entire age interval. This method gives

[P Uz 1)
1),—[_1 1(7) dr

=/‘ plr+1)
i—1 p(x)

which is discretely approximated by

) 1(p(p(i) +p(i+1)) (2.54).

P=a\pi -0 " T a)
Formulae such as in Eq.(2.53a), Eq.(2.53b) and Eq.(2.54) are important because
often values of the function p(x) are only available at discrete points. 0,1,2,...,71—
1,7,i+1,...,. More alternative methods of estimation of the matrix elements are
going to be considered in detail in chapter III where the life table need not be a
pre-requisite.

Now to be able to estimate the f/s consider equation (2.44b) which states
m(t+1)= Zfini(t)~
1=1

We wish to find an estimate for f;, ¢ =1,...,s from the maternity function m(z)

and the survivorship function {(z).

Let B(t,t+ 1) denote the total number of births recorded in the time interval

(t,t + 1) and n(z,t) possess the same meaning as before, then

oo t+1
B(t,t+1) = / / m(z)n(z,u)dudr (2.55).
o Jt

Assuming n(z, t) is known only at times ¢ and t+1 then B(t,t+1) can be expressed

B(t,t+1) = /oo m(a:)(n(x’t) +Z(w’t * 1))d:r (2.56).
0

as

Now suppose that within an age interval {z:i—1< 2z <1}; the functions m(zx)

and n(z,t) are fixed at m; and n;(t) respectively then
1 (o o]
B(t,t+1) =3 Y mi(ni(t) + ni(t + 1)) (2.57)
=1
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Now recall that
ni(t+1)=pi-ini-1 122

then it follows

{i mi(ni(t) +P£—1ni—1(t))}

=1

{mlnn(t) + ma(na(t) + pini(t)) + ma(ma(t) + p2(t)) + .. }

B(t,t+1) =

tI| —

DN —

= LS tmi+ pmisni(t)} (2.58)

i=1

and by comparison of Eq.(2.58) with Eq.(2.44b) it follows that an estinate of the

fecundity rate f; is given by

fi = 1/2(mi + pimig1) (2.59)
However B(t,t+1) is not quite the same as n;(¢ + 1) because some of the members
in B(t,t+ 1) might not survive to time ¢ + 1. Individuals born just after time ¢ are
exposed to risk of mortality for a whole projection interval in order to be included
in n,(t 4+ 1) while those born just before time ¢ +1 are exposed to risk of mortality
for only a negligible amount of time, and therefore have a high chance of being
included in in ni(¢ + 1). We therefore need to multiply the R.H.S. of Eq.(2.59)
by p(0.5h), the probability of an individual surviving to age = = 0.5k from birth
assuming deaths are uniformly distributed over the rate interval [0, k). In case p(z)
is only available for integral values of z; 0,1,..., then p(0.5h) can be estimated
by method of interpolation between the values p(0) and p(h).

The intuitive meaning of Eq.(2.59) is that a typical individual in age class i
produces offsprings at a rate that is the average of the rate for that age class and
the next age class, the latter weighted by the appropriate survival probability. The
offspring has to on average survive for one- half time unit for it to be counted in
the population at time ¢+1. An alternative interpretation being that an individual
aged ¢ — % spends half of the time interval producing offsprings at rate m; and if
it survives, enters the next age class and produces offsprings at the rate mi4 for

the rest of the time interval.
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2.6.2 Birth-Pulse Populations

In this type of population, the functions m(r) and p(x) are discontinous. The
age distribution at census time and formulae for p; and f; depend on when the
pulse of breeding occurs relative to the census time. If 8 (0 < 6 < 1) denotes
the fraction of a time interval that elapses between the pulse of reproduction and
census, then at actual observation time, those who were age r will be age z + @

and therefore the age distribution at census time which we denote by ficengus is

give by

ﬁcensus=(971+9’--°»i_1+6ai+ga--'aamaz)

where amer denotes the maximum possible age an individual can attain. Remem-
ber we had defined individuals of age class ¢ to be all those individuals aged z
such that {(¢ — 1) < z < i} hence these individuals are at census time assigned
agei—1+6.

Now either 8§ — 1 corresponding to a pre-breeding census or § — 0 corre-

sponding to a post-breeding census. Thus

p:i = Prob{individual transists to class i + 1 at t + 1| survived to class i at t}

= Prob{survival to age : + 8| survival to age t— 146}
_ p(z+9)
p(i —1+46)

since by assumption individuals in age class : at reproduction time are assigned age

(2.60)

i — 1 4 6 at census time. To derive birth-pulse fertilities we require fs satisfying
equation (2.44b) with the understanding that all births within the time interval

(t,t+1) occur at time t + 1 — 8, thus we can write
B(t,t+1)=B(t+1-6)

and
wt

B(t+1-6) =Y ni(t)mi¢; (2.61)

=1

where

m;=the reproductive output of an individual of age class i upon reaching the

i-th birth day(the individual is aged ¢ — 1 + 6 at census time)
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¢;=the probability of survival from age : — 1 + 6 to age :.

Such individuals have to survive a fraction 1 — 8 of a time interval in order to

reproduce; hence

o;=p° (2.62)

because these individuals have to survive a remaining fraction, 1 -6 of an age class.
Detailed information on seasonal mortality rate within the unit time interval (say a
year, week, day etcetera depending on the population species) can be useful. Now
once reproduction has occured. the offspring must survive a fraction, 8, of time
unit for it to be counted in n,(t + 1). The probability of such an event is given
by p(8) according to the definition of the survival function p(tr) for continuous
age variable x. If p(#) cannot directly be obtained, then it can be estimated by
interpolation between available values at inegral values of p(r) namely p(0) and

p(1). Thus substituting Eq.(2.62) into Eq.(2.61) we deduce that,
fi = p(@)p! %m; (2.63)

and depending on whether dealing with a pre-breeding (§ — 1) or post-breeding

(@ — 0) census;

pimi, 6—0
fi= {p(l)m,', 91 (2.64)

To illustrate the difference between birth flow and birth-pulse populations we

consider a mortality or life table for the larval stage for R. appendiculatus
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SOURCE: From paper by Newson et al (1984 ); International Journal for Par-
asitology Vol.14 No.5 4853-489

Table 1: Life Table Data For R.Appendiculatus Larvae

Age(x) 4 5 6 T 8 9
p(x) 1.000 0.724 0.505 0.091 0.028 0.000

Now using Eq.(2.53) the formula for p; for birth-flow population and Eq.-
(2.60) for a birth pulse population gives p; values for i = 5,6,7,8,9. We take a

one month age and time interval. Results are tabulated in table below

Table 2: Age Specific Survival Probabilities for Two Reproduction Patterns.

Birth Flow Birth Pulse Birth Pulse
i pi pi(6 — 0) pi(6 — 1)
5 0.713 0.724 0.698
6 0.485 0.698 0.180
7 0.200 0.180 0.308
8 0.235 0.308 0.000
9 0.000 0.000 -

Notice that in the pre-breeding census (6 — 1),ps = 0 because in the 9th
age class, at the time of census individuals would be beginning to attain their 9th
birth day but the mortality table indicates that none of them survive to do so. If
considered as a post-breeding census (§ — 0),ps > 0 because individuals in the
9th age class have just attained their 8th birthday.

The table tells us that if such data was available for the complete life cycle
for the species then the transition matrix could completely be parametrized. The
fis are calculated from the m(z) functions using formulae (2.64).

To wind up this chapter we refer to the matrix equations (2.47) and (2.49)
for the time dependent and time independent matrix elements. The fact that we
can project forward the number of individuals in each age class, is an advantage of
the matrix model over the continuous age/time population models in sections 2.2
to 2.4. We can follow the dynamics of the various age classes separately. Another

advantage with the model is that other modes of classifications such as size, stage
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etcetera can be treated in a similar manner as the age classification and useful
conclusions about the population dynamics derived. The other advantage with
the discrete time/age matrix model, especially in the present computer age is that
it can easily be computerized hence allowing simulations to be carried out on
population dynamics to compare with observed information.

Finally it is seen from table 2 that the type of birth pattern of a popula-
tion is crucial in the estimation of the matrix elements. It is clear that a wrong

classification of the population greatly affects the estimates.
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CHAPTER III
TIME HOMOGENEOUS MATRIX MODELS

3.1 Introduction

In this chapter we consider the analysis of the case when the elements of the
population projection matrix (m;;(t)) in Eq.(2.46) of chapter 2 are time indepen-
dent or time invariant. This means that the fertility and mortality rates (vital
rates) are constant over time. However in real life situations this is not exactly
true for any given population species. The rates are bound to vary with time
due to the influence of several factors such as environmental factors which in turn
change with time. However the validity of time homogeneous models to study
population dynamics lies in the distinction between forecasting future population
structure and projecting the structure given the set of prevailing current condi-
tions. The categorisation criteria depend on the population species and biology in
question. For example when studying human populations, classification according
to age is more appropriate. When dealing with tree populations size classification
may be more appropriate than age classification while if it is an insect/arthropod
and sometimes plant populations classification according to developmental stages
is naturally the most suitable. A more complex mode of classification is that in-
volving a combination of more than one classification attributes say age and stage
of development. We shall attempt to present a more general mode of classification.
In order to do this we will refer to the various classes in which an individual in
the population may belong at time t as simply states or stages.

It will be shown that as ¢ — oo the population structure 7(t) becomes pro-
portional to the stable population structure. The concept of strong and weak
ergodicity is brought out clearly. Finally we discuss the problem of estimating the

matrix elements under various assumptions that of time homogeneity being one of

them.

3.2 The Model

Consider a population composed of s age classes 1,...,s. If the width of a
typical age class is h, then the i-th age class is composed of all those individuals

or organisms with age x in the interval (i — 1)k < & < : h. We also consider time
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scale in units of length h such that in real sense a time interval {t,t 4-1) means the
interval [tt. -+ h). Let, the time independent(invariant) fertility and survival rates
for individuals in the i-tli age class be /, and p, respectively fori = I,..., s Then

the population disribution vector at time t is given by

nt = eee»ns(t)) (3.1)

where n,-(0 denotes the number of individuals in age class i. It is important to
note that /, > 0Oand 0 < p, < 1 That is an individual is either fertile or not
fertile at all (/= = 0) and if the individual survives the interval [t,t + 1) then it has
to transit to the next age class. From these definitions it is clear that the number

entering the lowest age class(offsprings) is given by

3

TNt + 1) = 'y Anift)fi = (3.2)

and nt(t + 1) is given by
T{(t + 1) = pi-i i=2,...,s. - (3.3)
Equations (3.2) and (3.3) can be written in matrix notation as
nt + 1) = M n(t) (3.4)

where the elements of the matrix M are given by

f/> i=1j-=
mij =1 P, J=1 1=2,...,6 (3.5)
1 0. elsewhere

The matrix M above is referred to as the complete time homogeneous population
projection matrix. It is called complete because it caters for the entire population.
It has elements (non-zero) in the leading subdiagonal and in the first row. It is
square of dimension s and it is a non-negative matrix meaning my > 0 for all
(Lj). It is also worth noting at this point that given n(t), then the distribution

or structure after r time periods is given by

n(t + t) = M Th(t) (3.6)
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If we set ¢ = 0 then the above equation becomes
n(r)y=M"n(0), r=12,...,

which shows that if we start observing the population at time zero then, the

structure at time t is
i(t) = M*'7(0) (3.7)

The column vector 72(0) is known as the initial population vector. We stress here
that the structure of the the matrix M depends on the population species under
investigation and other examples will be considered later. However there is no loss
of generality in sticking to age classification.

It is not really necessary to deal with the complete population projection
matrix, because if the fertility rates are such that; f; >0, :=1,...,k-1;fx >0
and f; = 0for j = k+1,k+2,...,s then the matrix M can be partioned as follows

M = ( 4 g) (3.8)

where the elements of the matrix A are

fj. 1= 1,j= 1,...,]\7
anz{pj, J=1—1,2=2,,k (3.8b)
0, elsewhere
This means that the set of age classes can be partioned into pre-reproductive and
reproductive age classes which is the set 51 = {1,...,k} and post reproductive
age classes which is the set S, = {k+1,...,s} with |§)| = k and |S2| = s — k,
where |S| denotes cardinality of the set S. Another observation as a result of this
partitioning is that
s—1
Det M = O(HP.') =0
=1
hence M is singular. The most important conclusion out of the above partitioning

of the age classes is that the matrix M can now be partitioned symmetrically as

M = (3 g) (3.9)

where
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A is kxk with its only non-zero terms in the first row and along the main

sub-diagonal

B is (s — k)xk with all its elements zero except in the upper right corner

C is (s — k)x(s — k) with its only non-zero terms in the upper right corner
and

O is kx(s — k) matrix of zeroes.

In the same manner we can write the population distribution vector as
. 7 (t)
n(t)=1{ = 3.10

where
n(t) = (711(t), s ’nk(t)),

and
Aa(t) = (nkg1(t), - .-, ms(t)) .

By repeated multiplication we can show that

At O -
t _
M = (B(t) Ct) (3.11a)

where ,
t p—

Biy=)» C'BA™T, t=12... (3.11b)

=0

Therefore given 7(0) ,

w=(760) = (50 &) (2o) @12
which implies that,
71(8) = A (0) (3.13a)
and

fia(t) = Byi1(0) + C'iy(0) (3.13b)

We notice that from Egs.(3.13a,b) the components of 7i,(t) are independent of
7i2(0) while those of 7i5(¢) are dependent on 71(0). This simply means that the

population in the reproductive phase does not depend on the population past
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the reproductive phase. The converse is obviously not true. Infact intuitively
C—% = O so that M, ¢ > s —k has all its last s — k columns equal to 0. This
is because once an individual enters the post reproductive phase of the system it
is already of age > k units and the maximum possible attainable age is s thus it
follows that this individual will remain in the system for at most s — k units of
age hence the result.

What this means is that once the system has been in operation for s units of
time the effect of the post-reproductive sub-cohort of individuals is immaterial and
can therefore be forgotten as far as system renewal is concerned. The matrix A
remains the only one which is principally of interest because it involves the set 5)

of the pre-reproductive and reproductive age classes. The matrix A can explicitly

be written as

fii fo fs oo Fr=1 f
(p1023 klok\

0o ... 0
0 po 0 ... 0 0
A=10 0 p; 0 0 (3.14a)
\o0 0 0 ... piy 0/
such that
Det A = (=1)*"!pips...pk—1 fr
k=1
=(-1)“‘<Hp.'>fk, pi >0V (3.14b)

1=1

Therefore as opposed to matrix M, A is non-singular hence it possesses an inverse.
Thus given an initial age distribution vector 7(0), we can in addition to the for-
ward series {A'7i(0)}, also consider the backward series namely {A™'7(0)}, t=
1,2,.... In practice the latter does not find much use hence our attention will
be focussed more on the forward series as time elapses. The matrix A will in the
sequel be referred to as the population projection matrix.

It is very much dependent on the population species and the classification
criteria used. For example considering a tree species with % size classes, then an
individual in size class ¢ at time ¢t may by time ¢ + 1 have moved to the next class,

i + 1, remained in the same class or died. Let p;, m; and 1 — p; — 7; denote the
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probabilities of the above events. Then for such population species the matrix A

is given by
T+ fr, fori=j=1
f-, 1=1 j=2,,k
(a) = 20 TTE T (3.150)
pj’ J:l—l i—_—'g,...,k

where f; denotes the reproduction rate for the ith size class. In full the matrix A

is given by
(F1+f1 fa f3 oo fr—1 S \
podl ™ 0 ... 0 0
0 P2 T3 ... 0 0
A= 0 0 ps - 0 0 (3.15b)
\ 0 0 0 Pk—1 T )

Such kind of classification is or would be appropriate for a population model meant
for the management of renewable resources such as forests. The aim would be to
develop a sustainable harvesting strategy or policy. The question of appropriate
classification will be revisited in section 3.4 for a general stage structured popula-
tion such as insect or arthropod populations.

In order to understand and analyse the time homogeneous model fully we
study some of the relevant definitions and theorems in matrix algebra in the next

section.

3.3 Properties of the Population Projection Matrix

From the discussion in the preceeding sections it is clear that both the com-
plete population projection matrix, M, and the population projection matrix A4,
are non-negative that is m;; > 0 and a,; 2 0. The matrix is said to be positive if
its elements are strictly positive. Negative elements for M and A are not feasible
because this would suggest a possibility of a negative number of individuals in
a stage which is in practice not realistic. The matrices are square and the di-
mensions will depend on the number of age classes, hence the smaller the size of
an age class the higher the dimension and vice versa. An interesting subclass of
square non- negative matrices is that of stochastic matrices which have either all

row or all column sums equal to unity, and which have an important role in the
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study of Markov chains. It is possible to break down the population projection
matrix into a stochastic matrix which gives the transition probabilities and a sec-
ond matrix that gives the reproductive data for all the classes. We next present
a series of important definitons, theorems and corollaries on nonnegative matrices
as in Horn and Johnson(1985). However the structure of the projection matrix
in the present study requires certain modifications in the proofs of some of the
theorems , to bring them into context. Thus we briefly present some of the proofs
and definitions. Their importance comes in when we present several properties of

the population projection matrix in the sequel.

Definition 1: An nxn matrix P is called a permutation matrix if exactly one entry
in each row and column is equal to 1, and all other entries are 0. Multiplication by

such a matrix effects a permutation of rows or columns of the matrix multiplied.

The simplest example of a permutation matrix P has p;; = pj; = 1 for some
fixed i, 7 and has all other nondiagonal entries 0. In general, left multiplication
of an mxn matrix, A by an mxm permutation matrix P, permutes the rows of
A, while right multiplication of 4 by an nxn matrix P permutes the columns of
A. The determinant of a permutation matrix is = which implies that permutation
matrices are necessarily nonsingular. Although permutation matrices do not, in
general commute under multiplication, the product of two permutation matrices
is again a permutation matrix. Since the identity is a permutation matrix and
PT = P~! for every permutation matrix P, it follows the permutation matrices
constitute a subgroup of the group of nonsingular matrices. Further, from the
definition of a permutation matrix, it follows that such a matrix is unitary, hence
orthogonal(PT = P-!). Since PT = P! permutes columns in the same way that
the nxn permutation matrix P permutes rows, the transformation A — PAPT
permutes the rows and columns of an nxn matrix A in the same way. Thus, if P
is a permutation matrix, the similarity PAPT is obtained from A4 by a suitable

permutation of rows and colmns of A.

Definition 2: A matrix A = (a;j) is said to have the property SC(strong con-
nected) if for every pair of distinct integers p, ¢ with 1 < p,q < n there is a

sequence of distinct integers ki = p, k2ak31"'vkm—l’km =4¢,1 <m < n, such
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that all of the matrix entries 3,..., are non zero.

Definition 3: If A = (atJ) E Mmn (the set of m-by- n complex matrices) we set
W\ = (Jaj) and m(A) = (/i,;), where /iy = 1ifat Oand mj = O0ifay = 0.

The matrix A1 (A) is called tlle indicator or incidence illutriM of .4.

Definition 4. The directed graph of A 6 Mn (the set of n-by-n square matrices),
denoted by T(.4), is the directed graph on nodes P\, P2,. .., Pn such that there is
a directed arc in T(A) from P, to pPj if and only if at3 ™ 0(//;_, ™ 0)

Definition 5: A directed path 7 in agraph v is a sequence of arcs P P,2,p t2P t3,-
P.3P , i n r. The ordered list of nodes in the directed path 7 is P,-, P-2,..

The length of a directed path is the number of successive arcs in the directed path
if the number is finite; otherwise, the directed path is said to have infinite length.
A cycle is a directed path that begins and ends at the same node; this node occurs
exactly twice in the ordered list of nodes in the path, and no other node occurs

more than once in the list. A cycle of length one is called a loop.

Definition 6: A directed graph T is strongly connected if between every pair of
distinct nodes P,, P3 in Y there is a directed path of finite length that begins at

Pi and ends at Pj.

Theorem 3.1: Let A 6 Mn. Then A has the property SC if and only if the
directed graph T(A) is strongly connected.

As a remark let Y be a directed graph on n nodes. If there is a directed path
in T between two nodes , then between these nodes there is a directed path that
has length not more than n —1 The question is how one can tell if a given matrix
A has property SC. This amounts to checking whether Y (A) is strongly connected.
If n is not large or if M (A) has a special structure, then one can just inspect Y (A)
and trace out paths between all pairs of nodes. However, this is not practical in

general, thus we need some computational method.

Theorem 3.2: Let A EMN be given, and let P, and Pj be given nodes in T(A).

There exists a directed path of length m in Y(A) between Pt and Pj if and only if
(\A\m)ij 770, or equivalently, if [M(A)m]iJA 0.
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Proof: We proceed by induction. For m = 1 the assertion is trivial. For m = 2

we compute

(AP, = leAllakllAllk;

= Z |aik| lax;|
k=1

so that [|A|?];; # 0 if and only if for at least one value of k, a;x and ag; are both

(3.16a)

nonzero. But this is the case if and only if there exists a path of length 2 in I'(4)

from P; and P;. Assume the assertion is true for m = ¢. Then

(41745 =D A1 Al

k=1 (3.16b)

= > [AlI"iklai;| # 0
k=1

if and only if for at least one value of k, [J4]%)ix and ax; are both nonzero. This is
equivalent to having a path from P; to Pi of length ¢ and from Pj to P; of length
1, and this is the case if and only if there is a path from P; to P; of length ¢ + 1.

The same argument works for M(A).

Definition 7: Let A = (a;;) € M,. We say that A > 0 (A is nonnegative) if
all its entries a;; are real and nonnegative. We say 4 > 0(A is positive) if all its

entries a;; are real and positive.

Corollary 1: Let A € M,. Then |A|™ > 0 if and only if from each node P; to
each node P; in I'(A) there is a directed path of length exactly m. The same is
true for M(A)™.

Corollary 2: Let A € M,. Then A has property SC if and only if (I+]A|)*~! > 0
or equivalently if [T + M(A)]*~' > 0.

Proof:

n— -1 -1
I+ [AD* ' =T+ (n-1)|4| + (" 0 )IAI2 +...+ (z_2>|A|"‘2 +|A™ >0
(3.17)
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if and only if for each pair (i,j) of nodes with i # j at least one of the terms
|A|,|AJ%,. . .,]A]* ! has a positive (i, j) entry. But Theorem (3.2) says this happens
if and only if there is some directed path in I'(A) from P; to P;. This is equivalent
to ['(A4) being strongly connected, which is equivalent to A having property SC.

Corollary 3: There is a path in ['(A) from P; to P; if and only if [(+|A[)*7!];; #
0.

We finally introduce one more equivalent characterisation of the property SC.
It is based on the fact that strong connectivity of I'(A) is just a topological property
of I'(A) and has nothing to do with the labeling assigned to the nodes of I'(4). If
we permute the labels of the nodes, the graph stays either strongly connected or
not strongly connected. It is important to note that if we interchange the i-th and
j-th rows of A as well as the i-th and j-th columns this has the effect on I'(A) of
interchanging the labels on nodes P; and P; and vice-versa. Thus it is important
to know whether some permutation of rows of A can be found that brings A into

the following special block form.

Definition 8: A square non-negative matrix M of order n is said to be reducible

if there exists a permutation matrix P such that

_ A O
PMP-! = (B c) (3.18)

where A and C are square matrices of order r and n — r respectively for some
integer r with 1 < r < n — 1. The matrices O and B are of dimensions rx(n — r)
and (n — r)xr respectively.

Notice that the definition does not insist that the blocks A, B and C have
nonzero entries, but only that we should be able to get an rx(n — r) block of 0
entries in the indicated position by some sequence of row and column interchanges.

If |M| > 0, clearly M is not reducible, and if M is reducible, it must have at least

(n-1) 0 entries.
Definition 9: A matrix A € M,, is irreducible if it is not reducible.
Theorem 3.3: A matrix A € M, is irreducible if and only if
(I+A)"'>0 (3.19a)
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or, equivalently, if

(I + M(A4)""" > 0. (3.19b)

Proof: We shall actually prove that A is reducible if and only if (I + |A])*~! has

at least one 0 entry. Suppose that A is reducible such that for some permutation

L (40
PAP _<B c)

matrix P

which implies that

4=p (; g) P=P'iP (3.20a)

where A, B, O, and C are block matrices as in definition (8) above. Now it follows

that
|A|=|P"'AP| = P7YA|P (3.200)

since the effect of P is only to permute rows and columns, also we notice that | A2,
|A[3,..., |4["~" all have the same r by (n — 7) block of zeroes in the upper right

corner as A. Thus
(I+]AD™" = (I + P71 A|P)"!
= (P I +A||P)""
= P71+ |A])"'P

_ -1 bt n—1 112 n—1 < in~1
.y [I+|A|+( ) >|.4| +...+(n_1)|A| P

(3.20¢)

and all the terms in the square brackets have an r-by-(n — r) block of 0’s in the
upper right corner. Thus (I + |A|)"~! is reducible and hence it cannot have all
nonzero entries.

Conversely, suppose for some p # ¢ that the (p, q) entry of (I + |A[)*~! is 0.
Then we know that there is no directed path in I'(4) from P, to P,. Define the

sets of nodes
S1={Pi: P, = P, or there is a path in['(4) from P; to P;} (3.21a)
and let S; contain all nodes of I'(A4) that are not in S;. We notice that

51U52={P19°"1Pn} (3.21b)
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and

Pq651#05052§é{P1,...,Pn} (3216)

If there were a path from one node P; of S; to some node P; of S, then (by
definition of S;) there would be a path from P; to P; and so P; would already be
in S; which is a contradiction. Thus, there can be no path from any node of S,

to any node of S;. Now we relable the nodes so that

Sl = {Pl,. .. ,13,-} and Sz = {pr+1,~ . ,P,-.}.n_r} (321d)
and hence
< _ B O
A=PAP 1=<C D) BeM,,Oe Mr,n—r (3.21e)

so that A is reducible. The argument for [I + M(A)]"~! is similar.

Let us summarize the results as follows

Theorem 3.4: Let A € M,. The following are equivalent
(a) A is irreducible

(b) (I+]4D*"! >0

(c) T+ M(A)*! >0

(d) T(A) is strongly connected

(e) A has property SC

From definitions 8 and 9 we conclude that an age classified matrix with pre-

reproductive and post-reproductive age classes or simply the complete population
projection matrix given in Eq.(3.8) is reducible. In this case we can take P = I.
A matrix is irreducible if it is not reducible. Sometimes the terms decomposable
and indecomposable are used instead of reducible and irreducible especially in the
study of stochastic matrices. Next we show that the population projection matrix

written in full in Eq.(3.14) is irreducible. Let us call this property 1 of matrix A

Property 1: A is irreducible.
This property follows from the following argument. The matrix A in Eq.(3.14)

can in general be written as a sum of two matrices given by

A=A+ B (3.22a)
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where the the matrix Ao = (a};) has elements only in its first row given by
a);=f;=0, j=1,...,k—1landaj=fi >0

and in the leading sub-diagonal given by

a?‘i_] = Pi—1 i=2,...,k
and zero elsewhere. The matrix B = (b;;) has all its elements zero except possibly

in the first row since by assumption
byj=f20 j=1....k=1and bk = fr = 0.

We claim that if Ag is irreducible then so is the more general matrix, A. Suppose

that this is not the case. Then there exist a permutation matrix P such that

PAP™' = P(4y + B)P™!
= P4oP~! + PBP™! _ (3.22)
- (& #)
G H

where F and H are square. Since the inverse of a permutation matrix is again a
permutation matrix then B > 0 = PBP~! > 0. But PA,P~! cannot be of the
form given in Eq.(3.22b) by hypothesis, hence A is irreducible, since the addition of
the non-negative matrix PBP~! cannot result in a sum of the form in Eq.(3.22b).
One can also see that by definition I'(A) is strongly connected and by Theorem
3.4 it follows that A is irreducible.

Next we state the fundamental Perron-Frobenius theorem which is vital in the
study of both discrete and continuous time matrix population models. In what
follows, therefore, we deal with square nonnegative matrices A = (a;;) i,j =
l,...,n; that is a;; > 0 Vi, j, in which case we use the notation 4 > 0. If in fact

aij >0 Vi, j we write A > 0. This definition and notation extends in an obvious

way to row vectors §7 and column vectors T also to expressions such as

A>B &< A-B2>0 (3.23)
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where A, B and O are square nonnegative matrices of compatible dimensions. We
use the notation §7 = (y;), ¥ = (r;) for row and column vectors respectively and

AF = (afj) for kth powers of matrices.

Definition 10: A square non-negative matrix is said to be primitive if there exists

a positive integer k such that A* > 0.

It is clear that if any other matrix B has the same dimensions as A, and has
positive entries and zero entries in the same positions of A, then this will also be
true for powers AF, B* of the two matrices. Asincidence matrices A corresponding
to a given matrix A replaces all positive entries of A by ones clearly Ais primitive iff
A is. We now state without proof the two forms of the Perron-Frobenius Theorem
first for strictly primitive matrices then secondly for general irreducible matrices.

The proofs can be found in any of the books by Gantmacher(1959), Seneta(1981)
or Horn and Johnson(1985).

Theorem 3.5: Perron-Frobenius Theorem for Primitive Matrices: Sup-

pose L is an nxn non-negative primitive matrix. Then there exists an eigenvalue

A1 such that .

(a) A; is real and > 0;

(b) with A; can be associated strictly positive left and right eigenvectos 7T and
T respectively;

(¢) Ay > |A| for any eigenvalue A # Ay of L;

(d) the eigenvectors associated with A, are unique to constant multiples.

(e) If O < B < L and B is an eigenvalue of B, then |3| < X;. Moreover,

I8] = Ay = B = L. Here O denotes a matrix of zero elements only.

(f) A1 is a simple root of the characteristic equation of L.

Theorem 3.6: Perron-Frobenius for Irreducible Matrices: Suppose L is an
nxn irreducible non-negative matrix. Then all of the assertions (a)-( f) of Theorem

3.5 hold except (c) is replaced by the weaker statement: A, > || for any eigenvalue
Aof L.

From the structures of M and A given in Eq.(3.8) and Eq.(3.14a) together

with the size classsified case of Eq.(3.15b) it is clear that these matrices are non-
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negative square matrices. We had already indicated from Eq.(3.9), definition 8
and property 1 of matrix A that matrix M is reducible while A, the population
projection matrix is irreducible. Next we state the relevant definitions and rules

to guide us on primitivity of a matrix.

Definition 11: The index of imprimitivity 7 of an irreducible non-negative matrix
A is the algebraic multiplicity of its eigenvalues of modulus A; that is 7 is the

number of eigenvalues A; of A such that |A;| = A;.

Definition 12: An irreducible non-negative matrix A is said to be primitive if the
index of imprimitivity 7 = 1. Some books refer to the corresponding eigenvalue

as a root of multiplicity one.
Now suppose the characteristic equation of a matrix B is given by
|\f -B|=0 (3.24a)

then by the Descarte’s rule of signs, the number of positive roots of the equation is
equal to the number of changes of signs in it. We also comment here that the terms
‘aperiodic’ and ‘periodic’ are used instead of ‘primitive’ and ‘imprimitive’ and a
stochastic matrix that is both irreducible and primitive is said to be ‘regular’ or
ergodic. More precisely the corresponding Markov chain is said to be regular or an
ergodic chain. The property of ergodicity in population dynamics will be revisited
later in the work. Next we study the population projection matrix in relation to

the above definitions and theorems as a discrete time homogeneous process.

3.3.1 Discrete Stable Population Theory

We now continue studying the properties of the matrix A in (3.14a) and the

sequence {n(t + 1) = An(t)}1en as t — 00.

Property 2: The projection matrix A has a positive eigenvalue A\; which is a
simple root (root of multiplicity one).

We know that the eigenvalues of the matrix A satisfy the homogeneous equa-

tion
AT = AT
= (A-ADZ=0
= |A—/\I| =0
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and from the structure of matrix A in Eq.(3.14a) it follows that
k=1
JA= M| =M - M o oA~ — ] pi=0 (3.24b)
i=1
Since p;i >0, i:=1,...,k—1land fi 20for:=1,2,...,k—1 and f; > 0 then

k=1
feJlpi>0 (3.24c)
1

so A has no 0 eigenvalue. Further dividing the characteristic equation in Eq.(3.19)

by A* and rearranging gives

fe k—1
f(A):f/\l+£/l\—{3+...+/\—k pi=1 (3.25a)
=1
from which it is clear that
(1)
lim f(A\) = o0
A—0

(i)
,\li_.n;o f(A)y=0
hence f()) is a monotonic decreasing function of A. This means that there
is only one value of A = A say which satisfies f(A) = 1. Another intuitive
interpretation of (3.25a) is that given an individual is initially in age class
one at time zero, then after one time interval we expect it to produce f;
individuals, p, f, after two time periods, p1p2 f3 after three time intervals and
so on. That is, if we let Ep(j) denote the number of offsprings from such an

individual after j time periods then
j=1
Er(j) = fi [ »: (3.25b)
=1

Property 3: All remaining eigenvalues of A are smaller in magnitude than the

one real positive eigenvalue A, above.
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Let Aj, j=2,...,k represent the remaining k — 1 eigenvalues of the popu-

lation projection matrix. Then in general we can write or represent, A; as
Aj=uj+iv;, j=2,...,k—-1uj,vER
as a complex number (i=y/—1) or in polar coordinates form as
Aj = |Aj|(cosB + isinf) = |\;|e’

where,

I\ = V(wd +0)

and

6§ = tan~"(v;/u;)
It follows that

AT = |Aj] 7 (cos8 — isin8)
= exp(a + 18), (3.25¢)

where « is real, 3 is real and positive. Further 8 # 2r 47 6x,..., because if
this was the case A; would be real and positive which was shown to be impossible
from property 2 otherwise we have more than one positive real roots. Even from
Descarte’s rule of signs it follows from Eq.(3.24b) that there is only one change of
signs hence only one positive root exists.
Substituting A, from Eq.(3.25¢) in Eq.(3.252) then equating the real parts we
get
k-1
fre®cosB + p1 f2e2®cos2B + ... + fre*¥coskB [[ pi = 1 (3.26a)
=1
Since A is real, then we can express it as A}’ ' = e for some r € R. Further since
Ay satisfies f(A;) = 1 then it follows by substituting A = A\; = e~ in Eq.(3.25a)
that

k-1
fre” +pfae® 4.+ et [ pi =1 (3.26b)
=1
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where 8 = 0 in this case. But we know that |cosmf| < 1 thus for some j,
the coefficient e® in Eq.(3.26a) is greater than the corresponding coefficient in

Eq.(3.26b) so that for that
e >e" = e "< = |Aj| <N\ (3.26¢)

This shows that for an age classified population projection matrix defined in

Eq.(3.14a) there exists a dominant eigenvalue A1 which exceeds the modulus of all
other eigenvalues.

Property 4: The population projection matrix A has a right eigenvector £y, of

dimension k corresponding to A; such that all its components z;, :=1,2,...,k

are positive.

To show this we let £, = (a:l,...,zk)'. Then z, satisfies the homogeneous
equation

AT = A (3.27a)

which is a system of & simultaneous equations given by

k
A= ; fizi (3.275)
MZi=piTi-1, 1=2,...,k
without loss of generality let ; = 1 such that from the second of the k linear
equations x; is given by
z2 =p1/M
and then from the third equation we get

:z: _P_'z_x _ bhip2
EEYREEY

and continuing recursively in a similar manner we get the general expression for

.’L‘j as

z; =12, ji=2..,k (3.27¢)
From the definition of A we know that p; >0, :=1,... k-1 and clearly Ay >0
thus from Eq.(3.27c) above each z; > 0, 2 =1,...,k hence the conclusion #; > 0.
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The components of the eigenvector &), characterise the stable age distribution. This

is true because in all the above derivations in this subsection we assume the system

has attained stability.

Property 5: The matrix A has a left eigenvector 1 = (y1,..., Yk )' corresponding
to A; such that all its components are positive.
Again without loss of generality we let y1 = 1. But y satisfies the matrix

equation
gTA = Ag7T

which again gives a system of k homogeneous equations given by

nfi+yp = My
1 f2 + y3p2 = My2

......

yi1fi + yiv1pi = Ay (3.28a)
Y1 fi—1 + YkDk—1 = A1¥k—1
ylfk = My

Now from the last of these equations we see that
yk = fe/ M since y1 =1 (3.28b)

and from the second last equation in the system Eq.(3.28a) and using the value

for yx above we get f
kPk-=1
Myk-1 = fi1 + 73

or

fri—1 . JkPr—a

ye—1 = T+ T (3.28¢)

and in general we have

k i—1 o
w:Z(Hm)f«\{ =20k (3.284)

t=j \h=j
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We adopt the condition H;;'i pr = 1 to avoid ambiguity in Eq.(3.28d). Clearly
y; >0, ;7 =1,2,...,k. The quantities can be interpreted to measure the repro-
ductive potential of an individual in age class j = 1,2.... k. Thus the quantity y;
will be called the reproductive value of an individual aged j. It gives the expected
total number of offsprings an individual currently in age class j would give in the

remaining expected life span, Caswell(1982,1983).
Propery 6: For an initial population distribution vector 77(0) not identically zero,

there exists a constant c¢;, which depends upon the vector such that

. ATA(0)
A AT

=11} (3.29a)

where ) is the dorminant eigenvalue and & its corresponding right eigenvector.

To derive this property let A;, ¢ = 1,2,...,k denote the & eigenvalues of the

population projection matrix A. Then,

Az, = T, 1=0,1....,k -1 (3.290)
and
TA=097 i=12,...,k (3.29¢)

where 7; and ; are respectively the right and left eigenvectors corresponding to
A;. Further let,

D = diag(Ai) (3.29d)
denote the Jordan canonical matrix representation of A. We assume that the
population’s life cycle is such that the A}s are distinct. Without loss of generality
assume that

Ml > [A2] 2 -0 2 Akl

Next we define, the two matrices X and Y given by
X:(fl,f2,...,.’i"k) (3.30a)

and

Y = (g2, %) (3.300)



We adopt the condition H;;l,- pn = 1 to avoid ambiguity in Eq.(3.28d). Clearly
y; >0, j=1,2,...,k The quantities can be interpreted to measure the repro-
ductive potential of an individual in age class ) = 1,2....k. Thus the quantity y;
will be called the reproductive value of an individual aged j. It gives the expected
total number of offsprings an individual currently in age class ; would give in the

remaining expected life span, Caswell(1982,1983).

Propery 6: For an initial population distribution vector 7(0) not identically zero,

there exists a constant c¢;, which depends upon the vector such that

. ATR(0) .
hm —/TIT‘— =C1T (329(1)

T—
where ); is the dorminant eigenvalue and &) its corresponding right eigenvector.

To derive this property let A;, ¢ = 1,2,...,k denote the & eigenvalues of the

population projection matrix A. Then,
AT, = MT;, =01....k—-1 (3.29b)

and
grA=MgF i=12,...,k (3.29¢)
where #; and §; are respectively the right and left eigenvectors corresponding to
A;. Further let,
D = diag(\i) (3.294d)

denote the Jordan canonical matrix representation of A. We assume that the
population’s life cycle is such that the A}s are distinct. Without loss of generality
assume that

A1) > [A2] = - 2 Al

Next we define, the two matrices X and Y given by

-

X = (&1,%2,.-,Tk) (3.30a)

and

o

Y = (51,92 9&) (3.300)
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Then it follows that the matrix equation in Eq.(3.29b) and Eq.(3.29¢) can be

written compactly as
AX =XD (3.31a)

and

YA = DY. (3.31b)

Assuming that X and Y are invertible then,
A=XDX"'=Y"'DY
which means that as a consequence of uniqueness

Y=Y! = v=Xx""

thus
XY =XX"'=Y"Y=1

and
A=XDX™!
= XDY
= MG + Moy 4o+ MdryF
k (3.31¢)

/\l.Ely’
1

H

AiH;

I
.M”

1

-

where

Hi=7gT i=1,2....k (3.31d)

are k by k matrices called the spectral components of A and posses the special

property that they are idempotent. To see this note that

AN = xpNx~!

but since

X1'=Y
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then

AN = xDVY

k
=S,
i=1

where N is a non-negative integer. Now compare this with,
AN = [\ Hy + A Hy 4.+ MeHY

thus we conclude
HN = H;

and
HH; =0 fori#).

It follows that for N =t

Al A2\ ! Ar\ !
Xi— H1+</\—1) H; + +(K) H,
and given
M o> el 2 e 2 Al
then
LAY
lim (—) =0, 2=1,...,k
Hence
. A = =T
tl_l_'fl;.lo/\—g =H, =1y

which on post-multiplying both sides by 12(0) gives

t-o
A n(O) = 5117‘?5(0) = lel

lim
t—oo /\i

where

¢ = §T7(0) > 0.
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The results obtained above allow us to make concrete conclusions about an age

structured time homogeneous model. Given 77(0) then the structure at time ¢ is

given by
n(t) = A'7(0)
k
3.34
= Z C,’/\:l-'.,' ( 0.)
=1
where
ci = i (0) (3.34b).
For large t,

Thus an indication that the population has attained stability is achieved when
n(t +1) = Ayna(t) (3.36a)

or

AR(t) = \ii(t) (3.36b)

holds.

After the population attains stability the initial age structure 7(0) becomes
irrelevant, while Eq.(3.34a) tells us that the growth of the classified population is
decomposed into a set of exponential contributions one for each eigenvalue. The

value )\ is called the true rate of population growth and it is related to the intrinsic

rate of natural increase r, by the relation
log, A1 =71 (3.36¢)

If |Ai] < 1 its contribution decays, either smoothly if A; > 0 or with damped
oscillations if in addition A; < 0 or complex. If [A;| > 1, then its contribution to
Population growth grows exponentially, either smoothly if A\; > 0 (positive and
real) or with oscillations if A; < 0 or complex.

As t becomes large \;, the dominant eigenvalue of A becomes the determining

rate of growth and we notice that for a particular age class ;

. ni(t+1)
m D Ay (3.37a)

t—oo  ni(?)

5



and 7i(t) becomes proportional to Z; the eigenvector associated with A;. Also it
can be shown that for two consecutive age classes : and i + 1 the following relation

holds:

n; I M

i=12... k-1 (3.37b)

him = =
t—oo nip1(t)  Tits pi

where the final equality is as a result of the expression for the stable distribution

obtained for the z}s in Eq.(3.27c).

3.4 Generalized Stage-Age Structured Matrix Model

The classical age classified Leslie matrix for population dynamics was stated
in Eq.(3.5) for the complete population projection matrix and in Eq.(3.14a) for
the pre-reproductive and reproductive population. In this model we assume that
all individuals in age class 7, say, advance(transit) at the same rate and that the
age of an individual carries all the vital information. The model also requires the
classification to be such that the size of one age class be equal to the projection
interval, or time step (¢,t + h).

In general a population’s life cycle may consist of & developmental stages
of variable residence times T;, ¢ = 1,2,...,k. By residence time we mean the
expected length of time an individual waits in a stage before transiting to the
next stage. Depending on the magnitude of T; and h, we can further classify
individuals in stage ¢ into ¢; = Ti/h age classes of size h each. We make the
following assumptions regarding an individual in class j, j =1,...,¢; of stage ¢

within a unit time interval say [t,t + k) = [t, + 1);

Al. It survives to time t + 1 with probability si;.

A2. (i) Given it survives to time ¢ + 1 it either transits to age group 1 of the next
stage ¢ + 1 with probability ij, p=Loook g=1oot
(i3) or transits to the next age group of the same stage with probability,
(1-91;)

A3. Such an individual produces fi; offsprings who survive and enter age group

1 of stage one just before or at time ¢ + 1.

Now even for fixed or persistent environmental conditions, individuals in a

particular stage may develope at different rates. Let
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Sij(t) = event that an individual of age 7 in stage ¢ at time ¢t will survive to
time t 4+ 1
T}(t) = event that an individual transits to the next stage, : + 1, during the
time interval [t,t+1) and
71;(t) = the transition probability from age group j in stage i at time ¢ to
the next stage, : + 1.

Now, v} jisa conditional probability because an indvidual will transit to the next

stage only if it survives to time ¢ + 1. Therefore we can write, especially for the

independent case,

115 = P(T}(1)1S:5(1)) (3.38a)

Therefore the probability that an individual of age 7 in stage : at time ¢ will

transit to the next stage during the time interval [t,¢ + 1) denoted by p! j is given
by;
Pij = P(T}(t) N Si;(t))
= P(Si;(t))P(T;(1)|Si;(¢))
That is,
Pij = SiiM; (3.385)

If an individual survives the interval [t,t + 1) but does not transit to the next

stage, 7 + 1, it will definitely transit to age class J + 1 within the same stage with
probability 7rj- +1,; given by

= P(T}(£)° N 5i5(t))

= P(Si;(t))P(T;(t)°]Si;(t)). (3.38¢)

= si;(1 —7i;)

H
Tit1,j

From equations (3.38b) and (3.38c) it follows that the probability that an indi-
vidual in age class j of stage ¢ dies within the time interval (¢,¢ + 1) is given
by

94 = 1= P1j ~ 415 = 1 = s (3.39)
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as expected. Now let n;'-(t) denote the numbers of individuals in age class j of
stage . Then the vector representation of the population distribution for stage ¢
is

7i(t) = (ni(@),...,np, (1)) i=1,...,k (3.40)

and for the entire population,
A(t) = (Fult)y. . it k(D)) (3.41)

which is a partitioned column vector of dimension Zfﬂ t; by 1. Since newly born

offsprings enter age class one of stage one on survival, it follows that

kot
nit+1)=) > fi;nj(t) (3.42)

=1 j=1

This equation defines the renewal process of the system.
Next consider the aging process which involves transitions within and between

stages. It follows from Eq.(3.38c) that the transitions within stage i is governed

by the equation
nig(t+1) = ,mit), J=12. 061 =12,k  (3.43)

while the between stage dynamics are given by the equation
ty . )
n;+l(t+1)=2p'1jn;-(t), 1= 1,2,...,’6—1 (344)
j=1

where py; and 7}, ; were derived from Eq.(3.38a), Eq.(3.38b) and Eq.(3.38¢) and
assumptions A2 (7) and A2 (i) as stated in page 76.
Now equations Eq.(3.42), Eq.(3.43) and Eq.(3.44) can be linked together in

matrix notation as

At + 1) = A*7(t) (3.45)
where 7i(t) was stated in Eq.(3.40) and Eq.(3.41). The matrix A* will be called
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the generalized stage-age classified matrix and is written explicitly as:

(fl:l fll,tl—l fllt| flll fli.t;—l flit; f1k,zk_1 flk,gk
T ... 0 0 ... 0 .. 0 0 ... o 0
O .. 7rt1'.'tl_1 O LI 0 0 0 0 O
ply ... Py Ply - 0 ... 0 0 0 0
0 ... 0 0 ... 0 ... 0 0 0 0
0 0 0 i 0 0 0 0
0o ... O 0 ... 0 .. ow 0 .. 0 0
0o ... 0 0 ... Py -+ Plu-1 Ple .- 0 0

\ 0 0 0 0 0 0 Wtk.t,,—l 0

(3.46)

A special observation here is that P}:, = sij because given that an individual
of age t; in stage ¢ survives the time interval {t,t + 1) the only transition at its
disposal is age class one of stage : + 1, that is 71, = 1. A* is more conveniently

written as a partitioned matrix as

(h+4) b B3 ... Fry Fp

P 4, 0 ... 0 0]

0] P, A; ... 0 )]
A" = : o : : (3.47)

o) O 0 ... Ay O

O O 0 .. Pk__l Ak

where, the matrix,

Fi=(fu) i=12...,k (3.484)

which we call the fertility matrix for stage : may have positive elements only in

the first row and zeroes elsewhere and is of dimension ¢;x¢;. That is

i — flz' l=1,2,...,ti
I { 0 elsewhere (3.48b)

where for completeness f}; denotes the number of offsprings born to an individual

in age class [ of stage i who survive to be counted in ny(¢t 4+ 1) at time ¢ + 1.
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The matrix
Ai = (ahl), *= 1,—A h,I= (3.49a)

is square of order f, with positive elements only in the leading subdiagonal and

zeroes elsewhere. That is

T
3.496
0 ( )

elsewhere

The matrix represents within stage dynamics in the sense that "h h_1 denotes the
probability that an individual in age class /? - 1 of stage i at time t will transit to
age class h of the same stage at time t + 1

Finally the matrix
(3.50a)

represents the between stage dynamics with positive elements only in the first row

by virtue of assumption -42 (z). Thus
(3.506)

It is of order t{+1 by tt. In particular p\j denotes the probability that an individual
in age class j of stage i at time t will transit to age class 1 of stage i -f 1 by time
tT 1.

The elegance of the partitioned matrix in Eq.(3.47) is that we can explicitly
see the within and between stage dynamics for the entire population. That is, at
a glance, the array of matrices on the leading subdiagonal represent the between
stage dynamics while those on the main diagonal represent the within stage dy-
namics. The first row of the F matrices represent the stage-age specific fertilities
within a unit time interval. Their outputs end up in age class one of stage one
causing a change in the value nj(f) to n\(t + 1)- Thus the entire system represented
by matrix A* can be looked at as an integration of k modules which define the life

cvcle of the particular population which may be under study.
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3.5 Estimation of the Matrix Elements

In this section we consider the problem of estimation of the elements of the
population projection matrix in Eq.(3.14a) and its generalized version in Eq.(3.46).
The data requirements in the methods are (i) availability of census data observed
for a defined period of time or (iz) experimental data obtained under a given set
of environmental conditions. Under the time homogeneous model the given set of
environmental conditions are assumed to remain the same with time. However this
is not the case in a real system. This requires the development of time dependent
and stochastic models to study such types of systems. The problem with such

kind of models however is the availability of relevant data to estimate some of the

matrix or model input parameters.

3.5.1 Estimation from Transition Frequency Data

The entries in the projection matrix M or A in Eq.(3.8) and Eq.(3.14a) re-
spectively reflect both the transition probabilities for the aging process and the
fecundities for the reproducing individuals. If individuals can be monitored and
identified as time elapses, the transition probabilities can be estimated by simply
recording the state of individuals at time t and time ¢ + 1 respectively. State
variables include age, size, developmental stages or even a combination of any two
or more attributes depending on the classification criteria. The state “dead” is
trivial because a dead individual at time ¢t is still dead at any later time 7 > t say
t+ 1.

Now let n;;(t + 1) denote the number of individuals who transit from state
j to state ¢ within a unit time interval where z,7 = 1,...,k. Let “d” denote the
death state. Then out of n;(t) individuals initially present in state ; at time t,
nij(t) transit to state i = 1,...,k with probability a;; say. Let ng;(t 4+ 1) denote

those who die between times ¢ and t + 1. Then it follows that
k+1

n;(t) = Z nij(t + 1) (3.51a)

giving a multinomial model for the process and the estimate of a;; in the matrix

A is given by
& ni(t+1)  ng(t+1)

ai; = =
Yy G+ ) n;(t)

(3.51b)
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If observations are repeatedly made at time t,t + 1 + r then an im-
proved estimate of the transition probability a,y can be found because now more

information is available. This improved estimate is precisely given by

Er=l 7 »>*+ r)
EEo Efcilnu(t +
(3.52)
Er=1 n'j(t +
Er=o nj(

Note that in all we have k + 1 states including the death state because we need
to account for every individual that was present at the beginning of each time
interval. The case for the time interval (t,t + 1) is shown in equation Eq.(3.51a).
For an age classified population where the projection interval or model time step
is equal to the size of one age class, transitions are possible only from age class
(state) j to state j + 1 so that for all j = I,...,fc — 1 we only estimate

Now let b\j(t + 1) be the number of offsprings who are born to an individual in
state j and these offsprings survive to time t + 1, then if data is available for r
time periods we have

f _ Er=Il +

)ic ; j= (3.53)

Thus fj denotes the estimate of the fecundity rate for individuals in age class or
state j . We assume observations are made at times ..., t+ r under homogeneous
conditions. Thus from Eq.(3.52) and Eq.(3.53) one is able to estimate the entire

matrix shown in Eq.(3.14a).

3.5.2 Estimation from Stage Duration Distributions

Recall from Eqg.(3.38a) and EQq.(3.38b) that for stage classified populations
with k stages one can generally assume that the 2-th stage is of duration T, due to
both biotic and abiotic factors acting on individuals in that stage. This being the
case, we can classify individuals in stage i into tt = T{/h age classes of size h each
of which is also equal to one time step in the population model. We know from

Eq.(3.38b) and EQq.(3.38c) that;

Pij —s'jy\j
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and
Tisr; = $ii(1— ;)
Let us assume that *yfj = 4! for all individuals in stage ¢, ¢=1,...,%. Then the

two equations above become

pij = 3ij'7i (3.54a)

and
T = sii(1=7') (3.54b)

Here v' denotes the probability that an individual in stage ¢ at time ¢ grows or
transits to stage i+ 1 by time t+1. We know the stage duration is 7} for individuals
in stage ¢ which we can take as a random variable. Thus T} can take values 1,2, ...

time intervals. Thus the probability that T; = r time intervals is;
P(T; =r) =+l 4™, r=1,2,...

which is a geometric distribution with parameter v'. Thus

E(T) = =
.
or
= =T 3.54
Ti ] ( . C)

where T; is the average residence time for stage ¢ obtained from experimental data.
The intuitive interpretation of Eq.(3.54c) is that after each time interval a fraction
equal to the reciprocal of the average residence time transits to the next stage.
Another useful approximation is based on within stage dynamics of the pop-
ulation. We had earlier stated that stage ¢ is composed of ¢; age classes of equal
size (t; = T;/h) depending on the stage duration time T;. Assuming equal survival
probabilities for all age classes in stage i say s; we propose that the stable age

distribution in stage ¢ is given by

Wi = (1, si/A (sif A2, ooy (sif A5, (3.55a)
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To see this assume the within stage population dynamics are governed by an under-
lying stage specific projection matrix 4;. It follows that if the stage ; population

structure at time ¢ is w(t) then the structure one time period later is given by
where
@i(t) = (wi(t), wy(t), ..., wi(2)) (3.55¢)

It therefore means that once the population attains stability, there exists a time

independent stable stage : age distribution vector w; which satisfies the equation

Al = A, i=1,....k (3.55d)

where
3

@ = (wh,...,wh), i=1,...,k (3.55¢)

and ) is the dominant eigenvalue for the stage specific projection matrix 4;. Ex-

panding Eq.(3.55d) we obtain the system of equations given by

siwy = Awy

i ; (3.56a)
siw; = Awig
Siw:i—l = Awy,
Without loss of generality assume w! = 1 then from the first equation in the
system of equations Eq.(3.56a) we get
wy = si/A (3.56b)

then substituting for w in the second equation of the same system we get

wh = (si/\)2. (3.56¢)
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Continuing recursively in this manner we get the general equation
wh = (si/AY7" j=2,.. ¢ (3.56d)
Substituting for these quantities in w; we arrive at
Wi = (1, si/A (si/A)%, ..., (/A7) (3.56¢)

as required. Now since stage : sojourn time is T; it means that an individual
currently in this stage i will transit to the next stage : + 1 only after reaching the
last age class namely ¢;. Thus once the population has attained stability, then
after every time step (si/A)%~! individuals will always graduate to the next stage

i +1. We know that in the stage individuals are distributed according to the stable

vector w;. Therefore

~i (S,'/)\)t‘—l
[ L+ (si/A)+ ...+ (si/A)tD

(3.57a)

and since the denominator is a geometric series with common ratio r = s;/) it

follows that if r < 1,

3= (si/ M)l — (si/A)ti~1
(si/A) =1

If r = 1 expression Eq.(3.57a) reduces to Eq.(3.54c). We note that for a given value

(3.57b)

of A and assuming s; is known one can use equation Eq.(3.57a) to estimate ~*.
Then using this estimate in Eq.(3.38b) and Eq.(3.38¢) we can estimate within and
between transition probabilities hence be able to parametrize the entire stage-age
population projection matrix A* displayed in Eq.(3.46).

To further generalise the above considerations, let us assume that an indi-
vidual currently in stage i can graduate into the next stage, : + 1 from any age
class j = 1,...,t; within stage ¢. It is more realistic to assume that stage duration
varies among individuals with mean T; and the variance o;. It follows that the
proportion of individuals that graduate into stage ¢ + 1 from stage 7 in the time
interval (¢,t + 1) depends on the within stage age distribution.

Now given an individual survives the time interval (¢,¢ + 1) with probability

s; let
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7; denote the probability that an individual of age j in stage : graduates to
the next stage, : + 1, within the time interval (¢, + 1);

g; denote the probability that an individual in stage ¢ at time ¢t graduates
into the next stage, i + 1, at age j given it did not transit at any age | <
j—1, j=1,...,t; assuming it survives;

h; denote the probability of not having graduated by age ; given it survives
in the interval (t, t41).

Clearly the set gj, j =1,...,t; gives the probability density of age at grad-
uation to the next stage from stage :. Then the following relations hold. First we

observe that the probability density can be obtained from the exit probabilities,
g1 =702 = vi(1 = +}), and in general

=1

gi =7 [ - (3.58a)
k=1

Note that o

g, = H(l - 712)

k=1

Then ho = 1, by =1 — 7}, ha = (1 — i) (1 - ~v1), and in general

j-1 J
1= [Ja-w =TI - (3.58b)
k=1 k=1
As a consequence we find
v; = 9j/hi-1. (3.58¢)

Since by definition of 'yJ': if an individual graduates at age 7, then it means it did
not graduate at any age before age j. In this setting, in the absence of (true)
mortality, graduation can be seen as a mortality, and thus a life table and stable
age distribution can be computed, of course (h;) replaces the survival function,
'yJ"- replaces the mortality, and g; the probability of death at any given age j =
1,2,...,t;. Assume once again that the true within stage age distribution is w;i(t).

Then it follows from Eq.(3.55b) that,

wi(t + 1) = Aiwi(?) (3.59a)
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where the A; is a submatrix extracted from Eq.(3.47) to represent the aging process
within stage :. Now assuming the population has attained stability then the

following equation, same as in Eq.(3.55d) holds
Aiw; = \w; (3.59b)

where as before w; is the stable stage ¢ age distribution vector given by Eq.(3.55€).

Thus given this stable distribution, then the mean of the proportion of graduating

individuals is z o
1 1 t
_ Zj:l VW5

vi=
Z;:l w_;

Now we have to find the stable stage : age distribution itself. To do this we have to

(3.59c¢)

take into account true mortality and population growth or assume a stage specific
survival probability s; over the time interval (t, t4+1). We next expand the matrix
equation (3.59a) to get the system of equations

si(1 = v))wj = Awj

si(1 — 7;)105 = /\w;

si(l - ’)’}-1)“’;—1 = /\w; (3:594)
si(1 — 7:;—l)w:;—l = Awy,
From the first equation in the system (3.59d) w} is given by
wh = (1 = j)si/A (3.60a)
then from the second equation we get w} as
wi = (1= 713)(si/A)w} (3.60b)
which on substituting for the expression for w} becomes
wh = (1= 7)1 — 73)(si/A)? (3.60¢)
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We continue solving the system recursively and in general

=1

wi = [Ja -/ =2t (3.60d)

k=1
It follows that the stable distribution w; is explicitly given by

1
(1= 7i)(si/A)
G = | =M1 =n)s:/A)? | (3.61a)

(S (L= s/ 2
Introducing this distribution into the expression for the mean proportion who
graduate to stage ¢ + 1 from stage 1 we get
E,—l 7; H (1 _’Yk)(s //\)J -1
Z T2 = A (si/ Ay
M si T gi(M i)
T OMsi i (A si)

Now from here we want to extract an appplicable formula connecting -; and

(3.61b)

the mean and the variance of T;. Define
a= ln()\/s,'). (3.620)

Then take logarithms in Eq.(3.61b)

ti ti—-1
ln ¥i = ln (Z gje_a'] - ln Z hje-aj . (3.626)
j:l j=0

The first term on the right hand side is the cumulant generating function of the
g;. The second term can be seen as the cumulant generating function of the

appropriately normalized numbers k. Thus writing

. h;
h ) — ! )
=5 (3.62c)
we find
t; ‘ ti—1 . .
In Yi = In Zgje_.a'] —In hje'-” - ln ﬁ. (3.62d)
j=1 =0



where of course, T; = Ej h; is the expected stage duration. We expand both

cumulants into power series in a (see Kendall and Stuart 1958), to obtain,

2 . 2 . -
Invy:i =1—aki(g) + %—,’%(9) — oo =14 aki(h) - %kz(h) +--~InT;. (3.63a)
Here -
ki(g) =T;
k2(g) = oi (3.63b)
3 i + T}
ki(h) = 5T
Thus, to first order in a,
T:. o -
Invy; = —a (T‘Z— - -‘ﬂ‘:) —InT; (3.63¢)
or 7
= i o
vi =~ (1/T;)exp [-—a (-5— - ;T:)} . (3.63d)

The second expression gives
vi 2 T . (3.63¢)

for sufficiently small values of a. When a = In(A/s;) > 0, it is obvious that the
estimate 7; ~ 1/7; overestimates 7;, because it overestimates the abundance of old
individuals within the stage by neglecting the effects of mortality and population
growth in shifting the age distribution towards young individuals. The smaller the
variance o; in stage duration, and the larger the average duration T, the greater
the overestimate of 7;. It is important to note that these estimates depend on the
value of A. However ) is an estimate to be made and cannot be known until the
projection matrix is first estimated. One can however assume the value of \ say
)\ = 1 and use an iterative method to calculate ;. The idea is to choose a value \
then calculate the entries of A, the projection matrix. The eigenvalues of A yield
a second estimate of A. If repeated the process usually converges to the matrix A
whose entries are compatible with its own eigenvalues.

Another approach is to relax the assumption of stable within-stage age dis-
tribution and assume that the stage duration distribution is negative binomial

with mean and variance E(T) and V(T') respectively. As before we let T; denote
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the residence time for stage i. There are k stages in the entire life cycle with a
common probability ¥ of moving from stage 7 to the next stage, i + 1. The time
T required to grow through all the k stages is equal to the k-th success in a series

of identically distributed Bernoulli trials with probability of success v; that is

PT =)= (;])ra-a (3.64a)
where
E(T)=T= % (3.64b)
and
V(T) = 5117;—7)) (3.64c)

To imitate such a situation for stage dynamics we divide a typical stage say 7 into
a series of k identical but invisible “pseudostages” as in Longstaff(1984). These
are supposed to slow down individuals proceeding through the stages so as to
produce a distribution of stage durations with specified mean and variance. The
assumption here is that mortalities and fertility are identical for all pseudostages
within a stage. Thus each transition within the stage is conditional on stage-
specific survival probability s; and is given the same specific fertility cofficient fi
which is set to zero for non adult stages in the current model. Solving for v in the

two expressions for E(T) and V(T') yields

~

. T;
V= o ET A (3.64d)
V(T:) + T;
and ) 72
ki : (3.64¢)

T o)+ T
where T; and V(T;) are estimates for E(T) and V(T). Thus using 3 in Eq.(3.64d)
we can estimate pj; and 7r;'-+,,j in Eq.(3.38b) and Eq.(3.38c) respectively. Thus
if from observed data we can estimate the mean and variance of stage duration
then v; and k; can be estimated from the equations above. The estimate k; can

be interpreted as the waiting time before an individual transits to the next stage.
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3.5.3 Estimation from Experimental Cumulative Distributions

Assume that an experiment is conducted at time 9. Let us focus our attention
on a particular stage say ¢ = 1,...,& and on a specific cohort of individuals at
time ¢o. Since there are ¢; age classes of equal size then at any time ¢ € [tg, 2o +1¢;),

any individual still in this cohort is of age j =t —tg + 1. Let

M = total number of individuals which will transit to the next stage 7 + 1.

F(t) = proportion of the M individuals that have transited to stage ¢ + 1 by

time ¢

¢, = time just prior to the transition (to stage i + 1) of the first individual

t, = the time at which the last individual transits to stage : + 1.

Then obviously F(t) is monotonic increasing namely 0 < F(t) < 1. It is
called the experimental cumulative distribution. It follows that given an individual

survives to stage ¢ + 1, the probability that it transits to the next stage within

[t,¢ + 1) is given by the expression
p; = F(t+1) - F(t) ) (3.65)

The event that an individual transits during [t,2+ 1) is the same as that it transits ,

at age j =t —to + 1.
Given that an individual is in age j = ¢ —to + 1 and it will survive to the next

stage the conditional probability that it transits to the next stage during the time
interval [t,t 4 1), is given by the expression

. F(t+1)-F(1)
:Y;j = { T—F(0) t <t

E> 1 (3.66)

That is if we let U;; denote the event that an individual of age j in stage i will

survive to stage ¢ + 1 then

P(T()|Ui;) = { F(tlﬂg"—hpj @ 1< 12
A I | t>t, (3.67)
that 1s
:)’;j = P(T(t)|U;;) (3.68)
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where T'(t)|U;; denotes the event that an individual transits to stage i + 1 in the
interval [t,¢ + 1) given it survives to that stage. The event T(t) had already been
defined in section 3.4. That is if we can work out a functional expression for F (1)
we can use Eq.(3.68) to estimate */fj then using it together with information on
survival probabilities in Eq.(3.37b) and Eq.(3.38c) one is able to parametrize the
matrix A*.

All the methods of estimation highlighted above are based on the assumption
of homogeneity. In chapter VI we will revisit the problem of estimation of the
elements of matrix A and its generalized counterpart, A*. The effect of seasonality

and vegetation type to the vital rates is incorporated into the system.

3.6 Classical Leslie and Experimental Transition Probabilites

In this section we wish to derive the relationship between the two probabilities
given in Eq.(3.38a) and Eq.(3.68). The difference between the two probabilities is
in the condition. S5;;(t) is the event that the individual will survive to time ¢ + 1,
but we do not know whether it will stay in the same stage or transit to the next
stage. S;;(t) is only related to the time interval [¢,¢ + 1). On the othér hand U;;
is the event that an individual will survive to the next stage, but we do not know

when it will transit. Ujj is related to the time interval Lt +t;—5 + 1). In fact
we deduce that

Ui; € Sij(t) (3.69)

The relationship between the transition probabilities in the classical Leslie model
and those from experimental cumulative distributions is contained in the following
two theorems. The theorems are proved elsewhere by Yanan et al (1990) but we
present modified proofs relating to the current work. However before we state and

prove the theorems we present some useful statements and notations:

S;j(t,t + m) =the event that an individual at age j in stage ¢ at time ¢ will
survive to time ¢ +m, and Si;(t) = Si;(¢,t + 1) for simplicity and
T(t,t+m) = the event that an individual will transit to the next stage during

the time interval [¢,¢ + m), and T(¢) = T(¢,¢ + 1) for simplicity.
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Theorem 3.7 If the following Markov-like property holds,

P(S;j(t,t+r+1)NT(t+r,t+r+1))

= P(Sij(t,t + ) NT(t,t + r))P(Sij4r(t+mt+r+ 1)NT(E 4+ 7t + 1+ 1))
(3.71a)

and
P(Sij(t,t +7+1)NT(t+rt+7r +1))

= P(Sij(t,t + ) NT(t,t +r))P(Sijar(t +rt +r+1)NT(t + 7t + 7 +1))
(3.718)

then the transition probabilities in the Leslie model can be obtained from experi-

mental cumulative distributions by the following formulae:

Mo =3, =1, (3.72a)
nd ¢(7)3
J VYij .
ij = —, J=1...,ti-1 3.
R T ) (3:72)
where timj 1
o(j) = Z( H sij+m(1 =i J+m))st,1+r7z j+r (3.72¢)
r=1 m=1

Sij+m = P(Sij+m(t + m)),

and the conventions 1 .

Ha(rl) = H a(r;)=1

T =1
is always assumed. Further, if s;; = s; Vj = 1,...,¢;, say, then Eq.(3.72d)

becomes

ti—j r—1
¢(]) = Z szr{ H (1 = Yij+n }7i,j+r- (3726)

r=1 =1

Proof: By definition of the event U;;, we have
ti—j
Ui = U (Sij(t,t+r+1)NTE +r,t +r+1))

r=0

Since

Tt+nrt+r+1), r=0,1,... ¢ —j,
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are mutually exclusive events
(Sij(t,t+r+1)NT(E+rt+7r+1)), r=0,1,....t;—J

are also mutually exclusive. Hence

ti—J
P(Uij) =P{ U(Si,j(t,t+r+l)ﬂT(t+r,t+r+1))}
r=0
ti—jJ

= ZP{Sg,j(t,t-l'T‘-f- DNTE+rt+r+ 1)}
r=0

From Eq.(3.71a)
ti—J
P(U;;) = Z P(Sij(t,t +r)NT(t,t + r))P(S,-,J-+,(t +7r)NT(t+ r))
r=0

where

Sijar=Sijer(t+rt+r+1) and T(+r)=T(E+rt+r+1)

for simplicity. Using Eq.(3.71b) repeatedly we have
~1

ti—J r
P(Uij) = Z{ H P(Si,j-f-m(t +m)NT(t+ m)) }P(Si,j+r(t +r)NT(t + r)).
r=0 ~m=0 .
(3.73a)
By definition of si j+m and 7i j+m we have
P(Sian(t +m)N Tt +m) = P(Susam(t +m))P(T(t + m)[Si jm(t +m)

= sij+m(l = Yi,j+m) (3.73b)
form=0,1,...,r— 1, and
P(Sijurt+r)NT(t+7) = P(Si,j+r(t + T)) P(T(t +7)|Sij4-(t + ?"))
= Si,j+rYi,j+r (3.73¢)
Using equations (3.73a), (3.73b) and (3.73c) we get
i=i =1
P(Uij) = tZJ{ I sisem(1- 'ri,j+m)}3i.j+r7i,,~+r

r=0 *m=0
ti—-y) r-—1

= 8i;7vij + Sij(l - 7ij) Z ( H Si,j+m(1 - 7i,j+m))si,j+r7i,j+r
r=1 m=1
= S;’j')’ij(]- - ¢(J)) + Sij¢(j)’ (3.74a)
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where .
ti—) r-—1

¢(;) = Z ( H si,j+m(1l— ‘Yi,j+m))3i,j+r‘ri,j+r

r=1 m=l

Now we show that

Ti)nU;; = T(t) N Si;(t)

Note that .
i—J

Ui; = U(S,'j(t,t+r+1)ﬂT(t+r,t+r+1))

r=0
Hence

ti—J
T(tynUi; = |J TN (St +r+ NT(E+ it +1+1))
r=0

= T(t) N [Si,j(t) N T(t)]
= S.',j(t) NT(¢).

Thus we have

P(T(t)nUi;) = P(T(t) 0 Si(1)) _ (3.74b)

Now note that
_ P(T(t) N Si;(t)

T = TP(S5()

thus
sijyij = P(T(8) N Sij)

and from Eq.(3.74b)
sijvij = P(T(t) N Uij)

P(T(t) N Us;) -
P(Uij)

= P(Uij)
We now use the expression for P(U;;) to get
sijvii = [sigvis(1 — 8(3)) + i 6(5))7i;

and solving for vi; we have

o o(7)7ij 1
TS T - 60 :
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Theorem 3.8: Under the condition that Eq.(3.71) and Eq.(3.71b) hold,
Yi; = ¥ij, J=1l....t; -1 |iff si; =1,Vy=1,2,..., t;

That is, for a given stage ¢, the two transition probabilites are identical if and

only if the survival rate for any age group of the stage is 1.

Proof. (1) Sufficiency: Suppose that

sij=1 Vy=1.... 1.

Then
ti—1 ,r--1
$(i) = (H (1= 7vij+m )) Vij+r
r=1 “m=1
= vYij+1 (1 = Yij+)vigez (1= vijer (1 = vijg2)vij4a + ...
+ (1 = yig+1) Al =y, 2 MYii—1
+ (1= vij41) (=72 M1 = Yiti=1)7it;-
Now since

Yi, = 1
combining the last two terms in the just concluded expression gives

() = vij+1 + (1= vige)vigez + (1= Yigr1)(1 = vije2)vijes + -
+ (1 =7ig+1) (1 = vig;=2)

Continuing in this manner we finally get
¢(j) =1

and by substituting this result into Eq.(3.72b) we get

(2) Necessity: Suppose

yi;j =% J=L...,ti=1



then from Theorem 3.7

@(7)vij .
i1 = ; 3 =1a --,ti_
T 1—{1 - o(7)]vi; 7 !

which implies that
1-[1 = (N = 6(5)

or
[1 =61 —=7i)=0
and since
1i;<1 Vy=1,...,t; -1
then

Bi)=1 j=1,... ti—1 (3.74¢)

On the other hand if 3 some m, with 0 < m; <¢; — j such that

Sij+my <1 . (3.74d)

then we can show that

#(7) <1 (3.74¢)

which contradicts Eq.(3.74c). Then we have

So all that is left to do is to show that Eq.(3.74d) implies Eq.(3.74e). From
Theorem 3.7

ti—1 r—1

8() = (H sij+m(1 = 7i.1+m)) Si,jtrYi,j4r

r=1 ‘m=l

my—1 ,r—1
— Z (H Sij+m(l — ‘Y:‘,j+m))3i,j+r'7i.j+r

r=1 m=1
ti—j ,r—1

+ Z (H Sij+m(1 — 7i.j+m)) Sij+rYi,j4r-
r=m; -m=1
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Now lot all be replaced by 1 except » then
iN\—1/ r—1
4>{j) s (33 t1~7i3+m) )h'JI+r
r—1 in—1
t,~J /1 1 \
4 AoA (3Ju fij+rn) J fi,j+re
r=mi m=I
Since 7Xj+m< T m —1,2,... J Tand vyi«t 1

and from eq.(3.744d)
5it+m]
k m=l

Therefore

That is

Since EQ.(3.74e) contradicts

fore we have

j (L —1fid+m >
m=1
V m=1 '
»-1/r-1 \
f —7i,J+m) ) 7i,j+r
r=1 'Vvm=1
<,-1 | Ir— \
FJII(L —7«;+m) )7iJ+r
r=ri 'm=:
ti-j ,r-\ \
f (1 —7i,d+m) Wi.j+r
r=1 Nm=1
1.
0(j) < !

Eq.(3.74c) it follows that Eq.(3.74d) is false. There-

Sj=1 Vj=1,... , t-

The practical implication of these two theorems is that the two kinds of tran-

sition probabilities are very different for lower survival rates. This means that the

difference will be significant for those stages where survival is generally low due to

say high sensitivity to unfavourable conditions.
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It is important to note that while the experiments are often conducted under
conditions which lead to high survival, the Leslie model is often used to simulate
real environmental conditions, such as seasonality, diapause, predation, chemical
treatment and so on. For example Stinner(1975) studies the effect of temperature
on development rates of a beetle population. From Theorem 3.8 we know that
the two kinds of transition probabilities are identical if and only if the survival
rates in the experiment are 1. It follows that when the experimental survival rates
are high, making the function ¢(j) close to 1, then the cumulative distribution
provides a close approximation to the Leslie transition probabilities. The results
described provide a connection between the two kinds of probabilities, and we
expect will assist in more accurate model construction and use.

A simulation model for the brown ear tick (R. eppendiculatus) population is
presented in chapter VI to validate and clarify some of these ideas. The simulation
is based on the data by Short et a/(1989a,b) collected in Zimbabwe. It is a multiple

matrix product simulation model where variability in the matrix inputs is due to

seasonality and vegetation type.
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CHAPTER 1V
A VECTOR-HOST INTERACTION MODEL

4.1 Modeling approaches

Terminology and Definitions
We start by giving some basic definitions and terminologies.
1. ) Fecundity means the number of eggs per female based on a 1.1 sex ratio. This
may vary with female body size and saturation.
2. ) Pre-oviposition period: This is the period in the female adult, from completion
of engorgement to first day of egg laying.
3. ) Egg development period: This is the period from first day of egg laying to

first day of hatching.
~i.) period: Applies to engorged larvae and nymph.

Different typesof mode.u

We shall design a sequence of models of increasing complexity in a building
block fashion The simplest model will Ire si linear stage model for the tick pop-
ulation only Here the first modeling problem arises. Each individual undergoes
development from egg through larva, nymph and adult whereby the duration of
t IS subject to variation and external factors such as temperature and humid-
ity.SThere are basically four different ways to describe such a situation.

1.) Discrete time compartment model of the form
Q171 = (4.1)

\ b *pts taken cyclically. In general x]J denotes the number of individu-

.»while the constant aj denotes the proportion transiting
als in compartmen’ j

into compartment j - Efrom compartmentj in one time step. Then the

time step has to \ber hr)lterlareted either as a generatlon (which does not make

dprlvl or as a chronological time step, for example t could

be counting week§ oL mon%hs Then the different compartments x7 have to

'b t d to certain developmental stages. This amounts to an |mpI|C|t

sense in any ﬁe'd

be

. of the lengths of these stages to the time steps.
coupling
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2.) Continuous time compartment model in the form of

3.

Xj(t) Qij—\Xj—\ fijxjij — 1, —,n, (4.2)

again subscripts taken cyclically. The variable Xj carries the same meaning as
above while ij(t) denotes its derivative with respect to time. This approach
seems more flexible and suitable to describe overlapping generations. The
rate aj-i describes the transitions at which individuals enter the j-th com-
partment, and fij is the rate at which they leave the compartment. Again, the
model structure implies an assumption on the underlying process: Individuals
leave the j-th compartment according to a Poisson process with parameter
fij. The probability for an individual to stay in compartment j decreases as

exp(-fijt). If T is the exit time from stage j, then
Pr{T >t} = e~nl. (4.3)

Then the probability distribution function is
1- e~flj3, ift>0

F = if/<0. (44)
and the probability density is:
fije~"™M1, iff>0
m o= 9 ift < 0 (4-5)
Thus the mean and variance are;
E(T) = f~fije-', ttd t=I hi
I/(T) = E(T2) - (E(T))2=1 4G

Thus the compartment model assumes that the sojourn time in compartment

j I1s on the average, I/AO-
A third possibility would be a structured model along the lines of the physio-
logically structured population models of Metz and Diekmann (1986). These

authors test their models for Daphnia populations. Then the model would
take the form

du(t,x) d(g(x)uft,x)) FOOU(E.X) @.7)
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with an appropriate recruitment condition, namely
oo
u(t,0) = / b(z)u(t, z)dz. (4.8)
0

The continuous parameter z describes the stage, the function p(z) is the stage
dependent mortality and g(z) is the rate at which the individuals pass through
the stages with reference to chronological time. Corresponding to the partial

differential equation(4.7) there is an associated system of “characteristic” or-

dinary differential equations(see J ohn 1978)

T d
fo1, Toge) G= @) +u)) (4.9)

Since t = to + s with some constant to, the second characteristic equation
dz/dt = g(x) describes how the different stages are passed in time. Notice
that this law is again deterministic in the sense that the stage is uniquely
determined by the time. Of course discontinuities such as transitions between
entirely different stages such as larva and nymph can be incorporated by
a,ppropriately replacing the single equation by a system of equations.

4.) Finally one can try to incorporate maturation periods, diapause periods and so

on in the form of delays. In a general sense delay equations can be considered

as special cases of the hyperbolic systems mentioned in Eq.(4.9) above where

coefficients are step functions.

It appears that there js a problem in comparing these approaches. As indi-

cated earlier, the Leslie type models described in Eq.(4.1) have a fixed time scale.

The time step must be defined, for exam
), can more generally be expressed as

ple as a period of one year, one month,

or one week. Equation of the form (4.1

ot =) aikTh, - (4.10)
k

denotes the proportion of individuals from the k-th class that move into
If the sum

> ai
i

102

where a;x

the i-th class during one time step.



is less than 1 then not all individuals of the k class are distributed to other stages,
that is a mortality after the k-th stage is implicitly modelled. A more detailed
description can be obtained with time dependent transition matrices. In the gen-
eral system (4.10) the types or classes need not be consecutive stages in the life of
an individual. As in the model of Sandberg et al. (1992) where the classes were
determined by whether an individual is in its 1-st or 2-nd year or whether fall-fed

or spring-fed thus in a model the types or states may be different life histories

apart from consecutive stages in the life of an individual.

In the ordinary differential equations model (4.2), or more generally

Bi= ) bz, (4.11a)
k

there is also an implicit time scale, because, if properly connected to data, the

coefficients are rates, that is transitions per time unit. Typically the diagonal el-

ements are negative numbers. Since for each stage the exit time from that stage

is modeled by a Poisson process, the expected residence time in the ith stage is

—1/b;;, where bi;
n Eq.(4.2) the average residence time in the j-th compartment is

< 0 since it denotes the rate which individuals leave stage :.

For example 1
1/uj. The reside
dependent of whe
(4.11a) can be writ

nce time so computed is the residence time for all individuals in-
ther these move to the next stage or just die. Note that equation

ten in matrix notation as

i=B7 (4.11b)

where
B=(byi) i,k=1,...,n (4.11¢)

Usually it is easy to condition on survival to the next stage. Suppose, for

example the i-th and (i +1)-st equations posses the form

Ti = ...~ GiTi ~ [T,
j:i-i-l =...+azi...,

where a; is the trasition rate from stage ¢ into stage :+ 1 and 4; the mortality rate

for individuals in stage ; then it foll

of those who continue t0 the next stag

ows that the residence time in the i-th stage

eis 1/a;.
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Now we consider the transition between the continuous time system (4.11a)
and the discrete time system (4.10). The mathematical procedure we apply is the

Euler one step method for the differential equation
u = F(u) (4.12)

where the variable u is a function of time and in general « could be vector valued.

If we discretize time in small time steps of size h such that
tir1=tit+h
then we can approximately write
u(tir) = hE(u(ti)) + u(ti). (4.13)

Thus if we discretize Eq.(4.11a) by the Euler one step method then we arrive

formally at a discrete time system

=y by bieyy - (413)
k
thus formally
air = bik + hbix (4.14)
or, in matrix form,
A=I+hB (4.15).

Here y™ denotes the number of individuals in class ¢ after m time steps or at
time ¢ =mxh thus y/* must be seen as an approximation to z;(¢). Of course one
time step of the discrete system correponds to a time interval of length A in the
nterpret I + hB as the matrix of a discrete time

continuous system. If we just i
stage model then we must bear in mind that the rates are adapted to a time step

h.

This is clear if we suppose 111 the expansion

(hBY

—— = exp{hB} (4.16)

o
7=0 ’
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h is small such that we can ignore powers of h of order two and above, so that we

can write

Thus the above considerations are (approximately) correct only for small k that
is as long as I + hB is a good approximation for exp{hB}. If h is too large then
I + hB becomes meaningless as a matrix of a discrete time model.

The converse is even more difficult. Suppose we are given a discrete time

system (4.10) then we can artificially make a transition to a continuous time system

by introducing the length h =1 of the time step that underlies the data, and write

™t —z™ = h(A-1D)z™. (4.18)

If b = 1 can be considered small in relation to the changes in the 2™ then one can

replace the difference quotient (z™*+! — z™)/h by the derivative & and thus arrive

at Eq.(4.11b) with B = A — I. The asymmetry between the two problems arises
from the fact that a derivative (differential quotient) by definition is_the limit of

difference quotients, but a difference quotient in general cannot be approximated

(in a unique way) by derivatives.
Finally we try to etablish the connection between the partial differential equa-

tions in model (4.7) and Leslie models. We discretize the time and space variable

with equidistant steps At and Az, respectively. The solution u(¢,z) is then ap-
proximated by uf, when T = iAz, t = kAt. That is uf denotes the number of
individuals who are in stage class i after k time periods. In a similar manner

we can di
which ind
als in stage cl

of an individual in the (

scretize the continuous function g(z) such that g; represents the rate at
;viduals pass through stage class 1. Let us now closely consider individu-
ass ¢ at time t who by definition are denoted by u¥. Clearly the fate

; + 1)-th class after one time step is determined by one of

the following;

(i) grow or mature into class ¢ + 2 at rate determined by g;4,

he same stage or

(ii) remain in t
m through natural mortality at a rate of py ;.

(iii) exit the syste
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Thus the discretized equation corresponding to Eq.(4.7) results in the follow-

ing balance equation

Uffll = uf-n - (At/AI)(giHUfH — giuf) - Atu;+1uf+1, (4.19a)

which by re-arrangements of terms gives

uify =(1- (At/AZ)gis1)uiss + (At/Az)giuf — Dtpipiugy,. (4.19b)

Then replacing i by ¢ — 1 we get
ubtl = (1 - (At/Az)gi)uf + (At/Az)gimuf_; — Atpiug. (4.19c¢)

This system says that at the time step from t to t + 1 a certain proportion

(1 — (At/Ax)gi) of individuals stay in the ith compartment, and a proportion
of (At/Az)gi—1 move from the (i — 1)-st to the i-th, whereas Aty; exit the system

through natural mortality. The recruitment condition (4.8) is discretized as

N
u(’)‘+l = Zbiuf. - (4.20)
1=0

where we assume the system is structured into N compartments and b; denotes

the fecundity of the ;-th compartment or stage class. Thus, formally, we obtain a

Leslie model.
So far we have attempted to reconcile the two types of population models

namely the continuous and discrete population models. This is important because
in most cases the two model approaches are used together or ideas in one can help

to understand the other better and vice versa.

4.2 The Compartment Model

Let the variables z1,Z2y--> z,, with (n = 10) denote the numbers of individ-

uals in the stages 1 to 7. Let pi, ¢ = 1,...,m — 1, be the rate of transition from

stage 7 to stage ¢ + 1. For the moment we assume that the p; are constants, later

we can let these quanl
In each stage there is a natural mortality u;, i = 1,...,n.

tities depend on external parameters such as temperature

or host abundance.
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The model is a cyclic chain model of n linear differential equations with constant
Sstan

coefficients,

1 = fTn — przy — 2y

T2 =P1T1] — P2T2 — UaTs

T; = Pi-1Tli—] — DiTi — piz; (4 21)

Tn—1 = Pn—-2Tpn-2 — Pn-1Tpn_| ~ HUn—1Ty_;

In =Pn—1Tn—1 =~ UpTyp.

The p;j, j =1,2,...,n ~ 1 are defined as follows:

by
p2:
p3:
Pa:
Ps:
Ds:
p7:
Ps:
Po:

rate of egg hatching
rate of larval attachment onto a host

rate of drop offs from a host by larva
rate of moulting by developing larva

rate of attachment by questing nymph
rate of drop offs from host by nymph
rate of moulting by developing nymph
rate of host attachment by questing adult

rate of drop off from host by engorged adults

f: fecundity of the adult stage

Now, system (4.21) can be written in matrix notation as shown below
b

i 4y 0 0 - 0 f .
Z2 m —ez 0 - 0 0 T,
_ 0 P2 —as 0 0 .
- : : : : ; (4.22)
Tp-1 : i )i ‘ Tn~1
.in O O 0 e pn—] —an xn

where a; = p; + pi, ¢t = 1,2,..,0 — 1 and an = s1,. More Compactly the system

(4.22) can be writen as

i = A7
(4.23)

where A is the matrix in Eq.(4.22).



A discretized version of Eq.(4.23) is given by;

Ie41 — I, = hAZ,

or
ft+1 = (I + hA)ft = Lf,

where I = I + hA for small h is a discrete type Leslie matrix, as derived in secti
’ se
4.1 and h measures the time step. e

The matrix A = (a,'j) is of a type that is called essentially nonnegative, that
, tha

is the off-diagonal elements are nonnegative while the diagonal elements b

. . . may e

nonpositive in the present case). In case the p; and f are all
e

of either sign (
cible. Thus to this matrix the theorem of Perron-

positive, the matrix is irredu

Frobenius can be applied. For any matrix A, define the spectral bound as th
s the

least upper bound of the real parts of the eigenvalues. In other words, the spectral
1 €Ccir

bound is the maximuin taken over the real parts of all eigenvalues. In general, th
. ral, the

spectral bound need not be an eigenvalue itself. But in the case of ari e tiall
ssentially

ive matrix, the spectral bound is a (real) eigenvalue. Furthermore, if th
y 1 €

nonnegat
e then the spectral bound is a simple

nnegative matrix is irreducibl

essentially no

cteristic polynomial and all other eigenvalues have strictly small
er

root of the chara
ponding to the spectral bound there is a positive eigenvector

real parts. Corres
e eigenvectors to any other eigenvalues. Thus the spectral

There are no positiv
bound governs the stab
the spectral bound is po

negative, then it will decay.

the spectral P

ility of the zero solution of the differential equation. If

stive then the population will grow exponentially; if it is
3

Of course, ound is a zero of the characteristic polynomial. This
e the matrix A W€ are

We analyse the
jon for the characte
e obtained by expa
he matrix A in Eq.

obtained from the

dealing with in Eq.(4.22) is essentially nonnegative

1s becaus
properties of the matrix A by first getting a

and irreducible.
ristic polynomial. In general the characteristic

compact express
nding the determinant |4 — \I]

polynomial can b h
23) t i1sti y
(4 ) e characteristic polynomial can

In the case of t
corresponding linear system rather than

most conveniently be
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by expanding determinants, this is clear from the fact that the characteristic poly-
nomial is a function of A only. Thus to obtain the polynomial from Az = A% we

have to eliminate the x;'s from the equation which is explicitly given by

Az, = fzon —p171 — 1)

ATy = p1Z1 — P22 — H2T2

Az; = pi—1Li-1 — PiTi — HiT: (4.24)
ALp—1 = Pn-2Tn-2 7 Pn—1Tn—1 — ¥n-1Tn-1

ALp = Pn—-1Tn-1 " KEnZn-

From the last equation

an + A .
In— = LX)
' pn—l (425)

and from the second last equation

an-1+ A

In-2~— ITn-1

Pn-2
(o1 + V(@n +4) (4.26)

Pn—-2Pn-1

’

where a; = pi + Hi 1= 2,...,n— 1 and an = Hn- Continuing in this manner we

get a general expression for i

n n-—1
i =%Tn H (aj + /\)/ H Pj- (427)

as,

j=i+1 1=t
In particular i -
1 = In H(aj + ’\)/ H pj. (4-28)
j=2 j=1

From the first of the equations in Eq.(4.24) we get that,

a1+/\
J;n_—:—-?'—'.’lf
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S . . . . .
ubstituting this expression in the above formula for z; and eliminati #£0
ing z;

we finally get the characteristic polynomial in the form

n n—1
Py = [Jei + 2 = £ [ o
II I=Il p (4.30a)
that is
P()\) = H(p,- +ui+A)—f I:I pi (4.300)
i=1

=1
(with p, = 0) since In general p; denotes the rate of moving from compart t
. ' . men
i to compartment ¢ + 1 and according to the model specification, compartment
‘ ’ , ent n
is the last in the system therefore pn 1s set to zero. It is assumed individual
s can

only leave the last compartment through death. These individuals reproduce at
at a
rate f when still surviving. At this point we wish to discuss the relationship of th
e
m to the discrete case particularly in relation to the Perron-Frobeni
- us

current syste

Theorem and Cauchy polynomials.

Remark 4.1: The Discrete Time Case.

Consider any nonnegative matrix A = (ai;). Then the Perro:rl Frobeni

- nius
th ' i ies. i i
eorem ‘cha.ssxcal version) applies In par ticular one can look at matrices of Leslie

type.
Also one can consider the cl
The stochast

ass of stochastic matrices, and the class of stochas

tic companion matrices. ic companion matrices have characteristic

polynomials of the form »
P(\) = A" = ) @iX’
; ' (4.31a)
where 1
a; 2 0, a; = 1.
; (4.31b)

h the property (4.31b) is called a Cauchy

A polynomial of the form (4.31a) wit
ave several interesting properties. Trivially

polynomial. Cauchy
es lie in the unit

all their eigenvalu disc {* : |A] £ 1}, and 1 is an eigenvalue
¢ unit circle only t
s of unity of some order m < n. Except 1

= , o

hose numbers can be eigenvalue of any Cauch
Yy

Furthermore on th
polynomial of order 7 that are root
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l . . . n y € SEt
l : - . Of

has two conne and a
cted components: the isol 1 d
: ated point {1
- p {1} compact star-shaped

In the present ] 1
ase of matrices related to th ]
e continuous tim Vi i
cc olutxon we

have probabl ite simi
y quite similar properties that have to be di
e discussed. At thi
. 1s moment

one sees that depending on the sign of the expression

n n-—1
D= H a; — fn .
p
o ].;Il ! (4.31¢)
either all coefficients are positive (D > 0) or all coefficients are positive with
. W
exception of the absolute term (D < 0), where h the
a; = pi T Hi
pi TH (4.31d)

Since P()) is an increasing function for positive A, the sign of D = P(0) det
= etermines

the sign of the spectral bound. If D > 0 then the spectral bound is negati h
ative, the

solutions decay. If D <0 then the spectral bound is positive, the populati
) ion grows

exponentially.

If D < 0 then @A) = A"
ing coefficient that

P(1/A)is a polynomial with all coefficients non
neg-

ative except the lead is negative. Thus, up to a simple scali
scaling,

Q()) is a Cauchy polynomial.

Now if P(}) is expanded in the form

n

P()\) = C,’/\i
A= (4.32)

i=1

then all coefficients except co are positive, in particular ¢, = 1, and by substitut;
ituting

Ob) or 4.32 we get

n n—1
co = P(0) = (pi + 1) —f ;.
H I=Il p (4.33a)

=1

A = 0 in equation (4.3

f in the equation above

< 0 holds i

Clearly the condition €0
n—1

fII»> [ + 1) (4.33)

i=1 i=1
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and of course f > 0. Now define

m = 1r5nii§n(pi + i) (4.34)
In view of
P = [[i+ui+A
3 ,I;I i+ mi+ ) (4.35)

the function P(X) is strictly increasing, as long as

A>—m.
(4.36)

If from the above remark P(0)y=D<0 and m > 0 we have P(—m) < 0 and
an

P(\) > 0 for A >> 0. Hence the spectral bound sg is the unique zero of P(A) 1
n

the interval (—m, +00).
determines that of so.

(4.33b) the tick population is exponentially increasing (with

The sign of co If co < 0 then P(0) < 0 and it follows

s > 0. Thus from Eq.

exponent so) if and only if

f> H(p. + i)/ H Pi; (4.37)

i=1

or, equivalently, if
P: + Hi [.L,
> = 1

his inequality says that the tick population persists if the egg

In biological terms t

production rate exceeds the product

n—1
wa T+ pi/pi)- (4.38b)

=1

rtalities against the average sojourn times in th
in the

t measures the mo

This produc
To interprete this more recall that we had sh
own

g compartments:

correspondin
era

4.1 that if in gep
urn tim

] the rate of leaving a stage 7 to the next st
age

is a; then the average 50jO
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specification this rate is p, and the mortality rate is /i, thus the ratio p,/p, is a
measure of mortality against the average sojourn time in stage i. We can get some
more information on the dependence of .0 on the parameters through the implicit

function theorem which is crucial in such kind of analysis. The general form of

the theorem is stated below.

Theorem 4.1: The Implicit Function Theorem
Let E, F. G be three Banach spaces, / a continuously differentiable mapping
(i.e continuous and its first derivative also continuous) of an open subset A of

E x F into G.Let (x0,yo) he a point of 4 such that f(x0,yo) = 0 and that

the partial derivative an’\o’\]o)' 8{ j W{th respect to second variable be a linear

.. ontn r; Then, there is an open neighborhood LOof a0 m E
homeomorphism oi[ rrpont ! P '9 a

vconnec%eg neighborhood U of x0, contained m UO, there
such that, for every open connécted n 8

IS a unique continuou§mgﬁ'ﬂﬁrﬁ% 88f U into F such that u(x0) = yo, (®,u(*)) € A
+ « Furthermore, u is continuouslv differentiable m
and /(*,«(*)) = Oforany *6 1

1e
U, and its derivative is given by

-(D2f(x,u(z))) LT>1f{x,u(x))), (4.39a)

the first
where D,/(*,,<*» *»m*«> "» '» “ 1 “

variable.

. _ .. r,nrtion theorem applied to the equation  A) = 0 we get
From the implicit iunctio

d OPiUMM LHH-—Fr e < 0. (439b)

\=30

for P(A) is given in Eq.(4.35). Thus the spectral bound

where a general eXPres mortalities, as it should be. Similarly one shows
r function of the m

$q IS @ deci €asing r The dependence of on the transitions p,

. I
e .function ol j =
that sO is an increasn implicit function theorem, for j < n —1,

is more involved. Again by
Q?' +s0)- / n?-i Pj

| ur (4.40)
P M

=50
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Hence 9so/0p; is positive if and only if

n

[T(ps + 15 +s0) < £ [1 25 (4.41a)

=1
)i j#i

Using the fact that so is a root of the characteristic polynomial P()\) gi b
given by

Eq.(4.30b) the expression P(s0) = 0 implies that

n n—1
,-l;I,(pj +pj+so) =1 JI;[] p- (4.415)
Now it follows that inequality (4.41a) can be written as
[Ti=y(pj + i+ 50) _ fI;2, P
pi + #i + S0 pi (4.41c)
which implies that
pi + pi + S0 > Pi (4.42a)

we find that inequality (4.41a) is equivalent to

using equality (4.41b). Thus

so > ~Hi: (4.42b)

Thus for an increasing tick population increasing any p; leads to an increase

s, accelerating the development process increases the rate

of 59. In biological term

of exponential growth.
he matrix A corresponding to the eigenvalue sy describes

The eigenvector of t
ntial growth (or decay). From -

the “persistent” stage€ distribution at expone
o xn = 1’

Eq.(4.27) we find, by Lormalizing the adults ¢

n n-~-1

= 11 (ps + s +50) ][] ps (4.43)
j=itl je=i )
where by persistent stage distribution we mean that stage distribution attained

stability- This stage distribution determines the future

when the system reaches

n structure and
(4.22)-

ts growth rate is governed by the spectral bound s
0

populatio i
These numbers give the relative proportions of

of the matrix A it Eq.
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the different stages in the persistent stage distribution. Of course we also could

normalize z; but this choice is not appropriate from a practical point of view since

adults can be counted more easily.

As indicated earlier this model is the first building block for subsequent more

realistic models. But the simplified model can already be used. Assume the tick

population is in factical equilibrium with respect to the environment, in particular

with the host population. Then so i

ficients, based on realistic biological assumptions,
In this case the rates pj, p; are factical rates

s close to 1 and we can try to fit the coef-

to the observed frequencies of

eggs, larvae, nymphs and adults.

given the environment.

4.3 Vector Host Interaction

Model (4.21) is a stage structured model for the vector population only. It does

not incorporate any factors that would limit population growth, in particular host

abundance and availability has not been considered. In this section we introduce

a variable y that describes the number of available natural (wild) hosts such as

(wild) ungulates and also a quantity 2 that counts the domestic animals serving

as hosts. for the ticks. We assume that the rate of transition from an off-host stage

t stage 15 proportional to the numbers of hosts available, that is of -

to an on-hos

the form gi(y + 2
ed more precisely as pi
= 0 and (h‘(y + Z) >0 since such a tick has some

). What we mean here is that the rate p; in system (4.21) can in

general be denot + gi(y + =) where for an off host questing

tick searching for a host pi
ching to 2 host.
(y+ z) is zero. At low host densities y+ z, these

positive rate of atta On the other hand if the transition is that to
a non-host state then pi >0 and ¢i
Jenecks for the development of the vector population.

transitions become bott
host densities might be too low to support the vector

This is becauseé such
there is a possibility of a critical host density below

population. In otherwords
| is threatened with extinction. It is important to

which the vector populatiol

hat conditions will limit the number of vectors (tick population)g@Limiting

know w s
raspecific competition for hosts or a detrimental
e transmitted by them) to the hosts. One could

ick infested areas. This would mean that if tick

1d be related to int
(or the diseas

effects cou

effect of the ticks

imagine that hosts avoid heavily ¢
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abundance goes up then host density goes down, in specific grazing areas. Thus

we get something like or similar to a predator prey model. The host equation is

therefore given by
y=r-dy-c Txy@.44a)

where r is the inflow of hosts due to immigration of hosts into a given grazing area

or renewal of hosts within that area. The constant (row) vector
CT= (ci,Qeeec,) (4.446)

cgisures the effects of the different stages of the vectors present in the area on the
host population. We assume that > O and Cc > O only if 1is a questing stage.

The vector x has the same meaning as before. Here competition effects have not

been incorporated.
We assume that the quantity - describing the available cattle population is

i ‘ ble but a parameter, simply for the reason that cattle density
not a dynamic var:

. . snot within the framework of the model.
will be controlled by actions

. a qg not incorporate the aspect of host preference for each
At this moment we

. . T stages That is a questing tick can either attach onto a
of the three questing tic

i did host vy if it is lucky to find one. The transition rates are
domestic host z or aw ) o
] Thus the new set of equations giving between stage
gt(y + z) for the ith stage,

interactions are given by
XX =/*n-(P« +h<n)XX-~

1a = (X +hox)*l " & +Dbx~2~ 12X

X = (pj-i * ha - (P (4.45a)

=(p,-2 4 hg,-2)Xn-2"(P»-"+hqg"-")Xn-"
in = (P”-l " 1" Xn

'Y =r-dy- cTxy . )
transition from the z-th stage to the (i + I)-st stage

Here the term describing dlewhere, of course, pi = 0 if 1 is a questing stage and

is pi + hqgi, with h VvV~
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g; = 0 if ¢ is a non questing stage. he system (4.45a) is exactly the same as th
= T e
ongmal system (4.21) except that here we attempt to express p; as a functi f
. ' h on o
host den51ty given by Pi(y + z) where the variables y and z represent the natural
ur

wild hosts and cattle hosts respectively. As a first approximation we let
p,-(y+z)=p,'+h‘1i, i=1,...,n—1 (4.45b)

which takes specific forms determined by whether a tick is questing or not. F

3 . M . or
a questing tick pi = 0 and ¢; 2 0 since the transition to state : + 1 is host
questing tick ¢i = 0 and p; > 0 since the transition to

dependent while for non-
state i + 1 for this tick is host independent. In our case n = 10 since we have 10

distinct developmental stages in the life cycle. Here the questing stages are 2, §
* M

and 8, corresponding to questing larvae, nymphs, and adults. Together with the

host equation (4.44a) we have a system of altogether n + 1 equations, 11 in the
?

particular case.

We now wish to express the system
Let matrices F, D, P,Q, M have the following

(4.45a) in matrix notation but first we

define the following cet of matrices.

structures. The stage transition matrix is
-1 0 0 0 0
1 -1 0 0 0
D= . = 1 .. (4.46)
o 0o 0 -~~~ 10

The fecundity matrix F contains a single nonzero element, at the right top corner

1.€ 0 0 0 fn
o 0 0 - 0

F= SR D) (4.47)
o 00 - O

agonal matrices given by

Q, and M, are the di

The matrices P,

P= (Piéij),
of transitions to off host stages, to OB host stages, and of stage specific mortalities.
Thus in matrix notation the system

;=F5+D(P+(y+Z)Q)f—Mf

of equations (4.45a) may be written as

jor—dy = ETEY (4.49a)
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Putting
A=F+DP-M, B=DQ (4.49b)

this system assumes the form

F=(A+@y+z2)B)X

g=r'—dy—ETfy

(4.50)

where A can be looked at as a matrix denoting the survival and birth process of

the tick population, while B denotes the matrix of interaction between the tick
population and its host.

Before entering the
t one compartment and consequently A, B, C, are numbers

analysis of the model we discuss a two-dimensional cari-

cature where z is jus

We choose b = B > 0,c>0and A
hosts. In this case the system reads

— —a < 0 negative because ticks do not survive

in the absence of any
= —az + by + 2)z

y=r—dy—czy (4.51)
There is always a tick free equilibrium given by
z=0, y=r/d (4.52)

Now assume there is @ stationary state where ticks are present, that is z > 0.

Then the conditions

by +2)=¢ (4.53)
and

r—dy = cry (4.54)
must hold.
Case 1: z > a/b.
Then the first equation (4.53) cannot be satisfied with positive y. In this situation
there is so much cattle present (at & fixed density) that all the three species 2, y

together. Thus the wildlife will be expelled, the ticks persist

eir population densit
he cattle density cannot be maintained.

and z do not persist
on cattle alone and th

this would suggest that also t

y is exponentially increasing. Factically
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Case 2 z < a/b.
Then the equation (4.53) can be solved with y > 0, given by

V=a/b- z (4.55)
Thus we get formally
I = ¥ZZ*L. (4.56)
cy

Hence there are again two subcases.

Case 2a): y > r/dor r < dy.
In this case there is no coexistence of all three species, the tick density would

become negative.

Case 2b): y < dr r > dy.

Il this case there is a coexistence point (x,y) with y < r/d. To have something
concrete at hand we keel) a, 6, ¢ and d fixed and draw a parameter plane.
Briefly this plane can be divided into three regions namely region I, Il and Ill. In

region | we get coexistence between - and without ticks. In region Il there is
coexistence of all three species x, y and z while in region Il the parameter space

can only allow coexistence between ticks and cattle but no wildlife. A further

]h 1 |s that the tick density is such that it will explode and
property with region |n

ultimately cattle cannot be maintained.

P situation where all points are fixed except s, i.e the situ-
Now we discuss ui

. . ttle br r considers to exploit rtain region. Ther
ation that a partlcullg C%me breeder considers to exploit a certain regio ere
are two cases again.

case I: r < ad/bor r/d < «/6-

n Jo nn ticks Introducing cattle at low densities still makes
Then at z = 0 one flno’s no g

- Ig for ticks This is from the fact that condition (4.53) for
the biotope not teaS|D|

|r satlsfled that is we have a S|tuat|on where there are no
the host population 15 not 2

natural wild host population Is not feasible the existence
cattle and the eX|st|ng <

{l lensity is increased then there is a first theshold at which the
of ticks. If cattle tie .

biotope becomes fea&l&lg fﬂ first time. This threshold value is

2\ =alb- r/d. (4.57a)



Figure 3: System of Wild Hosts, Cattle and Ticks

: Cattle (2)
Wwild -> Death (a)
hosts )
(y) Ticks (x )

I Leave aue to ticks

(C)

Figure 4. A (z, r) parameter plane

l, Li —
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At this threshold
1+ y=afb (4.57b)

and equation (4.53) is satisfied. Beyond this (z = z;) cattle, wildlife and ticks

co-exist. But as z is further increased beyond

22 = a/b (4.58)

the wildlife will vanish and ticks explode same as the situation described in case

1 above.

case II: r > ad/b or r/d > a/b.
In this case a possible cattle breeder will introduce some cattle into an already in-

fected area. The cattle will result in an increase in the tick density. More precisely
the situation here is that before the breeder introduces cattle in this region, the
natural wild host population is already enough to support a tick population. How-
ever the stationary total host population is supposed to be a/b by condition (4.53)
thus the introduction of cattle in this region means disturbing the stationary state
of the system. Thus after the threshold z2 = a/b the wildlife will continuously fall

and eventually vanish and the tick population will explode.
Now we return to the discussion of system (4.49a). We find similar phenomena

but in addition we find the stage distribution of the ticks.

as in the caricature,
The first step in the analysis of this system will be the determination of stationary

states. At a stationary state (Z,y) the following equations must hold

0=(A+(y+2)B)T

0=r—dy— ETfy (459)

For fixed v 4+ z, the first equation is a homogeneous linear system for the vector 7.
or fixed ¥ s

Th ssary condition for the existence of a nonzero 7 is that the determinant
us a nece

of the matrix
A+(y+2)B (4.60a)

vanishes, that 1s
det(A + (y +2)B) = 0. (4.60b)
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Thus consider the equation
det(.4 + ne) = 0. (4.61)

We compare the linear system
0= fxn- {pi + hgi)xi - p\xi
0= (p\ + hg\)x\ - (p2+ hg2)x2 -
= (pj-1 + hqj-i ¥ Pj + (4.62)
0= (pn-2 + hgn-2)xn-2 - (Pn-1 + hgn-Hxn-1  Mn-lIn-I

0= (pn_i + hqg.,-1)i»-I - P"x"
to sytem (4.24) with A= 0 and p, replaced by Pi + hqt. Then from Eq.(4.30b) one

sees that the qua rliltfilg}\// h must be a zero of the polynomial

n—
4.63
p(h)=f[(P,+ Kp n (p'+ (4.63)
=1
This polynomial eat. o M
e nN<‘«+ ' - h<n*n « <«e>

i<fE

1m jg the number of questing stages in the system,

where EC {1 ' N product terms in the right hand side of Eq.(4.63)
In otherwords we g P tQ qUesting stages (indices in the set E) and
according to param Now we define the quantity

non questing tick stages (in

-n -X.n -~T 1| r 3-- (4.65)
Row ~ pn It Pi +rpi hgi + Vi

1 ~o£ ticks produced by one adult female tick in its life

which is the average 1 hiibk' reproduction number of the tick population
time. This moq” ** fw o, that
on a host ......... ...

(4.66)

Ro(*) = FA 4 -
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If Ro(oo) > 1 then the tick can persist on sufficiently dense host populations.
The critical host density is kg, where kg is the unique positive root of the equation
Ro(h) = 1. Thus the tick can persist on host populations with density > ko and
cannot persist on host populations with density < ho. Notice that ko depends only
on the parameters p;, ¢i, #; and f. This conclusion is in agreement with what is
expected in the field. Norval et al (1992) concluded that the most important factors
affecting the abundance of R. appendiculatus in wildlife reserves in Zimbabwe are
host density and climate. The authors suggest that in a given environment the
tick can only become established if the host density exceeds a certain threshold
level. Norval et al (1992) state that this level is low when a high proportion of
host population is comprised of tick-susceptible animals and becomes higher as the
suitability of the environment for tick survival decreases. They further state that
the most severe tick problems occur in wildlife reserves with highest host densities.
The model so far seems to be in the right direction as far as tick dynamics are

concerned. At any nontrivial equilibrium we would have R(h) = 1, thus h = h,.

Then the non-normalized tick distribution, according to stage is

n n—1

7 11 (p; + hoaj + 1)) [[(Pi+ hots), i=1,....n=1.  (4.67)

Ii = Tn
Jy=i+1
Furthermore the three populations of wildlife, cattle and ticks must satisfy

j=i

7._dy_ETfy=0 and y+ z = hy. (4.68)

Case 1: When z > ho then the equation y + 2 = ho cannot be satisfied with

y > 0. We have Ro(z) > L. Thus, at the given level of domestic animals, the tick
population can survive on cattle alone, the tick population grows exponentially,
and the wild animals disappear. Factically, cattle breeding at this density (with

the given transition rates) is impossible.

Case 2: When z < ho then at equilibrium y = 7, where

g:ho—z.

For the tick population I, we get the equation

~
-

r—dy=¢7
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Hence there are again two cases.
Case 2a): § >r/dorr <djy.

In this case
j=ho—2>r/d

or
hg >z +r/d.

Then
(Z + T/d) < ho.

Thus the tick population cannot survive on the joint wild and domestic animals.

Case 2b): j <r/dorr > dy.

In this case
j=ho—z<r/d

or
he < z+7/d.
Then
z+ T/d > ho.
Thus. due to the assumed possibility that wild animals avoid heavily tick infested
areas, an equilibrium density of wild animals § establishes itself. The cattle density
is z. the density of wildlife animals is § = ho — z and the total population size of
ticks is determined from o r—dg
cT="7 (4.69)
Y
The right hand side of Eq.(4.69) is positive, since 7/d > ho — z = §.

4.4 Stability Analysis

We have just found that there are at most two stationary states. It remains to
e

ons under which these states are stable or unstable, respec-

investigate the condit1

In order to perform a s
to form the Jacobian at the stationary state. We start by

. tability analysis we have to linearise at the stationary
tively.

state, that 15 We have

; ing the Jacobian & (z,y). We do not form the Jacobian, as usual,
ormin

t any state
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by computing partial derivatives, but we introduce small u, v variations in the
equations and drop terms of order greater than 1. Thus we enter 7 +4, y+vin

equation (4.49a) to obtain the following equations

(5:’+27)‘=F(5:'+12')+D(P+(y+v+z)Q)(f+ﬁ')—M(f+zI)

(y+v) =r—dy+v)-(F+ @)y +») (4.70)
Expanding the two equations above and ignoring terms of order 2 we get
4= (F+DP +(y+2)DQ ~ M)i + vDQz
v = —-ycTu — T 5 — dv (4.71)

where 7 is a column vector of length n and v is a scalar variable. The two equations

above may be written in matrix notation as;

Z\ _[(F+DP+(y+2DQ-M DQ3 i
In coordinate notation the system reads .
Uy = fun — (1 + (Y + 2)@1)ur —vq1e1 — 1z

up = (p1 +(y + z)q)ur — (p2 +(y + z)q2)uz + vqrzy — Vq2T2 — poxy

......

Un = (Pt + (Y + 2)qn=1)tn-1 + V¢n-1Tn=1 — Uz,

t):—-yc"‘ru——élrfv"dv

(4.73)
In the special case of the equilibrium the coefficients of » have 5 well-defined

sign, negative for a questing stage equation and positive for a post questing stage

equation (a stage following a questing stage)
First we look at the uninfected stationary state. The stabilj ty analysis will

show whether the tick can invade a tick-free area. Then y = /d and 7 = (. In

this case the Jacobian becomes

F+DP+(yo+2)DQ-M o
( —yocT _d) : (4.74)

—

0=
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The matrix splits. There is one eigenvalue A = —d. The remaining eigenvalues

are those of the matrix
Ag = F+ DP + (yo + 2)DQ — M. (4.75)

Thus we find that the uninfected stationary state is stable if the spectral bound

satisfies

S(Ao) < 0.
This condition is equivalent to the inequality
Ry <1

This means that the uninfected stationary state is stable meaning that a tick

population invading a tick free area declines exponentially with time. Now consider

the infected state (a::', §j) where we have the Jacobian

g) =

8t

7 F+DP+({§+2DQ-M DQz
( —yeT —d - cT%) - (4.76)
1ot split, and the problem gets exceedingly more difficult

Here the matrix does 1
ructure of this problem we see that in general the matrix

To demonstrate the st

above is of the form
-, A B
J(.‘IJ, y) =\c D

ponentially positive, C is a nonpositive row vector, D is a

the matrix A is €X
lumn with entries of either sign. Although these

and B is a €0
h structures it is not obvi
x is in fact stable. If it were unstable then we would expect

negative scalar,
ous that, under the condition that

matrices have suc
Ry > 1, this matri

secondary bifurcations of t
cks

he infected stationary state (Z, 7).

4.5 Competition of Ti
(1969) observed 1

:dent that there
d that on host nymphs tend to detach earlier than

n a series of experiments i ; :
As Branagan involving R. appendic-

ulatus, it is eV
1. It was observe

ity on

is competition when ticks attach onto a host for

a blood mea is hi
the host is high. The resultant obvious effect

expected when nymphal dens
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is that ticks do not get enough blood share, hence their chances of survival in the
next stage is reduced to some extent. We wish to consider an extension of the
model (4.45a) where the observed competition effects are incorporated. It is not
obvious how this should be done. If we just increase the rate of detachment then
instead of modeling a competitive effect we are actually speeding up the life cycle
of the ticks which results in a cooperative effect. Modeling incomplete saturation
due to premature detachment would require considering a population structured
according to nutritional status which of course would be much more complicated
and would contain many parameters that are difficult to estimate. Within the
framework of the present model there seem to be only two ways to describe the
observed competition. Either one assumes that the rate of attachment is a de-
creasing function of density of the on-host population, or one assumes that the

mortality of the detached ticks is an increasing function of the density of the pre-

ceding on host stage. Of course one can incorporate both nonlinearities into the
model. Both approaches do not exactly describe what happens in the field, but

they seem sufficiently close to reality at this level of model complexity.

In the following we assume that similar competitive effects take pféce at every

questing stage. Thus we are led to consider the following system

£y = fzio — %1 — 410
i = p121 — hqa(z3)T2 — paz2
i3 = hqa(z3)T2 — P3T3 — U3T3

= p3z3 — paZs — H4(T3)T4

4
Is5 = PaT4 — hqs(zs )Ts — HsTs
76 = hgs(T6)Ts — P6T6 — /6 T6 (4.77)
I7 = PeTe — P1¥T p(ze)ze
g = pra7 — has(T9)Ts — p1azs
5o = hqs(Te)Ts — PaTe — 9T
10 = pae — H10(Z9)Z10
g =r-— dy — chy.
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This system is of the general form

T1 = fz, — (p + hqi)z) -z
Z2 = (p1 + hq1)zr — (p2 + hgp)zs — pyzy

(4.78)

j/'n-—l = (pn—2 + hQn-Z)xn—2 - (pn—l + hqn_l)a:.,__l ~ Hn-1ZTp_,
Ty = (Pn—l + hQn—l)mn-l — HnTn
y =r —dy — c’zy.
--»n~ 1, and u; depend on z;-q for

where p; and ¢; depend on z;4; for j = 1,.

J =2,...,n. Thus the system has, apart from the last equation, a three-diagonal

structure, the right hand side in the equation for z; depends only on the three
variables z;_1, xj, £j41-
4.5.1 General cyclic triangular systems

The first part of the system (4.78) has the general form

Ty = rp(z1)Zn — ri(z2)zr; — p1(zn)zy

I = T‘](.’L‘z).tl - 7‘2(1133 Jx2 — ﬂz(l‘l)xz

rioi(z;)zi-1 = 1i(T41)85 — #5(25-1)z; (4.79)

z 1 = Tn-Z(-Tn—l ):L'"—z - 7'"—1(3:")1‘"_1 - l‘l’"_l(mn“Z )xn—l
n—

#n = rno1(Zn)Tn-1 = #n(Tn=1)Tn.

Note that when the transition rates are not density dependent then
ri(eje1) =pithes J=ben=1 and ry(z,)=7y

Now we look for stationary states of the system (4.79). At a stationary state the
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following equations hold,

ra(21)2n = (r1(22) + a1(z0))z)

ri(z2)zy = (r2(z3) + p2(x1))z2
ri—1(zj)zj-1 = (rj(Ti+1) + pi(zi-1))z; (4.80)

rna2(Zn-1)Tn-2 = (Tn-1(Zn) + tn-1(Tn-2))Trn-

7'n—-l(1'n)1'n—l = Pn(zn-—l )xn-

We consider two special cases corresponding to the two modeling approaches de-

scribed above.
Case 1: Assume that the coeflicients r; do not depend on density, and the com-

petion effect is described only by increased mortality after detachment.

Then in the jth equation we solve for the variable ;. We obtain the following

system

T + #l(xn)
"1
ra + p2(1)

Iy

rj—1Zj-1
7+ ri(zio1) (4.81)

Tn-2Tn—1
ran—1t ﬂn-—l(xn—z)
rpn—1Zn—-1
ﬂn(wn—l )

i

yclic iteration. Now we assume that the

; f the
mortalities are linear functions 0

pi(z) = B3 + 5z, (4.82)
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Then the equations assume the following form

alxn rnxn
) = Fl(xn) = = 0
crzn +dy T+ p) +uiEn
az2r1 _ ™I

= F = =

a;T;—1 _ rj—1Tj—1

zj = Fj(zj-1) = = 0 1,.
7 i (%) cjzjor1+dj T + u; + 1T (4.83)
F ) an—lxn—2 . Tn_gxn_2
Tp—-1 = _qlrn- = = 5
n—1 n l( n—2 Cn—1Tn-2 +dn-1 Tp—t + Mp_y + /"’:1—]1:11-2
ApTn-—1 Th—-1Tn—1

Tpn = Fn(In—l) = Cnxn—l +dﬂ - #?I +“})xn—l

These equations define a cyclic iteration. We can start with z,, compute succes-

sively the z; down to I and again z,. Thus we have the equation

2y = F(2n) (4.84)

where

F=FyoF,p00F20F (4.85)

ear functions and a product of fractional linear func-

Since all F; are fractional lin
and furthermore F(0) = 0, we find that

tions is again a fractional linear function,

F can be represented as Az
F@)=2z5D (4.86)

n the following manner. If

The coefficients can be found 1

fiiz— (a1z + b1)/(c1z +di)

and
fprx— (azz + b2)/(c2% + d2)
are two fractional 1in€ar functions then the function
e two

fz = f o fi
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has the form
fa:x = (asz +b3)/(czz + d3)
with
a3 b3\ _ [aza) +bacy a3y + byd,
¢ di - caay + dacy  caby + dody (487)

in other words, the coefficients multiply in the same way as 2 x 2 matrices. Thus

the product F,0 F,~;0...0F)isa fractional linear function where the coefficients

are given by the entries of the matrix product

an bn az b2 a, bl
( Cn dn ) . ( C2 d2 ) ( (o) dl ) : (488)
In case these matrices are of triangular form, b; = 0, the formulae get somewhat

simpler because the diagonal elements of the product are simply

and dpdn_1---dad; (4.89)

AnQn—-) ***a201
and the left lower element has a form which we better give for a fixed length of
the product, say n = 6,

csasaqa3aza) + deCsasaa3aza1 + dgdscyazaza
(4.90)

+dsd5d4csazal + d6d5d4d302“l + d6d5d4d3d2cl

In the general case we find

A= ﬁ“ﬁ D=]]d, (4.91a)
j=1 j=1

j=1 Lk=1 k=j+1

C=i{n"'k'ci' IT & (4.91b)

where to avoid ambiguity in the expression we define

H ar =1 (4.91c¢)
k=1
and n
H dp = 1. (4.914)
c=n+1
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Thus X1 must be obtained from the equation

AXn

4.92
XN cxn. D (4.92)

This equation has the trivial solution x,, = 0. and possibly one nontrivial solution

which satisfies

Cx, = A - D. (4.93)

Thus this (positive) solution exists if and only if

A>D (4.94)
or 4
|
4.95
=D>1 ( )
is the basic reproduction number. In terms of the original coefficients
where R
we have
RO=n t (4-96)
i=i
or
n—= Pi+<ljh (4.97
i |Ro= / N pj+ + 12j

) . ,~creasing function of the host density h.
Notice that Ro is a nondecreasi %

tty; (A Q7) has the property RO > 1 then the system (4.81)
P

1
TR as defined by _ _ _ _
e’ rpyg solution can be obtained by first computing xn from

has a nontrivial solution from cVstem (4
then ively, *,, mee *-* f s/stem (4-83
Eq.(4.93) andltnen Su CoeSIVEs T ) rom . (4-83) :
J t guesting parameters rj depend on density, but

P 9- Hpre we assume | . ] . . ]
- ase- N constant. In this case it is not possible to arrive at a first

that the morta lti second order recursion can be derived. We
order recursion for the but
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find
ri(zq) +
g = Fo(zy.1p) = ED A1

rn(z1)
rq(z3) +
I1=F1($2,$3)=i(:]§();2_)'l2$2
rie1(Tiv2) + 5
J

rn—l(mn) + -1 .’1:
rn-—Z(zn—l)

ITn-2 = F(zll-laxil) = n—

Un
rn—l(zn)

Tp-1~ F(-En) = Tn

One can start from zn, computeé In—1 from the last equation, and then continue

in Fibonacci style down to I3 and finally again to z,. In this way we arrive at an

equation

zn = G(zn) (4.99)

where G is constructed by the iteration. This equation has again the trivial solution
z, =0, and possibly also nontrivial solutions. Since the function F} is increasing

in the first argu
whether G is monotone. However we can find

ment and decreasing in the second, not much can be said about

Ry = G'(0). (4.100)

Forming partial derivatives does not lead anywhere. By direct expansion we find

ri+1(0) + el (0)z;42 + Hj+1

z; = 7(0) + r(0)zj41 Zj41 (4.101)

where 7', i8 the first derivative of 7j+1 with respect to z;,,. Multiplying nu-
J

f Eq.(4.101) by r;(0) — 7'_’7'(0)1?;‘+1 and deleting second

nator O

merator and denoml
he first order recursion

order terms wWeé find t

. 1(0) + Bj+1 :
p— Q_i'_,(._——-———“":lf ; , = 2, . -
5=t -1 (4.202)

133



hence the basic reproduction number is the inverse of the product of these numbers

(since in equations (4.101), (4.102) the iteration is moving backwards). Thus

R —fﬁ rj(O)
T ] ri4+1(0) + pj41

1=

Case 3: In the general case where both the x; and the r; are nonconstant, one
cannot solve the recursion for the equilibrium densities, but still, by linearization,

one can get the basic reproduction number. Indeed, the Jacobian of the right hand

side of the system (4.77) is a cyclic two-diagonal matrix.

4.5.2 Positive invariance

In the linear case we know that the solutions of the “tick only” system are un-

ded unless the parameters are such that the population remains constant or
e

boun
In the nonlinear case we have to pay attention to the qualitative

is decaying. te qualitat
behaviour, in particular we distinguish the cases where the system is dissipative.
ehaviour,

I der to establish dissipativeness we have to find a bounded set that attracts

n order

all orbits and wl
As a first ste

with respect to the flow.

vector field f = (fi) 18 pointing inwar

Jich is positively invariant.
p we show that the positive orthant R% is positively invariant

We must show that at each boundary point of R} the

d, that is forany: =1,...,n
s € Ry, zi=0= fi(z)20. (4.103)

see immediately the implication assumes the form
From the system (4.79) we
= g; = Ti-1(0)zi-; 20 (4.104)

"EGR:’ 117,'=0

jcally. This is true because the coefficients p; and

with the subscript ? taken Cy¢

¢; are positive.
truct a positively invariant domain in the form of a generalized
Now we constr

rectangle oz 0T <m; i1=1,...,n} (4.105)
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where the m; > 0 are constants to be chosen appropriately. Again we have to show

that at any boundary point the vector field is pointing inward. We have already

covered those boundary points where one of the z; vanishes. We still have to treat

those boundary points where one z; assumes the value m;. At such a point we

have z; = m; and 0 < z; S mj forj # i. The i-th equation reads

z; = ri-1(Ti)Ti-1 — ri(zig1)zi — pi(@i-1)Ti (4.106)

To get an upper bound on &; we can dismiss the term containing r; because it is
nonpositive anyway. Since rj—1 1s a nonincreasing function we can replace it by
its maximum, which is ri-1(0)- Since we look at a point where z; = m; we can

use this equality. Then we arrive at the bound

i; < ri-1(0)z — pi(z)ymi for 0<z Smi-y. (4.107)

Now we have to find a set of m; that satisfy the following inequalities (We write

r; instead of r;(0)).

'nZn < /»Ll(xn)ml) 0 _<_ Tn < My,
mz < pr(zi)me, 0 <z <my,
(4.108)
rio1Tie1 S pi(zi-1)mis 0<zi—1 < my—y,
ra1Zn—t S fin(Ta—1)mn, 05 Tna < mp_i,
We claim that we can satisfy these inequalities if we choose
my =mg = Man =M
where riy
m =sup SUp ——— (4.100)

i 0<y<oo Pi+l(y)

where again the subscript ; is taken cyclically, provided the supremum is finite.

Indeed. in this case, for the ith component, We find

rie1&i-1 " pi(Ti-1 ymi = Ti-1%i-1 = pi(zi-1)m <0. (4.110)
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Now we want to show that all trajectories in eventually end up in U. Suppose

that x &U. Then x, > m for at least one i. Then at this point
xi = i"AX])xj_i —r,(x,+i)xi —/i,(X,_i)x-
< 7_i(0)x,_|I — )Xi
< 7j_i (0)X,_1 —Hi(xi-\)m
<0
Thus whenever a component exceeds m then it strictly decreases.
Assume that the m(x) increase at least linearly for * - 00. Then the quo-

i -t ar
tients in+H§/)t are

Theorem 4.2: .o
If the mortalities are at least linearly increasing then the system (4.79) is diss.pat.ve

bounded and m exists. Thus we have proved the following result.

with respect to the set

U={xm0<xi<m, i=1,...,n}

where m is given by Eq.(4.109).

] . hits These are obviously fixed points of the map-
Next consider stationary P°i

ping T, where r , - i (4.112)
TA 1=
clicallv. By construction, TU C U. Thus, by the fixed point
again with i taken c>c 1 N point in U. But trivially, O is a fixed
i1 r T F I Rrouwcr® n . t
theorem ot . Therefore consider the Jacobian J of T at

point. Thus we do not get a

(0) QN

" (4.112)

7,—1(0)
d>= ~(0)T/i.(0)

where (4.113)
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Compare this matrix to the Jacobian of the right hand side of system (4.79) at

the stationary point O.
r —r2 — M2 0

Tn—1 —Hn
From a general principle (see claim 4.1 below) it follows that the spectral radius
of J is greater than 1 if and only if the spectral bound of J is positive. Thus the

adius of J is greater than 1 if and only if the trivial stationary point of

spectral r
tial equations system is unstable. Then the linearization of the mapping

the differn
T at z = 0 has an eigenvalue greater than 1 with a positive eigenvector, that is an

eigenvector pointing into the interior of the first orthant. Thus the point 0 (which

and a boundary point of U), is an ejective fixed point with

is the vertex of R}
et U (in general 0 will be a saddle point and have a stable manifold

respect to the s
is not in U). By the F.Browder-Horn principle on ejective fixed

which however
s second fixed point of the mapping T in U. This fixed point is a

points there is
t of the differential equation.

stationary poin
Usually the Bro

sets (and is even fa
owever, We canno

wder-Horn principle is formulated only for infinite-dimensional

|se in finite dimensions). Here the result applies since 0 is a

t claim that the nontrivial stationary point

boundary point. H

is stable. Indeed, at 2 nontrivial stationaly
diagonal of negative n diagonal. Hence we cannot exclude

cycling behavior.

tral radius and sp
xand D a positive diagonal matrix. Then it is clear that

s that the matrix difference P — D

point the Jacobian contains also a

elements above the mal

4.5.3 Spec ectral bound
Let P be a Perron matri

D-1p is also a Perron I
negative ma

atrix. It 1s also obviou
is an exp onentially non trix or what is known as a Metzler matrix
(Metzler 1945).

p-D)<0 =

) denote the s

p(D'IP) <1

Claim 4.1:
im s( pectral bound and spectral radius of a matrix
where s(.) and p(- ;

respectively.
137



case 1
N Als shown by approximation.
ssume s(P — D
( ) < 0. Then there exists an eigenvector z >0
z such that

(P — D)Z = s%,
P7 — DT = sZ,
P# = DT + 5%,
p-'\Pf=f+sD7'E<Z.

The so
called “ i em”
quotient theorem” states that for a nonnegative
matrix 4 = (a
= (ajk)

and any positive vector ¥ = (z;)

_ (AZ); =
min G2 < () < max (220
J Iy J z; )

Thus the quotient theorem gives p(D7'P) < 1.
2) Now assume p(D~'P) <1 Then there exists & > 0 such that
D' Pf = p%,
(p-'P - Di=(p— V¥
(P - D)i = (p— 1)DZ,
((P—D)+aI)5=aw+(p—1)Df a>0

nd hence s(P — D) <0

Yo — 00 &

Thus p(P — D +al) <@

4.6 Simulations

1 was developed to study the tick-host i
-host interaction
systems

A simulation mode
developed 1 i
ped 1n this work. guage was
used. The Sim .
ulation

model] is divided into th
r of features

The C programming lan

ree versions of the model namely si
y siml, sim?2
and sim3

with increasing numbe incorporated. Each of these i
1s composed of

three modules which ar
ed under 2 com

Je where the

here all inputs such as paramete
IS, ar-

rays etcetera are defin
odu

hich merges info

| calculations and produce the ‘
graphlc re

presentations

graphic display is desi
gned and finall
y the

comes the graphics M

computation module W rmation from the header and graph
raphi

ules to carry out the actua phics mod-
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Colour graphic display was used to distinguish between the different tick stages
and the two host populations namely the domestic cattle and the wild animal

host. The relative densities in the different tick stages were defined in an array

zfi], i=1,....10, the domestic host by a variable z and the wild animal host

by the variable y as in the model set up. An extra output was designed to show

the dynamics of the total tick population. The domestic host was set at a fixed

value because, as mentioned in the modeling section, its dynamics are outside the

current model specification.

The mathematical procedure used in the simulation is the Euler method for

the differential equation @ = F(u), that is u(tit1) = hF(u(ti)) + u(t;), where the

stepsize, h, is small and tip1 = h+ti. From the point of view of numerical analysis,

this method is rather crude,
the further advantage, that the Euler method, ap
a discrete time model. Such int
solution schemes such as the fourth order Runge-Kutta method.

but it is quite sufficient for the present purpose. It has
plied to the differential equation,

is very close to erpretation seems impossible for

more sophisticated
For more information

The simulation program allows to ¢
specific demographic conditions of the host and tick populations depending on the

tick and host population.
as well as the host population in the progress of time.

on some of these procedures see the book by Braun (1975).

hoose suitable parameter inputs describing

In general the simulations show the relative densities in

the various tick stages

y outline what each sub-model does.

Now we briefl

In siml the system (4.45) is simulated using the above method. A typical

is the following: Initiall
low densities. The

“run” y there is the host population and ticks are intro-
duced at very
Then, if the rep
and the host po
tick population k
the tick populatio
the two host populat
Both cases described

that there 1s 2 critic

host population continues to stay or even to rise

roduction pumber is above one, the tick population will increase
own. Eventually it starts to decline while the

t the rate of increase reduces and eventually
o stage distribution and coexists together with

ions OF eventually the tick population increases exponentially.

above can be observed. The important observation here was

a] value of the host attachment rate below which the tick
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population starts to decli i
ine monotonically. In this co
. mputer experiment
a value

g;j 0.07, 7 = 2,5,8 gives this kind of observation where the numbers 2
mbers 2, 5

and 1 1 y e f h

of magnitude with that reported in Byrom and Gettinby (1992) of 0.04
.04 in their

ECFXPERT simulation model. Thus the conclusion here is that host ilabili
availability

d . . . .
uring questing periods is paramount for tick existence. Finally in siml
. siml we ob-

serve that the stable tick stage distribution

general for stage structured populations sinc

produces peaks a phenomena which is
e when the rate of recruitment into a

stage exceeds the transit rate from that stage individuals may pile up in that
at stage

distribution, a phenomenon which

contrary to what we observe for a stable age
89) page 105.

has also been explained in the book by Caswell (19

In sim?2 the basic features of siml were maintained but for each stage th
e the

mes were estimated by the recip

is through mortality and adva
e time at each iteration step. Then

residence ti rocal of the combined rate of leaving

that stage that

ncement. Then the stage frequen-

y the corresponding residenc

cies were scaled b
the size of that stage is represented by the are
a

given time)

to each stage (at 2
in the histogram columns and the mean residence time is given by th idth
e wi

We expected t
for a growing or constant tick population) would

hat by this rescaling of the heights of the his

of that columns.
stogram (

togram columns the hi
similar to the age histogram of a growing or ¢
on-

be monotonically decreasing,

expected that the “piling up” in certain stages would

stant population, that we
m when stage size would be spread over residence time

disappear from the histogra

This expectation 8 mathema
me in the stage to define the width of the cohort. Nevertheless, ex-

tically not quite justified, because we use the me
an

residence ti
y. The observation was that in the stage frequen
cy

it came out nicel

perimentally
s, the fnally attained stable stage distribution

h different width

histograms, wit
of stage number. Again co-existence between

was a strictly dec
the three populati
and sim?2 do not in
effects carried forwal

petition effec

on species W&
ctition effect for on host feeding ticks nor
any

clude any comP
d to subsequent ©

t is simulated by expressing the mortality of
an

f host developing stages.

In sim3 the com
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oir host deveiopping stage ts a function of the previous on host density, that is
p. —u?+ n'il_, For the data set used, the observed stable stage distribution was

similar to that in sim2 except that the total population size of ticks was relatively

lower, in comparison to that in sim2.
Figure 5 in the next page shows the structure of the stable distribution with-

out scaling down the stage frequencies at each model iteration step. We notice
that in this case the stage frequencies in the stable distribution do not decrease
monotonically like in the following case. The reason for this is of course due to
the difference in residence times for the different stages. Figure 6 on the other

hand shows the stable stage distribution but with stage frequencies scaled down

) residence times at each iteration step. We notice that
by the corresponding stag]g | H ¢ | db
e =Tl :s similar to that of a population structure
the stable distribution in tl‘us case i. Pop y
- pacpc; we have more on host larvae followed by on
age. We also note that m El)oth cases y
i,nc Hie least. This result is in agreement with what

host nymphs then on hos ac L
.\Ven a host population in the field, there are more

is observed in the held. -
. Unwed bv oil host nymphs then on host adults the least,
on host larvae, 1oliowc J
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Figure 5: Model Simulation 1
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CHAPTER V
SPATIAL DISTRIBUTION OF PARASITES

5.1 Introduction

In this chapter we consider the question of possible spatial frequency distri-
butions of vector parasites in a habitat. The tick vector population will serve as a
key example in the current study. Part of this question is the on-host distribution
An attempt is made to uncover the most proximate causes

of vector parasites.

for observed phenomena such as inhomogeneity in the presence of homogeneous

conditions or uniform distribution in spite of unevenly distributed oviposition sites.

Communal grazing is a common phenomena in most parts of eastern, central

and southern Africa. Consider a typical communal grazing area which can be

thought o
d very many. Take a typical grazing area as composed of n units (where

each equally likely to be occupied by an individual parasite(tick). At

t we do not differentiate between stages. Let N be the total number

f as composed of identical units (observation plots) which are sufficiently

small an
n is large)
the momen

of parasites(ticks)- Then
a. Now the NV parasites(ticks) ar
either occupies that unit or it doesn’t. Thus

— N/n is the average number of parasites(ticks) per

unit are e distributed. Observe a single space

unit. Each individual parasite(tick)

Bernoulli experiment. The p
1/n. Then pt = Np. The probability to find exactly &

we have a arasite(tick) selects that particular area
with probability P =

parasites(ticks) in the area considered, 1s

N —k
Prob{k ticks in area} = (k)Pk(l -p)V* k=0,...,N. (5.1)

With the above assumptions the spatial distribution of parasites(ticks) follows a
Bernoulli or binomial di
Now we apply the fol

ation, whereby the units (observation areas) stay constant in size. Thus the total
3

number of parasites(txcks
e same.

is also large in such a way that u stays the same. Thus,

stribution.
lowing view. An ever larger area is taken into consider-

) is increasing, but the average number of parasites(ticks)

per unit area remains th In mathematical terms, n is getting large, p = 1/n

is getting small, and N . - .

with this m ost appropriate scaling of variables we arrive to the exact hypothesis
1 1
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for the transition from the binomial distribution to the Poisson distribution, that
1

1s,
3 k, —p

Prob{k ticks in area} = (Jk)p"(l -p)NF > #—7:'—— as N — oo (5.2)

Of course in applications the probability of finding that the observation unit con-
tains k parasites(ticks) is interpreted as the relative proportion of observation

units containing k parasites(ticks). In other words, when the size of the obser-

lected in such a way that parasites(ticks) are sparse with respect

the spatial distribution of parasites(ticks) is described by the

vation area is se

to this size, then

Poissson distribution with parameter z,
per space area. We underline that this approach makes

where u is the average or expected num-

ber of parasites(ticks)
sense for sparsely distributed parasites(ticks). If 1 in the Poisson distribution be-
comes large, we can as well use the normal distribution to approximate the original

binomial distribution.

As we have said earlier any description of spatial distribution relies on a con-

cept of observation unit. The Poisson distribution, being the limit of the binomial

distribution for large N and large n, under the condition that N/n is constant, is
b

by construction invariant to scaling. The binomial and the Poisson distribution

both have been derived under the hy
t of the others, that is, the derivation is done

pothesis, that each individual parasite(tick)

ose the unit area independen

y a priori inhomegeneit

can cho
y such as staying near oviposition site or a

excluding an

homogeneity such as com
ough ticks are not insects (but nevertheless

posteriori in petition for space. In Poisson distribution
the variance to mean ratio is 1. Alth

arthropods), mo
ance and mean is

mean. Such observad
d the observe
p.117 fF. provides detailed information on observed patterns

st entomological studies indicate that the ratio of the sample vari-

usually not anywhere near one; the variance greatly exceeds the

tions are an indicat
d tick pattern could be “clumped”. The book by

ion that the frequency distribution itself

is “contagious” an
Pielou (1969,1977), P
and possible distribut
two methods namely b

compound distributions.

jons. More realistic distributions are normally derived vi
a

he method of generalized distributions and the method of
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Case 1: Generalized distributions approach

Here we suppose individuals occur in clusters and these constitute the entities

having a specified pattern and the number of individuals per cluster is random vari-
ate with its own probability distribution. One can derive the mean and variance
say u and o2 of the generalized distribution in terms of the means and variances
of the cluster distribution that is distribution of clusters in space (x; and ¢?) and
disribution of individuals in each cluster (with mean p2 and variance 03). Let G(z)
denote the pgf of the cluster distribution and let g(z) be that of the distribution of
individuals. Then the generalized pgf for the number of individuals per unit area

s

H(z) = G(9(2))- (5.5)

Thus the mean and variance of the generalized distribution is

u= Hl(l) and 02 = H"(l) +H'(1)(1 - H'(l)).

Now let p; denote the probability that a unit contains ¢ clusters 7 = 0,1,... and

7; the probability a cluster contains j individuals j = 1,2,... Then it follows by

definition that .
G(z) = )_pi' (5.6)

and .
g(z) = Z?\'J‘Z‘I. (57)

n combining these two formulae we get an expression for H(z) as

i

The

H(z) = G(g9(2)) = ZP:‘ Zn,-zj
i j

to calculate the generalised mean and variance (4 and a?).

Then we use this pgf '
By successive application of the chain rule we get

(1) =G'(9(1)g'(1) = 1 = prpp (5.8)

and from the relation
H'(1) = e (e (D) +G'(e(g" (1) = 0* — 4 2 59)
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we get
o- = lijal 4 o'nl.
‘ (5.10)
For example, if the number of clusters and individuals per cluster are both dis-
tributed as Poisson with parameters A, and A2, respectively, then the mean and

variance of number of ticks per grazing unit are

ft — AJA2

and
a—A Al + A2). (5 11)

The resulting distribution here is known as a Poisson-Poisson distribution The
probability, pk, that a randomly chosen grazing unit contains k individuals is
given by the coefficient of zk in the power series expansion of H(z). As a second
frequently used example of a generalized distribution, let the number of clusters

per any grazing unit follow a Poisson distribution hence having pgf
Giz) (5.12)

and assume that the number of individuals per cluster follows a logarithmic prob
ability distribution with parameter a. This means that the probability p(x) of a

cluster to contain x individuals is proportional to ax/x, for x = 1,2,... (no cluster
Is empty). Then it follows from the normalization
00
=1
1" (x)
that
PC) = jna—a) x  X— 2 (5.13)
The pgf of the logarithmic disribution is
= In(l - ocz)
(5.14)

N ] In(l —a)
Thus from these two probability laws it follows that the combined pgf H(z) is then

given by Tn(l - az)
H@) = GE@)=ewfA " .1 5.15)
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N .
ow‘)v making the transformation A = klng, a = p/dwithg=1+p
tuting back and a bit of algebra gives ¢ =1+ p, then substi-

H(z) = (§-p2)~".
(5.16)

We ; . N
otice that this H(z) is the pgf of the negative binomial distribution. Th
on. e

m . :
ean of the combined or generalized distribution is given by

HQ)=p=kp (5.17)

while the variance ¢? is given by

H'()+H'(D(A-HQA) = 2 = kp(1 + p) = kpg. (5.18)

Note that if we write the mean .1 the form g = kp then the variance b
ecomes

0’2=u+[12/k. (5 19)

Thus, the vari ion 1
) jance to mean proportion 18 Jarger than i
n the case of th i
e Poisson

distribution. Clearly the smaller the
s for the Poisson distribution, the me
an and the varian
ce are

value of k, the greater the variance, but as
1

k — 00, c — “, a
equal, in fact it can be shown that
Te—H
pr — re
r!

k— o0

s the probability that a unit contains r indivi
ividuals (for a
proof

where pr give
tribution derived above is also called th
e

see Pielou (19

Poisson-logarit
r of clusters and th

What thes
our case) exhibit a pattern of randomly dispersed
rse

77)). The combined dis

hmic distribution where the first name indic
ates the distributi
ution

of the numbe e second is the distribution of the numb
umber of

individuals per cluster

ndividuals (ticks in
viduals per cluster may equally as well be a Poi
isson

e distributions mean is this: i
is this: if w
: e are willi
ng to

accept that i

clumps then the aumber of indi

variate or a logarithmic variate.
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Case 2: i
2. Compound distributions approach

all units avai . .
. ailable are identical such that the pattern exhibited b
niform. Let A . y individ -
. . denote the mean density, then the probability th iduals is
contain k individuals is Poisson i.e.  that any unit would
ATe™ "
rl

Prob{r ticks in area} =
(5.20)

random variable beca
be m rovi
use some areas may pro ide more favourable .
than others. A '

8 = 1/p, that is,

ssume A has a gamma distributi i
ution with param
eter « = k£ and

1 /1\*
fO) = =0z Ak=1g=2(1/P)
-~ ’ A>
L(k) (5) 20 (5.21)

Then
A\e —-A
/ -_f (A)dA. (5.22
On simplifying the right hand side by integrating out A one arri =
expression given by arrives-at the final
T(r+k) p"

Pr=TT(k) ¢kt
in we arrive at the negative binomial distributi
ion.

r= 0, 1, s e
(5.23)

with § = 1+ P Thus once ag2
eneral there is 2 correspondence between ever
y compound distributi
ibution and

neralized distribution cou
on experience to find that two or more theoretical
oretic

In g
its ge nterpart and vice-versa. For a proof of thi

see Feller (1968). It is comm is fact
distributions provide adequate
e each other anyway:
pound distributions 2

ns is quite often ina

e fits to a set of observations since most of th
em

It is also important to note that since gene alized
ralize

and com
dequate to confirm both a
ssumptions, that i
is one on

observatio

d the other on ticks per cluster. Only if one of
them were d

erived from

clusters an
nation could then the other be j
e judged by fitti

y fitting the

ndent source of infor
d distribution. Thus t

is never by itself adequate to €XP

deﬁmtely requlred

an indepe
he fitting of theoretical probability distributio
ns

generalize
lain the pattern of natural populations; furth
) reher

analysis 1s
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5.2 On host distribution

In this section we focus on the on host distribution of ticks. Host speci
- ecies

differ in their tick acquisition rates due to factors such as differences in ex
posure

to ticks, heterogeneity due to age and behavioural or micro-habitat differe
nces
among hosts. It has been observed in various studies that host heterogeneity i
y in

susceptibilities results to:

i) On host parasite(vector) distribution that is aggregated or asymmetric i
in

nature.
ii) Both m

increase Mo

ean number of parasites per host and the veriance to mean ratio

notonically with age.

One important result due to the above observation is that we get density

dependent parasite mortal

Anderson and Gordon(1982) age-

variance to mean ratio to Liost age

ity and parasite induced-host mortality. According to
intensity relation and the relation between the
indicate the kind of density dependence present

To estimate age intensity relations host populations are typically classified accord-
ing to age then the mean number of parasites calculated for eachclass. The
en to fit a mathematical relation to the data with host age as the

problem is th
a from oldest age classes is scarce and

able. It is known that dat

explanatory vari
hese age classes that determine if the

it is mean parasite burdens associated with t
age intensity relation is peaked. The most cominon applicable distribution used

to describe skewed on host vector distribution is the negative binomial.

Thus the most general treatment Or analysis of the above problem is
(tick) acqu
e indices,

i) to allow parasite isition and mortality rates to be general functions
t age, exposur
y densities governin

y rather than speci

of time, hos rather than constant rates.
b

ii) define probabilit

should be arbitrar

g inherent differences among hosts which

fic densities such as the Poisson distribu-

tulon.
The different forms of density dependence need to be distinguished. These include
density-dependent parasite
hanges in @ ho
rst and the thir

mortality, parasite induced host mortality and para-

. s« susceptibility. As fa . |
site induced ¢ st’s suscep : r as the tick population is
d forms of density dependence are the most impor

concerned the fi
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tant. This is because tick induced host mortality is an indirect relation since ticks

only act as carriers of the actual disease parasites namely Theileria parve group

of organisms. The negative binomial distribution has proven to be an excellent

empirical descriptor of the on host tick distribution according to Anderson and

May (1985). Now recall from section 5.1 that the mean x4 and the variance o2 for

a negative binomial distribution are related as

o = u(l + p/k) (5.24)

where k is the aggregation parameter. Thus the degree of agrregation decreases

as k increases, that is as L — oo. Infact the distribution converges to the Poisson

for large k. The problem normally is to seek maximum likelihood estimates for
u and k which in reality could depend on other explanatory variables such as

host age. We will attempt to show how the maximum likelihood method can be

nd k when they are functions of other factors. The ultimate

used to estimate y a
aim is to address the question of heterogeneity in host susceptibility relaxing the

homogeneity in susceptibility, hence on host distribution of vectors.

assumption of

5.2.1 The model
Let qn(t,u) denote the probaility that a host of age u at time ¢ carries n.

resent situation. Let A(t, u)Au be the probability that a

parasites or ticks in the p
ditional tick during the the time interval (¢, ¢+Au) that

s an ad
du+du F inally suppose that nu(?, u)Au is the probability

he population of n tick parasites attaching a host

host of age u acquire

is between ages u an
that a single death occurs in
aged u within the interval (£, + Au). Thus the following balance equation holds:

At w)gn—1(t w)Be + (1 + Dgni1(, u)p(t, u)Au

gn(t + Au,u + Au) =
+ gn(t, )1 = At u)Bu — ult, u)Au). (5.25)

Subtracting gn(t: %) from both sides and dividing both sides of the equation by
Au and letting &y — 0 yields
Ogn(t:v) o ?ﬁlfa%—’-u—l _ A(t, w)aa—1 (B 8) + (0 + Dp(t, u)gni (£, )
* — At w)gn(ts ) = mu(t,u)an(t, u). (5.26)
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A solution of EQ.(5.2C) is of t(1( form
».(t.1i) = 5 97

where

U

/ . .

<) — ) fil f- ii-ry.y)dy .

) Mt - I S.Sy is (5.28)

This
fl stall(Tti(l M>lurion . Ihu>. flic probability that then* are / parasites on

°f ar // at tinir t is Poisson with mean o. In the special ease of constant //

an™ A Eq.f5.28) becomes

-nit 5.29)

N
°W suppose*
Aft, u) = Z eft, u) 5.30)

'vhere the o _negative random variable Z accounts for the difference among hosts
h susceptibilities to ticks. We may assume that each host is assigned a value
flt.birth then it retains it throughout life. However this is different for different
individuals. The function eft, //) is a 110l1-negative dependent on the host age

lIfl time. Now suppose (QjA u is the probability that a host encounters a questing

M the time interval ft,t + An). These are host seeking tick stages which

ar° namely the questing larvae, nymph and adult. However it is only the questing
ATinph and adult which can pass the disease organisms to the host when feeding.
e can therefore be referee! to as the infective stages. The variable 0 denotes
number of the infective stages present in the host’'s grazing area. This number

1S affected by several factors therefore it is bound to be random in nature. The
Quantity g A u denotes the probability that the host encounters an infective stage
~bere to is k5 a measure of host preference by the questing stage. This quantity is
also affected by several factors such as environmental factors, host age and type
and many more therefore it can be taken as a random variable. Further let s be
the Probability that the host is infected given an encounter. Then it follows that
Aft, u) = ou)e (5.31)
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ext we give three jn*s»ihle ieUitl(>l1> UelWeeli zZ('(t,u) aild o0naz

Crise 1; Zz —ft rilel z—~ —#/’ftj
This cisc may a, is,- if wc suppose mean density and spatial distribution of the

infective stages is constant in time, but the spatial distribution is patchy that is
some host zones contain more infective stages than others "'hull <an he interpreted

to mean that some areas are more tick prone than others. This set up brings about

L . I . . i. ;, icolined that 5 and uj var\
eterogeneity m susceptibilities to tick acquisition.

. i flie same cohort.
temporally with host age but do not vary among host.

£g9j7e 22 7 = 4y and — c[t.n)
Here we assume host behaviour varies such that ~ is indcpct.dcnt of age atK

hine but differs among hosts. 1 his could be due to bt t\utii h &

host preference. This time o0 and - vary temporally and with host ag
among hosts of the same cohort.¥

£iEIL3 z = <aid

This situation occurs if we assume' that some hosts are able to i(Slb
. ) i f - js lildepen-
tacliment, better than others and vice-versa, given an encounter, tm -

dent of age and time. The above characterisations do not represent an exhaustive
listt. They are among many that lead to the relation A = " Ith

~presentation E<i.(5.2T) becomes

(5.32)
<»(<m “) = n
where
Ihe-. +cxX-f" (5.33)
Jo

Thus the probability that a rano’on’ﬁ'l;’/f chosen host of age v at time t will have n

Parasites is given by .
/ 1(--)<l,(*, ulz = z)dz (5.34)
Jo

r 7 if 7 is a discrete random variable,

where f(z) is the probability density of Zz. It Z i
J , Sirm  Tet us assume that susceptibility

Jy _
then the integral is replaced by a discrete sum. Let
~ is a Poisson random variable. Let

infection for different hosts is sue
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st e 1. muliiliti’
ill.) hr Thr minimi' «<»>* r' B
funrtic.ii At. u\2 2) is d I1ru !
Ang W L JN
\ ly

- ) * K <m—

r ..,,1of Eil.(S.34) r RVML "'V
anil so the probability jrrnel'.'d IIHf ‘111

P(S Y
dA.<)= 2-¢- v
( ) —CO

~ r ft*

(5.30
= c/(/.»)(em* - 1*

fl - Wo thus obtain the mean.
function ot .?(-L
where t«(.) is the nionien' K111 “ '

MU’u) and t’hr e eeeaaieeeseeeaeesesanaaaaaaaaas .

directly front tr(f/(f.")(=< ~ 1> as

(0.3 ia)
li(/,o =17~ (MI)

(5.376)
and
2(, +d N 'u)
" ' , alld variance of the variable Z. From

N<1IN<'lY' tin 111( 4
where /i, and o\ are, I(,I)() y 1

- 0'-K'i tlie variance, to
Eq.(0.37a) and Eq-O-3"' )-

. fnnrtioii of age and
nean ratio as a

. . , ~2 (5.38)
time is given by —\
T 1SJ * » y . aggr«S.«<t if T« * P°PU-
Note that P.r«i«e(.ick) <fcln” ;U° , , plibili.,y to ,»»* -m T
M en i, heterogeneous w » « « * »0 which i. .

i, a measure of the * g « Thi, is see., from E,.(5.3S)

ufdr of parasites p
function of the mean ntn indication that 1

) 2 1, are fixed. Inf*4 au ' - 37b) and Eq.(5.38) are
Assuming cr? and /iz < | Fn (5 37a), Ed-lo-

> 1. In general

nost parasite is

aggegated is when 72/
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) , , Hsirv-(iei)eii(U'iit parasite mortality or paiasite m-
not valid for systems where dm,it> <ui

T1 . variance to mean ratio often decreases as fL(t, u’)

duced mortality are presente 1l 11 ~so be
M,n \V less than one. The same would also

increases and the ratio »ia> |lIs . ) o, This means that

. .rtv w,,n. 1 function of its parasite burden. Tins means that

true if host suseeptilnh . n noom

the relation between r j n Qf then it is an evidence of

JISn<, a 1k . IKt necessarily true since a linear
density depend,mee. However -he eons- s . .
no systems with density dependent parasite mor-

relation might be expected m I <f acquisition of ticks. The result in
tality that might alter tin* 1() « * A inherent assumption that
iit,i'i3S) is dependent on
E-i.(5.37a). E<p(5.37b)am < '~ on host age and time. The density
. . ft -'i does not (Ul . ) .
the probability density j\-> example, if hosts become immunologically
f{z) woulfl be a funeti-m of b< b The negative binomial distribu-
rpneoiis as tiie> .
°r behaviourallv h'ss 7 t( 10" , .. use its variance to mean latio is o
..................................................................... o
the form H(*. m) (5.39)
wre 17
c ,-,S) is related to the negative binomial distribu-

It follows that the result m < J°

tion as follows

1z
1+ g(t< u)

(/. U) JL
1+ 1 fiz
(5.40a)
1+ d ,u).
A

, <. Eci (5-38) resembles the negative
/}  Thus the result

‘"ce N~ U = ,ii<d\ a tUat the parameter

binomial case provide N N Qgn
A
cl

of density dependence from negative bino-

JS » n _ ,oUld obtain evidenc varies significantly from cohort
B constant. One coum ecking whether

thially distributed field data }

to cohort.
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, WSCI gave a method of estimating parasite-induced

Adjei. Barnes am ‘ negative binomial distribution. Now
host mortality that > based -n unn.at.d mg ostnnated
, tioll in Eq. (5 37a) and Eq.l0.36) is estimated

suppose that tin- au<-no.-ns,.> N M olie cohort is repeatedly sampled

using data from a lointH inline ci, a studv could be

through ........ A ,-»k

caused ljv

..... ,ine to seasonal decrease
_ _ ) _ L that decreases with tune sa\
i) parasite invasion idK

iu ah.,.,dance of uH.reasP over time

ii) vector parasite mortality i<t<*
r tlio two abo\ t
One interesting case apt'l’ 10 N temporally but are unaffected by host

Parasite invasion and mortality rates wu>~ ™~ /2 wh(.n, SC\eral host cohorts are

following. Suppose that

~Ne. Further sup,--' a ®oe— > m d a n d mortality rates become
sampled at a single pom' 1U ' . r, lu37a) becomes
V ;tv relation in ™ I*
Mt) and ii(t ) and 1
\(/. ¢+ 9 J
I°:
b rtio,»l. <>. e rl” "Se °f
1 tudv is cross s%t
w»th < constant because the - : ( .41) beoomes
. then Eq-W
Enables s' = s - » all<l 7 0 A ,-ao)\
. \(t+ = L
& /
r. .l.. It follows that
Thus using the Leibnitz i» 99 ft<+ NV (5.43a)
'la = J/irA t-«)e
,)Jare both nonnegative H follows that
NOW since \{t _a) an<l ,|{t + « >dXK (5436)
di> o
du i i
non-decrgggmg function of age.
Tu nuulber of parasites ,s a »on Illy varying system
This tells us that the moan asSSU,«ptio» of B nd the study is cross
~ote that tins is true because of th (lepe,dentofagear
arC

[
WW e the epidemiological w

Action al
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5.2.2 Parameter estimation by the MLE method

Suppose a sample of .V hosts is collected and let /, be the the number of par-
asites on or in them!, host and let 0 , = («,./,) be a vector of a series of measured
attributes of the i-th host excluding In the eontext of parasite populations 0,
would include the age an.l/or time of collection of the t-th host but other time

and host-specific variables such as habitat descriptors or host size or reproduction

Sy mi. 1d(*r tlit assum[l:)tion of asymmetrical vector para-
~onclitioiis are also possible. 1

site distribution on host wo may asL=,sClJnr'1'lLJjl yr}]e Bfgggblllty that a host with vector

. - . . . ivirasites is gjven bv tlu' negative binomial
O?attrlbutes 0, has a given |m|n%e| of palaMt s 8| g
i n \. i Mrr- dispersion parameter t(>«h 1 1,...,-

. #
istribution with moan /M?, ) 11
tiv(. binomial distribution with parameters p and

We know that in geneial tin n u

ris given by oot Unelefe + FZ=0:-1.2.-- (544)
f(s-p-ri)-_TO 1 elsewhere
where q=1- pPNow we know that
rq _ n1- P (5.45a)
£(.V) = P P P
e, t' nns of r and ,t. Particularly in terms of
which means that one solv,"fl> P po written as a function of and  as
above parameter specification P <=
(5.456)
P(P,) = r(s2,) + I'(™)
Thus r('_FF)( ’!(»,)
(5-46)
. I X / .
R R lo elsewhere ]J(>re are functions of the host-
the parameters of M*> * d N
P'tific variables, the *»1 * « '« ** * ) e * oyn< T o»* F *
btrranieters of the /'dl) buntin'l l,e *’ V,,,S of the #. »<< ~
t w S e , a .r.v (= 1, mee JV.
the r(i 3 junction be r™' . , the data m " d'
ubood funrtion foi 46) and is given by
& maximize the 1<8 Illu' 1 ~ ))e (lenved from Eq (
Ist the log-likelihoo<I fun« Jlog(r(n.) +

0 ) = y'[r(r?2)logr(™ )" " (r'
L{x,, r(<fi h/h “« TP
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- x, log/<«*)) - J.log(/*(£) + r-r-)

+ £ (log( -j)) -log(.r,m (5.47)

> are the MLE estimates
The estimates for O«: 1~ r

which are roots of ™ 4- s simultaneous equations filM'n

v ; _ 4r 1 o F=w.k (5.48a)
oL )\JJ_ _ - '
W 2-> -55T *[h~) (M) + r(Yr)
” i=1
and
\Y N N
oL gMrl j4mgehri 10g(77(0«) + r("«
0~ £, Or

1 Lo, s (5.486)

. i. k and v — 1, eee @
- i “twhere U — 1mee

Triese estimates arc d<{fed ¥  aXiokor host-parasife §&PMS where there is

E]ns procedure is nni)(l tal m host Or parasite d.s‘E‘..‘E‘Hﬁ'é’U IS masvmmetric
L . it tlc on host vectoi _ be used to estimate
(inpirical evidence that _ . & these can
t(,r vectors r-»alJ
After estimating the lalalU< . j distribution.
parameters of tinln(oatl%( on susceptibility
* t alld host heterogei aistribution rather than
<3 Density depende. oU host paras. variance of
section - — N N option , to N N N
“*umins * »f o« * disp" si“
"16 ParaKlte distribution N ~ R given set o . N system stabilizes.
Kretzschmar (1 192 ) obS<>!' < pal.asite load >ncreaseS. ~ tfae mean and variance
Creases as the mean <n 1| j a model that a system.
T ) 1 | they pr°POb ) - ,i p dvnainl
0 generalise the iu°(( , -tractiOll ot ndence and the on
t0 act independently as a between » n there are several
The key issue was the r« ' m N gucb kmd o N acqUlsition rates

ho™t paraslte or vector dfctn > ~ attacbme«t «m** 2 (.y) parasite re-

Parameters of interest among t* .~ .gration (»0 h* ~ is bound to be
fii) host {wgv\}‘//%! rates by but >* ~ For example ms
cit(" m(1

Auction and (v) il
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reduced for a heavily infest,-1 host population. These die more rapidly than do

Ui<hU (I P°sfs* 11IS tllr r~rrt of density dependence to these parameters is

N
the effect of density dependence to all these param-

lInp° rtailt- HowrV('r
CterS Can PI'° W roilli,I<Ix- TI*> die nwst reasonable thing to do is to study single

ntitks that reflect density dependence and are biologically meaningful. ()lle
SIUp quantities is the effective reproductive rate of parasites and hosts. In most
tP< PI(‘'vhnis studies, focus has been on the widely observed pattern of aggre-
N ed distributions of parasites, as opposed to a completely random distribution

SUrp as the Poisson. One reasonable distribution for aggregated on host parasite

crtor distributions is flic negative binomial. Reasons for observed aggregated

PNiri.site distributions include host heterogeneity in susceptibility due to several

IC°rs such as age (Anderson and May 19S5). Distributions studied include (i)

tegular positive binomial (ii) the negative binomial with fixed overdispersion
Parameter fiii) the random or Poisson ditributions. The results by Anderson and
"PI3 (19/S) showed that th< equilibrium j)oint is unstable in the first case, stable
N die second and neutrally stable in the last. This suggests that aggregated distri-

lldons enhance stability. Adler and Kretzschmar (1992) suggest an improvement

0 diis by taking dispersion as a dynamic variable. A problem of interest has

deen the analysis of the relationship between density dependence at the individ-

Ual level as opposed to the entire host population. This is very important in the
This requires the understanding of the complexities

design of control strategies.
This is

Parasite-host interraction and their respective population dynamics.

~cause justification for chemotherapeutic intervention against parasite or ticks

Ulu*t be made with sound quantitative arguments.

The general model
The model to be developed is dynamic in nature. It incorporates the host birth

ard death, parasite death, reproduction and transmission. We ignore the struc-
turing of the host population, assuming that attached or on host parasites/ticks
di* (or their survival to the next stage is greatly curtailed) when their hosts die.

Allows that their is need to classify hosts according to their parasite burden,

ail approach which has been extended to include host age-structuring by Hadeler
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(1982) and Kretzsehmar i1989a. I**
Let h,Jk denote the iiuiulmt of hosts per unit area carrying ik parasites. Here
a unit area is equivalent to it grazing area and A denotes parasite type. We tints

define the following model variables.
i*: the number of on h<»t type k parasites.

t. the time variable
hlk: thr Inunhrr of hosts with type* paiasite:

H: rlit* total number of li()sfs

Y : the total number oi paia>‘t<s

x: the mean nt.tnl.er of parasites per host
r ,il( distribution of parasites on host,

the variance to "uan ratio of
f interest. WE NOtE that these parameters can

epXt we also list the panunrteis < introduce the following parame-

5as>ly be made density dependent it nee<

tors
...... | " produce.
n'v rat<> Elicit hoS,S W,th '* pal“”th parasites.
, It: relative susceptibility »f busts «« ites.
) 1 fl, ,'Ite 1LilQhIS ] ]
/'.t: per capita parasite <<a ' hosts with n parasites.
1 s [
a,t: per capi.ta parassilttte e%\%/ Productlon
Hiif] _ _ .
B rosites acquire new parasite.
. i Linsts with 1K I
J/dY- rate at Whﬂll ho. hosts are parasite free that is are in
We make the assumption that new < ibing how hosts change state
W | L e system of «l«atl°nS
s U by defiimision:. e ) n . nc
‘Sdescribed by the following set of <Qua (5.49a)

h
h + J L aik
.(/m + tFnVO + /*

Ik (5.496)
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will) respect to time. The system of dif-

:Vhere ar,Int,'s " tin.*- evolution of parasite population ami host
feremud equations <m- < uilil (Ustributio.i of parasites on the host.

population starting from some w' !l w

_ acttreitated @figphgs which are gncii b>
Next \Ww* define the agfi

(9]
(5.50)
S fKh Ek=Y . ‘kXk
ih = X > - ) k=0
It=9
it=])
where
£1.0s(s quTiW}Pﬂ-g Parasnes t\p* ~
Il,;is the total density ot _ b<)ured bv total host community
Yis the total numhei of type k parasites i
in a typical gra/.mg area say: and n

time by fecund type k

) ) »r of (u2is l)e . ]
Ek is the total num = - ' a.fined earlier on as

parasites. We can then express Cm <

(5.51)

t, ., In>el,[Uine»rlvo,Ul.e,...mbet. f.ggs

Produced. Tin- fii,,-no" »(«)*"e"”

That |S the 'x k ..... Illy th»l » Y 6 n [R1] Ck’ 1 ’nug‘e

density- Adler e»« Kre.ssdnn.r

'56 and i, expressed «e » e ff. This mean, that as H n,creases

I,.creasing funttioi , . Fause of the simple
otf r}\ost egg dimmis md the

irki an r ~Minn To generalise the
e chance that a host p vluals exp°secl to in e

r more host individual.
reason that there are » NN N

N®92) assume g(H)) ISc

bability that a single

(lefhie <j(H) *» > N &function of
model for vector paras. = by a single hos - of
off host questing individual is P

i 1 , .. ~allS that
IGst density, HeTins n

necessarily an increasing

(5 51) is more generally
.aSite type N ien

Thus in general if the on host par

(5.52)
Wfitten as
| iRgy $uS prior to s
_ nil dost gUESt:. U The quantity HIKI{HK) GIVES
,%%F% Ngw gdenotes tin to stage k - |- A~ H should be an
An-i

becomes the moullthhy.7 , in a grazpng area attac

fhe probability that an >udlvk
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til( probability of locating a host should increase

increasing function of Ik xik< 1 \
with host density. TIfills (5.53)
-}hg\HkK) > 0
dHk
We can define fmther aggregated vaiial.l.- a-
& (5.54)
AV H = f..
n>>= L /7 [we H"
ik =)
and e (5.55)
vV = ikllikh'k
k=0
where fl

H,k: denotes total number <i

Hat: denotes total number of hosts

K parasites;

H k: denotes the total snsrept.bh
parasite:

Vi,: denotes the total i»unl<'l°®
host death;

Ivin, per unit time due to type k parasites;

N

time in the presence of type

t density per 'in'l time for a tJPC
Ilol

k parasites dying Per unlt 'tinl<? du

k parasites dying per nnit time due to

i ...milter of t>T° 1

V(u: denotes the total mu*

natural mortality. 1t fO*0' (5.56)
Hk = +
r, (5.57)
and Y. _Y. +Hs>9(Hk)Ek
Yk
. Ihe derivative of U*
i<l Ykdenott
where the notation pecial case following -
Yk with respect to tinn Pffects and set
we assume no density Jfl-mar e X VU (5.58)
A ik 5, ak
fhk /' Alk | |
(5.59)
Thus we have = AU, Pet = ftvk
H 3k iHK) =
Hk =
Hk 2

161



N ;alv with parasite burden such that
Assume host mortality nik m 4-'

(5.60)
. - D+ otk

) mtimis we can assume that hosts
f ek }1)st interrac tion.

We note here that in the case of r< MId also by avoiding an over

«it a typical grazing area due '<

tjimt parameter values and mto
infested area a. ............ . SuhsMtunng '
1 ) - r ... 1Vi. \WO g(t
the expressions for Hk all™ "k 00
\ ih + <"T<H|*k+l vV ahlk
Hk [ -> thk—0 (5.61a)
u="

( - bYHk-n}k

and
cc

Vu(('" +ou)lk
, = ., flyk + H»9(Hk)M

(5.616)
V" +

(> + 1*)u
' f n and H. is the last term. Now the

T senot fenctiO*
<the only term that s >

(5.62a)
Quantity = hik/ &k . Tr ,,
tvpe fc parasites. If the
i ;s carrying u-
i <l;tv that a hos _ , m u. is discrete then
be '* ked * y n i’'l.-* »"r*“sS*"“" a | n » « h » -diversion
Assumption of aggrega t:ve binOlllia

_ras;te load be mk and
v.nst mean parasne

: et the . ite int ti
narametei * *the entire host-pard§'™® '"rerracton
Parameter or clum p1un * A

rc the negatl
We can assume it foll®

reform ll™ate N tLat the mean number

>ts variance a2. We next

MKk- NotICe
system in terms of the »a ' gjven by
. m. ¢ NEr host is th R (5.626)
f A"Pe K parasites i N _ yYk/Hk
sr ikhjB k -

mk —
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N, (riven b
By definition the vartanc.’ A Y

K = ni< mk7k — </t

hut cri ran Ix* expressed ;i>

o s -k

thus

- nkek k= MEO- T

y A titit*
ik=,)

We now make the following eliatnie (>5f %ana

},

A filiations (5.61u) ujul o0t 0 <htaiu
OHk

_ I — (\rnk)Hk-

X°W r*. can he expressed aS

bd + Nnu-

~ence (5.61h) become*

+ t)inktlk
nikHK + rnkHK (b+ t)in

(b + ii')”’ KJik
_ HKC (K + 7 nk))-

I:sing Eq.(5.65a) in Eq-(5-C' >w ¢

m + sXHk9(HmkHk

_ nHk(mk” k+
163

&= IH{ Xk + AKk~"
muhk il &
ik

+ sXHkg(HK)mkHK

(5.63a)

(0.63b)

(5.63c)

(5.64)

(5.65a)

(5.656)

aH Kk *1-9«
o= 0

(5.65¢)

(5.65d)



followed by a reorganisation of
then cancelling out terms in .In" ... luatloU

the equation \wr get

5.66)
m Kk
, . | . INin K| "H't E<i.(5-C6) respectively we get the
Setting Hk - and "U = mH
equilibrium state im idh  wli* li >t
(5.67a)
Mk " (a - b)/n
arid /- \ (5.676)
= +

is (I > b and a positive solution for Hk as

* follows that mis positive as long as < fecundity . sA, is sufficiently
°nS :vs the product ot ho- =m full(-tion of Hk-
Wge since HkK!I(HK) is «» te {fnK,HK) is K‘'ven b>
\ . . f ,he (<ptihhrnmi
Now the Jacob,an a \ - (5.67c¢)
h —omr 11*1
L nf = as-
" ; I- ot wo
.1,0 ,lo>io»tioo ol « » y o( lhe ,.di,,e,.,0i,«l system IS

i i e - 1 t2vn(ral tlu °
S)Ilnle that - is varying- un(re ‘

determined by
0 the determinant of J

II) the trace of J

N°w since jL-Hk<AHK)>°
Hk
m . tis given by
follows that the (letei»liu (5.67d)

fr jL(HKO(HK)\HK®

_ _ N
I - oA-srU™keHk o systems is that the equffibnum

, knOwn result abort N stability is achieved if
Positive. The geneia ' nd in this particU
stable if the trace is negative aiH (5.68)

afnk«'~K) 2 °
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o | when the trace is zero is not
and unstable if the inequality is ieve.se,1. Stab.Lt>

determined bv the linearized >\>1l in- ,
" 0 H] .5GS) indira.es .hat the equ.l.br.um will be stable if the

] , - 1 an increasing function of the mean parasite load mk
variance to mean ratio *r * o . I 1 tt,ccj

m i ii. This is in line with the work bv Hassel and

and unstable if the opposite. m = ) of risks

PP m <. models where hosts experience a tange o{ rlslés.

arala (1990) on lLnst-pa.as. < N~ varial)ility -generating mechanisms the
It is shown here that for » J / N f the degree of risk is less than
system stabilizes ,f the roell that in the clumping
1- work by Perry and Taylor ( - A (@uilibriuni. This means that model
Parameter r eaii liio.hfv th< m - mean rather than being fixed values.
Parameters can systeniat .eallv dip'll most on host parasite distributions
There is strong empirical ‘M nl(alling that most host individuals

are asymmetric the negatae ILhHiki AN~ an;nials will carry heavy tick loads.
*111 carry intermediate tick loads wh. * * for the on host parasite

Thus if one assumes the mg'l1

distribution then from Ed-bT mjt (5.69a)

?2r(mt) = '~ r .
host parasite distribution. This is a

whel® mt is the menu of the &stable equilibrium by Eq.(5.6S). A
“nearly increasing function and thus <¢ N (onstant variance to mean ratio nk

Poisson distribution on the other ham 1me NN imPlying a neutral

f m. with respect
Producing a zero derivative o ial distribution one ge s

stability. In the ease of the m (5.696)

, , )is a decreasing function of mk

. : ¢ tins case tTkVnk) .
where c is & fIX8d parameter. 14 tilb tB —am-udtadde equilibFium.
(Since 7'|'K aml ,1 - EII IJ
Case Il , b, making U« P " '"Z <“ th *
inuodme -
r oil 110OSb .
~nearly increasing function ° s. That is, assume a

H . r Uv of the above rest - (5.70a)
n°wn the simplicity ot

bn=1i+ 77U
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Then

B

yik = ™~ n(fL+ ~*kM 'k
1=0
. (5.70b)
=/'U + ’i'(h*k
k=0
. . .exurt'.ssion of YK >n Eq-(5.57) we get
then substituting tins into tin
00 Jh,k+H .kg(HK)Ek
- . ‘ -S
= - ikb,th,,, -1°‘n 0
ik-0 )
i2h,t + H,tg(Hk) y nXh,k
-y Ik + «<k)h" L=0 tk=o
tfc=">
0c v .V
= N + Nk =0
ik;) , /}t_7 iNh,kF H,,g(HK)XYk
- -i,yikhik-« b 1@"‘ ' k=&
ta’ It=°
Ik . . .
CilYk- 1¥*11
= -6U - «o#*. S '* 9 i*=0
JHKf'ihi> + H >9{HK)XYk
— (b™ f)y*k N o)

Then using EQ.(5.G3c) we S<X

(5.71)

oo 4-mt) +
( + 1)Hkmk(*k + ,m>~"
n =
-h TTIK K
Now recall that % Yk = mfc
U n/tf*

Therefore

u, _ («+ 7 )Hkmk(nk

[, — —(b+ fL ~
rmkHk + mkHk the fact that
in Eq.() -55a) and using
for Hk 111

Now using the expression

v Kk mka
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we obtain

n._ (n+:)Hkjnk(-k + »'K)
It = [* ot
Ink ’ - - Arm))

Cancelling out like Lu<t lii,,, 1, 1,fymR

(5.72)

au. = rm(*SHk<j(Hk

and
f the system above at the equilibrium state
m , the .laeobian o
Next we present 111
(HKk,rhky. ek ) (5.72)
/ 0
= (. - _JUHKI{HkNt53hed in the earlier
from that
's uiichr11M1 ,
TI>x determinant of the ' .mlilibrium is given =
-m., The trace at t
Nsteni and it is ]
)»;(.»»)+ 7))m*
(-((« + 7

m_ ctai)le t

the equilibrium IS s (5.73)

tr;.(»'»ee)> . .
, before the equilibrium is stable

utility is revel-sec = However if - 1 < MJ mfc)

unstable if the lin'd £ ” stable if TKhis means
Ke»n*> > ne - “ m* m» "fcle"t

-S-ribr.-.m may n e density dependent p.rns.te
reasing variance toicC , f suffiken ~ consider a 3.dimensional
bilize the system m tl 1 ~ approach woul . which may accurately
ttality. An extents™ * > »oa | N Jthough the «,ndibr,un
t'm ,r* ki”S tlie infinite throughout dynn.nic.
.cribe the dynain trainecl to a bJ

tribution might remm
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escribing that distribution to vary.
the idea is to allow more than one pai ameU rsg R y

r th(. negative binomial one can allow the clumplng
For example in the ca>e Ot riit u r

.= tIn' mean. This approach is left out as a future
parameter to vary along "ttli sa>

research area.

. . A Hpnsitv dependence
5.4 The reproduction ratio and

. thp of density dependence to quantities

In this section w« investigate ~ o{such density dependent variables

that explain population ' (9 UlKlerstand the population dynamics of

Is the reproduction ratio. /7«e il in general This is because parasites

harmful populations such as ti<ks oi | communities and are thus

W' litv and mortality m nosi

arc important causes of nioi 3 . economic importance. The

important causes of pr()diik”~0l r\ the parasite populations
il strateglcs 01 i

models aid in the design of contio s ¢ , 1Ig the use of chemicals or

)f the ineMioua
and the diseases they cause. <»"'' ~  most optimal control strategy to
chemotherapy. The problem hen’ is <&,m them has to be supported by

reduce cost and effort. Thus the justification

Soond quantitative arguments. tQ this approach. An overdis-

The on host distribuion of paiasiP- ~ ~ lightly infested or infected and

Persed ditnhution means that >-< N & infected fraction of hosts
few harbour heavy parasite loads. @Aother aim is to fo
attract most of the medical or veteiinai of chemotherapy.
that are the W6
stages in the parasite life cyu e popuiations is that the popula-
" C o the control of par . continually being
The critical issue hosts and paraSIt :
,me with time. BOUL . rth and immigration re-
EJEms involved Huctuate oration and by 81 g
i1 Apath and enng . iant or not. Now
Amoved and replaced tjie population IS ¢
sPectively. Tto » »' of fto*
»h ., lhe population » wn nfetoe * 1. « »
I m«ri,y produced by » « « « » e r«prod«Uo» too »to.
‘tself in the next generation. Thus let f(M)
r i c;tv dependenc = I st Then we can
wFich takes account of (fr> - parasite burden pe

density effects where M >h



write

(5.74a)

Rr = f(

] len-ity dependence.

such that when there is n< (1)
(5.746)
D e TL, 1»,.,i.y is™ 1w 'l- effective
""here /?, is the basic n I'* " ‘ AN populatiOn is increasing and when
reproduction ratio such that when x titv is always less than
emdeclining. The duanu -

K < 1 then the population is p-fined as the average number of female

the basic reproduction ratio Bhasceptible host population.

Parasites produced by on' f 111 density dependence and or crowding

Note that difference between R* ‘I

effects. n )lex ways and actually affects the rate of

Density dependence functions m camp N Now at equilibrium

recovery of parasite population following ,ut< 1

very lightly infected hosts may have Re

, r |l e parasites m - in heavily infested hosts.
In actual fact those fen>ai< | ,, less than 720 m IKa -
, be coiisiooi ' . i ic 4n caoture density de-
Vei7 close to i?70 wilnh1i rmulation of nioc '
T), .mnroach in the ton parasite individuals.
BUu most common apin Oationsinp tor 011
. u,u> separate Lt lisine: some distribution
Pendence is to assume s< rasit-e populatio

. tiite whole pai
can then average °v(1

the distribution of parasites is
for parasites. . 1. sense that tne
s . . . .. complex in tlie * oopulation dynamics of the
The situatish js COMp function 8f the pOBUIAHIER Y _
.0 5 #Hdns a im 1 , pertarbation as a
'tself a dynamic entity -l v;tlii» a comnmni v,
n . , tra,sinission w.thn , tion of hosts is dependent on
Parasites, pattern of . . *1-N rate of m . -
timi Thus tne verted as a function oi
rSU* of * ¢* ,trol <|v.icy <l.pra"nc Consider
>Le distribution of the « « »f < ***x*"
lhe distribution which n> tuin site load per host g>ven vy
‘'mhe rate of change of tin 111C M f (5-74 d)
dt
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) ) ] I ... r|«. is declining, positive during parasite
Tins value is negative wlnn I 1

.. ., 0 measured in numbers of parasites per unit
growth and zero at e.].iilil>nuni and is nieastu

time. Tims we ran write

(5.74¢)
= AMI Hr -

. The equation is in this form because the popu-
wher fj. is the parasite niorta 1> ~ m,rtaiity and when a parasite dies it

lation is being removed at aw 11I° ~ mphasizes that the death rate of adult

replaces itself by a factor ft,-. Eq (o- verv of a parasite population

11 .ffi'ct on the rate oi . )
Parasite. //,has an overall _ISUres. Paradoxically the equation says

from a perturbation duefo 111,11'* "’ , ufe expectancy of parasites) the
t' r tin’ shorter uw m r

that the larger the death rat< useful in deciding the frequencies
C 'li 'i coiichp”n
faster the rate of recovery. Sue < N~ rontrol the population. We mention

of chemotherapeutic intervention r-1"1» ~ bound to exist. One source of such

here that host heterogeneity to suseept. - fintensity of infection is higher
——————————— . iTorexdmr*"

» heterogermitv i» * r < ** * *%7 ¥y *Hh higher h",im S™ era"y

» o« * i. - * o x » « *

) 1ab’P'PP A"'"ir' . , determination of the effect of
Provide best u.rget. *» . " of.fpm and tne d -*'™ ™ ™M <

N . . .tents of tl'is ',at MIP Rrobability of mating and
are important coinp0l I governs t

clhemotherapy. Density gﬁ%endﬁ'rﬂf'% = . RTOPOFEiSA 8f‘f§[ﬂf§i8 B§F§§i{8§ that Is

v e * Tet g(M) denote tl»e effective reproduction ratio
hence Rc as follows, bet ./ . burden. Inee

- f the mean para-
mated as a function °t (5.74))

given by R _ f(M)g(M)Ro

' ___horde, inches following chemoth-
site burden INncreases

ara.3 JonpnHpnr.e m-
This equation shows that as but the effect of “"ndence im

-apy the probability o N, reproduction ratio for control of

creases as well. Thus 1 theory of chenrot & dynamic distribution

mean Parasite burden. n attempts to m N vectof parasite

Parasite populations ievo v (Hadeler and Dmtz dipping say will

°f parasites in population m« the population throng

ticks reduetion

Populations such as
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raxrv. The relationship between the

reduce the rate of infectious agents 11 " ) . ¥ -
1,£ of the transmitted infection is

density of vectors and the equilibrium prevalence ) o ]
..... , . Inction in transmitted infection is achiered only

non-linear, where a signifn an 1’1 = por chemotherapy agafhst Parasite Yeetsrs
at very low densities < < - N (arried Infection significantly, it ought

to alter the pattern <f transmission e d to ,-educe morbidity and

mortality due vector parasites.
_ ted distributions

5*4.1 Contagious and 1illIK density functions which may or may
Let. /, (.)........ /[.d e "1, a S"Un< ),e a sequence of parameters
let S }~...... '

Hot depend on paraiin Klme

i x D 1, dutt
satisfying px ™ 0 and ~1=0

=i
is a density function calh'd a < n ;u the following manner,.
The concept of mixing is naturally ‘> t<11 functions parametrized or indexed
Let </(,;*).* € U} * falllUy O f‘ ct: and let ,(*> be a probability density
.................................. siis
Anotion which is zeio (5.75a)
f{x-e)g{Q)de
[(=r
eions distribution or a mixture. Thus
is . : fun(.tion calh’'d a rontag existing families by the tech-
agam a density in N . obtained f te new families of
Parametric families of 11 jsO be empl°yec distribu
o, e SED
as well ut
discrete densities. 1t ( (Il
] ., with density /(*) and ~responding
tions. _
v . a rautlom variable trunCated at a and on the
In general if A |Ih1 (h{,n the density °
Cumulative distribution C( (5.75b)
right of bis given by a< x<b
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5.4.2 The model (L, stnl)ution. relaxing the assumption of any par-

n order to nio< < 14 *° >tll(),l need be devised of incorporating host
icular theoretical distri ion. narasi hi I-
:tcu ar theoretical dist bUt 0 susceptibility to type k pgrg&%g, -{lng %HESSBE.
heterogeneity. Eru'h host la>s > ~ .ucknt For now we assume the latter. The

bilitv may he tune drpendt h*01L n 1 susceptibilitv to parasite establish-

susceptihilitv index ineasuies aih\7inii: its basis in txposH1re differences or acquired

t. It Id b CIVGA -
mea cou e per((IV(( =, (V to tick chanenge.
N

immune resistance due to expel i'*x N N ang A(t) denote the mean
Let h, denote the sum <I * exility Then will give the mean
attachment rate for paiasius i 1 for host i denoted by Mt is

J\IC parasite omuc
establishment rate foi ti()S

: rr’\tU)ii

dl { nrocess, tnai |.s
) . entil |
dlescrlbed by an iinniigia

(5.75¢)
M, = A ]

= the Poisson distribution (Cox and Miller-

The general solution to such a hosts having same susceptibility factor
(1965, pg. 168) of parasites both = From case 2 of section 5.1, it follows
and within the same host at the distribution of ticks fol-
that if susceptibility fetors are gaunn approach has been used previously
lows the negative binomial distn >ut,0o. ® Anderson and May(1985). Let us

Dietz(1982), Had* »«'
that tl... variable * *e the
is skewed. The variable I ¢ rh a description- That is

~ fits well to
mean unity and param* (

e -'e lj> o0 (5.75d)
g{h, K)
, for the distribution »H * *
Obviously the variance N
var(h) = ff
tion mechanisms based on an mdi-
T, t Of heterogeneity g ne susceptibility. The host
The same argumen *s each with .
. n tn groups of b . fvnes or categories accoidmg
vidual apply equally to g ¥ parasite type

Population can be divided into a mu
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..... I 19 each having a rate of susceptibility relative
to suscetibilitv mdexed -

. ; i Mr/ii“ortional representation in the comm

to the whole populatlon equal = >“»«1Pm»P** t« nnl 1
s qr classes are simply theoretical constructs to enable

mty given bv w,. The t>p<s<)i

- , .w.ntihilitv in a discrete rather than in a contin-
us deal with the dlmenS|on of sIIs 1 * r™
- dividual hosts specifically. Thus m order to
‘tons manner without focussing on individual

variable h is divided into discrete intervals with

calculate h, and a, the raumw* . ~ A2 NN is{h: H)_ t< h< H]}.
upper limit for each N and the integral of 9(h,k)
The weighted avcrage v<dut } N
over the interval are Itj and ii'j 11
kk [T_*-i -r,/r (5.76a)
PCrky) g
. A, lLdimension from i to H,
then for host j4>annmg tin
rK-Ne-rgr
Yonik A (5.761))

k-Hp. K) ~ C(kHj-uk)
. mentation of tdass, in the entire community, it

Since wj is the proportional icpM- I.ff ) is given by
follows that the mean of ' 1l -A*
A+ k>
h= f(T) Al/l,., ., N
woH L+ D-MiTiNT +T (5.76¢)

P{tvpe ; has n parasites be
Now let the probability that a host o . ~  cannot have a fractional num-

Definitely the distribution is <>srrete * ‘~ ™ |e distribution to choose is the

her of parasites on a I»«*. Th" ‘" '3 tribution of parasites over the entire host
Poisson with mean wr However t < < _ asym,netric where majority of host
community is according to empirical e n n a feW carry heavy parasite
individuals carry intermediate parasit AT SEEATA community is found by
>0ads. Thus the distribution of hog(. types which m this case
fixing the distributions of th ~ pO0jssons such that
reasonably given by a gamma mixture (5 19 d)
-5 3 pn’ W]
J-1
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where the IS now tlZprobability that a host has n parasites. The distribution
IS negative binomial be(*ause we had seen m section 5.1 that a gamma mixture of

Poissons is negative binomial. Using Eq.(5.7Gd) one may calculate the variance

and prevalence of parasite burdens. These may then be compared with expected
values from the negative binomial distribution .

Now before we study the effect of host heterogeneity oil susceptibility on den-
sity dependence we consider the homogeneous case first where there is no assump-
tion on differential susceptibility. Consider a situation where the mean parasite
burden y in a host community is governed by tinlequation

/(\It =20 /1()-1" 5-77a)
where ,t is the per eapita heath rate of parasites and 77, is the basic reproduc-
tion ratio. The function /(-/> represents the density-dependence effects caused by
Parasite crowding. Note that undei no & nsit\ (fhit.

A7
I(ty) =Y (5.770)

. . ] .x'lidence is to assume the exponential dis-
The simplest assumption on density dej

tribution with parameter *» such that

(5.77¢)

it may then be possible to simplify the expression

Thus given a distribution foi pn
. . three cases one by one.
for e xplicitly. We consider

Ease_l host is negative binomial with over-
Assume the distribution of parasites on

dispersion parametr K then

K+ n jp kgn

pu(k\p) -
able y then
] parasite burden is the dynamic van
and since the mean
kq
E(n) = — = yar(n)"/> 2
P
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therefore

4e
/(1) 1 Vv

K+ n i —jii \n
W "> » '

Thus we have (5.77(f)
() = 1711+ A1
CrsSr*9
) _ rate A Then
Assume /),, is Poisson with LI
-AVI N 0,1. ==
M A>= In elsewhere

., Site load is Y then
. host meall pai< =
dllfl since we know the on

=/ allfl varm -~V
E(u)

thusS

(5.78a)
That, is )
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Case 3*

.pto a maximum parasite load say N.
AsSuime that a host ran on . = parasites will be given by

TheR 0 the probability that a host carries n < I

])u\r]_JiV }/])/ VvV V - o - 0<1'2*v
and
S\
M c
Iy Ang 1J
vV <s -1\nv' |
kn
,i=D
- v
= I« + /K
IL»a » » ....... 1
Now since the mean |
jVv
£E(«)= Sp="J*p=V
Thus i - ptp<~ )
/(y) \Y
- y( \V
= Ylv y
v (5.786)
That is
/(7)) = Yk y
i f know N
Fn (5-77a) We UeeC 4  Aduring reinfection. Generally
In order to solve Ex«l-I treatment and dun Q@
d”~ent times say © n partlcular ~ of
6 distrlbutl° nS may -l)_ , of density dependence we - NN dependence
To calculate the e e .~ Poisso,, Thus ~ the susceptibility
) ) ) ‘ -l [X13 I, Lore _I." - *.“ “))
~rasites within each n = _ Hj
T L burden i»
: . ~ SthelkealIPT 5o FR1CE"

. =n the entire EOMMURILY,
for hosm type J alld J.. ,,tlxﬁepresentation 0

i that w3 is the proportion.
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Thus from the assumption of completely random acquisition of parasites by hosts

and summing Eq.(5.7Sa) over all possible classes we get

—fj(r— 1
/(y.k.—,)= Yy
j=>
3
- l-e
= S Ujhjtje A
;=>
That is M 11- (5.7Sc)
IGLA T = \) Y. W k]~

=
k takes care of the different host types.

I i . .
where the dependence of X/ Setting the left hand side of this equation equal to
ettin

Now consider Eq-O -'"1" J f—-namely
;ire two equilibrium points
Zero we see that then

(b.1Sd)
/(0) = o
_ ~with & Q%Easne population given by
with uo parasites and anothei <»<
(5.78e)
= i?20/(y)-
Now Eq.(5.7Se) can also be 'vlltt,n
/(i/0) " RO
° (5.78/)
r from Eq.(5.78c) o hjawe) - _L =0
~ Wjhjt Ko

) ISed to numerically solve for
- ov be uj

o, . tant condition because ) Active ratio by varying the
which is an important basic reproduc

mfe burden allC r ~_ nis stable for i70 < E
7 for a given mean Par”® o mi e first point of y S )
) /r ~on  satisfied. ) g equilibrium point
Value of 7 until Eq.(0o-< 1 . n attains the se ]
<P nopulatioii * rnSs three cases

Vit if > 1 the» ' tor R,< 1. We next <>»™y

which is stable for fin > | ulations are! tbeir 'olltro

of importance in U» of
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Case 1. Estiinatinti tin- with a criti,'al I);inislte XU<—
Here we hypothesize that there is .aeritieal part,site load n, above which the

host reaches a 'critical phase or dies. Given the distribution of parasites across the

,,,,, dckne the proportion of the host population with
host population it is p0h5|bU iniUmu i I'1

r, Trwt Irt D(t) denote this proportion at time t then
the critical burden 01 moi< =

\%

5./9a)
Dim = Y P'(0

I=»r

where .V is the tnaxinmin pa tas¥ lgg' ?OSSIbIe and P, (O the prOpO{tl SHhe
t. Note that solution of Lq.(o.i ia)
host population carrying 1 P'lla" From Ea (5 7Sc)

" . u 1.1, isit,. burden ,(M with respect to tune. From Eq.(0.,Sc
gives ' ( an, probability values derived from the
WC l110ti<';; " 7 rh< 7 fllw s tlu« the mean parasite burden y(t) which is time
gamma distribution. n nixture of Poissons. Therefore the final
dependent is derived from a gaiimi jximat(lly distributed variable,

variable we obtain is from section o.

ihi oiuinr, llafinn (Ivhainl—

£ase 2: ModellinjLIliSLdIhI-11/~" ovicides for the case of
. ) _ . stategv such <8
Consider an interventioi = bk to divide the parasite population

ticks. Tht'n at any particular turn i > ~ survived the last round of acaricidal

into two cohorts according to thos< ( ia hosts after the last treatment. Let
application and those that h -md x (0 the mean number of parasites
Cf) denote the burden of sunum P«u total parasite load is

that have established since treatment. T1l e
(5.796)
Y1) = »(t)+XW

ies of cohorts die at a common rate p but the
Now it is assumed that both eategoiu- ~Ndividual therefore

- , r,.s itS(df with a factor P
first category repl<u (=

= /ii70 f (y ~ (5790)
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. with parasites) is given by
The 11011-trivial equilibrium Matt 7)1l

(5.794d)
m—0 and y= ¢

with a corresponding distribution of parasites.

..mu,nt », the «iistdlaitigiu>Liafa”
Case 3 ModelhmLiJiLjA'Ti-il.JAifJ0

. TTvrntion strategy or policy will
llowing an intervention gy poticy

The distribution of P!,raM"'~ individuals not treated, and the

be a mixture of the existing ‘h N N treatment. Let us define:

induced distribution in, ’h?§/<(5|ro]bortion of patas#. Inr]ldIVIduaIS killed by the drug)

0 : as the drug eftu a . (U. m bution in host type
. Hm* araMtt m-
pn : as %ﬁe‘ pi* 1M HB"H P

and It distribution

- 1 <> ala> .« >«>! '

S, 10V paraniett 1
The effort of a drug wit . < - N p,utilJIi1 with
Per host is to produce a bmom ) (5.50a)

I
o
=

r-1(1- a) n

-t skilled by the drug or « parasites

o I Ttr of having r " 1 lal<l’ ) i%nore any density
which is tin’ Rrobabdl . t f the r urﬁtt”gd Rarasnes.

tion of NOSIS treated
surviving the treatment otit (lellote the pr°Poltl®
drug i'tiiwy- L(t ¥

I t- S ,5.50N

, a Vv D(n\r,»)Pr,
—» ’"; Yt a%*
_I\/§/1 )b, <t ?_-_n

then

rasites on untreated hosts

*
0

» - K K Kk ok %

IIIIIII* *_*_ * * * ((* * A
Litit over all possible

. ' %
vhere the first term g11 v of fintlhig n *"

rnd the second gives ioU in the secon | treatnient parasite
. treated hosts. Thus the »«»*“ contribute to a pos ~ pQpulatlon
of ,, P— . TL,, ,(» ~ lbe Jrob,0111V U - .
far mortality «. « » » re 1, *,,<
Ve declined by a (.« » = - t,,e 1

atof,,peyl—



' dt B “ ... VvV ftivr" ,1,r ,]is'rii,,,tio'lof surviving parasites immediately
a*ter treatment.
distnbuhon fdesr parasites is given as the sum of terms from a seri.

eseries of
ittomial distributions one for earli initial condition, thus

~ *1}(0)B(n; r,e It (5.80¢C)
r=n
ow Pnj denote the distribution of all parasites whether those surviving treat
Inent or those arising as a result of reinfection within each host type. Then
n
t)si -i(/)' 7 = 0....... v-1
r=20
and
V-1
Zv, = 1- 1" (*) (5.80e)

1=0
~Nd-(5.80d) and Eq.f5.S0e) is just a convolution of the surviving parasite distribu-

IQrb stlj, and the reinfection parasite distribution qUJ. Assuming parasite acqui-

Sltlon by hosts to be a Poisson process then the QU are Poisson for each j with

mean hjx(t). when1x(t)is given by tin* establishment-death equation (5.79c). The
distribution across all the host type is the weighted average from each host type

as di Eq.f5.7Gd). Then total density dependence effect over all host types and for

different number of on host parasites per host type is
N
vKk7) = JowJi E P (5.81)
j n=20

J

H‘:W define the following three benefit measures

By(X)\ reduction of mean parasite burden over solution Yyeai z
£?p(X): reduction of prevalence of infection over time inteival (X 1,zr)

Bd(x): reduction of prevalence of disease over the time inteival (.r — I,x)

These are calculated as

By(x) = y* y(Ddt

B,(X) = (1-Po)~ (1 ~Po(t)

Bd(x) = £5*-/
() J-1

(5.80



where * is the year of the modl soluuon. These benefits are generally the dif-

1 ,ilosc of the model solution with
ferences between -he e,,»ilibnu«n values and thost

treatment.

5.5 Towards a stochastic dynamical model

, , develop a stochastic time dependent model for

In this section we ntt-ngn N N r 1>opulation whose life cycle is
a general multi-stage VMtol N~ stages Then some analytical aspects
a sequence of distinct developin'» |l AN ~ appendiculatus is our typical

of the model will follow. Tin tin set the foundation for the model is the

example. The mathematical tool "hn *"*

r functions for a nnnu

idea of prohahility generating g9, which was further studied by
I |1 py ffadeler (Uo--/

-ate observation. We follow

closely the ideas in ,II* Uk o> ad was then generalized by Kretzschmar
Hadeler and Dietz (19S3. 197) tage disease parasite on a host as a birth
(1989a,b) Where she studies a ‘* | j;s((>sollliasis. These models are hybrid
death process model with refe.em e to n

with catastrophes for the on

models in the sense that a 1,uth ' ~NA(Gterministic age structured model for the

host parasite population is coupled to a "
- context tm <ft

cloes not play any role.

host PJ‘BIBH]ﬁ“O”'- In tlu* 1)1(" r modeL In the pi‘esellt biological situation
We just keep the stochastic part « » N N typical grazing area with some
the multistage tick population h''h ' ~ &7 for a blood meal. Individuals
individuals on the vegetation ar< *<n* and development while some
move from one stage to the next t N allow for Emigration into the area
Ultimately exit the area through dea n n n n hosts. We number the
. sUch as the domes .11 Thus without any
through other agents - tate or stage vaiiabi

QW let i denote tu _ 1, nefine the functions
stages by 1, -—-- 71 an ] ~ findividuals in stag

t liumbei 01

ambiguity u- can conn n

P(M y = ..—-).
j is the probability that a randomly

Either p(f,i............ .)»"» & eO-0"'AN i,.vidurrl. where 1

selected patch contains k,, > g is the number of patches with

or with E , Refinl"the probability generating f

distribution of individuals. Ne.
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state vector at time t a> follow*

(5.83)
- . ...
ult.:i. = v -1
where (5.54)
Z = < e
.......... d,.-,I»ct«e into a

1Is a vector of (lummy variable
the notation
differentiable function. N°w Iltl(><

(5.55)
z -r K
*:i
mrssion for U as
0. . *lv write the expo
Uien we can coinpa* >I>
(5.56)
<.z = VV/XCi)-
] sav as follows
- f , with respect to -/
Nk can find flu' <Uii%lt%<
1.
0~i \
In vector notation wt ha
(5.87)
uz(t-z) = dz VSi d.2i-enf>(< i)/
r (5.88)
wh 0)
ere 0.1-°
o (0.
_ tor. Define (5.89)
*s the /c-th coordinate ”((
yD-
U-
the expectation ©f the
ol at z L giyes
r o7) evaluatc
The right hand side of ( n
N (5.90)
vector-valued random vaiia
u2(f-N

£ (*
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Now w, ,i,], - rivL - >ety! tor ,he pr°b’

..................................... R ",
LY of stage j gi» b.rll. to those of
stage A j.k — 1. -

g = denotes .In' mortality rate for iiwlividtials in stage

, > 0: denote the immigration rate into stage j

, o rate from stage J to stage A
Tik > 0: denotes the transition Lit

these parameters we fu.'tih.'i' ggﬁﬁe the matrices and vectors below
M = di<ujgon... V{/ 6 ~

©=1 o)
T={T>). Jk=1....

[Tt\ = dI,u w L Tikl 3 1-

Z = (Ii{[- .o ~M

\J = <ling)( 11 ........ f1"

ri L

. rtHIl derivative of u(t,z) with respect tot is
] o _,c:nii for th(M)altial
Then ail explicit expi(

given by T ~du{t,z)
eNrz+(V(e- z)T+(Tz 1T 12) } 9
- *rlz-e)u(t.z) +UD{z (5.91)
ot ., _Z))as arow vector with each compo-
ffirieilt function (17(zd n
Thus if we define the << mi the VaFiables 2
d order polynomial >»
nent being a secon T (5.92)
(Z D(z
</(z)

,S the compact form
then the differential equation a.ssum<

Ou T(z- e)uf{t,z) =0
Wopl+e %

1 —

describes the state of the population at 0.

The initial condition of our system

:(0.z uo(z)
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wlixt'xe> wec jus.suiiif
Onn(zi
2=1

, f r.,i mnnlx'r of spare units observed is finite.

This amounts to assuming tin" ’1*° : .. . f
, , extinction probabilities of the population is

The implication of .In. in Kretzschmar (1989, .-.nation ,4.5) the
important. Compa.. 4 <" N ns[>ecl to the age of the host do not
terms containing Pjil,ia ‘ AN )E(ins(c currently we are considering the
occur in the current system. il is considered as part of

dynamic, of ... ; "

the patch.

Example, for amultistage mf.tor population

y atr of the model derived above we consider the life

For a better understand u R I:fe N into .V = 10 distinct

) A= *arlier we uiwut 11
cycle of R. appcndiculatufi. - s <(f rt,pro(l,cing while other stages are

stages and only the adult R , transition rates (ftj,dj/+i )t i'esPec-

. I bv their death nil ) ] ) : :
completely characterize - A~ assume that immigration takes place

lively. We include iinmi*r,lt,<m animals. The immigration rate

mainly i, Urn on to?* Fooom s mrereT stages. Thus in general we

have 0 o\

which we call the birth matrix.

T gn-1
0 o [/
VO o
because the adult
B and the last row is zero
. ||
where gi = 7M+1 ~ 0 for i
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stage cannot transit to &V other stage except ultimate death. Next we have

(N °\
. 0

o di

fiel=
0O 0 ein-1 0
vV o 0 0/
Tlien we finally have
>0 j = 3,6,0.
0= (rlo... " ;
, I r st-tires. Then for the mortalities we have
where 3. C anti 9 denote the on <1 .
\J] = (li<y{l' \....../"'wee

, . .. sttttlietl population dynamic models where the host
In this chapter we non number ,f parasites it harbours. The

population is structm* ( '“ (( ' - Cendo-parasites such as helim-

models were first derelopt it - ) Hndeler and Dietz(19S3). It is
' .» host population”™ as m n

tilths in cattle and human | n possible for vector populations such
our conviction that tin sain 11 I"'eulatu'<in our case. The classification
the brown ear tick Rhipi™rhahu M asite load is important particularly
of the host population according t> N (h(i design of control strategies. The
when considering the use of a,u°“ ‘ Qf multistage vector populations such
last section is very convenient in > le can now be considered as
i stages in tn
as the brown ear tixk w further research in this area.

. need to extend fmtnei
the ‘types’. Thus there is
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CHAPTER VI
AN application

6.1 Introduction

..................................................................................................... “ o>«
i, Ih. -1 ., .- - -—nF — Mo, *«*» %
no k4 developed and anahsed m thaptti IlIl and
we annlv the ‘reiier?dised inatnx
) Pl vy R ,, Lf iv The life cvcle of the tick has been
its continuous time counterpart m ehapu. IV -
f :i in sub-section 1.3.2 of chapter | and represented diagramatically
e Sed . » study .1,.dynamics ,fthe, « * * . «.I,
fi :f I m page - - (|mtrt)l measures in relation to susceptibility
uerZZ[ ......................... fc f_ ahjotjc w

tick survival and ° ,b<! lyde factors related to the

Thie Rivw fIai:' tors i?r?

are also ail important fa( |y SU(.h as survival, mortality or fertility rates spectfic

biology of the tick p°1)u ) ) ~, climatic and environmental factors
, I = ric factors incline cin»
to the population. ™ X N *ographical location and so on: The main
such as seasonality, vegetanou G P '- /" Jn short al/(1989a,b) where
source of data and information * and survival of development
an extensive study on development uU'_ and D. was
cndrculatu*. Hoof
stages of the ticks [ The seCond paper reports on the
j  fjf.ld ‘ i i i
earned out under HE i eonditions it 1l e same ggg&rgg f tieks again under
., , .viour of unfo<l stages of
survival and beh«lV
field conditions in Zit»bab" "' (Of the brown ear tick, a three host
i. focuses on fb( 11 ps :n a similar manner
The current work t»' .ItPgorized into 10 stages in
M the population is m ft representatlon of the life cycle
tick. In the model th ! The diagrainatliC P ,
asmByromandGeettttmbv (1" 2)- es 'm the r“fe cXcIe of the tick are the egy,
0og The mam stag tudy the life cycle much better
is in figure | page - = to be able - afe further clasSified
larvae, nymph am a<« nympbal anc a N totai there are 10
by the matrix approach t or developing- lation is that
, 1i.pr nnestings . e fue system i°llu
according to w ie jer conipbcatlon duration or sojourn
stages in the system- A 2 have variable stage

each of these main stages an<
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,_irv due to several factors for example the season of the

hull.* cumut model the year is partitioned into
year vegetation t\]JH mand = i
' ,-h with duration and time span according to how

time These duiatioiis

rainy, cool and hot seasons.

i f 1in Short t\ all 19S9a.b).

they Were reP° th(. stn,iv was conducted could broadly be classified into

TII< n'gle®* " **“ a<. mainly the short grass vegetation type which is
two vegetation types. 1M’ ( the long grass vegetation type which
associated with coinniunal i nlodel therefore studies the
is associated with commerce N c-otypes and the aim is to attempt
tick dynamics in relation to tin &< - N Nfarming systems in terms of the
and bring out the diif<l,u , J overall population growth

if is a nieasmt

model outputs. One such ou'l" ' particular matrix to be presented in

=, ,r iMiK'iivalue oi a i
calculated as the dominant ig

the next section-

6.2 The Model ~ (j.isses or compartments namely the
The life cycle is sub.hvulcd ”**Y “* 2 lopinglarvae(4),questingnyinph-
egg(l), questing harvael 2). liost at guesting adult(S), host adult (9)

(5), host nympfg fﬁ? developing n>n From published data Bartlcularly that by

«,,d ,I=,el.,Pi,.B/<»I>" IUR"“ it ISknown the. »' e>Sy* ( e y
i \u,ul Short et aHIW*" [ ... n, where
Branagan (1973aJ>) £ ) ) DC denoted by n
] e urn time whi<h < . T = nue to several factors
have a variable soj° -pjie variation in t
A rurrein aBpllcatlon uose factors uSE to mention a few
N is ten in the cu coine ot(I Es Jus
i = fir in liatuit. onhical location and so on.
both biotic and ablotlc ;on type, geographical
_ _ erature, *(o
include moisture, temp ° afferent stages.
different foi «,u_. reported in Short al-
The times T, are also dim 7imbabwe data as repoi
model is based <» observed during the cool seasons
The current * . of « “ ¢
. |
M89.b). The lonbe«. « ., if« » ,
fo, hofh type, of v«ge ...k - 2 |ite cycle i- ,dopted . Ihe
shortest ».«*« NN this t«*® * "'* i, expressed » e
host feeding stag - tbat every actua uCh that (5t, = T,).
model time step. Thi bdived into ag

r Each stage is
multiple of o day J



Thus the progression N I;f Wcle can lie looked at as composed of within

and between stage d\nanins. 'ml_s means that an individual in stage i say, has

th< maximum age class t, in that stage after
to advance m age until it 1<a(-

winch it transits to tin Hiéc’{ <ﬂi€(
ml f . ,cl, ail event or not. This transition is conditional
conditions are favourable fot s
) ) P , cince there was no exact information concerning
on survival of tin- tick individual, bin.
. .., LR Saee the model allocates one age class

class of the next stage depending on whether

the stage duration for uc - 4 ‘ stages namely the larvae, nymph
(6 day duration, to this sta.,- for,» » AEEAREANEA N n an individual may
and adult. This nnan N mnaill questing if it survives. Thus for each
cither attach to a passi g ilnl.atiol,s are calculated for each of the ten life
mseason and vegetation type ‘ hjgh,y seasOnal starting with the rainy,
cycle stages. The elinian' in Z,,* ~ data by Shorts a/(19S9a.b) the
Coo] and hot seasons respectn. . e are given in table
short gra*ss) veS 1

stage durations for the long KL

3 below:
Sjj-ble 3: St . rain
cool 10
stage S
1 13 1
1
o 1 1
1
3 1 4
3
4 12 1
1
1 1
1
6 1 !
6
7 17 . 1
1
8 1 1
1
9 1 2
28
10 10 oi
total 58 vegetation type for the
. the short grass
. in
r <« ofae;e durations
The corresponding m * below

three seasons are given m
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Table 4: Stage dn rations in sliojXJIxLii®

RAINY cooL ot
STAGE
13
1
1
2 1 1
1
3 1 9
5
4 3 1
1
1
° 1
G 4
7
8
9 4
19
10 36
TOTAL o
tL 23 projection
.. ;s to p»r»»,‘‘tn 1 = 1 six matrices are required one for
m'Xt ‘IS iH(. Tins means that m - o' N ju eacli of the two
and vegetation spe< ’ , 1,0l a»«l hot : are denoted by
each of the seasons nann b ' ,rific projection ma
The three season M- to the rainy, cool and hot
vegetative ecotypes- * p 2 and 6
Jhe siil>sl HP Y
Ti, A2 and .4, 'vliei' :on is in multiples of five day
<“I>'1'V'ly ul,,,I,-1 .."W "i,“ del time »«P« 5 dWs
*x o di"r «t 36= " » e » . . ) ) n » »
intervals. Thus a > t/(19s9a,b) nw cool season, 15 time
i Short .00 times steps
each. The data > N N WL »»e ! » Iny season. NOw since the
he partitioned .»«> ' w 1> E . E» » in , five day time step or
steps of hot season an, . n speuti . . corresponding to the full
I i, are tin . ,tioll matrix coriesi
matrices A\, -42 all ulation PrQJ
.t the p°P
interval, it follows th p-ru
- H 1 N
°ne year period1 s given by A5 ngg 2T (6
M ) relation structure at the
that if the populatioi
_ ) s0duct means year (equivalent to
_ el is matrix P»odU 7. then after oney
In simple terms th « the vet

N -is £IVtU Yy
beginning of the >e rgg



73 model time steps) the population slru,tuH WU b S

a?* ..

,],at may occur depending on tl« initial

However this is jus, one < ‘ lation vector is considered from

time in the model. For example d tin

i ,, Fn 1G.2) becomes
the start of the eool season, t n

. (6.3)
+ I'A\* Ao2ijto
lito-t--57 ' 1 5

., ®m  V(,,(r is considered from the start of the hot season
while if the initial population

then the equation herotnes

> o i1s (6.4a)
A7 M 3% o
yto+ '1
hut ;mv j)articnlar case can he derived in a similar
These eases are not exhaust N<
vii tl.c possible cases ioi

manner as above. - jued indicator variable Sj v ku .
itlu* niatiix <

one year population projection

matrices arc givell

......... € an Jit-; g €j < 27
7 3. fb, J9 27 <31 < N9 (6.46)
5 4) i ' 100  64<J < '3

4;-"¢ AV -K- 4i
: that is 5; could be R ) , ™ or

The variable S, * « * * Tlic notation- R) * t «5 < »*

dapending on tire e ] beginning and towards the end of the

and second tain, ,>«»*'» ¢ * * | to ,n » . »'

. 1, The rainy sSeason -
year respectively. f (OUly otherwi

0 nf tune refei< n
nmilation dynamic. m

the assumption is that the

, Same for the two rainy
just for the purpos

effect o, the ranty ... the cool and hot — » - » - ® » *
perrods The Vv.ti.bte C, m* »>

periods, i cyrlic in natul
Thus the system is grn<

Note th,t the sup.rscnpte always

, ht to one year of 365

f time steps egmva

ti,u numhei A

the initial tune with
have to add up to ,3, the

cliscuss depending on th

T there are four cases

, initiated. Next the four cases
days. In general tli

tlie model i
, I tiip year v/n
respect to the season

are analysed one h\ on

190



Case |
Let us define
Ar, = .42.4]5.4f-4f. (6-0a)
This matrix «lamni.irstlH Maly.ia.fh.-<<«".ifﬁt3'.<.'krm)r,r,‘j<lati0n with initial time at the

1,. in rlie vear. Further assume that the

beginning of the first rainy season, early m >e<
h h ) y e .,rv is A with its corresponding right eigenvector
maximum eigenvalue of tins nia -
given by vr,« By definition _ (6.56)
4., = A, tv,.

-s of a system whose initial time is anywhere during
Now in general the d\nnmi(
«d by the following matrix product
the first rainy season is htim

(6.6,

77 = 4+t LirA? A?~’ 0<J< 27

< 2i
i = n eigenvalue of the matrix for 0 < }J

Lemma 6.1: An IS¢

Tins is clear from the following

ri

.. f . this expression reduces to
but from the definition of AN

n"(Airn)= AU

*ssed as
which is more compa(”™ (
_ (6.7)
) . 0< <27
2] »i —2ri" 1l
where < 27
ul = A\Vn 0<J

value of R) for 0 < ; < 27 (i.e for
., , \ s also an eigen
Thus the conclusion is t ia ' . .eason).

) initially in the early rainy sea
a population
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Ca.se 1l
Now consider the growth of a population whose initial time is from the be-

. It was stated in Ecp(6.3) that the dynamics of such a
gining of the cool season

population are governed by the matrix pioduct

4-=dfdj*df (6.52)

S i f 4 he  with the corresponding right eigen-
\ow let the maxiniuin eigenvalue oi - r e

I ) e s of . pop" i™>* > “©orf
vector given by er. n
point in the cool season is gi™(1
37 43 11>J3)) J 27 < j <49. (6.56)
c, = x Al a
Lemma 6.2 V S i e - ft o *x x "o ox
. of d,- then it satisfies the equation.

Since Ac is an eigen'*1
(6.9)

Ar er = I'c

iJ-'27in then using Eq.(6.Sa) and
e . l-itrix C, with the vectoi - 2
Now post multiply 1% llir

E'|{C®, SiV'"S

caaA ‘p
3-M(AIJd't do2) A

= 4 "a7(-4r«'c)

. M ' TAr 7o)
= Ar(dr27n
and letting AN v ¢ 49
Lp
- < 49 (6.10)
it follows that arve 27 <
C, a2

and the result follows.
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Proof:
Let wT, w7\ wl and be the left eignvectors corresponding to the maxi-

mum eigenvalues Ari, Ac, \h and Ar, for the matrices Ari, -4C Ah and respec-
tively. Then by definition the following is tnu

WjXAn —/rt Wik

wj Ac = Acw|
J fT (6.20b)
wjt An = Abtin
T
wL An — Ar?
SOW consider the matrix BJ corresponding to the early rainy that i.
R) = .4'"""N5-4f A?->
I' 27— 1\ als a22 /12% 7
then (WjA2~})R) = (wc-4i 4> 43 42 ' 1
~T/j.36 Q15 422 N427-7
= a'r(ai, -T3 =2 > 1
- II/\
= Gt K
Tt 71—
= (AcWC )-4j
= Ac(Up 41
.. -r T -if7 7 then
that is if we define v, = "¢ -1
(6.21)

Y R) =Ac u,

value of R\- Now consider the matr'X Ci Which
implying that Ac >s also an elgen

is given by . -2 ;%% ~35 449
Cj = »~2 41 "3 2

then it follows that, (J1A2AYa " A? AVA 2L

49 -;

(il a™ aT 1

(A~D 49 ;

a, (~ 4 9-])
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and Jetting Q4 sl

"1 Cj = Ahvf
. . 6.22
~Plying hisan _. - i ( )
eigenvalue of CJ. Next consider the _ _
matrix givea by
= . 4r',9-1f.4 ?2fl.464->
Then
(< A\*~3)H)= ( < -4B/I").4>-4‘9" "13“63 464->
= id* (.4-j'"\4f .4j6).424->
= (7B Jro) A48T
= (4rnj
= Arj « -434 - )
Thus Jett q
7'r ~T |61
o &
Wk have
Ci H2 — ARG
(6.23)
"*hich implies that Arj is an eigenvalue of Finally consider the matrix /7?2 -
hv T grven
RZ =.4r M .4js .4]2.4'00->.
(wj AJOO~>)R2 = (WI-Ar-JAre4dAMNAI2ATr~J
= reJ(A]6AI5A12)A\00- 3
= (/\.4’)/\00511
= (Ac wJ)A\00~3
= A}C {UA '4, ),:I_J-OO_>\
aud letting
) r 00>
.
We obtain
VIR"KvJ (6.24a)
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which implies that Ar is an eigenvalue of R r

Now i general i\ mglfﬁ)\( o ran he reEresented in the form Q R the product

of two square matrices Of rire SANA BFgf, such that R Q s equal to A then the

. , Jf ..re Hie same as those of B. This is the factorization
eigenvalues (roots) oi .4 air n

.. . . i .11 in Horn and Johnson (19S5).
principle which is covered WeJ]1 ) ( ) .
. . GnNn , RIUi lemma G.I It follows that the eigenvalues of
bsing this result, rLq.(u. S ) ) )
whi(.h iu tu,i has same eigenvalues as matrix .4r,

Ar are same as tnosr A il;

therefore (6.246)
Ac —Ar,

6.4 it follows that the eigenvalues of
|I¥ Fd146.24a) and lemma

L h Muie eigenvalues as matrix -4r2 therefore
2 which in turn has same eigel

Ar are the same as Rj

But usi.ng the resu

(6.24c)
Ar — "r2

and from Eq.(6.24b) n>> (6.24d)
Ar = Ar3 = Ar>

9 it follows that the eigenvalues of Ah are

Similarly from Eq.@6c2_g‘)hqpﬁ i FLUPA $as same ei@grg,lu es a* those of Ac, therefore
the same as those oi j (6.25a)
Al =

N . 4 _are the same as those
r 3 the eigenvalues oi d r2 are

Finally from Eq.(6.23)“ dL"“""ri, ,Iv,l,,« » >h<c°f
has the same ift

of Hj which in turn (6.256)
AC-
Ah= 12
Now combining (6 '9) <" 1®-2571e’V (6.25¢)
— At = YA
Ar2
Ac = 7
. hed when the tick numbers will increase
Tl -a quasi-steady state will be 1<?a oininaat eigenvalue Amal- For each
e, by . by distribution will b« giv« by .he cor-
each successive y - si.steady state ei, envalue Ama* where
. . or., Vear the quasi the dominant eigei
time step J of the . associated witl

responding eigenvector
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c .« I " E(, ,04b) The above analysis is similar to that by Gettinby and
E/I'c(\évl Saﬁle];' £o,! V&,Iqe‘,e thel} oresent a matrix }‘onnulatlon of the life cycle of liver
C

r 1 1 This demonstrates the potentiality of such models in
fluke in Britain and Ireland. 1 his

;  Or**ire uouulations in general.
the study of vector a,K pa™ above is a long term effect but on the

It is important tono e . A~ fluctliations about an equilibrium state. The

short term there might be I>°I>U | ancl the results compared.
i ror the two vegetation tyi

matrix system is stu( 1 N .ontinuous time matrix models and that from
From the work in chapter  shown for both cases that ‘he maximum
chapter Il for discrete matrix m«<es > - elements. This means that

eigenvalue of either systems ,s a furc >~ ~ N maximum eigenvalue

ij rall be used to stu . ffect Of several life cycle
the matrix model a current model the

-v elements, lu K . é’ 1 s:nce the matrix elements
to different matrix f\:s value Is studi.

,, f the brown ear tick to =« = .leters Gf the population in question,
parameters of tin rVCle parameter

i I <efunction of the ! - models for practical systems like the
are themselves a 1 Ifprec] in snrhm . : , t

w e f f i c ti M * " _ b. »bfc toestimate the element.
how one of the 'I' N >vs>ilj >iut, of d*« IS , brief discussion

one just descri k< ilection matlIX* : tUdied are derived. As
of the entire p o p » for the infonnation and personal

of how the »»«'“ * 'soutf, 'lata « J *“ng population model, i

earlier mention* * roblem m al ] . atrix model and
. , The mam In classical Leslie
communications. Jprobabilities m has been addressed

. ] . transition P t-ibutions. Lm
in relating the t cUllaulative disti

those from experiment#

in chapter 111 section
tri*atio» r:be how the matrices Ai,vi2 and A3
6.3 Matrix para««e .g to briefly several assumptions. As earlier
The aim in this sec N exercise » N ° N further subdivided into U
are parametrized. Of say i, © = , for the cool season in long
stated each ${4§¢ °f devell |gacp. Forexamplee siage and from 93 U = 12
1 rnve day inte j~velopinS iar i,~ses Consider an
hge classes « d.W ‘'« ** ! dividod ">'« 12 *6<i may
gras, veg.tati n .S« N model th« ¢ >
meaning that stage |*

individual in a& C 199



do the following:

() ,r» sit to the ,«x. «e cl»» -thin the .« « »1«« "1 *" < >*' >+
(ii, B to, to the fir,, age das. of the next s« « if ik » i» the 3 ¢ «« «* *<

the current stage 01

(iii) die if it does not survive

Since the life cvcle of thispar"™'- «  » ~»P»* d ° U th'S!

.+, <taffPS oue particular stage will be considered for each case
on host and deveioping* g

then the other stage, can be handler!

Thez : zZ L S.»..«-w -f"' PR » th,s sug: ”
or i This is equivalent to thirteen five day age classes. It was reported

D] - 65 days® 38.0% of the egg. hatch to lame over this

that during tv co ~ common five day survival probability si for all the
period. Now let us assume a ~  expected to hatch into larvae

age classes. Then given 0'-; steps. Thus letting s,

1+ U priuivalent to io Liix Y
after D\ days which - 1

within egg stage survival the 13 _ 9335 (6.26a)

value gives an estimate of the the probability that an egg
gives J, = 0.929. 13 traMit tQ the next age class in the next time step.

currently in age class J tjle maximum age then the probability

an egg attains

This also means that one , Thus 0.929 is also an estimate of

) ) -, frb to become a iar ] ]

is 0.929 that it Will haten this case the questing larvae stage.
I 't'fu to the next stag _

the transition probabi 1 are ;n the last age class at time t then

This precisely means that given 1

s, Eu will hatch to larvae by time

The questing stage: n in terms of 50% survival times

Information on questing ticks n of questing ticks of a particular
that i. the time until 50% »f th« u N o~ N ocee ,fthe quoting
questing stage Fn:gs ngﬂ lost thm}!%ﬁéﬂﬁrbrass vegetation type, In survival

larvae during [A8 §88! season mtne & 1 orted as B day§ Which is equivalent

questing larvae in HHS season Is report
time for
200
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to 18 model time step, of five days each. Now letting the within stage survival

probability be s2 then it follows that

s'8= 0.5 (6.26b)

L, 2 ufs n 06> This means that given Nq(t) questing ticks at the
which implies ihat ~ — U- 9 at) 4 J ,
beginning of a time step O0.S62.V,(f) are expected to »rVv,V. upto the end of the

JL perlod ».d 0.038,V,(«) to exit the W St “
, . ., firks have two alternatives either to survive and
a questing stage t ' a pBSsing host. In general let the daily attachment
remain questing - N, th,, » attaches teithin . period
probability bp pt
of £5 days is given by D (6.27)
Pob=1-(1-P) = \Y
u three important events that can take place for a questing tick
In general there are - , ,I € beginning of the time step. These

. ) glven it was present at the @
in the next time step

are
(i) attach onto a passing host

(i) remain questing

d d* o in Fieure 2 on w 2S-
These events hav ) hes within D days is
t lability that it attacnes

The unconditional probe
(6.28)

Patt S2(1-(1-P)D)-

it sUTand ren»i»questing is then given bp

The probability that (6.29)
n _ p)D= R Patt

S(1-Pa) =~ 1~ P)
f iving within a time step is given by
and the probability of dying (6.30a).
g= 1- 52

. >0 reauired. Thus given there
i ] lities is one as requ

.hot the sum of these n step * - >* - *

N,(» questing ticks - the
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) 1 ) ese individuals are accounted for in the followin
time step that Is by time t-r} Epuse g

balance equation

wh,, « the ,h,ce terms ,» M ** denote M M

: The total ...testing ticks at time t+ 1 are then g.ven
questing and die rcspi

hy , Cop 1o+ i) (6.30¢)

Nii(t +1) = -V,(i)(-S2 - + Kt +

. . ., i tme.it term into the questing state from the previous
where R,(t+ D non <N N~ The term takes specific forms for a

developing stage in the 1e'J' 1 consider eggs moulting into questing
particular developing stage. For exampl

larvae then r? (6.30d)
Rolt + 1) =
her of eees in the maximum age class about to moult,

where Etl denotes the nun ™ AN AN QQ4 a vaiue fa = .185 is calculated as

Now assuming a reporte< va the same for all the three
o 1 for the model. inis Wi . .
the initial input value i h and adult. It is not possible

,  (Up questing larvae, nymBu
guesting stages name v different questing stages because this kind of
to use different values for tie « carried out for all the questing
.. above kind of analyse
information is lacking. \ phenomena of importance in the
stages in all the seasons an h N means in simple terms is that
study of tick dynamics is diapause. """ climatic conditions are not
an adult tick undergoes a state o £ (6.30b) p,« is zero such that

favourable for questing. This means

d N,it+» =w > +Rt{t +") t6 30/>
time 1and « *»* “ ™yal prep«

*here Ng«) *"»*“ di"P* ° ne or diap.nsing M «l« M » *h' d*hlh

ity in a uni. toe .Mr- «“'*" * o of th. tick’s life eycle hence the

stage according » “o ey e E<F>
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notation j 8. Again IU[t t 1) denate, lhe lerui into Uic dUpausnt

state. Precisely these will he nymphs moulting into adults when conditions are

not favourable for active questing.
Developing stage:

As a,, example of how the matrix elements were derived from the data from
Short et .f(1989.,b) ron.ide, the developing larvae in long grass vegetation in the

cool season. In general after a tick hat M to repletion detaches from the ho,.

and drops onto the ground where it ............. . a process o development before

1 t, ,he next instar of development. The stage dnr.t.on under these
moult,,g mto . 0 <|]av> whkh s to 6ve day age classes. It

conditions » repo.." » n |arvae moulted was 80.5%. Let

""as further reportec n n bp ~ Xhen since there are 12 age classes
the within stage survival p

before an individual moults it follow th*

12 _ 0.805, (6.31a)

982 This value means that at the end of one time step

which im?lies that S4 * . . wih transit to the next age class
o ., + iiy jj} age class j wia
0.982 of the individuals mi 'a & more precise manner this means

19\ after one tune step. , ,

0O+ 1 - '-*---;-
that if Nj(t) denotes in

i1 at time <+ 1 ‘s R'ven by

m age class j +

(6.31&)
Yi+1(™ + 1) = -4jVja(<)

id I

e gEneraty i,...,i0. (6.31c)
1 3 1
Nj+ 111
,  of individuals in age class of stage * at
this case N)Wd»»*“ ““ probability in s uni. model «»+ «<m “
le «xand s, .be e« *" N .1, silli,g(mo»l.i»S) o

urther assumed thatindi'**1*tr N imt.ally m the tot

‘Ene maximum age the end of that time

e .ne : :
y after attaining time step will vy



step transit to the 1-st age class of the next stage. Tins process can therefore be

represented as

+ 1) = «&yi,(0- 1= 1. Om (6-31c?)

This equation describes the b’é&‘W&SH 5{388 recruitment proces§ in the system. The

i . ,-lass ill stage 1. This value depends on the stage
subscript t, denotes the las ¢

_ ) +nn tOP duration the more the number of age classes,
duration because the long

r ,n. stages The values s, are estimated for all SEasons

R TG the . At « A A. which
and vegetation types in or ; developing stages were handled
have alreadybeen defined. AU <
in exactly the same wav.

Fecundity: to ovipositioning and assuming a sex ratio of
Based on survival probab. <~ N .gadjusted to / in order to estimate
1 .1 total fecundity r b?/] ana u e be realised to await hatching.
| ,-hare female and wm
the number of eggs w n formula
Freely / tr'm ~ ' (6.32)

f = O.5(sio)'10C

» the pre-ovipositioning female adult stage.

timber of age ém female in age

where f10 is the number bability that an adult

The quantity (s>0)“° elld of the last age class.

dJ . .ill itaonc for lh« -he -
The parametrization pre°c d short grass respective V. 13

mnelv ~ long Srass , tion projection matrices but since
vegetation types n specific p°Pu a . . . :
J P tr:ze the season -P P unities the assumption that a tick

enough to param N the feeding pr°)a Thus an initial probability

there is no inform* N almost surely is and was later

attaching will S ~ ~ event. This time steps occurring in the

of d in g e st life cycle tyPe. Since the corresponding
modified. The 6 grass vege 5g time steps

the cool m tb' M * libllily in the

life cycle ... .. *opy ko elled * |, 1. «e» “ “

“* Ntioo ptob.hilite.

... 1386 " , IM.*i.« — « - *"
) J These are Jub
matrix produgjttq-



) *{, No diapause effects are included at the initial
into these stages were set to . -

stage of model simulations.

U) give future population structures given by the
The model is then snnulattd @ Y nft

, - ,> 01 where ! is expressed in multiples of the model time step Of

sequence initial population structure say yb but as was shown
course one has sP > structure is independent of yV The tick
in the analysis the long time I~ N using the SPLUS computer software

model for simulation p" pOS* ~ by Veuables and Ripley (1994). As explained
for applied statistics as escn e the dominant eigenvalue of the

above the population Kro"'~J \ mulation is that with the model parameters as

matrix .4 and the initial m ~a/1989a,b). Under these initial inputs the
calculated from the paper vy NN niucb greater than one consequently
dominant eigenvalue of the ~ suggested some aspects in the model which
indicating a population increase. N N Alf (1990) it is obvious that
were not realisic. Based on te ~ sbeding |
the value of one as the Proha ‘ : G resistance to ticks due to several
] Arrline to the elegies ™ . .
because animals vary *< NN animal. Previous exposure to tick
factors among them age and/or N N resistance to ticks is concerned.
challenge la »1» » of successful N
Therefor, a value of one » ~ which  no. realistic. In o.her.ord,
hoa. population is 100% it feed, to repletion contrary to what
it means that « « A“prnb.biiities are therefore set to 0.11 for
Is observed in practice. for the nymph accoicl ¢
.up adult and 0. . b ;s that an adult tick
the larvae, 0.16 for tHg a assumption we nmalce
A fyidier assume- t the PFORAPIILY 6f
reported in Fivaz &1—89@ . IU, rainy season thus we 9 © E ................. W .....
tine: during the n _J =r,«-tivelv. A thou%h with
is only actively questlng faot seasons respectively
to zero in the cool and th is the maximum eigen value
attaching to - .irk groW%H Index (Armati i namely Amo* = 5 3%,
these modifications the uck S NN ge, ter th, 1» «
Lit -
of » » was greatly reduced, intrinsic g-—gv"o/ Fate 8{
This value is equivalen _ Qgbg >0 (6.33)
__log!,, Ar;i«x
r-” . " Thus an extensive

.population increase.

e *nrlv indicates a 1 1

meamn@ tp]e value similarly 205



sensitivity analysis to study the effect of some of the matrix inputs on the growth

index set*nis most appropriate. The findings of such an analysis aie outlined

in the following section.

6.4 Sensitivity analysis
The input parameters in the model are those derived from the information

reported in Short ef a/(19S9a.b) and Fivaz et al(1990). Starting with these inputs

a sensitivity analysis is earned on the model by gradually varying attachment

probabilities probaQ)ilities 0]‘ gH]eressfull feeding and the mortalities of questing tick

|’ﬁ‘?|ult§c from these kind of simulations are then presented in

stages separately. n|
The results will briefly be discussed and their implications

figures 7 through lo.

to tick control strategies point* d
. ted a daily attachment probability of 0.04 as reported in By-

STc Tt nbv (199*) Sives a five ‘lay attachment probabiHty °f °'1S5" TWS
r’m aik e 1 , fhe initial input parameters for the model. At these initial

IS thCre OU<d° ind(.x calculated as the maximum eigenvalue of the matrix .4n
mputs the growth m |- population increases. Next the be-

\ is found to be 2.Jo. 1 o )
denoted by Amax 1 ..-w-hment probabilities Is investigated

r x for different values of attacmneu n
hawour of Amox for different values of attachment probabilities. Fig-

by simulating the tick mo< < 0! can be seen that in general
ure 7 shows the case for fmu.ti(m of the attachment probabilities. The im-

lambda (Anttx) is an increasing " N reducing attachment probabilites

plications here is that contio b ~owth of tick populations. This result
. of lowering the gi ) ) .

can be adopted as a meai * s lling, lowering stocking rates or

therefore supports methoc s 1 the tick popuiation is expected

1 f’ during seasons wuen
moving out the cattle hos s N Imed at lowering the chances to attach

to be questing. All these methods a n tfae generai population growth
for a questing tick. This has the effect m n vegetation type and the
rate. The same kind of analysis is cone e seen in these two figures
results are depicted in Figure 1- jncreases with attachment probability
is that the growth index lambda (Am.U m This scenario is more evident in

values upto a maximum then it starts to cec tfae growth index hardly

the short grass vegetation type- In tins type  ve®
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exceeds the value of one which is the value where the population neither increases

nor decreases. It is clear from the graphs that there is a big difference between

f-.,. -w the ]g[rowth of the tick population is concerned,
the two vegetation types as tar as

fMr the same value of attachment proba-
It can be seen from the two graphs that for the sam

bility, the growth rate 5 P\Ighél’”m |@ﬁ@ gi—ass than in short grass. Thus on average

u . , r th_ tick population is higher in the long than in short grass
the growth index foi fh -r r

rpi = ,llows that even control strategles should not be uniform for

vegetation type. This s . ] ;noqot tick abundance
f (rotatlon 4s mentioned in Norvalef (1992) tick abundance

,e two typo, of » ( ron[ro] is i|]etCTmin, , bj, the so,eept,bility of cattle to

on cattle in tho . » < » d vegetat.on) to, tick - -

the suitability » presence of alternate hosts,
and other factors such as |

ter experiment involves the effect of varying the success-

The second compu fonnulation this is done by varying the
ful feeding |orobab|T|t|p0 From tne U NN
probability of transiting flolU ' A sil)Wh in Figure 8 for the long grass vege-
The results of this type ° Minu d short grass vegetation type are depicted
tation type. The corn spoil S firowth index Amar is a monotomcally
in Figure 13. The figures mdv*te ia A StiU in short grass vegetation
increasing function of this pro » N feedlllg is considered separately from the
the competence of the nymp >s suCcess of feeding by the nymph but fixing
larvae and adult stages by varying k =/ n .g shown in Figure 14 and the
the values for the “ode oo Note that inthe graphs the
graph shows the same trend ae o» = What » observed here ,,

m.ono onica"g/

probabilities are referred U as ﬂﬁéégf"ﬁ'\/\ﬂh itfdex o baid (Banax) i ¢ MORBEARIEA
that for both vegetation W ) “ynfies of successful Jeedipg: 't 's noted poweyer

- t etinn of the prebabihtie grewth imelex or faeter
inreasing functioi , peding probability S
that for the sanre - « »f - » from ,he t.c -host
1, higherin long f - - « ‘ , probabilities of ~ ~n g for -
interaction system it is known ‘A ot resistance to tick, by he host.
on host tick is highly dependent »» n to nek. the ower
Astance to ticks say other factors also come to

The higher the »» e -
the chances of successful feed.

.., host tick Other
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play for example Fivaz tt a/(1990) reports oil average that the nymph seem to be
more competent m feeding than the larvae and adult. From the analysis m chapter

IV there are also density dependent effects which can affect the overall success-

ful feeding probabilities. In general the giaphs indicate that foi highly resistant

herds the growth of lihipiccphalns appcTidiculo-tus can greatly be reduced. Thus
the use of resistant breeds can be considered as an alternative future option to the
tick problem which has become of great economic importance. Theoretically what
the graphs indicate is that other factors constant detachment probabilities can be
lowered to a point beyond which the tick population will decline monotonically
towards zero. This will happen when the probabilities are such that \max < 1.1t
Is obvious that this is not true in reality because of the many factors that come

into play. Some of the factors are advantageous to the tick population growth
.= , Imnurt The tick control problem therefore requwes

while some have a negative imp* =
1 where several control measures are applled in the most

an integrated aw roa" N ;ire costs to be incurred in the whole execise in

optimal way not forgt ~ £
general.

trafecies are aimed at causing an increased mortality to the
indude for example burning of the pasture which

HoWever this practise should be carried out
cause a serious environmental

Some contro s

guesting tick stages.

results to killing the questing
-fit is not properly none can

with caution because : - ~ N overrall effect of mortality of questing

degradation. This prompted p- g shows the effect of questing
) + tr.n growth index Amaz- ri8l* . ]
ticks to the populati grass vegetation type. Initial model input

larval mortality on A,,ar Short et a/(1989a,b) and this gives
, o, (\from the data oy onoi
parameters are caicuia

Clarval questing nioitality ) )
us an initial value oi m idc may attach or remain questing

- f-ime step a gguestl %
robability of attaching. This probability

that on surviving one
with probability | —Pa whcie ja ~ function of questing tick mortality. This

Cn056. The assumptions are

mortality gave a value of growth index of

Thereafter the model is simulated for
™  depicted in Fi

is conditional on surviving

initial value of 0.056 of questing
2.35 which indicates a population
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9 Clearly the growth index is a decreasing function of questing larval mortality.
The whole process is repeated for questing nymph and adult ticks and the results
are shown in Figures 10 and 11. Again as with the questing larvae mortality the

growth index is a decreasing function of questing nymph and adult mortaUt.es.

e -f incre
Thus control measures alméﬁ ai% INCreas

) * .., If is noted however that when the mortahtes of
tick stages should be appropriate. It is noted

' . to<rM , re Set to one the model gives a growth index of almost

asma the mortalities of any of the questing

the adult an ar b for questing nymph mortality. This observation tends

Tr0OT L that the growth index is more sensitive to larval and adult mortality

m ' . The Frocess is repeated for the short grass vegetation
than nvmph mortallty T u

d the observation is that for questing tick mortalltles m the range between

one he growth indices are always less than one. This tends to suggest

Zero and one tI g .t in short grass vegetation type there must
that for a tick popu a n A their overall effect must outweigh that
be several factors acting m ~ A~ short grass vegetation type is associated
from the negative factors. , Stoclcing rates are common. This could
with communal grazing aieas. A N maintenance Of the tick population in
be one of the contributing facto ~ N further simulation experiment which is
this type of vegetation and lane US g that of the survival of diapausing adult
carried out in short grass vegeta ion ~  of the survial probabilities of
ticks. The growth index m‘* ~ ~ A that for the tick population to grow,
diapausing adult ticks. Howevei ~  diapausing ticks are necessary as can

high values of the survival pro .a

be seen from Figure 15.
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Figure 9: Larval mortality, rainy season
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Figure 10: Nymphal mortality, rainy season
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Figure 11. Adult mortality, rainy season
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Figure 13:. Detachment Probabilities on Lambda; Short Grass

detachment probabilities

Detachment Probabilities on Lambda; Short Gras

=lgure 14: Nymphal
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Figurg 15: Diapausing Adult Survival on Lambda, Short Grass
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CHAPTER VII
CONCLUDING REMARKS

is concerned with the development of mathematical models for

Tins thesis
stage structured populations. In particular the study has dealt mostly with matrix
and com partmental population models. These approaches are both suitable when

dealing with structured population models.

M atrix population models have been a subject of theoretical and practical

study for many years, particularly the time homogeneous matrix models. Starting

from the time homogeneous age structured model a more general stage struc-

tured population model applicable to a general N stage classified population is

constructed. Conditions relating the transition probabilities in the classical pop-

ulation projection matrix to those experimentally derived are given for such kind

of populations.
It is shown that the age structured matrix model is actually a special case

of the generalised N stage structured model. The latter model is flexible in that
one can study the within and between stage population dynamics. In this way

the question of residence times in a stage can be taken care of because individuals
have to age within a stage before transitting into the next stage.

In time dependent population trajectories, the projection matrix at time ft,

may not necessarily be equal to that fit time tT 1. Time dependence m such
is brought about by several interacting factors acting on the population

models
These include factors

These factors are themselves time dependent.

vital rates.
A practical time dependent matrix

such as seasonality, vegetation type and so on.
moclpl is constructed for the brown ear tick(/2. appendiculatus), the causal vector

In this model the effect of seasonality and vegetation

for East Coast fever (ECF).
The model has a

type is incorporated hence making the model time dependent.
big potential in assessing the effectivity of various control strategies in relation to

include the effect of more

various environmental factors. It can be extended to

environmental factors on the population parameters. A similar approach can be

applied to other vector population species.

The study also dealt with continuous time compartmental models for stage
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structuredpopulations, taking the brown ear tick append,culatus) taken as a

special case. The model is associated with a continuous time evolution operator

similar {0 the population projection matrix for the discrete case. It ha

shown that the sign of the spectral bound, positive or negative, associated with

this operator determines whether the population will grow or decline respectively

Formulae showing the dependence of the spectral bound on the population vital

parameters are obtained through the use of the implicit function theorem. The

reproduction number R(h) on a host density his derived. The model is useful

in the explanation of the interactions between the tick and its host population.

It is shown that the tick population will persist only when the host population

density exceeds a certain threshold value ho. Stability analysis indicates that

the uninfected stationary state is stable if the spectral bound is less than zero a

condition corresponding to R(h) < 1. It is argued that the infected stationary

state is necessarily stable otherwise secondary bifurcations of the infected state

would be expected.

The study also deals in depth with the aspect of density dependence on host

attachment rates and mortality rates for the tick population. An alternative

derivation of the basic reproduction number R(h) via the general cyclic triangular
systems apart from the direct expansion method is given. The study distinguishes

between the linear and non-linear eases as follows.

In the linear case it is clear that the solution of the “tick only” system is

unbounded unless the parameters are such that the population remains constant or

is decaying. In the nonlinear case attention is focussed on the qualitative behaviour
of the system, distinguishing the case where the system is dissipative. In order to

establish dissipativeness a bounded set is found that attracts all orb.ts and which

is positively invariant.
The study finally deals with a class of vector-host interaction models where
the host popul’afi.on is IclassifiedI 5?%%%’#98 to the number of parasites it carries,

Such models are useful in the sense that for most vector diseases, the severity

of the disease to the host depends on how heavy is the parasite load. The null

hypothesis that on host vector distribution is asymmetric and is negative binomial

21G



is investigated in depth.

The results of the study are useful in the understanding of vector population
dynamics in general. It brings out dearly the connection between discrete and
continuous population models. The generalised matrix model for stage structured
populations is more flexible ami can be adopted for other vector populations apart
from R. appcndiculatus. Incorporating time dependence in matrix models by in-
cluding various environmental factors is a more realistic approach. This implies
that monitoring and control of biological populations can m general be carried
out with more reliability, especially with the advent of more powerful computers
and software. The results of the study provide useful information towards the

understanding of complex vector- host interaction systems.

It is hoped that the interpretations of the findings will contribute significantly

the study of geuer.l ..dor pop.d..™ “wtod*

the development of vector control methods. It, conclusion we list some problem.

which require further investigation:

(a) Further validation of the tune depemle.it matrix model for the brown ear tick
bv including more field based estimates of the model parameters.

., I Extension of the compartmental model along the lines of stochastic population

models to take care of the variability in the transition rates in the model

=.tn more robust estimation methods for the transition proba-

© generalised time <lepemle.it matrix model, particularly under

(d) ~ "h -toch astic dynamical model suggested here by handling the

(d) y' . birth immigration and death process.
tick dynamics as a N N thp brown ear tick developed here to the

(e) Linking the population

corresponding Eas% goast fever disease models,
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