
BOOTSTRAP CONFIDENCE INTERVALS FOR ''II0DEL BASED
SURVEYS.

To obtain the conditiohal expected value and conditional variance of
1\

Var m( Xi) we utilize the following result:

Iffor any expression Z, E[Z/U]=A(U)+O(B) and Var[Z/u]=O/C, then
Z=ACU)+Op(B+C1I2).
Using the above result we obtain

1\. _ _1!a2eXi)+b2a2(Xi)k2dseXi)df (Xi)}
Var moq) - (n-l) 0( 3 -112 -112)

+ b +(n-l) b

as b~O,

VarmCxi) = (n-I) -1{0"2(Xi)+o(n_I)-1/2b-1I2)}.

=(n_1)"1 {cr2(Xi)+O(nb )"1!2}
Therefore

V. 2( ) 0"2(XJ o( 1 )'ark, = 0" Xi +---+ 3/2 1/2 •n-1 n b

As n--,>oo, and as (nb/12 --,>ro,

Var(Ri)= cr2(Xi)which is the same as the variance of ei in model (2.2).
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Abstract. Some general asymptotic methods of estimating the
quantile function, Q(~), 0 < ~ < 1, of location-scale fainilies
of distributions based on a few selected order statistics are
considered, with applications to some non-regular distributions.
Specific results are discussed for the ABLUE of Q(~) for the
location-scale exponential and double exponential distributions.
As a further application of the exponential results, we discuss the
asymptotically best optimal spacings for the location-scale logistic
distribution.
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1. Introduction. In the location-scale model it is assumed that the distribution

function (dt) for the random sample XpX2' ..... 'Xn' has the form

(
X- f.J)F(x) = Po ---;;- (1.1)

where Po is a known distribution function and f.J and 0" are the unknown

location and scale parameters respectively. It is assumed that F is absolutely
continuous with respect to Lebesgue measure and has the probability density
function (pdt), f, given by

f(x) = ~fo(x:f.J} (1.2)

where F; = fa . The quantile function is defined as

Q(~) = rl(~). (1.3)
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By the location-scale property we have

(2(';-) = Jl +aQo(~'-,-
where Qo(';) = Fa-I(.;).

-(1-:-4)-

A natural estimator of Q(';) is the sainple quaritile function, Qn(.;) , which is

the inverse of the empirical distribution function Fn(x) , defined by

{

0 ,x<X(J)
F;, (x) = (j -I)/n ,XU_I) -:;x < X(j)

1 ,x~X(n)

where X(I)'X(2)' .... 'X(n)' are the order statistics corresponding to the random

sample. It is easily seen that

Qn(,;)=X(j) for (j-I)/n<';-:;j/n, j=I, ..... ,n,

(1.5)

(1.6)

which is a piecewise constant function.

Parzen (1979) suggests the following piecewise linear estimator, Qn(.;), as

preferable to Qn(';):

-. ( j-I)Qn(.;) = n(; / n - ,;)XU-J) +n .; - --;;- XU)'

for (j-I)/n-:;';-:;j/n and j=I,2, ..... .n , where X(O) is taken as

suggested by Parzen (1979).
Dixon (1957, 1960) proposed the simplified linear estimators for the mean and
st~ndard deviation. of the normal population in terms of the sample quasi-
midrange and quasI-range, respectively. Sarhan and Greenberg (1962) give the
BLUE of Q(';) for the two parameter exponential distribution in complete
samples, while Epstein (1960) considered the one parameter case.
Hassanein (1968, 1972) considered the estimation of Q(';) for the Gumbel
distributin for the large samples and Mann and Fertig (1977) for moderate
samples. For small to moderate samples Mann (1970) gives estimators of
Q(O.l) and Q(O.05) for the first extreme-value distribution. Kubat and

Epstein (1980) considered the estimation of Q(';) based on two or three order
statistics for the normal and Gumbel distributions. Ali, Umbach, and Hassanein
(1981) followed the approach of Kubat and Epstein (1980) for the exponential
and double-exponential distributions based on two selected order statistics.
In this paper, we discuss a general theory to obtain ABLUE of Q(';) based on

k (-:;n) selected order statistics from a location-scale family of distributions.
This approach, contrary to the approaches taken by Kubat and Epstein (1980)
and Ali et al. (1981) enables us to generalize to any arbitrary number of selected
order statistics. As an application of this theory, ABLUE of Q(';) is obtained

(1.7)
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-----fQL1he_locatil1~scale exponential and logistic distributions models and follows
. closely the work of Balakrishnan and Kannan (2001) and Weke (2001).

2. ABLUE of quantiles in location-scale families. We consider estimation of
the population quantile Q(';) in model (1.1) based on k (-:;n) order

statistics, X(n,) < X(n,) < ..... < X(no) , where ni = [nplJ +I, i = 1,2, ....,k ,

and [.J is the greatest integer function. The k - tuple, (PI' P2'· ..·' Pk) whose

elements satisfy 0 < PI <P2 < ....< Pk < I is called a spacing for the sample
quantiles. Our goal is to choose the spacing optimally to obtain ABLUE of

Q(';) based on k selected order statistics.

Given a fixed k - tuple, (Pt, P2' .... ' Pk)' the corresponding sample quantiles

{Qn (PI)' i = 1,2,.....,k}, have a k - variate asymptotic normal distribution

(Mosteller, 1946) with mean vector (Jl+aQO(PI), ...,Jl+aQO(Pk») and

covariance matrix with elements

a2p.(1-p) ., ) forl-:;i-:;j-:;n, (2.1)
ndO(pi)doPj
where do(p;) = fa (Qo (p;)) is the density-quantile function at Pi'

i = 1,2,...,k . The ABLUE of the quantile function, Q(';) , with fixed spacing

(p P P) can be obtained through the generalized least-squares
l s 2'u .. , k '

principle as follows:

Q(.;) = ~{(K2X +Qo(';)KJy) - K3 (Qo(';)X)} , (2.2)
fJ.

where fJ. = KIK2 - K; , (2.3)

Y = I{do(Pi)do(Pt)=do(Pi-l)do(P/)
1=1 Pi Pi-I

{1(Pi+l )do (PI+l) - Qo(Pi )do (Pi)} d (p.)Xo t (n,)'
Pi+I-Pi .

(2.5)
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KI ==.E {do(pJ-do(PI_I)}2

I~I p, - P'_I (2.6ar

K2 == ~ {Qo(P;)do(p;)-{1(P;_I)do(pJV
;=1 PI-PH (2.6b)

x, == I {do (P,)-do (P;_I)} {{1(p,)do (P;)-{1(PI I)do(P/-l)}
;=1 PI_PI_I (2.6c)

with Po == 0, P 1 d d ( ) dk+l== ,an oPo == O(Pk+I)==O and n;==[np;]+l,
i==1,2, ... ,k.

The variance of Q( q) is given by

Var(Q(q») == :~ {K2 +Q;(q)K{ -2Qo(q)K3}'
(2.7)

If th~ Pd~ fa, is symmetric about zero and if we select symmetric sample
quantiles, i.e, P +P -1 i -12k h K 0

1 k-I+I - , -, , ... , ,t en 3 == and the ABLUE of
Q( q) is given by

Q(q)==X/KI + {1(q)Y/K2 .

with variance Var(Q(q)) == :2 (1/KI +Q;(q)/K
2

).

(2.8)

(2.9)

These results are due to Ogawa (1951).

In order to obtain the optimal estimator of Q(l!) QA 0 (f:)
. ~,~ ~,~~oo

optunally chosen order statistics we minimize (2 7) ith
(

• WI respect to
Pl>P2' .... 'PIe) subject to O<p <p < <p <1 L t th .

I 2.... k: • e e optimum
spacing be (pO pO 0) h h .

I' 2 , •..• , Pk ,t en t e optimum ranks of the order statistics are
nO == [n 0] +1 ._ .

1 '-Pi , 1 - 1,2,...., k . The coefficients may also be computed b d
o 0 ase

on PI , P2 , .... , p~ by follOwing through the formulas (2.4) and (2.5).

94

'J'.
,.,.:',"

',.

"i'-

.j

/.
I

i

ASYMP1 \oJ lIC LINEAR ESTIMATION OF THE QUANTILE FUNCTION
OF A LOCATION-SCALE FAMILY OF DISTRIBUTIONS BASED ON

SELECTED ORDER STATISTICS
3. ABLUE of Q(q) for the exponential distribution.

Let X(n,) < X(",) < ..... < ~n.) be k arbitrary but fixed order statistics with

ranks nl == [nPI] +1, i == 1,2, ....,k in a sample of size n from the

exponential distrib{uti; _ f.1}
F(x) == 1- exp ---;;-' x';?, u , (J' > 0, (3.1)

where u , (J' are unknown parameters. Then, using the results of Saleh and Ali

(1966), and the results of Section 2, theABLUE of Q( q) is given by
Ie •

Q(q) == {1+bl(Qo(~)-{1(PI»)}X(n,) +L(b;(~)-Qo(PI»)x(nl) (3.2)
1~2

where b -_ {QO(P2)-QO(PI)}
I - {eQO(P2) _ eQo(p,) }L '

b - 1 {Qo(PJ-QO(PH) _QO(PI+I)-QO(PI)}
1 - L eQo(PI)_ eQo(p/-I) eQo(PI+')_ eQo(PI) . ,

(3.3a)

(3.3b)

i == 2,...,k-1,

b - ..!..{Qo (Pk) - Qo (Pk-I )} .
~- L eQo(Pt) - eQo(Pt-,) ,

and

L == ~ [Qo(pJ-QO(PH)tz: e(],,(PI)- eQo(PI-')
1=2

(3.3c)

(3.4)

The variance of Q(~) is given by

Var(Q(~»)== :2 {[Qo(~)~Qo(PI)]+eQo(A)-'l}. (3.5)

In order to obtain the ABLUE based on k selected order statistics, we minimize'

(3.5) subject to the restriction, 0 < PI < P2 < .... < Pk < 1. For this, we
consider the alternative form .

Var (Q(~) ) == :2 {t2~;~:-1 + e(],,(O-1-I} (3.6)

where' t==Qo(~)-QO(PI) and t, ==QO(PI+I)-QO(PI)' i==1,2, ... ,k-l,
k-I ( )2

and K(k-l) ==" tl-t'_1 with to == 0.· (3.7)
2 ~ ell _ell-!

1=1
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In order to minimize (3.6), we first maximize KY-I) with respect to tp ...,tk-I'

The maximum value is, say, K~ occurring at (tlO,.~.,tZ_I)' Theorems relating

to the maximization of KY-I) are given in Saleh and Ali (1966) with tabulated
values in Sarhan and Greenberg (1962). Next we minimize

t2 exp{Oo(q)-t}/k~ + exp{Qo(q)-t} -1 (3.8)

over the region t ~ Qo(q) , since t ~ Qo (Qo (PI) ) and Qo(PI) is

nonnegative. By differentiation, one finds that (3.8) is decreasing over

(0;QoCqK)]U[2~Qo(qK)C()) and increasing over

(Qo(qK),2~Qo(qK») where Qo(qK)=1-(1-K~y/2. Now, we must

have t ~ Qo(q), so if QoCq):?: QO(qK ), we get (3.4) equals
2

(Q;(q)/ K~ +1)exp(Qo(q)-QO(qK) )-1 (3.9)

at t = QO(qK) and Q;(q)/ K~ (3.10)

at t = Qo (q). These two values are equal at t = Qo(q) and t = Qo (q;)

where t = Qo(q;2) is located beyond 2 - Qo(qK) and is obtained by solving

the equation (3.9) - (3.10). Hence, we get the minimum of (3.8) at

t=Qo(q), Qo(q)E(QO(qK),QO(q;,>]. and KY-I) =K~. Thus, when

q E (qK2,q;,], we must have

Qo(p~) = Qo(q)-QO(qK) '(3.11)

QO(PI~I)= Qo(q)+tIO - QO(qK)' i = 1,... ,k-1.
Hence, the optimum spacing of the ABLUE of Q( q) is given by

p~ =1-(1-q)/(I-qK) , (3.12)

PI~I = 1- (l-q)(1- ,1,10)/(1-qK)' i = 1,...,k-:'1,

where Al
o = 1- exp( _tI

O
), i = 1,...,k -1 .Th~ ABLUE based on this spacing
k-I

~o 0 Lis =c X + coXQ Cq) 0 [np~l+1 1=1 I [np~,]+1

where cg = l+bgQo(qK) , CIO=bIOQo(qK), i=1, ... ,k-1.
These coefficients may be computed easily using the tabulated values of
bg , ... ,bZ_1 and ),0 , ... ,,1,~_1from Sarhan and Greenberg (1962).

(3.13)
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For the case ~ ~ ( qK, ' ~;, J. the infimum occurs at t = Qo(~) and (2.8) is

decreasing over (0,~K,) U(q;, ,1). Thus Qo(PI) must be as small as

possible and by using the results of Saleh and Ali (1966) we choose

o (2n-1)-1 0 o.QO(PI)=ln -- ,QO(PI+I)=tl,I=1, ...,k-1.
2n+1

For this case, the ABLUE of Q(~) is given by

(l(p~) = {I+bg ( Qo(~)+ lri~::~) }X(I)

f, o( 2n-lf,+L..,;bo Qo(~)+ln-- (n~)
1=1 2n+1

I:
I,~

(3.14)

(3.15)

where bl
o, ..• ,bZ_1 are tabulated in Table n.D.1 ofSarhan and Greenberg (1962)

k-I

with bg = - 'LAO and spacing (p~,p~,...,pn defined by
1=1

p~=_1_, P~l = {2+(2n-l)An/(2n+1), i=1, ... ,k-1, (3.16)
n+1/2

where ),0 , ... ,A~_I are spacings which maximize K;k-I) are tabulated in

Sarhan and Greenberg (1962). Thus,the ABLUE of Q(~) is given by (3.13)

for q E (~K" ~;,] and by (3.15) for ~ E (O,qK, ]U(~;,,1).It may be noted

that the estimate of Q(~) depends on where ~ is located in the interval (0,1).

Now, the complete sample BLUE is given by
- n 1 -
Q(~) =-(1-Qo(~»X(l) --(I-nQo(~»X

n-1 n-l
Q(~) with variance

(72
Var(Q(q») = (1- 200(q)+ nQ;(~»).

n(n-1)
The ARE (Qo (~) :Q(~» is then given by

(3.17)

(3.18)
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(3.19)

It may be noted that lim K ...•'" K; = 1, hence lim K ...•ec Qo(.;K ) = 1, i.e.,
';1 =1-e-1 =0.6329=';; implies Qo(';;)=1 and the spacing are the same

AO -
as that of (3.14) and ARE(Q (.;): Q(';» = 1. Therefore, for large values of

k we always use (3.15) and for small values of k we use QO (.;) . Table 1
provides some ARE-values.

Table 3.1

ARE(Qo (.;) :Q(.;»

k 2 4 6 8 10 12 14
.;
0.60 0.7705 0.9095 0.9512 0.9697 0.9894 0.9848 0.9882
0.70 0.8115 0.9275 0.9606 0.9752 0.9894 0.9869 0.9869
0.80 0.8147 0.9108
0.90 0.7205 0.9108

KO 0.6475 0.8910 0.9476 0.9693 0.9798 0.9857 0.9894
2

';K, 0.3339 0.4882 0.5375 0.5617 0.5759 0.5814 ~0.5912

.;;, 0.9296 0.8291 0.7779 0.7476 0.7278 0.7137 0.7931

Note that';K and';; are bounds on .; for each k and KO are the ARE
" ,2

values for .; outside the bounds.

3.1 Examples

Case 1: Uncensored case. Let n=50 and 'k=2. Then, from Table 1,

';K, = 0.3339. The optimum spacings are p~ = 2/101 = 0.0198,

p~= (2+99~o)/(101) = (2+99(0.7968»/(101) = 0.8008
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when .; E (0,.0.3339] U (1).929_6,1). The optimum ranks of the order

statistics are 1 and 41. The coefficients for the estimate are

c~ = 1-(0.6275) (Qo(';) - 0.02) = 0.9874- 0.6275Qo(';)

Alietal.(l981)have c~ =1-~(';)/1.5936,

c~ :::0.6275 ({1(';) - 0.02)::: 0.6275Qo(';) - 0.0126.

Ali et aJ. (1981) have c~ :::Qo(';)/1.5936.
The difference is due to the fact that they use 1 in place of (2n -1)/ (2n +1).

" { 0.6476 .~e(P.0.3339W.9296·1)

ARE@@:(X.;)::: hl (l-.;)/[0.8359(1-.;)-1-1J .{e(0.3339.0,m6j

Case 2: Censored case. Let n = 50 and k::: 2 with P, :::0.1 0: Then, using

Table 1 again, ';K,::: 0.3339. The optimum spacings when

.; E (0,0.4005]U(0.9366,1) are

P~ :::0.10 and p~ :::0.10 + (0.90)(0.7968) :::0.8888 .

o 0 4 ffici . bThe optimum ranks are rlt ::: 5 and' n2 == 5. The coe cients are given y
. .

c~ == 1- (0.6275) (Qo(';) - 0.1 054) == 1.0661- 0.6275Qo(';)'

c~ :::0.6275 (Qo(.;) -0.1054) == 0.6275Qo(';) - 0.0661.

Let'; E (0.4005,0.9366], then

P~ == 1-1.5013(1-';) == 1.50l3'; -0.50l3

P~== 1-0.2032(1.5013(1-.;) == 1-0.30506(1-';) == 0.30506'; -0.69494.
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4. Estimation of Q(';) for the Logistic Distribution.

Let X(n,) < X(",) < ..... < X(n,,) be the sample order statistics and let the

sample quantile function, Q(';I) , be defined by

Q(';;) = X(i,,) , 0 < u; <1, i= [n';l] +1. (4.1)

Given a spacing, T = {.;1' ""';k } , (k real numbers such that

0<';1 <';2 < ... <';k < 1) the corresponding sample quantile,

Q(';I), ...,Q(';k)' have been shown by Mosteller (1946) to have a normal
limiting distribution. This form of distribution has been used to develop

formulae for the asymptotically best linear unbiased estimator, fl" (T) and

(J'" (T), of fl and (J' and their corresponding asymptotic relative efficiencies
(see Gupta and Gnanadesikan (1966) and Ogawa (1951» and since the
estimators and their ARE's are a function of the spacing for the sample quantiles,
to obtain optimal estimators an appropriate choice of T must be made. Thus, an

optimal spacing is defined as a spacing which minimizes the ARE of fl" (T) ,

(J'" (T), or (fl" (T), (J'" (T» .

4.1 Estimator of the Scale Parameter. Let c, be the asymptotically best

optimal spacings and b, be the corresponding coefficients of the best linear

unbiased estimator ak. Let the spacing c, be defined in relation to the rank i

of order statistics X,:n and sample size as

i= [nc, + 0.5], 0 < c; < + (4.2)

d si I' ian smce lilln->oo - = c; , it can therefore be easily shown that the estimator of
n

(J' , a k ' is asymptotically unbiased.

Let R, denote the i -th sample quasi-range

R, = X(n_;) - X(i+I)' (4.3)

Then based on work ofWeke (2001) and equation (4.3), we propose to use

(4.4)
k

2 .•Lb;E"i+ln
;~I
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where

E;.;+I:n = E[X(/) +X(I+I)J = Q(c,) + Q'(CI)(~-Ci)

Q" (c(i») {I (. )2 1( II)} O( -3)+ 2 -+ /,-nc, -- -+-- ,+ n
2n 6 4 D.; D.'+I

(4.5)

as the estimator of the scale parameter (J'. Since logistic distribution is
symmetric about the mean, it follows that

E,,/+l'.n = - En-;-I,n-,:n' i=I,2, ...,n-1,

" i
E;,I+I:n leads to the following expression when expanded around c; = - and. n

i = [nc, + 0.5]

E;,;+I:n ~ IOg(_n_~_i)+ 2~~~n-~:~ 2 [ ~ - -(2-;---1~-~2-/-'+-1-"')l (4.6)

The precision of this estimator is measured by calculating its bias and variance.

The bias of the estimator al is measured by
k

BlAS=I-E( ~ )=1- :P,~[R, +R,_,j (4.7)

2.•Lb;E"I+l:n
I~I

Based on the values of the bias for various spacing values and sample sizes (see
Tables 2 and 3) we notice that the bias values. are negligible. Thus, the
denominator in Equation (4.4) reasonably approximates the expectation of the
selected order statistics. Hence, the variance of the estimator ak is given by

k k
LLb,bjCov(RI + Ri-I,Rj + Rj_J

TT (.) ;~I j~1 .v ar (J'k = 2

[tb;E(RI + Rt-J]
(4.8)

where the ranks; and j are determined from Equation (4.2) and b, and bj

are the asymptotic optimal coefficients corresponding to the ranks i and j .
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The expectations; variances and covariances Of the logistic order statistics for
sample sizes up_tn-lOO were computed by using-FGRTRAN 71- language
computer programs to facilitate the calculations of the estimator and its derived
properties.

The expectation (EXP) of the selected order statistics, bias (BIAS) and variances
(VAR) of the estimator for various spacing values and sample sizes are given in
Tables 2 - 3. The asymptotic efficiency (AEF) of the estimator with respect to
the Cramer-Rao l?wer variance bound and the relative efficiency (R.E.) with
respect to .the variance of the best ~inear unbiase~ estimator are computed and
presented rn Tables 2 - 3 for comparison. Notice that

AEF = __ -::-9 _
n(3 + ,,2)Var(cTk)

R.E. = Var(BLUE(o-))
Var(cTk)

and (4.9)

The asymptotically optimum spacings, coefficients, the variances and the
asymptotic relative efficiencies of the estimator of scale parameter for the
logistic distribution were first provided by Hassanein (1969) for 2 ~ k ~ 9 .
Later, .Eubank (1981) worked out asymptotically best optimal spacings,
coefficients and the corresponding asymptotic relative efficiencies for logistic
dis~bution =.2 ~ k ~ 10. Eubank's optimal spacings generated higher
relative e.fficlencles th~ the efficiencies in Hassanein (1969). In this study, the
asymptotically best optimal spacings and coefficients in Eubank (1981) have
been used for k = 4,6,8 to produce relatively higher asymptotic efficiencies.
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Table 4.1
EXP, BIAS, VAR, AEF and R.E. of cT2

SIZE EXP BIAS VAR AEF R.E.

14 13.12119 -.00001 .05613 .88999 .9507
15 13.77081 -.00001 .05192 .89795 .9549
16 12.29594 -.00001 .04920 .88839 .9409
17 12.88540 -.00001 .04578 .89858 .9484
18 13.43297 -.00001 .04287 .90635 .9536
19 13.94430 -.00001 .04035, .~1210 .9571
20 14.42382 -.00001 .03817 .91607 .9589
21 13.28171 .00000 .03692 .90199 .9420
22 13.72777 .00000 .03503 .90750 .9460
23 14.14942 .00000 .03335 .91161 .9487
24 14.54927 .00000 .03186 .91460 .9498
25 13.62037 .00000 .03121 .89627 .9295
26 13.99673 .00000' .02987 ' .90046 .9324
27 14.35547 .00000 .02867 .90331. .9344
28 14.69835 .00000 .02758 .90560 .9355
29 15.02671 .00000 .02657 .90749 .9364
30 14.24064 .00000 .02625 .88813 .9154
31 14.55308 -.00001 .02531 .89132 .9174
32 14.85315 .00000 .02448 .89279 .9183
33 15.14215 -.00001 .02369 .89466 .9194
34 14.46276 .00000 .02353 .87398 .8976
35 14.73915 .00000 .02282 .87562 .8983
36 15,00611 -.00001 .02213 .87769, .9001
37 15.26399 .00000 .02152 .87836 .9001
38 15.51353 .00000 .02095, .87863 .8993
39 14.91389 -.00001 .02085 .85984 .8801
40 15.15406 .00000 .02032 .86046 . .8794
41 15.38690 .00001 .01982 .86060 .8799

co .00000 .85132/n .82145

Note: Optimal spacings are
Coefficients:

.036, .221

.1401, .3544
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4.2 Numerical Examples and Discussions In this section, we use the k
asymptotically optimal spacings and the k corresponding asymptotic optimal
coefficients (k = 2,3,4) to construct Tables 2 - 3. A numerical example is
given below for comparison and illustration:
Let p(i) = [nc; + 0.5], i= 1,2,...,k be the rank of order statistics. In this

example, we consider the case when n = 20 and k = 4 so that the ranks are
given as p(l) = [0.036n + 0.5] and p(2) = [0.221n + 0.5].
Hence, the range of sample size applicable in this particular case is
14.::; n'::; 41 and by using the optimal coefficients as 0.1401 and 0.3544 given
by Eubank (1981) the following computations ensues:

Let the coefficients be in the ratio of 1: 2.5296 and by using Equation (4.2) the
order statistics are i=I,2,4,5 and n-i+l=16,17,19,20 such that the
calculations become

i=l i = 2
i = 4

2x

1xO.51558
lxO.20390

[
0.09023

2.5296 x
0.07045

[
0.02060

-2.5296 x
0.01935

-1 x 0.01727
-lxO.01638

2.5296x 0.10469

{ [
0.08208

2x 2.5296x
-0.02431

- 2.5296 x 0.10469

lxO.21246

1
[0.09457

2.5296x
2x 0.07393

[
0.02170

-2.5296x
0.02039

= l x 0.01820

i = 5

{
0.08688

2.5296 x
-0.02586

SUMl = 1.48358 ,SUM2 ::::0.833794, SUM4 =2.5296x1.263010

SUMs = 2.5196x 0.154356
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SUM =SUMl +SUM2 +SUM4 + SUMs =3.970523

EXF:::: 2{1.95597+ 1.37563+2.529«0.85312+0.6808~}:::: 14.42376(,

2xSUMVAR:::: 2 ::::0.038170,
(EXP)

AEF:::: .9 ::::0.91606,
20(3 + 1l/ x VAR

Votpt::::Var(BLUE) == 0.0366 and so R.E.:::: Vapt ::::0.95887 .
VAR
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Table 4.2
EXP, BIAS, VAR, AEF andR.E. of 0-3

jr
I
r,

SIZE EXP BIAS VAR AEF R.E.

34 38.50034 .00000 .02213 .92934 .9544
35 39.25244 .00000 .02146 .93120 .9553
36 38.44604 .00000 .02098 .92586 .9495
37 39.16250 .00000 .02038 .92721 .9504
38 39.85580 -.00001 .01980 .92929 .9515
39 37.84077 -.00001 .01923 .93249 .9542
40 37.11419 -.00002 .01875 .93254 .9531
41 37.76245 -.00001 .01826 .93403 .9551
42 38.39204 -.00002 .01777 .93718 .9567
43 37.73132 -.00001 .01743 .93318 .9530

'44 38.33611 -.00003 .01696 .93696 .9558
45 38.92271 -.00002 .01659 .93660 .9554
46 39.49372 -.00001 .01622 .93720 .9544
47 38.88341 -.00002 .01593 .93408 .9517
48 39.43372 -.00002 .01559 .93437 .9500
49 39.96975 -.00001 .01528 .93416 .9503
50 38.41880 .00000 .01494 .93597 .9505
51 37.85509 -.00001 .01466 .93534
52 38.36438 -.00001 .01437 .93603
53 38.86168 .00000 .01408 .93698
54 39.34752 . .00000 .01381 .93765 .
55 38.82023 -.00001 .01359 .93534
56 39.29089 .00000 .01335 .93576
57 39.75121 .00000 .013 II .93580
58 39.25986 .00000 .01293 .93263
59 39.70681 .00000 .01270 .93339
60 40.14429 .00000 .01249 .93334 .•
64 39.25223 .00000 .01169 .93457
65 39.65557 .00000 .01151 .93511
68 39.99800 .00000 .OII02 .93286
70 39.96281 .00000 .01074 .92978
72 39.26779 .00000 .01044 .93058
75 39.58537 .00000 .01003 .92972
80 40.55407 .00001 .00942 .92804
84 39.26011 .00000 .00902 .92268
85 39.57013 .00000 .00891 .92315
88 39.85278 .00000 .00862 .92138
90 40.43928 .00000 .00843 .92224
95 40.16094 .00001 .00801 .91901
96 39.86174 .. 00001 .00796 .91568
100 40.37524 .00001 .00765 .91386
co .00000 .. 7S124/n .89514
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Note: Optimal spacings are .015, .091, .268

Coefficients: .0509, .1938, .2468

These values correspond to the values of expectation, variance, asymptot
efficiency and relative efficiency for 0-2 given in Table 2.

It is important to note that the values of the variances in Table 2 are lower th:
those in Weke (2001) which were constructed by using a single spacing ar
those given by Chan et al. (1971). And, therefore, the asymptotic efficiencf
and relative efficiencies are much higher .

Table 3 presents the expectation, bias, variance, asymptotic efficiency ar
relative efficiency of the estimator 0-3 for various n values. The table

constructed by using three pairs of optimal spacings and it is noticed th
increasing the number of spacings results in an increase in the efficiencies .
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ON THE NON-LINEAR STOCHASTIC PRICE ADJUSTMENT OF
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Abstract. We introduce a type of Ito process' that models the
adjustment of the market price of a traded security to new
information affecting supply and demand. It is based on supply
and demand functions and the Walrasian price adjustment
assumption that proportional price increase is driven by excess
demand. When supply and demand curves are linearised about the
equilibrium point, the process turns out to be a logistic form of
Brownian motion with random element of the Wiener type.

Key words. Excess demand function, Walrasian price adjustment
process, Logistic Brownian motion. "

1. Introduction. The stochastic evolution of security prices freely traded in
markets has been an abiding topic of research- since the publication of Louis
Bachelier's dissertation - Theorie de la Speculation, Bachelier (1900). After the
introduction of geometric Brownian motion models, Samuelson (1965), Black
and Scholes, (1973), Merton (1973), the broad thrust of recent work has focused
on steady market conditions defined by the well- known Ito process
dPt = /lPtdt +aPtdZ (1.1)

The linear drift coefficient /1 reflects price trading driven by constant investor
expectation of gain, while the diffusive Wiener process adZ reflects the
response of trading to random fluctuations in supply and de~a~~. .
In this paper we focus not on volatility but on the posslblhtJ: of non-hn~ar
drifting as markets adjust to radically new perceptions of the ~rIce .of security.
The basic driver of such price adjustment, taking a neo- Walrasian View, Wa~as
(1874), Samuelson (1941, 1947) is the excess demand over supply at the tr~d1Og
point. We use a linearised version of this driving force - ~apuis~ance mO'!lce de
la speculation- to drive an ne process that. mo~els p~Ice adJu~~ent ,10 ~o~-
steady markets. It is a logistic process with diffusive WIener variation- logistic
Brownian motion'.

2. General Walrasian_Samuelson Price Adjustment Model. Since the
1960s, a model ofWalrasian, Walras (1874) tatonnement has been used to study
stability of general price equilibrium, Samuelson (19650, Anderson (2000) and
Asparouhova, Bossaerts & Plott, (2000) among others '. In this p.aper,.we take the
core principle of the standard Walrasian model. That I~:secun~ pn.c~ changes
are directly driven by the excess demand for the security, For simplicity we do
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