
Some completeness theorems in the Menger

probabilistic metric space

Asadollah Aghajani and Abdolrahman Razani
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tic normed space are proved. Moreover, the existence of a constrictive
Menger probabilistic normed space is shown.
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1 Introduction

It is well known that the theory of probabilistic metric space is a new frontier branch
between probability theory and functional analysis and has an important background,
which contains the common metric space as a special case. One can study the com-
pleteness theory in the probabilistic metric space. This study has an important ap-
plications, for example, in fixed point theory and etc. Due to do this and for the sake
of convenience, some definitions and notations are recalled from [4], [1] and [5].

Definition 1.1. A mapping F : R → R+(non-negative real numbers) is called a
distribution function if it is nondecreasing and left-continuous and it has the following
properties:

(i) inft∈RF (t) = 0,
(ii) supt∈RF (t) = 1.

Let D+ be the set of all distribution functions F such that F (0) = 0. Also denote by
H the distribution function

H(t) =
{

1, t > 0,
0, t ≤ 0.

Definition 1.2. A probabilistic metric space (briefly, PM-space) is an ordered pair
(S, F ) where S is a nonempty set and F : S×S → D+

(
F (p, q) is denoted by Fp,q for

every (p, q) ∈ S × S
)

satisfies the following conditions:
1. Fp,q(t) = 1 for all t > 0 if and only if p = q (p, q ∈ S).
2. Fp,q(t) = Fq,p(t) for all p, q ∈ S and t ∈ R.
3. If Fp,q(t1) = 1 and Fq,r(t2) = 1 then Fp,r(t1 + t2) = 1 for p, q, r ∈ S and

t1, t2 ∈ R+.
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Definition 1.3. a mapping ∗ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

(i) a ∗ 1 = a for every a ∈ [0, 1],
(ii) a ∗ b = b ∗ a for every a, b ∈ [0, 1],
(iii) a ≥ b, c ≥ d → a ∗ c ≥ b ∗ d (a, b, c, d ∈ [0, 1]),
(iv) a ∗ (b ∗ c) = (a ∗ b) ∗ c (a, b, c ∈ [0, 1]).

The rest of the paper is organized as follows: in Section 2, the definition of Menger
probabilistic metric and Menger probabilistic normed spaces are recalled and then a
norm is defined and it is shown the existence of a constrictive Menger probabilistic
normed space. Section 3 is devoted to some new results about completeness theory.

2 Some PN-spaces

In this section, first we recall the definition of Menger probabilistic metric and Menger
probabilistic normed spaces are recalled from [1] and [4].

Definition 2.1. A Menger probabilistic metric space (briefly, Menger PM-space) is
a triple (S, F, ∗), where (S, F ) is a probabilistic metric space, ∗ is a t-norm and the
following inequality holds:

(2.1) Fp,q(t1 + t2) ≥ Fp,r(t1) ∗ Fr,q(t2),

for all p, q, r ∈ S and every t1 > 0, t2 > 0.

Definition 2.2. A triple (S, F, ∗) is called a Menger probabilistic normed space
(briefly, Menger PN-space) if S is a real vector space, F is a mapping from S into D
(for x ∈ S, the distribution function F (x) is denoted by Fx and Fx(t) is the value of
Fx at t ∈ R) and ∗ is a t-norm satisfying the following conditions:

(i) Fx(0) = 0,
(ii) Fx(t) = H(t) for all t > 0 if and only if x = 0,
(iii) Fαx(t) = Fx( t

|α| ) for all α ∈ R,α 6= 0,

(iv) Fx+y(t1 + t2) ≥ Fx(t1) ∗ Fy(t2) for all x, y ∈ E and t1, t2 ∈ R+.

Remark 2.3. Let (R, F,∆) be a Menger PN-space, then (S, F , ∆) is a Menger PM-
space, where

F x,y(t) = Fx−y(t)

Schweizer, Sklar and Thorp [5] proved that if (S, F, ∗) is a Menger PM-space with
sup0<t<1t ∗ t = 1, then (S, F, ∗) is a Hausdorff topological space in the topology τ
induced by the family of (ε, λ)−neighborhoods

{Up(ε, λ) : p ∈ S, ε > 0, λ > 0},

where
Up(ε, λ) = {u ∈ S : Fu,p(ε) > 1− λ}.
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Definition 2.4. Let (S, F, ∗) be a Menger PM-space with sup0<t<1 ∗ (t, t) = 1.
(1) A sequence {un} in S is said to be τ−convergent to u ∈ S (we write un

τ→ u)
if for any given ε > 0 and λ > 0, there exists a positive integer N = N(ε, λ) such that
Fun,u(ε) > 1− λ whenever n ≥ N .

(2) A sequence {un} in S is called a τ−Cauchy sequence if for any ε > 0 and λ > 0,
there exists a positive integer N = N(ε, λ) such that Fun,um(ε) > 1 − λ, whenever
n,m ≥ N .

(3) A Menger PM-space (S, F, ∗) is said to be τ -complete if each τ -Cauchy sequence
in S is τ -convergent to some point in S.

Example 2.5. If (E, ‖.‖E) be a normed real vector space and define

F̂ : E → D+,

by

(2.2) F̂x(t) =
{ t

t+‖x‖E
t > 0,

0 t ≤ 0.

Then (E, F̂ , ∗) is a Menger PN-space.

Lemma 2.6. If (R, F, ∗) be a Menger PN-space, then

(2.3) |x| ≤ |y| =⇒ Fx(t) ≥ Fy(t),

for all x, y ∈ R and t ≥ 0.

Proof. Note that, if |x| = 0, then (2.3) is obvious. Suppose |x| > 0, then

Fx(t) = F x
y y(t) = Fy(

t

|xy |
) ≥ Fy(t).

The last inequality holds, because Fy(.) is a nondecreasing function. ¤

Definition 2.7. Let (R, F, ∗) be a Menger PN-space and (E, ‖.‖E) be a normed real
vector space, we define a mapping F̃ : E → D+ by

(2.4) F̃x(t) = F‖x‖E
(t).

Proposition 2.8. Let (R, F, ∗) be a Menger PN-space, then (E, F̃ , ∗) is also a Menger
PN-space.

Proof. First of all note that

F̃x(t) = F‖x‖E
(t) ∈ D+.

Secondly, F̃x(t) satisfies all conditions of Definition 2.2. In order to prove this, Note
that F̃x(0) = F‖x‖E

(0) = 0, thus condition (i) is fulfilled. Also

F̃x(t) = 1 ⇐⇒ F‖x‖E
(t) = 1 ⇐⇒ ‖x‖E = 0 ⇐⇒ x = 0,
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whenever t > 0, so condition (ii) is satisfied. Moreover,

F̃αx(t) = F‖αx‖E
= F|α|‖x‖E

(t) = F‖x‖E
(

t

|α| ) = F̃x(
t

|α| )

and condition (iii) is fulfilled. Finally, by Lemma 2.6

F̃x+y(t1 + t2) = F‖x+y‖E
(t1 + t2)

≥ F‖x‖E+‖y‖E
(t1 + t2)

≥ F‖x‖E
(t1) ∗ F‖y‖E

(t2)
= F̃x(t1) ∗ F̃y(t2).

This proves condition (iv) and ends the proof. ¤
We now give a lemma which will be used in the next section.

Lemma 2.9. In a fuzzy metric space (X,M, ∗), for any λ > 0 and k ∈ N, there exists
a λ′ > 0 such that (1− λ′) ∗ (1− λ′) ∗ · · · ∗ (1− λ′)︸ ︷︷ ︸

k−times

≥ (1− λ).

Proof. Note that

sup
µ∈[0,1]

(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ) = 1 ∗ 1 ∗ · · · ∗ 1 = 1.

¤

3 Main results

In this section, some new results concerning completeness theory.

Theorem 3.1. Let (S, F, ∗) be a Meneger PM-space with a continuous t-norm ∗.
Suppose {xn} is a Cauchy sequence which has a convergent subsequence, then {xn}
is convergent.

Proof. Let λ ∈ (0, 1) be arbitrary, by Lemma 2.9 there exists a λ′ ∈ (0, 1) such
that (1−λ′) ∗ (1−λ′) ≥ 1−λ. For any ε > 0, since {xn} is a Cauchy sequence, there
exists N0 ∈ N such that for any n,m ≥ N0

Fxn,xm(
ε

2
) > 1− λ′.

Suppose {xnk
} is a convergent subsequence of {xn} and converges to x ∈ S. it means

that there exists N1 ∈ N such that for any k ≥ N1

Fxnk
,x(

ε

2
) > 1− λ′.

Now, let N = Max{N0, N1} then for any m ≥ N

Fxm,x(ε) ≥ Fxm,xnm
( ε
2 ) ∗ Fxnm ,x( ε

2 )
≥ 1− λ′ ∗ 1− λ′

> 1− λ.

It means that xm converges to x. ¤
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Theorem 3.2. Let (E, F̃ , ∗) be a complete Meneger PN-space, where E is a real
vector space and F̃ is defined by (2.4). Then (R, F, ∗) is complete.

proof. Suppose (E, F̃ , ∗) is a complete Meneger PN-space, and {αn} is a Cauchy
sequence in (R, F, ∗). Due to Theorem 3.1, it is enough to show that there exits a
convergent subsequence of {αn}.
There is a subsequence {αnk

} of {αn} such that αnk
≥ 0 or αnk

≤ 0 for all k ∈ N.
Now, let {αnk

} be a subsequence such that αnk
≥ 0 for all k ∈ N, (for αnk

≤ 0, proof
is similar). Set αnk

= βk for simplicity. Choose e ∈ E such that ‖e‖ = 1 and consider
the sequence {βke} in E. We show that {βke} is a Cauchy sequence in (E, F̃ , ∗). To
prove this, first note that {βk} is a Cauchy sequence in (R, F, ∗), it means that for
any λ ∈ (0, 1) and any ε > 0 there exists N0 ∈ N such that for any n,m ≥ N0,

F(βm−βn)(ε) > 1− λ.

Now, for n,m ≥ N0,

F̃βme−βne(ε) = F‖(βm−βn)e‖E
(ε)

= F|(βm−βn)|‖e‖E
(ε)

= F|(βm−βn)|(ε)
= F(βm−βn)(ε)
> 1− λ.

It means that {βke} is a Cauchy sequence in (E, F̃ , ∗), and since (E, F̃ , ∗) is a complete
Meneger PN-space, then {βke} is convergent to some x ∈ E. Now, we prove {βk} is
convergent in (R, F, ∗).
Since βke → x, then for any λ ∈ (0, 1) and ε > 0 there exists N1 ∈ N such that for
any k ≥ N1

(3.1) F̃βke−x(ε) > 1− λ.

On the other hand,

(3.2) F̃βke−x(ε) = F‖βke−x‖E
(ε)

and since ‖βke− x‖E ≥ ‖βke‖ − ‖x‖E , Lemma 2.6 shows that

(3.3) F‖βke−x‖E
(ε) ≤ Fβk−‖x‖E

(ε).

Considering (3.1), (3.2) and (3.3), we have

Fβk−‖x‖E
(ε) > 1− λ,

for any k ≥ N1. This shows that {βk} is convergent to ‖x‖E in (R, F, ∗). ¤
In the next theorem, we consider Rk with Euclidean norm.

Theorem 3.3. (Rk, F̃ , ∗) is complete Meneger PN-space if and only if (R, F, ∗) is
complete Menger PN-space.

Proof. Theorem 3.2 shows that if (Rn, F̃ , ∗) is a complete Meneger PN-space, then
(R, F, ∗) is a complete Menger PN-space.
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Now, we prove if (R, F, ∗) is a complete Meneger PN-space, then (Rk, F̃ , ∗) is a
complete Menger PN-space. Suppose (R, F, ∗) be a complete Meneger PN-space and
{xn} is a Cauchy sequence in (Rk, F̃ , ∗). Let xn = (α1n, · · · , αkn), where αin ∈ R for
1 ≤ i ≤ k, then with respect to the norm inequality, we have

(3.4) |αin − αim| ≤ ‖xn − xm‖ ≤
k∑

j=1

|αjn − αjm|, for 1 ≤ i ≤ k.

Since {xn} is a Cauchy sequence in (Rk, F̃ , ∗), then for any λ ∈ (0, 1) and ε > 0 there
exists N0 ∈ N such that for any m,n ≥ N0,

(3.5) F̃xn−xm
(ε) = F‖xn−xm‖(ε) > 1− λ.

Thus for m,n ≥ N0 and each 1 ≤ i ≤ k, by Lemma 2.6, and (3.5), we have

Fαin−αim(ε) = F|αin−αim|(ε)
≥ F‖xn−xm‖(ε)
> 1− λ.

It means that {αin} is a Cauchy sequence in (R, F, ∗) for all 1 ≤ i ≤ k. Thus there
exists αi such that αin → αi for each 1 ≤ i ≤ k. Now, we claim that xn → x =
(α1, · · · , αk) in (Rk, F̃ , ∗).
Let λ > 0 arbitrary, by Lemma 2.9, there exists a λ′ > 0 such that

(1− λ′) ∗ (1− λ′) ∗ · · · ∗ (1− λ′)︸ ︷︷ ︸
k−times

≥ (1− λ).

In addition, since αin → αi for each 1 ≤ i ≤ k, thus there exits Ni such that for any
n ≥ Ni

Fαin−αi(
ε

k
) > 1− λ′

for each 1 ≤ i ≤ k. Let N = Max{Ni| 1 ≤ i ≤ k}, then for any n ≥ N

F̃xn−x(ε) = F‖xn−x‖(ε)
≥ F∑k

i=1 |αin−αi|(ε)
≥ Fα1n−α1(

ε
k ) ∗ · · · ∗ Fαkn−αk

( ε
k )

≥ 1− λ′ ∗ · · · ∗ 1− λ′

> 1− λ.

Thus {xn} converges to x and this ends the proof. ¤

Theorem 3.4. Let (E, ‖.‖E) be a normed real vector space. Then xn
‖.‖E→ x if and

only if xn
F̂→ x, where (E, F̂ , ∗) is a Menger PN-space and F̂ is defined by (2.2).

proof. Suppose xn
F̂→ x, then for λ = 1/2 and ε > 0, there is N ∈ N such that for

any n ≥ N ,
F̂xn−x(ε) =

ε

ε + ‖xn − x‖E
> 1− 1/2,
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or for any n ≥ N ,

‖xn − x‖E < ε

and then xn
‖.‖E→ x.

Conversely, suppose xn
‖.‖E→ x, then for any ε > 0 and λ ∈ (0, 1) there is N0 ∈ N

such that ‖xn − x‖E < ελ
1−λ , then for any n ≥ N0

F̂xn−x(ε) =
ε

ε + ‖xn − x‖E
>

ε

ε + ελ
1−λ

= 1− λ.

Then xn
F̂→ x.

If we have continuity assumption of Fx(t) at t = 0, then we will have the following
theorem.

Theorem 3.5. Let (R, F, ∗) be a Menger PN-space, where Fx(.) is continuous at zero
and ∗ is a continuous t-norm. Then (R, F, ∗) is complete Menger PN-space.

Proof. Let {xn} be a Cauchy sequence in (R, F, ∗). Now, we claim that {xn} is
a bounded sequence in (R, |.|). Otherwise, there exists a subsequence {xnk

} which
|xnk

| tends to ∞. For a given ε > 0, there exists a N such that for any n,m ≥ N

Fxn−xm(ε) >
1
2
.

Now, for every nk > N

1/2 < Fxnk
−xN

(ε) = F1(
ε

|xnk
− xN | ) → F1(0) = 0,

which is a contradiction. Then {xn} is a bounded sequence in (R, |.|) and has a

convergent subsequence say xnk
in (R, |.|). Now, suppose xnk

|.|→ x, then

Fxnk
−x(ε) = F1(

ε

xnk
− x

) → F1(∞) = 1,

which it means xnk
→ x to (R, F, ∗). Applying Theorem 3.1 completes the proof. ¤

Corollary 3.6. (Rk, F̃ , ∗) is complete Meneger PN-space when Fx(.) is continuous
at zero in the definition of F̃ .
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