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Abstract Dependence between risks reduces the benefits of
diversification. Modem portfolio theory is based on correlation as
a measure of dependence while the criterion presented here is
based on the copula theory as a measure of the intrinsic
relatedness of different risks. The dependencies are examined by
fitting copulas, estimating the dependence parameters and lastly
using distance matrices to cluster the risks together. The
motivation of the study was driven by the fact that insurance
companies have collapsed in the past, one reason being the type of
business classes they engage in. It is therefore important to
understand the dependencies between risks for better risk
management. The study derives its data from the general
insurance business in Kenya where the risks are classified by the
Copula based approach. Five major classes stand out each with
peculiar characteristics. The first cluster involves the rare but with
a high probability of a huge claim amount lines: Engineering,
Liability, Fire industrial and Theft. The second contain lines with
moderate claim amounts as compared to the previous cluster but
rather slightly more frequent: Fire domestic, Personal accident,
Workman's compensation, Motor commercial and motor private.
In the following cluster we have the less popular lines under the
umbrella of the miscellaneous class. Marine and Transit which is
completely erratic clusters alone while the Aviation line whose
main business is exported to foreign countries forming the last
cluster. Finally, it can be remarked that the choice of distance to
apply is crucial.

Key words: copula, measures of dependence, cluster, distances,
lines of business

1. Introduction Once a risk is insured, it is reasonable that the standards for
classifying that risk can and should be different from those of marketing or
underwriting. The variables comprising a classification system should be
chosen so that the following guidelines or conditions in addition, of course, to
any legal requirements regarding fair discrimination, are generally adhered to
according to Walter (1981) who writes on risk classification standards. The
whole modem portfolio theory is based on correlation (see Burgi, Dacorogna,
and Iles (2008)) as a measure of dependence but the criterion below is based on
the copula theory which is more comes in handy when correlation assumptions
are violated. Frees and Valdez (1997) introduces actuaries to the concept of
"copulas," as a tool for understanding relationships among multivariate
outcomes. The work explores some of the practical applications, including
estimation of joint life mortality and multiple decrement models and showed
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how to fit copulas and hence described their usefulness by pricing a reinsurance
contract and estimating expenses for pre-specified losses. Motivated by the fact
that most of the economic capital assessment models encounter difficulties when
trying to incorporate the dependence of claim costs between different Lines of
Business (LOBs), Faivre (2003) suggested the use of copula theory as a solution
to this problem. This work proposes the use of the copula theory to model the
dependence between business classes and later clustering them into lines on
business. The paper is presented in the various sections: introduction, the copula
function, distances, clustering, methodology, application on real data, results and
discussion, conclusion and recommendations.

1.1. Measures of dependence
Measures of dependence summarize a complicated dependence structure in a
single number, in the bivariate case. The three important concepts in measuring
dependence include: the linear correlation, rank correlation and the coefficients
of tail dependence. The last two provide the, perhaps, best alternatives to the
linear correlation coefficient as a measure of dependence for non-elliptical
distributions. Copulas capture the properties of the joint distributions since they
are invariant, that is, they remain unchanged under strictly increasing
transformations of the random variables.

2. The copula function
The term copula was first used in the work of Sklar (1959) and is derived from
the Latin word copulare, meaning to connect or to join and has recently found
an extensive acceptance in risk management, financial and insurance
applications. The main purpose of copulas is to describe the interrelation of
several random variables. A copula is a function that joins or couples a
multivariate distribution function to univariate marginal distribution functions
and so a copula is a multivariate distribution function.
The operational definition of a copula is a multivariate distribution function

defined on the unit cube [0,1r 'with uniformly distributed marginals.

Definition 1 A two-dimensional copula function (or a 2-copula) is defined as a

binary function C :[0,1f ---+ [0,1], which satisfies the following three
properties:

l. C(u,O) = C(O, u) = ° for any U E [0,1).
2. C(u,l) = C(1,u) = u for any U E [0,1).

3. For all °~ul s u2 ~ 1 and °~VI ~ v2 ~ 1
C([ul> VI] X [u2, v2]) = C(u2, v2) - C(UIY2) - C(u2, VI) + C(ul, VI) ~ 0.

(I)
From the properties 1-3, when the arguments u and v are univariate distribution
functions F, and Fl, the copula function C(F,; Fl) is a legitimate bivariate
distribution function with marginals F, and Fl. Conversely, any bivariate
distribution function Htx; y) with continuous marginals F, and F2 admits a
unique representation as a copula function:

C(u,v)=H(F;-I(U),F2-I(V)) (2)

In general, an n-dimensional Copula is any function C: [0,1r ---+ [0,1] such

that:
I. C is grounded and n-increasing
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2. C has margins Ck, k = 1,2, ...,n, which satisfy C, (u) = u for all

u in [0,1].
It is also important to note that for any n-copula, n ~ 3, each k-dimensional
margin of C is a k-copula.

2.1. Archimedean copulas

Definition 2 Let tp : [0, 1) ~ [0,00] be a continuous, strictly decreasing and

convex function such that cp(l) = ° and cp(o) = 00 . The function rp has an inverse

cp-' :[0,00]4[0,1] with the same properties like rp, except that cp-'(O)=I and

cp-' (00) = 0.

Definition 3 The function c [0, Ir 4 [O,IJ defmed by

C( Up .•. ,u.) = cp-' (cp( u,) + ... + cp( u.)) (3)

is called n-dimensional Archimedean copula if and only if cp-' is completely
monotonic on [0,(0) ,that is

for k E t{
(4)

The function rp is called the generator of the copula. We assume that the
generator rp has only one parameter, denoted as 8.

The three often used Archimedean copulas include: Clayton, Gumbel, and
Frank.

The Clayton copula: This is an asymmetric Archimedean copula, exhibiting

greater dependence in the negative tail than in the positive. This copula is given

by CB( u, v) = max ([ u - B+ V -B - 1rYo , °)
IPB(x)=~(x-B-1)

() where The relationship between

its generator isand

()=~
Kendall's tau t and the Clayton copula parameter () is given by 1- r
The Gumbel copula: also referred to as the' Gumbel-Hougard copula, is an

asymmetric Archimedean copula, exhibiting greater dependence in the positive

tail negative. This copula is given bythan in the

and its generator IS

IPB(x)=(-lnx)B ()E[l,oo) ..
where . The relationship between Kendall's tau

()=_1_
t: and the Gumbel copula parameter () is given by 1- t:
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The Frank copula: The Frank copula is a symmetric Archimedean copula

1 { (e -Ou -1)(e -Bv -I)}
given by Co(u,v)=--ln 1+ -0 and its generator ise e -1

{
expc-eX)-l}CfJo(x) = +In where 8 E ( -co, co) \ {o} The relationship
exp( -8)-1 .

between Kendall's tau r and the Frank copula parameter 8 is given by

[DJ(8)-1] 1-r lOt
=-----'--'----==- = -- where DJ (8) = - f-- dt is a Debye function of

8 4 8 0 e' -1
the first kind. Figure 1 shows the tail dependencies for the three Archimedean
copulas. The Clayton is strong on the lower tail dependence; Frank has no tail
dependence while the Gumbel is good for modelling the upper tail depence.

1~ 0.0 1.0 qO

(a)
1.0 QO

(b)
(c)

Figure 1: Perspective plots for the (a) Clayton, (b) Frank and (Gumbel) copulas
3. Distances

Distance is a numerical description of how far apart objects are. When distances
are calculated between various objects, this culminates into a distance matrix.
Definition 4: A metric on a set X is a function, called the distance function or
simply distance, d :X x X ~ 91 (where 9t is the set of real numbers). For all
x, y, z in X, this function is required to satisfy the following conditions:

1. d(x, y) ~ 0 (non-negativity)
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles. Condition

1 and 2 together produce positive definiteness)
3. d(x, y) = d(y, x) (symmetry)
4. d(x, z) S d(x, y) + d(y, z) (subadditivity / triangle inequality).

3.1. Euclidean distances
The well-known distance is the Euclidean distance which is defined as:
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d(x, y) = Ilx, YII = ~(x - y/ (X - y) = ~~ (X; - yy

I (with I\x\\ being the norm of x, and x; and y; being the i -th element of x and

y). We used the Euclidean distances as the criterion to cluster the business
classes with respect to the spearman's rho, Kendall's tau and the Tail
dependence.

3.2. Manhattan distances
This is also known as City Block Distance, boxcar distance, absolute value
distance, rectilinear distance, Minkowski's L, distance, or taxi cab metric and it

n

is given by: d = 2: Ix; - y;1

where n is the number of variables, and Xi and Yi are the values of the ith
variable, at points X and Y respectively.

4.C1ustering
Clustering is a technique to group objects based on distance or similarity. It is
therefore the assignment, grouping or segmenting of a set of observations,
individuals, cases, or data rows into subsets, called clusters, so that observations
in the same cluster are similar in some sense. The cardinal objective of
clustering is to measure the degree of similarity (or dissimilarity) between the
individual objects being clustered. In this work we utilize the agglomerative
approach under the Hierarchical clustering. The algorithm of agglomerative
approach to compute hierarchical clustering is as follows:

I. Convert object features to distance matrix, in our case we have the
matrix of the rank correlation coefficients and the tail dependence.

2. Set each object as a cluster, thus for the sixteen objects, we will have
sixteen clusters in the beginning.

3. Iterate until the number of cluster is one, that is, by merging the two
closest clusters and continuously updating the distance matrix.

4.1 Cophenetic correlation coefficient
After the formation of the clusters, the question now is how good is the
clustering? There is an index called Cross Correlation Coefficient or Cophenetic
Correlation Coefficient that shows the goodness of fit of our clustering similar to
the Correlation Coefficient of regression. To compute the Cophenetic
Correlation Coefficient of hierarchical clustering, we need a distance matrix and
a Cophenetic matrix. To obtain Cophenetic matrix, we need to fill the distance
matrix with the minimum merging distance that we obtain in the previous cluster
objects. Cophenetic Correlation Coefficient is simply correlation coefficient
between distance matrix and Cophenetic matrix

5. Methodology
This is section presents the proposed algorithm for grouping business classes
into various lines. For the different business classes follow the algorithm below
to cluster them into their respective lines (or departments):

I. Fit the Copula function (see section 2) for each pair of business classes

2. Estimate the dependence parameter
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Calculate the measures of dependence, the
(Spearman's rho or the Kendall's tau) and the tail
the relationships in sub-section 2.1.

rank correlation
dependence, using

4. Compare closeness of these measures to each other by calculating
appropriate distances culminating to a distance matrix (see section 3).

5. Cluster the business classes into the various homogeneous lines or
departments using the minimum distance approach (see section 4).

This will result in the highly related classes being in one line while the less
dependent classes will be in different lines. The classes of business will form a
diversified portfolio (with each class having homogeneous lines) and hence
increase the diversification benefits.

6.Application to real data
Data that were collected from thirty-five insurance companies who are members
of the Insurance Regulatory Authority (IRA) of Kenya and participating in some
class of general insurance for the period 2006 to 2009 are analysed in this
section. A general business insurer, in Kenya, can be registered to transact any
or all the twelve classes of general insurance business namely: aviation,
engineering, fire-domestic, fire-industrial, liability, marine, motor-private,
motor-commercial, personal accident, theft, workman's compensation and
miscellaneous. Their densities are shown in Figure 2.

Figure 2: Densities for the twelve classes of business in general
insurance, Kenya

7.ResuIts and Discussion
We now compare the clustering based on the Euclidean distances and the
Manhattan distances. The cophenetic correlation coefficient will be hardy in
choosing between the best distances to use. The Euclidean distance performs

, ~
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better than the Manhattan distances, as shown in Table 1, and so we will base
our clustering on the Euclidean distances.
Table 1: Comparison between the performance of the Euclidean and the
Manhattan distance

Distance

Manhattan Euclidean
Mantel

Measure statistic Significance Mantel statistic Significance

Kendall's tau 0.6580 <0.01 0.9029 <0.01

Spearman's Rho 0.7041 <0.01 0.7850 <0.01

Tail index 0.6511 <0.01 0.9067 <0.01
Table 2: The dependence parameter theta estimated for each pair of general
insurance classes

Av En FD F I Liab M&T MP Me PA Theft we

Eng 5.814

FD 6.025 6.696

FI 6. I73 6.906 6.859

Liab 5.770 6.508 6.535 7.097

M&T 5.574 6.171 6.293 6.654 6.580

MP 6.961 7.212 8.219 8.033 7.643 7.085

Me 8.068 8.280 8.764 8.945 8.438 8.112 10.102

PA 6.153 6.815 7.124 7.079 6.832 6.668 8.210 8.814

Theft 6.451 6.957 7.053 7.322 6.911 6.712 7.936 8.536 6.913

we 6.243 6.976 7.265 7.338 7.170 6.727 8.296 9.260 7.408 7.187

Mise 5.496 6.398 6.566 6.410 6.664 5.917 7.474 7.864 6.669 6.568 6.681
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Table 3: Tail index calculated from the fitted dependence
parameter theta for each pair of general insurance classes

Av En FD F I Liab M&T MP Me PA Theft we

Eng 0.873

FD 0.878 0.891

F I 0.881 0.894 0.894

Liab 0.872 0.888 0.888 0.897

M&T 0.868 0.881 0.884 0.890 0.889

MP 0.895 0.899 0.912 0.910 0.905 0.897

Me 0.910 0.913 0.918 0.919 0.914 0.911 0.929

PA 0.881 0.893 0.898 0.897 0.893 0.890 0.912 0.918

Theft 0.887 0.895 0.897 0.901 0.895 0.891 0.909 0.915 0.895

we 0.883 0.896 0.900 0.901 0.899 0.891 0.9\3 0.922 0.902 0.899

Mise 0.866 0.886 0.873 0.886 0.890 0.876 0.903 0.908 0.890 0.889 0.891

Table 4: Euclidean distances from Tail index for each pair of
general insurance classes

Av Ena FD F I Liab M&T Mise Me MP PA Theft

Eng 0.183

FD 0.178 0.156

F I 0.178 0.151 0.151

Liab 0.187 0.159 0.160 0.146

M&T 0.189 0.169 0.167 0.159 0.159

Mise 0.192 0.164 0.181 0.166 0.157 0.176

Me 0.176 0.151 0.141 0.132 0.145 0.160 0.167

MP 0.175 0.153 0.134 0.133 0.144 0.161 0.157 0.105

PA 0.178 0.153 0.146 0.146 0.152 0.159 0.160 0.134 0.130

Theft 0.171 0.150 0.148 0.141 0.150 0.158 0.163 0.137 0.135 0.149

we 0.179 0.151 0.144 0.141 0.145 0.159 0.161 0.125 0.127 0.139 0.144
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Table 5: Kendall's tau calculated from the fitted dependence
parameter theta for each pair of general insurance classes

Av En FD F 1 Liab M&T MP Me PA Theft we

Eng 0.828

FD 0.834 0.851

F 1 0.838 0.855 0.854

Liab 0.827 0.846 0.847 0.859

M&T 0.821 0.838 0.841 0.850 0.848

MP 0.856 0.861 0.878 0.876 0.869 0.859

Me 0.876 0.879 0.886 0.888 0.881 0.877 0.901

PA 0.837 0.853 0.860 0.859 0.854 0.850 0.878 0.887

Theft 0.845 0.856 0.858 0.863 0.855 0.851 0.874 0.883 0.855

we 0.840 0.857 0.862 0.864 0.861 0.851 0.879 0.892 0.865 0.861

Mise 0.818 0.844 0.848 0.844 0.850 0.831 0.866 0.873 0.850 0.848 0.850

Table 6: Euclidean distances from the Kendall's tau for each pair
of general insurance classes

Av En FD FI Liab M&T Mise Me MP PA Theft

Eng 0.249

FD 0.244 0.212

F 1 0.241 0.207 0.207

Liab 0.253 0.218 0.217 0.200

M&T 0.256 0.230 0.228 0.217 0.217

Mise 0.260 0.222 0.218 0.225 0.214 0.239

Me 0.237 0.205 0.189 0.181 0.198 0.217 0.221

MP 0.237 0.209 0.181 0.183 0.197 0.219 0.209 0.146

PA 0.242 0.210 0.199 0.200 0.208 0.217 0.216 0.183 0.179

Theft 0.232 0.205 0.202 0.194 0.206 0.216 0.220 0.187 0.185 0.205

we 0.242 0.206 0.196 0.193 0.200 0.217 0.218 0.171 0.175 0.191 0.197
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Table 7: Spearman's rho calculated from the fitted dependence
parameter theta for each pair of general insurance classes

M &
Av En FD F I Liab T MP MC PA Theft WC

Eng 0.958

FD 0.960 0.968

F I 0.963 0.970 0.969

Liab 0.957 0.966 0.966 0.971
M &
T 0.954 0.962 0.964 0.968 0.967

MP 0.970 0.972 0.978 0.978 0.975 0.971

MC 0.978 0.979 0.981 0.982 0.980 0.978 0.986

PA 0.962 0.969 0.971 0.971 0.969 0.968 0.978 0.981

Theft 0.965 0.970 0.971 0.973 0.970 0.968 0.977 0.980 0.970

WC 0.963 0.970 0.973 0.973 0.972 0.968 0.979 0.983 0.974 0.972

Mise 0.953 0.965 0.967 0.965 0.968 0.959 0.974 0.977 0.968 0.967 0.968

Table 8: Euclidean distances from the spearman's rho for each
pair of general insurance

Av En FD FI Liab M & T Mise M C M P P A Theft

Eng 0.064

F 0 0.063 0.046

F 1 0.062 0.044 0.044

Liab 0.067 0.048 0.048 0.042

M & T 0.067 0.054 0.054 0.049 0.048

Mise 0.069 0.051 0.049 0.053 0.047 0.058

MC

MP

PA

0.072 0.053 0.046 0.042 0.049 0.060

0.066 0.049 0.038 0.037 0.044 0.055

0.063 0.045 0.041 0.041 0.044 0.049

0.059 0.044 0.042 0.038 0.044 0.049

0.064 0.045 0.040 0.038 0.042 0.050

0.060

0.051 0.025

WC

0.049 0.042 0.036

0.051 0.043 0.038 0.043

0.050 0.037 0.033 0.037 0.040

Theft

KEY: Av - Aviation, Eng - Engineering, F D - Fire Domestic, F I - Fire
Industrial, Liab - Liability, M & T - Marine and Transit, M P - Motor Private, M
C - Motor Commercial, P A - Personal Accident, W C - Workman's
Compensation, Mise - Miscellaneous.

The estimated dependence parameter, theta, is found in Table 2 which is used to
calculate Table 3. The larger the dependence parameter, theta, the stronger the
dependence between pairs of business lines and this leads to a high dependence
measure value. Tables 3 and 4 produce the clusters in Figure 3 which relates to
the tail index. Additionally, Tables 5 and 6 lead to Figure 4 for the Kendall's
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tau while Tables 7 and 8 generate Figure 5 for the Spearman's rho. The
calculated Spearman's rho is consistently closer together than for comparable
Kendall's tau. For instance, consider the Euclidean distance between the
Aviation and the Engineering lines. The distance for the tau is 0.249 while that
of the rho is
0.064. They are consistent as they produce the same clustering structure as
evident from Figures 4 and 5.

This work proposes the use of the upper tail dependence derived from the
dependence parameter in determining the retention limits for are-insurance
arrangement. Though the dependence is not the only factor to consider for such
re-insurance treaties the forwarding proportions should be somewhere
proportional to 1/0 - Tail index). This will ensure that for highly dependent
risks in the upper tail will forward higher proportion to the re-insurer and vice
versa. The behaviour of this proposed quantity is found in Figure 6.
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The criteria based on the three dependence measures arrive at five major classes
each with peculiar characteristics. The first cluster involves the rare but with a
high probability of a huge claim amount lines: Engineering, Liability, Fire
industrial and Theft. The second contain lines with moderate claim amounts as
compared to the previous cluster but rather slightly more frequent: Fire
domestic, Personal accident, Workman's compensation, Motor commercial and
motor private. In the following cluster we have the less popular lines under the
umbrella of the miscellaneous class. Marine and Transit which is completely
erratic clusters alone while the Aviation line whose main business is exported to
foreign countries forming the last cluster. When setting up or restructuring a
company it is advisable to select the lines of business from different clusters.
This will result is a diversified portfolio hence the company will enjoy
diversification benefits.

8.ConcIusion
It the choice of distances for clustering is very crucial as they can vary
depending on the problem at hand. Comparison of the results obtained by
different cluster analysis methods result different dendrograms and that the
cluster analysis should be used. This problem can be surmounted by comparing
the cophenetic distances to the initial distances computed as suggested in this
manuscript. Just as we suggested, an insurance company can employ the use of
tail dependence index to approximate the proportion of retentions in the case of
reinsurance arrangements. Finally, it can be observed that with the dendrograms
one can choose the number of efficient divisions in the company by just moving
up or down the dendrogram tree.
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9.Recommendations
We recommend to all investors establishing general insurance business to first
consider the dependence structure so as to arrive at a diversified portfolio in
order to benefit from diversification benefits. The business classes that form
their own individual clusters like the Aviation, Miscellaneous, Marine and
Transit should be given special attention when a company engages in them as
they present peculiar characteristics within themselves. We do also recommend
that the insurance regulator uses the methods outlined in this thesis in order to
understand the dependencies between insurance classes for advisory purposes.
This is due to the fact that there may be no single insurance company that
operates all the insurance classes for it to have sufficient data. Finally, the
proposed algorithm is long and tedious but this can be made easier by having
dedicated computer software.
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