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SUMHMARY OF CONTENTS

In this dissertation emphasis is placed on the
practicability of a non-iterative procedure for generalized
ridge regression as given by Hemmerle (1875) and its

application on third order rotatable designs.

In chapter I, we outline basic concepts on the theory of
regression analysis and give an introduction on the
principles of biased estimation and ridge regression
techniques. A statement of the problem of study is then

given at the end of the chapter.

Chapter II examines the minimum mean square error estimator
(MIMSEE) in ridge regression in 1its general form and
describes a non-iterative solution for generalized ridge
regression ss given by Hemmerle (1975).

Chapter III gives a general review of rotatable designs of
up to third order, giving particular consideration to the
estimation of the coefficients of a third order rotatable
design.

The application of ridge regression on third order rotatable
designs is considered in chapter IV, and an illustration of

its practicability given.
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CHAPTER 1
INTRODUCT ION

1.1 Introduction

In order to make a decision it 1is often necessary
to prepare a forecast. In order to prepare a budget it is
necessary to predict revenues. These and other decisions
can be made easier if a relationship can be established
between the variable to be predicted and some other
variables that are either known or are significantly.easier
to anticipate. For example, in an industrial situatiqn 1 o
may be known that the tar content in the outlet stream in a
chemical process is related to the inlet temperature and it
may be of interest to develop a procedure for estimating the
tar content for various levels of the inlet temperature from
experimental information. The statistical aspect of the
problem then becomes one of arriving at the best estimate of
the relationship between the variables. This leads us
therefore to regression analysis. The relationship is
expressed in form of an equation connecting the response or
dependent variable y, and one or more independent variables,
X1y X2y =+ 3 Xn 5 which are measured with negligible error
and are often controlled in the experiment. The
relationship, fitted to a set of experimental data, is
characterized by a prediction equation called a regression

equation.
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31.2 The general linear model and least squares estimation
Suppose the experimental data consists of n
observations on the respogse variable y and independent
variables x., ww o g (X Then the relationship between y

and X1y ... , %Xp can be formulated as a linear model

Y3 = Bo + Baixis + BaXzy + ... + BpoXps + £y

i=1, 2, ... ,n (1.2.1)

where Beo,Ba, - + B are constants called the model
regression parameters and ¢ 1s a random disturbance for
which it is assumed that for every fixed value of x4, Xy
5o s sXe 5 the e's are independently distributed with mean
zero and a common variance o=.

More compactly, (1.2.1) can be represented in matrix

notation as;

XB + ¢

<
Il

where

Y = [ys 3¥2 5.0y ¥Yn 1’ ’

=
I

_[BC',Bly--. ,Bp]’ . e =[81,82,---, en]’



and
1 Xi1 Xgq - xpl
1 X5 X35 -+ Xpp
X =
3 3 . '5! .
1 Xy, Xapn + o X
(1.2.2)
The nx(p+1) matrix is called the regression matrix and
is assumed to be of full rank (p+1l). Further assumptions
are
E(e)=0 , and E(eeh= o=1. . (1.2.3)
We use the method of least squares to obtain an
estimate of B. This method entails minimizing Ze=. , that

is the sum of squares due to the random disturbances, or the
residual sum of squares (R.5.5) with respect to B. From

(1.2.2) we can write

’

Ze=y = g'e

il

(y — XB) ' (y — XB)

y'y - BX'y - yXB + B'X’'XB

]

y'y - 28X’y + BX'XB {1.2.4)

The least squares estimate of B is then the value b which
minimizes eg’eg is determined by differentiating equation
(1.2.4) with respect to B and setting the resultant matrix

equation equal to zero. This gives,

-2X'y + 2XXB = O



or

X’'XB = Xy , S (1.2.5)

which gives us n equations, called the normal equations.
Since X is of full rank, X’X is nonsingular and hence its
inverse exists. In this case the solution of the normal

equations can be written as

b = (X'X) *Xy. (.2 .60)

We note that

E(b) = EL(X'X)"*Xy]
= EL(X’X)~2X(XB + g)]
=B + (X'X)"*xE(e),
that is
E(b) = B , using the assumption in (1.2.3). Hence

the least squares estimators are unbiased and have variance
given by,

Var(b) = E[(b - B)(b - B)']

EC(X"X) "2 X'ge’ X(XX)~1]

i

(X'X)"*Xo=I,X(X'X)"* , wusing (1.2.3)

(X'X)"1g= (1.2.7)



1.3 Biased estimation

Although 1t can be shown that the estimator b in
(1.2.6) has minimum variance in the class of linear unbiased
estimators(BGauss—-Markov theorem), there is no guarantee that
its variance will be small. If there is an excessive amount
of multicollinearity among the independent ‘variables, the
X’X matrix approaches a near singular condition, resulting
in extremely large values along the diagonal of (X’X)”l.
This can readily be established by noting that
multicollinearity is synonymous with small eigenvaIQEs of
the X’X matrix. Now from (1.2.7) the total variance of the

estimator can be expressed as,

I

Total variance tracel[var(b)]

il

o= trace(X’'X)—*
= ¢? i}:p )
1=0

(1.3,.1)
where Ao 2A: 2... 2A, >0 are the eigenvalues of X’X.
It is evident that this value may be too large for practical
purposes given a large amount of multicollinearity among the
independent variables.
Since the correlation among the independent variables
is often a natural bhenomena, one cannot always alleviate

the difficulty brought about by the multicollinearity simply
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by changing the experimental design. In Such\cases one is
forced to drop factors to destroy the correlation bonds
among the independent variables. This proves to be
unsatisfactory if the 1initial desire was to wuse the
estimated independent variables for control and
optimization. An alternative is to abandon the usual least
squares procedure and resort to biased estimation
techniqués. In using a biased estimation procedure, one is
essentially willing to allow for a certain amount of bias in

the estimates in order to reduce the variances of the

estimators.

1.4 Ridge regression

Hoerl and Kennard [12] have established that on
the average, the distance from b to B will tend to be large
if there is a small eigenvalue of X’X. In particular, the
worse the conditioning of X’X, the more b can be expected to
be too long and the further one can move from it without an
appreciable increase in the residual sum of squares. Thus
if B is an estimate of the vector B, it is only reasonable
to fix its squared length at p, where p is a finite positive
constant, and then try to locate the value b* of B that
gives a minimum sum of squares for the model (1.2.1).
Hence, we need to minimize the residual sum of squares
subject to the single constraint that B'B = p. The method

of Lagrange multipliers requires the differentiation of
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F = (y — XB)' (y — XB) + k(BB - p) (1.4.1)

'

with respegct to B and equating to zero, where k20 is the
Lagrange multiplier.

_ Now (1.4.1) can be expanded as

F = (y - XB)'(y — XB) + k(BB - p)

y'y — 2BX'y + BX'XB + k(B'B - p) (1.4.2)

Then

OF _ ox‘y+2xxB+2kB=0 ,

OB

(1.4.3)
which can be simplified to,
[X'X + kIIB = Xy

or b* = B = (X'X + kI)~*Xy (1.4.4)
where b* = [bua*, byi*, ..., by*] is the new estimate, called

the ridge regression estimate of B.

Now from (1.4.4) we can write,

E(b*) = (X’'X + kI)"XE(XB + @)

I

(X'X + kI)-1XXB
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(I + k(xX’'X)-*31-18

= AR, (1.4.9)

where A = [I + k(X’X)—-*r]—*. Thus b* is a biased estimate of

B and has variance given by

il

Var (b*) Var{(X’'X + kI)~*Xy)}

]

(X'X + KI)71XX(X'X + kI) *0= (1.4.6)

From this, we get,

Total Variance= trace Var(b"*)

i=p l’i £

= 2
’ f‘;ﬂ (A-i"’k)z

(1.4.7)

where Ao2A:2 ... 2A.>0 are the eigenvalues of X’X.

The total mean square error is

EC(b* - B) ' (b* - B)] = trace[E(b* - B)(b* - B)]

= tracel[E(b* - AB)(b* — AB)’ + E(AB - B)(AB - B)]



== A

= 02 tracel[(X’X + kI)=2XX(X’'X + kI)—*] +
trace(AB - B)(AB - B)’ (1.4.8)

which in terms of the eigenvalues of X’X can be expressed as

i=p A i-p k2¢3
E[(b* - “(b* - - 2 1 i
[( B) “( B)] = o g __.__.__._..(11 i ¥ X m(‘\x 5

14

(1.4.9)
where a = PB = (aw, Qi, ..., ax)’ and P is an orthogonal
matrix satisfying

P'(X’X)P = A= Diag(k;,, A.;_, ~ .y Ap)
and P'P = PP = 1 (1.4.10)

Having obtained the above equations it can easily be shown
(see Kibuall4]) that ridge regression estimators are an
improvement on ordinary least squares estimators by

comparing the mean square errors in (1.3.1) and (1.4.9).

1.5 Method of the ridge trace

The essential parameter that distinguishes
ridge regression from ordinary least squares is k, which may
be referred to as the bias parameter. As k increases from
zero, the bias of the estimates also increase and the

regression estimates all tend toward zero. Hoerl and
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Kennard [12] have proved that there is always a positive
value of k < 0% /a®qhan fOr which the ridge estimates will be
stable with respect to small changes in the estimation data.
In practice, a value of k is chosen by computing bs*, bi™*,
«.vy b for a range of values of k between O and 1 and
plotting the result against k. The resulting graph is known
as the ridge trace and 1is used to select an appropriate
value for k. It should be noted, however, that although in
most practical cases the value of k falls between O and 1,
there do exist instances for which the value is actually
greater than 1, as has been demonstrated by Brown and‘Payne

[471.

Example 1.

Consider the data in table 1.1 in which measurements
were taken on 9 infants. The aim of the experiment was to
arrive at a suitable estimating equation relating the length
of an infant to all the independent variables, namely age,
length at birth, weight at birth and the chest size at

birth.



Table 1.1 data relating to infant length.
Infant Age, Length at | Weight Chest
length, X3 (days) | birth, at size at
y(cm) x=(cm) birth, birth,

x=(Kg) Xa(Cm)
7 5 5 78 48.2 2.79 29.5
02.8 69 45.5 2.15 26.3
61.3 77 46.3 4.41 322
67.0 88 49.0 502 36.5
535.5 67 43.0 Jw 2.1 27.2
62.7 80 48.0 4.32 27.7
"56.2 74 48.0 2.31 28.3
68.5 94 58 .0 4.30 B30I
692 102 58.0 w71 28.7
—

Source: Walpole, R.E and Myers, R.H 19781161

The computations for be*,..., ba¥* for Of£k£0.5 were
carried out on a computer and plotted against k. The

resulting ridge trace is shown in Figure 1.1
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FIGURE 1.1

ridge trace

ridoe coerficlients

value of k
O bo + b1 o b2 A b3 X b4

It is evident that some of the coefficients estimated by
ordinary least squares method are overestimated and are not
collectively stable. In particular, moving a short distance
from the least squares point k=0, shows a rapid decrease in

the absolute value of beo.

The selection of k

Since for k>0, b* is biased and its bias increases
with k while the total variance is a decreasing function of

k, the idea of ridge regression is to pick a value of k for
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which the reduction in total variance is not e;ceeded by the
increase in bias. The behaviour of b* as a function of k is
easily observed from the ridge trace. The value of k
selected is the smallest value for which b* is stable and
for which the residual sum of squares should remain close to
its minimum value while the variance-covariance matrix of b*

gives the appearance of an orthogonal system.

1.6 A brief litterature review on rotatable designs

The concept of response surface and designs for
the exploration bequn in the chemical industry. Much éf the
early work was done by statisticians and chemical engineers
in the Imperial chemical industries in Great Britain.

Box and Hunter [3] suggested the property of
rotatability as a desirable quality in an experimental
design. This property requires that one should be able to
rotate the design through any angle around its centre and
yet leave the variances of the response unchanged. Such

designs permit a response surface to be fitted easily and

provide spherical information contours. Box and Hunter([3]
went further to derive the necessary and sufficient
conditions for a design of order two to be rotatable. They

also constructed designs through geometrical confiqurations
and obtained several rotatable designs of order two.
Draper[B8] obtained some rotatable designs of order three in

three factors and also some specific rotatable designs of



-14- X

the same order but which 'were sequential. Kibua [14]
applied ordinary ridge regression in the analysis of second
order rotatable designs and demonstrated its superiority in
the case where there was ‘ill-conditioning’ in the design
matrix. However, the ordinary ridge regression method is
subject to further improvement by wusing the minimum mean
square error estimation technique, described in the next

chapter.

1.7 Aim and scope of the study

Ridge regression is a relatively‘ new
technique and, as such, its full impact as a practical tool
has yet to be adequately:investigated. However, there are a
few researches that have begun to provide the type of
insight that a practitioner needs. It was in this respecﬁ
then, that this work was conducted to explore a practical
procedure developed by Hemmerle [11] for obtaining the
minimum mean square error estimator for generalized ridge
regression methods and to illustrate its wusefulness in the

analysis of third order rotatable designs.



CHAPTER 11
MINIMUM MEAN SQUARE ERROR ESTIMATION

2.1 Introduction

In this chapter we examine the minimum mean square
error linear estimator (MIMSEE) in ridge regression in its
general form. This is an estimator for which the value k
has been chosen so as to minimize the total mean square
error. Thus instead of taking a single value fdr ky, we
consider several different values, say ko, ki, ..., ko, that
is , we consider separate ridge parameters for each of the
regression coefficients. Now since X’'X is a real p-square
symmetric matrix, the conditions stipulated in (1.4.10) are
applicable to the model (1.2.2) and the multiple linear
regression model can be written in canoniﬁal form as

y = X*a + g

Where

I

X* = XP' and a PR (2.1.1)
2.2 The generalized ridge regression estimates and MIMSEE
The generalized ridge regression estimates are
generated by a constrained least squares approach in which
the error sum of squares is minimized subject to the
constraint that B, = p., i=0, 1, ..., p, where the pi’s are
finite positive constants. As a result of the constraint

applied to the B,’s the relationship
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a* = Pb*
necessarily restricts the magnitudes of the 4%, s from
becoming too large. To minimize the error sum of squares
for the canonical model (2.1.1) subject to the above
constraints thus requires the use of p Lagrange multipliers,

Ko, Kiy caey kg Taking derivatives of

F = (y — XB)(y - XB)' + K(BB - p) " (2.2.1)

with respect to the unknown parameters and equating to zero,

we thus obtain the system of equations

&% = (X*'X* + K)—1 X""y (222
where

K = Diag(km, ki, ..y kp)

with k>0 for i = 0, 1, ..., p

By restricting the magnitudes of the coefficients in the
minimization procedure, we have, in effect, added constants
to the diagonal elements of  X*'X* and consequently
introduced some bias into the estimates. However, the
addition causes the matrix X*'X* to behave as if the
variables are orthogonal to each other, thus 1increasing

stability in the estimates of the coefficients.
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values for the ki:'s

Optimal values for the ki’'s in (2.2.2) are those that
minimize the total mean square error. From (1.4.9) 1t

follows that
Q=E[0"-e) (& -a)]

p o2}, + aik;
=0 (Al + -k_()z

(2.2.3)
The differentiation of (2.2.3) with respect to the k:’'s

yields the minimization equations

00 _ 22, + k) (k,ai - o)
ak, (A, + k,)*

=0' i=0,1,...,p.

(2:2.4)
From the full rank assumption of X’X we have that A:>0 Vi
so that restricting the ks, s to be non-negative yields the

solutions

N

li=0’ 1' -;-,p-

i
n
2.le

(2.2.5)
unfortunately, o and a.’'s are unknown and hence are not
operational. Thus we are forced to use their estimates. In

practice one estimates o by s, where
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(y-X'8) "(y-X'&)

g% =
n-p
(2.2.8)
using the ordinary least squares procedures. As for the
estimation of a; and consequently kg, i=0, e P

suggestion is given on the use of the following iterative
procedure:
Step 1. Using ordinary least squares procedures on the

canonical model, estimate the a;’'s by computing

8 = [X‘ ’X‘] '1X"'y
and estimate o® by s*.
Step 2. Use the value of s= and the as; 's from step 1 to

compute

g2
k:l:"""" ,1=O'1,--u’p
Step 3. Use the k.'s to solve the expression
ar* = [(X*)'(X*) + KJ=*(X*)Yy

and thus obtain initial estimates of the &*;'s.

Next compute

I=p

2 e - ;: ey
=0

Step 4. Repeat steps 2 and 3 using the a*;'s from step 3
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and again compute &*’u*.

Step 5. Continue the iterative procedure and terminate
only when stability is achieved in &*’'a*.

Step 6. The generalized ridge regression coefficients are
then computed from the formula b* = P'a*,
obtained from (2.1.1)

Example 2

Using the data provided in table 1.1, and with the help

of the computer program given in the appendix, the results

of the above iterative procedure are given below.

The orthogonal matrix P is given by

[0.997400 0.019620 -0.046130 -0.050710 -0.005130]

0.009957 0.818800 0,490100 0.036790 0.296400
P =|-0.028000 0.380100 -0.823800 0.318000 0.273700
0.060850 -0.126100 0.245200 0.943000 -0.176100
0.0228900 -0.410800 0.137200 0.075580 0.897900 |
(2.2.7)
and
(0.013388 96.34414 -1.13871 -0.55801 1.289425]
0.008214 86.68112 -3.40199 -0.08743 1.697557
-0.01662 95.45551 1.31328 0.19212 3.989337
-0.00372 107.1003 4.80001 -0.24344 3,785841
X* =|0.025926 84.12403 -1.51928 0.39286 3.064381
-0.00851 97.40796 -0.20715 0.93824 -1.05717
-0.02739 92.59906 -2.96271 -0.30625 1.794449
0.023176 112.0915 1.70051 -0.07788 -3,78934
[-0.01237 120.5965 -0.00323 -0.13529 -7.87097)

(2.2.8)
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so that

(0.002721 0 0 0 0
0 89630 O 0 0
XK = 0 0 51.66 0 0
0 0 0 1.568 0
0 0 0 0 124.8

(2.2.9)
The ordinary least squares estimate of the coefficients are
then
b=(7.2177, -0.27722, 1.5574625, 4.544891, -0.06157)'
with the mean square error calculated to be 752.922

(2.2.10)
On the other hand the ridge method gives
b*=(0.26998, -0.08811, 1.13259, 3.8495%9, -0.04645)'
as the estimate of the regression coefficients with a mean
square error of 11.84%962. (2:2:11)
Thus using the mean square error as our basis for
comparison, then as expected, the ridge method is preferred
to the ordinary least squares procedure, due to its smaller

value.

2.3 A non—-iterative solution for generalized
ridge regression
We assume the model has already been reduced to
the canonical form expressed in (2.1.1). The general ridge

estimation procedure is then defined as



&% = [(X*)"(X*) + KI7*(X")y , (2.3.1)

where K is a diagonal matrix with non-negative diagonal
elements ke, ki, ..., kg

The iterative procedure to estimate ki is described by the
formula

SZ

=——:——'"2' i=0,1,-'-'p
(R3(1)

ki N

.(2.3.2)
where the bracketed j subscript is used to denote the jtr
iterate, and take 8%;i(o, = &4 , 1=0, 1, ..., p as initial
values, where d4; 1is the ordinary least squares estimate of
.

We first give an explicit formulation of the above
procedure, in terms of matrices. To this.end we represent
the (p+1) vectors of (X*)'y and a* s, as diagonal matrices.

Let

[[(x*) ‘¥, 0 C 0
s-| 0 TR
0 0 . = = [(X* 9,




—2 2 \

and

0 0 ... By

(2:3:.3)

As a consequence we have that
A, = A *B (2.3.4)
where A 1is the diagonal matrix of characteristic roots of

X' X. The iterative procedure may now be described by the

matrix formula

As;vs = (A + s A~=4)"* B (2.3.5)

Ay = (A + s~ A=y ) A N, (2:3:6)

which can be reduced to

AJ—O-J_ = (I ¥ 52 A_lg_z_{)—lAC) (2-3-7)
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Next, we let
D = s = A in (2.3.7) and obtain
Ay = (I + DA =4)"* A, (2.3:8)
An expression for A Z,., is then given by

A=541 = A 25(1 + D72A=4)A 2(1 + D2A=y) (2.3.9)

However, the matrices in (2.3.9) are diagonal and commute.

Thus we can write

A 2541 = AT=(1 + D72A~=,4)= (2.3.10)

so that
D=*A"=,,, = D7*A =, (I+D"2A"=,4)= (2.3.11)
and if we let
E;, = D-1A—=, (2.3.12)
the iterative procedure is reduced to the simple formula

Esj+x = Eo(I+E )= (2:3.13)

Now assuming that &, # 0 V¥V i and that the iterative

procedure is convergent, that is



1imj,, E,-K
(2:3:14)

then from (2.3.13) and (2.3.14), we must have the

relationship
E* = Eo(I + E*)= (2.3.19)"
or, if expanded,
(E¥)= + (21 - ET*s)E* + I = 0O (2:3.16)
Now (2.3.16) consists of (p+1l) equations of the form
(e¥)= + (2 — 1/es)e* + 1 = 0 (2:3:17)
where e. and e* are scalars. Solving for e* we obtain

1-2¢ i‘/!I—Zei
et - ( 0) 0

(2.3,.18)

Convergence conditions

The matrix formula (2.3.13) also consists of (p+1)

separate iterative expressions of the form

Bi5+1 = (1l + e5)=, (2:3:19)



where s, 5, €54.1 , are scalars and the subscript j is used

to denote the j*" iterate. It is of much interest to know

for what range of values for e. the expression
converges or diverges. But first we need the
lemma.

Lemma

(Z2:3:19)

following

The iterative procedure defined by (2.3.1%9) converges for

o = ‘/4 -

proof

We first observe that for e~s>0 we have

ey = eal(l + es)= d>es

B = E(:)(l o el)z >E(:y(1 + E(:g)z = e\

and proceeding inductively, we obtain

(=¥ Y > ey P fDr eo

Now for eo = % let

fey = Jeo(l + en) =g, = 1 - 3/27

I

fex Jes(1 + e;) £ Jes(l + fe,y)

(2.3.20)
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= fes(l + g.) = g= = 1 — 3/24

In order to argue inductively, assume that

Je; £ gy =1 - 3/27+=

Then

Je;+1 = Jeo(l * EJ)

IA

-fe.;,(l -+ Je_.;) < JE()(]. + g_j)
and

JE:;)(l + gj) — 1 - 3/2"*-! = g_j+j_

Consequently for all j we have

JEJ < g5 < 1 ’ for Cem = '/4 (2-3-21)

Combining this result with (2.3.20) yields

O<E(3<El<--.<EJ<...<1 9 for o = '/4 (2-3-22)

which is a monotonically increasing sequence of real numbers
bounded from above, so the iterative procedure converges. "

Observe from (2.3.18) that we must have

e® = 1im, o, =1

for e« = %. (2.3.23)
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Now suppose that the iterative procedure definea by (2:3:19)
converges for es. and that we have 0 < e's £ ea. Clearly,
for the primed sequence e’ea, €1,..., ’4,..., we must have
e’y £ ey so that the primed sequence converges to a limit
(e*)’ £ e*. This fact suggests that the iterative procedure
defined by (2.3.19) converges whenever 0 < es £ % .

Now consider equation (2.3.18), and take O < eo <K % .

Taking the positive sign and squaring the right hand side

gives

e.z (1 ‘290) + 1 = eo
2e,

. (1 -2e))? + 2(1 - 26)) /TT - 45,] + (1 - 4e,)

4el

(1 -28))% + 2(1 - 4¢)) + (1 - 48,)

>
4e°’
_— (1 - 4¢e,)
e
>. 1.

which contradicts the fact that we must have e* £ 1.

Consequently, an explicit solution for (2.3.19), valid

whenever 0< es £ % is given by



For eo > %4 5 (1 - 4des) is negative

procedure diverges and thus

limj‘_ e ==, for ¢, >

Explicit solution for optimal &*

Let

®
e
|

= lim,.. e

&3 = lim,__ &7y

Then since

€19

we have that

1
€ € £= .
0 o £

(2.3.24)

and the iterative

(2.3.25)

(2.3.26)

(2:35:27)

. * 1

(2.3.28)

whenever the procedure defined by (2.3.19) diverges for the



i®" equation. Thus we let

a'*i = 0 . for (=R > '/4 (2.3-29)

When the procedure converges for the i®" equation we have

that
ay - L ¥, 8y
A, + Al (1 + e))
(2.3.30)
for O < Pycoy £ % , where e*; is evaluated using the formula
(2.3.24).

By applying (2.3.29) and (2.3.30), we obtain an explicit
solution for all of the optimum generalized ridge regression

estimators 4*,, i=0, 1, ..., p.

Example 3

Still making use of the data in table 1.1 together with some
of the results obtained in example 2 of section 2.1, we can
calculate the following;

52=2.045

a=(7.506%97, 0.613404, 0.241795, 4.274334, 0.450613)'(2.3.31)



so that from (2.3.12),

e ol et
O 2 (o)) ?

(2.3.32)

and hence

Co(oy=13.336 . This is greater than 0.25 and so we assign

the value zero to &*..

Also
€y (=0 .000606 . This is less than 0.295 so that
e*;=0.000058, giving &*,=0.6134

Similarly, for the remaining ones we get,

92(0)=O.677, a*:::o
93¢0)=0.071, a*3=3.9436 and
aco,=0.081, 8*2=0.4107

(2.3.33)

Hence

a* = (0, 0.6134, o0, 3.9436, 0.4107)'

and the resulting solution for b* is given by
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b* = (0.2555, -0.1638, 1.3239, 3.772, -0.1439)'

from which the mean square error is equal to 5.6%945 which,

as expected, is less than that of the previous example.



CHAPTER III

ROTATABLE DESIGNS OF UPTO THIRD ORDER

3.1 Response surfaces
Suppose we have a system which involves a response

variable, vy, which depends on the 1level of some random

variables (1, {=z2, ..., (». We assume that the 1eVelé of
the {1’'s can be controlled by the experimenter with
negligible error. The experiment is conducted with design
variables xi1, x=z, .o Xp, which are usually simple.
transformations of (. Each treatment can then be

represented by a point with coordinates (x1i, X241, ., Xpi)
in a p-dimensional factor space at the point y1 , i=1, 2,
.,n. Since the freedom to choose the levels of the {'s is

ours, it is normally convenient to have them equally spaced.

The relationship between { and x can then be expressed as

cji - ZJ
g = oA
i ij - cj(_i-l)
where fj = ; —(—Iili
=1

(3.1.1)

In pgeneral, the response 1is a function of the random

variables v=f({1, {2, ..., {p) and is often unknown. The
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basic response procedure 1is thus to approximate f(.) with a
low order polynomial and to use sample data to fit least
squares estimates of the coefficients of the polynomial.
Occasionally, in factorial experiments, the

relationship between the response and factor levels 1is

studied. In order to get the relationship between the
response and the factor levels, a set of treatment
combinations are suitably chosen. Such a set of treatment
combinations is called a response surface design, ‘and the
prior mentioned relationship, a response surface. ‘These
surfaces can be linear, second degree or higher degree
polynomials. The main considerations connected with the

exploration of the response surface are;

i) performing statistically designed expériments

ii) estimating the coefficients in the response surface
equation

iii) checking on the adequscy of the equation and

iv) studying the response surface in the region of

interest.

In this work, particular consideration is given to the
estimation of the coefficients in the response surface

equation of order three using ridge regression techniques.
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3.2 Rotatable designs
Let p factors Fi, F2, ..., Fp affect the yield in a

particular character and let the expected yield satisfy the

functinal relation y=f(xi1i, x2, ..., Xp) where xi1, x2, ...,
xp are the 1levels of the factors Fi, Faz, ..., Fp,
respectively, used for getting that response. We assume

that f(.) can be represented by a polynomial of degree “d’

Definition

A p-dimensional design of order d is said to be s rotafable
design if the variance of the estimated response at the
point (xi, x=2, ..., Xp) is a function of a constant, p,

given by

p? = ?:ixi’

(3.2.1)
This property is a reasonable one to adopt for exploratory
work, in which the experimenter does not know in advance how
the response surface will orient itself with respect to the
X-axis. Consequently, he has no rsational basis for
specifying that the variance of the estimated response

should be smaller in some directions than in others.
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3.3 First order designs

The simplest kind of surface which could possibly

be used to describe the response y, as a function of the p

factors is a first order surface. Its equation 1is of the
form

yu = Boxou + L Bixiu + &a , u=1l, 2, ..., N (3.3.1)
where B’'s are unknown constants and Xou = 1, Vu

E(eu)=0, Var(euw)=02 (unknown)

ana Cov(eueuHh=0 , u M’

The summation is taken over i=1, 2, .5 P

The experimental design to estimate B’'s can then be

as E(y)=XB where X is of the form (1.2.2)

written

We can choose X such that the estimates of B are orthogonal

and the experimental design 1is rotatable, that is,

is fixed for all (xX1iu, X2u, .., Xpu), which satisfy

D

;xfu = p?(some constant) ,u=1,2, ..., n.
=1

DCITVY B4 T.Y 4
CHIROM®@ L. IBRKARY

Var(yu)

(3.3.2)
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3.4 Second order designs
A second order response surface is represented by

the polynomial equation

5 p D
y = Box + ;: Byxy + EZ; BisxiXy
% i<j
(3.4.1)

where Bo, Bi, ..., Bp, B11, ..., Bpp, B1z2, ..., B(p—l)P‘ are
constants.
The design used to estimate the unknown constants is known
as second order response surface.
Box and Hunter [3] showed that the moment conditions
necessary for the n points (Xiu, X2u, ., Xpu) u=1i, 2, ...,

n to form a second order rotatable design are

f:xiu=0 ; gxiuxju=0 , ﬁxmx}uso
u=1 u=1 u=1

ﬁx}u= ¢} o ﬁxiux;,ﬁo ’ ﬁxiuxﬂgcku= (4}
u=1 u=1 u~i

ugxiuxj,;(fu-O and ug:lxmxjuxkuxlu=0 , for 1i#j+k#1 ,

(3.4.2)

that is, esch of the sum of powers or sum of the product of

powers of the xXiu's with at least one power odd is zero.

Further,
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n n
. _
fou = np, ’ Exiu = 3ny,
u=1 u=1
n
Y xixj. = np, for i#j ,

u=1
(3.4.3)

where p’s are constants.

They also showed that in order that X’X be non-sindular, u=

and pa must satisfy

Py y _P
2 7 pe2

B2 p
(3.4.4)
Also, if the design matrix X of n rﬁns does not
satisfy (3.4.4) then an addition of one or more central
points (0, 0O, ...,0) could satisfy the condition (3.4.4) and
the final design matrix will be a rotatable design of order

two.

3.5 Third order designs
If yu is the response at the uth experimental
point then the polynomial equation of third order may be

expressed ss
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p P P
Yo = po"oa*? pixiu+; y B 13 X1y
=1 = 7

P P P
+f‘: Y P XXt ey -
=1 721 k27
(3.5.1)
Or, in vector notation, as
vyu = XuB + eu A/ L5
where
Xu = (xXou, X1uas .+ Xpu, leu, 5w .y szu, XI1aX20,y o 9.9
X¢{p—-1)>uXpu, X1uXz2uX3u, « - =5 X(p—z)uX(p—l)uXpu) ’ and
Xxou = 1 Vu.
also,
B = (BO: Bl’ voe ey BP) Bll: LI | BDP; [312, e vy B(P"l)P:
Bi1i, ..., Bpee, ..., Bep-2>cp-1dp),

E(eguw) = 0, Var(euw) = o2
and Cov(euwew) = 0 for u #u’, u=1, 2, ..., n.
For third order rotatable desigﬁs, Box and Hunter[3] showed

that the moment conditions for a set of points to form a

rotatable arrangement are:
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8) the sum of powers or the sum of the product of
powers of the xiuw’'s with at least one power odd is

zZero,

b) the sum of powers or the sum of the product of
powers of the xiuw’'s with even powers is constant, that

is,

ﬁxfu =np, , f:xi‘,, =3np, .

u=1 u=1

Ladocdy = o, . Exi - 1sm,

u=1

f:xf,,x;,, =3np, , for i+ jand,

u=1
ungfuxj’uxjiu = npg for i j+ k.

(3.5.2)
Further the design matrix must satisfy the additional

conditions

(3.5.3)



-40- \

and’

Balg N p+2

(3.5.4)
in order that X’X be non-singular.
However, if the design matrix X does not satisfy the
conditions of non-singularity due to equality in (3.5.3),
then the addition of no central points (0, 0, ...,0) could
satisfy (3.4.7). The corresponding values of pz2, pa, ps

obtained by the addition of these points would then bé,

* - npz * = np‘ * _ nps
2= e, ¢ MTER and  pg = nps = n,
Thus pt =(1+1&)l% > P '
H n/p; P2
(3.5.5)
which implies that (3.5.3) is satisfied. However in case of

equality in (3.5.4) the addition of no central points

implies that

Bils _ Balls _ p+2
TH p;  p4

(3.5.8)

Thus (3.5.4) is not satisfied. Hence the mere addition of
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central points will not enable the design to satisfy
condition (3.5.4). Draper [7] proved that in order to
obtain third order rotatable designs in this case, one must
combine at least two spherical sets of points with different

positive radii.

3.6 The moment matrix X'X of third order rqtatable designs

It is noted that (3.5.1) has its right hand side
containing all possible terms up to and including third
order. However, the terms are grouped in a particular form
so that the sub-matrices in X’X are easy to handle, asvthey
appear in the diagonal of the moment matrix. The model in

expanded form is

E(y) = Bo + B11x12 + B22xZ2 + ... + Bppx?p
+ Biaxixz + Bisxixa + ... + B(p-1)pXp-1Xp
+ Bixy + Br11x®1 + ... + BippX1x2?p
+ Baxz + B222x32 + ... + B2ppx2X2p

+ Bi2axixXzxs3 + Bizaxixaxa +

+ B(p-2>(p-1>pXp-2Xp-1Xp (3.6.1)
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If we write

y = (yl: vz, CEEI ] yn)’
B = (Bo, B11, B22, ..., Biz, Bis, ..., Bep-2>cp-1>p)’
Xu = (1, leu, X22u, e ey XluX2u, ..., X(p—Z)uX(p—l)uXpu)'

w =.1, 2, , n
and define X = (x1i, X2, ..., Xxn) , then the model can be
written as

E(y)=XB (3.6.2)

Here y is an nxl vector, X is an n x (p+3)(p+2)(p+1)/6

matrix and B is a (p+3)(p+2)(p+1)/6 x 1 vector. Hence the
moment matrix X'X is a square matrix of dimension
(p+3)(p+2)(p+1)/6.

When a third order rotatable design is used to estimate
the coefficient of the cubic model (3.6.1), the moment
matrix X'X takes a particularly simple form due to the fact
that the moments of the design obey the conditions given in

(3.5:2)-
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Thus we have

@ o 00 o0 .. o o

I O 0 O .. o o

K, O O . O O

o O O

XX =n K"

(symm.) K, . o o

i i

X, ©
Be 1)

(3.6.3)
Where 0 denotes a matrix consisting entirely of zeros and of
dimensions appropriate to its position in X’X and where the

other sub-matrices are defined as follows:

Gll alz
@ ‘an GJ
(3.6.4)

is of dimension (p+1) x (p+1l), where further

Gii1 = 1 5 Giz = G'z1 = pzlixe
and
311 . 1]
131 . 1
G, = p1 13 . 1
1121 .-+ 3

(3.6.95)
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Also

- [xu a.]
K, K,
(3.6.8)
where
x, - Ba 3B, l
. 3”’4 15”’6 2%2
(3.6.7)
K, =X, - P P P ]
2 = 3p 3pg - - - 3p, 2% (p-1)
(3.6.8)
and
3 11 . 1]
131 .., 1
Ka=Bgll 13 . 1
111 ... 3pyxwp
(3.6.9)
Kz, Ka, ..., Kp are similarly defined and are all of

dimension (p+1l) x (p+1).

I. and I=2 are identity matrices of dimensions

¥ p(p-1) x % p(p-1) and p(p-1)(p-2)/6 x p(p-1)(p-2)/6
respectively. (3.6.10)
The inversion of the moment matrix X’'X now reduces to the

inversion of the submatrices. The inverses of the
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submatrices are worked out below.

ot - | nul
H), H,,
(3.6.11)
where
Hii1 = (Gi1 - Giz2 G122 Go1)~1 , (3.6.12)
Hiz = H'21 = - (G11 - Gi2 G122 G21)~1 Gi2z G122 (3.6.13)
and
Hz2 = G122 + G-122 Ga1 (G111 - Gi2 G 123 G21)~1 G112 G125
(3.6.14)
Now
p+1 -1 -1 -1
=1 p+1 -1 4 O -1
&Gr=—>r __|-1 -1 pa1... -1
2k (p+2) ; : T :
-1 -1 -1 . p+if.p
(3.6.15)
@y Gz = Ha i

(3.6.16)
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and
pip
"1 - e ———————
Gy3 a2 @y B, (p+2)
(3.6.17)
so that
' B (p+2)
Hy, = . 3
B (P+2) -pap
' - p ,
By = H'y = 2 71 1xp v
B (P+2) -pap
and
cdd ... d
dcd. .. d
H,=|ddc ... d
ddd. .. cly
where
B, (p+1) (p+2) -3 [p(p+1) -2]
2pg (p*2) [y (D*2) -pip]
and

. M2 Ry :
2p, [n (p+2) -p2pl

(3.6.18)
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Similarly,

I'l!. I’n
Iyy La

Kt =

(3.6.19)

where the entries of K-1 are defined similar to expressions

(3:6.12), (3.6.13), (3.6.14). Then

[p -1 -1 -1
=1 p =1 =1
-1 il
= - = __|-1 -1 -1
- 2p5(p+1) : I.) :
-1 -1 -1 P J(p-1) x (p-1)
(3.6.20)
» 1 He Bge -« = Py
Ky = =i
%2 B He (D+1) |3pg 3B - - . 3 P
(3.6.21)
and
(p-1) | M 3p
— - 4are
Ky K Ky = —IT)TT 5
Bs (D*1 3P Ops
(3.6.22)
so that

)
I

1T

(3.6.23)
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Where
e = Be (D+4)
Bk (D+4) - pi (D+2)
£ = “Pe -
Babte (D+4) - pg (D+2)
_ Babe(p*1) -pi(p-1)
6B [Bahg (DH4) —pi(p+2) ]
Also

B b ... ‘b

where f is as defined in (3.6.24) and

e i~ Bake
2u6[uzus(p+4)-—u3(p+2)]

Then

(1 hh . . . B
hlh... h
L,=|hhl1 ... h

hhh ... 1

J(p-1) x (p-1)

where h is as in (3.6.28) and

(3.6.24)

(3:.8.25)

(3.6.28)

(3.6.27)
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Mokt (D*3) -] (p+1)

1
21 (1 1 (D+4) -pi (D+2))
(3.6.28)
Finally,
- 1
Iyt = =1, ,
(rs L) ™ 1
% - 1
and PeI)t = —I, ,
He
(3.6.29)
thus
e (0 o . . . (0} (0}
=T 0 ... O DO
q
smnd o X r* ... ©O (o]
&Hn= =4 P
(symm.) ) o o
1
s {
(3.6.30)

The least squares estimates of the coefficients may then be
obtained from (1.2.8), and the corresponding estimates of
the coefficients wusing ridde regression techniques, from
(2.1.1) and (2.2.1). However, with the 1atter; we need not
find an expressions similar to (3.6.30) for (X'X + K)-1,
since the non-iterative solution given in section 2.3 gives
the value of ax* in (2.3.1) explicitly without first
obtaining the matrix K. This is illustrated in the next

chapter.
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CHAPTER 1V
APPLICATION OF RIDGE REGRESSION ON THIRD

ORDER ROTATABLE DESIGNS IN THREE FACTORS

4.1 Introduction

Suppose that an experimenter is interested 1in
three experimental factors and that these factors have been
coded so that an experimental design for examining them can
be described by referring to a set of points (x1, x2, Xa) in
three dimensional cartesian space, rather than to the actual
factor levels. Suppose, further, that a dependent va¥iab1e
y is observed as resulting from the experiment and that it
is desired to estimate by least squares, the coefficients of
a selected polynomial function of xi, xz and #3 which, it is
thought, will give a satisfactory represéentation of y. For
the estimation of a cubiec function of the form given in
(3.6.1), the model under consideration becomes,

E(y) = Bo + B11x12 + B22x22 + B3ax23
+ Biaxixz + Biaxixa + PB2axexs

+ B1ix1i + B111x31 + Bi2zxix22 + Bi13saxix2s3

<+

Bax2 + Ba2z22x32 + Biri12x21xz2 + B2aszxex2a

+

Bax3 + B3zax®3 + B1i13x2i1x3 + B223x22xs3

+

Bi2ax1xX2x3.

(4.1.1)
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Certain third order rotatable designs have been proposed by
Draper[7], suitable for estimating a third order or cubic
polynomial. These are such that the designs consist of two
parts, each of which is a second order rotatable design.
Thus an initial quadratic fitting can be attempted using one
part of the design only. If the model is found to be'
inadequate, the second part, which completes the third order
rotatable design, is then added. For our pruposes, we shall
assume tbe latter to be the case.

The.model (4.1.1) 1is of the same form as the one in
(2.1.1). Thus we will use the generalized ridge regression
method described in chapter II in the estimation of the

unknown coefficients as illustrated below.

4.2 Illustration

As noted in the previous =section, Draper(7]
established that certain pairs of second order rotatable
design classes could be combined in such a way that infinite
classes of third order rotatable designs for three factors
were formed. Two such classes of second order rotatable
designs are shown in table 4.1. For each class is shown a
reference designation Di, the points which form the class,
the number of points in the class and a restriction on the
parameters which must hold in order that the fourth order
relationships of equations (3.4.3) can be satisfied. The

third order rotatable design given here 1is derived from
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these two classes of second order rotatable designs by

combining them as demonstrated by Draper[7].

Table 4.1 two classes of second order rotatable designs

reference D1 D2

points in class (ta, *a, *a) (zf; TE; 0)
(tc1, 0, 0) (xf, 0, *f)
(0, *cai, 0) (0, *F, &f)
(0, 0, *ea) (ta, ta, *a)
(tcz2, 0, 0) (¥c, 0, 0)
(0, *cz2, 0) (0, tc, 0)
(0, 0, *c2z) (0; 0; %c)

No. of points 20 26

restriction c41 + c%z = Ba4 ct = 2f4 4+ B4+

Source: Draper, N.R (1962) [8]

We take D1 with a

1
—
Q
o

i
Q
N
I
2
N

and

D2 with f

1
=
N
®
i
—
Q
1
N



= 55

Then for the third order rotatable design,

n = 50, puz2 n = 48, ne n = 32; and us n = 186
so that
_u.%=% and h%lﬁ:%
W S 7
(4.2.1)
There are two stages in this example. 1In the first stage D1

is used with four centre points and a response surface of
second order is fitted ¢to the 24 experimental results.
Assuming that the model provides an inadequate
representation of the true response relationship, it is
decided, then, to complete the design by running the 28
point D2 portion with no additional centfe points, and to
analyze the total set of 50 observations by fitting a third
order response surface. For the analysis, we use the
generalized ridge regression techniques of section 2.3,
which, as has already been noted, is possible due to the
nature of the model (4.1.1). The 24 observations from the
first part of the design afe listed in Table 4.2 and the 26

observations from the second part appear in Table 4.3.
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Table 4.2

The design points and the observations, first set.

Number X1 X2 X3 y

1 =1 e ¢ il 34.727
2 1 —1 ~1 38.917
3 =1 1 =1 44 .907
4 1. 1 =1 24 .641
5 -1 ~3 1 24 .658
6 1 = | 1 45;636
7 ] 1 1 33.7Q2
8 1 1 1 5.374
9 1.4142 0 0 33.414
10 -1.4142 0 0 38.540
11 0 1.4142 0 ' 40.393
12 0 -1.4142 0 40.687

13 0 0 1.4142 23.869
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Table 4.2(cont.)

Number X1 x2 X3 y

14 0 0 -1.4142 33.727
15 1.4142 0 0 34.453
16 -1.4142 0 0 39. 201
17 0 1.4142 0 38.335
18 0 -1.4142 0 40.092
19 0 0 1.4142 25.823
20 0 0 -1.4142 33(068
21 0 0 0 44.562
22 0 0 0 41.187
23 0 0 0 43.832
24 0 0 0 42.185

Table 4.3

The design points and observations, second set.

Number X1 X2 X3 | y

25 -1.4142 -1.4142 0 17.282
28 1.4142 -1.4142 0 56.27¢
27 -1.4142 ' 0 55.478
28 1.4142 2 0 5.946
29 -1.4142 0 -1.4142 40.8586
30 1.4142 0 -1.4142 22.157
31 -1.4142 0 1.4142 19.753
32 1.4142 0 1.4142 7.718

33 0 -1.4142

|
—

.4142 39.282
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Table 4.3 (cont.)

Number X1 X2 X3 y

34 0 2 -1.4142 33.651
35 0 -1.4142 1.4142 33.942
36 0 2 1.4142 0.059

37 -1 =1 =1 32.802
38 1 o | . | 39.394
39 ~1 1 = 47.553
40 1 1 -1 24 .402
41 =1 =L 1 22.005
42 1 =1 1 48.164
43 -1 1 1 35.271
44 1 1 1 5.314

45 2 0 0 31.472
46 =2 0 0 35.209
47 0 2 0 33.338
48 0 = 0 39.156
49 0 0 2 1.883

50 0 0 ~2 27.891

Source: Draper, N.R (1962)([8]

For the third order rotatable design,

with parameters

given by (4.2.1), the sub-matrices of the moment matrix

in (3.8.3) are,

X'X



me I1 = 0.6411

—57—p

(symm.)

(symm.)

The orthogonal matrix is then

R (0]
P =
(symm.)
Where

0.886 -0.371
R - -0.385 -0.497
-0.016 -0.605
0.258 0.499

0.707

8 =10.707

0

.00 0.96 0.96
1.92 0.64
1.92
.96 1.92 0.64
4.80 0.96
0.96

and

0.96
0.64
0.64
1.92

(4.2.2)

0.64
0.96
0.32
0.96

(4.2.3)

us I=2 = 0.32 (a scalar)

-0.273
-0.463
0.790
0.295

0.707

-0.707

0

(4.2.4)

o
(0]
o
U
(4.2.5)
-0.048
-0.625
-0.095
-0.773
(4.2.6)
0
0
1

(4.2.7)



(0.64 -0.19 -0.21 -0.13 0.64 -0.19 -0.21 -0.13]
-0.27 -0.62 0.16 -0.16 -0.27 -0.62 -0.16 -0.16
0.15 -0.30 0.46 0.42 0.15 -0.30 0.46 0.42
0.04 0.003 0.47 -0.53 0.04 0.003 0.47 -0.53
0.64 -0.19 -0.21 -0.13 -0.64 0.19 0.21 0.13
-0.27 -0.62 -0.16 -0.16 0.27 0.62 0.16 0.16
0.15 -0.30 0.46 0.42 -1.51 0.30 -0.46 -0.42
| 0.04 0.003 0.47 -0.53 -0.04 -0.003 -0.47 0.53 ]

(4.2.8)
and
[ 0.900 -0.262 -0.291 -0.189 0
-0.374 -0.870 -0.222 -0.232 0
v=|0.213 -0.417 0.652 0.596 0
0.060 0.004 0.664 -0.745 0
0 0 0 ) 1
(4.2.9)

The vector of eigenvalues is

A=(8.371, 144.719, 62.629, 50.308, 32.000, 32.000, 32.000,
1.435, 292.150, 33.521, 81.6b54, 1.435, 292.150, 33.521,

31.654, 1.435, 292.150, 33.521, 31.654, 16.000)’

Using the notation of chapter II, the values of @&ico)y,

ei1¢oy, e¥*i, 4*i1 and b*1 have been tabulated in table 4.4

below.
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Table 4.4

Summary of calculations

i3 A13K¢0) €13Kr¢0) e*13k A*13k b*13x
0 56.4716 0.0003 0.0003 56.455 56.004
11 -19.976 0.0025 0.0025 -19.926 -21.424
22 3.245 0.095 0.119 2.900 12.221
33 13.313 0.0056 0.0057 13.237 -4.772
12 ~§.672 0,0225% 0.024 -6.518 -10.264
13 -8.123 0.0152 0.0156 ~7.998 1.0486
23 -3.468 0.0831 0.101 =3.151 -3.151
1 -6.855 0.0213 0.0222 -6.7086 4,827
111 1.449 0.476 0 0 0.526
122 -3.246 0.095 0.119 —2.902 0.0626
133 2.145 0.2173 0.4869 1.4601 2.175
2 ~1.,. 287 0.6534 o 0 -2.909
222 -0.1452 47.418 © 0 2.542
112 6.689 0.0223 0.0234 6.536 -3.531
233 =3.231 0.0958 0.1202 -2.884 -0.865
KEY: k = 0 means that there is no entry.



Table 4.4(cont.)
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ijk A13kC0o> e13k(0)> e*i13k A*14n b¥*13xk
3 ok P 0.694 o 0 -0.4047
333 2.1895 0.2086 0.4215 1.54 -1.34
133 -1.41 0.5055 0 0 0.643
223 0.1212 68.108 w 0 0.0Q595
123 ~-3.078 0.0156 0.1363 -2.708 ~é.708
KEY:
i3Jd 0 means that there is no entry.

The

simplicity

above

square error

give

third

the

with

‘best”’

illustration
which
and ridge
estimates
order rotatable

should be noted that the same

the concept

clearly demonstrates

of

regression can be

design

to any number of factors.

of the

minimun

combined to

coefficients of

in three

factors.

procedure can be applied

the

mean
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CONCLUDING REHARKS

Statisticians have begun to realize that certain
deliberately induced biases can dramatically improve
estimation properties when there are several parameters to
be estimated. This represents a radical departure from the
tradition of unbiased estimation which has ddmiﬁated
statistical thinking since Gauss® development of 1east
squares method.

Unbiased estimators have been used on litersally
millions of real problems, with generally satisfactory
results. Biased estimators have not. As such, their
theoretical superiority has yet to be tested in the rigors
of wide spread application. Primarily, the ridge regression
procedure is intended to overcome “ill-conditioned’
situations where correlations between the various predictor
variables in the model cause the X'X matrix to be close to
singular, and in the process giving rise to unstable
parameter estimates. The estimates may, for example, have
the wrong sign or be much larger than physical or practical
considerations would deem reasonable. This work brings to
notice one of the many statistical domains, namely, response
surface designs, in which biased estimation may be a useful

tool.
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APPENDIX

PROGRAM ITMETHOD

THIS PROGRAM READS THE REGRESSION MATRIX X(M,N),
THE OBSERVED VALUES Y AND FORMS THE DESIGN MATRIX
FROM WHICH IT REDUCES THE DESIGN TO CANONICAL
FORN. IT THEN CALCULATES THE REGRESSION
COEFICIENTS AND THE MEAN SQUARE ERRORS USING BOTH
THE USUAL REGRESSION METHOD AND RIDGE REGRESSION

HETHOD BY ITERATIONS.

DIMENSION A(20,20), X(20,20), Y(20), BETA1(20),
BETA2(20), G(20), XSTAR(20,20)

REAL MSE1, MSE2, LAMBDA(20), P(20)

OPEN(UNIT=5, FILE="INPUT", STATUS='0OLD")
OPEN(UNIT=6, FILE="OUTPUT , STATUS='NEW~)
M=9

N=5

READ(S5, 100)((X(I,J),I=1,H),J=1,N)
READ(S5, 101)(Y(I),I=1,M)

pO 5 I=1,N

BETA1(I)=0.

BETAZ2(I)=0.

G(I)=0.

CONTINUE
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pO 10 I=1,N

DO 10 J=1,N

A(TI,J)=0.

B(I,J)=0.

CONTINUE

poO 20 I=1,N

DO 20 J=1,N

DO 20 K=1,M
B(I,J)=X(K,I)*X(K,J)+B(I,J)
CONTINUE

CALL EIGEN(B,N,P,LAMBDA)

DO 25 I=1,M

DO 25 J=1,N

XSTAR(I,J)=0

CONTINUE

DO 30 I=1,H

DO 30 J=1,N

DO 30 K=1,N
XSTAR(I,J)=X(I,K)*P(K,J)+XSTAR(I,J)
CONTINUE

DO 40 I=1,N

DO 40 J=1,N

DO 40 K=1,M
ACI,J)=XSTAR(K,I)Y*XSTAR(K,J)+A(I,J)
CONTINUE

DO 50 I=1,N



50

60

70

80

100
101
200
201

202

DO 50 J=1,HM

G(I)=XSTAR(J,IYXY(J)+G(I)

CONTINUE

YY=0

DO 60 I=1,9

YY=YY+Y(I)¥x2

CONTINUE

CALL SOLVE(A,G,M,N,YY,K,ALFA1,ALFA2,S1G)
MSE1=0

MSE2=0

DO 70 I=1,5
MSE1=MSE1+(SIGXLAMBDA(I )+ (ALFA1(I)*K(I,I))*x2)/
(LAMBDA(I)Y+K(I,I))**x2
MSEZ2=MSE2+(SIGXLAMBDA(I )+ (ALFAZ2(I)Y*K(I,I))**2)/
(LAMBDA(I)+K(I,I))%*2

CONTINUE

DO 80 I=1,N

DO 80 J=1,N
BETA1(I)=P(J,I)XALFA1(J)+BETA1(I)
BETA2(I)=P(J,I)¥ALFA2(J)+BETA1(I)
CONTINUE

FORMAT(5F5.2/)

FORMAT(SF3.1/)

FORMAT(S5F7.4/)

FORMAT(S5F7.4/)

FORMAT(5F8.4/)
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203 FORMAT( "MSE BY OLSE METHOD IS ",F10.4/)

204 FORMAT(5F8.4/)

205 FORMAT( 'MSE BY RIDGE METHOD IS ",F10.4/)

300 FORMAT( INITIAL DESIGN MATRIX IS "/) |

301 FORMAT( "OBSERVED VALUES ARE"/)

400 FORMAT( THE ORTHOGONAL MATRIX IS'/)

401 FORMAT( "VECTOR OF EIGEN VALUES IS"/)

402 FORMAT( "EST. COEFF. BY OLSE IS"/)

404 FORMAT( "EST. COEFF. BY RIDGE IS"/)
WRITE(6,300)
WRITE(6,100)((X(I,J),I=1,4),IJ=1,N)
WRITE(6,301)

WRITE(6,101)(Y(I),I=1,M)
WRITE(6,400)
WRITE(B,200)((P(I,J),I=1,N),J=1,N)
WRITE(6,401)
WRITE(6,201)(LAMBDA(I),I=1,N)
WRITE(6,402)
WRITE(8,202)(BETA1(I),I=1,N)
WRITE(6,404)
WRITE(6,204)(BETA2(I),I=1,N)
WRITE(6,203)MSE1
WRITE(6,205)MSE2"

STOP

END

K K Sk kK Kk ok KOk Sk Sk ok sk sk ok ok kKK Sk K ok sk koK sk sk sk sk K ok sk sk sk ok sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok Kk sk ok
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SUBROUTINE EIGEN(A,N,U,LAMDA)
REAL
A(20,20),U(20,20),LAMBDA(20),B(20,20),C(20,20),D(20,20),
IDENT(20,20),V(20),VZERO(20),Y(20),L,LZERO
MMAX=10000
MFREQ=500
EPS=1.0E-9
PO 1 I=1,N
1 VZERO(I)=1
DO 2 I=1,N
DO 2 J=1,N
2 IDENT(I,I)=1
CALL MATEQ(IDENT,B,N,N)
DO 11 I=1,N
CALL MATVEC(B,VZERO,V,N,N)
CALL VECLEN(V,LZERO,N)
DO 5 M=1,HHAX
IF ((M/MFREQ)*MFREQ.NE.M)GOTO 4
CALL MATVEC(B,V,Y,N,N)
CALL SCAVEC(1/L,Y,V,N)
4 CALL MATVEC(A,V,Y,N,N)
CALL VECLEN(Y,L,N)
CALL SCAVEC(1/L,Y,V,N)
IF(ABS(L-LZERO)/LZERO).LT.EPS)GOTO 7
5 LZERO=L

IM1=1I-1
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FLAG=0

CALL MATVEC(A,V,Y,N,N)

DO 8 K=1,N

LF: (ABS(V(K).LT.iE~3)GOTO 8
IF (V(K)¥Y(K).LT.O)L=-L
GOTO 8

CONTINUE

LAMBDA(I )=L

DO 10 K=1,N

V(K,I)=V(K)

IF(I.GE.N)GOTO 11

CALL SCAMAT(L,IDENT,C,N,N)
CALL MATSUB(A,C,D,N,N)
CALL MATMLT(D,B,C,N,N,N)
CALL MATEQ(C,B,N,N)
CONTINUE

RETURN

END

o T o o I o B S L I S I o T I T T o O A S A A A S A O S A

SUBROUTINE SOLVE(A,G,M,N,YY,K,ALFA1,ALFAZ,SIG)

REAL A(20,20),G(20),K(20,20),B(20,20),BINV(20,20),ALFA1(20),

ALFA2(20),C(20),ALFAHMD,ALFA,D,TOL

TOL=1E-4
ALFAMD=0
D=0

pO 1 I=1,N
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DO 1 J=1,N

K(I,J)=0

B(I,J)=0

" BINV(I,J)=0

CONTINUE

ITER=1

DO 3 I=1,N
B(I,I)=A(I,I)+R(I,I)
BINV(I,I)=1/B(I,I)
CONTINUE

DO 4 I=1,N

ALFA(I)=0

C(I)=0

CONTINUE

po 6 I=1,N
C(I)=C(I)+BINV(I,I)*G(I)
IF(ITER.EQ.1)GOTO 5
ALFAZ2(I)=C(I)
ALFA(I)=C(I)
ALFAMD=ALFAMD+ALFA(I )*%2
GOTO 6

ALFA1(I)=C(I)
ALFA(I)=C(1)

D=D+ALFA1(I Y*G(I)
ALFAMD=ALFAHMD+ALFA(TI )**2

CONTINUE
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