BOOTSTRAP CONFIDENCE INTERVALS FOR »ODEL BASED
SURVEYS.

To obtain the conditional expected value and conditional variance of

A
Var m(x i ) we utilize the following result:

If for any expression Z, E[Z/U]=A(U)+O(B) and Var[Z/U]=0/C, then
Z=AU)+0,B+CY).

Using the above result we obtain
v oy o2 (b2 (3 ead ()l (37)
arm(x;) = (n-

as b—0,
Varm(/)\(l) = (n-1) '1{0-2 (xl)+0((n_1)“1/2b—1/2)}
=(0-1)"{c*(x;)+O(nb) "}

Therefore

37 '
VarR,=0'Z(x,.)+o- (x’)+0( : )

. w2l
1/2
As n—o and as (nb)" o
Var(R;)= 6%(x;) which is the same as the variance of ¢; in model (2.2).
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Abstract. Some general asymptotic methods of estimating the
quantile function, Q(&), 0<& <1, of location-scale families
of distributions based on a few selected order statistics are
considered, with applications to some non-regular distributions.
Specific results are discussed for the ABLUE of Q(&) for the

location-scale exponential and double exponential distributions.
As a further application of the exponential results, we discuss the
asymptotically best optimal spacings for the location-scale logistic
distribution.

Key words and phrases: Quantiles; Order statistics; Optimal
spacing; Exponential; Logistic.

1. Introduction. In the location-scale model it is assumed that the distribution
function (df) for the random sample X, X,,....,X,, has the form

F@):F{’“”) A NRY)
(o}

where [ is a known distribution function and 4 and & are the unknown

location and scale parameters respectively. It is assumed that /' is absolutely
continuous with respect to Lebesgue measure and has the probability density

function (pdf), f, given by

f(x)=-1—fo(x—ﬂj, 12
o

o

where F = f; . The quantile function is defined as

o =F(®). (13)
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By the location-scale property we have

(&)= u+00)(3), (1.4)
where 0(£) = F; (&)

A natural estimator of O(&) is the sample quantile function, Qn (&), which is
the inverse of the empirical distribution function F;, (x), defined by

0 X <Xy
E@={G-D/n X, ,sx<X, (1.5)
1 X2 X,

where X (l),X (2),....,X () » are the order statistics corresﬁonding to the random
sample. It is easily seen that

0,&) =X, for j-D/n<é<j/n, j=l...,n, (1.6)

which is a piecewise constant function.

Parzen (1979) suggests the following piecewise linear estimator, Qn (&), as
preferable to Q” (&)

Qn(f)=n(j/n“‘§)X(j-1)+”(§‘ln:1)X(j)a 1.7

for (j=1)/n<E<j/n and j=12,...,n, where X is taken as
suggested by Parzen (1979).

Dixon (1957, 1960) proposed the simplified linear estimators for the mean and
standard deviation of the normal population in terms of the sample quasi-
midrange and quasi-range, respectively. Sarhan and Greenberg (1962) give the
BLUE of Q(&) for the two parameter exponential distribution in complete
samples, while Epstein (1960) considered the one parameter case.

Hassanein (1968, 1972) considered the estimation of Q(&) for the Gumbel
distributin for the large samples and Mann and Fertig (1977) for moderate
samples. For small to moderate samples Mann (1970) gives estimators of
0(0.1) and Q(0.05) for the first extreme-value distribution. Kubat and

Epstein (1980) considered the estimation of Q(&£) based on two or three order

statistics for the normal and Gumbel distributions. Ali, Umbach, and Hassanein
(1981) followed the approach of Kubat and Epstein (1980) for the exponential
and double-exponential distributions based on two selected order statistics.

In this paper, we discuss a general theory to obtain ABLUE of Q(£) based on
k (£n) selected order statistics from a location-scale family of distributions.

This approach, contrary to the approaches taken by Kubat and Epstein (1980)
and Ali et al. (1981) enables us to generalize to any arbitrary number of selected

order statistics. As an application of this theory, ABLUE of Q(&) is obtained
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for the location-scale exponential and logistic distributions models and follows

closely the work of Balakrishnan and Kannan (2001) and Weke (2001).

2. ABLUE of quantiles in location-scale families. We consider estimation of
the population quantile Q(§) in model (1.1) based on k£ (<m) order

statistics, X("l) < X(n;) < e < X(n,‘) , where n, =[np,]+1, i =12,....k,
and [.] is the greatest integer function. The k —tuple, ( D> Pasesses pk) whose

elements satisfy 0 < p, <P, <.... <Py <1 is called a spacing for the sample
quantiles. Our goal is to choose the spacing optimally to obtain ABLUE of
O(&) based on k selected order statistics.

Given a fixed & — tuple, ( Dis Pyseeees pk), the corresponding sample quantiles
{Q (p)i=12 ....,k} have a k — variate asymptotic normal distribution
n L) ’

(Mosteller, 1946) with mean vector ( u+00y(p)ses Ht+C Oy (P, )) and

covariance matrix with elements

a’p(-p;)
ndy(p,)dyp;
where  dy(p,)= /o (Oo( p,)) is the density-quantile function at p;,
i=1,2,...,k . The ABLUE of the quantile function, Q(&) , with fixed spacing
( D> Daseress pk) , can be obtained through the generalized - least-squares

for 1<i<j<nm, @D

principle as follows:
0 = (KX +QOKT) =Ko QX)) 02
where A=KK, - K; s . 23)

x-§ do(p,)—do(p,_l)_do(pm>—do(p,)}do(pi)XW ”
Pi—Pia : Pin~Pi

i=1

Y = kzﬂ“{do (p)d,(P)—dy (P)do(P)
i=1

Di—Pia
- O (P (Prn) ~ O (P)dy(P)) } dy(P)X (s> @3
P~ P
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K, - $14) -4 )}

i=1 Di— Dy B (2.6a)

&, = ${2@)4 @) -0, (p.)dy(p)

= 2Dy 5 ~ (2.6b)
X = Z {d@)-d,(p.,)} {Q,m)do(pa—Qo<p,_1>do(p,.1)}
= 2Dt (2.6¢)

with p, =0, Dia =1, and 4 — _ '
i=1’2,om’k' k+1 | an; o(po) do(pk+1)—0 and n‘.=[np1]+1,

The variance of O(£) is given By

Var(0))=Z-{x, +O @K -20,9)K,}. )

If the pdf, Jo» is symmetric about zero and if we select Symmetric sample
quantiles, ie. p,+p, = =1, j=
-1 =1, 1=12. ...k then X, =0 and
o t et R R = the ABL
Q(&) is given by ’ et

0O=x/K+Q@Y)K, e
ith variance ) = o’ '

with varianc Var(Q(:f)) = 7(1/1<1 +Q&)/K,). 2.9)

These results are due to Ogawa (1951).

In 'order to obtain the optimal estimator of (&), say Qo(é‘) based on
optimally chosen order statistics we minimize (2.7) with ’respect t
: 0

(pl,pz,....,pk) subject to 0< py < p, <....<p, <1. Let the optimum
spaci () 0 :
pacing be ( PrsDysees py ) » then the optimum ranks of the order statistics are

0 0
m =[np1+1, i=1,2,...k. The i
s ywsasg dC coefficients m
K po po . : ay also be computed based
12 P25+ P by following through the formulas (2.4) and (2.5).
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3. ABLUE of Q(&) for the exponential distribution.
Let X,y <X,y <.....< X, be k arbitrary but fixed order statistics with

ranks 7, =[np,]+1, i=1,2,....,k inasample of size # from the
exponential distribution

F(x)=1—exp{-u}, X2 u,a>0, (3.1)
- .

where /L, O are unknown parameters. Then, using the results of Saleh and Ali
(1966), and the results of Section 2, the-:ABLUE of Q(&) is given by

0&) ={1+5,(0, -0, (P Xy + D B.O - PIX,y G2

Q,(P2) -9 (py) '
where b, = — {{ego((fzz) - ero(Pl) }L} , (3.3a)
b =l Oy (P) - O (Piy) __Qo(pm)"Qo(p/)_ (3.3b)
! L er(Pl) - er(Pl-l) er(Pu-l) _ er(Pl) ’ :
i=2,..,k-1,
119 (p) =) |
5, = {20, 639
and
L [0(P) -0 )]
4= (;Qo(!’:) —a00 @4
i=2
The variance of Q({) is given by
2 o
Var(Q(§))=%{[Q°(§) LQO(pl)]_*_eQn(pl)__l}. 3.5)

In order to obtain the ABLUE based on & selected order statistics, we minimize
(3.5) subject to the restriction, 0< p, < p, <...<p, <1. For this, we
consider the alternative form ,
2 [ 42,0:(5)
A g |te ¥
L (Q('}’:)) - _{ &n T cROE 1} (3.6)
n | K;
where [ = Qo(’f) - Qo(pl) and tl = Qo(pl+l)_ QO(P]) ’ i= 1’ 2’"-’k_l ’

(k-1) < (t,. ~lig )2 :
and K{*D =3 ~—— with £, =0, (€3)

7
i=1 e‘_e
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In order to minimize (3.6), we first maximize KZ(H) with respect to Oseensli ).
The maximum value s, say, Kf occurring at (tlo,...,t,?_l) . Theorems relating

to the maximization of K{*™ are given in Saleh and Ali (1966) with tabulated
values in Sarhan and Greenberg (1962). Next we minimize

£ exp{0,(&)~1}/k; +exp{0,(&) -1} -1 6

over the region f<Q)(§), since Z‘SQO(QO(pI)) and Qy(p,) is‘

nonnegative. By differentiation, one finds that (3.8) is decreasing over
(006 JU[2-2E)0)  wnd cressing over
(Q0(€e)2-Q0(&,)) where Qy(£) =1-(1=K2)2. Now, we must
have £ < 0y (£), 50 if Oy (£) = Oy (&, ), we get (3.4) equals

(& ©/K; +1)exp(0,()- O(&,)) -1 (3.9)

at =0, (&) and 0 (&)/K; (3.10)

at 1= 0y(&). These two values are equal at #=0,(£) and £ =0, (&)

where = (), («f;(z) is located beyond 2~ 0, (& ) and is obtained by solving
the equation (3.9)—(3.10). Hence, we get the minimum of (3.8) at

1=008)> (&) €(QE, 10 (&) ], and KF = K?. Thus, when
£ (&, &x, |, wemust have

9 (P =0(E) -0 (&) 3.11)
QP =Q@)+8 ~0&e,),  i=lok-1.

Hence, the optimum spacing of the ABLUE of O() is given by

A =1-1-9/0-&,) . (3.12)
Pa=1-(-EA-A/A-¢&), i=1..k-1,

where A =1-exp(-t’), i=1,...,k-1. Th;a ABLUE based on this spacing
is Q°(&) = 0 X011 + Z c,° - : (3.13)

where ¢ =1+b] Q0(§K1) ¢ =b0y (&), i=1,...k-1.

These coefficients may be computed easily using the tabulated values of
By 5y by and .. oAy 41 from Sarhan and Greenberg (1962).
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For the case & ¢ (sz,é‘;z], the infimum occurs at ¢ =0,(£) and (2.8) is

decreasing over (O, Sk, ) U (é‘;z , 1) . Thus Q)(p,) must be as small as
possible and by using the results of Saleh and Ali (1966) we choose

0,(p0) = (2” IJ 0,(p) = k=1, (.14)
2n+1

For this case, the ABLUE of Q(&) is given by

0= {1+b°(90<5)+1n2”+i)}z¥m
+Zb° (0 (§)+m2” Dx( (3.15)

where b;,...,b, , are tabulated in Table ILD.1 of Sarhan and Greenberg (1962)

k-1
with bg = —2 b10 and spacing ( plo s pg,..., p,?) defined by
=1

1

0 _ sl . ~
n+1/2,p1+1—{2+(2n DAY} f@n+1), i=1,...k~1, 3.16)

p =

where /110,...,/7,,?_1 are spacings which maximize Kék_n are tabulated in -

Sarhan and Greenberg (1962). Thus, the ABLUE of O(&) is given by (3.13)
for £ € (sz ; 5;1 :l and by (3.15) for £ € (O,fK2 ]U(f;(l ,l) . It may be noted
that the estimate of Q(&) depends on where & is located in the interval (0,1).

Now, the complete sample BLUE is gwen by

Q(§)=——-(l Qo (N Xy -—— (1~ nQ,(E)X 3.17)
[0/¢3)] w1th variance
Var (Q(@) =0~ )(1 20,(&)+nQ} (&) (3.18)

The ARE(Q°(£): O(&)) is then given by

97




P. G. 0. WEKE
[ X 20,8, &)
ABGO:2 ) {—gl({?(’)ﬂ} 10
L [={a©-0g))

'5451(1 5‘2]

It may be noted that lim, K, =1, hence lim,_,Q,(& )=1, ie.
& =1-¢"=0.6329=¢& implies O,(&) =1 and the spacing are the same
as that of (3.14) and ARE (Qo (&): 0(&)) =1. Therefore, for large values of

k we always use (3.15) and for small values of k£ we use Qo (&). Table 1
provides some ARE-values. =

' bele 3.1_
ARE(Q°(£): 0(&))

g

0.60  0.7705 0.9095 0.9512 0.9697 0.9894 0.9848 0.9882
0.70  0.8115 0.9275 0.9606 0.9752 0.9894 0.9869 0.9869
0.80  0.8147 0.9108
090  0.7205 0.9108
K; 0.6475 0.8910 0.9476 0.9693 0.9798 0.9857 0.9894

& 0.3339 0.4882 0.5375 0.5617 0.5759 0.5814 ,0.5912

2

gl'( 0.9296 0.8291 0.7779 0.7476 0.7278 0.7137 0.7931
2

Note that &y and é‘;(z are bounds on & for each k and K, are the ARE

values for & outside the bounds.

3.1 Examples

Case 1: Uncensored case. Let n=50 and k=2. Then, from Table 1,
51(, =0.3339. The optimum spacings are p,0 = 2/101 =0.0198,

P =(2+994%)/(101) = (2+99(0.7968))/(101) = 0.8008
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when 56(0,0.3339][)(0.9296,1). The optimum ranks of the order

statistics are 1 and 41. The coefficients for the estimate are

¢ =1-(0.6275) (0,(£)-0.02)=0.9874~ 0.62750, (&)
Alietal (1981 have ¢y =1-0y()/1.5936,
¢! =0.6275 (Qo(é)—0.02) =0.62750,(&)—0.0126.

Alietal (1981)have o = 0,(£)/1.5936.

The difference is due to the fact that they use 1 in place of (21— 1) / (2n+1).
| 0.6476 £0,03339)L(09256.)

ARE(Q(é):Q(«f))={1nz 1-5)[083590-5" 1] squsmong

Case 2: Censored case. Let n=50 and k=2 with p, =0.10. Then, using

Table 1 again, & =03339. The optimum  spacings  when
£ €(0,0.4005]U(0.9366,1) are
pL =0.10 and py =010+ (0.90)(0.7968) = 0.8888..

L =0.

The optimum ranks are n{) =5 and ng =45 . The coefficients are given by

¢ =1-(0.6275)(Qy(5) - 0.1054) =1.0661-0.62750,(5).
¢ =0.6275(Q (%) ~0.1054) = 0.62750,(£) —0.0661.

Let £ € (0.4005,0.9366] , then
p° =1-1.5013(1- &) =1.50135 - 0.5013

P =1-02032(1.5013(1-&)) =1-030506(1-) = 0.30506& —0.69494.
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4. Estimation of O(&) for the Logistic Distribution.
Let X, ) <X () Seoees <X (n,y be the sample order statistics and let the
sample quantile function, (&), be defined by

Q(§i)=X‘.">, O<u, <1, - i=[n&l+1. ’ (4.'1)

Given a spacing, T = {é‘] ,...,é’k} , (k real numbers such that
0<§ <é,<..<€,<1) the comesponding  sample  quantile,

O(&),--»O(&,), have been shown by Mosteller (1946) to have a normal
limiting distribution. This form of distribution has been used to develop
formulae for the asymptotically best linear unbiased estimator, ,u'(T ) and

o' (T), of i and & and their corresponding asymptotic relative efficiencies

(see Gupta and Gnanadesikan (1966) and Ogawa (1951)) and since the
estimators and their ARE's are a function of the spacing for the sample quantiles,

to obtain optimal estimators an appropriate choice of 7' must be made. Thus, an
optimal spacing is defined as a spacing which minimizes the ARE of 4 (T,

o' (1), or (1" (1), 0" (D).

4.1 Estimator of the Scale Parameter. Let ¢, be the asymptotically best
optimal spacings and b, be the corresponding coefficients of the best linear
unbiased estimator &, . Let the spacing ¢, be defined in relation to the rank i
of order statistics X ;,, and sample size as .

i= [nc, + 0.5], 0<c <% 4.2)
: i . . ,
and since lim,_, — = ¢;, it can therefore be easily shown that the estimator of
n

o, &, is asymptotically unbiased.

Let R, denote the 7 -th sample quasi-range
R=X,—Xguy- (4.3)
Then based on work of Weke (2001) and equation (4.3), we propose to use

k

sz [Rl 5 Ri—l] .
A =l _
oy =—F", T=— 4.9)

k
ZTZ biEl,i+1:n -‘/5
i=1
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where

| Ejn = E[X(i) ¥ X(M)] =0(c)+ Q’(ct)(—:: - C))

(4.5)

2
2n i i+1

L0) '(c®) {% +(i-nc) “%(Xl‘ # ]} +0(n™)

as the estimator of the scale parameter o . Since logistic distribution is
symmetric about the mean, it follows that

Ei,i+1:n = —En—i-l,n—l:n d = 1’2""’n -1 -

* 1
E, .., leads to the following expression when expanded around ¢; = > and

i= [nci + 0.5]

n—i) n(m-2i) |1 2 36
~ e : 6)
E jiin log( . \) t 2i%(n- i)2 |:6 Qi-DQ2i+1) (

The precision of this estimator is measured by calculating its bias and variance.
The bias of the estimator 6‘1 is measured by

k
" DB E[R +R,]
BIAS =1—E(9L)=1— 1 . @1
(e}

k
272 bE, ;1
i=1

Based on the values of the bias for various spacing values and _szfmple sizes (see
Tables 2 and 3) we notice that the bias values are negligible. Thus, the
denominator in Equation (4.4) reasonably approximates the expectation of the

selected order statistics. Hence, the variance of the estimator O, is given by

33 bb,Con(R, + Ruis R, + R )
Var(6,) = 1 el 4.8)

[f b,E(R +R,, )]2

i=1

where the ranks 7 and j are determined from Equation (4.2) and b, and b;

are the asymptotic optimal coefficients corresponding to the ranks 7 and j .
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The expectations, variances and covariances of the logistic order statistics for SELECTED ORDER STATISTICS
sample sizes up to 100 were computed by using FORTRAN 77 language o '
computer programs to facilitate the calculations of the estimator and its derived e I Table 4.1
PRESEES. i EXP, BIAS, VAR, AEF and R.E. of &,

The expectation (EXP) of the selected order statistics, bias (BIAS) and variances “ SIZE EXP BIAS VAR AEF RE.
(VAR) of the estimator for various spacing values and sample sizes are given in '

Tables 2 - 3. The asymptotic efficiency (AEF) of the estimator with respect to 14 13.12119 -.00001 .05613 .88999 9507

the Cramer-Rao lower variance bound and the relative efficiency (R.E.) with - 15 13.77081 -.00001 05192 .89795 9549

respect to the variance of the best linear unbiased estimator are computed and 16 1229594 -.00001 .04920 .88839 -9409

presented in Tables 2 - 3 for comparison. Notice that 17 12.88540 -.00001 .04578 .89858 9484

AE 9 : ' 18 13.43297 -.00001 .04287 .90635 9536

AEF = n(3+7l'2)Var(6' ) ; f ! 19 13.94430 -.00001 .04035. 91210 9571

k 20 14.42382 -.00001 .03817 91607 .9589

RE = Var(BLUE(0)) 21 13.28171 .00000 .03692 90199 .9420

= e m)— 4.9 ¥ 22 13.72777 .00000 03503 .90750 .9460

A L 23 14.14942 .00000 .03335 91161 9487

. . ) | 24 14.54927 .00000 .03186 91460 .9498

The asyr'nptotlcz'llly optimum  spacings, coefficients, the variances and the 25 13.62037 .00000 .03121 .89627 .9295

asymptotic relative efficiencies of the estimator of scale parameter for the i 26 13.99673 .00000 .02987 .90046 9324

logistic distribution were first provided by Hassanein (1969) for 2 <k <9. f 27 1435547 -00000 02867 90331 9344

Later, Eubank (1981) worked out asymptotically best optimal spacings, i 28 14.69835 -00000 02758 90560 9355

coefficients and the corresponding asymptotic relative efficiencies for logistic 29 15.02671 .00000 02657 90749 9364

distribution for 2<% <10. Eubank's optimal spacings generated higher : 30 14.24064 :00000 02625 83813 9154

relative e_fﬁciencies than the efficiencies in Hassanein (1969). In this study, the | 31 14.55308 -00001 02531 89132 9174

asymptotically best optimal spacings and coefficients in Eubank (1981) have : 32 14.85315 :00000 02448 89279 9183

been used for £ = 4,6,8 to produce relatively higher asymptotic efficiencies. | gi 115141123']72 -88383 85;23 g?/ggg g;’?g

! 35 14.73915 .00000 .02282 .87562 .8983

36 15.00611  -.00001 .02213 .87769 . .9001

37 15.26399 .00000 .02152 .87836 .9001

* 38 15.51353 .00000 .02095 - .87863 .8993

39 14.91389 -.00001 .02085 .85984 .8801

40 15.15406 .00000 .02032 86046 . .8794

41 15.38690 .00001 .01982 .86060 .8799

© 00000 .85132/n 82145
Note: Optimal spacings are .036, 221
Coefficients: .1401, .3544
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4.2 Numerical Examples and Discussions In this section, we use the &
asymptotically optimal spacings and the k£ corresponding asymptotic optimal
coefficients (k =2,3,4) to construct Tables 2 - 3. A numerical example is
given below for comparison and illustration:

Let p(i)= [nc,. +0.5], i=1,2,....,k be the rank of order statistics. In this

example, we consider the case when 7 =20 and k=4 so that the ranks are
givenas p(1) =[0.036n+0.5] and p(2)=[0.221n+0.5].
Hence, the range of sample size applicable in this particular case is

14 < n <41 and by using the optimal coefficients as 0.1401 and 0.3544 given
by Eubank (1981) the following computations ensues:

Let the coefficients be in the ratio of 1: 2.5296 and by using Equation (4.2) the
order statistics are i =1,2,4,5 and n—i+1=16,17,19,20 such that the
calculations become

i=1 o i=2
i=4
1x0.51558
[ 1x0.20390 1x0.21246
0.09023
2.5296 x 2.5296 x bomat
) 0.07045 5 0.07393
X< X
0.02060 0.02170
—2.5296 % _ .
[0.01935 23296 >([0.02039
| -1x0.01727 -1x0.01820
-1%0.01638 .
2.5296 x 0.10469
0.08208
2x{2.5296 x
-0.02431
—2.5296 x0.10469
i=5
0.08688
2.5296 x
-0.02586

SUM, =1.48358 ,SUM, = 0.833794, SUM, = 2.5296x1.263010

SUM  =2.5196x 0.154356
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SUM = SUM, +SUM, + SUM, + SUM, =3.970523

EXP=2{1.95597+1.37563+2.52960.85312+0.68083} =14.42376(

3

VAR = ZXSU)Af =0.038170,
AEF = = =0.91606,
20G3+7)’ xVAR

' Vopt
Vopt = Var(BLUE) = 0.0366 andso R.E.= ;_% =0.95887.
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Table 4.2
EXP, BIAS, VAR, AEF and R.E. of &,

SIZE EXP BIAS VAR AEF R.E.
34 38.50034 .00000 02213 92934 .9544
35 39.25244 .00000 02146 93120 9553
36 38.44604 .00000 .02098 92586 .9495
37 39.16250 .00000 .02038 92721 9504
38 39.85580 -.00001 .01980 92929 9515
39 37.84077 -.00001 01923 193249 9542
40 37.11419 -.00002 01875 93254 9531
41 37.76245 -.00001 01826 93403 9551
42 38.39204 -.00002 01777 93718 9567
43 37.73132 -.00001 01743 93318 9530
44 38.33611 -.00003 01696 193696 9558
45 38.92271 -.00002 .01659 93660 9554
46 39.49372 -.00001 01622 93720° 9544
47 38.88341 -.00002 . .01593 .93408 9517
48 39.43372 -.00002 01559 93437 .9500
49 39.96975 -.00001 01528 93416 9503
50 38.41880 .00000 01494 193597 9505
51 37.85509 -.00001 01466 93534

52 38.36438 -.00001 .01437 .93603

53 38.86168 .00000 01408 93698

54 39.34752 .00000 01381 93765

55 38.82023 -.00001 01359 93534

56 39.29089 .00000 01335 93576

57 39.75121 .00000 01311 93580

58 39.25986 .00000 01293 93263

59 39.70681 .00000 01270 193339

60 40.14429 .00000 01249 93334 =

64 39.25223 .00000 01169 93457

65 39.65557 .00000 01151 93511

68 39.99800 .00000 01102 193286

70 39.96281 .00000 01074 92978

72 39.26779 .00000 01044 93058

75 39.58537 .00000 .01003 92972

80 40.55407 .00001 00942 92804

84 39.26011 .00000 .00902 92268

85 39.57013 .00000 .00891 92315

88 39.85278 .00000 .00862 92138

90 40.43928 .00000 .00843 192224

95 40.16094 .00001 .00801 91901

96 39.86174  ..00001 .00796 91568

100 4037524 .00001 .00765 91386

© 00000 .78124/n 89514
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Note: Optimal spacings are .015,.091, .268
Coefficients: .0509, .1938, 2468

These values correspond to the values of expectation, variance, asymptot
efficiency and relative efficiency for 6‘2 given in Table 2.

It is important to note that the values of the variances in Table 2 are lower th:
those in Weke (2001) which were constructed by using a single spacing ar
those given by Chan et al. (1971). And, therefore, the asymptotic efficienci
and relative efficiencies are much higher.

Table 3 presents the expectation, bias, variance, asymptotic efficiency ar
relative efficiency of the estimator &, for various n values. The table

constructed by using three pairs of optimal spacings and it is noticed th
increasing the number of spacings results in an increase in the efficiencies.
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Abstract. We introduce a type of It6 process'that models the
adjustment of the market price of a traded security to new
information affecting supply and demand. It is based on supply
and demand functions and the Walrasian price adjustment
assumption that proportional price increase is driven by excess
demand. When supply and demand curves are linearised about the
equilibrium point, the process turns out to be a logistic form of
Brownian motion with random element of the Wiener type.

Key words. Excess demand function, Walrasian price adjustment
process, Logistic Brownian motion. ’

1. Introduction. The stochastic evolution of security prices freely traded in
markets has been an abiding topic of research- since the publication of Louis
Bachelier’s dissertation —Théorie de la Speculation, Bachelier (1900). After the
introduction of geometric Brownian motion models, Samuelson (1965), Black
and Scholes, (1973), Merton (1973), the broad thrust of recent work has focused
on steady market conditions defined by the well - known Itd process

dP, = pPdt +cP,dZ (1.1)

The linear drift coefficient p reflects price trading driven by constant investor
expectation of gain, while the diffusive Wiener process odZ reflects the
response of trading to random fluctuations in supply and demand.

In this paper we focus not on volatility but on the possibility of non-linear
drifting as markets adjust to radically new perceptions of the price of security.
The basic driver of such price adjustment, taking a neo-Walrasian view, Walras
(1874), Samuelson (1941, 1947) is the excess demand over supply at the trading
point. We use a linearised version of this driving force — la puissance motrice de
la spéculation- to drive an Itd process that models price adjustment in non-
steady markets. It is a logistic process with diffusive Wiener variation- ‘logistic

Brownian motion’.

2. General Walrasian_Samuelson Price Adjustment Model. Since the
1960s, a model of Walrasian, Walras (1874) tatonnement has been used to study
stability of general price equilibrium, Samuelson (19650, Anderson (2000) and
Asparouhova, Bossaerts & Plott, (2000) among others. In this paper, we take the
core principle of the standard Walrasian model. That is: security price changes
are directly driven by the excess demand for the security. For simplicity we do
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