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Abstract. In this article, some new completeness theorems in probabilis-
tic normed space are proved. Moreover, the existence of a constrictive
Menger probabilistic normed space is shown.
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1 Introduction

It is well known that the theory of probabilistic metric space is a new frontier branch
between probability theory and functional analysis and has an important background,
which contains the common metric space as a special case. One can study the com-
pleteness theory in the probabilistic metric space. This study has an important ap-
plications, for example, in fixed point theory and etc. Due to do this and for the sake
of convenience, some definitions and notations are recalled from [4], [1] and [5].

Definition 1.1. A mapping F' : R — R'(non-negative real numbers) is called a
distribution function if it is nondecreasing and left-continuous and it has the following
properties:

(i) infienF(t) =0,

(13) sup,epF(t) =1.
Let DT be the set of all distribution functions F such that F/(0) = 0. Also denote by
H the distribution function

1, t>0,
H(t):{ 0, t<0.

Definition 1.2. A probabilistic metric space (briefly, PM-space) is an ordered pair
(S, F) where S is a nonempty set and F': S x S — DT (F(p, q) is denoted by F, 4 for

every (p,q) € S x S) satisfies the following conditions:

1. F,4(t) =1forall t > 0if and only if p=¢q (p,q € 5).

2. F,q(t) =F,p(t) for all p,g € Sand t € R.

3. If Fpq(t1) = 1 and F,,(t2) = 1 then F,,(t1 +t2) = 1 for p,q,r € S and
ti,ts € R*.
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Definition 1.3. a mapping * : [0,1] x [0,1] — [0,1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

i) ax1=a for every a € [0,1],
1) axb=>bxa for every a,b € [0,1],
i) a>b c>d—axc>bxd (a,b,c,de(0,1]),
i) ax(bre) = (axb)se (@bee 1)

- o

The rest of the paper is organized as follows: in Section 2, the definition of Menger
probabilistic metric and Menger probabilistic normed spaces are recalled and then a
norm is defined and it is shown the existence of a constrictive Menger probabilistic
normed space. Section 3 is devoted to some new results about completeness theory.

2 Some PN-spaces

In this section, first we recall the definition of Menger probabilistic metric and Menger
probabilistic normed spaces are recalled from [1] and [4].

Definition 2.1. A Menger probabilistic metric space (briefly, Menger PM-space) is
a triple (S, F, *), where (S, F) is a probabilistic metric space, * is a t-norm and the
following inequality holds:

(2.1) Fp oty +t2) > Fyr(t1) x Iy g(t2),
for all p,q,r € S and every t; > 0, t5 > 0.

Definition 2.2. A triple (S, F,x) is called a Menger probabilistic normed space
(briefly, Menger PN-space) if S is a real vector space, F is a mapping from S into D
(for x € S, the distribution function F'(x) is denoted by F}, and F,(t) is the value of
F, at t € R) and * is a t-norm satisfying the following conditions:

(1) Fu(0) =0,

(i) ( ) = ( ) for all ¢ > 0 if and only if z = 0,
(1i1) Fau(t) = ( ) forall a € R, # 0,

(

iv) Fa;+y(t1 + tg) Z Fy(t1) = Fy(t2) for all z,y € E and t1,t2 € R*.

Remark 2.3. Let (R, F,A) be a Menger PN-space, then (S, F,A) is a Menger PM-
space, where

Fay(t) = Faey(t)

Schweizer, Sklar and Thorp [5] proved that if (S, F, *) is a Menger PM-space with
SUPgcicit * ¢ = 1, then (S, F, %) is a Hausdorft topological space in the topology
induced by the family of (e, A\)—neighborhoods

{Up(e,N) :pe S,e> 0, > 0},

where

Up(e, ) ={ueS:F,,(e) >1— A}
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Definition 2.4. Let (S, F, *) be a Menger PM-space with supg_,.; * (¢,t) = 1.

(1) A sequence {u,} in S is said to be T—convergent to u € S (we write w,, — u)
if for any given € > 0 and X\ > 0, there exists a positive integer N = N (e, \) such that
F,, u(€) >1— X whenever n > N.

(2) A sequence {uy,} in S is called a 7—Cauchy sequence if for any € > 0 and A > 0,
there exists a positive integer N = N(e, A) such that F, . (¢) > 1 — A, whenever
n,m> N.

(3) A Menger PM-space (5, F, *) is said to be 7-complete if each 7-Cauchy sequence
in S is T-convergent to some point in S.

Example 2.5. If (E,|.||g) be a normed real vector space and define

ﬁ':EHD+7
by
. —t— >0
2.2 Fo(t)= 4 Tels )
(22) 0= 7T 2

Then (E, 13‘, %) is a Menger PN-space.

Lemma 2.6. If (R, F,*) be a Menger PN-space, then
(2.3) 2| < |yl = Fu(t) = Fy(t),
forallz,y € R and t > 0.

Proof. Note that, if |z| = 0, then (2.3) is obvious. Suppose |z| > 0, then

t
Fy(t) = F%y(t) = Fy(@) > Fy(1).
Yy
The last inequality holds, because F(.) is a nondecreasing function. O

Definition 2.7. Let (R, F, *) be a Menger PN-space and (F, ||.||g) be a normed real
vector space, we define a mapping F': E — D% by

(2.4) Folt) = Flay, (1)-

Proposition 2.8. Let (R, F, %) be a Menger PN-space, then (E, F, ) is also a Menger
PN-space.

Proof. First of all note that

Fx(t) = FHIHE(t) e DT,

Secondly, F, (t) satisfies all conditions of Definition 2.2. In order to prove this, Note
that F3,(0) = Fjz),(0) = 0, thus condition (i) is fulfilled. Also

Fx(t) =1 FHIHE(t) =1 ||IEHE =0<=2=0,
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whenever ¢t > 0, so condition (i¢) is satisfied. Moreover,

Foo(t) = Flazlis = Flalje)s () = annE(%) = Fol(=

and condition (#44) is fulfilled. Finally, by Lemma 2.6

Fryy(ti +t2) = Floyy) (0 +t2)
2 Flo|p+lylls (1 +t2)
2 Fljaji (t1) * Fly) 5 (£2)
= Fw(tl) * Fy(tg).

This proves condition (iv) and ends the proof. O
We now give a lemma which will be used in the next section.

Lemma 2.9. In a fuzzy metric space (X, M, x), for any A > 0 and k € N, there exists
a XN >0 such that (1 —=N)*(1—=X)*---x(1=X)>(1-N).

k—times

Proof. Note that

sup 1—p)*x(1—p)*---x«(1—p)=1x1*x---x1=1.
nelo,1]

3 Main results

In this section, some new results concerning completeness theory.

Theorem 3.1. Let (S, F,*) be a Meneger PM-space with a continuous t-norm .
Suppose {x,} is a Cauchy sequence which has a convergent subsequence, then {x,}
18 convergent.

Proof. Let A € (0,1) be arbitrary, by Lemma 2.9 there exists a X' € (0,1) such
that (1—=X)*(1—X)>1—A. For any ¢ > 0, since {z,} is a Cauchy sequence, there
exists Ny € N such that for any n,m > Ny
€

F’E x
Lm 5o m(2

)>1-M\.
Suppose {z,, } is a convergent subsequence of {z,} and converges to x € S. it means
that there exists Ny € N such that for any k£ > N;
€
Frnk,m(i) >1-MN.
Now, let N = Max{Np, N1} then for any m > N

Fﬂf?ruw (E) 2 F$7n;$n7n (%) * F$n7n ,I(%)
> 1-XNx*x1-=NX
> 1-A\

It means that z,, converges to x. |
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Theorem 3.2. Let (E,F, *) be a complete Meneger PN-space, where E is a real
vector space and F is defined by (2.4). Then (R, F,x) is complete.

proof. Suppose (E, F, ) is a complete Meneger PN-space, and {a,,} is a Cauchy
sequence in (R, F,x). Due to Theorem 3.1, it is enough to show that there exits a
convergent subsequence of {a, }.
There is a subsequence {a,, } of {ay,} such that a,, > 0 or a,, <0 for all k£ € N.
Now, let {a,, } be a subsequence such that a,, > 0 for all k¥ € N, (for a,, < 0, proof
is similar). Set a,, = O for simplicity. Choose e € E such that ||e|| = 1 and consider
the sequence {fBre} in E. We show that {fre} is a Cauchy sequence in (E, F, ). To
prove this, first note that {8} is a Cauchy sequence in (R, F, %), it means that for
any A € (0,1) and any € > 0 there exists Ny € N such that for any n,m > N,

F(ﬁm,,@n)(E) >1-A\
Now, for n,m > Ny,

Fpe—pe(€) = Fl(Bn—-pu)els(€)
B8 —po)llell 2 (€)
E(g,,—.)|(€)
Fg,,—p.)(€)

1— A,

>

It means that {Oxe} is a Cauchy sequence in (E, F, ), and since (F, F, %) is a complete
Meneger PN-space, then {8e} is convergent to some z € E. Now, we prove {0} is
convergent in (R, F, ).

Since fGre — x, then for any A € (0,1) and € > 0 there exists N1 € N such that for
any k> N

(3.1) Fapen(e) >1 =X\

On the other hand,

(3.2) Fppe-a2(€) = Filppe—als (€)
and since ||Ore — z||g > ||Brell — ||x]| g, Lemma 2.6 shows that
(3:3) Figye—allz () < Fgy—al| (€)-

Considering (3.1), (3.2) and (3.3), we have
Fﬁk*HiHE(g) >1—A,

for any k > Nj. This shows that {3} is convergent to ||z||g in (R, F, *). O
In the next theorem, we consider R* with Euclidean norm.

Theorem 3.3. (R*,F. %) is complete Meneger PN-space if and only if (R, F,x) is
complete Menger PN-space.

Proof. Theorem 3.2 shows that if (R™, F, x) is a complete Meneger PN-space, then
(R, F, %) is a complete Menger PN-space.
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Now, we prove if (R, F,*) is a complete Meneger PN-space, then (Rk,ﬁ, x) is a
complete Menger PN-space. Suppose (R, F, *) be a complete Meneger PN-space and
{x,} is a Cauchy sequence in (R¥, F, x). Let 2, = (a1p, -+, Qgn), where ay,, € R for
1 <1 < k, then with respect to the norm inequality, we have

k
(34) |ain - O‘i7n| S ||xn - an” S Z |ajn - ajm‘7 fOI‘ 1 S ) S k
j=1

Since {x,} is a Cauchy sequence in (R*, F, %), then for any A € (0,1) and € > 0 there
exists Ny € N such that for any m,n > Ny,

(35) Fo o (8) = ﬂ|$n—$m|\(€) >1—-A
Thus for m,n > Ny and each 1 <1 < k, by Lemma 2.6, and (3.5), we have

Fam—aim (5) F|am—0tim|(€)

Bz —z, ) (€)
1— A

VIVl

It means that {a;,} is a Cauchy sequence in (R, F,x) for all 1 < ¢ < k. Thus there
exists «a; such that oy, — «; for each 1 < i < k. Now, we claim that z,, — = =
(a1, ,ag) in (R¥ F ).

Let A > 0 arbitrary, by Lemma 2.9, there exists a A’ > 0 such that

Q=N k(1= N)s-ox(1—N)> (1= A).

k—times

In addition, since «;,, — «; for each 1 <1 < k, thus there exits N; such that for any
€
Fam—ai (E

for each 1 < i < k. Let N = Max{N;| 1 <i <k}, then for any n > N

)>1-X

Fppa(€) = Flo, - (€)
2 f=1 \am—ai|(5)
> Faln*al(%)*"'*Fakn*ak(%)
> 1—XNsx-ox1—=N
> 11—\
Thus {z,} converges to 2 and this ends the proof. O

Theorem 3.4. Let (E,||.||g) be a normed real vector space. Then x,, s o, if and

only if x, LR x, where (E,F7 %) is a Menger PN-space and F is defined by (2.2).

proof. Suppose T, LR x, then for A = 1/2 and € > 0, there is N € N such that for
any n > N,
A €
Fyp _z(e) = ——F—— >1-1/2,
&= et Y
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or for any n > N,

lzn — ||l <&
and then x,, Iz x.

ll-l=

Conversely, suppose x,, — =z, then for any ¢ > 0 and X € (0,1) there is Ny € N

such that ||z, — z|| g < £, then for any n > Ny
R € €
Fy. —z(e) = > =1-A\
&) = el T o

F
Then z,, — x.
If we have continuity assumption of Fy(t) at ¢t = 0, then we will have the following
theorem.

Theorem 3.5. Let (R, F, x) be a Menger PN-space, where F,(.) is continuous at zero
and * is a continuous t-norm. Then (R, F, ) is complete Menger PN-space.

Proof. Let {z,} be a Cauchy sequence in (R, F, x). Now, we claim that {z,} is
a bounded sequence in (R, |.|). Otherwise, there exists a subsequence {x,, } which
|y, | tends to co. For a given € > 0, there exists a N such that for any n,m > N

N =

N
Now, for every ny > N

1/2 < Fy, —ay(€) = Fi( ) — F1(0) =0,

|$nk - le

which is a contradiction. Then {z,} is a bounded sequence in (R,|.|) and has a

. I
convergent subsequence say Z,, in (R,[.|). Now, suppose z,, — z, then

Fp, —o(e) = Fi(———) — Fi(o0) = 1,

Ty, —
which it means z,, — x to (R, F, *). Applying Theorem 3.1 completes the proof. O

Corollary 3.6. (Rk,ﬁ, %) is complete Meneger PN-space when F,(.) is continuous

at zero in the definition of F.
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