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Abstract. We give a short survey of the main principles of our software
for the visualisation and animation in mathematics and study the visibility
and contour problems in the representation of surfaces, which we solve for
generalised tubular surfaces, including their special cases, the envelopes
of spheres, surfaces of rotation and ruled surfaces. We apply our results
to visualise several results from differential geometry.
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1 Introduction

Visualisation and animation are of vital importance in modern mathematical educa-
tion. They strongly support the understanding of mathematical concepts.

We developed our own software package [10, 3, 2, 5, 6, 7, 8, 9, 11] to provide
the technical tools for the creation of graphics for the visualisations and animations
mainly of the results from differential geometry. Our software package is intended as
an alternative to most other conventional software packages.

Our graphics can be exported to BMP, PS, PLT, JVX and other formats (http://
www.javaview.de for JavaView) or GCLC, the Geometry Constructions Language
Converter ([1, 4] http://www.matfbg.ac.yu/∼janicic/gclc).

We use line graphics, which means that we only draw curves, and represent surfaces
by families of curves on them, normally by their parameter lines. We have chosen this
approach, since it seems to be the most suitable one for many graphical representations
in differential geometry. It also means that we do not need a special strategy for
drawing surfaces, such as approximation by triangulation. Curves may be given by
parametric representations or equations. They are approximated by polygons.

We developed an independent visibility check to analytically test the visibility of
the vertices of the approximating polygons, immediately after the computation of their
coordinates. Thus our graphics are generated in a geometrically natural way. The
independence of our visibility check enables us to demonstrate, if necessary, desirable
but geometrically unrealistic effects, or not to use any test at all for a fast first sketch.
Two consecutive points are joined by a straight line segment if and only if both of
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them are visible. Invisible parts of curves may either be dotted or not be drawn at
all. To speed up the process, we use interpolation to close occasional gaps.

We use the central projection to create a two–dimensional image of our three–
dimensional geometric configuration. This is the most general case. The central
projection is uniquely defined by its centre of projection COP and the projection
plane PrP l. The choices of COP and PrP l are free with the obvious exceptions that
COP must not be in PrP l, and the plane parallel to PrP l through COP must not
intersect the world interval. We decided to give the parameters of the projection in
spherical coordiantes, since it seems to be easier to have an idea of the positions of the
centre of projection and the projection plane with respect to spherical coordinates.
Normally we choose the projection plane orthogonal to the direction of the centre
of projection, and its origin antipodal to the centre of projection (Figure 1). This
prevents distortions.

We emphasize that all the graphics in this paper were created by our own software
and exported to PS files which then were converted to EPS files. The interested
reader is referred to [3, 12] for more details.

Figure 1. The definition of the central projection

COP centre of projection
in spherical
coordinates r, φ, Θ

PrP l projection plane
(orthogonal to the
direction of COP )

PrP l.O origin of the
projection plane
(antipodal to COP )

S1 unit sphere (to mark
the angles φ and Θ)

P1 point on S1 with
angles φ and Θ

2 The visibility and contour problems

Here we outline the visibility and contour problems that have to be solved for the
representation of surfaces.

2.1 The visibilty of points

First we study the visibility problems in the representation of surfaces. Since, in
general, we may want to draw several surfaces in a configuration, every point on each
surface has to be tested for its visibility. It has to be determined if the point is visible
with respect to the surface it is on, and if the point is not hidden by any of the other
surfaces. Consequently there are two procedures for the visibility check of a point,
V isibility and NotHidden.
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Let P be a point of IR 3, S be a surface with a parametric representation ~x(ui)
((u1, u2) ∈ D ⊂ IR 2), where D is a domain, and C = COP be the centre of projection.

We denote the position vector of P by ~p, and write ~v =
−→
PC. Then P is hidden by S

if and only if there exist a pair (u1, u2) ∈ D and a positive real t such that

(2.1) ~x(u1, u2) = ~p + t~v.

Thus we have to find the intersections of surfaces with straight lines.

2.2 The contour line of a surface

The use of line graphics has the effect that surfaces appear unfinished without their
so–called contour lines.

Let S be a surface with a parametric representation ~x(ui) and surface normal
vectors ~N(ui), P ∈ S be a point and C be the centre of projection. Then we say that
P is a contour point of S if and only if the following two conditions are satisfied.

(i) The projection ray to the point P is orthogonal to the surface normal vector ~N
at P , that is

(2.2)
−→
CP • ~N = 0.

(ii) Let E be the plane through P spanned by the vectors
−→
CP and ~N , and γ be

the curve of intersection of S and E. Then there is a neighbourhood of P in
which γ is completely on one side of the projection ray and has no points of
intersection with it other than P (Figure 2).

The contour line of a surface is the set of all its contour points.
We only use the condition in (2.2) to draw contour lines, since checking the con-

dition in (ii) would be very time consuming and only exclude rare cases (Figure 3).
If they really appear the problem can normally be avoided by a slight change in the
perspective.

Figure 2. The definition of a contour point P

COP centre of projection, PrP l projection plane, S surface, P contour point,

~N surface normal vector, Plane spanned by
−→
PC and ~N , γ intersection Plane ∩ S
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To find the contour line of a surface, we have to find the zeros of the function Ψ
defined by

(2.3) Ψ(u1, u2) = ~N(u1, u1) •
−→
CP (u1, u2).

Methods to find the zeros of φ and draw the contour lines of surfaces in the general
case, and their implementations can be found in [2, 3, 5].

Figure 3. A point P that satisfies (2.2), but not (ii)

3 Generalised tubular surfaces

Here we solve the visibility and contour problems for generalised tubular surfaces.
They are surfaces generated by the movement of two vectors along a given curve γ
with a parametric representation ~y(t) for t in some interval.

A tubular surface is the envelope of spheres of varying radii that move along γ. If
~v2(t) and ~v3(t) denote the principal normal and binormal vectors of γ at t, and r(t)
is the radius of the moving sphere at t, then, writing u1 = t, we obtain a parametric
representation for the tubular surface TS(γ; r) (Figure 4)

(3.1) ~x(ui) = ~y(u1) + r(u1)
(
cos u2~v2(u1) + sin u2~v3(u1)

) (
(u1, u2) ∈ I × (0, 2π)

)
.

We generalise as follows. Let γ be a curve with a parametric representation ~y(t) for
t in some interval I1, ~w1(t1) and ~w2(t1) be vectors with ~w1(t1) • ~w2(t1) = 0 for all
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t ∈ I1, and r1, r2 : I1 → IR and h1, h2 : I2 → IR be functions. Then we consider
generalised tubular surfaces with a parametric representation
(3.2)

~x(ui) = ~y(u1) + r1(u1)h1(u2)~w1(u1) + r2(u1)h2(u1)~w2(u1)
(
(u1, u2) ∈ I1 × I2

)
.

Figure 4. A tubular surface as the envelope of spheres

The most important special cases are:

(i) tubular surfaces

Here we have r = r1 = r2, r(t) > 0 for all t ∈ I1, h1 = cos, h2 = sin, ~w1 = ~v2 and
~w2 = ~v3, and obtain (3.1).

(ii) surfaces of rotation

Let Q ∈ IR 3 be a point, ~q its position vector, ~y(t) = h(t)~d, where h : I1 → IR is a
function and ~d is a constant unit vector orthogonal to the constant unit vectors ~w1

and ~w2, r = r1 = r2 with r(t) > 0 on I1, and h1(t2) = cos t2 and h2(t2) = sin t2.
Then (3.2) reduces to

(3.3) ~x(ui) = ~q + h(u1)~d + r(u1)
(
cos u2 ~w1 + sin u2 ~w2

) (
(u1, u2) ∈ I2 × (0, π)

)
;

this is a parametric representation of the surface of rotation that is generated by
rotation the curve γ∗ with a parametric representation ~y ∗(t) = h(t)~d+r(t)~w1 (t ∈ I1)
in the plane through P , spanned by the vectors ~d and ~w1, about the axis through P
in the direction of the vector ~d (Figure 5).

(iii) ruled surfaces

Ruled surfaces are generated by the movement of one vector ~v(t) along γ. They have
a parametric representation

(3.4) ~x(ui) = ~y(u1) + u2~z(u1)
(
(u1, u2) ∈ I1 × I2

)
.

This is obtained from (3.2) by choosing ~w1 = ~z, r1 ≡ 1, h1 = id and h2 ≡ 0.
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Figure 5. Generating a surface of rotation Figure 6. A torus and a catenoid

Figure 7. A conoid ~y(u1) = h(u1)~e 3 Figure 8. A helikoid ~y(u1) = c1u
1~e 3

3.1 The visibility of some generalised tubular surfaces

Here we solve the visibilty problem for generalised tubular surfaces (3.2) when r1(u1),
r2(u1) 6= 0 for all u1 ∈ I1, h1(u2) = cos u2, h2(u2) = sinu2, and ~w1(u1) and ~w2(u1)
are orthogonal unit vectors for all u2 ∈ I2 ⊂ (0, 2π), that is we consider surfaces S
with a parametric representation

(3.5) ~x(ui) = ~y(u1) + r1(u1) cos u2 ~w1(u1) + r2(u1) sin u2 ~w2(u1)(
(u1, u2) ∈ I1 × I2

)
.



Solutions of some visibility and contour problems 131

Again we have to find the points of intersection of a straight line with S. We put
~b(u1) = ~y(u1)− ~p. Now (2.1) becomes

(3.6) t~v −~b(u1) = r1(u1) cos u2 ~w1(u1) + r2(u1) sin u2 ~w2(u1).

This implies

(3.7) ~w1(u1) • (t~v −~b(u1)) = r1(u1) cos u2 and ~w2(u1) • (t~v −~b(u1)) = r2(u1) sin u2.

We put ~w(u1) = ~w1(u1)× ~w2(u1) and obtain from (3.6)

(3.8) ~b(u1) • ~w(u1) = t~v • ~w(u1).

First we consider the case ~v • ~w(u1) 6= 0

Then we can solve (3.8) for t

(3.9) t = t(u1) =
~b(u1) • ~w(u1)

~v • ~w(u1)
,

and it follows from (3.7) that

(3.10) r2
2(u

1)
(

~w1(u1) • (t(u1)~v −~b(u1))
)2

+ r2
1(u

1)
(

~w2(u1) • (t(u1)~v −~b(u1))
)2

= r2
1(u

1)r2
2(u

1) with t(u1) from (3.9).

Putting ~a(u1) = t(u1)~v −~b(u1) and R(u1) = r1(u1)r2(u1), we have to find the zeros
u1

0 ∈ I1 of the function f with

(3.11) f(u1) =
(
r2(u1)~w1(u1) • ~a(u1)

)2
+

(
r1(u1)~w2(u1) • ~a(u1)

)2 −R2(u1).

Now we obtain from (3.9) the values t0 = t(u1
0) that correspond to the zeros u1

0 ∈ I1

of f .

Now we consider the case ~v • ~w(u1) = 0

Then we have ~b(u1) • ~w(u1) = 0 by (3.8), and we have to find the zeros u1
0 ∈ I1 of the

function f with

(3.12) f(u1) = ~b(u1) • ~w(u1).

We write
a0 = r2

2(u
1
0)

(
~w1(u1

0) • ~v
)2

+ r2
1(u

1
0)

(
~w2(u1

0) • ~v
)2

,

b0 = −
(
r2
2(u

1
0)

(
~w1(u1

0) • ~v
) (

~w1(u1
0) •~b(u1

0)
)

+ r2
1(u

1
0)

(
~w2(u1

0) • ~v
) (

~w2(u1
0) •~b(u1

0)
))

and
c0 = r2

2(u
1
0)

(
~w1(u1

0) •~b(u1
0)

)2

+ r2
1(u

1
0)

(
~w2(u1

0) •~b(u1
0)

)2

−R2(u1
0),
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and have to find the solutions t(u0) for every u0 of (3.10) with u1 and t(u1) replaced
by u1

0 and t, that is we have to solve the quadratic equation

(3.13) a0t
2 + 2b0t + c0 = 0.

Finally, in both cases, we have to determine the values u2
0 ∈ I2 corresponding to the

zeros u0
1 and t0 from (3.7).

Remark 3.1. The formulae reduce considerably in the special cases.
(i) For tubular surfaces, we have r = r1 = r2, ~w1 = ~v2, ~w2 = ~v3. We obtain ~w = ~v1,
and from (3.6) (t~v −~b(u1))2 = r2(u1) and ~b(u1) • ~v1 = t~v • ~v1(u1). If ~v • ~v1(u1) 6= 0,
then substituting t = t(u1) = (~b(u1) • ~v1)/(~v • ~v1(u1)) in (3.10), we obtain

(
(~b(u1) • ~v1(u1))~v − (~v • ~v1(u1))~b(u1)

)2

=
∥∥∥~v1(u1)× (~v ×~b(u1))

∥∥∥
2

= r2(u1) (~v1 • ~v)2

The function f in (3.11) reduces to f(u1) = ‖~v1(u1)× (~v×~b(u1))‖2− r2(u1) (~v1 • ~v)2.
If ~v • ~v1(u1) = 0, then the coefficients of the quadratic equation (3.13) reduce to
a0 = ~v 2 = 1, b0 = ~v •~b(u1

0) and c0 = (~b(u1
0))

2.
(ii) For surfaces of rotation, we have ~b(u1) = (~q − ~p) + h(u1)~d and we can choose
~w = ~d in Part (i).

Remark 3.2. The solution of the visibility problem given above can also be applied
when the functions cos and sin are replaced by cosh and sinh (Figure 9).

Figure 9. Surfaces with ~x(ui) = {r(u1) cosh u2, r(u1) sinh u2, h(u1)}
Left r(u1) = cosh u1/4, h(u1) = cos u1 Right r(u1) = 4 + cos u1, h(u1) = sin u1

Remark 3.3. The boundaries of neighbourhoods in IR 3 with respect to certain para-
norms can be considered as generalised tubular surfaces (3.2) ([8, 9]). Let (p) =
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(p1, p2, p3) with pk > 0 (k = 1, 2, 3) be given, H = max{p1, p2, p3} and M =
max{1,H}. Then g(p) with g(p)(~x) = (

∑3
k=1 |xk|pk)1/M for all ~x = {x1, x2, x3} de-

fines a paranorm. If X0 is a given point in IR 3 with position vector ~x0, then the
boundary of its neighbourhood ∂B(p)(X0, r) = {~x : g(p)(~x − ~x0) = r} (r > 0) can be
represented by a generalised tubular surface (3.2) with

~y(u1) = ~x0 + rM/p3 sgn(sinu1)| sin u1|2/p3 ~e 3,

~w1 = ~e 1, ~w2 = ~e 2,

r1(u1) = rM/p1 (cosu1)2/p1 , h1(u2) = sgn(cos u2)| cosu2|2/p1 ,

r2(u1) = rM/p2 (cosu1)2/p2 , h2(u2) = sgn(cos u2)| cosu2|2/p2

for (u1, u2) ∈ (−π/2, π/2)× (0, 2π) (Figures 10 and 11).

3.2 The contour line

Here we consider the contour lines of generalised tubular surfaces (3.2) in some special
cases when the function Ψ in (2.3) reduces considerably.

First we consider the surface generated by the osculating circles of a curve γ with
non–vanishing curvature. Let γ be given by a parametric representation ~y(s) (s ∈ I),
where s is the arc length along γ, and ρ(s) = 1/κ(s) be the radius of curvature of γ
at s. The centre of curvature ~ym(s) and the osculating circle of γ at s are given by

(3.14) ~ym(s) = ~y(s) + ρ(s)~v2(s)

and

(3.15) ~x(s; t) = ~ym(s) + ρ(s)(cos t~v2(s) + sin t~v1(s)) for t ∈ (0, 2π).

Figure 10. ∂B(p)(0, 1) for

(p) = (1/2, 2, 1/4)

Figure 11. ∂B(p)(0, 1) for

(p) = (1/4, 5, 1)
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Thus we consider the surface (3.5) with ~y = ~ym, r1 = r2 = ρ, ~w1 = ~v2 and ~w2 = ~v1.
Denoting the differentiation with respect to u1 by ·, omitting the parameter u1 and
using Frenet’s formulae, we obtain

~x1 = ~v1 + ρ̇ cosu2 ~v2 + ρ̇ sin u2 ~v1 + ρ(1 + cos u2)~̇v2 + ρ sin u2 ~̇v1

= ~v1 + ρ̇ cosu2 ~v2 + ρ̇ sin u2 ~v1 − (1 + cos u2)~v1 + ρτ(1 + cos u2)~v3 + sin u2 ~v2

= (ρ̇ sin u2 − cos u2)~v1 + (ρ̇ cos u2 + sin u2)~v2 + ρτ(1 + cos u2)~v3,

~x2 = −ρ sin u2 ~v2 + ρ cosu2 ~v1

and

~n = (1/ρ)(~x1 × ~x2) = − sin u2(ρ̇ sin u2 − cos u2)~v3

− cosu2(ρ̇ cosu2 + sin u2)~v3 + ρτ(1 + cos u2)(sinu2 ~v1 + cos u2 ~v2)

= ρτ(1 + cos u2)(sinu2 ~v1 + cosu2 ~v2)− ρ̇~v3

We write βk(u1) = (~ym(u1)−~c) • ~vk(u1) for k = 1, 2, 3 and obtain for the function Ψ
in (2.3)

Ψ(ui) = ~n(ui) • (~p− ~c)

= ~n(ui) • (~ym(u1)− ~c) + ρ(u1)~n(ui) • (
cosu2 ~v2(u1) + sin u2 ~v1(u1)

)

= (1 + cos u2)ρ(u1)τ(u1)
(
β1(u1) sin u2 + β2(u1) cos u2

)− ρ̇(u1)β3(u1)

+
(
1 + cos u2

)
ρ2(u1)τ(u1)

(
sin2 u2 + cos2 u2

)

=
(
1 + cos u2

)
ρ(u1)τ(u1)

(
β1(u1) sin u2 + β2(u1) cos u2 + ρ(u1)

)− ρ̇(u1)β3(u1).

Now we consider the surface generated by the osculating spheres of a curve γ with
non–vanishing curvature. Let γ be given by a parametric representation ~y(s) (s ∈ I),
where s is the arc length along γ. Then the centre and radius of the osculating sphere
at s are given by

(3.16) ~m(s) = ~y(s) + ρ(s)~v2(s) +
ρ̇(s)
τ(s)

~v3(s) and r(s) =

√
ρ2(s) +

(
ρ̇(s)
τ(s)

)2

.

We write φ(s) = ρ̇(s)/τ(s) and ~z(ui) = r(u1)(cos u2 ~v2(u1) + sin u2 ~v3(u1)), and con-
sider the surface given by

(3.17) ~x(ui) = ~m(u1) + ~z(ui) for (u1, u2) ∈ I × (0, 2π).

It follows that

~̇m = ~v1 + ρ̇~v2 + ρ~̇v2 + φ̇~v3 + φ~̇v3 = ~v1 + ρ̇~v2 − ~v1 + ρτ~v3 + φ̇~v3 − ρ̇~v2 = (ρτ + φ̇)~v3,

~z1 = ṙ
(
cos u2 ~v2 + sin u2 ~v3

)
+ r

(
cosu2 ~̇v2 + sin u2 ~̇v3

)

= ṙ
(
cos u2 ~v2 + sin u2 ~v3

)
+ r cosu2

(
−1

ρ
~v1 + τ~v3

)
− rτ sin u2 ~v2
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= − r

ρ
cos u2 ~v1 +

(
ṙ cosu2 − rτ sin u2

)
~v2 +

(
ṙ sinu2 + rτ cosu2

)
~v3,

hence

~x1 = − r

ρ
cos u2 ~v1 +

(
ṙ cos u2 − rτ sin u2

)
~v2 +

(
ṙ sin u2 + rτ cosu2 + ρτ + φ̇

)
~v3,

~x2 = r
(− sin u2 ~v2 + cos u2 ~v3

)

and

~n =
1
r
(~x1 × ~x2) =

r

ρ
sin u2 cosu2 ~v3 +

r

ρ
cos2 u2 ~v2 + cos u2

(
ṙ cos u2 − rτ sin u2

)
~v1

+ sin u2
(
ṙ sin u2 + rτ cosu2 + ρτ + φ̇

)
~v1

=
(
ṙ + (ρτ + φ̇) sin u2

)
~v1 +

cos u2

ρ
~z(ui).

We put βk(u1) = (~m− ~c) • ~vk for k = 1, 2, 3, and obtain for the function Ψ in (2.3)

Ψ(ui) = ~n(ui) • (~m(u1)− ~c) + ~n(ui) • ~z(ui)

=
(
ṙ(u1) + (ρ(u1)τ(u1) + φ̇(u1)) sin u2

)
β1(u1)

+
r(u1)
ρ(u1)

cos u2
(
cosu2β2(u1) + sin u2β3(u1)

)
+

r2(u1)
ρ(u1)

cosu2

=
(
ṙ(u1) + (ρ(u1)τ(u1) + φ̇(u1)) sin u2

)
β1(u1)

+
r(u1)
ρ(u1)

cosu2
(
cosu2β2(u1) + sin u1β3(u1) + r(u1)

)
.

Remark 3.4. The equation Ψ(u1, u2) = 0 can be solved for u2 for surfaces of rotation
and ruled surfaces, that is u2 = ψ(u1). The functions ψ can be found in [10].

3.3 Some applications in Differential Geometry

Here we apply the results of the previous two subsections to represent asymptotic and
geodesic lines on a pseudo–sphere, the surface generated by the osculating circles and
the tubular surface generated by the osculating spheres of an asymptotic line on a
pseudo–sphere. We also represent the normal curvature along a curve γ on a torus on
the ruled surface generated by γ and the surface normal vectors of the torus along γ.

We consider the pseudo–sphere PS with a parametric representation

(3.18) ~x(ui) =
{

e−u1
cos u2, e−u1

sin u2,

∫ √
1− e−2u1 du1

}

(
(u1, u2) ∈ (0,∞)× (0, 2π)

)
.

Proposition 3.5. (a) The asymptotic lines on the pseudo–sphere PS are given by

(3.19) u1(t) = t and u2
±(t) = ± log

(
et +

√
e2t − 1

)
+ c± for all t > 0,
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where c+ and c− are constants (Figure 12). If we choose the upper sign and c+ = 0
in (3.19) then the asymptotic line has a parametric representation with respect to its
arc length

(3.20) ~x(s) =
{

cos s

cosh s
,

sin s

cosh s
, s− tanh s

}
for all s > 0.

(b) The vectors ~vk (k = 1, 2, 3) of the trihedra, the curvature κ and the torsion τ of
the asymptotic line given by (3.20) are (Figure 13)

~v1(s) = − sinh s

cosh2 s
{cos s, sin s,− sinh s}+

1
cosh s

{− sin s, cos s, 0},(3.21)

~v2(s) = − 1
cosh2 s

{cos s, sin s,− sinh s} − tanh s{− sin s, cos s, 0},(3.22)

~v3(s) =
1

cosh s
{sinh s cos s, sinh s sin s, 1},(3.23)

κ(s) =
2

cosh s
and τ(s) = 1.(3.24)

Figure 12. Asymptotic lines on the

pseudo–sphere;

red for the upper sign,

green for the lower sign

Figure 13. The vectors of the trihedra

along a curve on the pseudo–sphere

Proof. (a) We recall that the first and second fundamental coefficients of a surface
of rotation with a parametric representation

(3.25) ~x(ui) = {r(u1) cos u2, r(u1) sin u2, h(u1)},
where r(u1) > 0 and |r′(u1)|+ |h′(u1| > 0 are given by

(3.26) g11 = (r′)2 + (h′)2, g12 = 0, g22 = r2,

(3.27) L11 =
h′′r′ − h′r′′√
(r′)2 + (h′)2

, L12 = 0 and L22 =
h′r√

(r′)2 + (h′)2
.
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Since we have (r′)2 + (h′)2 = 1 for PS, the second fundamental coefficients reduce to

L11 = −r′′

h′
=

r

h′
and L22 = rh′.

Since PS is a surface with constant Gaussian curvature K ≡ −1, the asymptotic
lines exist everywhere; they are given by the solutions of the differential equation
L11(du1)2 + L22(du2)2 = 0, that is

(3.28)
du2

du1
= ±

√
−L11(u1)

L22(u1)
= ±

√
r′′(u1)

r(u1)(h′(u1))2
= ± 1

|h′(u1)| = ± 1√
1− e−2u1

,

that is

u2(u1) = ±
∫

du1

√
1− e−2u1

= ±
∫

eu1

√
e2u1 − 1

du1.

To solve the integral I(u1) in this identity, we substitute t = eu1
> 1, and obtain

du1/dt = 1/t and

I(u1) =
∫

dt√
t2 − 1

= log
(
t +

√
t2 − 1

)
= log

(
eu1

+
√

e2u1 − 1
)
.

This yields the parametric representation (3.19) for the asymptotic lines on PS.
We obtain for the asymptotic line given by (3.19) with the upper sign and c+ = 0

‖~x ′
(t)‖2 = g11(u1(t))

(
du1(t)

dt

)2

+ g22(u1(t))
(

du2(t)
dt

)2

=
1√

1− e−2t
=

du2(t)
dt

,

hence s(t) = u2(t), and then e−t = 1/ cosh s. Finally we have

h(s) = h(t(s)) =
∫ √

1− e−2t(s)
dt(s)
ds

ds =
∫ √

1− 1
cosh2 s

√
1− 1

cosh2 s
ds

=
∫ (

1− 1
cosh2 s

)
ds = s− tanh s.

This yields the parametric representation in (3.20).
(b) We put φ(s) = 1/ cosh s and omit the argument s in φ and its derivatives φ̇ and
φ̈, and obtain φ̇ = −φ2 sinh s, (φ̇)2 = φ4(cosh2 s − 1) = φ2 − φ4, φ̈ = −φ2 cosh s −
2φ̇φ sinh s = −φ + 2φ3 sinh2 s = −φ + 2φ− 2φ3 = φ− 2φ3, φ̈− φ = −2φ3 and

d(tanh(s))
ds

=
1

cosh2 s
= φ2.

Now it follows that ~v1 = ~̇x(s) = {φ̇ cos s, φ̇ sin s, 1 − φ2} + φ{− sin s, cos s, 0}, which
yields (3.21). Furthermore, we have

(3.29) ~̈x(s) = {(φ̈− φ) cos s, (φ̈− φ) sin s,−2φ̇φ}+ 2φ̇{− sin s, cos s, 0}
and κ2(s) = ‖~̈x(s)‖2 = (φ̈− φ)2 + 4(φ̇2(φ2 + 1)) = 4(φ6 + φ2(1− φ2)(1 + φ2)) = 4φ2,
and this and (3.29) yield (3.21) and κ(s) in (3.23). Since κ(s) 6= 0, it follows that
~v3(s) = ± ~N(ui(s)) for all s, where the surface normal vector ~N is given by

(3.30) ~N =
1√

(r′)2 + (h′)2
{−h′ cosu2,−h′ sin u2, r′}
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with (r′)2 + (h′)2 ≡ 1, h′(u1(s)) = tanh s and r′(u1(s)) = 1/ cosh s, hence

~N(u1(s)) =
1

cosh s
{− sinh s cos s,− sinh s sin s, 1}.

Comparison of the third components of ~N(ui(s)) and ~v1(s) × ~v2(s) yields ~v3(s) =
− ~N(ui(s)), hence (3.23). Finally, since the pseudo–sphere has constant Gaussian
curvature K(ui) = −1, it follows from the Beltrami–Enneper theorem that |τ(s)| =√
−K(ui(s)) = 1. ¤

Figure 14. Osculating plane and circle

at a point of the asymptotic line γ on the

pseudo–sphere, and the curve γm of the

centres of curvature of the asymptotic line

Figure 15. Osculating plane and sphere

at a point of the asymptotic line γ on the

pseudo–sphere, and the curves γm and γ∗

of the centres of curvature and the centres

of the osculating spheres

Example 3.6. (a) We represent the generalised tubular surface generated by the oscu-
lating circles along the asymptotic line (3.20) on the pseudo–sphere (3.18) that is, by
(3.15), the surface with a parametric representation

~x(ui) = ~ym(u1) + ρ(u1)(cos u2 ~v2(u1) + sin t~v1(u1)) for (u1, u2) ∈ I × (0, 2π),

where ~ym, ρ = 1/κ, ~v1 and ~v2 are given by (3.14), (3.24) (3.21) and (3.22) with s
replaced by u1 (Figure 17).
(b) We represent the envelope of the osculating spheres along the asymptotic line
(3.20) on the pseudo–sphere (3.18), that is the surface with a parametric represen-
tation (3.17) and ~m, ρ, τ , r, ~v2 and ~v3 given by (3.16), (3.24), (3.22) and (3.23)
(Figure 18).
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Figure 16. Osculating sphere at a point of the asymptotic line on the pseudo–sphere

Figure 17. The generalised tubular sur-

face generated by the osculating circles

along the asymptotic line on the pseudo–

sphere

Figure 18. Envelope of the osculating

spheres along the asymptotic line on the

pseudo–sphere

Top: (u1, u2) ∈ (−8, 8)× (0, 2π)

Bottom: (u1, u2) ∈ (−8, 8)× (0, π)

Finally we visualise the normal curvature along a curve on a torus.

If S is a surface with a parametric representation ~x(ui) ((u1, u2) ∈ D ⊂ IR2) and
γ is a curve on S with a parametric representation ~x(t) = ~x(ui(t)) (t ∈ I) and normal
curvature κn(t) = κn(ui(t)), then we may represent κn(t) by the curve γn, given by a
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parametric representation ~x ∗(t) = ~x(t) + κn(t) ~N(t) (t ∈ I). Writing u ∗1 = t, we see
that γn is a curve on the ruled surface RS that has a parametric representation

(3.31) ~x ∗(u ∗i) = ~y(u ∗1) + u ∗2~z(u ∗1) ((u∗ 1, u ∗2) ∈ I × IR)

where ~y(u ∗1) = ~x(ui(u ∗1)) and ~z(u ∗1) = ~N(ui(u ∗1))

and γn is given by putting u ∗2 = κn(ui(u ∗1)) in (3.31).

Example 3.7. We consider the torus as a surface of rotation (3.25) with

r(u1) = r1 + r0 cos u1 and h(u1) = r0 sin u1 ((u1, u2) ∈ I1 × I2 ⊂ (0, 2π)× (0, 2π))
where r1 and r0 are positive constants with r1 > r0.

Since

r′(u1) = −r0 sin u1, r′′(u1) = −r0 cos u1, h′(u1) = r0 cosu1 and h′′(u1) = −r0 sin u1,

it follows from (3.30), (3.26) and (3.27) that

~N(ui) = {− cosu1 cos u2,− cos u1 sinu2,− sin u1},
g11(u1) = r2

0, g12(u1) = 0, g22(u1) = (r1 + r0 cos u1)2,

L11(u1) =
1
r0

(r2
0 sin2 u1 + r2

0 cos2 u1) = r0, L12(u1) = 0

and

L22(u1) =
(r1 + r0 cosu1)r0 cosu1

r0
= (r1 + r0 cosu1) cos u1.

If we consider the curve γ on the torus, given by u1(t) = t and u2(t) = t2, then we
obtain for the ruled surface in (3.31), writing t = u ∗1,

~y(t) = {(r1 + r0 cos t) cos t2, (r1 + r0) cos t sin t2, r0 sin t},
~z(t) = −{cos t cos t2, cos t sin t2, sin t},

and for the normal curvature along the curve

κn(ui(t)) =
r0 + 4t2(r1 + r0 cos t) cos t

r2
0 + 4t2(r1 + r0 cos t)2

(Figures 19 and 20).
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Figure 19. Representation of the normal curvature along the curve of Example 3.7

Figure 20. Representation of the normal curvature along the curve of Example 3.7
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Department of Mathematics, Faculty of Science and Mathematics,
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