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SUMMARY OF CONTENTS

In this dissertation emphasis is placed on the

practicability of a non-iterative procedure for generalized

ridge regression as given by Hemmerle (1975) and its

application on

In chapter I,

third order rotatable designs.

and

concepts on the theory of

an introduction on the

we outline basic

regression analysis give

principles of biased estimation

techniques. A statement of the

given at the end of the chapter.

Chapter II examines the minimum mean square error estimator

and ridge regression

problem of study is then

(HIHSEE) in ridge regression in its general form and

describes a non-iterative solution for generalized ridge

regression as given by Hemmerle (1975).

Chapter III gives a general review of rotatable designs of

up to third order, giving particular consideration to the

estimation of the coefficients of a third order rotatable

design.

The application of ridge regression on third order rotatable

designs is considered in chapter IV, and an illustration of

its pr~cticability given.



ii . \

ACKNOWLEDGEMENT
I am grateful to the many people who, in one way or

another, have contributed to make this study a success.
Special thanks go to my supervisor, Dr. F Njui for

sacrificing a lot of his time to read through my work and

for his valuable suggestions and advice.

I would also like to express my appreciation to my

lecturers for effectively disbursing the knowledge which

triggered my interest in the field of statistics.

I am indebted to my colleagues; Kipchirchir, Nyapola,
and Obonyo for their encouragement and company.

Finally, I wish to express my heartfelt thanks to my
parents, Ezra Obuya and Catherine Awiti for sacrificing so

much, that I may have tomorrow what they could not have
yesterday.



CONTENTS . ,

page

Title
Declaration
Summary of contents i

Acknowledgement ii

CHAPTER I: INTRODUCTION
1.1 Introduction. 1

1.2 The general linear model and

least squares estimation 2

1.3 Biased estimation 3

1.4 Ridge regression. 6
1.5 Method of the ridge trace 9

1.6 A brief literature review on rotatable designs 13

1.7 Aim and scope of the study. 14

CHAPTER II: MINIMUM MEAN SQUARE ERROR ESTIMATION
2.1 Introduction. . 15

2.2 The generalized ridge regression

estimates and MIMSEE . . 15

2.3 A non-iterative solution for

generalized ridge regression . 20

CHAPTER III: ROTATABLE DESIGNS OF UPTO THIRD ORDER
3.1 Response surfaces 32

3.2 Rotatable designs 34

3.3 First order designs 35

3.4 Second order designs 36
3.5 Third order designs 37



3.6 The moment matrix X'X of third
order rotatable designs . . . . . 41

3.7 Illustration

CHAPTER IV: APPLICATION OF RIDGE REGRESSION ON THIRD
ORDER ROTATABLE DESIGNS IN THREE FACTORS

4.1 Introduction

4.2 Illustration

CONCLUDING REMARKS
APPENDIX
REFERENCES

50

51



LIST OF FIGURES
Figure 1.1: Ridge trace

LIST OF TABLES
Table 1.1: Data relating to infant length

Table 4.1: Two classes of second order

rotatable designs

· 12

· 11

· 52
Table 4.2: Design points and observations,

first set

Design points and observations,

second set

Summary of calculations

· 54

:Table 4.3:

Table 4.4:

55

59

, .



-1-

CHAPTER I

INTRODUCTION

1.1 Introduction

In order to make a decision it is often necessary

to prepare a

necessary to

forecast. In order to prepare a budget it is

predict revenues. These and other decisions

can be made easier if a relationship can be established

between the variable to be predicted and some other

variables that are either known or are significantly easier

to anticipate. For example, in an industrial situation it

may be known that the tar content in the outlet stream in a

chemical process is related to the inlet temperature and it

may be of interest to develop a procedure for estimating the

tar content for various levels of the inlet temperature from

experimental information. The statistical aspect of the

problem then becomes one of arriving at the best estimate of

the relationship between the variables. This leads us

relationship istherefore to regression analysis. The

expressed in form of an equation connecting the response or

dependent variable y, and one or more independent variables,

xp , which are measured with negligible error

and are often controlled in the experiment. The

isrelationship, fitted to a set of experimental data,

characterized by a prediction

equation.

equation called a regression
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31.2 The general linear model and least squares estimation

Suppose the experimental data consists of n

observations on

variables Xl.,

the response variable y and independent

x",. Then the relationship between y

x", can be formulated as a linear model

j=l, 2, ,n (1.2.1)

where ,8", are constants ca lIed the model

regression parameters and is a random disturbance for

which it

,x'"
is assumed that for every fixed value of Xi.,

the t s are independently distributed with mean
zero and a common variance a~.

Mor-e compactly,

notation as;

(1.2.1) can be represented in matrix

y == XfJ + ~

where

y == [Yi. ,y~ ,... , Yn J'
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and

1 x11 X21 ~~
1 Xu X:z:z ~X =

: ; !

1 X1n X2n ~

(1.2.2)

The nx(p+1) mat~ix is called the ~eg~ession mat~ix and

is assumed to be of full rarvk (p+1). Fu~the~ assumptions

a~e

(1.2.3)

We use the method of least squa~es to obtain an

estimate of B. This method entails minimizing that

is the sum of squa~es due to the ~andom distu~bances, o~ the

~esidual sum of squa~es (R.S.S) with ~espect to p. F~om

(1.2.2) we can w~ite

= (y - XB)'(y - XB)

= y'y - ~'y - y~B + B 'X'XB

= y'y - 2~'y + B~ 'XB (1.2.4)

The least squa~es estimate of B is then the value b which

minimizes is dete~mined by diffe~entiating equation

(1.2.4) with ~espect to B and setting the ~esultant mat~ix

equation equal to ze~o. This gives,

-2X'y + 2X'XB = 0



-4-
.\

or

X'XIl X'y , (1.2.5)

which gives us n equations, called the normal equations.

Since X is of full rank, X'X is nonsingular and hence its

inverse exists. In this case the solution of the normal

equations can be written as

b .(1.2.6)

We note that

E ( b) E [ ( X ' X ) - 1. X'y ]

= E [ ( X' X ) - 1. X'( X 13+ £)]

IJ + (X' X ) - 1. Xt=:( £) ,

that is

E(b) = 13 , using the assumption in (1.2.3). Hence

the least squares estimators are unbiased and have variance

given by,

Var(b) = E[(b - Il)(b - IJ)'J

= (X' X ) - 1.X'a 2 I n X ( X ' X ) -1.

= (X'X)-1.a2

using (1.2.3)

(1.2.7)
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1.3 Biased estimation

Although it can be shown that the estimator b in

(1.2.6) has minimum variance in the class of linear unbiased

estimators(Gauss-Markov theorem), there is no guarantee that

its variance will be small. If there is an excessive amount

of multicollinearity among the independent variables, the

X'X matrix approaches a near singular condition, resulting

in extremely large values along the diagonal of (X'X)-.1..

This can readily be established by noting that

multicollinearity is synonymous with small eigenvalues of

the X'X matrix. Now from (1.2.7) the total variance of the

estimator can be expressed as,

Total variance trace[var(b)]

(1.3.1)

where lo ~l.1.~ ... ~lp )0 are the eigenvalues of X'X.
It is evident that this value may be too large for practical

purposes given a large amount of multicollinearity among the

independent variables.

Since the correlation among the independent variables

is often a natural phenomena, one cannot always alleviate

the difficulty brought about by the multicollinearity simply
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by changing the experimental design. In such cases one is

forced to drop factors to destroy the correlation bonds

among the independent variables. This proves to be

unsatisfactory if the initial desire was to use the

estimated independent variables for control and

optimization. An alternative is to abandon the usual least

squares procedure and resort to biased estimation

techniques. In using a biased estimation procedure, one is

essentially willing to allow for a certain amount of ~ias in

the estimates

estimators.

in order to reduce the variances of the

1.4 Ridge regression

Hoerl and Kennard [12] have established that on

the average, the distance from b to P will tend to be large

if there is a small eigenvalue of X'X. In particular, the

worse the conditioning of X'X, the more b can be expected to

be too long and the further one can move from it without an

appreciable increase in the residual sum of squares. Thus

if B is an estimate of the vector P, it is only reasonable

to fix its squared length at p, where p
constant, and then try to locate the

is a finite positive

value b* of B that

gives

Hence,

a minimum sum of squares for the mode I (1.2.1).

we need to minimize the residual sum of squares

subject to the single constraint that B'B = P . The method

of Lagrange multipliers requires the differentiation of
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F = (y - XB)' (y - XB) + k (B'B - p) (1.4.1)

with ~espest to B and equating to zero, whe~e k~O is the

Lag~ange multiplie~"

Now (1.4.1) can be expanded as

F (y - XB)' (y - XB) + k (B'B - p)

v ' y - 2 I:1X' y + B~' XB + k ( B' B - p ) . ( 1 • 4 • 2 )

Then

-2,r'y + 2,r'.u + 2kB o

(1.4.3)

which can be simplified to,

[ X ' X + k I ] B X'y

o~ b* (1.4.4)

whe~e b* = [b.:.*,b1*, """' bp*] is ·the new estimate, called

the ~idge ~eg~ession estimate of O.
Now f~om (1.4.4) we can w~ite,

E(b*)
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(1.4.5)

Thus b~ is a biased estimate of

B and has variance given by

From this, we get,

Total Variance= trace var (b·)

where lo!11! ... !l~>o are the eigenvalues of X'X.

The total mean square error is

E[(b* - B)'(b* - B)J = trace[E(b* - P)(b* - P)1

= trace[E(b* - AP)(b* - AP)' + E(AP P) (All

(1.4.6)

(1.4.7)

p )']
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trace(AP - P)(AP - P)' (1.4.8)

which in terms of the eigenvalues of X'X can be expressed as

(1.4.9)

where a = PP = (aQ, and P is an orthogonal

matrix satisfying

pi (X'X)P = A = Diag( l:., ... , .A.:,)

and pip = p~ = I (1.4.10)

Having obtained the above equations it can easily be shown

(see Kibua[14]) that ridge regression estimators are an

improvement on ordinary least squares estimators by

comparing the mean square errors in (1.3.1) and (1.4.9).

1.5 Method of the ridge trace

The essential parameter that distinguishes

ridge regression from ordinary least squares is k, which may

be referred to as the bias parameter. As k increases from

zero, the bias of the estimates also increase and the

regression estimates all tend toward zero. Hoerl and
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Kennard [12) have proved that there is always a positive

value of k < u2 la2~_M for which the ridge estimates will be

stable with respect to small changes in the estimation data.

In practice, a value of k is chosen by

••• , bl'> '" for a range of values of k between o and 1 and

plotting the result against k. The resulting graph is known

as the ridge trace and is used to select an appropriate

value for k , It should be noted, however, that although in

most practical cases the value of k falls between 0 and 1,

there do exist instances for which the value is actually

greater than 1, as has been demonstrated by Brown and Payne

[4) .

Example 1.

Consider the data in table 1.1 in which measurements

were taken on 9 infants. The aim of the experiment was to

arrive at a suitable estimating equation relating the length

of an infant to all the independent variables, namely age,

length

birth.

at birth, weight at birth and the chest size at
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Table 1.1 data relating to infant length.

Infant Age, Length at Weight Chest

length, xddays) birth, at size at

y (cm) x::dcm) birth, birth,

x,~dKg ) x4(cm)

57.5 78 48.2 2.75 29.5

52.8 69 45.5 2.15 26.3

61.3 77 46.3 4.41 32.2

67.0 88 49.0 5.52 36.5

53.5 67 43.0 3.21 27.2

62.7 80 48.0 4.32 27.7

56.2 74 48.0 2.31 28.3

68.5 94 53.0 4.30 30.3

69.2 102 58.0 3.71 28.7

Source: Walpole, H.E and Myers, R.H 1978[16]

The computations for bo*, ••. , b4* for 05k50.5 were

carried out on a computer and plotted against k. The

resulting ridge trace is shown in Figure 1.1
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It is evident that some of the coefficients estimated

are overestimated and are notordinary least squares method

by

In particular, moving a short distancecollectively stable.

from the least squares point k=O, shows a rapid decrease in

the absolute value of boo

The selection of k

Since for k)O, b* is biased and its bias increases

with k while the total variance is a decreasing function of

k, the idea of ridge regression is to pick a value of k for
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which the reduction in total variance is not exceeded by the

increase in bias. The behaviour of b* as a function of ·k is

easily observed from the ridge trace. The value of k

selected is the smallest value for which b* is stable and

for which the residual sum of squares should remain close to

its minimum value while the variance-covariance matrix of b*

gives the appearance of an orthogonal system.

1.6 A brief litterature review on rotatable designs

The concept of response surface and designs for

Much of thethe exploration begun in the chemical industry.

early work was done by statisticians and chemical engineers

in the Imperial chemical industries in Great Britain.

Box and Hunter [3J suggested the property of

rotatability as a desirable quality in an experimental

design. This property requires that one should be able to

rotate the design through any angle around its centre and

yet leave the variances of the response unchanged. Such

designs permit a response surface to be fitted easily and

provide spherical information contours. Box and Hunter[3J

went further to derive the necessary and sufficient

conditions for a design of order two to be rotatable. They

also constructed designs through geometrical configurations

and obtained several rotatable designs of order two.

Draper[8J obtained some rotatable designs of order three in

three factors and also some specific rotatable designs of
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the same order but which were sequential. Kibua [14]

applied ordinary ridge regression in the analysis of second

order rotatable designs and demonstrated its superiority in

matrix. However, the ordinary ridge regression

the design

method is

the case where there was 'ill-conditioning' in

subjec t to further improvement by using the minimum mean

square error estimation technique, described in the next

chapter.

1.7 Aim and scope of the study

Ridge regression is a relatively new

technique and, as such, its full impact as a practical tool

has yet to be adequately~investigated. However, there are a

few r-esear-ches that have begun to provide the type of

insight that a pr-actitioner- needs. It was in this r-espect

then, that this work was conducted to explor-e a pr-actical

procedur-e developed by Hemmerle [ 11] for obtaining the

minimum mean square error estimator for- gener-alized ridge

regr-ession methods and to illustrate its usefulness in the

analysis of third or-der rotatable designs.
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CHAPTER II
MINIMUM MEAN SQUARE ERROR ESTIMATION

2.1 Introduction

In this chapter we examine the minimum mean square

error linear estimator (MIMSEE) in ridge regression in its

genera I form. This is an estimator for which the value k

has been chosen so as to minimize the total mean square

error. Thus instead of taking a single value for k, we

consider several different values, say ko, k1' ..., that

is , we consider separate ridge parameters for each of the

regression coefficients. Now since X'X is a real p-square

symmetric matrix, the conditions stipulated in (1.4.10) are

applicable to the model (1.2.2) and the multiple linear

regression model can be written in canonical form as

y == X*a + £

Where

X* == XP' and a ==PB (2.1.1)

2.2 The generalized ridge regression estimates and MIMSEE

The generalized ridge regression estimates are

generated by a constrained least squares approach in which

the error sum of squares is minimized subject to the

constraint that 81. == p1.' i==O, 1, ... , p , where the p1.'S are

fini te positive constants. As a result of the constraint

applied to the 81.'s the relationship
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a'" = Pb'"

necessarily restricts the magnitudes of the d"'.i.·sfrom

becoming too large. To minimize the error sum of squares

for the canonical model (2.1.1) subjec t to the above

constraints thus requires the use of p Lagrange multipliers,

. .., k", • Taking derivatives of

F = (y - XB) (y - XB)' + K (Em - p) (2.2.1)

with respect to the unknown parameters and equating to zero,

we thus obtain the system of equations

a'" = (X""X'" + K)-1 X"'y (2.2.2)

where

... , k",)

wi th k.i.>0 for i = 0, 1, ... , p

By restricting the magnitudes of the coefficients in the

minimization procedure, we have, in effect, added constants

to the diagonal elements of X""X* and consequently

introduced some bias into the estimates. However,

as

the

theaddition causes the matrix X""X'" to behave if

variables are orthogonal to each other, thus increasing

stability in the estimates of the coefficients.
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values for the k~~

Optimal values for the k~'s in (2.2.2) are those that

minimize the total mean square error. From (1.4.9) it

follows that

0" E[a·-«) '(a·-«)]

(2.2.3)

The differentiation of (2.2.3) with respect to the k~'s

yields the minimization equations

oQ 2).i (Ai + ki) (ki«~ - (2
)

ak 1. '" ( ). 1. + k.1) 4

o , i = 0, 1, ... , p.

(2.2.4)

From the full rank assumption of X'X we have that l~>o Vi

so that restricting the k~'s to be non-negative yields the

solutions

,1=0,1, . . ., p .

(2.2.5)

unfortunately, u2 and a~ s are unknown and hence are not

operational. Thus we are forced to use their estimates. In

practice one estimates u2 by where
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(y-X*&) '(y-X·&)
n-p

(2.2.6)

using the ordinary least squares procedures. As for the

estimation of CC.:land consequently kJ., i=O, 1, ... , p ,

suggestion is given on the use of the following iterative

procedure:

Step 1. Using ordinary least squares procedures on the

canonical model, estimate the cc.:l·sby computing

~nd estimate u~ by 52.

Step 2. Use the value of 52 and the cc.:l·sfrom step 1 to

compute

,1= O,l, •.• ,p

Step 3. Use the k.:l·sto solve the expression

a* [(X*)'(X*) + K]-1(X*)y

and thus obtain initial estimates of the d*J.·s.

Next compute

Step 4. Repeat steps 2 and step 3
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and again compute d*'a*.

Step 5. Continue the iterative procedure and terminate

only when stability is achieved in d*'a*.

step 6. The generalized ridge regression coefficients are

then computed from the formula b* = P'a*,

obtained from (2.1.1)

Example 2

Using the data provided in table 1.1, and with the help

of the computer program given in the appendix, the results

of the above iterative procedure are given below.

The orthogonal matrix P is given by

0.997400 0.019620 -0.046130 -0.050710 -0.005130
0.009957 0.818800 0.490100 0.036790 0.296400

p= -0.028000 0.380100 -0.823800 0.318000 0.273700
0.060B50 -0.126100 0.245200 0.943000 -0.176100

0.0228900 -0.410800 0.137200 0.075580 0.897900

(2.2.7)

and

0.013388 96.34414 -1.13871 -0.55801 1.289425
0.008214 86.68112 -3.40199 -0.08743 1.697557
-0.01662 95.45551 1.31328 0.19212 3.989337
-0.00372 107 .1009 4.80001 -0.24344 3.785841

z· = 0.025926 84.12403 -1.51928 0.39286 3.064381
-0.00B51 97.40796 -0.20715 0.93824 -1.05717
-0.02739 92.59906 -2.96271 -0.30625 1.794449
0.023176 112.0915 1.70051 -0.07788 -3.78934
-0.01237 120.5965 -0.00323 -0.13529 -7.87097

(2.2.8)
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so that

0.002721 0 0 0 0
0 89630 0 0 0

x: 'z- = 0 0 51.66 0 0
0 0 0 1.568 0

0 0 0 0 124.9

(2.2.9)

The ordinary least squares estimate of the coefficients are

then

b=(7.2177, -0.27722, 1.557625, 4.544891, -0.06157)'

with the mean square error calculated to be 752.922

(2.2.10)

On the other hand the ridge method gives

b*=(0.26998, -0.08811, 1.13259, 3.84959, -0.04645)'

as the estimate of the regression coefficients with a mean

square error of 11.84962. (2.2.i1)

Thus using the mean square error as our basis for

comparison, then as expected, the ridge method is preferred

to the ordinary least squares procedure, due to its smaller

value.

2.3 A non-iterative solution for generalized

ridge regression

We assume the model has already been reduced to

the canonical form expressed in (2.1.1). The general ridge

estimation procedure is then defined as
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d* = [(X*)'(X*) + K]-1(X*)y (2.3.1)

where K is a diagonal matrix with non-negative diagonal

. . . , kp •

The iterative procedure to estimate k~ is described by the

formula

k.1(j) = i=O,l, ... ,p

(2.3.2)

where the bracketed j subscript is used to denote th~ jth

iterate, and take d*~(o) = d~ i =0, 1, ..... , p as initial

values, where d~ is the ordinary least squares estimate of

a~.

We first give an explicit formulation of the above

procedure, in terms of matrices. To this end we represent

the (p+1) vectors of (X*)'y and a*(3) as diagonal matrices.

Let

B ::0

[(X·) 'y) 0 0

o [(Z·) 'y) 1

o
o

o o
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and

a;(j) 0 0

0 a~(j) 0
Aj

0 0 . d;(j)

(2.3.3)

As a consequence we have that

(2.3.4)

where A is the diagonal matrix of characteristic roots of

x ' X. The iterative procedure may now be described by the

matrix formula

(2.3.5)

or

(2.-3.6)

which can be reduced to

AJ-+-i (2.3.7)
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Next, we let

D in (2.3.7) and obtain

(2.3.8)

An expression for A-~3~1 is then given by

(2.3.9)

However, the matrices in (2.3.9)

Thus we can write

are diagonal and commute.

(2.3.10)

so that

(2.3.11)

and if we let

E3 = D-1A-=3 (2.3.12)

the iterative procedure is reduced to the simple formula

(2.3.13)

Now assuming that " 0 \I i and that the iterative

procedure is convergent, that is
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(2.3.14)

then from (2.3.13) and (2.3.14), we must have the

relationship

E* = E<:>(1+ E*)=' (2.3.15)·

or, if expanded,

(E*)=' + (21 - E-10)E* + 1 = 0 (2;3.16)

Now (2.3.16) consists of (p+1) equations of the form

(e*)=' + (2 - 1/eo)e* + 1 o (2.3.17)

where eo and e* are scalars. Solving for e* we obtain

(1-2 eo) ± i (1 - 4 eo )
2eo

(2.3.18)

Converqence conditions

The matrix formula (2.3.13) also consists of (p+1)

separate iterative expressions of the form

(2.3.19)
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are scalars and the subscript j is used

to denote the jth iterate. It is of much interest to know

for what range of values for e.:. the expression (2.3.i9)

converges or diverges. But first we need the fo 11 owing

lemma.

Lemma

The iterative procedure defined by (2.3.19) converges for

e.:. '''''.

proof

We first observe that for eo>O we have

and proceeding inductively, we obtain

for eo (2.3.20)

Now for eo = ~ let

1 - 3/23
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~eo(1 + g1) = gz 1 - 3/24

In order to argue inductively, assume that

Then

and

1 - 3/23-+-3

Consequently for all j we have

.'"for e<:. (2.3.21)

Combining this result with (2.3.20) yields

(2.3.22)

which is a monotonically increasing sequence of real numbers

bounded from above, so the iterative procedure converges. •

Observe from (2.3.18) that we must have

1

(2.3.23)
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Now suppose that the iterative procedure defined by (2.3.19)

converges for eo and that we have 0 < e'o ~ eo. Clearly,

for the pr imed sequenc"e e'(:.,e\, ... , e' 3 ,... , we mus t have

e3 so that the primed sequence converges to a limit

(e* )' ~ e*. This fact suggests that the iterative procedure

defined by (2.3.19) converges whenever 0 < eo ~ ~ .

Now consider equation (2.3.18), and take 0 < eo < 'I.t •

Taking the positive sign and squaring the right hand side

gives

=
(1 - 2eo):3 + 2 (1 - 260) v'{1 - 4eo) + (1 - 460)

4e;

>
(1 - 280):1 + 2 (1 - 480) + (1 - 460)

4e;

= 1 +

> 1,

which contradicts the fact that we must have e* ~ 1.

Consequently, an explicit solution for (2.3.19), valid

whenever 0< eo ~ ~ is given by
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(1 - 2eo) - i(l - 4eo>
2eo

pr-ocedur-e diver-ges and thus

,

is negative and

1
eo , for eo > 4

Explicit sol~tion for optimal d*

Let

Then since

we have that

o for 1
e.1(Ol >-4

the iter-ative

(2.3.24)

(2.3.25)

(2.3.26)

(2.3.27)

(2.3.28)

whenever- the pr-ocedur-e defined by (2.3.19) diver-ges for- the
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ith equation. Thus we let

for e.f.(':')> '-'4 (2.3.29)

When the procedure converges for the ith equation we have

that

[(X·) 'y] 1
=Ai + Aie; (1 + e;>

,

(2.3.30)

for 0 < e.f.(O)! ~ , where e*.f.is evaluated using the formula

(2.3.24).

8y applying (2.3.29) and (2.3.30), we obtain an explicit

sGlution for all of the optimum generalized ridge regression

estimators d*.f.,i=O, 1, ... , p.

Example 3

Still making use of the data in table 1.1 together with some

of the results obtained in example 2 of section 2.1, we can
calculate the following;

a=(7.50697, 0.613404, 0.241795, 4.274334, 0.450613)'(2.3.31)
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so that from (2.3.12),

and hence

e,:,(c:> ) =13.336 This is greater than 0.25 and so we

the value zero to

Also

This is less than 0.25 so that

Similarly, for the remaining ones we get,

e::2(o)=0.677, 0*2=0

e3(o)=0.071, 0*3=3.9436 and

e4 (':» =0.081, 0*4=0.4107

Hence

d* (0, 0.6134, 0, 3.9436, 0.4107)'

and the resulting solution for b* is given by

(2.3.32)

assign

(2.3.33)
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b* (0.2555, -0.1638, 1.3239, 3.772, -0.1439)'

from which the mean square error is equal to 5.6945 which,

as expected, is less than that of the previous example.
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CHAPTER III
ROTATABLE DESIGNS OF UPTO THIRD ORDER

3.1 Response surfaces
Suppose we have a system which involves a response

variable, y, which depends on the level of some random

variables {1, {2, ..., CPo We assume' that the levels of

the {~'s can be controlled by the experimenter with

negligible error. The experiment is conducted with design

variables Xl, X2, ... , Xp, which are usually simple.

transformations of Each treatment can then be

represented by a point with coordinates (xrs, X2~, ..., xp~)

in a p-dimensional factor space at the point Yi ,i=l, 2,

...,n. Since the freedom to choose the levels of the {'s is

ours, it is normally convenient to have them equally spaced,

The relationship between { and x can then be expressed as

Xj1 = 'Jt. - CJ
'j1 - '1(.1-11

,

where '1 = till
:l=1 n

(3.1.1)

In general, the response is a function of the random

variables ... , and is often unknown. The
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basic response procedure is thus to approximate f(.) with a

low order polynomial and to use sample data to fit least

squares estimates of the coefficients of the polynomial.

Occasionally, in factorial experiments, the

relationship
studied. In

response and

between the response and factor levels is
order to get the relationship between the

the factor levels, a set of treatment

combinations are suitably chosen. Such a set of treatment

a response surface.

and the

These

combinations is called a response surface design,

prior mentioned relationship,

surfaces can
polynomials.

second degree or higher degree

connected with the

be linear,

The main considerations

exploration of the response surface are;

i) performing statistically designed experiments

ii) estimating the coefficients in the response surface

equation

ii i) checking

iv) studying

interest.

on the adequacy of the equation and

the response surface in the region of

In this work, particular consideration is given to the

estimation of the coefficients in the response surface

equation of order three using ridge regression techniques.
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3.2 Rotatable designs

Let p factors F1, F2, ... , Fp affect the yield in a

particular character and let the expected yield satisfy the

functinal relation y=f(x1, X2, ... , xp) where X1, X2, ..... ,

xp are the levels of the factors F1, ... ,

respectively, used for getfing that response. We assume

that f(.) can be represented by a polynomial of degree 'd'.

A p-dimensional design of order d is said to be a rotatable

design if the variance of the estimated response at the

point (X1, X2, ...... , x-, ) is a function of a constant, p ,

given by

(3.2.1)

This property is a reasonable one to adopt for exploratory

work, in which the experimenter does not know in advance how

the response surface will orient itself with respect to the

x-axis. Consequently, he has no rational basis for

specifying that the vaiiance of the estimated response

should be smaller in some directions than in others.
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3.3 First order designs

The simplest kind of surface which could possibly

be used to describe the response y, as a function of the p

factors is a first order surface. Its equation is of the

form

Yu = t3oxou + r t3iXiu + tu, u=1, 2, ... , N (3.3.1)

where 0's are unknown constants and XOu - 1, V u

E(tu)=O, Var(tu)=a2 (unknown)

The summation is taken over i=1, 2, ... , p

The experimental design to estimate t3's can then be written

as E(y)=X6 where X is of the form (1.2.2)

We can choose X such that the estimates of 6 are orthogonal

and the experimental design is rotatable, that is, Var(yu)

is fixed for all (X1u, X2u, ... , xpu), which satisfy

p'- (some constant) , u"'l, 2, ... , n.

(3.3.2)

~ 1 'J"E v, (," (1, '/I J" ,.,
'. I r '.l- ..l.

HI M 1. IMiU.' r
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3.4 Second order designs

A second order response surface is represented by

the polynomial equation

(3.4.1)

where ilo, il1, ... , ilp, il11 , .... , il(p-1)p are

constants.

The design used to estimate the unknown constants is known

as second order response surface.

Box and Hunter [3] showed that the moment conditions

necessary for the n points (X1u, X2u, ... , xpu) u=l, 2, ...... ,

n to form a second order rotatable design are

and

(3.4.2)

that is, each of the sum of powers or sum of the product of

powers of the x~u·s with at least one power odd is zero.

Further,
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,

n1: xluK]u ::I nfl4
u=l

for i-"'j

(3.4.3)

where ~'s are constants.

They also showed that in order that X'X be non-singular, ~2

and ~4 must satisfy

114 > --E-.
J1~ p+2

(3.4.4)

Also, if the design matrix X of n runs does not

satisfy (3.4.4) then an addition of one or more central

poi n ts (0, 0, ... ,0) co u Ids a tis fy the con d it ion (3. 4 .4) an d

the final design matrix will be a rotatable design of order

two.

3.5 Third order designs

If Yu is the response at the uth experimental

point then the polynomial equation of third order may be

expressed as
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(3.5.1)

Or, in vector notation, as

Yu = Xu~ + tu v u ,

where

Xu = (XOu, x ro , .., Xpu, X21u, ., X2pu, x i o xao , ... ,

X(p-l)uXpu, XluX2uX3u, . , X(p-2)uX(p-l)uXpu) , and

XOu = 1 V u ,

also,

= (~O, ... , ... , ..., t3(p-l)p,

... , /3ppp, ., /3(p-2)(p-l)p),

E(tu) - 0, Var(tu) = 02

and Cov( tutu) - 0 for u "-u u = 1, 2, ... , n.

For third order rotatable designs, Box and Hunter[3] showed

that the moment conditions for a set of points to form a
rotatable arrangement are:
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a) the sum of powers or the sum of the product of

powers of the Xiu'S with at least one power odd is

zero,

b) the sum of powers or the sum of the product of

powers of the Xiu'S with even powers is constant, that

is,

for 1 fJ j and,

for i ,.j f' k .

(3.5.2)

Further the design matrix must satisfy the additional

conditions

(3.5.3)
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and'

J12J.l.6 > p+2
ll! p+4

(3.5.4)
in order that XiX be non-singular.

However, if the design matrix X does not satisfy the

conditions of non-singularity due to equality in (3.5.3),

then the addition of no central points (0, 0, ...,0) could

satisfy (3.4.7). The corresponding values of P2, P~, pe

obtained by the addition of these points would then be,

.. nJ.l
2 • nJ.l,

Bnd .. .. nJ.l6112 = 114 == 116 == nJl6 ==,
n+no n+no n+no

•
Thus

J.I,
a (1+ nO)b > .;e:

.2 n Jl~ p+21-12

(3.5.5)
which implies that (3.5.3) is satisfied. However in case of

equality in (3.5.4) the addition of no central points
implies that

•Jl4
p+2
p+4

(3.5.6)
Thus (3.5.4) is not satisfied. Hence the mere addition of
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central points will not enable the design to satisfy
condition (3.5.4). Draper [7] proved that in order to
obtain third order rotatable designs in this case, one must
combine at least two spherical sets of points with different
positive radii.

3.6 The moment matrix X'X of third order rotatable designs

It is noted that (3.5.1) has its right hand side
containing all possible terms up to and including third
order. However, the terms are grouped in a particular form
so that the sub-matrices in X'X are easy to handle, as they
appear in the diagonal of the moment matrix. The model in
expanded form is

+ ~12X1X2 + ~13X1X3 + ... + ~(p-l)pXp-1Xp

+ ~123X1X2X3 + ~124X1X2X4 + ...

+ ~(p-2)(p-l)pXp-2Xp-1Xp (3.6.1)
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If we write

Y = (Y1, Y2, ... , Yn)'

..., X1uX2u, ... , X(p-2)uX(p-1)UXPU)'

u = 1, 2, ... , n

and define X

written as

... , Xn ) , , thenth e model can be

E(y)=XJ3 (3.6.2)

Here y is an nx1 vector, X is an n x (p+3)(p+2)(p+1)/6

matrix and J3 is a (p+3)(p+2)(p+1)/6 x 1 vector. Hence the

moment matrix X'X is a square matrix of dimension

(p+3)(p+2)(p+1)/6.

When a third order rotatable design is used to estimate

the coefficient of the cubic model (3.6.1), the moment

matrix X'X takes a particularly simple form due to the fact

that the moments of the design obey the conditions given in

(3.5.2).
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Thus we have

Q 0 0 0 0 . 0 0

~,I1 0 0 0 0 0

~ 0 0 0 0
x.. 0 0 0

Z'Z:;;; n
(symm. ) .~ . 0 0

r, 0

~6Ia

(3.6.3)

Where 0 denotes a matrix consisting entirely of zeros and of

dimensions appropriate to its position in X'X and where the

other sub-matrices are defined as follows:

(3.6.4)

is of dimension (p+l) x (p+l), where further

G11. = 1

and

3 1 1 · 1

1 3 1 · 1

G33
;::; 11. 1 1 3 1

1 1 1 · 3 pxp

(3.6.5)
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Also

r,. = [.Ki.1 .Ki.2]
.If:a1 K:a2

(3.6.6)

where

L
(3.6.7)

11« 1
3116 :2)( (p-l)

(3.6.8)

and

3 1 1 · 1
1 3 1 · 1

.K;, = ~6 1 1 3 1

1 1 1 · 3 (p-l) )((P-l)

(3.6.9)

Ks, . . . , are similarly defined and are all of

dimension (p+l) x (p+l).

11 and 12 are identity matrices of dimensions

~ p(p-l) x ~ p(p-l) and p(p-l)(p-2)/6 x p(p-1)(p-2)/6

respectively. (3.6.10)

The inversion of the moment matrix X'X now reduces to the
inversion of the submatrices. The inverses of the
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submatrices are worked out below.

(3.6.11)

where

(3.6.12)

(3.6.13)

and

(3.6.14)

Now

p+1 -1 -1 -1
-1 p+1 -1 -1

s;; = 1 -1 -1 p+1 -1
2J1« (p+2)

-1 -1 -1 p+11J)(1J

(3.6.15)

-1 Jl2 1 '
Q12~2 •• JI, (p+2) 1><1'

,

(3.6.16)
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and

,

(3.6.17)

so that

Hll = Jl, (p+2)

11,(p+ 2) -1l~P

H12 = H'u '"
Jl2 l'hP

114(p+2) - Jl~P
,

and

cdd d
d cd. d

~3 = d d c d

d d d . C P)(P

where

c = 11-4 (p+l) (p+2) - Jl~ [p(p+l) -2J

21l4(P+2) [1l,,(p+2) -JL~pJ

and

d =

(3.6.18)
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where the entries of K-l are defined similar to expressions

(3.6.19)

(3.6.12), (3.6.13), (3.6.14). Then

and

so that

P -1 -1
-1 P -1

Jr;-: = 1 -1 -1 p
2Jl6 (p+1)

-1 -1 -1

-1.Jt;.2 r:.2 =

K12 ~-: K21 =

-1

-1

-1

p (»-1»( (p-1)

(3.6.20)

(3.6.21)

(3.6.22)

(3.6.23)
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Where

e = Jl6 (p+4)

.. (3.6.24)

Also

, [f
L1.2 ••• L 21 ". h

f
h

(3.6.25)

where f is as defined in (3.6.24) and

(3.6.26)
Then

1 hh · h
h 1 h · h

L:a:a = h h 1 h
i

hhh · 1(p-l»( (p-l)

(3.6.27)

where h is as in (3.6.26) and
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1 =

(3.6.28)

Finally,

and

(3.6.29)

thus

Q-1. 0 0 0 0
1 0 0 0-It

Jl4

(%'%)-1 1 X-1 . 0 0
=

n
(symm. ) . X-I 0

~.I
JL6 2

(3.6.30)

The least squares estimates of the coefficients may then be

obtained from (1.2.6), and the corresponding estimates of

the coefficients using ridge regression techniques, from

(2.1.1) and (2.2.1). However, with the latter, we need not

find an expressions similar to (3.6.30) for (X'X + K)-l,

since the non-iterative solution given in section 2.3 gives

the value of d* in (2.3.1) explicitly without first

obtaining the matrix K. This is illustrated in the next

chapter.
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CHAPTER IV
APPLICATION OF RIDGE REGRESSION ON THIRD
ORDER ROTATABLE DESIGNS IN THREE FACTORS

. \

4.1 Introduction
Suppose that an experimenter is interested in

three experimental factors and that these factors have been

coded so that an experimental design for examining them can

be described by referring to a set of points (Xl, X2, X3) in

three dimensional cartesian space, rather than to the actual

factor levels. Suppose, further, that a dependent variable
y is observed as resulting from the experiment and that it

is desired to estimate by least squares, the coefficients of

a selected polynomial function of Xl, X2 and X3 which, it is

thought, will give a satisfactory representation of y. For

the estimation of a cubic function of the form given in

(3.6.1), the model under consideration becomes,

E(y) = ~o + ~llXl2 + ~22X22 + ~33X23

+ ~l2XlX2 + 0l3XlX3 + 023X2X3

+ 0lXl + 0lllX3l + 0l22XlX22 + 0133X1X23

+ 02X2 + 0222X32 + 0112X21X2 + ~233X2X23

+ 03X3 + 0333X33 + ~113X21X3 + ~223X22X3

+ 0123X1X2X3.

(4.1.1)
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Certain third order rotatable designs have been proposed by

Draper[7], suitable for estimating a third order or cubic

polynomial. These are such that the designs consist of two

parts, each of which is a second order rotatable design.

Thus an initial quadratic fitting can be attempted using one

part of the design only. If the model is found to be

inadequate, the second part, which completes the third order

rotatable design, is then added. For our pruposes, we shall

assume the latter to be the case.
I

The model (4.1.1) is of the same form as the one in

(2.1.1). Thus we will use the generalized ridge regression

method described in chapter II in the estimation of the

unknown coefficients as illustrated below.

4.2 Illustration

As noted in the previous section, Draper[7]

established that certain pairs of second order rotatable

design classes could be combined in such a way that infinite

classes of third order rotatable designs for three factors

were formed. Two such classes of second order rotatable

designs are shown in table 4.1. For each class is shown a

reference designation D1, the points which form the class,

the number of points in the class and a restriction on the

parameters which must hold in order that the fourth order

relationships of equations (3.4.3) can be satisfied. The

third order rotatable design given here is derived from
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these two cla~ses of second order rotatable designs by
combining them as demonstrated by Draper[7].

Table 4.1 two classes of second order rotatable designs

reference Dl D2

points in class (±a, fa, fa) (±f, if, 0)

(±Cl, 0, 0) (±f, 0, if)

(0, ±Cl, 0) (0, if, if)

(0, 0, ±Cl) (±a, fa, fa)

(±C2, 0, 0) (±c, 0, 0)

(°, ±C2, 0) (0, ±c, 0)

(0, 0, ±C2) (0, 0, ±c)

No. of points 20 26

restriction C41 + C42 = 8a4 c4 = 2f4 + 8'a4

Source: Draper, N.R (1962) [8]

We take Dl with a = 1, c 1 =C2 = "2

and
with f = "2, a = 1, c - 2
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Then for the third order rotatable design,

n - 50, ~2 n = 48, ~4 n = 32, and ~6 n = 16

so that

J1c 50=
J1~ 72

and

(4.2.1)

There are two stages in this example. In the first stage 01

is used with four centre points and a response surface of

second order is fitted to the 24 experimental results.
Assuming that the model provides an inadequate
representation of the true response relationship, it is
decided, then, to complete the design by running the 26

point 02 portion with no additional centre points, and to

analyze the total set of 50 observations by fitting a third

order response surface. For the analysis, we use the

generalized ridge regression techniques of section 2.3,
which, as has already been noted, is possible due to the

nature of the model (4.1.1). The 24 observations from the

first part of the design are listed in Table 4.2 and the 26

observations from the second part appear in Table 4.3.
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Table 4.2

The design points and the observations, first set.

Number X1 X2 X3 Y

1 -1 -1 -1 34.727

2 1 -1 -1 38.917

3 -1 1 -1 44.907

4 1 1 -1 24.641
5 -1 -1 1 24.658

6 1 -1 1 45.636
7 -1 1 1 33.702
8 1 1 1 5.374
9 1.4142 0 0 33.414
10 -1.4142 0 0 38.540
11 0 1.4142 0 40.393
12 0 -1.4142 0 40.687
13 0 0 1.4142 23.869
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Table 4.2(cont. )

Number X1 X2 X3 Y

14 0 0 -1.4142 33.727

15 1. 4142 0 0 34.453

16 -1.4142 0 0 39.201

17 0 1.4142 0 38.335

18 0 -1.4142 0 40.092

19 0 0 1.4142 25.823

20 0 0 -1.4142 33.068

21 0 0 0 44.562

22 0 0 0 41. 187

23 0 0 0 43.832

24 0 0 0 42.165

Table 4.3

The design points and observations, second set.

Number X1 X2 X3 Y

25 -1.4142 -1.4142 0 17.252

26 1. 4142 -1.4142 0 56.277

27 -1.4142 2 0 55.478

28 1. 4142 2 0 5.946

29 -1.4142 0 -1.4142 40.856

30 1.4142 0 -1.4142 22.157

31 -1.4142 0 1.4142 19.753

32 1. 4142 0 1.4142 7.718

33 0 -1.4142 -1.4142 39.282
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Table 4.3 (cont.)

Number X1 X2 X3 Y

34 0 2 -1.4142 33.651

35 0 -1.4142 1.4142 33.942

36 0 2 1.4142 0.059

37 -1 -1 -1 32.802

38 1 -1 -1 39.394

39 -1 1 -1 47.553

40 1 1 -1 24.402

41 -1 -1 1 22.005

42 1 -1 1 46.184

43 -1 1 1 35.271

44 1 1 1 5.314

45 2 0 0 31.472

46 -2 0 0 35.209

47 0 2 0 33.338

48 0 -2 0 39.156

49 0 0 2 1.883

50 0 0 -2 27.891

Source: Draper, N.R (1962)[8]

For the third order rotatable design, with parameters

given by (4.2.1), the sub-matrices of the moment matrix X'X
in (3.6.3) are,
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0.9~ 0.96 0.96
1.92 0.64 0.64

1.92 0.64
1.92

0.96 1.92 0.64 0.64
4.80 0.96 0.96

K=
(syrom. ) 0.96 0.32

0.96

~4 11 = O.6411 and

The orthogonal matrix is then

p=

(symm. )

.R 0

B

Where

, \

(4.2.2)

(4.2.3)

~6 12 = 0.32 (a scalar)

o
0'
!'

o
o
o
u

0.886 -0.371 -0.273 -0.048
-0.385 -0.497 -0.463 -0.625R = -0.016 -0.605 0.790 -0.095
0.259 0.499 0.295 -0.773

1
0.707

S-0.70
0

7
0.707

-0.707
o ~l

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)
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0.64 -0.19 -0.21 -0.13 0.64 -0.19 -0.21 -0.13
-0.27 -0.62 0.16 -0.16 -0.27 -0.62 -0.16 -0.16
0.15 -0.30 0.46 0.42 0.15 -0.30 0.46 0.42
0.04 0.003 0.47 -0.53 0.04 0.003 0.47 -0.53

!'== 0.64 -0.19 -0.21 -0.13 -0.64 0.19 0.21 0.13
-0.27 -0.62 -0.16 -0.16 0.27 0.62 0.16 0.16
0.15 -0.30 0.46 0.42 -1.51 0.30 -0.46 -0.42
0.04 0.003 0.47 -0.53 -0.04 -0.003 -0.47 0.53

(4.2.8)

and

0.900 -0.262 -0.291 -0.189 0
-0.374 -0.870 -0.222 -0.232 0

(1;'::: 0.213 -0.417 0.652 0.596 0
0.060 0.004 0.664 -0.745 0

0 0 0 0 1

(4.2.9)

The vector of eigenvalues is

1=(6.371, 144.719, 62.629, 50.306, 32.000, 32.000, 32.000,

1.435,292.150,33.521,31.654,1.435,292.150,33.521,

31.654, 1.435, 292.150, 33.521, 31.654, 16.000)'

Using the notation of chapter II, the values of a1(0),

e1(0), e*1, a*1 and b*1 have been tabulated in table 4.4

below.
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Table 4.4

Summary of calculations

i j k a:l..jk(O) e:l..jk(O) e*1jk a*:l..jk b*1jk

0 56.4716 0.0003 0.0003 56.455 56.004

11 -19.976 0.0025 0.0025 -19.926 -21.424

22 3.245 0.095 0.119 2.900 12.221

33 13.313 0.0056 0.0057 13.237 -4.772

12 -6.672 0.0225 0.024 -6.518 -10.264

13 -8.123 0.0152 0.0156 -7.998 1.046

23 -3.468 0.0831 0.101 -3.151 -3.151

1 -6.855 0.0213 0.0222 -6.706 -4.827

111 1.449 0.476 00 0 0.526

122 -3.246 0.095 0.119 -2.902 0.0626

133 2.145 0.2173 0.469 1.4601 2.175

2 -1.237 0.6534 00 0 -2.909

222 -0.1452 47.418 00 0 2.542

112 6.689 0.0223 0.0234 6.536 -3.531

233 -3.231 0.0958 0.1202 -2.884 -0.865
- -KEY: 1 J k = 0 means that there 1S no entry.
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Table 4.4(conL)

i j k aijk(O) eijk(O) e*ijk a*1jk b*ijk

3 -1.2 0.694 OJ 0 -0.4047

333 2.1895 0.2086 0.4215 1.54 -1.34

133 -1.41 0.5055 OJ 0 0.643

223 0.1212 68.108 OJ 0 0.00595

123 -3.078 0.0156 0;1363 -2.708 -2.708

KEY:

i j k = 0 means that there is no entry.

The above illustration clearly demonstrates the
simplicity with which the concept of minimum mean

square error and ridge regression can be combined to

give the 'best' estimates of the coefficients of a

third order rotatable design in three factors. It

should be noted that the same procedure can be applied

to any number of factors.
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CONCLUDING REMARKS
Statisticians have begun to realize that certain

deliberately induced biases can dramatically improve

estimation properties when there are several parameters to

be estimated. This represents a radical departure from the

tradition of unbiased estimation which has dominated

statistical thinking since Gauss' development of least

squares method.
Unbiased estimators have been used on literally

millions of real problems, with generally satisfactory

results. Biased estimators have not. As such, their

theoretical superiority has yet to be tested in the rigors

of wide spread application. Primarily, the ridge regression

procedure is intended to overcome 'ill-conditioned'

situations where correlations between the various predictor

the X'X matrix to be close tovariables in the model

singular, and in the

cause

process giving rise to unstable

parameter estimates. The estimates may, for example, have

the wrong sign or be much larger than physical or practical

considerations would deem reasonable. This work brings to

notice one of the many statistical domains, namely, response

surface designs, in which biased estimation may be a useful

tool.
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APPENDIX
PROGRAM ITMETHOD

C THIS PROGRAM READS THE REGRESSION MATRIX X(M,N),
THE OBSERVED VALUES Y AND FORMS THE DESIGN MATRIX
FROM WHICH IT REDUCES THE DESIGN TO CANONICAL
FORM. IT THEN CALCULATES THE REGRESSION
COEFICIENTS AND THE MEAN SQUARE ERRORS USING BOTH
THE USUAL REGRESSION METHOD AND RIDGE REGRESSION
METHOD BY ITERATIONS.

C

DIMENSION A(20,20), X(20,20), Y(20), BETA1(20),
BETA2(20), G(20), XSTAR(20,20)
REAL MSE1, MSE2, LAMBDA(20), P(20)

c
OPEN(UNIT=5, FILE='INPUT', STATUS='OLD')
OPEN(UNIT=6, FILE='OUTPUT', STATUS='NEW')
M=9
N=5
READ(5, 100)«X(I,J),I=1,M),J=1,N)
READ(5, 101)(Y(I),I=1,M)
DO 5 I=l,N
BETA1(I)=0.
BETA2(I)=0.
G(I)=O.

5 CONTINUE
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DO 10 I=1,N
DO 10 J=1,N
A(I,J)=O.
B(I,J)=O.

10 CONTINUE
DO 20 1= 1,N
DO 20 J=l,N
DO 20 K=l,M
B(I,J)=X(K,I)*X(K,J)+B(I,J)

20 CONTINUE
CALL EIGEN(B,N,P,LAMBDA)
DO 25 I=1,M
DO 25 J=l,N
XSTAR(I,J)=O

25 CONTINUE
DO 30 I=1,M
DO 30 J=l,N
DO 30 K=l,N
XSTAR(I,J)=X(I,K)*P(K,J)+XSTAR(I,J)

30 CONTINUE
DO 40 I=l,N
DO 40 J= 1,N
DO 40 K=1,M
A(I,J)=XSTAR(K,I)*XSTAR(K,J)+A(I,J)

40 CONTINUE
DO 50 I=l,N

.\
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DO 50 J= 1,H
G(I)=XSTAR(J,I)*Y(J)+G(I)

50 CONTINUE

YY=O

DO 60 1=1,9

YY=YY+Y(I)**2
60 CONTINUE

CALL SOLVE(A,G,H,N,YY,K,ALFA1,ALFA2,SIG)

HSE1=0

MSE2=0

DO 70 1=1,5

MSE1=HSE1+(SIG*LAHBDA(I)+(ALFA1(I)*K(I,I»**2)/

(LAHBDA(I)+K(I,I»**2

HSE2=HSE2+(SIG*LAHBDA(I)+(ALFA2(I)*K(I,I»**2)/

(LAMBDA(I)+K(I,I»**2
70 CONTINUE

DO 80 I=l,N

DO 80 J=l,N

BETA1(I)=P(J,I)*ALFA1(J)+BETA1(I)

BETA2(I)=P(J,I)*ALFA2(J)+BETA1(I)

80 CONTINUE

100 FORHAT(5F5.2/)

101 FORHAT(9F3.1/)

200 FORHAT(5F7.4/)

201 FORHAT(5F7.4/)

202 FORHAT(5F8.4/)
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203 FORHAT( 'HSE BY OLSE HETHOD IS ',F10.4/)

204 FORHAT(5F8.4/)

205 FORHAT( 'HSE BY RIDGE HETHOD IS ',F10.4/)

300 FORHAT( 'INITIAL DESIGN HATRIX IS '/)

301 FORHAT('OBSERVED VALUES ARE'/)

400 FORHAT('THE ORTHOGONAL HATRIX IS'/)
401 FORHAT( 'VECTOR OF EIGEN VALUES IS'/)

402 FORHAT( 'EST. COEFF. BY OLSE IS'/)

404 FORHAT('EST. COEFF. BY RIDGE IS'/)

WRITE(6,300)

WRITE(6,100)«X(I,J),I=1,H),J=1,N)

WRITE(6,301)
WRITE(6,101)(Y(I),I=1,H)

WRITE(6,400)

WRITE(6,200)«P(I,J),I=1,N),J=1,N)
WRITE(6,401)

WRITE(6,201)(LAHBDA(I),I=1,N)

WRITE(6,402)

WRITE(6,202)(BETA1(I),I=1,N)

WRITE(6,404)

WRITE(6,204)(BETA2(I),I=1,N)

WRITE(6,203)HSEl

WRITE(6,205)HSE2'

STOP

END

************************************************************
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SUBROUTINE EIGEN(A,N,U,LAMDA)
REAL
A(20,20),U(20,20),LAMBDA(20),B(20,20),C(20,20),D(20,20),
IDENT(20,20),V(20),VZERO(20),Y(20),L,LZERO

MMAX=10000
MFREQ=500
EPS=1.0E-9
DO 1 I= 1,N

1 VZERO(I)=l
DO 2 I= 1, N

DO 2 J=l, N
2 IDENT(I,I)=l

CALL MATEQ(IDENT,B,N,N)
DO 11 I=1,N
CALL MATVEC(B,VZERO,V,N,N)
CALL VECLEN(V,LZERO,N)
DO 5 M=l,HHAX
IF «M/MFREQ)*MFREQ.NE.H)GOTO 4
CALL MATVEC(B,V,Y,N,N)
CALL SCAVEC(l/L,Y,V,N)

4 CALL HATVEC(A,V,Y,N,N)
CALL VECLEN(Y,L,N)
CALL SCAVEC(l/L,Y,V,N)
IF(ABS(L-LZERO)/LZERO).LT.EPS)GOTO 7

5 LZERO=L
IM1=I-1
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"FLAG=O
7 CALL HATVEC(A,V,Y,N,N)

DO 8 K=l,N
IF (ABS(V(K).LT.1E-3)GOTO 8
IF (V(K)*Y(K).LT.O)L=-L
GOTO 9

8 CONTINUE
9 LAHBDA(I)=L

DO 10 K=l,N
10 V(K,I)=V(K)

IF(I.GE.N)GOTO 11
CALL SCAHAT(L,IDENT,C,N,N)
CALL HATSUB(A,C,D,N,N)
CALL HATHLT(D,B,C,N,N,N)
CALL HATEQ(C,B,N,N)

11 CONTINUE
RETURN
END

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SUBROUTINE SOLVE(A,G,H,N,YY,K,ALFA1,ALFA2,SIG)
REAL A(20,20),G(20),K(20,20),B(20,20),BINV(20,20),ALFA1(20),
ALFA2(20),C(20),ALFAHD,ALFA,D,TOL

TOL=lE-4
ALFAHD=O
D=O
DO 1 1=1, N
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DO 1 J= 1,N
K(I,J)=O
B(I,J)=O
BINV(I,J)=O

1 CONTINUE
ITER=l

2 DO 3 I=l,N
B(I,I)=A(I,I)+K(I,I)
BINV(I,I)=l/B(I,I)

3 CONTINUE
DO 4 1=1, N
ALFA(I)=O
C(I)=O

4 CONTINUE
DO 6 1=1, N
C(I)=C(I)+BINV(I,I)*G(I)
IF(ITER.EQ.l)GOTO 5
ALFA2(I )=C(I)
ALFA(I)=C(I)
ALFAHD=ALFAHD+ALFA(I)**2
GOTO 6

5 ALFA1(I)=C(I)
ALFA(I)=C(I)
D=D+ALFA1(I)*G(I)
ALFAHD=ALFAHD+ALFA(I)**2

6 CONTINUE
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